Sample records for cosmic pions

  1. Benchmark Analysis of Pion Contribution from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Aghara, Sukesh K.; Blattnig, Steve R.; Norbury, John W.; Singleterry, Robert C., Jr.

    2008-01-01

    Shielding strategies for extended stays in space must include a comprehensive resolution of the secondary radiation environment inside the spacecraft induced by the primary, external radiation. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. A systematic verification and validation effort is underway for HZETRN, which is a space radiation transport code currently used by NASA. It performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. The question naturally arises as to what is the contribution of these particles to space radiation. The pion has a production kinetic energy threshold of about 280 MeV. The Galactic cosmic ray (GCR) spectra, coincidentally, reaches flux maxima in the hundreds of MeV range, corresponding to the pion production threshold. We present results from the Monte Carlo code MCNPX, showing the effect of lepton and meson physics when produced and transported explicitly in a GCR environment.

  2. Pion Production Data Needed for Space Radiation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2010-01-01

    A recent discovery concerning the importance of hadron production in space radiation is that pions can contribute up to twenty percent of the dose from galactic cosmic ray interactions (S. Aghara, S. Blattnig, J. Norbury, R. Singleterry, Nuclear Instruments and Methods, Vol. 267, 2009, p. 1115). Although the contribution for dose equivalent will be smaller, the dose contribution could be important for fluence based radiation models. Pion production cross sections will be an essential ingredient to such models, and it is of interest to investigate the adequacy of the pion production experimental data base for energies relevant to space radiation. The pion production threshold in nucleon - nucleon reactions is at 280 MeV and, in an interesting accident of nature, this lies near the peak of the galactic cosmic ray proton spectrum. Therefore, pion production data are needed from threshold up to energies around 50 GeV/nucleon, where the galactic cosmic ray fluence is of decreasing importance. Total and differential cross section data for pion production in this energy range will be reviewed. The availability and accuracy of theoretical models will also be discussed. It will be shown that there are a significant lack of data in this important energy range and that theoretical models still need improvement.

  3. Cosmic PeV neutrinos and the sources of ultrahigh energy protons

    NASA Astrophysics Data System (ADS)

    Kistler, Matthew D.; Stanev, Todor; Yüksel, Hasan

    2014-12-01

    The IceCube experiment recently detected the first flux of high-energy neutrinos in excess of atmospheric backgrounds. We examine whether these neutrinos originate from within the same extragalactic sources as ultrahigh energy cosmic rays. Starting from rather general assumptions about spectra and flavors, we find that producing a neutrino flux at the requisite level through pion photoproduction leads to a flux of protons well below the cosmic-ray data at ˜1 018 eV , where the composition is light, unless pions/muons cool before decaying. This suggests a dominant class of accelerator that allows for cosmic rays to escape without significant neutrino yields.

  4. Neutrino flux from cosmic ray accelerators in the Cygnus spiral arm of the Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anchordoqui, Luis; Halzen, Francis; O'Murchadha, Aongus

    2007-09-15

    Intriguing evidence has been accumulating for the production of cosmic rays in the Cygnus region of the galactic plane. We here show that the IceCube experiment can produce incontrovertible evidence for cosmic ray acceleration by observing the neutrinos from the decay of charged pions accompanying the TeV photon flux observed in the HEGRA, Whipple, Tibet, and Milagro experiments. Our assumption is that the TeV photons observed are the decay products of neutral pions produced by cosmic ray accelerators in the nearby spiral arm of the galaxy. Because of the proximity of the sources, IceCube will obtain evidence at the 5{sigma}more » level in 15 years of observation.« less

  5. Monte Carlo Analysis of Pion Contribution to Absorbed Dose from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Aghara, S.K.; Battnig, S.R.; Norbury, J.W.; Singleterry, R.C.

    2009-01-01

    Accurate knowledge of the physics of interaction, particle production and transport is necessary to estimate the radiation damage to equipment used on spacecraft and the biological effects of space radiation. For long duration astronaut missions, both on the International Space Station and the planned manned missions to Moon and Mars, the shielding strategy must include a comprehensive knowledge of the secondary radiation environment. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. Galactic cosmic rays (GCR) comprised of protons and heavier nuclei have energies from a few MeV per nucleon to the ZeV region, with the spectra reaching flux maxima in the hundreds of MeV range. Therefore, the MeV - GeV region is most important for space radiation. Coincidentally, the pion production energy threshold is about 280 MeV. The question naturally arises as to how important these particles are with respect to space radiation problems. The space radiation transport code, HZETRN (High charge (Z) and Energy TRaNsport), currently used by NASA, performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. In this paper, we present results from the Monte Carlo code MCNPX (Monte Carlo N-Particle eXtended), showing the effect of leptons and mesons when they are produced and transported in a GCR environment.

  6. Parameterized Cross Sections for Pion Production in Proton-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Swaminathan, Sudha R.; Kruger, Adam T.; Ngom, Moussa; Norbury, John W.; Tripathi, R. K.

    2000-01-01

    An accurate knowledge of cross sections for pion production in proton-proton collisions finds wide application in particle physics, astrophysics, cosmic ray physics, and space radiation problems, especially in situations where an incident proton is transported through some medium and knowledge of the output particle spectrum is required when given the input spectrum. In these cases, accurate parameterizations of the cross sections are desired. In this paper much of the experimental data are reviewed and compared with a wide variety of different cross section parameterizations. Therefore, parameterizations of neutral and charged pion cross sections are provided that give a very accurate description of the experimental data. Lorentz invariant differential cross sections, spectral distributions, and total cross section parameterizations are presented.

  7. Soft Pion Processes

    DOE R&D Accomplishments Database

    Nambu, Y.

    1968-01-01

    My talk is concerned with a review, not necessarily of the latest theoretical developments, but rather of an old idea which has contributed to recent theoretical activities. By soft pion processes I mean processes in which low energy pions are emitted or absorbed or scattered, just as we use the word soft photon in a similar context. Speaking more quantitatively, we may call a pion soft if its energy is small compared to a natural scale in the reaction. This scale is determined by the particular dynamics of pion interaction, and one may roughly say that a pion is soft if its energy is small compared to the energies of the other individual particles that participate in the reaction. It is important to note at this point that pion is by far the lightest member of all the hadrons, and much of the success of the soft pion formulas depends on this fact.

  8. Connected and disconnected contractions in pion-pion scattering

    NASA Astrophysics Data System (ADS)

    Acharya, Neramballi Ripunjay; Guo, Feng-Kun; Meißner, Ulf-G.; Seng, Chien-Yeah

    2017-09-01

    We show that the interplay of chiral effective field theory and lattice QCD can be used in the evaluation of so-called disconnected diagrams, which appear in the study of the isoscalar and isovector channels of pion-pion scattering and have long been a major challenge for the lattice community. By means of partially-quenched chiral perturbation theory, we distinguish and analyze the effects from different types of contraction diagrams to the pion-pion scattering amplitude, including its scattering lengths and the energy-dependence of its imaginary part. Our results may be used to test the current degree of accuracy of lattice calculation in the handling of disconnected diagrams, as well as to set criteria for the future improvement of relevant lattice computational techniques that may play a critical role in the study of other interesting QCD matrix elements.

  9. Superluminal Neutrinos at OPERA Confront Pion Decay Kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowsik, Ramanath; Nussinov, Shmuel; Schmidt College of Science, Chapman University,Orange California 92866

    2011-12-16

    Violation of Lorentz invariance (VLI) has been suggested as an explanation of the superluminal velocities of muon neutrinos reported by OPERA. In this Letter, we show that the amount of VLI required to explain this result poses severe difficulties with the kinematics of the pion decay, extending its lifetime and reducing the momentum carried away by the neutrinos. We show that the OPERA experiment limits {alpha}=(v{sub {nu}}-c)/c<4x10{sup -6}. We then take recourse to cosmic-ray data on the spectrum of muons and neutrinos generated in Earth's atmosphere to provide a stronger bound on VLI: (v-c)/c<10{sup -12}.

  10. Balloon measurements of the energy spectrum of cosmic electrons between 1 and 25 GeV.

    NASA Technical Reports Server (NTRS)

    Earl, J. A.; Neely, D. E.; Rygg, T. A.

    1972-01-01

    During three balloon flights made in 1966 and 1967, cosmic electrons were investigated with the aid of a hodoscope detector that provided extensive and detailed information on each cosmic-ray event triggering the apparatus. Similar information obtained during calibration exposures to protons and pions as well as to electrons was used to provide identification of cosmic electrons and to determine their energies. Differential primary electron intensities measured in the range from 1 to 25 GeV were substantially larger than some earlier measurements. In conjunction with existing measurements at energies above 100 GeV, this finding indicates that the energy spectrum of cosmic electrons is steeper than that of cosmic-ray nuclei and consequently suggests that Compton/synchrotron energy loss plays a significant role in shaping the electron spectrum.

  11. Cross-Section Parameterizations for Pion and Nucleon Production From Negative Pion-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.; Norman, Ryan; Tripathi, R. K.

    2002-01-01

    Ranft has provided parameterizations of Lorentz invariant differential cross sections for pion and nucleon production in pion-proton collisions that are compared to some recent data. The Ranft parameterizations are then numerically integrated to form spectral and total cross sections. These numerical integrations are further parameterized to provide formula for spectral and total cross sections suitable for use in radiation transport codes. The reactions analyzed are for charged pions in the initial state and both charged and neutral pions in the final state.

  12. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülβ, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rizzo, A.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.; IceCube Collaboration

    2012-04-01

    Very energetic astrophysical events are required to accelerate cosmic rays to above 1018electronvolts. GRBs (γ-ray bursts) have been proposed as possible candidate sources. In the GRB `fireball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ-rays. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 1018electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

  13. Pion exchange at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, L.M.

    1980-07-01

    The state of Regge pion exchange calculations for high-energy reactions is reviewed. Experimental evidence is summarized to show that (i) the pion trajectory has a slope similar to that of other trajectories; (ii) the pion exchange contribution can dominate contributions of higher trajectories up to quite a large energy; (iii) many two-body cross sections with large pion contributions can be fit only by models which allow for kinematical conspiracy at t=0. The theory of kinematic conspiracy is reviewed for two-body amplitudes, and calculations of the conspiring pion--Pomeron cut discussed. The author then summarizes recent work on pion exchange in Reggeizedmore » Deck models for multiparticle final states, with emphasis on the predictions of various models (with and without resonances) for phases of the partial wave amplitudes.« less

  14. Charged pion production in $$\

    DOE PAGES

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less

  15. Neutron star cooling and pion condensation

    NASA Technical Reports Server (NTRS)

    Umeda, Hideyuki; Nomoto, Ken'ichi; Tsuruta, Sachiko; Muto, Takumi; Tatsumi, Toshitaka

    1994-01-01

    The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.

  16. Analyses of multi-pion Hanbury Brown–Twiss correlations for the pion-emitting sources with Bose–Einstein condensation

    NASA Astrophysics Data System (ADS)

    Bary, Ghulam; Ru, Peng; Zhang, Wei-Ning

    2018-06-01

    We calculate the three- and four-particle correlations of identical pions in an evolving pion gas (EPG) model with Bose–Einstein condensation. The multi-pion correlation functions in the EPG model are analyzed in different momentum intervals and compared with the experimental data for Pb–Pb collisions at \\sqrt{{s}{NN}}=2.76 {TeV}. It is found that the multi-pion correlation functions and cumulant correlation functions are sensitive to the condensation fraction of the EPG sources in the low average transverse-momentum intervals of the three and four pions. The model results of the multi-pion correlations are consistent with the experimental data in a considerable degree, which gives a source condensation fraction between 16% and 47%.

  17. Pion distribution amplitude and quasidistributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radyushkin, Anatoly V.

    2017-03-27

    We extend our analysis of quasidistributions onto the pion distribution amplitude. Using the formalism of parton virtuality distribution amplitudes, we establish a connection between the pion transverse momentum dependent distribution amplitude Ψ(x,k 2 ⊥) and the pion quasidistribution amplitude (QDA) Q π(y,p 3). We build models for the QDAs from the virtuality-distribution-amplitude-based models for soft transverse momentum dependent distribution amplitudes, and analyze the p3 dependence of the resulting QDAs. As there are many models claimed to describe the primordial shape of the pion distribution amplitude, we present the p 3-evolution patterns for models producing some popular proposals: Chernyak-Zhitnitsky, flat, andmore » asymptotic distribution amplitude. Finally, our results may be used as a guide for future studies of the pion distribution amplitude on the lattice using the quasidistribution approach.« less

  18. Second dip as a signature of ultrahigh energy proton interactions with cosmic microwave background radiation.

    PubMed

    Berezinsky, V; Gazizov, A; Kachelrieb, M

    2006-12-08

    We discuss as a new signature for the interaction of extragalactic ultrahigh energy protons with cosmic microwave background radiation a spectral feature located at E= 6.3 x 10(19) eV in the form of a narrow and shallow dip. It is produced by the interference of e+e(-)-pair and pion production. We show that this dip and, in particular, its position are almost model-independent. Its observation by future ultrahigh energy cosmic ray detectors may give the conclusive confirmation that an observed steepening of the spectrum is caused by the Greisen-Zatsepin-Kuzmin effect.

  19. Hadron-rich cosmic-ray families detected by emulsion chamber.

    NASA Astrophysics Data System (ADS)

    Navia, C. E.; Augusto, C. R. K.; Pinto, F. A.; Shibuya, H.

    1995-11-01

    Observed hadrons in excess, larger-than-expected charged mesons (pions) in cosmic-ray families detected in emulsion chamber experiment at mountain altitude and produced in a cosmic-ray hadronic interaction not far from the PeV energy region are studied. The hypothesis that these extra hadrons could be a bundle of surviving nuclear fragments (nucleons) is verified through a simulation method using a hybrid code composed of a superposition model to describe the number of interacting nucleon-nucleon pairs in a nucleus-nucleus collision. Together with the UA5 algorithm to describe a nucleon-nucleon collision, atmospheric propagation structure is also considered. A comparison between simulation output with experimental data shows that the surviving-nuclear-fragments hypothesis is not enough to explain the non-pionic hadron excess, even if a heavy dominance composition in the primary flux is considered.

  20. Pions to Quarks

    NASA Astrophysics Data System (ADS)

    Brown, Laurie Mark; Dresden, Max; Hoddeson, Lillian

    2009-01-01

    Part I. Introduction; 1. Pions to quarks: particle physics in the 1950s Laurie M Brown, Max Dresden and Lillian Hoddeson; 2. Particle physics in the early 1950s Chen Ning Yang; 3. An historian's interest in particle physics J. L. Heilbron; Part II. Particle discoveries in cosmic rays; 4. Cosmic-ray cloud-chamber contributions to the discovery of the strange particles in the decade 1947-1957 George D. Rochester; 5. Cosmic-ray work with emulsions in the 1940s and 1950s Donald H. Perkins; Part III. High-energy nuclear physics; Learning about nucleon resonances with pion photoproduction Robert L. Walker; 7. A personal view of nucleon structure as revealed by electron scattering Robert Hofstadter; 8. Comments on electromagnetic form factors of the nucleon Robert G. Sachs and Kameshwar C. Wali; Part IV. The new laboratory; 9. The making of an accelerator physicist Matthew Sands; 10. Accelerator design and construction in the 1950s John P. Blewett; 11. Early history of the Cosmotron and AGS Ernest D. Courant; 12. Panel on accelerators and detectors in the 1950s Lawrence W. Jones, Luis W. Alvarez, Ugo Amaldi, Robert Hofstadter, Donald W. Kerst, Robert R. Wilson; 13. Accelerators and the Midwestern Universities Research Association in the 1950s Donald W. Kerst; 14. Bubbles, sparks and the postwar laboratory Peter Galison; 15. Development of the discharge (spark) chamber in Japan in the 1950s Shuji Fukui; 16. Early work at the Bevatron: a personal account Gerson Goldhaber; 17. The discovery of the antiproton Owen Chamberlain; 18. On the antiproton discovery Oreste Piccioni; Part V. The Strange Particles; 19. The hydrogen bubble chamber and the strange resonances Luis W. Alvarez; 20. A particular view of particle physics in the fifties Jack Steinberger; 21. Strange particles William Chinowsky; 22. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers William B. Fowler; 23. From the 1940s into the 1950s Abraham Pais; Part VI. Detection of the

  1. The pion: an enigma within the Standard Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Tanja; Roberts, Craig D.

    2016-05-27

    Almost 50 years after the discovery of gluons & quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons, protons, and the pions that bind them. QCD is characterised by two emergent phenomena: confinement & dynamical chiral symmetry breaking (DCSB). They are expressed with great force in the character of the pion. In turn, pion properties suggest that confinement & DCSB are closely connected. As both a Nambu-Goldstone boson and a quark-antiquark bound-state, the pion is unique in Nature. Developing an understanding of its properties is thus critical to revealing basic features ofmore » the Standard Model. We describe experimental progress in this direction, made using electromagnetic probes, highlighting both improvements in the precision of charged-pion form factor data, achieved in the past decade, and new results on the neutral-pion transition form factor. Both challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, first explaining how DCSB works to guarantee that the pion is unnaturally light; but also, nevertheless, ensures the pion is key to revealing the mechanisms that generate nearly all the mass of hadrons. Our discussion unifies the charged-pion elastic and neutral-pion transition form factors, and the pion's twist-2 parton distribution amplitude. It also indicates how studies of the charged-kaon form factor can provide significant contributions. Importantly, recent predictions for the large-$Q^2$ behaviour of the pion form factor can be tested by experiments planned at JLab 12. Those experiments will extend precise charged-pion form factor data to momenta that can potentially serve in validating factorisation theorems in QCD, exposing the transition between the nonperturbative and perturbative domains, and thereby reaching a goal that has long driven hadro-particle physics.« less

  2. The pion form factor from first principles

    NASA Astrophysics Data System (ADS)

    van der Heide, J.

    2004-08-01

    We calculate the electromagnetic form factor of the pion in quenched lattice QCD. The non-perturbatively improved Sheikoleslami-Wohlert lattice action is used together with the O(a) improved current. We calculate form factor for pion masses down to mπ = 380 MeV. We compare the mean square radius for the pion extracted from our form factors to the value obtained from the `Bethe Salpeter amplitude'. Using (quenched) chiral perturbation theory, we extrapolate our results towards the physical pion mass.

  3. The pion: an enigma within the Standard Model

    NASA Astrophysics Data System (ADS)

    Horn, Tanja; Roberts, Craig D.

    2016-07-01

    Quantum chromodynamics (QCDs) is the strongly interacting part of the Standard Model. It is supposed to describe all of nuclear physics; and yet, almost 50 years after the discovery of gluons and quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: neutrons and protons, and the pions that bind them together. QCD is characterised by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB). They have far-reaching consequences, expressed with great force in the character of the pion; and pion properties, in turn, suggest that confinement and DCSB are intimately connected. Indeed, since the pion is both a Nambu-Goldstone boson and a quark-antiquark bound-state, it holds a unique position in nature and, consequently, developing an understanding of its properties is critical to revealing some very basic features of the Standard Model. We describe experimental progress toward meeting this challenge that has been made using electromagnetic probes, highlighting both dramatic improvements in the precision of charged-pion form factor data that have been achieved in the past decade and new results on the neutral-pion transition form factor, both of which challenge existing notions of pion structure. We also provide a theoretical context for these empirical advances, which begins with an explanation of how DCSB works to guarantee that the pion is un-naturally light; but also, nevertheless, ensures that the pion is the best object to study in order to reveal the mechanisms that generate nearly all the mass of hadrons. In canvassing advances in these areas, our discussion unifies many aspects of pion structure and interactions, connecting the charged-pion elastic form factor, the neutral-pion transition form factor and the pion's leading-twist parton distribution amplitude. It also sketches novel ways in which experimental and theoretical studies of the charged-kaon electromagnetic form factor can provide

  4. Pion Elastic Scattering and the (pion Pion' Proton) Reaction on HELIUM-4 in the DELTA(3,3) Region

    NASA Astrophysics Data System (ADS)

    Jones, Mark Kevin

    This dissertation presents measurements and analyses of pi^+ and pi ^{-} elastic scattering, and ( pi^{+}, pi^ {+^'}p) and ( pi^{-},pi^{-^ '}p) reactions on ^4 He. Both experiments were done at the Los Alamos Meson Physics Facility using the Energetic Pion Channel and Spectrometer. The ^4He( pi,pi) elastic scattering cross sections were measured for pi^{+} scattering at scattering angles theta _{lab} = 110^circ -170^circ and five incident energies between T_{pi } = 90 and 180 MeV. Elastic pi ^{-} cross sections were measured only at T_{pi} = 180 MeV. The ^4He(pi, pi' p) angular correlation functions were measured for pi^{+} and pi^{-} at T_{pi} = 180 and theta_{pi^' } = 30^circ, 40 ^circ, 60^circ , 80^circ and at T _pi = 140 MeV and theta_{pi^'} = 40^circ. Using scintillators at eight angles the protons were detected in coincidence with the inelastically scattered pions. In the ^4He(pi, pi^' p) experiment unexpectedly large ratios R_{pi p} = {sigma(pi^{+}, pi^{+} p)}over{sigma( pi^{-},pi^{-} p)} of up to 50 were observed near the quasi -free angle in the angular correlation functions summed over 30.5 to 39.5 MeV in ^4He excitation energy. The (pi,pi' p) data were analyzed by a distorted wave impulse approximation code 3DEE (Ch 82), (Re 82). 3DEE models the ( pi,pi' p) reaction as a pion -induced proton knock-out and includes distortions in the incident pion, the outgoing pion, and the emitted proton waves. The calculations give R_{pi p} between 6 and 9 at all proton and pion angles. The pi^{+} calculations reproduce the absolute pi^ {+} cross sections fairly well. The pi^{-} calculations have a peak in the angular correlation function near the quasi-free angle, in contrast to the pi^ {-} data which displays a flat distribution. At proton angles near 180^circ in the center of mass of the struck mass 4 system, the measured pi^{-} cross sections are larger than the pi^ {+} cross section which is the reverse of the ratio at 0^circ. These features of the measured pi

  5. Pion distribution amplitude from lattice QCD.

    PubMed

    Cloët, I C; Chang, L; Roberts, C D; Schmidt, S M; Tandy, P C

    2013-08-30

    A method is explained through which a pointwise accurate approximation to the pion's valence-quark distribution amplitude (PDA) may be obtained from a limited number of moments. In connection with the single nontrivial moment accessible in contemporary simulations of lattice-regularized QCD, the method yields a PDA that is a broad concave function whose pointwise form agrees with that predicted by Dyson-Schwinger equation analyses of the pion. Under leading-order evolution, the PDA remains broad to energy scales in excess of 100 GeV, a feature which signals persistence of the influence of dynamical chiral symmetry breaking. Consequently, the asymptotic distribution φπ(asy)(x) is a poor approximation to the pion's PDA at all such scales that are either currently accessible or foreseeable in experiments on pion elastic and transition form factors. Thus, related expectations based on φ φπ(asy)(x) should be revised.

  6. Measurement of the charged-pion polarizability.

    PubMed

    Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Austregesilo, A; Badełek, B; Balestra, F; Barth, J; Baum, G; Beck, R; Bedfer, Y; Berlin, A; Bernhard, J; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Büchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dinkelbach, A M; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Gnesi, I; Gobbo, B; Goertz, S; Gorzellik, M; Grabmüller, S; Grasso, A; Grube, B; Grussenmeyer, T; Guskov, A; Guthörl, T; Haas, F; von Harrach, D; Hahne, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Höppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Jörg, P; Joosten, R; Kabuss, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kuchinski, N; Kuhn, R; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Marchand, C; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Moinester, M A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W-D; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Peshekhonov, D; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Rocco, E; Rossiyskaya, N S; Ryabchikov, D I; Rychter, A; Samoylenko, V D; Sandacz, A; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmidt, K; Schmieden, H; Schönning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zink, A

    2015-02-13

    The COMPASS collaboration at CERN has investigated pion Compton scattering, π(-)γ→π(-)γ, at center-of-mass energy below 3.5 pion masses. The process is embedded in the reaction π(-)Ni→π(-)γNi, which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, Q(2)<0.0015  (GeV/c)(2). From a sample of 63,000 events, the pion electric polarizability is determined to be α(π)=(2.0±0.6(stat)±0.7(syst))×10(-4)  fm(3) under the assumption α(π)=-β(π), which relates the electric and magnetic dipole polarizabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambiguously known, was performed for an independent estimate of the systematic uncertainty.

  7. Measurement of the Charged-Pion Polarizability

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Colantoni, M.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dinkelbach, A. M.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; Du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; D'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jörg, P.; Joosten, R.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kuhn, R.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Moinester, M. A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peshekhonov, D.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Rocco, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rychter, A.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Virius, M.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.; Compass Collaboration

    2015-02-01

    The COMPASS collaboration at CERN has investigated pion Compton scattering, π-γ →π-γ , at center-of-mass energy below 3.5 pion masses. The process is embedded in the reaction π-Ni →π-γ Ni , which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, Q2<0.0015 (GeV /c )2 . From a sample of 63 000 events, the pion electric polarizability is determined to be απ=(2.0 ±0. 6stat±0. 7syst)×1 0-4 fm3 under the assumption απ=-βπ, which relates the electric and magnetic dipole polarizabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambiguously known, was performed for an independent estimate of the systematic uncertainty.

  8. Gravitational wave from dark sector with dark pion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsumura, Koji; Yamada, Masatoshi; Yamaguchi, Yuya, E-mail: ko2@gauge.scphys.kyoto-u.ac.jp, E-mail: m.yamada@thphys.uni-heidelberg.de, E-mail: yy@particle.sci.hokudai.ac.jp

    In this work, we investigate the spectra of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion (π) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the 2π → 2 SM process. For a SIMP scenario, we investigate the 3π → 2π annihilation process of the dark pion as a SIMP using chiralmore » perturbation theory. We find that in the WIMP scenario the gravitational wave background spectra can be observed by future space gravitational wave antennas. On the other hand, when the dark pion is the SIMP dark matter with the constraints for the chiral perturbative limit and pion-pion scattering cross section, the chiral phase transition becomes crossover and then the gravitational waves are not produced.« less

  9. Remarks on the pion-nucleon σ-term

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-09-01

    The pion-nucleon σ-term can be stringently constrained by the combination of analyticity, unitarity, and crossing symmetry with phenomenological information on the pion-nucleon scattering lengths. Recently, lattice calculations at the physical point have been reported that find lower values by about 3σ with respect to the phenomenological determination. We point out that a lattice measurement of the pion-nucleon scattering lengths could help resolve the situation by testing the values extracted from spectroscopy measurements in pionic atoms.

  10. Inclusive Charged Pion Production at MINERvA

    NASA Astrophysics Data System (ADS)

    Eberly, Brandon; Simon, Clifford

    2013-04-01

    The production of charged pions by neutrinos interacting on heavy nuclei is of great interest in nuclear physics and neutrino oscillation experiments. MINERνA, a fine-grained scintillator tracking detector that sits in the few-GeV NuMI beamline at Fermilab, is well-suited to study inclusive and exclusive pion production channels on a variety of nuclear targets. This talk presents the current status of the neutrino and antineutrino inclusive charged pion production cross section measurements in MINERνA.

  11. Pion Electroproduction off 3HE and Self Energies of the Pion and the Δ Isobar in the Medium

    NASA Astrophysics Data System (ADS)

    Richter, A.

    2002-06-01

    The differential coincident pion electroproduction cross section of the 3He(e,e'π+)3H reaction in the excitation region of the Δ resonance has been measured with the high resolution three-spectrometer facility at the Mainz Microtron MAMI. It was the aim of the experiment to study the influence of the nuclear medium on the properties of the pion and the Δ(1232) resonance. Two experimental methods have been applied. For fixed four-momentum transfers Q2 = 0.045 [0.100] (GeV/c)2 with the pions detected in parallel kinematics, the incident energy was varied between 555 and 855 MeV in order to separate the longitudinal (L) and transverse (T) structure functions. In the second case the emitted pions with respect to the momentum transfer direction were detected over a large angular range at fixed incident energy E0 = 855 MeV and the two fixed four-momentum transfers. From the angular distributions the LT interference term has been extracted. The experimental data are compared to model calculations which are based on the elementary pion production amplitude that contains besides the Born terms also the excitation of the Δ and higher resonances. Moreover, three-body Faddeev wave functions are used and the final state interaction of the outgoing pion is taken into account. The experimental cross sections are reproduced only after additional medium modifications of the pion and the Δ isobar have been considered in terms of self energies. In the framework of Chiral Perturbation Theory the pion self energy is related to a reduction of the π+ mass of Δ mπ + = (-1.7+1.7-2.1) MeV/c2 in the neutron-rich nuclear medium at a density of ρ = (0.057+0.085-0.057) fm-3. This result is fully consistent with the one obtained within a two-loop approximation of ChPT. It is also interesting to compare the determined negative mass shift Δmπ+ with a positive mass shift Δmπ- of 23 to 27 MeV/c2 derived recently from deeply bound pionic states in 207Pb and 205Pb

  12. Pion momentum distributions in the nucleon in chiral effective theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkardt, Matthias R.; Hendricks, K. S.; Ji, Cheung Ryong

    2013-03-01

    We compute the light-cone momentum distributions of pions in the nucleon in chiral effective theory using both pseudovector and pseudoscalar pion--nucleon couplings. For the pseudovector coupling we identifymore » $$\\delta$$-function contributions associated with end-point singularities arising from the pion-nucleon rainbow diagrams, as well as from pion tadpole diagrams which are not present in the pseudoscalar model. Gauge invariance is demonstrated, to all orders in the pion mass, with the inclusion of Weinberg-Tomozawa couplings involving operator insertions at the $$\\pi NN$$ vertex. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.« less

  13. Optimization of Experiment Detecting Kaon and Pion Internal Structure

    NASA Astrophysics Data System (ADS)

    Wacht, Jacob

    2016-09-01

    Pions and kaons are the lightest two-quark systems in Nature. Scientists believe that the rules governing the strong interaction are chirally, symmetric. If this were true, the pion would have no mass. The chiral symmetry is broken dynamically by quark-gluon interactions, giving the pion mass. The pion is thus seen as the key to confirm the mechanism that dynamically generates nearly all of the mass of hadrons and central to the effort to understand hadron structure. The most prominent observables are the meson form factors. Experiments are planned at the 12 GeV Jefferson Lab. An experiment aimed at shedding light on the kaon's internal structure is scheduled to run in 2017. The experimental setup has been optimized for detecting kaons, but it may allow for detecting pions between values of Q2 of 0.4 and 5.5 GeV2. Measurements of the separated pion cross section and exploratory extraction of the pion form factor from electroproduction at low Q2 could be compared to earlier e-pi scattering data, and thus help validating the method. At high Q2, these measurements provide the first L/T separated cross sections and could help guide planned dedicated pion experiments. I will present possible parasitic studies with the upcoming kaon experiment. This work was supported in part by NSF Grant PHY-1306227.

  14. The radiation environment on the Moon from galactic cosmic rays in a lunar habitat.

    PubMed

    Jia, Y; Lin, Z W

    2010-02-01

    We calculated how the radiation environment in a habitat on the surface of the Moon would have depended on the thickness of the habitat in the 1977 galactic cosmic-ray environment. The Geant4 Monte Carlo transport code was used, and a hemispherical dome made of lunar regolith was used to simulate the lunar habitat. We investigated the effective dose from primary and secondary particles including nuclei from protons up to nickel, neutrons, charged pions, photons, electrons and positrons. The total effective dose showed a strong decrease with the thickness of the habitat dome. However, the effective dose values from secondary neutrons, charged pions, photons, electrons and positrons all showed a strong increase followed by a gradual decrease with the habitat thickness. The fraction of the summed effective dose from these secondary particles in the total effective dose increased with the habitat thickness, from approximately 5% for the no-habitat case to about 47% for the habitat with an areal thickness of 100 g/cm(2).

  15. Pion Total Cross Section in Nucleon - Nucleon Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2009-01-01

    Total cross section parameterizations for neutral and charged pion production in nucleon - nucleon collisions are compared to experimental data over the projectile momentum range from threshold to 300 GeV. Both proton - proton and proton - neutron reactions are considered. Overall excellent agreement between parameterizations and experiment is found, except for notable disagreements near threshold. In addition, the hypothesis that the neutral pion production cross section can be obtained from the average charged pion cross section is checked. The theoretical formulas presented in the paper obey this hypothesis for projectile momenta below 500 GeV. The results presented provide a test of engineering tools used to calculate the pion component of space radiation.

  16. The use of positron emission tomography in pion radiotherapy.

    PubMed

    Goodman, G B; Lam, G K; Harrison, R W; Bergstrom, M; Martin, W R; Pate, B D

    1986-10-01

    The radioactive debris produced by pion radiotherapy can be imaged by the technique of Positron Emission Tomography (PET) as a method of non-invasive in situ verification of the pion treatment. This paper presents the first visualization of the pion stopping distribution within a tumor in a human brain using PET. Together with the tissue functional information provided by the standard PET scans using radiopharmaceuticals, the combination of pion with PET technique can provide a much better form of radiotherapy than the use of conventional radiation in both treatment planning and verification.

  17. Single pion production in neutrino-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Kabirnezhad, M.

    2018-01-01

    This work represents an extension of the single pion production model proposed by Rein [Z. Phys. C 35, 43 (1987)., 10.1007/BF01561054]. The model consists of resonant pion production and nonresonant background contributions coming from three Born diagrams in the helicity basis. The new work includes lepton mass effects, and nonresonance interaction is described by five diagrams based on a nonlinear σ model. This work provides a full kinematic description of single pion production in the neutrino-nucleon interactions, including resonant and nonresonant interactions in the helicity basis, in order to study the interference effect.

  18. Roy-Steiner-equation analysis of pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Meißner, U.-G.; Ruiz de Elvira, J.; Hoferichter, M.; Kubis, B.

    2017-03-01

    Low-energy pion-nucleon scattering is relevant for many areas in nuclear and hadronic physics, ranging from the scalar couplings of the nucleon to the long-range part of two-pion-exchange potentials and three-nucleon forces in Chiral Effective Field Theory. In this talk, we show how the fruitful combination of dispersion-theoretical methods, in particular in the form of Roy-Steiner equations, with modern high-precision data on hadronic atoms allows one to determine the pion-nucleon scattering amplitudes at low energies with unprecedented accuracy. Special attention will be paid to the extraction of the pion-nucleon σ-term, and we discuss in detail the current tension with recent lattice results, as well as the determination of the low-energy constants of chiral perturbation theory.

  19. Exclusive Reactions Involving Pions and Nucleons

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.; Tripathi, R. K.

    2002-01-01

    The HZETRN code requires inclusive cross sections as input. One of the methods used to calculate these cross sections requires knowledge of all exclusive processes contributing to the inclusive reaction. Conservation laws are used to determine all possible exclusive reactions involving strong interactions between pions and nucleons. Inclusive particle masses are subsequently determined and are needed in cross-section calculations for inclusive pion production.

  20. Neutral Pion Production in MINERvA

    NASA Astrophysics Data System (ADS)

    Palomino, Jose

    2012-03-01

    MINERνA is a neutrino-nucleus scattering experiment employing multiple nuclear targets. The experiment is searching for neutral pion production, both in charged current and neutral current, from coherent, resonant and deep-inelastic processes off these targets. Neutral pions are detected through the 2 photon decay that then produce electromagnetic showers. We will describe how we isolate and reconstruct the electromagnetic showers to calculate the invariant mass of the photon pair.

  1. Pion-photon reactions and chiral dynamics in Primakoff processes at COMPASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Jan Michael

    2016-01-22

    With the COMPASS experiment at CERN, pion-photon reactions are investigated via the Primakoff effect, implying that high-energetic pions react with the quasi-real photon field surrounding the target nuclei. The production of a single hard photon in such a pion scattering at lowest momentum transfer to the nucleus is related to pion Compton scattering. From the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from chiral perturbation theory. In the same data taking, reactions with neutral and charged pions in the finalmore » state are measured and analyzed. At low energy in the pion-photon centre-of-momentum system, these reactions are governed by chiral dynamics and contain information relevant for chiral perturbation theory. At higher energies, resonances are produced and their radiative coupling is investigated.« less

  2. Pionic retardation effects in two-pion-exchange three-nucleon forces

    NASA Astrophysics Data System (ADS)

    Coon, S. A.; Friar, J. L.

    1986-09-01

    Those two-pion-exchange three-nucleon forces which arise from nuclear processes that involve only pions and nucleons are calculated. Among the processes which contribute are pion seagulls (e.g., nucleon-antinucleon pair terms) and overlapping, retarded pion exchanges. The resulting potential is shown to be a (v/c)2 relativistic correction, and satisfies nontrivial constraints from special relativity. The relativistic ambiguities found before in treatments of relativistic corrections to the one-pion-exchange nuclear charge operator and two-body potential are also present in the three-nucleon potential. The resulting three-nucleon force differs from the original Tucson-Melbourne potential only in the presence of several new nonlocal terms, and in the specification of the choice of ambiguity parameters in the latter potential.

  3. Amplitude analysis of resonant production in three pions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackura, Andrew; Mikhasenko, Mikhail; Szczepaniak, Adam

    2016-11-29

    We present some results on the analysis of three pion resonances. The analyses are motivated by the recent release of the largest data set on diffractively produced three pions by the COMPASS collaboration. We construct reaction amplitudes that satisfy fundamentalmore » $S$-matrix principles, which allows the use of models that have physical constraints to be used in fitting data. The models are motivated by the isobar model that satisfy unitarity constraints. The model consist of a Deck production amplitude with which final state interactions are constrained by unitarity. We employ the isobar model where two of the pions form a quasi-stable particle. The analysis is performed in the high-energy, single Regge limit. We specifically discuss the examples of the three pion $$J^{PC}=2^{-+}$$ resonance in the $$\\rho\\pi$$ and $$f_2\\pi$$ channels.« less

  4. Basic features of the pion valence-quark distribution function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Lei; Mezrag, Cédric; Moutarde, Hervé

    2014-10-07

    The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables amore » realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q π(x); namely, at a characteristic hadronic scale, q π(x)~(1-x) 2 for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.« less

  5. Evaluation on Geant4 Hadronic Models for Pion Minus, Pion Plus and Neutron Particles as Major Antiproton Annihilation Products

    PubMed Central

    Tavakoli, Mohammad Bagher; Mohammadi, Mohammad Mehdi; Reiazi, Reza; Jabbari, Keyvan

    2015-01-01

    Geant4 is an open source simulation toolkit based on C++, which its advantages progressively lead to applications in research domains especially modeling the biological effects of ionizing radiation at the sub-cellular scale. However, it was shown that Geant4 does not give a reasonable result in the prediction of antiproton dose especially in Bragg peak. One of the reasons could be lack of reliable physic model to predict the final states of annihilation products like pions. Considering the fact that most of the antiproton deposited dose is resulted from high-LET nuclear fragments following pion interaction in surrounding nucleons, we reproduced depth dose curves of most probable energy range of pions and neutron particle using Geant4. We consider this work one of the steps to understand the origin of the error and finally verification of Geant4 for antiproton tracking. Geant4 toolkit version 9.4.6.p01 and Fluka version 2006.3 were used to reproduce the depth dose curves of 220 MeV pions (both negative and positive) and 70 MeV neutrons. The geometry applied in the simulations consist a 20 × 20 × 20 cm3 water tank, similar to that used in CERN for antiproton relative dose measurements. Different physic lists including Quark-Gluon String Precompound (QGSP)_Binary Cascade (BIC)_HP, the recommended setting for hadron therapy, were used. In the case of pions, Geant4 resulted in at least 5% dose discrepancy between different physic lists at depth close to the entrance point. Even up to 15% discrepancy was found in some cases like QBBC compared to QGSP_BIC_HP. A significant difference was observed in dose profiles of different Geant4 physic list at small depths for a beam of pions. In the case of neutrons, large dose discrepancy was observed when LHEP or LHEP_EMV lists were applied. The magnitude of this dose discrepancy could be even 50% greater than the dose calculated by LHEP (or LHEP_EMV) at larger depths. We found that effect different Geant4 physic list in

  6. Universal pion freeze-out in heavy-ion collisions.

    PubMed

    Adamová, D; Agakichiev, G; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanović, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Milov, A; Miśkowiec, D; Panebrattsev, Yu; Petchenova, O; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Slívová, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2003-01-17

    Based on an evaluation of data on pion interferometry and on particle yields at midrapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda(f) reaches a value of about 1 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and beam energy from the Alternating Gradient Synchrotron to the Relativistic Heavy Ion Collider.

  7. Pionic retardation effects in two-pion-exchange three-nucleon forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coon, S.A.; Friar, J.L.

    1986-09-01

    Those two-pion-exchange three-nucleon forces which arise from nuclear processes that involve only pions and nucleons are calculated. Among the processes which contribute are pion seagulls (e.g., nucleon-antinucleon pair terms) and overlapping, retarded pion exchanges. The resulting potential is shown to be a (v-italic/c-italic)/sup 2/ relativistic correction, and satisfies nontrivial constraints from special relativity. The relativistic ambiguities found before in treatments of relativistic corrections to the one-pion-exchange nuclear charge operator and two-body potential are also present in the three-nucleon potential. The resulting three-nucleon force differs from the original Tucson-Melbourne potential only in the presence of several new nonlocal terms, and inmore » the specification of the choice of ambiguity parameters in the latter potential.« less

  8. Diffuse gamma-ray emission from self-confined cosmic rays around Galactic sources

    NASA Astrophysics Data System (ADS)

    D'Angelo, Marta; Morlino, Giovanni; Amato, Elena; Blasi, Pasquale

    2018-02-01

    The propagation of particles accelerated at supernova remnant shocks and escaping the parent remnants is likely to proceed in a strongly non-linear regime, due to the efficient self-generation of Alfvén waves excited through streaming instability near the sources. Depending on the amount of neutral hydrogen present in the regions around the sites of supernova explosions, cosmic rays may accumulate an appreciable grammage in the same regions and get self-confined for non-negligible times, which in turn results in an enhanced rate of production of secondaries. Here we calculate the contribution to the diffuse gamma-ray background due to the overlap along lines of sight of several of these extended haloes as due to pion production induced by self-confined cosmic rays. We find that if the density of neutrals is low, the haloes can account for a substantial fraction of the diffuse emission observed by Fermi-Large Area Telescope (LAT), depending on the orientation of the line of sight with respect to the direction of the Galactic Centre.

  9. Pion and electromagnetic contribution to dose: Comparisons of HZETRN to Monte Carlo results and ISS data

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Blattnig, Steve R.; Reddell, Brandon; Bahadori, Amir; Norman, Ryan B.; Badavi, Francis F.

    2013-07-01

    Recent work has indicated that pion production and the associated electromagnetic (EM) cascade may be an important contribution to the total astronaut exposure in space. Recent extensions to the deterministic space radiation transport code, HZETRN, allow the production and transport of pions, muons, electrons, positrons, and photons. In this paper, the extended code is compared to the Monte Carlo codes, Geant4, PHITS, and FLUKA, in slab geometries exposed to galactic cosmic ray (GCR) boundary conditions. While improvements in the HZETRN transport formalism for the new particles are needed, it is shown that reasonable agreement on dose is found at larger shielding thicknesses commonly found on the International Space Station (ISS). Finally, the extended code is compared to ISS data on a minute-by-minute basis over a seven day period in 2001. The impact of pion/EM production on exposure estimates and validation results is clearly shown. The Badhwar-O'Neill (BO) 2004 and 2010 models are used to generate the GCR boundary condition at each time-step allowing the impact of environmental model improvements on validation results to be quantified as well. It is found that the updated BO2010 model noticeably reduces overall exposure estimates from the BO2004 model, and the additional production mechanisms in HZETRN provide some compensation. It is shown that the overestimates provided by the BO2004 GCR model in previous validation studies led to deflated uncertainty estimates for environmental, physics, and transport models, and allowed an important physical interaction (π/EM) to be overlooked in model development. Despite the additional π/EM production mechanisms in HZETRN, a systematic under-prediction of total dose is observed in comparison to Monte Carlo results and measured data.

  10. Low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Gibbs, W. R.; Ai, Li; Kaufmann, W. B.

    1998-02-01

    An analysis of low-energy charged pion-nucleon data from recent π+/-p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756+/-0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided.

  11. Single neutral pion production by charged-current $$\\bar{\

    DOE PAGES

    Le, T.; Paomino, J. L.; Aliaga, L.; ...

    2015-10-07

    We studied single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) using the MINERvA detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for appearance oscillation experiments. Furthermore, the differential cross sections for π 0 momentum and production angle, for events with a single observed π 0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π 0 kinematics for this process.

  12. Single neutral pion production by charged-current $$\\bar{\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, T.; Paomino, J. L.; Aliaga, L.

    We studied single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) using the MINERvA detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for appearance oscillation experiments. Furthermore, the differential cross sections for π 0 momentum and production angle, for events with a single observed π 0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π 0 kinematics for this process.

  13. Hard exclusive pion electroproduction at backward angles with CLAS

    DOE PAGES

    Park, K.; Guidal, M.; Gothe, R. W.; ...

    2018-03-09

    We report on the first measurement of cross sections for exclusive deeply virtual pion electroproduction off the proton,more » $$e p \\to e^\\prime n \\pi^+$$, above the resonance region at backward pion center-of-mass angles. The $$\\varphi^*_{\\pi}$$-dependent cross sections were measured, from which we extracted three combinations of structure functions of the proton. Our results are compatible with calculations based on nucleon-to-pion transition distribution amplitudes (TDAs) and shed new light on nucleon structure.« less

  14. Contribution of cosmic ray particles to radiation environment at high mountain altitude: Comparison of Monte Carlo simulations with experimental data.

    PubMed

    Mishev, A L

    2016-03-01

    A numerical model for assessment of the effective dose due to secondary cosmic ray particles of galactic origin at high mountain altitude of about 3000 m above the sea level is presented. The model is based on a newly numerically computed effective dose yield function considering realistic propagation of cosmic rays in the Earth magnetosphere and atmosphere. The yield function is computed using a full Monte Carlo simulation of the atmospheric cascade induced by primary protons and α- particles and subsequent conversion of secondary particle fluence (neutrons, protons, gammas, electrons, positrons, muons and charged pions) to effective dose. A lookup table of the newly computed effective dose yield function is provided. The model is compared with several measurements. The comparison of model simulations with measured spectral energy distributions of secondary cosmic ray neutrons at high mountain altitude shows good consistency. Results from measurements of radiation environment at high mountain station--Basic Environmental Observatory Moussala (42.11 N, 23.35 E, 2925 m a.s.l.) are also shown, specifically the contribution of secondary cosmic ray neutrons. A good agreement with the model is demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A determination of the fragmentation functions of u-quarks into charged pions

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Korzen, B.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.; European Muon Collaboration (EMC)

    1985-10-01

    The fragmentation functions of u-quarks into positive and negative pions are determined from an analysis of identified pions produced in deep inelastic muon-deuterium scattering. The method adopted is not sensitive to the knowledge of the primary quark distribution functions. The fragmentation of u quarks to positive pions is found to fall less steeply in z than that to negative pions as expected in the quark parton model.

  16. Chaoticity parameter λ in two-pion interferometry in an expanding boson gas model

    DOE PAGES

    Liu, Jie; Ru, Peng; Zhang, Wei-Ning; ...

    2014-10-15

    We investigate the chaoticity parameter λ in two-pion interferometry in an expanding boson gas model. The degree of Bose-Einstein condensation of identical pions, density distributions, and Hanbury-Brown-Twiss (HBT) correlation functions are calculated for the expanding gas within the mean-field description with a harmonic oscillator potential. The results indicate that a sources with thousands of identical pions may exhibit a degree of Bose-Einstein condensation at the temperatures during the hadronic phase in relativistic heavy-ion collisions. This finite condensation may decrease the chaoticity parameter λ in the two-pion interferometry measurements at low pion pair momenta, but influence only slightly the λ valuemore » at high pion pair momentum.« less

  17. Pion structure function from leading neutron electroproduction and SU(2) flavor asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenney, Joshua R.; Sato Gonzalez, Nobuo; Melnitchouk, Wally

    2016-03-01

    We examine the efficacy of pion exchange models to simultaneously describe leading neutron electroproduction at HERA and themore » $$\\bar{d}-\\bar{u}$$ flavor asymmetry in the proton. A detailed $$\\chi^2$$ analysis of the ZEUS and H1 cross sections, when combined with constraints on the pion flux from Drell-Yan data, allows regions of applicability of one-pion exchange to be delineated. The analysis disfavors several models of the pion flux used in the literature, and yields an improved extraction of the pion structure function and its uncertainties at parton momentum fractions in the pion of $$4 \\times 10^{-4} \\lesssim x_\\pi \\lesssim 0.05$$ at a scale of $Q^2$=10 GeV$^2$. Based on the fit results, we provide estimates for leading proton structure functions in upcoming tagged deep-inelastic scattering experiments at Jefferson Lab on the deuteron with forward protons.« less

  18. Quark Mass Functions and Pion Structure in the Covariant Spectator Theory

    DOE PAGES

    Biernat, Elmar P.; Gross, Franz; Pena, Teresa; ...

    2018-05-24

    The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.

  19. Quark Mass Functions and Pion Structure in the Covariant Spectator Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biernat, Elmar P.; Gross, Franz; Pena, Teresa

    The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.

  20. Hard exclusive pion electroproduction at backward angles with CLAS

    NASA Astrophysics Data System (ADS)

    Park, K.; Guidal, M.; Gothe, R. W.; Pire, B.; Semenov-Tian-Shansky, K.; Laget, J.-M.; Adhikari, K. P.; Adhikari, S.; Akbar, Z.; Avakian, H.; Ball, J.; Balossino, I.; Baltzell, N. A.; Barion, L.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, F. T.; Carman, D. S.; Celentano, A.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Defurne, M.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Garçon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Golovatch, E.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Johnston, S.; Joo, K.; Kabir, M. L.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lanza, L.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Paolone, M.; Paremuzyan, R.; Pasyuk, E.; Phelps, W.; Pogorelko, O.; Poudel, J.; Price, J. W.; Prok, Y.; Protopopescu, D.; Ripani, M.; Rizzo, A.; Rossi, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tan, J. A.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Wei, X.; Zachariou, N.; Zhang, J.

    2018-05-01

    We report on the first measurement of cross sections for exclusive deeply virtual pion electroproduction off the proton, ep →e‧ nπ+, above the resonance region at backward pion center-of-mass angles. The φπ* -dependent cross sections were measured, from which we extracted three combinations of structure functions of the proton. Our results are compatible with calculations based on nucleon-to-pion transition distribution amplitudes (TDAs). These non-perturbative objects are defined as matrix elements of three-quark-light-cone-operators and characterize partonic correlations with a particular emphasis on baryon charge distribution inside a nucleon.

  1. Stopping pions in high-energy nuclear cascades.

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Johnson, D. P.; Thompson, J. A.

    1973-01-01

    Results of Monte Carlo calculations for the number and energy spectra of charged pions from nuclear-electromagnetic cascades developing in rock are presented for primary hadron energies ranging from 3 to 3000 GeV. These spectra are given as functions of the longitudinal depth in the absorber and the lateral distance from the cascade axis. The number of charged pions which stop in the absorber increases with the primary energy of the hadron initiating the cascade.

  2. Pion structure function from leading neutron electroproduction and SU(2) flavor asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenney, Joshua R.; Sato, Nobuo; Melnitchouk, Wally

    2016-03-07

    In this paper, we examine the efficacy of pion exchange models to simultaneously describe leading neutron electroproduction at HERA and themore » $$\\bar{d}-\\bar{u}$$ flavor asymmetry in the proton. A detailed $$\\chi^2$$ analysis of the ZEUS and H1 cross sections, when combined with constraints on the pion flux from Drell-Yan data, allows regions of applicability of one-pion exchange to be delineated. The analysis disfavors several models of the pion flux used in the literature, and yields an improved extraction of the pion structure function and its uncertainties at parton momentum fractions in the pion of $$4 \\times 10^{-4} \\lesssim x_\\pi \\lesssim 0.05$$ at a scale of $Q^2$=10 GeV$^2$. Also, we provide estimates for leading proton structure functions in upcoming tagged deep-inelastic scattering experiments on the deuteron with forward protons, based on the fit results, at Jefferson Lab.« less

  3. Dispersion relation for hadronic light-by-light scattering: two-pion contributions

    DOE PAGES

    Colangelo, Gilberto; Hoferichter, Martin; Procura, Massimiliano; ...

    2017-04-27

    In our third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g - 2) μ, including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of γ*γ* → ππ. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, amore » $$π-box\\atop{μ}$$ =-15.9(2) × 10 -11. As an application of the partial-wave formalism, we present a first calculation of ππ-rescattering effects in HLbL scattering, with γ*γ* → ππ helicity partial waves constructed dispersively using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the f0(500) to HLbL scattering in (g - 2) μ. We also argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its S-wave rescattering corrections reads a$$π-box\\atop{μ}$$ + a$$ππ, π-pole LHC\\atop{μ, J=0}$$ = -24(1) × 10 -11.« less

  4. Dispersion relation for hadronic light-by-light scattering: two-pion contributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colangelo, Gilberto; Hoferichter, Martin; Procura, Massimiliano

    In our third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g - 2) μ, including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of γ*γ* → ππ. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, amore » $$π-box\\atop{μ}$$ =-15.9(2) × 10 -11. As an application of the partial-wave formalism, we present a first calculation of ππ-rescattering effects in HLbL scattering, with γ*γ* → ππ helicity partial waves constructed dispersively using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the f0(500) to HLbL scattering in (g - 2) μ. We also argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its S-wave rescattering corrections reads a$$π-box\\atop{μ}$$ + a$$ππ, π-pole LHC\\atop{μ, J=0}$$ = -24(1) × 10 -11.« less

  5. How strange is pion electroproduction?

    DOE PAGES

    Gorchtein, Mikhail; Spiesberger, Hubert; Zhang, Xilin

    2015-11-18

    We consider pion production in parity-violating electron scattering (PVES) in the presence of nucleon strangeness in the framework of partial wave analysis with unitarity. Using the experimental bounds on the strange form factors obtained in elastic PVES, we study the sensitivity of the parity-violating asymmetry to strange nucleon form factors. For forward kinematics and electron energies above 1 GeV, we observe that this sensitivity may reach about 20% in the threshold region. With parity-violating asymmetries being as large as tens p.p.m., this study suggests that threshold pion production in PVES can be used as a promising way to better constrainmore » strangeness contributions. Using this model for the neutral current pion production, we update the estimate for the dispersive γZ-box correction to the weak charge of the proton. In the kinematics of the Qweak experiment, our new prediction reads Re V γZ(E = 1.165 GeV) = (5.58 ±1.41) ×10 –3, an improvement over the previous uncertainty estimate of ±2.0 ×10 –3. Our new prediction in the kinematics of the upcoming MESA/P2 experiment reads Re V γZ(E = 0.155 GeV) = (1.1 ±0.2) ×10 –3.« less

  6. Valence-quark distribution functions in the kaon and pion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chen; Chang, Lei; Roberts, Craig D.

    2016-04-18

    We describe expressions for pion and kaon dressed-quark distribution functions that incorporate contributions from gluons which bind quarks into these mesons and hence overcome a flaw of the commonly used handbag approximation. The distributions therewith obtained are purely valence in character, ensuring that dressed quarks carry all the meson’s momentum at a characteristic hadronic scale and vanish as ( 1 - x ) 2 when Bjorken- x → 1 . Comparing such distributions within the pion and kaon, it is apparent that the size of S U ( 3 ) -flavor symmetry breaking in meson parton distribution functions is modulatedmore » by the flavor dependence of dynamical chiral symmetry breaking. Corrections to these leading-order formulas may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea quarks. Working with available empirical information, we build an algebraic framework that is capable of expressing the principal impact of both classes of corrections. This enables a realistic comparison with experiment which allows us to identify and highlight basic features of measurable pion and kaon valence-quark distributions. We find that whereas roughly two thirds of the pion’s light-front momentum is carried by valence dressed quarks at a characteristic hadronic scale; this fraction rises to 95% in the kaon; evolving distributions with these features to a scale typical of available Drell-Yan data produces a kaon-to-pion ratio of u -quark distributions that is in agreement with the single existing data set, and predicts a u -quark distribution within the pion that agrees with a modern reappraisal of π N Drell-Yan data. Precise new data are essential in order to validate this reappraisal and because a single modest-quality measurement of the kaon-to-pion ratio cannot be considered definitive.« less

  7. Low-energy pion-nucleon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, W.R.; Ai, L.; Kaufmann, W.B.

    An analysis of low-energy charged pion-nucleon data from recent {pi}{sup {plus_minus}}p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f{sup 2}=0.0756{plus_minus}0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P{sub 31} and P{sub 13} partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the {Sigma} term. Off-shell amplitudes are also provided. {copyright} {italmore » 1998} {ital The American Physical Society}« less

  8. Cross section calculations for subthreshold pion production in peripheral heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Cucinotta, F. A.; Deutchman, P. A.; Townsend, L. W.

    1986-01-01

    Total cross sections angular distributions, and spectral distributions for the exclusive production of charged and neutral subthreshold pions produced in peripheral nucleus-nucleus collisions are calculated by using a particle-hole formalism. The pions result from the formation and decay of an isobar giant resonance state formed in a C-12 nucleus. From considerations of angular momentum conservation and for the sake of providing a unique experimental signature, the other nucleus, chosen for this work to be C-12 also, is assumed to be excited to one of its isovector (1+) giant resonance states. The effects of nucleon recoil by the pion emission are included, and Pauli blocking and pion absorption effects are studied by varying the isobar width. Detailed comparisons with experimental subthreshold pion data for incident energies between 35 and 86 MeV/nucleon are made.

  9. Sketching the pion's valence-quark generalised parton distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezrag, C.; Chang, L.; Moutarde, H.

    2015-02-01

    In order to learn effectively from measurements of generalised parton distributions (GPDs), it is desirable to compute them using a framework that can potentially connect empirical information with basic features of the Standard Model. We sketch an approach to such computations, based upon a rainbow-ladder (RL) truncation of QCD's Dyson-Schwinger equations and exemplified via the pion's valence dressed-quark GPD, H-pi(V)(chi, xi, t). Our analysis focuses primarily on xi = 0, although we also capitalise on the symmetry-preserving nature of the RL truncation by connecting H-pi(V)(chi, xi = +/- 1, t) with the pion's valence-quark parton distribution amplitude. We explain thatmore » the impulse-approximation used hitherto to define the pion's valence dressed-quark GPD is generally invalid owing to omission of contributions from the gluons which bind dressed-quarks into the pion. A simple correction enables us to identify a practicable improvement to the approximation for H(pi)(V)p(chi, 0, t), expressed as the Radon transform of a single amplitude. Therewith we obtain results for H pi V(chi, 0, t) and the associated impact-parameter dependent distribution, q(pi)(V)(chi, vertical bar(b) over right arrow (perpendicular to)vertical bar), which provide a qualitatively sound picture of the pion's dressed-quark structure at a hadronic scale. We evolve the distributions to a scale zeta = 2 GeV, so as to facilitate comparisons in future with results from experiment or other nonperturbative methods. (C) 2014 Published by Elsevier B. V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).« less

  10. Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations

    NASA Astrophysics Data System (ADS)

    Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.

    2016-11-01

    Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.*

  11. Timelike pion form factor in lattice QCD

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Aoki, Sinya; Hashimoto, Shoji; Kaneko, Takashi

    2015-03-01

    We perform a nonperturbative lattice calculation of the complex phase and modulus of the pion form factor in the timelike momentum region using the finite-volume technique. We use two ensembles of 2 +1 -flavor overlap fermions at pion masses mπ=380 and 290 MeV. By calculating the I =1 correlators in the center-of-mass and three moving frames, we obtain the form factor at ten different values of the timelike momentum transfer around the vector resonance. We compare the results with the phenomenological model of Gounaris-Sakurai and its variant.

  12. Study of charged pion photoproduction on deuteron

    NASA Astrophysics Data System (ADS)

    Han, Yun-Cheng; Backford, B.; Chiga, N.; Fujii, T.; Fujibayashi, T.; Gogami, T.; Futatsukawa, K.; Hashimoto, O.; Hirose, K.; Hosomi, K.; Iguchi, A.; Ishikawa, T.; Kanda, H.; Kaneta, M.; Kawama, D.; Kawasaki, T.; Kimura, C.; Kiyokawa, S.; Koike, T.; Ma, Y.; Maeda, K.; Maruyama, N.; Matsumura, A.; Miyagi, Y.; Miwa, K.; Nakamura, S. N.; Okuyama, A.; Otani, T.; Sato, M.; Shichijo, A.; Shirotori, K.; Shimizu, H.; Suzuki, K.; Tamura, H.; Taniya, N.; Terada, N.; Yamamoto, T.; Yamamoto, T.; Yokota, K.; Tamae, T.; Wang, Tie-Shan; Yamazaki, H.

    2010-03-01

    Photoproduction of charged pion on deuteron, emphasis on channels γd→π-pp and γd→π+π-np, were measured with the second generation of Neutral Kaon Spectrometer. The photon beam was provided from the tagged photon facility at the Laboratory of Nuclear Science, Tohoku University. The energy range of photon is 0.8-1.1 GeV. The aim is to investigate the pion photoproduction process on the nucleus in the second and third resonance regions. The quasi-free process inside deuteron and also non-quasi-free contributions were derived individually.

  13. Bose-Einstein condensation and independent production of pions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Zalewski, K.

    1998-09-01

    The influence of the HBT effect on the momentum spectra of independently produced pions is studied using the method developed earlier for discussion of multiplicity distributions. It is shown that in this case all the spectra and multiparticle correlation functions are expressible in terms of one function of two momenta. It is also shown that at the critical point all pions are attracted into one quantum state and thus form a Bose-Einstein condensate.

  14. Towards a model of pion generalized parton distributions from Dyson-Schwinger equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutarde, H.

    2015-04-10

    We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.

  15. Cosmic strings and superconducting cosmic strings

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund

    1988-01-01

    The possible consequences of forming cosmic strings and superconducting cosmic strings in the early universe are discussed. Lecture 1 describes the group theoretic reasons for and the field theoretic reasons why cosmic strings can form in spontaneously broken gauge theories. Lecture 2 discusses the accretion of matter onto string loops, emphasizing the scenario with a cold dark matter dominated universe. In lecture 3 superconducting cosmic strings are discussed, as is a mechanism which leads to the formation of structure from such strings.

  16. Search For Cosmic-Ray-Induced Gamma-Ray Emission In Galaxy Clusters

    DOE PAGES

    Ackermann, M.

    2014-04-30

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended γ-ray emission at the locations of 50 galaxy clusters in 4 years of Fermi-LAT data under the assumption of the universal cosmic-ray model proposed by Pinzke & Pfrommer (2010). We find an excess at a significance of 2.7 σ which uponmore » closer inspection is however correlated to individual excess emission towards three galaxy clusters: Abell 400, Abell 1367 and Abell 3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background (for example, radio galaxies within the clusters). Through the combined analysis of 50 clusters we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the cosmic-ray to thermal pressure ratio within the virial radius, R200, to be below 1.2-1.4% depending on the morphological classification. In addition we derive new limits on the γ-ray flux from individual clusters in our sample.« less

  17. Simulation of atmospheric temperature effects on cosmic ray muon flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting inmore » a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.« less

  18. Pion decay constant and the {rho}-meson mass at finite temperature in hidden local symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, M.; Shibata, A.

    1997-06-01

    We study the temperature dependence of the pion decay constant and {rho}-meson mass in the hidden local symmetry model at one loop. Using the standard imaginary time formalism, we include the thermal effect of the {rho} meson as well as that of the pion. We show that the pion gives a dominant contribution to the pion decay constant and the {rho}-meson contribution slightly decreases the critical temperature. The {rho}-meson pole mass increases as T{sup 4}/m{sub {rho}}{sup 2} at low temperature, dominated by the pion-loop effect. At high temperature, although the pion-loop effect decreases the {rho}-meson mass, the {rho}-loop contribution overcomesmore » the pion-loop contribution and the {rho}-meson mass increases with temperature. We also show that the conventional parameter a is stable as the temperature increases. {copyright} {ital 1997} {ital The American Physical Society}« less

  19. Minimum length Pb/SCIN detector for efficient cosmic ray identification

    NASA Technical Reports Server (NTRS)

    Snyder, H. David

    1989-01-01

    A study was made of the performance of a minimal length cosmic ray shower detector that would be light enough for space flight and would provide efficient identification of positions and protons. Cosmic ray positions are mainly produced in the decay chain of: Pion yields Muon yields Positron and they provide a measure of the matter density traversed by primary protons. Present positron flux measurements are consistent with the Leaky Box and Halo models for sources of cosmic rays. Abundant protons in the space environment are a significant source of background that would wash out the positron signal. Protons and positrons produced very distictive showers of particles when they enter matter; many studies have been published on their behavior on large calorimeter detectors. The challenge is to determine the minimal material necessary (minimal calorimeter depth) for positive particles identification. The primary instrument for the investigation is the Monte Carlo code GEANT, a library of programs from CERN that can be used to model experimental geometry, detector responses and particle interaction processes. The use of the Monte Carlo approach is crucial since statistical fluctuations in shower shape are significant. Studies conducted during the 1988 summer program showed that straightforward approaches to the problem achieved 85 to 90 percent correct identification, but left a residue of 10 to 15 percent misidentified particles. This percentage improved to a few percent when multiple shower-cut criteria were applied to the data. This summer, the same study was extended to employ several physical and statistical methods of identifying response of the calorimeter and the efficiency of the optimal shower cuts to off-normal incidence particle was determined.

  20. Fluctuations in non-ideal pion gas with dynamically fixed particle number

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2018-05-01

    We consider a non-ideal hot pion gas with the dynamically fixed number of particles in the model with the λϕ4 interaction. The effective Lagrangian for the description of such a system is obtained after dropping the terms responsible for the change of the total particle number. Reactions π+π- ↔π0π0, which determine the isospin balance of the medium, are permitted. Within the self-consistent Hartree approximation we compute the effective pion mass, thermodynamic characteristics of the system and the variance of the particle number at temperatures above the critical point of the induced Bose-Einstein condensation when the pion chemical potential reaches the value of the effective pion mass. We analyze conditions for the condensate formation in the process of thermalization of an initially non-equilibrium pion gas. The normalized variance of the particle number increases with a temperature decrease but remains finite in the critical point of the Bose-Einstein condensation. This is due to the non-perturbative account of the interaction and is in contrast to the ideal-gas case. In the kinetic regime of the condensate formation the variance is shown to stay finite also.

  1. Measurement of Charged Current Coherent Pion Production by Neutrinos on Carbon at MINER$$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mislivec, Aaron Robert

    Neutrino-nucleus coherent pion production is a rare neutrino scattering process where the squared four-momentum transferred to the nucleus is small, a lepton and pion are produced in the forward direction, and the nucleus remains in its initial state. This process is an important background in neutrino oscillation experiments. Measurements of coherent pion production are needed to constrain models which are used to predict coherent pion production in oscillation experiments. This thesis reports measurements of νµ and νµ charged current coherent pion production on carbon for neutrino energies in the range 2 < Eν < 20 GeV. The measurements were mademore » using data from MINERνA, which is a dedicated neutrino-nucleus scattering experiment that uses a fi scintillator tracking detector in the high-intensity NuMI neutrino beam at Fermilab. Coherent interactions were isolated from the data using only model-independent signatures of the reaction, which are a forward muon and pion, no evidence of nuclear breakup, and small four-momentum transfer to the nucleus. The measurements were compared to the coherent pion production model used by oscillation experiments. The data and model agree in the total interaction rate and are similar in the dependence of the interaction rate on the squared four- momentum transferred from the neutrino. The data and model disagree significantly in the pion kinematics. The measured νµ and νµ interaction rates are consistent, which supports model predictions that the neutrino and antineutrino interaction rates are equal.« less

  2. Pion quasiparticle in the low-temperature phase of QCD

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Meyer, Harvey B.; Robaina, Daniel

    2015-11-01

    We investigate the properties of the pion quasiparticle in the low-temperature phase of two-flavor QCD on the lattice with support from chiral effective theory. We find that the pion quasiparticle mass is significantly reduced compared to its value in the vacuum, in contrast with the static screening mass, which increases with temperature. By a simple argument, near the chiral limit the two masses are expected to determine the quasiparticle dispersion relation. Analyzing two-point functions of the axial charge density at nonvanishing spatial momentum, we find that the predicted dispersion relation and the residue of the pion pole are consistent with the lattice data at low momentum. This test, based on fits to the correlation functions, is confirmed by a second analysis using the Backus-Gilbert method.

  3. Three-pion Hanbury Brown-Twiss correlations in relativistic heavy-ion collisions from the STAR experiment.

    PubMed

    Adams, J; Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Mora Corral, M; Cramer, J G; Crawford, H J; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Guedon, M; Guertin, S M; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Molnar, L; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Thompson, M; Timoshenko, S; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; Vander Molen, A M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Vznuzdaev, M; Wang, F; Wang, Y; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2003-12-31

    Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at sqrt[s(NN)]=130 GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freeze-out. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.

  4. Determination of the pion-nucleon coupling constant and scattering lengths

    NASA Astrophysics Data System (ADS)

    Ericson, T. E.; Loiseau, B.; Thomas, A. W.

    2002-07-01

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.

  5. Pauli Principle and Pion Scattering

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1972-10-01

    It is pointed out that if the Pauli principle is taken into account in the discussion of pion scattering by complex nuclei (as it ought, of course, to be) some rather implausible consequences of some earlier treatments of this problem can be avoided. (auth)

  6. Pion properties at finite isospin chemical potential with isospin symmetry breaking

    NASA Astrophysics Data System (ADS)

    Wu, Zuqing; Ping, Jialun; Zong, Hongshi

    2017-12-01

    Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI <0 and μI >0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses. Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)

  7. Production of Pions in pA-collisions

    NASA Technical Reports Server (NTRS)

    Moskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Accurate knowledge of pion production cross section in PA-collisions is of interest for astrophysics, CR physics, and space radiation studies. Meanwhile, pion production in pA-reactions is often accounted for by simple scaling of that for pp-collisions, which is not enough for many real applications. We evaluate the quality of existing parameterizations using the data and simulations with the Los Alamos version of the Quark-Gluon String Model code LAQGSM and the improved Cascade-Exciton Model code CEM2k. The LAQGSM and CEM2k models have been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  8. Chiral perturbation theory and nucleon-pion-state contaminations in lattice QCD

    NASA Astrophysics Data System (ADS)

    Bär, Oliver

    2017-05-01

    Multiparticle states with additional pions are expected to be a non-negligible source of excited-state contamination in lattice simulations at the physical point. It is shown that baryon chiral perturbation theory can be employed to calculate the contamination due to two-particle nucleon-pion-states in various nucleon observables. Leading order results are presented for the nucleon axial, tensor and scalar charge and three Mellin moments of parton distribution functions (quark momentum fraction, helicity and transversity moment). Taking into account phenomenological results for the charges and moments the impact of the nucleon-pion-states on lattice estimates for these observables can be estimated. The nucleon-pion-state contribution results in an overestimation of all charges and moments obtained with the plateau method. The overestimation is at the 5-10% level for source-sink separations of about 2 fm. The source-sink separations accessible in contemporary lattice simulations are found to be too small for chiral perturbation theory to be directly applicable.

  9. Novel Soft-Pion Theorem for Long-Range Nuclear Parity Violation.

    PubMed

    Feng, Xu; Guo, Feng-Kun; Seng, Chien-Yeah

    2018-05-04

    The parity-odd effect in the standard model weak neutral current reveals itself in the long-range parity-violating nuclear potential generated by the pion exchanges in the ΔI=1 channel with the parity-odd pion-nucleon coupling constant h_{π}^{1}. Despite decades of experimental and theoretical efforts, the size of this coupling constant is still not well understood. In this Letter, we derive a soft-pion theorem relating h_{π}^{1} and the neutron-proton mass splitting induced by an artificial parity-even counterpart of the ΔI=1 weak Lagrangian and demonstrate that the theorem still holds exact at the next-to-leading order in the chiral perturbation theory. A considerable amount of simplification is expected in the study of h_{π}^{1} by using either lattice or other QCD models following its reduction from a parity-odd proton-neutron-pion matrix element to a simpler spectroscopic quantity. The theorem paves the way to much more precise calculations of h_{π}^{1}, and thus a quantitative test of the strangeness-conserving neutral current interaction of the standard model is foreseen.

  10. Novel Soft-Pion Theorem for Long-Range Nuclear Parity Violation

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Guo, Feng-Kun; Seng, Chien-Yeah

    2018-05-01

    The parity-odd effect in the standard model weak neutral current reveals itself in the long-range parity-violating nuclear potential generated by the pion exchanges in the Δ I =1 channel with the parity-odd pion-nucleon coupling constant hπ1 . Despite decades of experimental and theoretical efforts, the size of this coupling constant is still not well understood. In this Letter, we derive a soft-pion theorem relating hπ1 and the neutron-proton mass splitting induced by an artificial parity-even counterpart of the Δ I =1 weak Lagrangian and demonstrate that the theorem still holds exact at the next-to-leading order in the chiral perturbation theory. A considerable amount of simplification is expected in the study of hπ1 by using either lattice or other QCD models following its reduction from a parity-odd proton-neutron-pion matrix element to a simpler spectroscopic quantity. The theorem paves the way to much more precise calculations of hπ1, and thus a quantitative test of the strangeness-conserving neutral current interaction of the standard model is foreseen.

  11. Lattice QCD and the timelike pion form factor.

    PubMed

    Meyer, Harvey B

    2011-08-12

    We present a formula that allows one to calculate the pion form factor in the timelike region 2m(π) ≤ √(s) ≤ 4m(π) in lattice QCD. The form factor quantifies the contribution of two-pion states to the vacuum polarization. It must be known very accurately in order to reduce the theoretical uncertainty on the anomalous magnetic moment of the muon. At the same time, the formula constitutes a rare example where, in a restricted kinematic regime, the spectral function of a conserved current can be determined from Euclidean observables without an explicit analytic continuation.

  12. The Kroll-Lee-Zumino Model and Pion Form Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, C. A.; Loewe, M.

    2010-08-04

    At the one loop level, we make use of the renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino (KLZ) in order to compute the vertex corrections to the tree-level, Vector Meson Dominance (VMD) electromagnetic pion form factor. This result, together with the one-loop vacuum polarization contribution, implies an electromagnetic pion form factor which is in outstanding agreement with data in the whole range of accessible momentum transfers in the space-like region. The time-like form factor, which reproduces the Gounaris-Sakurai formula at and near the rho-meson peak, remains unaffected by the vertex correction at order O(g{sup 2}). Wemore » also use the KLZ model to compute the pion scalar radius at the one loop level, finding S = 0.40 fm{sup 2}. From this value we find for the low energy constant of chiral perturbation theory l{sub 4} = 3.4.« less

  13. Detection of pion-induced radioactivity by autoradiography and positron emission tomography.

    PubMed

    Shirato, H; Harrison, R; Kornelsen, R O; Lam, G K; Gaffney, C C; Goodman, G B; Grochowski, E; Pate, B

    1989-01-01

    An autoradiographic technique incorporating a new imaging system was used to detect pion-induced radioactivity in Plexiglass and the results were compared with aluminium activation and PET imaging. The activity distribution in the region of the pion-stopping peak was similar in all three cases. Another large signal in the entrance region due to in-flight interactions [12C(pi-, pi- n) 11C] was detected by autoradiography and by PET but was not reflected in the aluminium activation measurements. This new technique is capable of defining the stopping region in phantoms with a better resolution than PET scanning and is useful as a complementary technique to other methods of pion dosimetry.

  14. HBT correlations and charge ratios in multiple production of pions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Zalewski, K.

    1999-01-01

    The influence of the HTB effect on the multiplicity distribution and charge ratios of independently produced pions is studied. It is shown that, for a wide class of models, there is a critical point, where the average number of pions becomes very large and the multiplicity distribution becomes very broad. In this regime unusual charge ratios (“centauros”, “anticentauros”) are strongly enhanced. The prospects for reaching this regime are discussed.

  15. Effect of multiparticle collisions on pion production in relativistic heavy-ion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncalves, M.G.; Medeiros, E.L.; Duarte, S.B.

    In the present work we discuss the effect of N-body processes on pion multiplicity in relativistic heavy-ion reactions. This effect is analyzed in the energy range from the pion threshold up to 2 GeV/nucleon, for several projectile-target systems. The analysis is carried out in the context of intranuclear cascade calculations. It is shown that the inclusion of multibaryonic collisions is a crucial element in the study of the pion production mechanisms, being strongly dependent on the adopted correlation range for the particles involved in the N-body processes. {copyright} {ital 1997} {ital The American Physical Society}

  16. High Purity Pion Beam at TRIUMF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kettell, S.; Kettell, S.; Aguilar-Arevalo, A.

    An extension of the TRIUMF M13 low-energy pion channel designed to suppress positrons based on an energy-loss technique is described. A source of beam channel momentum calibration from the decay {pi}{sup +} {yields} e{sup +}{nu} is also described.

  17. Matrix elements of the electromagnetic operator between kaon and pion states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, I.; Lubicz, V.; INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Roma

    2011-10-01

    We compute the matrix elements of the electromagnetic operator sF{sub {mu}{nu}}{sigma}{sup {mu}{nu}}d between kaon and pion states, using lattice QCD with maximally twisted-mass fermions and two flavors of dynamical quarks (N{sub f}=2). The operator is renormalized nonperturbatively in the RI'/MOM scheme and our simulations cover pion masses as light as 270 MeV and three values of the lattice spacing from {approx_equal}0.07 up to {approx_equal}0.1 fm. At the physical point our result for the corresponding tensor form factor at zero-momentum transfer is f{sub T}{sup K{pi}}(0)=0.417(14{sub stat})(5{sub syst}), where the systematic error does not include the effect of quenching the strange andmore » charm quarks. Our result differs significantly from the old quenched result f{sub T}{sup K{pi}}(0)=0.78(6) obtained by the SPQ{sub cd}R Collaboration with pion masses above 500 MeV. We investigate the source of this difference and conclude that it is mainly related to the chiral extrapolation. We also study the tensor charge of the pion and obtain the value f{sub T}{sup {pi}{pi}}(0)=0.195(8{sub stat})(6{sub syst}) in good agreement with, but more accurate than the result f{sub T}{sup {pi}{pi}}(0)=0.216(34) obtained by the QCDSF Collaboration using higher pion masses.« less

  18. Neutral pion production in solar flares

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.; Vestrand, W. T.; Chupp, E. L.; Rieger, E.; Cooper, J. F.; Share, G. H.

    1985-01-01

    The Gamma-Ray Spectrometer (GRS) on SMM has detected more than 130 flares with emission approx 300 keV. More than 10 of these flares were detected at photon energies 10 MeV. Although the majority of the emission at 10 MeV must be from electron bremsstrahlung, at least two of the flares have spectral properties 40 MeV that require gamma rays from the decay of neutral pions. It is found that pion production can occur early in the impulsive phase as defined by hard X-rays near 100 keV. It is also found in one of these flares that a significant portion of this high-energy emission is produced well after the impulsive phase. This extended production phase, most clearly observed at high energies, may be a signature of the acceleration process which produces solar energetic particles (SEP's) in space.

  19. Roy-Steiner-equation analysis of pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-04-01

    We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process ππ → N ¯ N, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process πN → πN and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon σ-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity, crossing symmetry, and pionic-atom data. We perform the matching to chiral perturbation theory in the subthreshold region and detail the consequences for the chiral convergence of the threshold parameters and the nucleon mass.

  20. Chiral density wave versus pion condensation at finite density and zero temperature

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Kneschke, Patrick

    2018-04-01

    The quark-meson model is often used as a low-energy effective model for QCD to study the chiral transition at finite temperature T , baryon chemical potential μB , and isospin chemical potential μI . We determine the parameters of the model by matching the meson and quark masses, as well as the pion decay constant to their physical values using the on shell (OS) and modified minimal subtraction (MS ¯ ) schemes. In this paper, the existence of different phases at zero temperature is studied. In particular, we investigate the competition between an inhomogeneous chiral condensate and a homogeneous pion condensate. For the inhomogeneity, we use a chiral-density wave ansatz. For a sigma mass of 600 MeV, we find that an inhomogeneous chiral condensate exists only for pion masses below approximately 37 MeV. We also show that due to our parameter fixing, the onset of pion condensation takes place exactly at μIc=1/2 mπ in accordance with exact results.

  1. Charge symmetry breaking effects in pion and kaon structure

    NASA Astrophysics Data System (ADS)

    Hutauruk, Parada T. P.; Bentz, Wolfgang; Cloët, Ian C.; Thomas, Anthony W.

    2018-05-01

    Charge symmetry breaking (CSB) effects associated with the u and d quark mass difference are investigated in the quark distribution functions and spacelike electromagnetic form factors of the pion and kaon. We use a confining version of the Nambu-Jona-Lasinio model, where CSB effects at the infrared scale associated with the model are driven by the dressed u and d quark mass ratio, which because of dynamical chiral symmetry breaking is much closer to unity than the associated current quark mass ratio. The pion and kaon are given as bound states of a dressed quark and a dressed antiquark governed by the Bethe-Salpeter equation, and exhibit the properties of Goldstone bosons, with a pion mass difference given by mπ+2-mπ0 2∝(mu-md)2 as demanded by dynamical chiral symmetry breaking. We find significant CSB effects for realistic current quark mass ratios (mu/md˜0.5 ) in the quark flavor-sector electromagnetic form factors of both the pion and kaon. For example, the difference between the u and d quark contributions to the π+ electromagnetic form factors is about 8% at a momentum transfer of Q2≃10 GeV2 , while the analogous effect for the light quark sector form factors in the K+ and K0 is about twice as large. For the parton distribution functions we find CSB effects which are considerably smaller than those found in the electromagnetic form factors.

  2. An Overview of CC Coherent Pion Production

    NASA Astrophysics Data System (ADS)

    Williams, Zachary

    2017-01-01

    Neutrino cross-sections are a critical component to any neutrino measurement. With the modern neutrino experiments aiming to measure precision parameters, such as those in long-baseline oscillation experiments, the need for a detailed understanding of neutrino interactions has become even more important. Within this landscape remains a number of experimental challenges in the regime of low energy neutrino cross-sections. This talk will give an overview of recent publications on Charged Current-Coherent Pion Production (CC-Coh Pion) results from a number of experimental collaborations. Specifically, the lack of observation from the SciBooNE and T2K collaborations to observe CC-Coh Pion below one GeV in contrast to the observation of this signature at higher energies by other experiments. The work presented here is a part of the beginning steps to a reanalysis of the SciBooNE data using a modern neutrino generator in order to better understand the previous results. There will be included details of a liquid Argon purification system that is being built at UTA, and of plans for a ``Baby Time Projection Chamber (TPC)'' which will also be built at UTA, and the instrumentation and detector methods used in their construction. The closing is a look to the future for a new analysis at low neutrino energies utilizing Liquid Argon Time Projection Chambers (LArTPCs) based at Fermilab.

  3. Effects of the pion-nucleon potential in 197Au+197Au collisions at 1.5 GeV/nucleon

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Su, Jun; Zhu, Long; Zhang, Feng-Shou

    2018-06-01

    The influence of the pion-nucleon potential on the pion dynamics in 197Au+197Au collisions at 1.5 GeV/nucleon for different centrality intervals is investigated in the framework of the isospin-dependent quantum molecular dynamics model. It is found that the observables related to pions, such as the rapidity distributions, the rapidity dependencies of the directed flow and the elliptic flow, the centrality dependencies of the directed flow and the elliptic flow, and the transverse momentum distribution of the strength function of the azimuthal anisotropy are sensitive to the pion-nucleon potential. The pion multiplicity and the polar-angle distributions of pions are less affected by the pion-nucleon potential. The comparisons to the experimental data, in particular to the rapidity distributions of the directed flow and the elliptic flow, favor the stronger pion-nucleon potential derived from the phenomenological ansatz proposed by Gale and Kapusta [C. Gale and J. Kapusta, Phys. Rev. C 35, 2107 (1987), 10.1103/PhysRevC.35.2107].

  4. Measurement of multiplicities of charged hadrons, pions and kaons in DIS at COMPASS

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Nikolai

    2018-04-01

    Precise measurements of multiplicities of charged hadrons, pions and kaons in deep inelastic scattering were performed. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6LiD target. The results were obtained in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. A leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions into pions. The results for the sum of the z-integrated multiplicities for pions and for kaons, differ from earlier results from the HERMES experiment. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.

  5. Spontaneous pion emission as a new natural radioactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ion, D.B.; Ivascu, M.; Ion-Mihai, R.

    In this paper the pionic nuclear radioactivity or spontaneous pion emission by a nucleus from its ground state is investigated. The Q/sub ..pi../-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z>80. This new type of natural radioactivity is statistically favored especially for Z = 92-106 for which F/sub ..pi..//F/sub S//sub F/ = 40-200 (MeV)/sup 2/. Experimental detection of the neutral pion and also some possible emission mechanismsmore » are discussed.« less

  6. Critical behavior and dimension crossover of pion superfluidity

    NASA Astrophysics Data System (ADS)

    Wang, Ziyue; Zhuang, Pengfei

    2016-09-01

    We investigate the critical behavior of pion superfluidity in the framework of the functional renormalization group (FRG). By solving the flow equations in the SU(2) linear sigma model at finite temperature and isospin density, and making comparison with the fixed point analysis of a general O (N ) system with continuous dimension, we find that the pion superfluidity is a second order phase transition subject to an O (2 ) universality class with a dimension crossover from dc=4 to dc=3 . This phenomenon provides a concrete example of dimension reduction in thermal field theory. The large-N expansion gives a temperature independent critical exponent β and agrees with the FRG result only at zero temperature.

  7. Dispersive analysis of the pion transition form factor

    NASA Astrophysics Data System (ADS)

    Hoferichter, M.; Kubis, B.; Leupold, S.; Niecknig, F.; Schneider, S. P.

    2014-11-01

    We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the cross section, generalizing previous studies on decays and scattering, and verify our result by comparing to data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below , and extract the slope of the form factor at vanishing momentum transfer . We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.

  8. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christie, W.B. Jr.

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS ismore » that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.« less

  9. Basic Facts about the Pion

    NASA Astrophysics Data System (ADS)

    Roberts, Craig

    2015-04-01

    With discovery of the Higgs boson, the Standard Model of Particle Physics became complete. Its formulation and verification are a remarkable story. However, the most important chapter is the least understood. Quantum Chromodynamics (QCD) is that part of the Standard Model which is supposed to describe all of nuclear physics and yet, almost fifty years after the discovery of quarks, we are only just beginning to understand how QCD builds the basic bricks for nuclei: pions, neutrons, protons. QCD is characterised by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB), whose implications are truly extraordinary. This presentation will reveal how DCSB, not the Higgs boson, generates more than 98% of the visible mass in the Universe, explain why confinement guarantees that condensates, those quantities that were commonly viewed as constant mass-scales that fill all spacetime, are instead wholly contained within hadrons; and, with particular focus on the pion, elucidate a range of observable consequences of these phenomena whose measurement is the focus of a vast international experimental programme. This research was supported by U.S. Department of Energy, Office of Science, Office of Nuclear Physics, Contract No. DE-AC02-06CH11357.

  10. Comparison of the energy response of an ionization spectrometer for pions and protons

    NASA Technical Reports Server (NTRS)

    Jones, W. V.; Verma, S. D.

    1971-01-01

    An ionization spectrometer consisting of a sandwich of iron absorbers and plastic scintillation counters was used to measure the energy of pions and protons in the interval 10 to 1000 GeV. For the limited energy interval of 10 to 40 GeV, pions and protons were identified by an air cerenkov counter. Interactions in carbon were studied in a multiplate cloud chamber placed between the cerenkov counter and the spectrometer. Knowledge of these interactions were used in conjunction with a Monte Carlo simulation of the cascade process to study differences in the response of the spectrometer to pions and protons.

  11. Pion radiation for high grade astrocytoma: results of a randomized study.

    PubMed

    Pickles, T; Goodman, G B; Rheaume, D E; Duncan, G G; Fryer, C J; Bhimji, S; Ludgate, C; Syndikus, I; Graham, P; Dimitrov, M; Bowen, J

    1997-02-01

    This study attempted to compare within a randomized study the outcome of pion radiation therapy vs. conventional photon irradiation for the treatment of high-grade astrocytomas. Eighty-four patients were randomized to pion therapy (33-34.5 Gy pi), or conventional photon irradiation (60 Gy). Entry criteria included astrocytoma (modified Kernohan high Grade 3 or Grade 4), age 18-70, Karnofsky performance status (KPS) > or = 50, ability to start irradiation within 30 days of surgery, unifocal tumor, and treatment volume < 850 cc. The high-dose volume in both arms was computed tomography enhancement plus a 2-cm margin. The study was designed with the power to detect a twofold difference between arms. Eighty-one eligible patients were equally balanced for all known prognostic variables. Pion patients started radiation 7 days earlier on average than photon patients, but other treatment-related variables did not differ. There were no significant differences for either early or late radiation toxicity between treatment arms. Actuarial survival analysis shows no differences in terms of time to local recurrence or overall survival where median survival was 10 months in both arms (p = 0.22). The physician-assessed KPS and patient-assessed quality of life (QOL) measurements were generally maintained within 10 percentage points until shortly before tumor recurrence. There was no apparent difference in the serial KPS or QOL scores between treatment arms. In contrast to high linear energy transfer (LET) therapy for central nervous system tumors, such as neutron or neon therapy, the safety of pion therapy, which is of intermediate LET, has been reaffirmed. However, this study has demonstrated no therapeutic gain for pion therapy of glioblastoma.

  12. Towards a dispersive determination of the pion transition form factor

    NASA Astrophysics Data System (ADS)

    Leupold, Stefan; Hoferichter, Martin; Kubis, Bastian; Niecknig, Franz; Schneider, Sebastian P.

    2018-01-01

    We start with a brief motivation why the pion transition form factor is interesting and, in particular, how it is related to the high-precision standard-model calculation of the gyromagnetic ratio of the muon. Then we report on the current status of our ongoing project to calculate the pion transition form factor using dispersion theory. Finally we present and discuss a wish list of experimental data that would help to improve the input for our calculations and/or to cross-check our results.

  13. Cosmic gamma-rays and cosmic nuclei above 1 TeV

    NASA Technical Reports Server (NTRS)

    Watson, A. A.

    1986-01-01

    Work on cosmic gamma rays and cosmic nuclei above I TeV is described and evaluated. The prospect that gamma ray astronomy above I TeV will give new insights into high energy cosmic ray origin within our galaxy is particularly bright.

  14. Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

    DOE PAGES

    Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; ...

    2015-05-01

    Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise.

  15. Measuring the charged pion polarizability in the gamma gamma -> pi+pi- reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, David W.; Miskimen, Rory A.; Mushkarenkov, Alexander Nikolaevich

    2013-08-01

    Development has begun of a new experiment to measure the charged pion polarizabilitymore » $$\\alpha_{\\pi}-\\beta_{\\pi}$$. The charged pion polarizability ranks among the most important tests of low-energy QCD presently unresolved by experiment. Analogous to precision measurements of $$\\pi^{\\circ}\\rightarrow\\gamma\\gamma$$ that test the intrinsic odd-parity (anomalous) sector of QCD, the pion polarizability tests the intrinsic even-parity sector of QCD. The measurement will be performed using the $$\\gamma\\gamma\\rightarrow\\pi^{+{}}\\pi^{-{}}$$ cross section accessed via the Primakoff mechanism on nuclear targets using the GlueX detector in Hall D at Jefferson Lab. The linearly polarized photon source in Hall-D will be utilized to separate the Primakoff cross-section from coherent $$\\rho^{\\circ}$$ production.« less

  16. Electromagnetic Charge Radius of the Pion at High Precision

    NASA Astrophysics Data System (ADS)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta

    2017-09-01

    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  17. Pion, Kaon, Proton and Antiproton Production in Proton-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Blattnig, Steve R.

    2008-01-01

    Inclusive pion, kaon, proton, and antiproton production from proton-proton collisions is studied at a variety of proton energies. Various available parameterizations of Lorentz-invariant differential cross sections as a function of transverse momentum and rapidity are compared with experimental data. The Badhwar and Alper parameterizations are moderately satisfactory for charged pion production. The Badhwar parameterization provides the best fit for charged kaon production. For proton production, the Alper parameterization is best, and for antiproton production the Carey parameterization works best. However, no parameterization is able to fully account for all the data.

  18. EXPLAINING TEV COSMIC-RAY ANISOTROPIES WITH NON-DIFFUSIVE COSMIC-RAY PROPAGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harding, J. Patrick; Fryer, Chris L.; Mendel, Susan, E-mail: jpharding@lanl.gov, E-mail: fryer@lanl.gov, E-mail: smendel@lanl.gov

    2016-05-10

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the detailsmore » of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. The features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.« less

  19. Cosmic archaeology with gravitational waves from cosmic strings

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Lewicki, Marek; Morrissey, David E.; Wells, James D.

    2018-06-01

    Cosmic strings are generic cosmological predictions of many extensions of the standard model of particle physics, such as a U (1 )' symmetry-breaking phase transition in the early Universe or remnants of superstring theory. Unlike other topological defects, cosmic strings can reach a scaling regime that maintains a small fixed fraction of the total energy density of the Universe from a very early epoch until today. If present, they will oscillate and generate gravitational waves with a frequency spectrum that imprints the dominant sources of total cosmic energy density throughout the history of the Universe. We demonstrate that current and future gravitational wave detectors, such as LIGO and LISA, could be capable of measuring the frequency spectrum of gravitational waves from cosmic strings and discerning the energy composition of the Universe at times well before primordial nucleosynthesis and the cosmic microwave background where standard cosmology has yet to be tested. This work establishes a benchmark case that gravitational waves may provide an unprecedented, powerful tool for probing the evolutionary history of the very early Universe.

  20. Constraining the GENIE model of neutrino-induced single pion production using reanalyzed bubble chamber data

    DOE PAGES

    Rodrigues, Philip; Wilkinson, Callum; McFarland, Kevin

    2016-08-24

    The longstanding discrepancy between bubble chamber measurements of ν μ-induced single pion production channels has led to large uncertainties in pion production cross section parameters for many years. We extend the reanalysis of pion production data in deuterium bubble chambers where this discrepancy is solved to include the ν μn → μ –pπ 0 and ν μn→μ –nπ + channels, and use the resulting data to fit the parameters of the GENIE pion production model. We find a set of parameters that can describe the bubble chamber data better than the GENIE default parameters, and provide updated central values andmore » reduced uncertainties for use in neutrino oscillation and cross section analyses which use the GENIE model. Here, we find that GENIE’s non-resonant background prediction has to be significantly reduced to fit the data, which may help to explain the recent discrepancies between simulation and data observed by the MINERνA coherent pion and NOνA oscillation analyses.« less

  1. Pion distribution amplitude from Euclidean correlation functions

    NASA Astrophysics Data System (ADS)

    Bali, Gunnar S.; Braun, Vladimir M.; Gläßle, Benjamin; Göckeler, Meinulf; Gruber, Michael; Hutzler, Fabian; Korcyl, Piotr; Lang, Bernhard; Schäfer, Andreas; Wein, Philipp; Zhang, Jian-Hui

    2018-03-01

    Following the proposal in (Braun and Müller. Eur Phys J C55:349, 2008), we study the feasibility to calculate the pion distribution amplitude (DA) from suitably chosen Euclidean correlation functions at large momentum. In our lattice study we employ the novel momentum smearing technique (Bali et al. Phys Rev D93:094515, 2016; Bali et al. Phys Lett B774:91, 2017). This approach is complementary to the calculations of the lowest moments of the DA using the Wilson operator product expansion and avoids mixing with lower dimensional local operators on the lattice. The theoretical status of this method is similar to that of quasi-distributions (Ji. Phys Rev Lett 110:262002, 2013) that have recently been used in (Zhang et al. Phys Rev D95:094514, 2017) to estimate the twist two pion DA. The similarities and differences between these two techniques are highlighted.

  2. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  3. Lattice QCD study of the Boer-Mulders effect in a pion

    NASA Astrophysics Data System (ADS)

    Engelhardt, M.; Hägler, P.; Musch, B.; Negele, J.; Schäfer, A.

    2016-03-01

    The three-dimensional momenta of quarks inside a hadron are encoded in transverse momentum-dependent parton distribution functions (TMDs). This work presents an exploratory lattice QCD study of a TMD observable in the pion describing the Boer-Mulders effect, which is related to polarized quark transverse momentum in an unpolarized hadron. The primary goal is to gain insight into the behavior of TMDs as a function of a Collins-Soper evolution parameter, ζ ^, which quantifies the rapidity difference between the hadron momentum and a vector describing the trajectory of the struck quark, e.g., in a semi-inclusive deep-inelastic scattering (SIDIS) process. The lattice calculation, performed at the pion mass mπ=518 MeV , utilizes a definition of TMDs via hadronic matrix elements of a quark bilocal operator with a staple-shaped gauge connection; in this context, the evolution parameter is related to the staple direction. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. Aided by the lower mass of the pion, compared to the nucleon studied previously, the present investigation of pion TMD observables constitutes an important step towards the quantitative study of the physically important regime of large relative rapidity where the dependence on ζ ^ appears to approach a limit. Although matching to perturbative evolution equations in ζ ^ is not yet available, extrapolations based on Ansätze containing inverse powers of ζ ^ yield stable results with an uncertainty as low as 20%, and both upper and lower bounds for the asymptotics are obtained. In passing, the similarity between the Boer-Mulders effects extracted in the pion and the nucleon is noted.

  4. Investigation of the W and Q 2 dependence of charged pion distributions in μ p scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1986-03-01

    The W and Q 2 dependence of the fragmentation functions and of the average multiplicity of charged pions is investigated, using data from the NA9 experiment at the CERN SPS on muon-proton scattering at 280 GeV. A significant increase of pion production with increasing W is observed at fixed Q 2, leading to a rise of the average charged pion multiplicity, linear in ln W 2, and of the pion fragmentation function in the central region, i.e. at small | x F |. This increase can be understood from the kinematic widening of the cms rapidity range proportional to ln W 2 and the observed W independent height of the rapidity distribution. At fixed W, a rise of the average charged pion multiplicity with Q 2 is observed. This rise appears to be weaker than that observed for all charged hadrons implying a stronger rise with Q 2 for kaons and protons.

  5. Dynamic pion irradiation of unresectable soft tissue sarcomas.

    PubMed

    Greiner, R H; Blattmann, H J; Thum, P; Coray, A; Crawford, J F; Kann, R H; Munkel, G; Pedroni, E; von Essen, C F; Zimmermann, A

    1989-11-01

    Since November 1981, when pion irradiation was introduced for deep seated tumors at the Swiss Institute for Nuclear Research (SIN, now Paul Scherrer Institute, PSI) a dynamic, 3-dimensional spot scan treatment technique has been in use. To exploit this technique a special optimization treatment planning system has been designed. Of a total of 331 patients treated with pions from November 1981-December 1987, 35 were irradiated for unresectable soft tissue sarcomas. In 32/35 patients, tumor sites were retroperitoneal, pelvic or in the groin or thigh. Twenty-nine tumors had a maximum diameter of greater than 10 cm, 18 tumors of greater than 15 cm; 30 tumors had grade 2/3 and 32 Stage III B/IV A/IV B. Eight of 35 patients received a low pion total dose, 7-27 Gy. Twenty-seven patients received a total dose of 30-36 Gy, fraction size 150-170 cGy (90%-isodose), 20 fractions, 4 times per week. Of these 27 patients, severe late reactions appeared in five: 2/8 patients with extremity/groin sarcomas (1/2 caused by biopsy) and 3/19 patients with retroperitoneal/pelvic sarcomas (one a skin reaction after Actinomycin-D, one a small bowel reaction after 36 Gy, a dose no longer used). Seven of 27 patients had metastases at the beginning of irradiation. Three of 27 were treated with excisional biopsy, 9 with incisional biopsy or partial resection and in 15 patients biopsies were performed for histology only. The median follow-up of these 27 patients was 17 months (5-66). There was no progression in eight extremity/groin tumors but in 4 of 19 retroperitoneal/pelvic tumors. Three of these were marginal progressions. The actuarial 5-year rate of local tumor control is 64%; the actuarial 5-year survival rate of patients without metastases at the beginning of treatment is 58%. Dynamic spot scan pion irradiation proves to be a successful treatment technique for unresectable sarcomas with a high rate of tumor control and a very low rate of severe late reactions.

  6. Pion Production from 5-15 GeV Beam for the Neutrino Factory Front-End Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prior, Gersende

    2010-03-30

    For the neutrino factory front-end study, the production of pions from a proton beam of 5-8 and 14 GeV kinetic energy on a Hg jet target has been simulated. The pion yields for two versions of the MARS15 code and two different field configurations have been compared. The particles have also been tracked from the target position down to the end of the cooling channel using the ICOOL code and the neutrino factory baseline lattice. The momentum-angle region of pions producing muons that survived until the end of the cooling channel has been compared with the region covered by HARPmore » data and the number of pions/muons as a function of the incoming beam energy is also reported.« less

  7. A Nakanishi-based model illustrating the covariant extension of the pion GPD overlap representation and its ambiguities

    NASA Astrophysics Data System (ADS)

    Chouika, N.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.

    2018-05-01

    A systematic approach for the model building of Generalized Parton Distributions (GPDs), based on their overlap representation within the DGLAP kinematic region and a further covariant extension to the ERBL one, is applied to the valence-quark pion's case, using light-front wave functions inspired by the Nakanishi representation of the pion Bethe-Salpeter amplitudes (BSA). This simple but fruitful pion GPD model illustrates the general model building technique and, in addition, allows for the ambiguities related to the covariant extension, grounded on the Double Distribution (DD) representation, to be constrained by requiring a soft-pion theorem to be properly observed.

  8. Quantifying cosmic variance

    NASA Astrophysics Data System (ADS)

    Driver, Simon P.; Robotham, Aaron S. G.

    2010-10-01

    We determine an expression for the cosmic variance of any `normal' galaxy survey based on examination of M* +/- 1 mag galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) data cube. We find that cosmic variance will depend on a number of factors principally: total survey volume, survey aspect ratio and whether the area surveyed is contiguous or comprising independent sightlines. As a rule of thumb cosmic variance falls below 10 per cent once a volume of 107h-30.7Mpc3 is surveyed for a single contiguous region with a 1:1 aspect ratio. Cosmic variance will be lower for higher aspect ratios and/or non-contiguous surveys. Extrapolating outside our test region we infer that cosmic variance in the entire SDSS DR7 main survey region is ~7 per cent to z < 0.1. The equation obtained from the SDSS DR7 region can be generalized to estimate the cosmic variance for any density measurement determined from normal galaxies (e.g. luminosity densities, stellar mass densities and cosmic star formation rates) within the volume range 103-107h-30.7Mpc3. We apply our equation to show that two sightlines are required to ensure that cosmic variance is <10 per cent in any ASKAP galaxy survey (divided into Δ z ~ 0.1 intervals, i.e. ~1Gyr intervals for z < 0.5). Likewise 10 MeerKAT sightlines will be required to meet the same conditions. GAMA, VVDS and zCOSMOS all suffer less than 10 per cent cosmic variance (~3-8 per cent) in Δ z intervals of 0.1, 0.25 and 0.5, respectively. Finally we show that cosmic variance is potentially at the 50-70 per cent level, or greater, in the Hubble Space Telescope (HST) Ultra Deep Field depending on assumptions as to the evolution of clustering. 100 or 10 independent sightlines will be required to reduce cosmic variance to a manageable level (<10 per cent) for HST ACS or HST WFC3 surveys, respectively (in Δ z ~ 1 intervals). Cosmic variance is therefore a significant factor in the z > 6 HST studies currently underway.

  9. Dispersive analysis of the pion transition form factor.

    PubMed

    Hoferichter, M; Kubis, B; Leupold, S; Niecknig, F; Schneider, S P

    We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the [Formula: see text] cross section, generalizing previous studies on [Formula: see text] decays and [Formula: see text] scattering, and verify our result by comparing to [Formula: see text] data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below [Formula: see text], and extract the slope of the form factor at vanishing momentum transfer [Formula: see text]. We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.

  10. Revealing W51C as a Cosmic-Ray source using Fermi-LAT data

    DOE PAGES

    Jogler, T.; Funk, S.

    2016-01-10

    Here, supernova remnants (SNRs) are commonly believed to be the primary sources of Galactic cosmic rays. Despite intensive study of the non-thermal emission of many SNRs the identification of the accelerated particle type relies heavily on assumptions of ambient-medium parameters that are only loosely constrained. Compelling evidence of hadronic acceleration can be provided by detecting a strong roll-off in the secondary γ-ray spectrum below themore » $${\\pi }^{0}$$ production threshold energy of about 135 MeV, the so called "pion bump." Here we use five years of Fermi-Large Area Telescope data to study the spectrum above 60 MeV of the middle-aged SNR W51C. A clear break in the power-law γ-ray spectrum at $${E}_{{\\rm{break}}}=290\\pm 20\\;{\\rm{MeV}}$$ is detected with $$9\\sigma $$ significance and we show that this break is most likely associated with the energy production threshold of $${\\pi }^{0}$$mesons. A high-energy break in the γ-ray spectrum at about 2.7 GeV is found with $$7.5\\sigma $$ significance. The spectral index at energies beyond this second break is $${{\\rm{\\Gamma }}}_{2}={2.52}_{-0.07}^{+0.06}$$ and closely matches the spectral index derived by the MAGIC Collaboration above 75 GeV. Therefore our analysis provides strong evidence to explain the γ-ray spectrum of W51C by a single particle population of protons with a momentum spectrum best described by a broken power law with break momentum $${p}_{{\\rm{break}}}\\sim 80\\;{\\rm{G}}{\\rm{e}}{\\rm{V}}/c.$$ W51C is the third middle-aged SNR that displays compelling evidence for cosmic-ray acceleration and thus strengthens the case of SNRs as the main source of Galactic cosmic rays.« less

  11. Measurement of Neutrino-Induced Coherent Pion Production and the Diffractive Background in MINERvA

    NASA Astrophysics Data System (ADS)

    Gomez, Alicia; Minerva Collaboration

    2015-04-01

    Neutrino-induced coherent charged pion production is a unique neutrino-nucleus scattering process in which a muon and pion are produced while the nucleus is left in its ground state. The MINERvA experiment has made a model-independent differential cross section measurement of this process on carbon by selecting events with a muon and a pion, no evidence of nuclear break-up, and small momentum transfer to the nucleus | t | . A similar process which is a background to the measurement on carbon is diffractive pion production off the free protons in MINERvA's scintillator. This process is not modeled in the neutrino event generator GENIE. At low | t | these events have a similar final state to the aforementioned process. A study to quantify this diffractive event contribution to the background is done by emulating these diffractive events by reweighting all other GENIE-generated background events to the predicted | t | distribution of diffractive events, and then scaling to the diffractive cross section.

  12. Pion contamination in the MICE muon beam

    NASA Astrophysics Data System (ADS)

    Adams, D.; Alekou, A.; Apollonio, M.; Asfandiyarov, R.; Barber, G.; Barclay, P.; de Bari, A.; Bayes, R.; Bayliss, V.; Bertoni, R.; Blackmore, V. J.; Blondel, A.; Blot, S.; Bogomilov, M.; Bonesini, M.; Booth, C. N.; Bowring, D.; Boyd, S.; Brashaw, T. W.; Bravar, U.; Bross, A. D.; Capponi, M.; Carlisle, T.; Cecchet, G.; Charnley, C.; Chignoli, F.; Cline, D.; Cobb, J. H.; Colling, G.; Collomb, N.; Coney, L.; Cooke, P.; Courthold, M.; Cremaldi, L. M.; DeMello, A.; Dick, A.; Dobbs, A.; Dornan, P.; Drews, M.; Drielsma, F.; Filthaut, F.; Fitzpatrick, T.; Franchini, P.; Francis, V.; Fry, L.; Gallagher, A.; Gamet, R.; Gardener, R.; Gourlay, S.; Grant, A.; Greis, J. R.; Griffiths, S.; Hanlet, P.; Hansen, O. M.; Hanson, G. G.; Hart, T. L.; Hartnett, T.; Hayler, T.; Heidt, C.; Hills, M.; Hodgson, P.; Hunt, C.; Iaciofano, A.; Ishimoto, S.; Kafka, G.; Kaplan, D. M.; Karadzhov, Y.; Kim, Y. K.; Kuno, Y.; Kyberd, P.; Lagrange, J.-B.; Langlands, J.; Lau, W.; Leonova, M.; Li, D.; Lintern, A.; Littlefield, M.; Long, K.; Luo, T.; Macwaters, C.; Martlew, B.; Martyniak, J.; Mazza, R.; Middleton, S.; Moretti, A.; Moss, A.; Muir, A.; Mullacrane, I.; Nebrensky, J. J.; Neuffer, D.; Nichols, A.; Nicholson, R.; Nugent, J. C.; Oates, A.; Onel, Y.; Orestano, D.; Overton, E.; Owens, P.; Palladino, V.; Pasternak, J.; Pastore, F.; Pidcott, C.; Popovic, M.; Preece, R.; Prestemon, S.; Rajaram, D.; Ramberger, S.; Rayner, M. A.; Ricciardi, S.; Roberts, T. J.; Robinson, M.; Rogers, C.; Ronald, K.; Rubinov, P.; Rucinski, P.; Sakamato, H.; Sanders, D. A.; Santos, E.; Savidge, T.; Smith, P. J.; Snopok, P.; Soler, F. J. P.; Speirs, D.; Stanley, T.; Stokes, G.; Summers, D. J.; Tarrant, J.; Taylor, I.; Tortora, L.; Torun, Y.; Tsenov, R.; Tunnell, C. D.; Uchida, M. A.; Vankova-Kirilova, G.; Virostek, S.; Vretenar, M.; Warburton, P.; Watson, S.; White, C.; Whyte, C. G.; Wilson, A.; Winter, M.; Yang, X.; Young, A.; Zisman, M.

    2016-03-01

    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240 MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than ~1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ < 1.4% at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.

  13. Pion contamination in the MICE muon beam

    DOE PAGES

    Adams, D.; Alekou, A.; Apollonio, M.; ...

    2016-03-01

    Here, the international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less thanmore » $$\\sim$$1% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is $$f_\\pi < 1.4\\%$$ at 90% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.« less

  14. Cosmic void clumps

    NASA Astrophysics Data System (ADS)

    Lares, M.; Luparello, H. E.; Garcia Lambas, D.; Ruiz, A. N.; Ceccarelli, L.; Paz, D.

    2017-10-01

    Cosmic voids are of great interest given their relation to the large scale distribution of mass and the way they trace cosmic flows shaping the cosmic web. Here we show that the distribution of voids has, in consonance with the distribution of mass, a characteristic scale at which void pairs are preferentially located. We identify clumps of voids with similar environments and use them to define second order underdensities. Also, we characterize its properties and analyze its impact on the cosmic microwave background.

  15. Meson Production and Space Radiation

    NASA Astrophysics Data System (ADS)

    Norbury, John; Blattnig, Steve; Norman, Ryan; Aghara, Sukesh

    Protecting astronauts from the harmful effects of space radiation is an important priority for long duration space flight. The National Council on Radiation Protection (NCRP) has recently recommended that pion and other mesons should be included in space radiation transport codes, especially in connection with the Martian atmosphere. In an interesting accident of nature, the galactic cosmic ray spectrum has its peak intensity near the pion production threshold. The Boltzmann transport equation is structured in such a way that particle production cross sec-tions are multiplied by particle flux. Therefore, the peak of the incident flux of the galactic cosmic ray spectrum is more important than other regions of the spectrum and cross sections near the peak are enhanced. This happens with pion cross sections. The MCNPX Monte-Carlo transport code now has the capability of transporting heavy ions, and by using a galactic cosmic ray spectrum as input, recent work has shown that pions contribute about twenty percent of the dose from galactic cosmic rays behind a shield of 20 g/cm2 aluminum and 30 g/cm2 water. It is therefore important to include pion and other hadron production in transport codes designed for space radiation studies, such as HZETRN. The status of experimental hadron production data for energies relevant to space radiation will be reviewed, as well as the predictive capa-bilities of current theoretical hadron production cross section and space radiation transport models. Charged pions decay into muons and neutrinos, and neutral pions decay into photons. An electromagnetic cascade is produced as these particles build up in a material. The cascade and transport of pions, muons, electrons and photons will be discussed as they relate to space radiation. The importance of other hadrons, such as kaons, eta mesons and antiprotons will be considered as well. Efficient methods for calculating cross sections for meson production in nucleon-nucleon and nucleus

  16. Explaining TeV cosmic-ray anisotropies with non-diffusive cosmic-ray propagation

    DOE PAGES

    Harding, James Patrick; Fryer, Chris Lee; Mendel, Susan Marie

    2016-05-11

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the detailsmore » of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. Furthermore, the features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.« less

  17. Anatomy of a cosmic-ray neutrino source and the Cygnus X-3 system

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Harding, A. K.; Barnard, J. J.

    1985-01-01

    The effects of an intense beam of ultra-high energy cosmic rays from a compact object in the Cygnus X-3 binary system hitting the companion star, and of the subsequent production of secondary neutrinos, are examined. A maximum allowable beam luminosity of about 10 to the 42nd erg/s is found for a system containing a 1-10 solar mass main sequence target star. The proton beam must heat a relatively small area of the target star to satisfy observational constraints on the resulting stellar wind. With such a model, the neutrino to gamma-ray flux ratio of about 1000 can result from a combination of gamma-ray absorption and a large neutrino to gamma-ray duty cycle ratio. It is found that the high density of the atmosphere resulting from compression by the beam leads to pion cascading and a neutrino spectrum peaking at 1-10 GeV energies.

  18. Neutral Pion Photoproduction on Neutron

    DOE PAGES

    Bulychev, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.; ...

    2018-03-12

    The reaction γn → π 0n is investigated both theoretically and experimentally as an important step toward determining the electromagnetic coupling constants of the N* and Δ* resonances. We analyze the data on the collisions of γ quanta with energies between 200 and 800 MeV with a deuterium target collected by the A2 experiment in Mainz, Germany. Furthermore, these complement the data for neutral-pion photoproduction on protons obtained by the same experiment.

  19. Multi-physics modelling contributions to investigate the atmospheric cosmic rays on the single event upset sensitivity along the scaling trend of CMOS technologies.

    PubMed

    Hubert, G; Regis, D; Cheminet, A; Gatti, M; Lacoste, V

    2014-10-01

    Particles originating from primary cosmic radiation, which hit the Earth's atmosphere give rise to a complex field of secondary particles. These particles include neutrons, protons, muons, pions, etc. Since the 1980s it has been known that terrestrial cosmic rays can penetrate the natural shielding of buildings, equipment and circuit package and induce soft errors in integrated circuits. Recently, research has shown that commercial static random access memories are now so small and sufficiently sensitive that single event upsets (SEUs) may be induced from the electronic stopping of a proton. With continued advancements in process size, this downward trend in sensitivity is expected to continue. Then, muon soft errors have been predicted for nano-electronics. This paper describes the effects in the specific cases such as neutron-, proton- and muon-induced SEU observed in complementary metal-oxide semiconductor. The results will allow investigating the technology node sensitivity along the scaling trend. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Refinement of the Pion PDF implementing Drell-Yan and Deep Inelastic Scattering Experimental Data

    NASA Astrophysics Data System (ADS)

    Barry, Patrick; Sato, Nobuo; Melnitchouk, Wally; Ji, Chueng-Ryong

    2017-09-01

    We realize that an abundance of ``sea'' quarks and gluons (as opposed to three valence quarks) is crucial to understanding the mass and internal structure of the proton. An effective pion cloud exists around the core valence structure. In the Drell-Yan (DY) process, two hadrons collide, one donating a quark and the other donating an antiquark. The quark-antiquark pair annihilate, forming a virtual photon, which creates a lepton-antilepton pair. By measuring their cross-sections, we obtain information about the parton distribution function (PDF) of the hadrons. The PDF is the probability of finding a parton at a momentum fraction of the hadron, x, between 0 and 1. Complementary to the DY process is deep inelastic scattering (DIS). Here, a target nucleon is probed by a lepton, and we investigate the pion cloud of the nucleon. The experiments H1 and ZEUS done at HERA at DESY collect DIS data by detecting a leading neutron (LN). By using nested sampling to generate sets of parameters, we present some preliminary fits of pion PDFs to DY (Fermilab-E615 and CERN-NA10) and LN (H1 and ZEUS) datasets. We aim to perform a full NLO QCD global analysis to determine pion PDFs accurately for all x. There have been no attempts to fit the pion PDF using both low and high x data until now.

  1. CosmicSIG science and plans

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.

    2014-03-01

    Recent activities of the Cosmic Ray Science Interest Group (CosmicSIG) of the Physics of the Cosmos PAG will be reviewed. CosmicSIG was formed to provide an assessment to NASA HQ and the PCOS program office of the status of current and future missions in the area of cosmic-ray astrophysics. CosmicSIG also strives to act as a focal point and forum for the cosmic ray community.

  2. Thermal conductivity of hot pionic medium due to pion self-energy for πσ and πρ loops

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabyasachi

    2015-07-01

    The thermal conductivity of pionic medium has been evaluated with the help of its standard expression from the relaxation time approximation, where inverse of pion relaxation time or pion thermal width has been obtained from the imaginary part of pion self-energy. In the real-time formalism of thermal field theory, the finite temperature calculations of pion self-energy for πσ and πρ loops have been done. The numerical value of our thermal conductivity increases with temperature very softly, though at particular temperature, our estimation has to consider a large band of phenomenological uncertainty.

  3. Calculation of Cosmic Ray Induced Single Event Upsets: Program CRUP, Cosmic Ray Upset Program

    DTIC Science & Technology

    1983-09-14

    1.., 0 .j ~ u M ~ t R A’- ~~ ’ .~ ; I .: ’ 1 J., ) ’- CALCULATION OF COSMIC RAY INDUCED SINGLE EVEI’o"T UPSETS: PROGRAM CRUP , COSMIC RAY UPSET...neceuety end Identity by blo..;k number) 0Thls report documents PROGR.Al\\1 CRUP , COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic...34. » » •-, " 1 » V »1T"~ Calculation of Cosmic Ray Induced Single Event Upsets: PROGRAM CRUP , COSMIC RAY UPSET PROGRAM I. INTRODUCTION Since the

  4. Azimuthal dependence of pion source radii in Pb+Au collisions at 158A GeV/c

    NASA Astrophysics Data System (ADS)

    Adamová, D.; Agakichiev, G.; Andronic, A.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielčíková, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Hering, G.; Holeczek, J.; Kalisky, M.; Kniege, S.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Miśkowiec, D.; Ortega, R.; Panebrattsev, Y.; Petchenova, O.; Petráček, V.; Płoskoń, M.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Schuchmann, S.; Schukraft, J.; Sedykh, S.; Shimansky, S.; Soualah, R.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Yurevich, S.; Yurevich, V.

    2008-12-01

    We present results of a two-pion correlation analysis performed with the Pb+Au collision data collected by the upgraded CERES experiment in the fall of 2000. The analysis was done in bins of the reaction centrality and the pion azimuthal emission angle with respect to the reaction plane. The pion source, deduced from the data, is slightly elongated in the direction perpendicular to the reaction plane, similarly as was observed at the Brookhaven National Laboratory Alternating Gradient Synchrotron and Relativistic Heavy Ion Collider.

  5. The Emergence of Cosmic Education. Spotlight: Cosmic Education.

    ERIC Educational Resources Information Center

    Trudeau, Sr. Christina Marie

    2002-01-01

    Discusses the influence of Hindu, Moslem, and Buddhist metaphysics on Maria Montessori's own pedagogical philosophy of Cosmic Education, which she regarded as the core of all learning experiences, after her visit to India. Considers the relationship between Montessori's ideas of child development and Cosmic Education, and the effect of Indian…

  6. Strong Cosmic Censorship

    NASA Astrophysics Data System (ADS)

    Isenberg, James

    2017-01-01

    The Hawking-Penrose theorems tell us that solutions of Einstein's equations are generally singular, in the sense of the incompleteness of causal geodesics (the paths of physical observers). These singularities might be marked by the blowup of curvature and therefore crushing tidal forces, or by the breakdown of physical determinism. Penrose has conjectured (in his `Strong Cosmic Censorship Conjecture`) that it is generically unbounded curvature that causes singularities, rather than causal breakdown. The verification that ``AVTD behavior'' (marked by the domination of time derivatives over space derivatives) is generically present in a family of solutions has proven to be a useful tool for studying model versions of Strong Cosmic Censorship in that family. I discuss some of the history of Strong Cosmic Censorship, and then discuss what is known about AVTD behavior and Strong Cosmic Censorship in families of solutions defined by varying degrees of isometry, and discuss recent results which we believe will extend this knowledge and provide new support for Strong Cosmic Censorship. I also comment on some of the recent work on ``Weak Null Singularities'', and how this relates to Strong Cosmic Censorship.

  7. Our Cosmic Insignificance

    PubMed Central

    Kahane, Guy

    2014-01-01

    The universe that surrounds us is vast, and we are so very small. When we reflect on the vastness of the universe, our humdrum cosmic location, and the inevitable future demise of humanity, our lives can seem utterly insignificant. Many philosophers assume that such worries about our significance reflect a banal metaethical confusion. They dismiss the very idea of cosmic significance. This, I argue, is a mistake. Worries about cosmic insignificance do not express metaethical worries about objectivity or nihilism, and we can make good sense of the idea of cosmic significance and its absence. It is also possible to explain why the vastness of the universe can make us feel insignificant. This impression does turn out to be mistaken, but not for the reasons typically assumed. In fact, we might be of immense cosmic significance—though we cannot, at this point, tell whether this is the case. PMID:25729095

  8. Cosmic-ray ionisation of dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Vaupre, Solenn

    2015-07-01

    Cosmic rays (CR) are of tremendous importance in the dynamical and chemical evolution of interstellar molecular clouds, where stars and planets form. CRs are likely accelerated in the shells of supernova remnants (SNR), thus molecular clouds nearby can be irradiated by intense fluxes of CRs. CR protons have two major effects on dense molecular clouds: 1) when they encounter the dense medium, high-energy protons (>280 MeV) create pions that decay into gamma-rays. This process makes SNR-molecular cloud associations intense GeV and/or TeV sources whose spectra mimic the CR spectrum. 2) at lower energies, CRs penetrate the cloud and ionise the gas, leading to the formation of molecular species characteristic of the presence of CRs, called tracers of the ionisation. Studying these tracers gives information on low-energy CRs that are unaccessible to any other observations. I studied the CR ionisation of molecular clouds next to three SNRs: W28, W51C and W44. These SNRs are known to be interacting with the nearby clouds, from the presence of shocked gas, OH masers and pion-decay induced gamma-ray emission. My work includes millimeter observations and chemical modeling of tracers of the ionisation in these dense molecular clouds. In these three regions, we determined an enhanced CR ionisation rate, supporting the hypothesis of an origin of the CRs in the SNR nearby. The evolution of the CR ionisation rate with the distance to the SNR brings valuable constraints on the propagation properties of low-energy CRs. The method used relies on observations of the molecular ions HCO+ and DCO+, which shows crucial limitations at high ionisation. Therefore, I investigated, both through modeling and observations, the chemical abundances of several other species to try and identity alternative tracers of the ionisation. In particular, in the W44 region, observations of N2H+ bring additional constraints on the physical conditions, volatile abundances in the cloud, and the ionisation

  9. Pion-Kaon correlations in central Au+Au collisions at square root [sNN] = 130 GeV.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Ganti, M S; Gutierrez, T D; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Rykov, V; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, H Y; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2003-12-31

    Pion-kaon correlation functions are constructed from central Au+Au STAR data taken at sqrt[s(NN)]=130 GeV by the STAR detector at the Relativistic Heavy Ion Collider (RHIC). The results suggest that pions and kaons are not emitted at the same average space-time point. Space-momentum correlations, i.e., transverse flow, lead to a space-time emission asymmetry of pions and kaons that is consistent with the data. This result provides new independent evidence that the system created at RHIC undergoes a collective transverse expansion.

  10. The origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1986-01-01

    Data related to the development of cosmic rays are discussed. The relationship between cosmic ray production and the steady-state Boltzmann equation is analyzed. The importance of the power-law spectrum, the scattering rate, the theory of shock acceleration, anisotropic instabilities, and cosmic ray diffusion in the formation of cosmic rays is described. It is noted that spacecraft observations at the earth's bow shock are useful for studying cosmic rays and that the data support the collisionless shock-wave theory of cosmic ray origin.

  11. Pion mass dependence of the HVP contribution to muon g - 2

    NASA Astrophysics Data System (ADS)

    Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2018-03-01

    One of the systematic errors in some of the current lattice computations of the HVP contribution to the muon anomalous magnetic moment g - 2 is that associated with the extrapolation to the physical pion mass. We investigate this extrapolation assuming lattice pion masses in the range of 220 to 440 MeV with the help of two-loop chiral perturbation theory, and find that such an extrapolation is unlikely to lead to control of this systematic error at the 1% level. This remains true even if various proposed tricks to improve the chiral extrapolation are taken into account.

  12. Cosmic ray experimental observations

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Mcdonald, F. B.

    1974-01-01

    The current experimental situation in cosmic ray studies is discussed, with special emphasis on the development of new detector systems. Topics covered are the techniques for particle identification, energy measurements, gas Cerenkov counters, magnet spectrometers, ionization spectrometers, track detectors, nuclear emulsions, multiparameter analysis using arrays of detectors, the Goddard ionization spectrometer, charge spectra, relative abundances, isotope composition, antinuclei in cosmic rays, electrons, the measurement of cosmic ray arrival directions, and the prehistory of cosmic rays.

  13. Search for sterile neutrinos decaying into pions at the LHC

    NASA Astrophysics Data System (ADS)

    Dib, Claudio O.; Kim, C. S.; Neill, Nicolás A.; Yuan, Xing-Bo

    2018-02-01

    We study the possibility to observe sterile neutrinos with masses in the range 5 GeV pions, namely W →ℓN →n π ℓℓ (n =1 ,2 ,3 ). The two pion and three pion modes require extrapolations of form factors to large time-like q2, which we do using vector dominance models as well as light front holographic QCD, with remarkable agreement. This mass region is difficult to explore with inclusive ℓℓj j modes or trilepton modes and impossible to explore in rare meson decays. While particle identification is a real challenge in these modes, vertex displacement due to the long living neutrino in the above mass range can greatly help reduce backgrounds. Assuming a sample of 1 09 W bosons at the end of the LHC Run 2, these modes could discover a sterile neutrino in the above mass range or improve the current bounds on the heavy-to-light lepton mixings by an order of magnitude, |UℓN|2˜2 ×10-6. Moreover, by studying the equal sign and opposite sign dileptons, the Majorana or Dirac character of the sterile neutrino may be revealed.

  14. Pion Condensation by Rotation in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Liu, Yizhuang; Zahed, Ismail

    2018-01-01

    We show that the combined effects of a rotation plus a magnetic field can cause charged pion condensation. We suggest that this phenomenon may yield to observable effects in current heavy ion collisions at collider energies, where large magnetism and rotations are expected in off-central collisions.

  15. Cosmic Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The cosmic ray division participation in the cooperative agreement was activated in the second year. The scientific goals will be analysis of cosmic ray data from the Japanese-American Cooperative Emulsion Experiments (JACEE). Measurements of primary cosmic rays in the JACEE emulsion chambers will be made to derive for each detected particle the deposited energy in the chamber and the primary charge (atomic number). The data will be corrected to the primary flux above the atmosphere, and the composition and energy spectra will be derived. The spectra of the individual elements will be interpreted in context with the supernova shock and other models of cosmic ray acceleration. Additional information is contained in the original extended abstract.

  16. A cosmic microwave background feature consistent with a cosmic texture.

    PubMed

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-07

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.

  17. Results of investigation of muon fluxes of superhigh energy cosmic rays with X-ray emulsion chambers

    NASA Technical Reports Server (NTRS)

    Ivanenko, I. P.; Ivanova, M. A.; Kuzmichev, L. A.; Ilyina, N. P.; Mandritskaya, K. V.; Osipova, E. A.; Rakobolskaya, I. V.; Zatsepin, G. T.

    1985-01-01

    The overall data from the investigation of the cosmic ray muon flux in the range of zenith angles (0-90) deg within the energy range (3.5 to 5.0) TeV is presented. The exposure of large X-ray emulsion chambers underground was 1200 tons. year. The data were processe using the method which was applied in the experiment Pamir and differred from the earlier applied one. The obtained value of a slope power index of the differential energy spectrum of the global muon flux is =3.7 that corresponds to the slope of the pion generation differential spectrum, gamma sub PI = 2.75 + or - .04. The analysis of the muon zenith-angular distribution showed that the contribution of rapid generation muons in the total muon flux agree the best with the value .2% and less with .7% at a 90% reliability level.

  18. Collective flows of pions in Au+Au collisions at energies 1.0 and 1.5 GeV/nucleon

    NASA Astrophysics Data System (ADS)

    Liu, Yangyang; Wang, Yongjia; Li, Qingfeng; Liu, Ling

    2018-03-01

    Based on the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, the pion potentials obtained from the in-medium dispersion relation of the Δ -hole model and from the modified phenomenological approach are further introduced. Both the rapidity y0 and transverse-velocity ut 0 dependence of directed v1 and elliptic v2 flows of π+ and π- charged mesons produced from Au+Au collisions at two beam energies of 1.0 and 1.5 GeV/nucleon and within a large centrality region of 0 pion potentials as well as without considering the pion potential are compared to the newly experimental data released by the FOPI Collaboration at GSI Helmholtzzentrum für Schwerionenforschung. It is found that the directed flow is more sensitive to the pion potential than the elliptic one, and the attractive pion potential from the phenomenological B mode of the phenomenological approach is too strong to describe the flow data and can be safely ruled out. The relatively weak pion potential from the Δ -hole model can supply a good description for the FOPI data of both flows as functions of both centrality and rapidity. A two-peak structure occurs in the transverse-velocity-dependent directed flow but the elliptic flow drops monotonously with increasing ut 0. Finally, both v1 and v2 flows with large ut 0 from semicentral heavy-ion collisions can be taken as sensitive probes for the pion potential.

  19. Calculation of cosmic ray induced single event upsets: Program CRUP (Cosmic Ray Upset Program)

    NASA Astrophysics Data System (ADS)

    Shapiro, P.

    1983-09-01

    This report documents PROGRAM CRUP, COSMIC RAY UPSET PROGRAM. The computer program calculates cosmic ray induced single-event error rates in microelectronic circuits exposed to several representative cosmic-ray environments.

  20. Cosmic ray diffusion: Report of the Workshop in Cosmic Ray Diffusion Theory

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.; Jones, F. C.

    1975-01-01

    A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory.

  1. GNSS Radio Occultation Observations as a data source for Ionospheric Assimilation: COSMIC-1 & COSMIC-2

    NASA Astrophysics Data System (ADS)

    Yue, X.; Schreiner, W. S.; Kuo, Y. H.

    2014-12-01

    Since the pioneer GPS/MET mission, low Earth orbit (LEO) based global navigation satellite system (GNSS) Radio Occultation (RO) technique has been a powerful technique in ionosphere monitoring. After that, many LEO satellites were launched with RO payload, include: CHAMP , GRACE, SAC-C/D, COSMIC, C/NOFS, Metop-A/B, TerraSAR-X/TanDEM-X, and etc. COSMIC was the first constellation of satellites dedicated primarily to RO and delivering RO data in near real time. Currently in UCAR CDAAC, we process most of these missions' RO data for the community. Due to the success of COSMIC mission, a follow on mission called COSMIC-2 will be launched in 2016 and 2018, respectively. The COSMIC-2 RO data will be 4-6 times of COSMIC due to the doubled satellite and GNSS signals. In this paper we will describe: (1) Data process and quality in UCAR/CDAAC; (2) Ionospheric data assimilation results based on COSMIC data; (3) OSSE study for COSMIC-2.

  2. Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at √{sN N }=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Gramling, J. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loggins, V. R.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration

    2017-06-01

    We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of √{sN N }=2.76 TeV . The measurements have been performed in the centrality range 0%-50% and for pion pair transverse momenta 0.2 pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via Rside oscillations, is found to be significantly smaller than the initial-state source eccentricity, but remains positive—indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The 3 +1 D hydrodynamic calculations are in qualitative agreement with observed centrality and transverse momentum Rside oscillations, but systematically underestimate the oscillation magnitude.

  3. Pion-less effective field theory for real and lattice nuclei

    NASA Astrophysics Data System (ADS)

    Bansal, Aaina; Binder, Sven; Ekström, Andreas; Hagen, Gaute; Papenbrock, Thomas

    2017-09-01

    We compute the medium-heavy nuclei 16O and 40Ca using pion-less effective field theory (EFT) at leading order (LO) and next-to-leading order (NLO). The low-energy coefficients of the EFT Hamiltonian are adjusted to A = 2 , 3 nuclei data from experiments, or alternatively to data from lattice QCD at unphysical pion mass mπ = 806 MeV. The EFT is implemented through discrete variable representation of finite harmonic oscillator basis. This approach ensures rapid convergence with respect to the size of the model space and allows us to compute heavier atomic and lattice nuclei. The atomic nuclei 16O and 40Ca are bound with respect to decay into alpha particles at NLO, but not at LO.

  4. Nuclear collective flow and charged-pion emission in Ne-nucleus collisions at E/A = 800 MeV

    NASA Technical Reports Server (NTRS)

    Gosset, J.; Valette, O.; Babinet, R.; Alard, J. P.; Augerat, J.

    1989-01-01

    Triple-differential cross sections of charged pions were measured for collisions of Ne projectiles at E/A = 800 MeV with NaF, Nb, and Pb targets. The reaction plane was estimated event by event from the light-baryon momentum distribution. For heavy targets, preferential emission of charged pions away from the interaction zone toward the projectile side was observed in the transverse direction. Such a preferential emission, which is not predicted by cascade calculations, may be attributed to a stronger pion absorption by the heavier spectator remnant.

  5. Nuclear collective flow and charged-pion emission in Ne-nucleus collisions at E/A = 800 MeV

    NASA Technical Reports Server (NTRS)

    Gosset, J.; Valette, O.; Alard, J. P.; Augerat, J.; Babinet, R.; Bastid, N.; Brochard, F.; De Marco, N.; Dupieux, P.; Fodor, Z.; hide

    1989-01-01

    Triple-differential cross sections of charged pions were measured for collisions of Ne projectiles at E/A = 800 MeV with NaF, Nb, and Pb targets. The reaction plane was estimated event by event from the light-baryon momentum distribution. For heavy targets, preferential emission of charged pions away from the interaction zone towards the projectile side was observed in the transverse direction. Such a preferential emission, which is not predicted by cascade calculations, may be attributed to a stronger pion absorption by the heavier spectator remnant.

  6. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  7. First Measurement of one Pion Production in Charged Current Neutrino and Antineutrino events on Argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scanavini, Scanavini,Giacomo

    This thesis presents a work done in the context of the Fermilab Neutrino Intensity Frontier. In this analysis, the cross section of single charged pion production in charged-current neutrino and antineutrino interactions with the argon nucleus target are measured. These measurements are performed using the Argon Neutrino Test (ArgoNeuT) detector exposed to the Fermilab Neutrino From The Main Injector (NuMI) beam operating in the low energy antineutrino mode. The signal is a charged-current μ interaction in the detector, with exactly one charged pion exiting the target nucleus, with momentum above 100 MeV/c. There shouldn’t be any 0 or kaons inmore » the final state. There is no restriction on other mesons or nucleons. Total and differential cross section measurements are presented. The results are reported in terms of outgoing muon angle and momentum, outgoing pion angle and angle between outgoing pion and muon. The total cross sections, averaged over the flux, are found to be 8.2 ± 0.9 (stat) +0.9 -1.1 (syst) × 10-38 cm2 per argon nuclei and 2.5 ± 0.4 (stat) ± 0.5 (syst) × 10-37 cm2 per argon nuclei for antineutrino and neutrino respectively at a mean neutrino energy of 3.6 GeV (antineutrinos) and 9.6 GeV (neutrinos). This is the first time the single pion production in charged-current interactions cross section is measured on argon nuclei.« less

  8. Cosmic ray propagation and containment

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1976-01-01

    The cosmic rays, an active gaseous component of the disk of the galaxy, are considered along with their propagation and containment as a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic ray gas pressure comparable to the magnetic pressure, but the rate of inflation is unknown. The time spent by the individual cosmic ray particles in the disk is inversely proportional to the cosmic ray production rate. It is evident from the decay of Be(1c) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.

  9. A Cosmic Variance Cookbook

    NASA Astrophysics Data System (ADS)

    Moster, Benjamin P.; Somerville, Rachel S.; Newman, Jeffrey A.; Rix, Hans-Walter

    2011-04-01

    Deep pencil beam surveys (<1 deg2) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by "cosmic variance." This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift \\bar{z} and redshift bin size Δz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, \\bar{z}, Δz, and stellar mass m *. We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates (δσ v /σ v ) is shown to be better than 20%. We find that for GOODS at \\bar{z}=2 and with Δz = 0.5, the relative cosmic variance of galaxies with m *>1011 M sun is ~38%, while it is ~27% for GEMS and ~12% for COSMOS. For galaxies of m * ~ 1010 M sun, the relative cosmic variance is ~19% for GOODS, ~13% for GEMS, and ~6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at \\bar{z}=2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic variance is

  10. Pion and kaon valence-quark parton quasidistributions

    NASA Astrophysics Data System (ADS)

    Xu, Shu-Sheng; Chang, Lei; Roberts, Craig D.; Zong, Hong-Shi

    2018-05-01

    Algebraic Ansätze for the Poincaré-covariant Bethe-Salpeter wave functions of the pion and kaon are used to calculate their light-front wave functions, parton distribution amplitudes, parton quasidistribution amplitudes, valence parton distribution functions, and parton quasidistribution functions (PqDFs). The light-front wave functions are broad, concave functions, and the scale of flavor-symmetry violation in the kaon is roughly 15%, being set by the ratio of emergent masses in the s - and u -quark sectors. Parton quasidistribution amplitudes computed with longitudinal momentum Pz=1.75 GeV provide a semiquantitatively accurate representation of the objective parton distribution amplitude, but even with Pz=3 GeV , they cannot provide information about this amplitude's end point behavior. On the valence-quark domain, similar outcomes characterize PqDFs. In this connection, however, the ratio of kaon-to-pion u -quark PqDFs is found to provide a good approximation to the true parton distribution function ratio on 0.4 ≲x ≲0.8 , suggesting that with existing resources computations of ratios of parton quasidistributions can yield results that support empirical comparison.

  11. Systematic study of charged-pion and kaon femtoscopy in Au + Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, D.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Hartouni, E. P.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leite, M. A. L.; Leitner, E.; Lenzi, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Milov, A.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhang, C.; Zhou, S.; Zolin, L.; Zou, L.; Phenix Collaboration

    2015-09-01

    We present a systematic study of charged-pion and kaon interferometry in Au +Au collisions at √{s NN}=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.

  12. Systematic study of charged-pion and kaon femtoscopy in Au+Au collisions at √s NN = 200 GeV

    DOE PAGES

    Adare, A.

    2015-09-23

    We present a systematic study of charged pion and kaon interferometry in Au+Au collisions at √s NN=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe themore » transverse-mass dependence of the oscillations.« less

  13. Level crossing analysis of cosmic microwave background radiation: a method for detecting cosmic strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Movahed, M. Sadegh; Khosravi, Shahram, E-mail: m.s.movahed@ipm.ir, E-mail: khosravi@ipm.ir

    2011-03-01

    In this paper we study the footprint of cosmic string as the topological defects in the very early universe on the cosmic microwave background radiation. We develop the method of level crossing analysis in the context of the well-known Kaiser-Stebbins phenomenon for exploring the signature of cosmic strings. We simulate a Gaussian map by using the best fit parameter given by WMAP-7 and then superimpose cosmic strings effects on it as an incoherent and active fluctuations. In order to investigate the capability of our method to detect the cosmic strings for the various values of tension, Gμ, a simulated puremore » Gaussian map is compared with that of including cosmic strings. Based on the level crossing analysis, the superimposed cosmic string with Gμ∼>4 × 10{sup −9} in the simulated map without instrumental noise and the resolution R = 1' could be detected. In the presence of anticipated instrumental noise the lower bound increases just up to Gμ∼>5.8 × 10{sup −9}.« less

  14. Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.

    Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less

  15. Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron

    DOE PAGES

    Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.; ...

    2018-04-09

    Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less

  16. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  17. Cosmic-ray propagation and containment

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1977-01-01

    The cosmic rays are an active gaseous component of the disk of the galaxy, and their propagation and containment is a part of the general dynamics of the disk. The sources of cosmic rays are a matter of speculation. The disk is inflated by the cosmic-ray gas pressure, P, comparable to the magnetic pressure B super 2/ 8 pi, but the rate of inflation is unknown. The time spent by the individual cosmic-ray particles in the disk is inversely proportional to the cosmic-ray production rate and may be anything from 100,000 to more than 10 million years. It is evident from the decay of Be(10) that the cosmic rays circulate through a volume of space perhaps ten times the thickness of the gaseous disk, suggesting a magnetic halo extending out approximately 1 kpc from either face of the disk. The cosmic rays may be responsible for the halo by inflating the magnetic fields of the disk. Extension of the fields to 1 kpc would imply a high production rate and short life of cosmic rays in the dense gaseous disk of the galaxy.

  18. Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.

    2018-05-01

    We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.

  19. Towards extracting the timelike pion form factor on CLS twoflavour ensembles

    NASA Astrophysics Data System (ADS)

    Erben, Felix; Green, Jeremy; Mohler, Daniel; Wittig, Hartmut

    2018-03-01

    Results are presented from an ongoing study of the ρ resonance. The focus is on CLS 2-flavour ensembles generated using O(a) improved Wilson fermions with pion masses ranging from 265 to 437 MeV. The energy levels are extracted by solving the GEVP of correlator matrices, created with the distillation approach involving ρ and ππ interpolators. The study is done in the centre-of-mass frame and several moving frames. One aim of this work is to extract the timelike pion form factor after applying the Lüscher formalism. We therefore plan to integrate this study with the existing Mainz programme for the calculation of the hadronic vacuum polarization contribution to the muon g - 2.

  20. The Cosmic Connection

    Science.gov Websites

    Macy High School We have a simple cosmic ray detector that can be built by high school teachers. This cosmic rays vary with elevation. In addition, it is a valuable tool to teach elementary measurement

  1. Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework

    NASA Astrophysics Data System (ADS)

    Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.

    2017-12-01

    The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to

  2. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    NASA Astrophysics Data System (ADS)

    Tutt, J.; Anderson, C.; McKinney, G.

    Cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did not provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6. Cosmic background fluxes also scale with the solar cycle due to solar modulation. This modulation has been shown to be nearly sinusoidal over time, with an inverse effect - increased modulation leads to a decrease in cosmic fluxes. This effect was initially included with the cosmic source option in MCNP6 and has now been extended for use with the background source option when: (1) the date is specified in the background.dat file, and (2) when the user specifies a date on the source definition card. A description of the cosmic-neutron/photon date scaling feature will be presented along with scaling results for past and future date extrapolations.

  3. Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at sqrt[s_{NN}]=2.76  TeV.

    PubMed

    Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; An, M; Andrei, C; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Ball, M; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Boca, G; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonomi, G; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buitron, S A I; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cerello, P; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Costanza, S; Crkovská, J; Crochet, P; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Duggal, A K; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Esumi, S; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Garg, K; Garg, P; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Gramling, J L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grion, N; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Grull, F R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hladky, J; Horak, D; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Isakov, V; Islam, M S; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jercic, M; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Ketzer, B; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lazaridis, L; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Litichevskyi, V; Ljunggren, H M; Llope, W J; Lodato, D F; Loggins, V R; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Mathis, A M; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Negrao De Oliveira, R A; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pacik, V; Pagano, D; Pagano, P; Paić, G; Pal, S K; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Park, W J; Parmar, S; Passfeld, A; Pathak, S P; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Rokita, P S; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Rotondi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Rustamov, A; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Saha, S K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Scheid, H S; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Srivastava, B K; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thakur, S; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Tripathy, S; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Windelband, B; Witt, W E; Yalcin, S; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zimmermann, S; Zinovjev, G; Zmeskal, J

    2017-06-02

    We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of sqrt[s_{NN}]=2.76  TeV. The measurements have been performed in the centrality range 0%-50% and for pion pair transverse momenta 0.2pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via R_{side} oscillations, is found to be significantly smaller than the initial-state source eccentricity, but remains positive-indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The 3+1D hydrodynamic calculations are in qualitative agreement with observed centrality and transverse momentum R_{side} oscillations, but systematically underestimate the oscillation magnitude.

  4. Coherent neutrinoproduction of photons and pions in a chiral effective field theory for nuclei

    NASA Astrophysics Data System (ADS)

    Zhang, Xilin; Serot, Brian D.

    2012-09-01

    Background: The neutrinoproduction of photons and pions from nucleons and nuclei is relevant to the background analysis in neutrino-oscillation experiments [for example, the MiniBooNE; MiniBooNE Collaboration, A. A. Aquilar-Arevalo , Phys. Rev. Lett.0031-900710.1103/PhysRevLett.100.032301 100, 032301 (2008)]. The production from nucleons and incoherent production with Eν⩽0.5GeV have been studied in B. D. Serot and X. Zhang, Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.86.015501 86, 015501 (2012); and X. Zhang and B. D. Serot, Phys. Rev. C1110-865710.1103/PhysRevC.86.035502 86, 035502 (2012).Purpose: Study coherent productions with Eν⩽0.5GeV. Also address the contributions of two contact terms in neutral current (NC) photon production that are partially related to the proposed anomalous ω(ρ), Z boson, and photon interactions.Methods: We work in the framework of a Lorentz-covariant effective field theory (EFT), which contains nucleons, pions, the Δ (1232) (Δs), isoscalar scalar (σ) and vector (ω) fields, and isovector vector (ρ) fields, and incorporates a nonlinear realization of (approximate) SU(2)L⊗SU(2)R chiral symmetry. A revised version of the so-called “optimal approximation” is applied, where one-nucleon interaction amplitude is factorized out and the medium-modifications and pion wave function distortion are included. The calculation is tested against the coherent pion photoproduction data.Results: The computation shows an agreement with the pion photoproduction data, although precisely determining the Δ modification is entangled with one mentioned contact term. The uncertainty in the Δ modification leads to uncertainties in both pion and photon neutrinoproductions. In addition, the contact term plays a significant role in NC photon production.Conclusions: First, the contact term increases NC photon production by ˜10% assuming a reasonable range of the contact coupling, which however seems not significant enough to explain the Mini

  5. Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2

    PubMed Central

    Yue, Xinan; Schreiner, William S; Pedatella, Nicholas; Anthes, Richard A; Mannucci, Anthony J; Straus, Paul R; Liu, Jann-Yenq

    2014-01-01

    The joint Taiwan-United States FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission, hereafter called COSMIC, is the first satellite constellation dedicated to remotely sense Earth's atmosphere and ionosphere using a technique called Global Positioning System (GPS) radio occultation (RO). The occultations yield abundant information about neutral atmospheric temperature and moisture as well as space weather estimates of slant total electron content, electron density profiles, and an amplitude scintillation index, S4. With the success of COSMIC, the United States and Taiwan are moving forward with a follow-on RO mission named FORMOSAT-7/COSMIC-2 (COSMIC-2), which will ultimately place 12 satellites in orbit with two launches in 2016 and 2019. COSMIC-2 satellites will carry an advanced Global Navigation Satellite System (GNSS) RO receiver that will track both GPS and Russian Global Navigation Satellite System signals, with capability for eventually tracking other GNSS signals from the Chinese BeiDou and European Galileo system, as well as secondary space weather payloads to measure low-latitude plasma drifts and scintillation at multiple frequencies. COSMIC-2 will provide 4–6 times (10–15X in the low latitudes) the number of atmospheric and ionospheric observations that were tracked with COSMIC and will also improve the quality of the observations. In this article we focus on COSMIC/COSMIC-2 measurements of key ionospheric parameters. PMID:26213514

  6. Space Weather Observations by GNSS Radio Occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2.

    PubMed

    Yue, Xinan; Schreiner, William S; Pedatella, Nicholas; Anthes, Richard A; Mannucci, Anthony J; Straus, Paul R; Liu, Jann-Yenq

    2014-11-01

    The joint Taiwan-United States FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) mission, hereafter called COSMIC, is the first satellite constellation dedicated to remotely sense Earth's atmosphere and ionosphere using a technique called Global Positioning System (GPS) radio occultation (RO). The occultations yield abundant information about neutral atmospheric temperature and moisture as well as space weather estimates of slant total electron content, electron density profiles, and an amplitude scintillation index, S4. With the success of COSMIC, the United States and Taiwan are moving forward with a follow-on RO mission named FORMOSAT-7/COSMIC-2 (COSMIC-2), which will ultimately place 12 satellites in orbit with two launches in 2016 and 2019. COSMIC-2 satellites will carry an advanced Global Navigation Satellite System (GNSS) RO receiver that will track both GPS and Russian Global Navigation Satellite System signals, with capability for eventually tracking other GNSS signals from the Chinese BeiDou and European Galileo system, as well as secondary space weather payloads to measure low-latitude plasma drifts and scintillation at multiple frequencies. COSMIC-2 will provide 4-6 times (10-15X in the low latitudes) the number of atmospheric and ionospheric observations that were tracked with COSMIC and will also improve the quality of the observations. In this article we focus on COSMIC/COSMIC-2 measurements of key ionospheric parameters.

  7. Midrapidity Neutral-Pion Production in Proton-Proton Collisions at √(s)=200 GeV

    NASA Astrophysics Data System (ADS)

    Adler, S. S.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Alexander, J.; Amirikas, R.; Aphecetche, L.; Aronson, S. H.; Averbeck, R.; Awes, T. C.; Azmoun, R.; Babintsev, V.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V.; Bazilevsky, A.; Belikov, S.; Berdnikov, Y.; Bhagavatula, S.; Boissevain, J. G.; Borel, H.; Borenstein, S.; Brooks, M. L.; Brown, D. S.; Bruner, N.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J. M.; Butsyk, S.; Camard, X.; Chai, J.-S.; Chand, P.; Chang, W. C.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J.; Choudhury, R. K.; Chujo, T.; Cianciolo, V.; Cobigo, Y.; Cole, B. A.; Constantin, P.; D'Enterria, D. G.; David, G.; Delagrange, H.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Drapier, O.; Drees, A.; Drees, K. A.; Du Rietz, R.; Durum, A.; Dutta, D.; Efremenko, Y. V.; El Chenawi, K.; Enokizono, A.; En'yo, H.; Esumi, S.; Ewell, L.; Fields, D. E.; Fleuret, F.; Fokin, S. L.; Fox, B. D.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fung, S.-Y.; Garpman, S.; Ghosh, T. K.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Guryn, W.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hamagaki, H.; Hansen, A. G.; Hartouni, E. P.; Harvey, M.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Heuser, J. M.; Hibino, M.; Hill, J. C.; Holzmann, W.; Homma, K.; Hong, B.; Hoover, A.; Ichihara, T.; Ikonnikov, V. V.; Imai, K.; Isenhower, D.; Ishihara, M.; Issah, M.; Isupov, A.; Jacak, B. V.; Jang, W. Y.; Jeong, Y.; Jia, J.; Jinnouchi, O.; Johnson, B. M.; Johnson, S. C.; Joo, K. S.; Jouan, D.; Kametani, S.; Kamihara, N.; Kang, J. H.; Kapoor, S. S.; Katou, K.; Kelly, S.; Khachaturov, B.; Khanzadeev, A.; Kikuchi, J.; Kim, D. H.; Kim, D. J.; Kim, D. W.; Kim, E.; Kim, G.-B.; Kim, H. J.; Kistenev, E.; Kiyomichi, A.; Kiyoyama, K.; Klein-Boesing, C.; Kobayashi, H.; Kochenda, L.; Kochetkov, V.; Koehler, D.; Kohama, T.; Kopytine, M.; Kotchetkov, D.; Kozlov, A.; Kroon, P. J.; Kuberg, C. H.; Kurita, K.; Kuroki, Y.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Ladygin, V.; Lajoie, J. G.; Lebedev, A.; Leckey, S.; Lee, D. M.; Lee, S.; Leitch, M. J.; Li, X. H.; Lim, H.; Litvinenko, A.; Liu, M. X.; Liu, Y.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Manko, V. I.; Mao, Y.; Martinez, G.; Marx, M. D.; Masui, H.; Matathias, F.; Matsumoto, T.; McGaughey, P. L.; Melnikov, E.; Messer, F.; Miake, Y.; Milan, J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mischke, R. E.; Mishra, G. C.; Mitchell, J. T.; Mohanty, A. K.; Morrison, D. P.; Moss, J. M.; Mühlbacher, F.; Mukhopadhyay, D.; Muniruzzaman, M.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Nakamura, T.; Nandi, B. K.; Nara, M.; Newby, J.; Nilsson, P.; Nyanin, A. S.; Nystrand, J.; O'Brien, E.; Ogilvie, C. A.; Ohnishi, H.; Ojha, I. D.; Okada, K.; Ono, M.; Onuchin, V.; Oskarsson, A.; Otterlund, I.; Oyama, K.; Ozawa, K.; Pal, D.; Palounek, A. P.; Pantuev, V. S.; Papavassiliou, V.; Park, J.; Parmar, A.; Pate, S. F.; Peitzmann, T.; Peng, J.-C.; Peresedov, V.; Pinkenburg, C.; Pisani, R. P.; Plasil, F.; Purschke, M. L.; Purwar, A. K.; Rak, J.; Ravinovich, I.; Read, K. F.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Roche, G.; Romana, A.; Rosati, M.; Rosnet, P.; Ryu, S. S.; Sadler, M. E.; Saito, N.; Sakaguchi, T.; Sakai, M.; Sakai, S.; Samsonov, V.; Sanfratello, L.; Santo, R.; Sato, H. D.; Sato, S.; Sawada, S.; Schutz, Y.; Semenov, V.; Seto, R.; Shaw, M. R.; Shea, T. K.; Shibata, T.-A.; Shigaki, K.; Shiina, T.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, C. P.; Singh, V.; Sivertz, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sullivan, J. P.; Takagui, E. M.; Taketani, A.; Tamai, M.; Tanaka, K. H.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarján, P.; Tepe, J. D.; Thomas, T. L.; Tojo, J.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuruoka, H.; Tuli, S. K.; Tydesjö, H.; Tyurin, N.; van Hecke, H. W.; Velkovska, J.; Velkovsky, M.; Villatte, L.; Vinogradov, A. A.; Volkov, M. A.; Vznuzdaev, E.; Wang, X. R.; Watanabe, Y.; White, S. N.; Wohn, F. K.; Woody, C. L.; Xie, W.; Yang, Y.; Yanovich, A.; Yokkaichi, S.; Young, G. R.; Yushmanov, I. E.; Zajc, W. A.; Zhang, C.; Zhou, S.; Zolin, L.

    2003-12-01

    The invariant differential cross section for inclusive neutral-pion production in p+p collisions at √(s)=200 GeV has been measured at midrapidity (|η|<0.35) over the range 1pion fragmentation functions.

  8. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale

    2017-12-22

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the “end” of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform “cosmic ray astronomy”, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  9. Using baryon octet magnetic moments and masses to fix the pion cloud contribution

    DOE PAGES

    Franz L. Gross; Ramalho, Gilberto T. F.; Tsushima, Kazuo

    2010-05-12

    In this study, using SU(3) symmetry to constrain themore » $$\\pi BB'$$ couplings, assuming SU(3) breaking comes only from one-loop pion cloud contributions, and using the the covariant spectator theory to describe the photon coupling to the quark core, we show how the experimental masses and magnetic moments of the baryon octet can be used to set a model independent constraint on the strength of the pion cloud contributions to the octet, and hence the nucleon, form factors at $Q^2=0$.« less

  10. Cosmic Ray Induced Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Overholt, Andrew

    2011-11-01

    After cancer studies performed on flight crews during the 1970s, it was found that cosmic rays produce a signficant flux of thermal neutrons at airplane altitudes. In the case of high energy cosmic rays these biologically threatening neutrons are increased at ground level. Our work models the flux of neutrons produced by high energy cosmic rays, exploring the possibility of biological impact due to extended periods of increase high energy cosmic ray flux.

  11. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    NASA Technical Reports Server (NTRS)

    Caldwell, R. R.; Gates, Evalyn

    1993-01-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and mu, the cosmic string mass-per-unit length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and mu is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict mu, and therefore limit the viability of the cosmic string large-scale structure scenario.

  12. D-term inflation, cosmic strings, and consistency with cosmic microwave background measurements.

    PubMed

    Rocher, Jonathan; Sakellariadou, Mairi

    2005-01-14

    Standard D-term inflation is studied in the framework of supergravity. D-term inflation produces cosmic strings; however, it can still be compatible with cosmic microwave background (CMB) measurements without invoking any new physics. The cosmic strings contribution to the CMB data is not constant, nor dominant, contrary to some previous results. Using current CMB measurements, the free parameters (gauge and superpotential couplings, as well as the Fayet-Iliopoulos term) of D-term inflation are constrained.

  13. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    DOE PAGES

    Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter

    2017-10-26

    Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less

  14. Background-Source Cosmic-Photon Elevation Scaling and Cosmic-Neutron/Photon Date Scaling in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tutt, James Robert; Anderson, Casey Alan; McKinney, Gregg Walter

    Here, cosmic neutron and photon fluxes are known to scale exponentially with elevation. Consequently, cosmic neutron elevation scaling was implemented for use with the background-source option shortly after its introduction into MCNP6, whereby the neutron flux weight factor was adjusted by the elevation scaling factor when the user-specified elevation differed from the selected background.dat grid-point elevation. At the same time, an elevation scaling factor was suggested for the cosmic photon flux, however, cosmic photon elevation scaling is complicated by the fact that the photon background consists of two components: cosmic and terrestrial. Previous versions of the background.dat file did notmore » provide any way to separate these components. With Rel. 4 of this file in 2015, two new columns were added that provide the energy grid and differential cosmic photon flux separately from the total photon flux. Here we show that the cosmic photon flux component can now be scaled independently and combined with the terrestrial component to form the total photon flux at a user-specified elevation in MCNP6.« less

  15. Charged-pion cross sections and double-helicity asymmetries in polarized p +p collisions at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Ta'Ani, H.; Alexander, J.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dairaku, S.; Datta, A.; David, G.; Dayananda, M. K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gal, C.; Garishvili, I.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Hanks, J.; Harper, C.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanischev, D.; Iwanaga, Y.; Jacak, B. V.; Jia, J.; Jiang, X.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, D. J.; Kim, E.-J.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kleinjan, D.; Kline, P.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mitchell, J. T.; Miyachi, Y.; Mohanty, A. K.; Moon, H. J.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Nihashi, M.; Nouicer, R.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Ogilvie, C. A.; Oka, M.; Okada, K.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Riabov, V.; Riabov, Y.; Richardson, E.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosendahl, S. S. E.; Rubin, J. G.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, T.; Savastio, M.; Sawada, S.; Sedgwick, K.; Seidl, R.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Sodre, T.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Togawa, M.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Yamaguchi, Y. L.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. S.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2015-02-01

    We present midrapidity charged-pion invariant cross sections, the ratio of the π- to π+ cross sections and the charge-separated double-spin asymmetries in polarized p +p collisions at √{s }=200 GeV . While the cross section measurements are consistent within the errors of next-to-leading-order (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations overestimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor-dependent pion fragmentation functions. The charge-separated pion asymmetries presented here sample an x range of ˜0.03 - 0.16 and provide unique information on the sign of the gluon-helicity distribution.

  16. Quark degrees of freedom in the production of soft pion jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okorokov, V. A., E-mail: VAOkorokov@mephi.ru, E-mail: Okorokov@bnl.gov

    2015-05-15

    Experimental results obtained by studying the properties of soft jets in the 4-velocity space at √s ∼ 2 to 20 GeV are presented. The changes in the mean distance from the jet axis to the jet particles, the mean kinetic energy of these particles, and the cluster dimension in response to the growth of the collision energy are consistent with the assumption that quark degrees of freedom manifest themselves in processes of pion-jet production at intermediate energies. The energy at which quark degrees of freedom begin to manifest themselves experimentally in the production of soft pion jets is estimated formore » the first time. The estimated value of this energy is 2.8 ± 0.6 GeV.« less

  17. Multiple parton interactions and forward double pion production in pp and dA scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strikman, M.; Vogelsang, W.

    2011-02-01

    We estimate the contributions by double-parton interactions to the cross sections for pp{yields}{pi}{sup 0}{pi}{sup 0}X and dA{yields}{pi}{sup 0}{pi}{sup 0}X at the Relativistic Heavy Ion Collider (RHIC). We find that such contributions become important at large forward rapidities of the produced pions. This is, in particular, the case for dA scattering, where they strongly enhance the azimuthal-angular independent pedestal component of the cross section, providing a natural explanation of this feature of the RHIC dA data. We argue that the discussed processes open a window to studies of double quark distributions in nucleons. We also briefly address the roles of shadowingmore » and energy loss in dA scattering, which we show to affect the double-inclusive pion cross section much more strongly than the single-inclusive one. We discuss the implications of our results for the interpretation of pion azimuthal correlations.« less

  18. LArIAT: Worlds First Pion-Argon Cross-Section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Pip

    2016-11-02

    The LArIAT experiment has performed the world's first measurement of the total charged-current pion cross-section on an argon target, using the repurposed ArgoNeuT detector in the Fermilab test beam. Presented here are the results of that measurement, along with an overview of the LArIAT experiment and details of the LArIAT collaboration's plans for future measurements.

  19. Deepening Cosmic Education

    ERIC Educational Resources Information Center

    Leonard, Gerard

    2013-01-01

    This article is a special blend of research, theory, and practice, with clear insight into the origins of Cosmic Education and cosmic task, while recalling memories of student explorations in botany, in particular, episodes from Mr. Leonard's teaching. Mr. Leonard speaks of a storytelling curriculum that eloquently puts perspective into dimensions…

  20. Charged-pion cross sections and double-helicity asymmetries in polarized p + p collisions at √s = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    2015-02-02

    We present midrapidity charged-pion invariant cross sections, the ratio of the π⁻ to π⁺ cross sections and the charge-separated double-spin asymmetries in polarized p+p collisions at √s = 200 GeV. While the cross section measurements are consistent within the errors of next-to-leadingorder (NLO) perturbative quantum chromodynamics predictions (pQCD), the same calculations over estimate the ratio of the charged-pion cross sections. This discrepancy arises from the cancellation of the substantial systematic errors associated with the NLO-pQCD predictions in the ratio and highlights the constraints these data will place on flavor dependent pion fragmentation functions. Thus, the charge-separated pion asymmetries presented heremore » sample an x range of ~0.03–0.16 and provide unique information on the sign of the gluon-helicity distribution.« less

  1. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  2. Cosmic strings and ultra-high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani

    1989-01-01

    The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.

  3. Robust constraint on cosmic textures from the cosmic microwave background.

    PubMed

    Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V

    2012-06-15

    Fluctuations in the cosmic microwave background (CMB) contain information which has been pivotal in establishing the current cosmological model. These data can also be used to test well-motivated additions to this model, such as cosmic textures. Textures are a type of topological defect that can be produced during a cosmological phase transition in the early Universe, and which leave characteristic hot and cold spots in the CMB. We apply bayesian methods to carry out a rigorous test of the texture hypothesis, using full-sky data from the Wilkinson Microwave Anisotropy Probe. We conclude that current data do not warrant augmenting the standard cosmological model with textures. We rule out at 95% confidence models that predict more than 6 detectable cosmic textures on the full sky.

  4. The microphysics and macrophysics of cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmicmore » rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.« less

  5. The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, J.; Rosolem, R.; Zreda, M.; Franz, T.

    2013-08-01

    Soil moisture status in land surface models (LSMs) can be updated by assimilating cosmic-ray neutron intensity measured in air above the surface. This requires a fast and accurate model to calculate the neutron intensity from the profiles of soil moisture modeled by the LSM. The existing Monte Carlo N-Particle eXtended (MCNPX) model is sufficiently accurate but too slow to be practical in the context of data assimilation. Consequently an alternative and efficient model is needed which can be calibrated accurately to reproduce the calculations made by MCNPX and used to substitute for MCNPX during data assimilation. This paper describes the construction and calibration of such a model, COsmic-ray Soil Moisture Interaction Code (COSMIC), which is simple, physically based and analytic, and which, because it runs at least 50 000 times faster than MCNPX, is appropriate in data assimilation applications. The model includes simple descriptions of (a) degradation of the incoming high-energy neutron flux with soil depth, (b) creation of fast neutrons at each depth in the soil, and (c) scattering of the resulting fast neutrons before they reach the soil surface, all of which processes may have parameterized dependency on the chemistry and moisture content of the soil. The site-to-site variability in the parameters used in COSMIC is explored for 42 sample sites in the COsmic-ray Soil Moisture Observing System (COSMOS), and the comparative performance of COSMIC relative to MCNPX when applied to represent interactions between cosmic-ray neutrons and moist soil is explored. At an example site in Arizona, fast-neutron counts calculated by COSMIC from the average soil moisture profile given by an independent network of point measurements in the COSMOS probe footprint are similar to the fast-neutron intensity measured by the COSMOS probe. It was demonstrated that, when used within a data assimilation framework to assimilate COSMOS probe counts into the Noah land surface model at the

  6. Cosmic rays: a review for astrobiologists.

    PubMed

    Ferrari, Franco; Szuszkiewicz, Ewa

    2009-05-01

    Cosmic rays represent one of the most fascinating research themes in modern astronomy and physics. Significant progress is being made toward an understanding of the astrophysics of the sources of cosmic rays and the physics of interactions in the ultrahigh-energy range. This is possible because several new experiments in these areas have been initiated. Cosmic rays may hold answers to a great number of fundamental questions, but they also shape our natural habitat and influence the radiation environment of our planet Earth. The importance of the study of cosmic rays has been acknowledged in many fields, including space weather science and astrobiology. Here, we concentrate on the astrobiological aspects of cosmic rays with regard to the enormous amount of new data available, some of which may, in fact, improve our knowledge about the radiation of cosmic origin on Earth. We focus on fluxes arriving at Earth and doses received, and will guide the reader through the wealth of scientific literature on cosmic rays. We have prepared a concise and self-contained source of data and recipes useful for performing interdisciplinary research in cosmic rays and their effects on life on Earth.

  7. The Cosmic Connection

    Science.gov Websites

    The Nuclear Science Division has produced a 25 minute video called The Cosmic Connection. The narrator and author is Tim Middleton, a teacher from Austin, Texas. This video describes cosmic rays and and Mount Diablo are shown. The video is suitable for grades 6 - 12. It can be found at http

  8. AGN jets as pion factories

    NASA Astrophysics Data System (ADS)

    Mannheim, Karl

    There has been a dramatic revolution in gamma-ray astronomy throughout the last few years. Beginning with the discovery made by the spark chamber EGRET on board the Compton Gamma Ray Observatory that AGN with jets are the most powerful quasi-steady gamma-ray sources in the Universe, air-Cerenkov telescopes have soon after succeeded in detecting gamma-rays up to TeV energies. In the last year, it has become clear that these AGN emit photons even up to 10 TeV and more. This is a strong indication for proton acceleration going on in them, since protons owing to their large mass suffer weaker energy losses than electrons and can thus reach higher energies. Nucleons escaping from the AGN jets contribute to the local flux of cosmic rays at highest energies. If AGN produce the diffuse gamma-ray background, they would also be able to produce all the cosmic rays above the ankle in the local spectrum. The majority of AGN resides at large distances, indicated by their cosmological redshifts, and can therefore not be seen through the fog of electron-positron pairs which they produce interacting with diffuse infrared radiation from the era of galaxy formation. To observe the cosmic accelerators at large redshifts, neutrino observations are required. It is important to understand the astrophysical neutrino sources in order to be able to recognize signatures of new physics, e.g. due to decaying or annihilating particles from the early phases of the Universe.

  9. COSMIC program documentation experience

    NASA Technical Reports Server (NTRS)

    Kalar, M. C.

    1970-01-01

    A brief history of COSMIC as it relates to the handling of program documentation is summarized; the items that are essential for computer program documentation are also discussed. COSMIC documentation and program standards handbook is appended.

  10. Studying the Puzzle of the Pion Nucleon Sigma Term

    NASA Astrophysics Data System (ADS)

    Kane, Christopher; Lin, Huey-Wen

    2017-09-01

    The pion nucleon sigma term (σπN) is a fundamental parameter of QCD and is integral in the experimental search for dark matter particles as it is used to calculate the cross section of interactions between potential dark matter candidates and nucleons. Recent calculations of this term from lattice-QCD data disagree with calculations done using phenomenological data. This disparity is large enough to cause concern in the dark matter community as it would change the constraints on their experiments. We investigate one potential source of this disparity by studying the flavor dependence on LQCD data used to calculate σπN. To calculate σπN, we study the nucleon mass dependence on the pion mass and implement the Hellmann-Feynman Theorem. Previous calculations only consider LQCD data that accounted for 2 and 3 of the lightest quarks in the quark sea. We extend this study by using new high statistic data that considers 2, 3, and 4 quarks in the quark sea to see if the exclusion of the heavier quarks can account for this disparity. National Science Foundation.

  11. Cosmic ray interactions in the ground: Temporal variations in cosmic ray intensities and geophysical studies

    NASA Technical Reports Server (NTRS)

    Lal, D.

    1986-01-01

    Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.

  12. Cosmic Dawn Science Interest Group

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Cosmic Origins Program Analysis Group

    2016-01-01

    Cosmic Dawn was identified as one of the three science objectives for this decade in the _New Worlds, New Horizons_ Decadal report, and it will likely continue to be a research focus well into the next decade. Cosmic Dawn refers to the interval during which the Universe transitioned from a nearly completely neutral state back to a nearly fully ionized state and includes the time during which the first stars formed and the first galaxies assembled.The Cosmic Dawn Science Interest Group (SIG) was formed recently under the auspices of the Cosmic Origins Program Analysis Group (COPAG). The Cosmic Dawn SIG focusses on the science cases, observations, and technology development needed to address the "great mystery" of Cosmic Origins. The reach of this SIG is broad, involving the nature of the first stars and the detectability of gamma-ray bursts at high redshifts, the extent to which the first galaxies and first supermassive black holes grew together, and the technology required to pursue these questions.For further information, consult the Cosmic Dawn SIG Web site http://cd-sig.jpl.nasa.gov/ and join the mailing list (by contacting the author).Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  13. Acoustic instability driven by cosmic-ray streaming

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-01-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic

  14. Charged pions tagged with polarized photons probing strong C P violation in a chiral-imbalance medium

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Mamiya; Harada, Masayasu; Matsuzaki, Shinya; Ouyang, Ruiwen

    2017-06-01

    It is expected that in a hot QCD system, a local parity-odd domain can be produced due to nonzero chirality, which is induced from the difference of winding numbers carried by the gluon topological configuration (QCD sphaleron). This local domain is called the chiral-imbalance medium, characterized by nonzero chiral chemical potential, which can be interpreted as the time variation of the strong C P phase. We find that the chiral chemical potential generates the parity breaking term in the electromagnetic form factor of charged pions. Heavy ion collision experiments could observe the phenomenological consequence of this parity-odd form factor through the elastic scattering of a pion and a photon in the medium. Then we quantify the asymmetry rate of the parity violation by measuring the polarization of the photon associated with the pion, and discuss how it could be measured in a definite laboratory frame. We roughly estimate the typical size of the asymmetry, just by picking up the pion resonant process, and find that the signal can be sufficiently larger than possible background events from parity-breaking electroweak process. Our findings might provide a novel possibility to make a manifest detection for the remnant of the strong C P violation.

  15. System-size and beam energy dependence of the space-time extent of the pion emission source

    NASA Astrophysics Data System (ADS)

    Pak, Robert; Phenix Collaboration

    2014-09-01

    Two-pion interferometry measurements are used to extract the Gaussian source radii Rout ,Rside and Rlong , of the pion emission sources produced in d + Au, Cu +Cu and Au +Au collisions for several beam collision energies at PHENIX experiment. The extracted radii, which are compared to recent STAR and ALICE data, show characteristic scaling patterns as a function of the initial transverse geometric size of the collision system, and the transverse mass of the emitted pion pairs. These scaling patterns indicate a linear dependence of Rside on the initial transverse size, as well as a smaller freeze-out size for the d + Au system. Mathematical combinations of the extracted radii generally associated with the emission source duration and expansion rate exhibit non-monotonic behavior, suggesting a change in the expansion dynamics over this beam energy range.

  16. Cosmic ray transport in astrophysical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, themore » heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.« less

  17. Search for Cosmic-Ray-Induced Gamma-Ray Emission in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; hide

    2014-01-01

    Current theories predict relativistic hadronic particle populations in clusters of galaxies in addition to the already observed relativistic leptons. In these scenarios hadronic interactions give rise to neutral pions which decay into gamma rays that are potentially observable with the Large Area Telescope (LAT) on board the Fermi space telescope. We present a joint likelihood analysis searching for spatially extended gamma-ray emission at the locations of 50 galaxy clusters in four years of Fermi-LAT data under the assumption of the universal cosmic-ray (CR) model proposed by Pinzke & Pfrommer. We find an excess at a significance of 2.7 delta, which upon closer inspection, however, is correlated to individual excess emission toward three galaxy clusters: A400, A1367, and A3112. We discuss these cases in detail and conservatively attribute the emission to unmodeled background systems (for example, radio galaxies within the clusters).Through the combined analysis of 50 clusters, we exclude hadronic injection efficiencies in simple hadronic models above 21% and establish limits on the CR to thermal pressure ratio within the virial radius, R(sub 200), to be below 1.25%-1.4% depending on the morphological classification. In addition, we derive new limits on the gamma-ray flux from individual clusters in our sample.

  18. Charged pion spectra in proton—carbon interactions at 31 GeV/c

    NASA Astrophysics Data System (ADS)

    Zofia Posiadała, Magdalena; NA61/SHINE Collaboration

    2013-02-01

    The NA61/SHINE experiment at CERN SPS measured charged pion spectra in p+C interactions at 31 GeV/c. These measurements are necessary to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. Presented analysis was based on the data collected during the first NA61/SHINE run in 2007 with an isotropic graphite target with a thickness of 4% of nuclear interaction length. Three different methods which were used in order to obtain π+ and π- spectra are introduced. Differential cross sections for negatively and positively charged pions are presented as a function of laboratory momentum in ten intervals of the laboratory polar angle up to 420 mrad.

  19. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  20. Fitting cosmic microwave background data with cosmic strings and inflation.

    PubMed

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2008-01-18

    We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).

  1. Implications of the pion-decay gamma emission and neutron observations with CORONAS-F/SONG

    NASA Astrophysics Data System (ADS)

    Kurt, V.; Yushkov, B.; Kudela, K.

    2013-05-01

    We analyzed the high-energy gamma and neutron emissions observed by the SONG instrument onboard the CORONAS-F satellite during August 25, 2001, October 28, 2003, November 4, 2003, and January 20, 2005 solar flares. These flares produced neutrons and/or protons recorded near Earth. The SONG response was consistent with detection of the pion-decay gamma emission and neutrons in these events. We compared time profiles of various electromagnetic emissions and showed that the maximum of the pion-decay-emission coincided in time best of all with the soft X-ray derivative, dISXR/dt, maximum. We evaluated the energy of accelerated ions and compared it with the energy deposited by accelerated electrons. The ion energy becomes comparable or even higher than the electron energy from a certain step of flare development. So the time profile of dISXR/dt is a superposition of energy deposited by both fractions of accelerated particles. This result allowed us to use a time profile of dISXR/dt as a real proxy of time behavior of the energy release at least during major flare analysis. In particular the time interval when the dISXR/dt value exceeds 0.9 of its maximum can be used as a unified reference point for the calculations of time delay between the high-energy proton acceleration and GLE onset. Analysis of the total set of pion-decay emission observations shows that such temporal closeness of pion-decay emission maximum and the soft X-ray derivative maximum is typical but not obligatory.

  2. Cosmic superstrings: Observable remnants of brane inflation

    NASA Astrophysics Data System (ADS)

    Wyman, Mark Charles

    Brane inflation provides a natural dynamical model for the physics which underlie the inflationary paradigm. Besides their inflationary predictions, brane models imply another observable consequence: cosmic strings. In this dissertation I outline the background of how cosmic strings arise in brane inflationary models and how the properties of the strings and the models are mutually tied (Chapter 2). I then use cosmological observations to put limits on the properties of any actually-existing cosmic string network (Chapter 3). Next, I study the question of how cosmic superstrings, as the cosmic strings arising from string theory are known, could be distinct from classical gauge- theory cosmic strings. In particular, I propose an analytical model for the cosmological evolution of a network of binding cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the background for the numerical study of a gauge theory model for the dynamics of cosmic superstring binding (Chapter 6).

  3. Key scientific problems from Cosmic Ray History

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    -1911, before CR were discovered). 8. Moreover, in the 1930s it was shown by investigations of West-East CR asymmetry that the largest part of primary CR must be positive energetic particles. Later, in the 1940s - 1950s, it was established by direct measurements at high altitudes on balloons and rockets that the most part of cosmic rays are energetic protons, about 10% He nuclei, 1% more heavy nuclei, 1% energetic electrons, and only about 1% energetic gamma rays. Nevertheless, the name 'cosmic rays' (for short, CR) continues to be used up to now (sometimes they are called astroparticles). 9. The importance of CR for fundamental science was understood in the 1930s - 1950s, when has been discovered the first antiparticle predicted by the Quantum Electrodynamics - positron (in 1932), and then muons (1937), pions, K+, K0 mesons (in 1947), Λ0, Ξ-, Σ+ hyperons (accordingly in 1951, 1952, 1953). Cosmic rays became considered as very important natural source of high and very high energies. 10. In 1940s-1950s formatted also geophysical and astrophysical aspects of CR research. In 1936, the Nobel Prize in Physics received Victor Hess for CR discovery and Charles Anderson for discovery of positrons in CR. Later, many other great scientists in CR research received Nobel Prizes.

  4. Depth dose and off-axis characteristics of TLD in therapeutic pion beams.

    PubMed

    Hogstrom, K R; Irifune, T

    1980-07-01

    The thermoluminescent (TL) response of LiF (TLD-100, TLD-600, TLD-700) and Li2B4O7 (TLD-800) has been measured as a function of depth and off-axis position in a therapeutic negative-pion beam in order to evaluate their usefulness in pion radiotherapy. TLD-100, TLD-600, and TLD-800 have been shown to be of little use as in vivo dosemeters because the neutron kerma relative to that in tissue changes grossly with depth. The neutron source comes primarily from pion absorption in the lead-alloy collimator. The 200 degrees C TLD-700 response agrees well with the depth dose spectra, except for small changes due to the varying linear energy transfer (LET) distributions. This variation can be partially accounted for by incorporating the known LET response of LiF. The 260 degrees C peak of TLD-700 has been found to be approximately four times more sensitive than the 200 degrees C peak to high LET dose. Using a simple model of the LET responses, the measured 200 degrees C and 260 degrees C peaks predict total dose within +/- 4% and high LET dose within +/- 50%, therefore indicating TLD-700 to be a good in vivo dosemeter for total dose but only an indicator of high LET dose.

  5. Impact of Cosmic-Ray Transport on Galactic Winds

    NASA Astrophysics Data System (ADS)

    Farber, R.; Ruszkowski, M.; Yang, H.-Y. K.; Zweibel, E. G.

    2018-04-01

    The role of cosmic rays generated by supernovae and young stars has very recently begun to receive significant attention in studies of galaxy formation and evolution due to the realization that cosmic rays can efficiently accelerate galactic winds. Microscopic cosmic-ray transport processes are fundamental for determining the efficiency of cosmic-ray wind driving. Previous studies modeled cosmic-ray transport either via a constant diffusion coefficient or via streaming proportional to the Alfvén speed. However, in predominantly cold, neutral gas, cosmic rays can propagate faster than in the ionized medium, and the effective transport can be substantially larger; i.e., cosmic rays can decouple from the gas. We perform three-dimensional magnetohydrodynamical simulations of patches of galactic disks including the effects of cosmic rays. Our simulations include the decoupling of cosmic rays in the cold, neutral interstellar medium. We find that, compared to the ordinary diffusive cosmic-ray transport case, accounting for the decoupling leads to significantly different wind properties, such as the gas density and temperature, significantly broader spatial distribution of cosmic rays, and higher wind speed. These results have implications for X-ray, γ-ray, and radio emission, and for the magnetization and pollution of the circumgalactic medium by cosmic rays.

  6. Cosmic Topology

    NASA Astrophysics Data System (ADS)

    Luminet, Jean-Pierre

    2015-08-01

    Cosmic Topology is the name given to the study of the overall shape of the universe, which involves both global topological features and more local geometrical properties such as curvature. Whether space is finite or infinite, simply-connected or multi-connected like a torus, smaller or greater than the portion of the universe that we can directly observe, are questions that refer to topology rather than curvature. A striking feature of some relativistic, multi-connected "small" universe models is to create multiples images of faraway cosmic sources. While the most recent cosmological data fit the simplest model of a zero-curvature, infinite space model, they are also consistent with compact topologies of the three homogeneous and isotropic geometries of constant curvature, such as, for instance, the spherical Poincaré Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. After a "dark age" period, the field of Cosmic Topology has recently become one of the major concerns in cosmology, not only for theorists but also for observational astronomers, leaving open a number of unsolved issues.

  7. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  8. Maria Montessori's Cosmic Vision, Cosmic Plan, and Cosmic Education

    ERIC Educational Resources Information Center

    Grazzini, Camillo

    2013-01-01

    This classic position of the breadth of Cosmic Education begins with a way of seeing the human's interaction with the world, continues on to the grandeur in scale of time and space of that vision, then brings the interdependency of life where each growing human becomes a participating adult. Mr. Grazzini confronts the laws of human nature in…

  9. A model for pion-pion scattering in large- N QCD

    NASA Astrophysics Data System (ADS)

    Veneziano, G.; Yankielowicz, S.; Onofri, E.

    2017-04-01

    Following up on recent work by Caron-Huot et al. we consider a generalization of the old Lovelace-Shapiro model as a toy model for ππ scattering satisfying (most of) the properties expected to hold in ('t Hooft's) large- N limit of massless QCD. In particular, the model has asymptotically linear and parallel Regge trajectories at positive t, a positive leading Regge intercept α 0 < 1, and an effective bending of the trajectories in the negative- t region producing a fixed branch point at J = 0 for t < t 0 < 0. Fixed (physical) angle scattering can be tuned to match the power-like behavior (including logarithmic corrections) predicted by perturbative QCD: A( s, t) ˜ s - β log( s)-γ F ( θ). Tree-level unitarity (i.e. positivity of residues for all values of s and J ) imposes strong constraints on the allowed region in the α0- β-γ parameter space, which nicely includes a physically interesting region around α 0 = 0 .5, β = 2 and γ = 3. The full consistency of the model would require an extension to multi-pion processes, a program we do not undertake in this paper.

  10. Separation of gravitational-wave and cosmic-shear contributions to cosmic microwave background polarization.

    PubMed

    Kesden, Michael; Cooray, Asantha; Kamionkowski, Marc

    2002-07-01

    Inflationary gravitational waves (GW) contribute to the curl component in the polarization of the cosmic microwave background (CMB). Cosmic shear--gravitational lensing of the CMB--converts a fraction of the dominant gradient polarization to the curl component. Higher-order correlations can be used to map the cosmic shear and subtract this contribution to the curl. Arcminute resolution will be required to pursue GW amplitudes smaller than those accessible by the Planck surveyor mission. The blurring by lensing of small-scale CMB power leads with this reconstruction technique to a minimum detectable GW amplitude corresponding to an inflation energy near 10(15) GeV.

  11. The Parker Instability with Cosmic-Ray Streaming

    NASA Astrophysics Data System (ADS)

    Heintz, Evan; Zweibel, Ellen G.

    2018-06-01

    Recent studies have found that cosmic-ray transport plays an important role in feedback processes such as star formation and the launching of galactic winds. Although cosmic-ray buoyancy is widely held to be a destabilizing force in galactic disks, the effect of cosmic-ray transport on the stability of stratified systems has yet to be analyzed. We perform a stability analysis of a stratified layer for three different cosmic-ray transport models: decoupled (Classic Parker), coupled with γ c = 4/3 but not streaming (Modified Parker), and finally coupled with streaming at the Alfvén speed. When the compressibility of the cosmic rays is decreased the system becomes much more stable, but the addition of cosmic-ray streaming to the Parker instability severely destabilizes it. Through comparison of these three cases and analysis of the work contributions for the perturbed quantities of each system, we demonstrate that cosmic-ray heating of the gas is responsible for the destabilization of the system. We find that a 3D system is unstable over a larger range of wavelengths than the 2D system. Therefore, the Parker instability with cosmic-ray streaming may play an important role in cosmic-ray feedback.

  12. The cosmic Era and the Earth

    NASA Astrophysics Data System (ADS)

    Closca-Grigore, Carmen

    THe book describes the main directions of development of cosmic research in the USA, USSR, Europe, Japan and China. The main inventors and creators of cosmic technics are designed : Tsiolkovskii, Tsander, Korolev, Oberth, Verner von Braun, Goddard and the most important cosmic flies by Sputnik, Gagarin, Tereshkova, Leonov, Armstrong. The main program of cosmic research are outlined in such areas as maps, geological research, meteorolgy, television, radio and military. The Romanian contributions are described: Ioan Vitez, Konrad Haas, Traian Vuia, Aurel Vlaicu, Hermann Oberth and Dumnitru Prunariu.

  13. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    NASA Astrophysics Data System (ADS)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  14. Sivers asymmetries for inclusive pion and kaon production in deep-inelastic scattering

    NASA Astrophysics Data System (ADS)

    Ellis, John; Hwang, Dae Sung; Kotzinian, Aram

    2009-10-01

    We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for π+ production at HERMES, and qualitative agreement for π0 and K+ production. Our predictions for pion and kaon production at COMPASS could be probed with increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.

  15. Cosmic ray topography

    NASA Astrophysics Data System (ADS)

    Bressler, Matthew; Goodwin, Lydia; Kryemadhi, Abaz

    2017-11-01

    Cosmic ray muons are produced when high energy particles interact with nuclei in Earth's atmosphere. Muons make up the majority of charged particles that reach sea level and are the only particles (apart from neutrinos) that can penetrate to significant depths underground. The muon flux underground decreases approximately exponentially as a function of depth. We use a cosmic ray detector developed by the QuarkNet Program at Fermi National Laboratory to map the topography of the mountain above an abandoned Pennsylvania Turnpike tunnel by analyzing muon flux at different rock overburdens. Cosmic ray muons have been used in this capacity before to search for hidden chambers in pyramids and for mapping volcanoes. This study provides a unique field experience to learn about particle physics and particle detectors, which could be of interest to students and teachers in physics.

  16. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  17. In Search of Cosmic Rays: A Student Physics Project Aimed at Finding the Origin of Cosmic Rays.

    ERIC Educational Resources Information Center

    Antonelli, Jamie; Mahoney, Sean; Streich, Derek; Liebl, Michael

    2001-01-01

    Describes an ongoing project, the Cosmic Ray Observatory Project (CROP), being conducted by the University of Nebraska in partnership with several high schools. Each school group has installed cosmic ray detectors, and initial activities have included calibrating equipment, gathering preliminary data, and learning about cosmic ray showers. Aims to…

  18. Galactic cosmic ray composition and energy spectra

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1994-01-01

    Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.

  19. Nucleon Structure from 2+1 Flavor Domain Wall QCD at Nearly Physical Pion Mass

    NASA Astrophysics Data System (ADS)

    Ohta, Shigemi

    2011-05-01

    The RBC and UKQCD collaborations have been investigating hadron physics in numerical lattice quantum chromodynamics (QCD) with (2+1) flavors of dynamical domain wall fermions (DWF) quarks that preserves continuum-like chiral and flavor symmetries. The strange quark mass is adjusted to physical value via reweighting and degenerate up and down quark masses are set as light as possible. In a recent study of nucleon structure we found a strong dependence on pion mass and lattice spatial extent in isovector axialvector-current form factors. This is likely the first credible evidence for the pion cloud surrounding nucleon. Here we report the status of nucleon structure calculations with a new (2+1)-flavor dynamical DWF ensembles with much lighter pion mass of 180 and 250 MeV and a much larger lattice spatial exent of 4.6 fm. A combination of the Iwasaki and dislocation-suppressing-determinant-ratio (I+DSDR) gauge action and DWF fermion action allows us to generate these ensembles at cutoff of about 1.4 GeV while keeping the residual breaking of chiral symmetry sufficiently small. Nucleon source Gaussian smearing has been optimized. Preliminary nucleon mass estimates are 0.98 and 1.05 GeV.

  20. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  1. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    PubMed Central

    Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-01-01

    For over 20 years, the term ‘cosmic web’ has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile ‘spiderwebs’ is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos. PMID:29765637

  2. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations.

    PubMed

    Neyrinck, Mark C; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term 'cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile 'spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  3. The cosmic spiderweb: equivalence of cosmic, architectural and origami tessellations

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.; Hidding, Johan; Konstantatou, Marina; van de Weygaert, Rien

    2018-04-01

    For over 20 years, the term `cosmic web' has guided our understanding of the large-scale arrangement of matter in the cosmos, accurately evoking the concept of a network of galaxies linked by filaments. But the physical correspondence between the cosmic web and structural engineering or textile `spiderwebs' is even deeper than previously known, and also extends to origami tessellations. Here, we explain that in a good structure-formation approximation known as the adhesion model, threads of the cosmic web form a spiderweb, i.e. can be strung up to be entirely in tension. The correspondence is exact if nodes sampling voids are included, and if structure is excluded within collapsed regions (walls, filaments and haloes), where dark-matter multistreaming and baryonic physics affect the structure. We also suggest how concepts arising from this link might be used to test cosmological models: for example, to test for large-scale anisotropy and rotational flows in the cosmos.

  4. Satellite Constellations for Space Weather and Ionospheric Studies: Overview of the COSMIC and COSMIC-2 Missions

    NASA Astrophysics Data System (ADS)

    Schreiner, W. S.; Pedatella, N. M.; Weiss, J.

    2016-12-01

    Measurements from constellations of low Earth orbiting (LEO) satellites are proving highly useful for ionospheric science and space weather studies. The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC), a joint US/Taiwan mission launched in April 2006, is a six micro-satellite constellation carrying Global Positioning System (GPS) radio occultation (RO) receivers. COSMIC has collected a large amount of useful data from these scientific payloads and is still currently collecting up to 1,000 RO measurement events per day on average. The GPS RO dual-frequency L-band phase and amplitude measurements can be used to observe absolute Total Electron Content (TEC) and scintillation on lines of sight between the LEO and GPS satellites, and electron density profiles via the RO method. The large number and complete global and local time coverage of COSMIC data are allowing scientists to observe ionospheric and plasmaspheric phenomena that are difficult to see with other instruments. The success of COSMIC has prompted U.S. agencies and Taiwan to execute a COSMIC follow-on mission (called COSMIC-2) that will put twelve satellites with GNSS (Global Navigation Satellite System) RO payloads into orbit on two launches in the 2017-20 time frame. The first launch in 2017 will place six satellites in a 520-km altitude 24 deg inclination orbit, which is ideal for low latitude ionospheric research and space weather forecasting. The planned second launch (not currently funded) places six additional satellites in a 750 km 72 deg inclination orbit to provide global coverage and increased sampling density. COSMIC-2 will make use of an advanced radio occultation receiver with an innovative beam-forming antenna design, and is expected to produce at least 10,000 high-quality atmospheric and ionospheric profiles per day from GPS and GLONASS signals to support operational weather prediction, climate monitoring, and space weather forecasting. Each COSMIC-2 spacecraft

  5. Models of Cosmic-Ray Origin

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.

    2001-08-01

    Two models of cosmic-ray genesis are compared: (a) the author s red-dwarf hypothesis requiring the injection of seed particles from coronal mass ejections (CME) prior to shock acceleration, and (b) the direct acceleration of thermal ions and of grains in the ISM, proposed by Meyer, Drury and Ellison. Both models agree that shocks in the expanding envelopes of supernova remnants are principally responsible for acceleration to cosmic-ray energies. Both are designed to overcome the mismatch between the source composition of the Galactic cosmic rays (GCR) and the composition of the thermal ISM gas. Model (a) utilizes the prolific emissions of energetic particles from active dMe and dKe stars via their CME as the agents of seed-particle injection into the ISM. The composition of these seed particles is governed by the FIP (first-ionization potential) selection mechanism that operates for both Galactic cosmic rays and solar energetic particles. Hence it is consistent with the cosmic-ray source composition. Model (b) relies on the sputtering and acceleration of grains in the ISM (along with acceleration of thermal ions) to provide the known source composition. This model considers the FIP ordering of GCR abundances as purely coincidental, and it attributes the relative source abundances to selection according to volatility. Recent cosmic-ray observations in favor of each model are cited.

  6. Spaced-based Cosmic Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  7. Pion polarizabilities from a γ γ → π π analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Ling -Yun; Pennington, Michael R.

    Here, we present results for pion polarizabilities predicted using dispersion relations from our earlier Amplitude Analysis of world data on two photon production of meson pairs. The helicity-zero polarizabilities are rather stable and insensitive to uncertainties in cross-channel exchanges. The need is first to confirm the recent result onmore » $$(\\alpha_1-\\beta_1)$$ for the charged pion by COMPASS at CERN to an accuracy of 10% by measuring the $$\\gamma\\gamma\\to\\pi^+\\pi^-$$ cross-section to an uncertainty of ~1\\%. Then the same polarizability, but for the $$\\pi^0$$, is fixed to be $$(\\alpha_1-\\beta_1)_{\\pi^0}=(0.9\\pm0.2)\\times 10^{-4}$$ fm$$^{3}$$. By analyzing the correlation between uncertainties in the meson polarizability and those in $$\\gamma\\gamma$$ cross-sections, we suggest experiments need to measure these cross-sections between $$\\sqrt{s}\\simeq 350$$ and 600~MeV. The $$\\pi^0\\pi^0$$ cross-section then makes the $$(\\alpha_2-\\beta_2)_{\\pi^0}$$ the easiest helicity-two polarizability to determine.« less

  8. Pion polarizabilities from a γ γ → π π analysis

    DOE PAGES

    Dai, Ling -Yun; Pennington, Michael R.

    2016-12-30

    Here, we present results for pion polarizabilities predicted using dispersion relations from our earlier Amplitude Analysis of world data on two photon production of meson pairs. The helicity-zero polarizabilities are rather stable and insensitive to uncertainties in cross-channel exchanges. The need is first to confirm the recent result onmore » $$(\\alpha_1-\\beta_1)$$ for the charged pion by COMPASS at CERN to an accuracy of 10% by measuring the $$\\gamma\\gamma\\to\\pi^+\\pi^-$$ cross-section to an uncertainty of ~1\\%. Then the same polarizability, but for the $$\\pi^0$$, is fixed to be $$(\\alpha_1-\\beta_1)_{\\pi^0}=(0.9\\pm0.2)\\times 10^{-4}$$ fm$$^{3}$$. By analyzing the correlation between uncertainties in the meson polarizability and those in $$\\gamma\\gamma$$ cross-sections, we suggest experiments need to measure these cross-sections between $$\\sqrt{s}\\simeq 350$$ and 600~MeV. The $$\\pi^0\\pi^0$$ cross-section then makes the $$(\\alpha_2-\\beta_2)_{\\pi^0}$$ the easiest helicity-two polarizability to determine.« less

  9. Multiplicity of Charged Particles in Pion - Nucleus Interactions in an Emulsion at 200-GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzon, Z.V.; Gaitinov, A.Sh.; Eremenko, L.E.

    1977-01-01

    The experimental data on multiplicities of charged secondaries produced in pion-nucleus interactions in an emulsion at 200 Gev/c and correlations bet6ween them are presented and discussed. Parameters of multiplicity distributions are compared with the relevant ones at lower energies and with data from pA-interactions at 200 Gev/c. The multiplicity of heavily ionizing particles in {Pi}{sup -}A-interactions weakly depend on the incident energy. The KNO scaling is observed being the same for incident protons and pions.

  10. Influence of the nuclear symmetry energy on the collective flows of charged pions

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Yong, Gao-Chan; Zhang, Lei; Zuo, Wei

    2018-01-01

    Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, we studied charged pion transverse and elliptic flows in semicentral 197Au+197Au collisions at 600 MeV/nucleon. It is found that π+-π- differential transverse flow and the difference of π+ and π- transverse flows almost show no effects of the symmetry energy. Their corresponding elliptic flows are largely affected by the symmetry energy, especially at high transverse momenta. The isospin-dependent pion elliptic flow at high transverse momenta thus provides a promising way to probe the high-density behavior of the symmetry energy in heavy-ion collisions at the Facility for Antiproton and Ion Research (FAIR) at GSI, Darmstadt or at the Cooling Storage Ring (CSR) at HIRFL, Lanzhou.

  11. Sivers asymmetries for inclusive pion and kaon production in deep-inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, John; Hwang, Dae Sung; Kotzinian, Aram

    2009-10-01

    We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for {pi}{sup +} production at HERMES, and qualitative agreement for {pi}{sup 0} and K{sup +} production. Our predictions for pion and kaon production at COMPASS could be probed withmore » increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.« less

  12. Delta: the First Pion Nucleon Resonance - Its Discovery and Applications

    DOE R&D Accomplishments Database

    Nagle, D. E.

    1984-07-01

    It is attempted to recapture some of the fun and excitement of the pion-scattering work that led to the discovery of what is now called the delta particle. How significant this discovery was became apparent only gradually. That the delta is alive today and thriving at Los Alamos (as well as other places) is described.

  13. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  14. Cosmic Education: The Child's Discovery of a Global Vision and a Cosmic Task

    ERIC Educational Resources Information Center

    Stephenson, Susan Mayclin

    2015-01-01

    Susan Mayclin Stephenson tackles a large subject, Cosmic Education, which Montessori defined as a "unifying global and universal view[s] of the past, present and future." Stephenson takes the reader from birth to the end of the elementary age with examples of how the child grows into an understanding of Cosmic Education through their…

  15. Multi-spectra Cosmic Ray Flux Measurement

    NASA Astrophysics Data System (ADS)

    He, Xiaochun; Dayananda, Mathes

    2010-02-01

    The Earth's upper atmosphere is constantly bombarded by rain of charged particles known as primary cosmic rays. These primary cosmic rays will collide with the atmospheric molecules and create extensive secondary particles which shower downward to the surface of the Earth. In recent years, a few studies have been done regarding to the applications of the cosmic ray measurements and the correlations between the Earth's climate conditions and the cosmic ray fluxes [1,2,3]. Most of the particles, which reach to the surface of the Earth, are muons together with a small percentage of electrons, gammas, neutrons, etc. At Georgia State University, multiple cosmic ray particle detectors have been constructed to measure the fluxes and energy distributions of the secondary cosmic ray particles. In this presentation, we will briefly describe these prototype detectors and show the preliminary test results. Reference: [1] K.Borozdin, G.Hogan, C.Morris, W.Priedhorsky, A.Saunders, L.Shultz, M.Teasdale, Nature, Vol.422, 277 (2003). [2] L.V. Egorova, V. Ya Vovk, O.A. Troshichev, Journal of Atmospheric and Terrestrial Physics 62, 955-966 (2000). [3] Henrik Svensmark, Phy. Rev. Lett. 81, 5027 (1998). )

  16. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  17. COSMIC RAYS AND COSMIC SPACE (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernova, S.N.

    1960-08-01

    An account is given of recent studies of cosmic rays utilizing both earthbound stations and artificial earth satellites. Phenomena recently uncovered by sputniks are described. A description is given of the cosmic ray laboratory of Moscow University. A particle possessing an energy of l0/sup 15/ ev was detected and the equipment and procedure by which this was done are described. mu mesons in a particle shower produced by cosmic rays were detected at a depth of thirty meters underground. The apparatus required in the sputriks for the study of cosmic rays outside the earth's atmosphere is discussed. The equipment inmore » the sputniks launched to date was transistorized; scintillation counters were used to determine particle energies. A description is given of the large burst of radiation detected by the second sputnik on Nov. 7, 1957. This burst was observed only at latitudes of about 50 to 70 degrees north latitude. The third sputnik had a scintillation counter of high sensitivity which detected relatively weak fluxes of electrons. This equipment fixed the location of the high intensity radiation belt around the earth. A typical graph of count rate and energy current versus geographic location is given. Data are given that indicate the coincidence of peak radiation intensities with those regions where the aurora borealis is seen. The radiation belt extends up to approximately 60,000 km from the earth's surface and is bounded by the magnetic lines of force that intersect the earth' s surface at geomagnetic latitudes of 55 deg and 70 deg . The earth's magnetic field traps these particles and holds them in an orbit that follows magnetic lines of force and oscillates from the northern to the southern hemisphere for long periods of time. A diagram is given of the trajectory of the first Soviet cosmic rocket and changes in radiation intensity along this trajectory are indicated. A maximum radiation intensity was detected at a distance of 20,000 km from the earth

  18. Modeling neutrino-induced charged pion production on water at T2K kinematics

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, A.; González-Jiménez, R.; Niewczas, K.; Sobczyk, J.; Jachowicz, N.

    2018-05-01

    Pion production is a significant component of the signal in accelerator-based neutrino experiments. Over the last years, the MiniBooNE, T2K, and MINERvA collaborations have reported a substantial amount of data on (anti)neutrino-induced pion production on the nucleus. However, a comprehensive and consistent description of the whole data set is still missing. We aim at improving the current understanding of neutrino-induced pion production on the nucleus. To this end, the comparison of experimental data with theoretical predictions, preferably based on microscopic models, is essential to disentangle the different reaction mechanisms involved in the process. To describe single-pion production, we use a hybrid model that combines low- and a high-energy approaches. The low-energy model contains resonances and background terms. At high invariant masses, a high-energy model based on a Regge approach is employed. The model is implemented in the nucleus using the relativistic plane wave impulse approximation (RPWIA). We present a comparison of the hybrid-RPWIA and low-energy model with the recent neutrino-induced charged-current 1 π+ -production cross section on water reported by T2K. In order to judge the impact of final-state interactions (FSI), we confront our results with those of the nuwro Monte Carlo generator. The hybrid-RPWIA model and nuwro results compare favorably to the data, albeit that FSI are not included in the former. The need of a high-energy model at T2K kinematics is made clear. These results complement our previous work [Phys. Rev. D 97, 013004 (2018), 10.1103/PhysRevD.97.013004], in which we compared the models to the MINERvA and MiniBooNE 1 π+ data. The hybrid-RPWIA model tends to overpredict both the T2K and MINERvA data in kinematic regions where the largest suppression due to FSI is expected and agrees remarkably well with the data in other kinematic regions. On the contrary, the MiniBooNE data are underpredicted over the whole kinematic range.

  19. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    DOE PAGES

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; ...

    2016-03-26

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are n(i, f) similar to 10(4)-10(5). We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one canmore » infer the decay width in more realistic magnetic fields of 10(15) G, where n(i, f) similar to 10(12)-10(13), from the results for n(i, f) similar to 10(4)-10(5). The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less

  20. Simulation of Cosmic Ray Acceleration, Propagation and Interaction in SNR Environment

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kamae, T.; Ellison, D. C.

    2007-07-01

    Recent studies of young supernova remnants (SNRs) with Chandra, XMM, Suzaku and HESS have revealed complex morphologies and spectral features of the emission sites. The critical question of the relative importance of the two competing gamma-ray emission mechanisms in SNRs; inverse-Compton scattering by high-energy electrons and pion production by energetic protons, may be resolved by GLAST-LAT. To keep pace with the improved observations, we are developing a 3D model of particle acceleration, diffusion, and interaction in a SNR where broad-band emission from radio to multi-TeV energies, produced by shock accelerated electrons and ions, can be simulated for a given topology of shock fronts, magnetic field, and ISM densities. The 3D model takes as input, the particle spectra predicted by a hydrodynamic simulation of SNR evolution where nonlinear diffusive shock acceleration is coupled to the remnant dynamics (e.g., Ellison, Decourchelle & Ballet; Ellison & Cassam-Chenai Ellison, Berezhko & Baring). We will present preliminary models of the Galactic Ridge SNR RX J1713-3946 for selected choices of SNR parameters, magnetic field topology, and ISM density distributions. When constrained by broad-band observations, our models should predict the extent of coupling between spectral shape and morphology and provide direct information on the acceleration efficiency of cosmic-ray electrons and ions in SNRs.

  1. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe

  2. High energy physics in cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic raymore » program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.« less

  3. ChPT loops for the lattice: pion mass and decay constant, HVP at finite volume and nn̅-oscillations

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan

    2018-03-01

    I present higher loop order results for several calculations in Chiral perturbation Theory. 1) Two-loop results at finite volume for hadronic vacuum polarization. 2) A three-loop calculation of the pion mass and decay constant in two-flavour ChPT. For the pion mass all needed auxiliary parameters can be determined from lattice calculations of ππ-scattering. 3) Chiral corrections to neutron-anti-neutron oscillations.

  4. Underground measurements on secondary cosmic rays

    NASA Technical Reports Server (NTRS)

    Wilson, C. W.; Fenton, A. G.; Fenton, K. B.

    1985-01-01

    Measurements made at the Poatina cosmic ray station (41.8 S 149.9 E, 347 m.w.e.) from August 1983 to July 1984 are summarized. The cosmic ray primary particles responsible for events detected at the station have a median primary energy of 1.2 TeV. The motivation for part of this work came from the reported detection of narrow angle anisotropies in the arrival direction of cosmic rays.

  5. Gravitational waves and cosmic strings

    NASA Astrophysics Data System (ADS)

    Siemens, Xavier

    2002-08-01

    Cosmic strings are potential candidates for a variety of interesting cosmological phenomena such as gamma ray bursts, gravitational wave bursts and ultra high energy cosmic rays. The predictions of cosmic string models, however, depend sensitively on the so far unresolved question of the size of the small-scale structure. This thesis deals largely with this problem. First, I present a gravitational back-reaction model that assumes the interaction between all Fourier modes that make up a given perturbation on a long cosmic string. This calculation leads to the generally accepted value of the small scale structure cutoff. It also, however, leads to paradoxical behaviour when applied to two oppositely moving modes: As one of the modes is stretched conformally the gravitational power radiated approaches a constant. This result is in contradiction with our expectation for the straight string limit in which no power is radiated. A more careful investigation of this problem reveals that, in the case of two oppositely moving modes, the gravitational power is exponentially suppressed when the wavelengths of the modes are sufficiently different. I use this result to construct an improved gravitational back-reaction model in which modes of very different wavelengths do not interact. This model leads to a new small scale structure cutoff which is sensitive to the initial spectrum of perturbations present on the string. I also tentatively examine the consequences of this result for the evolution of cosmic string loops. Finally, I investigate the effect of the presence of small scale structure on the gravitational wave-bursts produced at cosmic string cusps.

  6. New algorithms for identifying the flavour of [Formula: see text] mesons using pions and protons.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Bird, T; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britsch, M; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chobanova, V; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hulsbergen, W; Humair, T; Hushchyn, M; Hussain, N; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Koliiev, S; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kosmyntseva, A; Kozeiha, M; Kravchuk, L; Kreplin, K; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Lindner, R; Linn, C; Lionetto, F; Liu, B; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Vernet, M; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhokhov, A; Zhu, X; Zhukov, V; Zucchelli, S

    2017-01-01

    Two new algorithms for use in the analysis of [Formula: see text] collision are developed to identify the flavour of [Formula: see text] mesons at production using pions and protons from the hadronization process. The algorithms are optimized and calibrated on data, using [Formula: see text] decays from [Formula: see text] collision data collected by LHCb at centre-of-mass energies of 7 and 8 TeV . The tagging power of the new pion algorithm is 60% greater than the previously available one; the algorithm using protons to identify the flavour of a [Formula: see text] meson is the first of its kind.

  7. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  8. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of January 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are discussed. Marketing and customer service activities in this period are presented as is the progress report of NASTRAN maintenance and support. Tables of disseminations and budget summary conclude the report.

  9. The chiral quark condensate and pion decay constant in nuclear matter at next-to-leading order

    NASA Astrophysics Data System (ADS)

    Lacour, A.; Oller, J. A.; Meißner, U.-G.

    2010-12-01

    Making use of the recently developed chiral power counting for the physics of nuclear matter (Oller et al 2010 J. Phys. G: Nucl. Part. Phys. 37 015106, Lacour et al Ann. Phys. at press), we evaluate the in-medium chiral quark condensate up to next-to-leading order for both symmetric nuclear matter and neutron matter. Our calculation includes the full in-medium iteration of the leading order local and one-pion exchange nucleon-nucleon interactions. Interestingly, we find a cancellation between the contributions stemming from the quark mass dependence of the nucleon mass appearing in the in-medium nucleon-nucleon interactions. Only the contributions originating from the explicit quark mass dependence of the pion mass survive. This cancellation is the reason of previous observations concerning the dominant role of the long-range pion contributions and the suppression of short-range nucleon-nucleon interactions. We find that the linear density contribution to the in-medium chiral quark condensate is only slightly modified for pure neutron matter by the nucleon-nucleon interactions. For symmetric nuclear matter, the in-medium corrections are larger, although smaller compared to other approaches due to the full iteration of the lowest order nucleon-nucleon tree-level amplitudes. Our calculation satisfies the Hellmann-Feynman theorem to the order worked out. Also we address the problem of calculating the leading in-medium corrections to the pion decay constant. We find that there are no extra in-medium corrections that violate the Gell-Mann-Oakes-Renner relation up to next-to-leading order.

  10. A Shifting Shield Provides Protection Against Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    The Sun plays an important role in protecting us from cosmic rays, energetic particles that pelt us from outside our solar system. But can we predict when and how it will provide the most protection, and use this to minimize the damage to both pilotedand roboticspace missions?The Challenge of Cosmic RaysSpacecraft outside of Earths atmosphere and magnetic field are at risk of damage from cosmic rays. [ESA]Galactic cosmic rays are high-energy, charged particles that originate from astrophysical processes like supernovae or even distant active galactic nuclei outside of our solar system.One reason to care about the cosmic rays arriving near Earth is because these particles can provide a significant challenge for space missions traveling above Earths protective atmosphere and magnetic field. Since impacts from cosmic rays can damage human DNA, this risk poses a major barrier to plans for interplanetary travel by crewed spacecraft. And roboticmissions arent safe either: cosmic rays can flip bits, wreaking havoc on spacecraft electronics as well.The magnetic field carried by the solar wind provides a protective shield, deflecting galactic cosmic rays from our solar system. [Walt Feimer/NASA GSFCs Conceptual Image Lab]Shielded by the SunConveniently, we do have some broader protection against galactic cosmic rays: a built-in shield provided by the Sun. The interplanetary magnetic field, which is embedded in the solar wind, deflects low-energy cosmic rays from us at the outer reaches of our solar system, decreasing the flux of these cosmic rays that reach us at Earth.This shield, however, isnt stationary; instead, it moves and changes as the strength and direction of the solar wind moves and changes. This results in a much lower cosmic-ray flux at Earth when solar activity is high i.e., at the peak of the 11-year solar cycle than when solar activity is low. This visible change in local cosmic-ray flux with solar activity is known as solar modulation of the cosmic ray flux

  11. Chemistry and dynamics of the lower ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Haider, Syed A.; Sheel, Varun

    MIRI: Validation and Testing Requirements The high energy cosmic rays propagate through the Martian atmosphere producing nucleonic cascades. The impact of primary cosmic rays onto the atmospheric gases produces protons, neutrons and pions. The neutral pions quickly decay to gamma rays and their contribution to energy deposition is very important in the lower atmosphere of Mars. Near the mesosphere, the maximum ion production rates are controlled by protons. The charged pions decay to meons, which do not decay and their energy is transferred to the surface on reaching the ground. In this paper we have calculated production rates, conductivity, densities of positive and negative ions due to cosmic ray ionization. The model couples ion-neutral, electron neutral, dissociation of positive and negative ions, electron detachment, ion-ion and ion-electron recombination processes. The hydrated hydronium and water cluster ions (H _{3}O (+) (H _{2}O) _{n} , NO _{2} (-) (H _{2}O) _{n} and CO _{3} (-) (H _{2}O) _{n} for n=1-4) are dominated below 60 km, while NO (+) and O _{2} (+) are major ions above this altitude. We have also examined the effect of dust storms on the lower ionosphere of Mars. It is found that during intense period of dust storms, the D region ionosphere disappears for several weeks until the dust settles down to its normal condition

  12. Testing the weak gravity-cosmic censorship connection

    NASA Astrophysics Data System (ADS)

    Crisford, Toby; Horowitz, Gary T.; Santos, Jorge E.

    2018-03-01

    A surprising connection between the weak gravity conjecture and cosmic censorship has recently been proposed. In particular, it was argued that a promising class of counterexamples to cosmic censorship in four-dimensional Einstein-Maxwell-Λ theory would be removed if charged particles (with sufficient charge) were present. We test this idea and find that indeed if the weak gravity conjecture is true, one cannot violate cosmic censorship this way. Remarkably, the minimum value of charge required to preserve cosmic censorship appears to agree precisely with that proposed by the weak gravity conjecture.

  13. Pions as gluons in higher dimensions

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Remmen, Grant N.; Shen, Chia-Hsien; Wen, Congkao

    2018-04-01

    We derive the nonlinear sigma model as a peculiar dimensional reduction of Yang-Mills theory. In this framework, pions are reformulated as higher-dimensional gluons arranged in a kinematic configuration that only probes cubic interactions. This procedure yields a purely cubic action for the nonlinear sigma model that exhibits a symmetry enforcing color-kinematics duality. Remarkably, the associated kinematic algebra originates directly from the Poincaré algebra in higher dimensions. Applying the same construction to gravity yields a new quartic action for Born-Infeld theory and, applied once more, a cubic action for the special Galileon theory. Since the nonlinear sigma model and special Galileon are subtly encoded in the cubic sectors of Yang-Mills theory and gravity, respectively, their double copy relationship is automatic.

  14. Cosmic Rays in Intermittent Magnetic Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukurov, Anvar; Seta, Amit; Bushby, Paul J.

    The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields. The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra. The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particlemore » energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.« less

  15. Negative Charged Pion Production on a Deuteron by Quasi-Real Photons

    NASA Astrophysics Data System (ADS)

    Gauzshtein, V. V.; Dusaev, R. R.; Loginov, A. Yu.; Nikolenko, D. M.; Sidorov, A. A.; Stibunov, V. N.

    2013-12-01

    Experimental differential cross sections of photoproduction of negative pions on a deuteron have been obtained as functions of the polar angle of emission of π- mesons. A comparison is made of the measured cross sections with the results of calculations in a model that takes account the interaction in the final state of the reaction.

  16. What is your Cosmic Connection to the Elements?

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Lochner, James; Rohrbach, Gail; Cochrane, Kim

    2003-01-01

    This information and activity booklet describes the roles of the Big Bang, types of stars, supernovae, cosmic ray interactions, and radioactive decay in the formation of the elements. The booklet includes instructions for the following classroom activities, intended for students in Grades 9-12: Grandma's Apple Pie; Cosmic Shuffle; Nickel-odeon; Kinesthetic Big Bang; Elemental Haiku; Cosmic Ray Collisions; Cosmic Abundances; and What's Out There.

  17. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments.

  18. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    NASA Astrophysics Data System (ADS)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  19. Cosmic-ray anisotropy studies with IceCube

    NASA Astrophysics Data System (ADS)

    McNally, Frank

    2014-03-01

    The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.

  20. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  1. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  2. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  3. Long-Term Solar and Cosmic Radiation Data Bases

    DTIC Science & Technology

    1991-01-01

    determine the magnitude of the variations in the cosmic ray intensity caused by solar activity. Neutron monitors, with their much lower energy threshold...expression that neutron monitors are sensors on spacecraft EARTH. Here we will consider cosmic ray detectors to measure two components of cosmic ...A comparison with the solar cycle as illustrated by the sunspot number in Fig. 1. shows that the maximum cosmic ray intensity occurs near sunspot

  4. Cosmic vacuum energy decay and creation of cosmic matter.

    PubMed

    Fahr, Hans-Jörg; Heyl, Michael

    2007-09-01

    In the more recent literature on cosmological evolutions of the universe, the cosmic vacuum energy has become a nonrenouncable ingredient. The cosmological constant Lambda, first invented by Einstein, but later also rejected by him, presently experiences an astonishing revival. Interestingly enough, it acts like a constant vacuum energy density would also do. Namely, it has an accelerating action on cosmic dynamics, without which, as it appears, presently obtained cosmological data cannot be conciliated with theory. As we are going to show in this review, however, the concept of a constant vacuum energy density is unsatisfactory for very basic reasons because it would claim for a physical reality that acts upon spacetime and matter dynamics without itself being acted upon by spacetime or matter.

  5. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  6. Leading isospin-breaking corrections to pion, kaon, and charmed-meson masses with twisted-mass fermions

    NASA Astrophysics Data System (ADS)

    Giusti, D.; Lubicz, V.; Tarantino, C.; Martinelli, G.; Sanfilippo, F.; Simula, S.; Tantalo, N.; RM123 Collaboration

    2017-06-01

    We present a lattice computation of the isospin-breaking corrections to pseudoscalar meson masses using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing (a ≃0.062 , 0.082, and 0.089 fm) with pion masses in the range Mπ≃210 - 450 MeV . The strange and charm quark masses are tuned at their physical values. We adopt the RM123 method based on the combined expansion of the path integral in powers of the d - and u -quark mass difference (m^d-m^u) and of the electromagnetic coupling αe m. Within the quenched QED approximation, which neglects the effects of the sea-quark charges, and after the extrapolations to the physical pion mass and to the continuum and infinite volume limits, we provide results for the pion, kaon, and (for the first time) charmed-meson mass splittings, for the prescription-dependent parameters ɛπ0, ɛγ(M S ¯ ,2 GeV ) , ɛK0(M S ¯ ,2 GeV ) , related to the violations of the Dashen's theorem, and for the light quark mass difference (m^ d-m^ u)(M S ¯ ,2 GeV ) .

  7. Re-evaluation of cosmic ray cutoff terminology

    NASA Technical Reports Server (NTRS)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  8. A Demonstration Device for Cosmic Rays Telescopes

    ERIC Educational Resources Information Center

    Esposito, Salvatore

    2018-01-01

    We describe a hands-on accurate demonstrator for cosmic rays realized by six high school students. The main aim is to show the relevance and the functioning of the principal parts of a cosmic ray telescope (muon detector), with the help of two large sized wooden artefacts. The first one points out how cosmic rays can be tracked in a muon…

  9. HARP targets pion production cross section and yield measurements: Implications for MiniBooNE neutrino flux

    NASA Astrophysics Data System (ADS)

    Wickremasinghe, Don Athula Abeyarathna

    The prediction of the muon neutrino flux from a 71.0 cm long beryllium target for the MiniBooNE experiment is based on a measured pion production cross section which was taken from a short beryllium target (2.0 cm thick - 5% nuclear interaction length) in the Hadron Production (HARP) experiment at CERN. To verify the extrapolation to our longer target, HARP also measured the pion production from 20.0 cm and 40.0 cm beryllium targets. The measured production yields on targets of 50% and 100% nuclear interaction lengths in the kinematic rage of momentum from 0.75 GeV/c to 6.5 GeV/c and the range of angle from 30 mrad to 210 mrad are presented along with an update of the short target cross sections. The best fitted extended Sanford-Wang (SW) model parameterization for updated short beryllium target positive pion production cross section is presented. Yield measurements for all three targets are also compared with that from the Monte Carlo predictions in the MiniBooNE experiment for different SW parameterization. The comparisons of muon neutrino flux predictions for updated SW model is presented.

  10. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  11. Tracing the cosmic web

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.; van de Weygaert, Rien; Cautun, Marius; Falck, Bridget; Tempel, Elmo; Abel, Tom; Alpaslan, Mehmet; Aragón-Calvo, Miguel A.; Forero-Romero, Jaime E.; Gonzalez, Roberto; Gottlöber, Stefan; Hahn, Oliver; Hellwing, Wojciech A.; Hoffman, Yehuda; Jones, Bernard J. T.; Kitaura, Francisco; Knebe, Alexander; Manti, Serena; Neyrinck, Mark; Nuza, Sebastián E.; Padilla, Nelson; Platen, Erwin; Ramachandra, Nesar; Robotham, Aaron; Saar, Enn; Shandarin, Sergei; Steinmetz, Matthias; Stoica, Radu S.; Sousbie, Thierry; Yepes, Gustavo

    2018-01-01

    The cosmic web is one of the most striking features of the distribution of galaxies and dark matter on the largest scales in the Universe. It is composed of dense regions packed full of galaxies, long filamentary bridges, flattened sheets and vast low-density voids. The study of the cosmic web has focused primarily on the identification of such features, and on understanding the environmental effects on galaxy formation and halo assembly. As such, a variety of different methods have been devised to classify the cosmic web - depending on the data at hand, be it numerical simulations, large sky surveys or other. In this paper, we bring 12 of these methods together and apply them to the same data set in order to understand how they compare. In general, these cosmic-web classifiers have been designed with different cosmological goals in mind, and to study different questions. Therefore, one would not a priori expect agreement between different techniques; however, many of these methods do converge on the identification of specific features. In this paper, we study the agreements and disparities of the different methods. For example, each method finds that knots inhabit higher density regions than filaments, etc. and that voids have the lowest densities. For a given web environment, we find a substantial overlap in the density range assigned by each web classification scheme. We also compare classifications on a halo-by-halo basis; for example, we find that 9 of 12 methods classify around a third of group-mass haloes (i.e. Mhalo ∼ 1013.5 h-1 M⊙) as being in filaments. Lastly, so that any future cosmic-web classification scheme can be compared to the 12 methods used here, we have made all the data used in this paper public.

  12. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  13. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  14. Development of the cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  15. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moharana, Reetanjali; Razzaque, Soebur, E-mail: reetanjalim@uj.ac.za, E-mail: srazzaque@uj.ac.za

    2015-08-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy 0∼> 3 TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at 0>6 EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with 0≥ 10 EeV UHECR arrival directions at confidence level ≈ 90%. The strengthmore » of the correlation decreases with decreasing UHECR energy and no correlation exists at energy 0∼ 6 EeV . A search in astrophysical databases within 3{sup o} of the arrival directions of UHECRs with energy 0≥ 10 EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the Swift-BAT X-ray catalog with redshift z≤ 0.06. We also found 3 objects in the Kühr catalog of radio sources using the same criteria. The sources are dominantly Seyfert galaxies with Cygnus A being the most prominent member. We calculate the required neutrino and UHECR fluxes to produce the observed correlated events, and estimate the corresponding neutrino luminosity (25 TeV–2.2 PeV) and cosmic-ray luminosity (500 TeV–180 EeV), assuming the sources are the ones we found in the Swift-BAT and Kühr catalogs. We compare these luminosities with the X-ray luminosity of the corresponding sources and discuss possibilities of accelerating protons to 0∼> 10 EeV and produce neutrinos in these sources.« less

  16. The isotopic composition of cosmic-ray calcium

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; George, J. S.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; hide

    2001-01-01

    We find that the relative abundance of cosmic ray calcium isotopes in the cosmic-ray source are very similar to those found in solar-system material, in spite of the fact that different types of stars are thought to be responsible for producing these two isotopes. This observation is consistent with the view that cosmic rays are derived from a mixed sample of interstellar matter.

  17. Precision measurements of the timelike electromagnetic form factors of pion, kaon, and proton.

    PubMed

    Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Arms, K; Severini, H; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Bornheim, A; Pappas, S P; Weinstein, A J; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Wilksen, T; Weaver, K M; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Williams, J; Wiss, J; Asner, D M; Edwards, K W; Besson, D

    2005-12-31

    Using 20.7 pb(-1) of e(+)e(-) annihilation data taken at sq.rt(r) = 3.671 GeV with the CLEO-c detector, precision measurements of the electromagnetic form factors of the charged pion, charged kaon, and proton have been made for timelike momentum transfer of |Q(2)| = 13.48 GeV(2) by the reaction e(+)e(-) --> h(+)h(-). The measurements are the first ever with identified pions and kaons of |Q(2)| > 4 GeV(2), with the results F(13.48 GeV(2)) = 0.075 +/- 0.008(stat) +/- 0.005(syst) and F(K)(13.48 GeV(2)) = 0.063 +/- 0.004(stat) +/- 0.001(syst). The result for the proton, assuming G(p)(E) = G(p)(M), is G(p)(M)(13.48 GeV(2)) = 0.014 +/- 0.002(stat) +/- 0.001(syst), which is in agreement with earlier results.

  18. Near-threshold neutral pion electroproduction at high momentum transfers and generalized form factors

    NASA Astrophysics Data System (ADS)

    Khetarpal, P.; Stoler, P.; Aznauryan, I. G.; Kubarovsky, V.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kuleshov, S. V.; Kvaltine, N. D.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Saylor, N. A.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2013-04-01

    We report the measurement of near-threshold neutral pion electroproduction cross sections and the extraction of the associated structure functions on the proton in the kinematic range Q2 from 2 to 4.5 GeV2 and W from 1.08 to 1.16 GeV. These measurements allow us to access the dominant pion-nucleon s-wave multipoles E0+ and S0+ in the near-threshold region. In the light-cone sum-rule framework (LCSR), these multipoles are related to the generalized form factors G1π0p(Q2) and G2π0p(Q2). The data are compared to these generalized form factors and the results for G1π0p(Q2) are found to be in good agreement with the LCSR predictions, but the level of agreement with G2π0p(Q2) is poor.

  19. Cosmic ray modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  20. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NASA Astrophysics Data System (ADS)

    van de Weygaert, Rien

    2016-10-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.

  1. Cosmic logic: a computational model

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2016-02-01

    We initiate a formal study of logical inferences in context of the measure problem in cosmology or what we call cosmic logic. We describe a simple computational model of cosmic logic suitable for analysis of, for example, discretized cosmological systems. The construction is based on a particular model of computation, developed by Alan Turing, with cosmic observers (CO), cosmic measures (CM) and cosmic symmetries (CS) described by Turing machines. CO machines always start with a blank tape and CM machines take CO's Turing number (also known as description number or Gödel number) as input and output the corresponding probability. Similarly, CS machines take CO's Turing number as input, but output either one if the CO machines are in the same equivalence class or zero otherwise. We argue that CS machines are more fundamental than CM machines and, thus, should be used as building blocks in constructing CM machines. We prove the non-computability of a CS machine which discriminates between two classes of CO machines: mortal that halts in finite time and immortal that runs forever. In context of eternal inflation this result implies that it is impossible to construct CM machines to compute probabilities on the set of all CO machines using cut-off prescriptions. The cut-off measures can still be used if the set is reduced to include only machines which halt after a finite and predetermined number of steps.

  2. Strong Coulomb effects on pions produced in heavy ion collisons

    NASA Astrophysics Data System (ADS)

    Sullivan, J. P.; Bistirlich, J. A.; Bowman, H. R.; Bossingham, R.; Buttke, T.; Crowe, K. M.; Frankel, K. A.; Martoff, C. J.; Miller, J.; Murphy, D. L.; Rasmussen, J. O.; Zajc, W. A.; Hashimoto, O.; Koike, M.; Péter, J.; Benenson, W.; Crawley, G. M.; Kashy, E.; Nolen, J. A.

    1982-03-01

    Doubly differential cross sections for the production of π+ and π- near the velocity of the incident beam for pion laboratory angles from 0 to 20 degrees are presented. Beams of 20Ne with EA=280, 380, and 480 MeV and 40Ar with EA=535 MeV incident on C, NaF, KCl, Cu, and U targets were used. A sharp peak in the π- spectrum and a depression in the π+ spectrum is observed at 0° near the incident projectile velocity. The effect is explained in terms of Coulomb interactions between pions and fragments of the incident beam. Least squares fits to the data using the Coulomb correction formulas of Gyulassy and Kauffmann and an effective projectile fragment charge are made. The relationship between these data and previously measured projectile fragmentation data is discussed and a simple parametrization of projectile mass, target mass, and beam energy dependence of the differential cross sections is given. NUCLEAR REACTIONS C, NaF, Cu, U (20Ne,π+/-)X, EA=280-480 MeV; C, KCl (40Ar,π+/-)X, EA=535 MeV; measured σ(Eπ,θπ), θπ=0°-20°, π velocity near beam velocity; deduced projectile fragment charges, Coulomb effects.

  3. Cosmic ray strangelets

    NASA Astrophysics Data System (ADS)

    Madsen, Jes

    2005-06-01

    Searching for strangelets in cosmic rays may be the best way to test the possible stability of strange quark matter. I review calculations of the astrophysical strangelet flux in the GV TV rigidity range, which will be investigated from the Alpha Magnetic Spectrometer (AMS-02) on the International Space Station, and discuss the merits of strangelets as ultra-high energy cosmic rays at EeV ZeV energies, beyond the Greisen Zatsepin Kuzmin cutoff. I also address some 'counter-arguments' sometimes raised against the possibility of stable strangelets. It will be argued that stability of strange quark matter remains a viable possibility, which must be tested by experiments.

  4. THE COSMIC RAY EQUATOR AND THE GEOMAGNETISM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurai, K.

    1960-01-01

    It was formerly thought that the disagreement of the position of geomagnetic dipole equator with that of the cosmic ray equator was caused by 45 deg westward shifting of the latter. Referring to the theory of geomagnetic effect on cosmic rays, it was determined whether such westward shifting could be existent or not. It was found that the deviation of the cosmic ray equator from the geomagnetic dipole equator is negligible even if the magnetic cavity is present around the earth's outer atmosphere. Taking into account such results, the origin of the cosmic ray equator was investigated. It was foundmore » that this equater could be produced by the higher harmonic components combined with the dipole component of geomagnetism. The relation of the origin of the cosmic ray equater to the eccentric dipoles, near the outer pant of the earth's core, contributing to the secular variation of geomagnetism was considered. (auth)« less

  5. Black holes as beads on cosmic strings

    NASA Astrophysics Data System (ADS)

    Ashoorioon, Amjad; Mann, Robert B.

    2014-11-01

    We consider the possibility of the formation of cosmic strings with black holes as beads. We focus on the simplest setup where two black holes are formed on a long cosmic string. It turns out that in the absence of a background magnetic field and for observationally viable values for cosmic string tensions, μ \\lt 2× {{10}-7}, the tension of the strut in between the black holes has to be less than the ones that run into infinity. This result does not change if a cosmological constant is present. However, if a background magnetic field is turned on, we can have stable setups where the tensions of all cosmic strings are equal. We derive the equilibrium conditions in each of these setups depending on whether the black holes are extremal or non-extremal. We obtain cosmologically acceptable solutions with solar mass black holes and an intragalactic-strength cosmic magnetic field.

  6. Progress in high-energy cosmic ray physics

    NASA Astrophysics Data System (ADS)

    Mollerach, S.; Roulet, E.

    2018-01-01

    We review some of the recent progress in our knowledge about high-energy cosmic rays, with an emphasis on the interpretation of the different observational results. We discuss the effects that are relevant to shape the cosmic ray spectrum and the explanations proposed to account for its features and for the observed changes in composition. The physics of air-showers is summarized and we also present the results obtained on the proton-air cross section and on the muon content of the showers. We discuss the cosmic ray propagation through magnetic fields, the effects of diffusion and of magnetic lensing, the cosmic ray interactions with background radiation fields and the production of secondary neutrinos and photons. We also consider the cosmic ray anisotropies, both at large and small angular scales, presenting the results obtained from the TeV up to the highest energies and discuss the models proposed to explain their origin.

  7. Deuteron Compton scattering below pion photoproduction threshold

    NASA Astrophysics Data System (ADS)

    Levchuk, M. I.; L'vov, A. I.

    2000-07-01

    Deuteron Compton scattering below pion photoproduction threshold is considered in the framework of the nonrelativistic diagrammatic approach with the Bonn OBE potential. A complete gauge-invariant set of diagrams is taken into account which includes resonance diagrams without and with NN-rescattering and diagrams with one- and two-body seagulls. The seagull operators are analyzed in detail, and their relations with free- and bound-nucleon polarizabilities are discussed. It is found that both dipole and higher-order polarizabilities of the nucleon are required for a quantitative description of recent experimental data. An estimate of the isospin-averaged dipole electromagnetic polarizabilities of the nucleon and the polarizabilities of the neutron is obtained from the data.

  8. Parameterized spectral distributions for meson production in proton-proton collisions

    NASA Technical Reports Server (NTRS)

    Schneider, John P.; Norbury, John W.; Cucinotta, Francis A.

    1995-01-01

    Accurate semiempirical parameterizations of the energy-differential cross sections for charged pion and kaon production from proton-proton collisions are presented at energies relevant to cosmic rays. The parameterizations, which depend on both the outgoing meson parallel momentum and the incident proton kinetic energy, are able to be reduced to very simple analytical formulas suitable for cosmic ray transport through spacecraft walls, interstellar space, the atmosphere, and meteorites.

  9. Secondary antiproton production in relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.; Ramaty, R.

    1985-01-01

    The possibility is investigated that the reported excess low energy antiproton component of the cosmic radiation results from proton-proton (p-p) interactions in relativistic plasmas. Because of both target and projectile motion in such plasmas, the antiproton production threshold in the frame of the plasma is much lower than the threshold of antiproton production in cosmic ray interactions with ambient matter. The spectrum of the resultant antiprotons therefore extends to much lower energy than in the cosmic ray case. The antiproton spectrum is calculated for relativistic thermal plasmas and the spectrum is estimated for relativistic nonthermal plasmas. As possible production sites, matter accreting onto compact objects located in the galaxy is considered. Possible overproduction of gamma rays from associated neutral pion production can be avoided if the site is optically thick to the photons but not to the antiprotons. A possible scenario involves a sufficiently large photon density that the neutral pion gamma rays are absorbed by photon-photon pair production. Escape of the antiprotons to the interstellar medium can be mediated by antineutron production.

  10. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Astrophysics Data System (ADS)

    Lukasiak, A.; Ferrando, P.; McDonald, F. B.; Webber, W. R.

    1994-03-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and a cosmic-ray lifetime for escape of 27 (+19, -9) x 106 years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  11. Superbubbles and Local Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Streitmatter, Robert E.; Jones, Frank C.

    2005-01-01

    We consider the possibility that distinctive features of the local cosmic ray spectra and composition are influenced by the Solar system being embedded within the cavity of an ancient superbubble. Shifts in the measured cosmic ray composition between 10(exp 11) and 10(exp 20) eV as well as the "knee" and "second knee" may be understood in this picture.

  12. Cosmic radiation and cancer: is there a link?

    PubMed

    Di Trolio, Rossella; Di Lorenzo, Giuseppe; Fumo, Bruno; Ascierto, Paolo A

    2015-01-01

    Cosmic radiation can cause genetic and cytogenetic damage. Certain occupations including airline pilots and cabin crew are acknowledged to have a greater exposure to cosmic radiation. In a systematic search of MEDLINE, performed from 1990 to 2014, we analyzed clinical studies using the keywords: cosmic radiation, cancer, chromosome aberration, pilots and astronauts. Increased incidence of skin cancers among airline cabin crew has been reported in a number of studies and appears to be the most consistent finding. However, as with other cancers, it is unclear whether increased exposure to cosmic radiation is a factor in the increased incidence or whether this can be explained by lifestyle factors. Further research is needed to clarify the risk of cancer in relation to cosmic radiation.

  13. The COBE cosmic 3 K anisotropy experiment: A gravity wave and cosmic string probe

    NASA Technical Reports Server (NTRS)

    Bennett, Charles L.; Smoot, George F.

    1989-01-01

    Among the experiments to be carried into orbit next year, by the COBE satellite, are differential microwave radiometers. They will make sensitive all-sky maps of the temperature of the cosmic microwave background radiation at three frequencies, giving dipole, quadrupole, and higher order multipole measurements of the background radiation. The experiment will either detect, or place significant constraints on, the existence of cosmic strings and long wavelength gravity waves.

  14. Cosmology with cosmic shear observations: a review.

    PubMed

    Kilbinger, Martin

    2015-07-01

    Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

  15. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    NASA Astrophysics Data System (ADS)

    Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A.; Krebs, H.; Meißner, Ulf-G.

    2016-07-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ resonance. The explicit inclusion of the leading contributions of the Δ isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the predictions from the recent Roy-Steiner-equation analysis of pion-nucleon scattering.

  16. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to themore » shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.« less

  17. Cosmic-ray detectors on the Moon

    NASA Technical Reports Server (NTRS)

    Linsley, John

    1988-01-01

    The state of cosmic ray physics is reviewed. It is concluded that the nonexistent lunar magnetic field, the low lunar radiation background, and the lack of an atmosphere on the Moon provide an excellent environment for the study of high energy primary cosmic rays.

  18. High-energy gamma-ray emission from pion decay in a solar flare magnetic loop

    NASA Technical Reports Server (NTRS)

    Mandzhavidze, Natalie; Ramaty, Reuven

    1992-01-01

    The production of high-energy gamma rays resulting from pion decay in a solar flare magnetic loop is investigated. Magnetic mirroring, MHD pitch-angle scattering, and all of the relevant loss processes and photon production mechanisms are taken into account. The transport of both the primary ions and the secondary positrons resulting from the decay of the positive pions, as well as the transport of the produced gamma-ray emission are considered. The distributions of the gamma rays as a function of atmospheric depth, time, emission angle, and photon energy are calculated and the dependence of these distributions on the model parameters are studied. The obtained angular distributions are not sufficiently anisotropic to account for the observed limb brightening of the greater than 10 MeV flare emission, indicating that the bulk of this emission is bremsstrahlung from primary electrons.

  19. Multinucleon pion absorption on {sup 4}He into the pppn final state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, A.; Backenstoss, G.; Koehler, J.

    1997-10-01

    Results from a 4{pi} solid angle measurement of the reaction {pi}{sup +4}He{r_arrow}pppn at incident pion energies of T{sub {pi}{sup +}}= 70, 118, 162, 239, and 330 MeV are presented. Integrated cross sections are given for the reactions where three nucleons participate, leading to energetic (ppp) or (ppn) final states, and for states where four nucleons are involved (pppn). The two three-nucleon absorption modes were investigated in particular, and an energy dependent isospin ratio of the cross sections of {sigma}{sub ppn}/ {sigma}{sub ppp}=3.6{plus_minus}1.3, 2.6 {plus_minus}0.5, 1.8{plus_minus}0.3, 1.4{plus_minus} 0.2, and 1.8{plus_minus}0.6 was determined from 70 to 330 MeV. The differential cross sectionsmore » were described by a complete set of eight independent variables and compared to simple cascade and phase space models. From this analysis the contributions from initial state interactions to the multinucleon absorption cross sections were found to be more important at higher pion energies, while those from final state interactions are stronger at lower energies. However, both mechanisms combined were found to account for not more than one-third of the total pppn multinucleon yield. The remaining strength is reasonably well reproduced by phase space models, but shows a dependence on the incident pion{close_quote}s orbital angular momentum. The isospin structure of the (ppp) and (ppn) final states is not understood, nor are some structures in their distributions. The four-nucleon yield (pppn) was found to be weak (1{endash}8{percent} of the total absorption cross section) and shows no evidence for a {open_quotes}double- {Delta}{close_quotes} excitation. {copyright} {ital 1997} {ital The American Physical Society}« less

  20. Long term variability of the cosmic ray intensity

    NASA Technical Reports Server (NTRS)

    Bhat, C. L.; Houston, B. P.; Mayer, C. J.; Wolfendale, A. W.

    1985-01-01

    In a previous paper Bhat, et al., assess the evidence for the continuing acceleration of cosmic rays in the Loop I supernova remnant. The enhanced gamma-ray emission is found consistent with the Blandford and Cowie model for particle acceleration at the remnant shock wave. The contributions of other supernovae remnants to the galactic cosmic ray energy density are now considered, paying anisotropy of cosmic rays accelerated by local supernovae ( 100 pc). The results are compared with geophysical data on the fluctuations in the cosmic ray intensity over the previous one billion years.

  1. Exclusive muon neutrino charged current pion-less topologies. ArgoNeuT results and future prospects in LAr TPC detectors

    DOE PAGES

    Palamara, Ornella

    2016-12-29

    Results from the analysis of charged current pion-less (CC 0-pion) muon neutrino events in argon collected by the ArgoNeuT experiment on the NuMI beam at Fermilab are presented and compared with predictions from Monte Carlo simulations. A novel analysis method, based on the reconstruction of exclusive topologies, fully exploiting the Liquid argon Time Projection Chamber (LAr TPC) technique capabilities, is used to analyze the events, characterized by the presence at the vertex of a leading muon track eventually accompanied by one or more highly ionizing tracks, and study nuclear effects in neutrino interactions on argon nuclei. Multiple protons accompanying themore » leading muon are visible in the ArgoNeuT events, and measured with a proton reconstruction threshold of 21 MeV kinetic energy. As a result, measurements of (anti-)neutrino CC 0-pion inclusive and exclusive cross sections on argon nuclei are reported. Prospects for future, larger mass LAr TPC detectors are discussed.« less

  2. High-Energy Cosmic Rays from Supernovae

    NASA Astrophysics Data System (ADS)

    Morlino, Giovanni

    Cosmic rays are charged relativistic particles that reach the Earth with extremely high energies, providing striking evidence of the existence of effective accelerators in the Universe. Below an energy around ˜ 1017 eV, cosmic rays are believed to be produced in the Milky Way, while above that energy, their origin is probably extragalactic. In the early 1930s, supernovae were already identified as possible sources for the galactic component of cosmic rays. After the 1970s this idea has gained more and more credibility, thanks to the development of the diffusive shock acceleration theory, which provides a robust theoretical framework for particle energization in astrophysical environments. Afterward, mostly in recent years, much observational evidence has been gathered in support of this framework, converting a speculative idea in a real paradigm. In this chapter the basic pillars of this paradigm will be illustrated. This includes the acceleration mechanism, the nonlinear effects produced by accelerated particles onto the shock dynamics needed to reach the highest energies, the escape process from the sources, and the transportation of cosmic rays through the Galaxy. The theoretical picture will be corroborated by discussing several observations which support the idea that supernova remnants are effective cosmic ray factories.

  3. Cosmic Ray Interactions in Shielding Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electronmore » volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.« less

  4. Differential Cross Sections for Proton-Proton Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  5. Multinucleon pion absorption in the sup 4 He(. pi. sup + , ppp ) n reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P.; McAlister, J.; Olszewski, R.

    1991-04-01

    Three-proton emission cross sections for the {sup 4}He({pi}{sup +},{ital ppp}){ital n} reaction were measured at an incident pion kinetic energy of {ital T}{sub {pi}}{sup +}=165 MeV over a wide angular range in a kinematically complete experiment. Angular correlations, missing momentum distributions, and energy spectra are compared with three- and four-body phase-space Monte Carlo calculations. The results provide strong evidence that most of the three-proton coincidences result from three-nucleon absorption. From phase-space integration the total three-nucleon absorption cross section is estimated to be {sigma}{sup 3{ital N}}=4.8{plus minus}1.0 mb. The cross section involving four nucleons is small and is estimated to bemore » {sigma}{sup 4{ital N}}{lt}2 mb. On the scale of the total absorption cross section in {sup 4}He, multinucleon pion absorption seems to represent only a small fraction.« less

  6. Lightning Discharges, Cosmic Rays and Climate

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Siingh, Devendraa; Singh, R. P.; Singh, A. K.; Kamra, A. K.

    2018-03-01

    The entirety of the Earth's climate system is continuously bombarded by cosmic rays and exhibits about 2000 thunderstorms active at any time of the day all over the globe. Any linkage among these vast systems should have global consequences. Numerous studies done in the past deal with partial links between some selected aspects of this grand linkage. Results of these studies vary from weakly to strongly significant and are not yet complete enough to justify the physical mechanism proposed to explain such links. This review is aimed at presenting the current understanding, based on the past studies on the link between cosmic ray, lightning and climate. The deficiencies in some proposed links are pointed out. Impacts of cosmic rays on engineering systems and the possible effects of cosmic rays on human health are also briefly discussed. Also enumerated are some problems for future work which may help in developing the grand linkage among these three vast systems.

  7. Smooth halos in the cosmic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaite, José, E-mail: jose.gaite@upm.es

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description ofmore » the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.« less

  8. Cosmic ray antimatter and baryon symmetric cosmology

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1982-01-01

    The relative merits and difficulties of the primary and secondary origin hypotheses for the observed cosmic-ray antiprotons, including the new low-energy measurement of Buffington, et al. We conclude that the cosmic-ray antiproton data may be evidence for antimatter galaxies and baryon symmetric cosmology. The present bar P data are consistent with a primary extragalactic component having /p=/equiv 1+/- 3.2/0.7x10 = to the -4 independent of energy. We propose that the primary extragalactic cosmic ray antiprotons are most likely from active galaxies and that expected disintegration of bar alpha/alpha ban alpha/alpha. We further predict a value for ban alpha/alpha =/equiv 10 to the -5, within range of future cosmic ray detectors.

  9. Cosmic-ray streaming and anisotropies

    NASA Technical Reports Server (NTRS)

    Forman, M. A.; Gleeson, L. J.

    1975-01-01

    The paper is concerned with the differential current densities and anisotropies that exist in the interplanetary cosmic-ray gas, and in particular with a correct formulation and simple interpretation of the momentum equation that describes these on a local basis. Two examples of the use of this equation in the interpretation of previous data are given. It is demonstrated that in interplanetary space, the electric-field drifts and convective flow parallel to the magnetic field of cosmic-ray particles combine as a simple convective flow with the solar wind, and that there exist diffusive currents and transverse gradient drift currents. Thus direct reference to the interplanetary electric-field drifts is eliminated, and the study of steady-state and transient cosmic-ray anisotropies is both more systematic and simpler.

  10. Space-atmospheric interactions of energetic cosmic rays

    NASA Astrophysics Data System (ADS)

    Isar, Paula Gina

    2015-02-01

    Ultra-high energy cosmic rays are the most energetic particles in the Universe of which origin still remain a mystery since a century from their descovery. They are unique messengers coming from far beyond our Milky Way Galaxy, which provides insights into the fundamental matter, energy, space and time. As subatomic particles flying through space to nearly light speed, the ultra-high energy cosmic rays are so rare that they strike the Earth's atmosphere at a rate of up to only one particle per square kilometer per year or century. While the atmosphere is used as a giant calorimeter where cosmic rays induced air showers are initiated and the medium through which Cherenkov or fluorescence light or radio waves propagate, all cosmic ray measurements (performed either from space or ground) rely on an accurate atmospheric monitoring and understanding of atmospheric effects. The interdisciplinary link between Astroparticle Physics and Atmospheric Environment through the ultra-high energy comic rays space - atmospheric interactions, based on the present ground- and future space-based cosmic ray observatories, will be presented.

  11. A demonstration device for cosmic rays telescopes

    NASA Astrophysics Data System (ADS)

    Esposito, Salvatore

    2018-01-01

    We describe a hands-on accurate demonstrator for cosmic rays realized by six high school students. The main aim is to show the relevance and the functioning of the principal parts of a cosmic ray telescope (muon detector), with the help of two large sized wooden artefacts. The first one points out how cosmic rays can be tracked in a muon telescope, while the other one shows the key avalanche process of electronic ionization that effectively allows muon detection through a photomultiplier. Incoming cosmic rays are visualized in terms of laser beams, whose 3D trajectory is highlighted by turning on LEDs on two orthogonal matrices. Instead the avalanche ionization process is demonstrated through the avalanche falling off glass marbles on an inclined plane, finally turning on a LED. A pictured poster accompanying the demonstrator is as effective in assisting cosmic ray demonstration and its detection. The success of the demonstrator has been fully proven by the general public during a science festival, in which the corresponding project won the Honorable Mention in a dedicated competition.

  12. The Formation of Solid Particles from their Gas-Phase Molecular Precursors in Cosmic Environments with NASA Ames' COSmIC Facility

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2014-01-01

    We present and discuss the unique characteristics and capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory. COSmIC stands for Cosmic Simulation Chamber and is dedicated to the study of molecules and ions under the low temperature and high vacuum conditions that are required to simulate interstellar, circumstellar and planetary physical environments in space. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a free jet supersonic expansion coupled to two ultrahigh-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) system for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection. Recent, unique, laboratory astrophysics results that were obtained using the capabilities of COSmIC will be discussed, in particular the progress that have been achieved in monitoring in the laboratory the formation of solid gains from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflow and planetary atmospheres. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of these studies for current and upcoming space missions.

  13. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  14. Spectral distortions of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Mcdowell, Jonathan C.; Freese, Katherine; Levin, Janna

    1989-01-01

    Recent experiments indicate that the spectrum of the cosmic microwave background deviates from a pure blackbody; here, spectral distortions produced by cosmic dust are considered. The main result is that cosmic dust in conjunction with an injected radiation field (perhaps produced by an early generation of very massive stars) can explain the observed spectral distortions without violating existing cosmological constraints. In addition, it is shown that Compton y-distortions can also explain the observed spectral shape, but the energetic requirements are more severe.

  15. Cosmic Radiation | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Radiation from space is constantly hitting the Earth. Radiation from space is called cosmic radiation. Cosmic radiation makes up about five percent of annual radiation exposure of an average person in the United States.

  16. Spontaneous pion emission as a new natural radioactivity

    NASA Astrophysics Data System (ADS)

    Ion, D. B.; Ivascu, M.; Ion-Mihai, R.

    1986-10-01

    In this paper the pionic nuclear radioactivity or spontaneous poin emission by a nucleus from its ground state is investigated. The Qπ-values as well as the statistical factors are calculated using the experimental masses tabulated by Wapstra and Audi. Then it was shown that the pionic radioactivity of the nuclear ground state is energetically possible via three-body channels for all nuclides with Z > 80. This new type of natural radioactivity is statistically favored especially for Z = 92 - 106 for which F π/F SF = 40 - 200 [ MeV] 2. Experimental detection of the neutral pion and also some possible emission mechanisms are discussed.

  17. Cosmic muon induced EM showers in NO$$\

    DOE PAGES

    Yadav, Nitin; Duyang, Hongyue; Shanahan, Peter; ...

    2016-11-15

    Here, the NuMI Off-Axis v e Appearance (NOvA) experiment is a ne appearance neutrino oscillation experiment at Fermilab. It identifies the ne signal from the electromagnetic (EM) showers induced by the electrons in the final state of neutrino interactions. Cosmic muon induced EM showers, dominated by bremsstrahlung, are abundant in NOvA far detector. We use the Cosmic Muon- Removal technique to get pure EM shower sample from bremsstrahlung muons in data. We also use Cosmic muon decay in flight EM showers which are highly pure EM showers.The large Cosmic-EM sample can be used, as data driven method, to characterize themore » EM shower signature and provides valuable checks of the simulation, reconstruction, particle identification algorithm, and calibration across the NOvA detector.« less

  18. Cosmic muon induced EM showers in NO$$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Nitin; Duyang, Hongyue; Shanahan, Peter

    Here, the NuMI Off-Axis v e Appearance (NOvA) experiment is a ne appearance neutrino oscillation experiment at Fermilab. It identifies the ne signal from the electromagnetic (EM) showers induced by the electrons in the final state of neutrino interactions. Cosmic muon induced EM showers, dominated by bremsstrahlung, are abundant in NOvA far detector. We use the Cosmic Muon- Removal technique to get pure EM shower sample from bremsstrahlung muons in data. We also use Cosmic muon decay in flight EM showers which are highly pure EM showers.The large Cosmic-EM sample can be used, as data driven method, to characterize themore » EM shower signature and provides valuable checks of the simulation, reconstruction, particle identification algorithm, and calibration across the NOvA detector.« less

  19. A short-orbit spectrometer for low-energy pion detection in electroproduction experiments at MAMI

    NASA Astrophysics Data System (ADS)

    Baumann, D.; Ding, M.; Friščić, I.; Böhm, R.; Bosnar, D.; Distler, M. O.; Merkel, H.; Müller, U.; Walcher, Th.; Wendel, M.

    2017-12-01

    A new Short-Orbit Spectrometer (SOS) has been constructed and installed within the experimental facility of the A1 collaboration at Mainz Microtron (MAMI), with the goal to detect low-energy pions. It is equipped with a Browne-Buechner magnet and a detector system consisting of two helium-ethane based drift chambers and a scintillator telescope made of five layers. The detector system allows detection of pions in the momentum range of 50-147 MeV/c, which corresponds to 8.7-63 MeV kinetic energy. The spectrometer can be placed at a distance range of 54-66 cm from the target center. Two collimators are available for the measurements, one having 1.8 msr aperture and the other having 7 msr aperture. The Short-Orbit Spectrometer has been successfully calibrated and used in coincidence measurements together with the standard magnetic spectrometers of the A1 collaboration.

  20. Cosmic Balloons

    ERIC Educational Resources Information Center

    El Abed, Mohamed

    2014-01-01

    A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.

  1. Testing parity-violating physics from cosmic rotation power reconstruction

    DOE PAGES

    Namikawa, Toshiya

    2017-02-22

    We study the reconstruction of the cosmic rotation power spectrum produced by parity-violating physics, with an eye to ongoing and near future cosmic microwave background (CMB) experiments such as BICEP Array, CMBS4, LiteBIRD and Simons Observatory. In addition to the inflationary gravitational waves and gravitational lensing, measurements of other various effects on CMB polarization open new window into the early Universe. One of these is anisotropies of the cosmic polarization rotation which probes the Chern-Simons term generally predicted by string theory. The anisotropies of the cosmic rotation are also generated by the primordial magnetism and in the Standard Model extentionmore » framework. The cosmic rotation anisotropies can be reconstructed as quadratic in CMB anisotropies. However, the power of the reconstructed cosmic rotation is a CMB four-point correlation and is not directly related to the cosmic-rotation power spectrum. Understanding all contributions in the four-point correlation is required to extract the cosmic rotation signal. Here, assuming inflationary motivated cosmic-rotation models, we employ simulation to quantify each contribution to the four-point correlation and find that (1) a secondary contraction of the trispectrum increases the total signal-to-noise, (2) a bias from the lensing-induced trispectrum is significant compared to the statistical errors in, e.g., LiteBIRD and CMBS4-like experiments, (3) the use of a realization-dependent estimator decreases the statistical errors by 10%–20%, depending on experimental specifications, and (4) other higher-order contributions are negligible at least for near future experiments.« less

  2. Dark cosmic rays

    DOE PAGES

    Hu, Ping-Kai; Kusenko, Alexander; Takhistov, Volodymyr

    2017-02-22

    If dark matter particles have an electric charge, as in models of millicharged dark matter, such particles should be accelerated in the same astrophysical accelerators that produce ordinary cosmic rays, and their spectra should have a predictable rigidity dependence. Depending on the charge, the resulting “dark cosmic rays” can be detected as muon-like or neutrino-like events in Super-Kamiokande, IceCube, and other detectors. We present new limits and propose several new analyses, in particular, for the Super-Kamiokande experiment, which can probe a previously unexplored portion of the millicharged dark matter parameter space. Here, most of our results are fairly general andmore » apply to a broad class of dark matter models.« less

  3. Charged kaon and pion production at midrapidity in proton-nucleus and sulphur-nucleus collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo /ggild, H.; Hansen, K.H.; Boissevain, J.

    1999-01-01

    The NA44 Collaboration has measured charged kaon and pion distributions at midrapidity in sulphur and proton collisions with nuclear targets at 200 and 450 GeV/c per nucleon, respectively. The inverse slopes of kaons, are larger than those of pions. The difference in the inverse slopes of pions, kaons, and protons, all measured in our spectrometer, increases with system size and is consistent with the buildup of collective flow for larger systems. The target dependence of both the yields and inverse slopes is stronger for the sulphur beam, suggesting the increased importance of secondary rescattering for SA reactions. The rapidity densitymore » dN/dy of both K{sup +} and K{sup {minus}} increases more rapidly with system size than for {pi}{sup +} in a similar rapidity region. This trend continues with increasing centrality, and according to RQMD, it is caused by secondary reactions between mesons and baryons. The K{sup {minus}}/K{sup +} ratio falls with increasing system size but more slowly than the {bar p}/p ratio. The {pi}{sup {minus}}/{pi}{sup +} ratio is close to unity for all systems. From pBe to SPb the K{sup +}/p ratio decreases while K{sup {minus}}/{bar p} increases and {radical} ((K{sup +}{center_dot}K{sup {minus}})/(p{center_dot}{bar p})) stays constant. These data suggest that as larger nuclei collide, the resulting system has a larger transverse expansion and baryon density and an increasing fraction of strange quarks. {copyright} {ital 1999} {ital The American Physical Society}« less

  4. Cosmic Rays in the Heliosphere: Requirements for Future Observations

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.

    2013-06-01

    Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.

  5. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  6. Cosmic-Ray Source Composition Determined from ACE

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M.

    2000-01-01

    The cosmic rays arriving at Earth comprise a mix of material produced by stellar sources and ejected into the interstellar medium (primary cosmic rays) and particles produced by fragmentation of heavier nuclei during transport through the Galaxy.

  7. Performance of the Advanced Thin Ionization Calorimeter (ATIC)

    NASA Technical Reports Server (NTRS)

    Case, G.; Ellison, S.; Gould, R.; Granger, D.; Guzik, T. G.; Isbert, J.; Price, B.; Stewart, M.; Wefel, J. P.; Adams, J. H.; hide

    2001-01-01

    The ATIC instrument is a balloon-borne experiment capable of measuring cosmic ray elemental spectra from 50 GeV to 100 TeV for nuclei from H to Fe with a fully active Bismuth Germanate calorimeter. Several Long Duration Balloon flights from McMurdo station, Antarctica are scheduled. The detector was tested with high energy electron, proton, and pion beams at CERN. We present results for 150 and 375 GeV protons, and 150 GeV pions and comparison with a GEANT Monte Carlo.

  8. Sea-quark distributions in the pion

    NASA Astrophysics Data System (ADS)

    Hwang, W.-Y. P.; Speth, J.

    1992-05-01

    Using Sullivan processes with ρππ, K*+K¯ 0π, and K¯ *0K+π vertices, we describe how the sea-quark distributions of a pion may be generated in a quantitative manner. The input valence-quark distributions are obtained using the leading Fock component of the light-cone wave function, which is in accord with results obtained from the QCD sum rules. The sample numerical results appear to be reasonable as far as the existing Drell-Yan production data are concerned, although the distributions as a function of x differs slightly from those obtained by imposing counting rules for x-->0 and x-->1. Our results lend additional support toward the conjecture of Hwang, Speth, and Brown that the sea distributions of a hadron, at low and moderate Q2 (at least up to a few GeV2), may be attributed primarily to generalized Sullivan processes.

  9. Acceleration and propagation of cosmic rays

    NASA Astrophysics Data System (ADS)

    Fransson, C.; Epstein, R. I.

    1980-11-01

    Two general categories of cosmic ray models are discussed, concomitant acceleration and propagation (CAP) models and sequential acceleration and propagation (SAP) models. These normally correspond to the cosmic rays being continuously accelerated in the interstellar medium or being rapidly produced by discrete sources or strong shock waves, respectively. For the CAP models it is found that the ratio of the predominantly secondary nuclei (Li + Be + B + N) to the predominantly primary nuclei (C + O) varies by less than a factor of 1.5 between 1 and 100 GeV per nucleon. This is at variance with current measurements. It thus appears that the evolution of cosmic rays is best described by SAP models.

  10. The structure of cosmic ray shocks

    NASA Astrophysics Data System (ADS)

    Axford, W. I.; Leer, E.; McKenzie, J. F.

    1982-07-01

    The acceleration of cosmic rays by steady shock waves has been discussed in brief reports by Leer et al. (1976) and Axford et al. (1977). This paper presents a more extended version of this work. The energy transfer and the structure of the shock wave is discussed in detail, and it is shown that even for moderately strong shock waves most of the upstream energy flux in the background gas is transferred to the cosmic rays. This holds also when the upstream cosmic ray pressure is very small. For an intermediate Mach-number regime the overall shock structure is shown to consist of a smooth transition followed by a gas shock (cf. Drury and Voelk, 1980).

  11. Cosmic-ray record in solar system matter

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Lal, D.

    1983-01-01

    The interaction of galactic cosmic rays (GCR) and solar cosmic rays (SCR) with bodies in the solar system is discussed, and what the record of that interaction reveals about the history of the solar system is considered. The influence of the energy, charge, and mass of the particles on the interaction is addressed, showing long-term average fluxes of solar protons, predicted production rates for heavy-nuclei tracks and various radionuclides as a function of depth in lunar rock, and integral fluxes of protons emitted by solar flares. The variation of the earth's magnetic field, the gardening of the lunar surface, and the source of meteorites and cosmic dust are studied using the cosmic ray record. The time variation of GCR, SCR, and VH and VVH nuclei is discussed for both the short and the long term.

  12. Cosmic Rays - A Word-Wide Student Laboratory

    NASA Astrophysics Data System (ADS)

    Adams, Mark

    2017-01-01

    The QuarkNet program has distributed hundreds of cosmic ray detectors for use in high schools and research facilities throughout the world over the last decade. Data collected by those students has been uploaded to a central server where web-based analysis tools enable users to characterize and to analyze everyone's cosmic ray data. Since muons rain down on everyone in the world, all students can participate in this free, high energy particle environment. Through self-directed inquiry students have designed their own experiments: exploring cosmic ray rates and air shower structure; and using muons to measure their speed, time dilation, lifetime, and affects on biological systems. We also plan to expand our annual International Muon Week project to create a large student-led collaboration where similar cosmic ray measurements are performed simultaneously throughout the world.

  13. Experimental investigation of ρ{sup 0} photoproduction on the pion in the H1 experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazdik, I. A., E-mail: vazdik@sgi.lebedev.ru; Collaboration: H1 Collaboration

    2016-12-15

    Experimental results on quasielastic photoproduction of the ρ{sup 0} meson in association with a neutron, obtained at the HERA collider, are presented. The total and differential cross sections of the γp → ρ{sup 0}nπ{sup +} reaction at the positron–proton center-of-mass energy of √s =319 GeV are measured. The data collected with the H1 detector in 2006 and 2007 correspond to an integrated luminosity of 1.16 pb{sup −1}. The kinematic region of the photon–proton cms energy of 20 < W{sub γp} <100 GeV, photon virtuality of Q{sup 2} < 2 GeV{sup 2}, and the ρ{sup 0} transverse momentum below 1 GeV/cmore » is analyzed. Secondary neutrons with energies x{sub L} > 0.35 (in proton-energy units) and emission angles below 0.75 mrad are selected. The model of double peripheral exchange, in which the ρ{sup 0} is elastically produced via the photon interaction with the virtual pion from the proton–neutron vertex, is employed for interpreting the results. The cross section for the ρ{sup 0} elastic photoproduction on the pion, γπ{sup +}→ ρ{sup 0}π{sup +}, is extracted in the one-pion-exchange approximation. The magnitude of the cross section suggests that the γp → ρ{sup 0}nπ{sup +} reaction is significantly affected by absorption.« less

  14. Can cosmic shear shed light on low cosmic microwave background multipoles?

    PubMed

    Kesden, Michael; Kamionkowski, Marc; Cooray, Asantha

    2003-11-28

    The lowest multipole moments of the cosmic microwave background (CMB) are smaller than expected for a scale-invariant power spectrum. One possible explanation is a cutoff in the primordial power spectrum below a comoving scale of k(c) approximately equal to 5.0 x 10(-4) Mpc(-1). Such a cutoff would increase significantly the cross correlation between the large-angle CMB and cosmic-shear patterns. The cross correlation may be detectable at >2sigma which, combined with the low CMB moments, may tilt the balance between a 2sigma result and a firm detection of a large-scale power-spectrum cutoff. The cutoff also increases the large-angle cross correlation between the CMB and the low-redshift tracers of the mass distribution.

  15. Features about pion production in 2.1A and 3.7AGeV 4He-nucleus interactions up to and out of kinematical limit

    NASA Astrophysics Data System (ADS)

    Abdelsalam, A.; Badawy, B. M.; Amer, H. A.; Osman, W.; El-Ashmawy, M. M.; Abdallah, N.

    The shower particle multiplicity characteristics are studied in 2.1A and 3.7A GeV 4He interactions with emulsion nuclei. The dependencies on emission direction, energy, target size, and centrality are examined. The data are compared with the simulation of the modified FRITIOF model. The forward emitted pion multiplicity distributions exhibit KNO scaling. The decay or peaking shaped curves characterize the pion multiplicity distributions. The decay shape is suggested to be due to a single source contribution and the peaking one results from a multisource superposition. The forward emitted pion is created from fireball or hadronic matter. The target nucleus is the origin of the backward one, regarding the nuclear limiting fragmentation hypothesis.

  16. Charm: Cosmic history agnostic reconstruction method

    NASA Astrophysics Data System (ADS)

    Porqueres, Natalia; Ensslin, Torsten A.

    2017-03-01

    Charm (cosmic history agnostic reconstruction method) reconstructs the cosmic expansion history in the framework of Information Field Theory. The reconstruction is performed via the iterative Wiener filter from an agnostic or from an informative prior. The charm code allows one to test the compatibility of several different data sets with the LambdaCDM model in a non-parametric way.

  17. PLASMA EFFECTS ON EXTRAGALACTIC ULTRAHIGH-ENERGY COSMIC-RAY HADRON BEAMS IN COSMIC VOIDS. II. KINETIC INSTABILITY OF PARALLEL ELECTROSTATIC WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakau, S.; Schlickeiser, R., E-mail: steffen.krakau@rub.de, E-mail: rsch@tp4.rub.de

    2016-02-20

    The linear instability of an ultrarelativistic hadron beam in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of parallel electrostatic and electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays from their distant sources to Earth. As opposed to the previous paper, we calculate the minimum instability growth time for Lorentz-distributed cosmic rays which traverse the hot IGM. The growth times are orders of magnitude higher than the cosmic-ray propagation time in the IGM. Since the backreaction of the generated plasma fluctuations (plateauing) lasts longer than the propagation time, the cosmic-raymore » hadron beam can propagate to the Earth without losing a significant amount of energy to electrostatic turbulence.« less

  18. Transient cosmic ray increase associated with a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.

    1985-01-01

    On the basis of worldwide network data of cosmic ray nucleonic components, the transient cosmic ray increase due to the depression of cosmic ray cutoff rigidity during a severe geomagnetic storm was investigated in terms of the longitudinal dependence. Multiple correlation analysis among isotropic and diurnal terms of cosmic ray intensity variations and Dst term of the geomagnetic field is applied to each of various station's data. It is shown that the amplitude of the transient cosmic ray increase associated with Dst depends on the local time of the station, and that its maximum phase is found in the evening sector. This fact is consistent with the theoretical estimation based on the azimuthally asymmetric ring current model for the magnetic DS field.

  19. Charge 4/3 leptons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Wada, T.; Yamashita, Y.; Imaeda, K.; Yamamoto, I.

    1985-01-01

    A cosmic ray counter telescope has been operated at zenith angles of 0, 40, 44, and 60 degs in order to look for charge 4/3 particles. A few million clean single cosmic rays of each zenith angle are analyzed.

  20. Evaluation of Light Collection System for Pion and Kaon Experiments in Hall C at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Roustom, Salim

    2017-09-01

    The neutral pion and the kaon are opportune to study the hadron structure through General Parton Distributions, which can be viewed as spatial densities at different momenta of the quarks inside the proton. To study hadron structure with pion or kaon experiments in Hall C at 12 GeV Jefferson Lab, one must analyze the final state neutral pions and kaons and their decay products. For the analysis of these particles, dedicated detectors based on the Cherenkov or scintillation mechanism are used, e.g. the HMS and SHMS aerogel detectors and the PbWO4-based Neutral Particle Spectrometer. A critical part of these detectors is the light collection system. Photomultiplier Tubes (PMTs) have many advantages, however, they are sensitive to magnetic fields and can get damaged by elevated helium levels in the atmosphere. An alternative to PMTs are Avalanche Photodiodes (APDs). APDs are sensitive to background noise, temperature, and radiation. It is thus important to evaluate the benefits of each light collection system and optimize operating conditions to ensure performance over a reasonably long time. I will present a performance study of PMTs exposed to elevated levels of helium and a comparison of APDs as alternatives, as well as new, compact readout methods. Supported in part by NSF Grants PHY-1714133, PHY-1530874, PHY-1306227 and PHY-1306418.

  1. SHIELD and HZETRN comparisons of pion production cross sections

    NASA Astrophysics Data System (ADS)

    Norbury, John W.; Sobolevsky, Nikolai; Werneth, Charles M.

    2018-03-01

    A program of comparing American (NASA) and Russian (ROSCOSMOS) space radiation transport codes has recently begun, and the first paper directly comparing the NASA and ROSCOSMOS space radiation transport codes, HZETRN and SHIELD respectively has recently appeared. The present work represents the second time that NASA and ROSCOSMOS calculations have been directly compared, and the focus here is on models of pion production cross sections used in the two transport codes mentioned above. It was found that these models are in overall moderate agreement with each other and with experimental data. Disagreements that were found are discussed.

  2. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; hide

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  3. Cosmic Censorship for Gowdy Spacetimes.

    PubMed

    Ringström, Hans

    2010-01-01

    Due to the complexity of Einstein's equations, it is often natural to study a question of interest in the framework of a restricted class of solutions. One way to impose a restriction is to consider solutions satisfying a given symmetry condition. There are many possible choices, but the present article is concerned with one particular choice, which we shall refer to as Gowdy symmetry. We begin by explaining the origin and meaning of this symmetry type, which has been used as a simplifying assumption in various contexts, some of which we shall mention. Nevertheless, the subject of interest here is strong cosmic censorship. Consequently, after having described what the Gowdy class of spacetimes is, we describe, as seen from the perspective of a mathematician, what is meant by strong cosmic censorship. The existing results on cosmic censorship are based on a detailed analysis of the asymptotic behavior of solutions. This analysis is in part motivated by conjectures, such as the BKL conjecture, which we shall therefore briefly describe. However, the emphasis of the article is on the mathematical analysis of the asymptotics, due to its central importance in the proof and in the hope that it might be of relevance more generally. The article ends with a description of the results that have been obtained concerning strong cosmic censorship in the class of Gowdy spacetimes.

  4. Simulation of dependence of the cross section of deuterons beam fragmentation into cumulative pions and protons on the mass of the target nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litvinenko, A. G., E-mail: alitvin@jinr.ru; Litvinenko, E. I.

    2015-03-15

    We have studied the mechanisms influencing production of cumulative pions and protons in the fragmentation of the incident deuterons into cumulative pions and protons emitted at zero angle. We argue that the peripheral dependence on the atomic mass of the target nucleus, which was obtained in the experiments for medium and heavy nuclei, can be explained by scattering on target nucleons without introducing additional parameters.

  5. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; hide

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  6. Cosmocultural Evolution: Cosmic Motivation for Interstellar Travel?

    NASA Astrophysics Data System (ADS)

    Lupisella, M.

    Motivations for interstellar travel can vary widely from practical survival motivations to wider-ranging moral obligations to future generations. But it may also be fruitful to explore what, if any, "cosmic" relevance there may be regarding interstellar travel. Cosmocultural evolution can be defined as the coevolution of cosmos and culture, with cultural evolution playing an important and perhaps critical role in the overall evolution of the universe. Strong versions of cosmocultural evolution might suggest that cultural evolution may have unlimited potential as a cosmic force. In such a worldview, the advancement of cultural beings throughout the universe could have significant cosmic relevance, perhaps providing additional motivation for interstellar travel. This paper will explore some potential philosophical and policy implications for interstellar travel of a cosmocultural evolutionary perspective and other related concepts, including some from a recent NASA book, Cosmos and Culture: Cultural Evolution in a Cosmic Context.

  7. Carl Sagan's Cosmic Connection

    NASA Astrophysics Data System (ADS)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  8. Cosmic microwave background theory

    PubMed Central

    Bond, J. Richard

    1998-01-01

    A long-standing goal of theorists has been to constrain cosmological parameters that define the structure formation theory from cosmic microwave background (CMB) anisotropy experiments and large-scale structure (LSS) observations. The status and future promise of this enterprise is described. Current band-powers in ℓ-space are consistent with a ΔT flat in frequency and broadly follow inflation-based expectations. That the levels are ∼(10−5)2 provides strong support for the gravitational instability theory, while the Far Infrared Absolute Spectrophotometer (FIRAS) constraints on energy injection rule out cosmic explosions as a dominant source of LSS. Band-powers at ℓ ≳ 100 suggest that the universe could not have re-ionized too early. To get the LSS of Cosmic Background Explorer (COBE)-normalized fluctuations right provides encouraging support that the initial fluctuation spectrum was not far off the scale invariant form that inflation models prefer: e.g., for tilted Λ cold dark matter sequences of fixed 13-Gyr age (with the Hubble constant H0 marginalized), ns = 1.17 ± 0.3 for Differential Microwave Radiometer (DMR) only; 1.15 ± 0.08 for DMR plus the SK95 experiment; 1.00 ± 0.04 for DMR plus all smaller angle experiments; 1.00 ± 0.05 when LSS constraints are included as well. The CMB alone currently gives weak constraints on Λ and moderate constraints on Ωtot, but theoretical forecasts of future long duration balloon and satellite experiments are shown which predict percent-level accuracy among a large fraction of the 10+ parameters characterizing the cosmic structure formation theory, at least if it is an inflation variant. PMID:9419321

  9. Excited cosmic strings with superconducting currents

    NASA Astrophysics Data System (ADS)

    Hartmann, Betti; Michel, Florent; Peter, Patrick

    2017-12-01

    We present a detailed analysis of excited cosmic string solutions that possess superconducting currents. These currents can be excited inside the string core, and—if the condensate is large enough—can lead to the excitations of the Higgs field. Next to the case with global unbroken symmetry, we discuss also the effects of the gauging of this symmetry and show that excited condensates persist when coupled to an electromagnetic field. The space-time of such strings is also constructed by solving the Einstein equations numerically and we show how the local scalar curvature is modified by the excitation. We consider the relevance of our results on the cosmic string network evolution as well as observations of primordial gravitational waves and cosmic rays.

  10. Thresholds and the rising pion inclusive cross section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.T.

    In the context of the hypothesis of the Pomeron-f identity, it is shown that the rising pion inclusive cross section can be explained over a wide range of energies as a series of threshold effects. Low-mass thresholds are seen to be important. In order to understand the contributions of high-mass thresholds (flavoring), a simple two-channel multiperipheral model is examined. The analysis sheds light on the relation between thresholds and Mueller-Regge couplings. In particular, it is seen that inclusive-, and total-cross-section threshold mechanisms may differ. A quantitative model based on this idea and utilizing previous total-cross-section fits is seen to agreemore » well with experiment.« less

  11. Off-Shell Persistence of Composite Pions and Kaons

    DOE PAGES

    Qin, Si -Xue; Chen, Chen; Mezrag, Cedric; ...

    2018-01-17

    In order for a Sullivan-like process to provide reliable access to a meson target as t becomes spacelike, the pole associated with that meson should remain the dominant feature of the quarkantiquark scattering matrix and the wave function describing the related correlation must evolve slowly and smoothly. Using continuum methods for the strong-interaction bound-state problem, we explore and delineate the circumstances under which these conditions are satisfied: for the pion, this requires -t ≲ 0.6 GeV 2, whereas -t ≲ 0.9 GeV 2 will suffice for the kaon. Furthermore, these results should prove useful in evaluating the potential of numerousmore » experiments at existing and proposed facilities.« less

  12. Relativistic heavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Binns, W. R.

    1972-01-01

    During three balloon flights of a 1 sq m sr ionization chamber/Cerenkov counter detector system, measurements were made of the atmospheric attenuation, flux, and charge composition of cosmic ray nuclei with 16 is less than or = Z is less than or = 30 and rigidity greater than 4.5 GV. The attenuation mean free path in air of VH (20 less than or = Z less than or = 30) nuclei is found to be 19.7 + or - 1.6 g/sq cm, a value somewhat greater than the best previous measurement. The attenuation mean free path of iron is found to be 15.6 + or - 2.2 g/sq cm, consistent with predictions of geometric cross-section formulae. An absolute flux of VH nuclei 10 to 20% higher than earlier experiments at similar geomagnetic cutoff and level of solar activity was measured. The relative abundances of even-charged nuclei are found to be in good agreement with results of other recent high resolution counter experiments. The observed cosmic ray chemical composition implies relative abundances at the cosmic ray source of Ca/Fe = 0.12 + or - 0.04 and S/Fe = 0.14 + or - 0.05.

  13. Pion Inelastic Scattering to the First Three Excited States of Lithium-6.

    DTIC Science & Technology

    1984-12-01

    and Spectrometer system at the Clinton P. Anderson Meson Physics Facility, differential cross sections were measured for n+ inelastic scattering to the...Professor: C. Fred Moore Using the Energetic Pion Channel and Spectrometer system at the Clinton P. Anderson Meson Physics Facility, differential cross...due to the construction and subsequent operation of three meson production facilities: the Los Alamos Meson Physics Facility (LAMPF) in the United

  14. Formation of Cosmic Carbon Dust Analogues in Plasma Reactors

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2016-01-01

    Cosmic carbon dust analogs are produced, processed and analyzed in the laboratory using NASA's COSmIC (COSmIC Simulation Chamber) Facility. These experiments can be used to derive information on the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars.

  15. Cosmic ray propagation in the local superbubble

    NASA Technical Reports Server (NTRS)

    Steitmatter, R. E.; Balasubrahmanyan, V. K.; Protheroe, R. J.; Ormes, J. F.

    1984-01-01

    It is suggested that a ring of HI gas lying in the galactic plane is part of a supershell which formed some 3 x to the 7th power years ago. The consequences of a closed magnetic supershell for cosmic ray propagation are examined and it is concluded that there is no evidence which precludes the production and trapping of cosmic rays in such a region. A consequence of superbubble confinement is that the mean age of cosmic rays would be independent of energy. This can be tested by high energy observations of the isotopic composition of Be.

  16. Cosmic string lensing and closed timelike curves

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Tye, S.-H. Henry

    2005-08-01

    In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.

  17. Cosmic-ray antimatter - A primary origin hypothesis

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Protheroe, R. J.; Kazanas, D.

    1983-01-01

    The present investigation is concerned with the possibility that the observed cosmic-ray protons are of primary extragalactic origin, taking into account the significance of the current antiproton data. Attention is given to questions regarding primary antiprotons, antihelium fluxes, and the propagation of extragalactic cosmic rays. It is concluded that the primary origin hypothesis should be considered as a serious alternative explanation for the cosmic-ray antiproton fluxes. Such extragalactic primary origin can be considered in the context of a baryon symmetric domain cosmology. The fluxes and propagation characteristics suggested are found to be in rough agreement with the present antiproton data.

  18. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    McEwen, J. D.; Feeney, S. M.; Peiris, H. V.; Wiaux, Y.; Ringeval, C.; Bouchet, F. R.

    2017-12-01

    Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high-energy scales. We develop a framework for cosmic string inference from observations of the CMB made over the celestial sphere, performing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension Gμ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations, we demonstrate the application of our framework and evaluate its performance. The method is sensitive to Gμ ∼ 5 × 10-7 for Nambu-Goto string simulations that include an integrated Sachs-Wolfe contribution only and do not include any recombination effects, before any parameters of the analysis are optimized. The sensitivity of the method compares favourably with other techniques applied to the same simulations.

  19. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    NASA Astrophysics Data System (ADS)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  20. Ultra-heavy cosmic rays: Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1977-01-01

    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  1. Xenia: A Probe of Cosmic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Piro, L.

    2008-01-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  2. Xenia: A Probe of Cosmic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Piro, L.; Xenia Collaboration

    2008-03-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and γ-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  3. The Cosmic Microwave Background Anisotropy

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  4. Is cosmic acceleration slowing down?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafieloo, Arman; Sahni, Varun; Starobinsky, Alexei A.

    2009-11-15

    We investigate the course of cosmic expansion in its recent past using the Constitution SN Ia sample, along with baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) data. Allowing the equation of state of dark energy (DE) to vary, we find that a coasting model of the universe (q{sub 0}=0) fits the data about as well as Lambda cold dark matter. This effect, which is most clearly seen using the recently introduced Om diagnostic, corresponds to an increase of Om and q at redshifts z < or approx. 0.3. This suggests that cosmic acceleration may have already peaked andmore » that we are currently witnessing its slowing down. The case for evolving DE strengthens if a subsample of the Constitution set consisting of SNLS+ESSENCE+CfA SN Ia data is analyzed in combination with BAO+CMB data. The effect we observe could correspond to DE decaying into dark matter (or something else)« less

  5. Research in cosmic and gamma ray astrophysics: Cosmic physics portion

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen

    1993-01-01

    Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.

  6. A database of charged cosmic rays

    NASA Astrophysics Data System (ADS)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  7. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  8. Comparing cosmic web classifiers using information theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leclercq, Florent; Lavaux, Guilhem; Wandelt, Benjamin

    We introduce a decision scheme for optimally choosing a classifier, which segments the cosmic web into different structure types (voids, sheets, filaments, and clusters). Our framework, based on information theory, accounts for the design aims of different classes of possible applications: (i) parameter inference, (ii) model selection, and (iii) prediction of new observations. As an illustration, we use cosmographic maps of web-types in the Sloan Digital Sky Survey to assess the relative performance of the classifiers T-WEB, DIVA and ORIGAMI for: (i) analyzing the morphology of the cosmic web, (ii) discriminating dark energy models, and (iii) predicting galaxy colors. Ourmore » study substantiates a data-supported connection between cosmic web analysis and information theory, and paves the path towards principled design of analysis procedures for the next generation of galaxy surveys. We have made the cosmic web maps, galaxy catalog, and analysis scripts used in this work publicly available.« less

  9. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  10. Transverse single-spin asymmetries for direct photon and neutral pion production in midrapidity at PHENIX

    NASA Astrophysics Data System (ADS)

    Lewis, Nicole; Phenix Collaboration

    2017-09-01

    Large transverse single spin asymmetries for hadron production in proton-proton collisions were some of the first indicators of significant nonperturbative spin-momentum correlations in the proton. They have been found to persist up to collision energies of 510 GeV, yet their origin remains poorly understood. Measurements of different final-state particles in a wide variety of collision systems over a range of kinematics can help to identify and separate contributions from the proton versus hadronization, and from different parton flavors. Depending on the rapidity pion production can provide access to both initial- and final-state effects for a mix of parton flavors, while direct photons depend only on initial-state effects and are particularly sensitive to gluon dynamics in RHIC kinematics. The status of transverse single spin measurements for neutral pions and direct photons performed for p+p, p+Al, and p+Au collisions at PHENIX will be presented.

  11. Relative distribution of cosmic rays and magnetic fields

    NASA Astrophysics Data System (ADS)

    Seta, Amit; Shukurov, Anvar; Wood, Toby S.; Bushby, Paul J.; Snodin, Andrew P.

    2018-02-01

    Synchrotron radiation from cosmic rays is a key observational probe of the galactic magnetic field. Interpreting synchrotron emission data requires knowledge of the cosmic ray number density, which is often assumed to be in energy equipartition (or otherwise tightly correlated) with the magnetic field energy. However, there is no compelling observational or theoretical reason to expect such a tight correlation to hold across all scales. We use test particle simulations, tracing the propagation of charged particles (protons) through a random magnetic field, to study the cosmic ray distribution at scales comparable to the correlation scale of the turbulent flow in the interstellar medium (≃100 pc in spiral galaxies). In these simulations, we find that there is no spatial correlation between the cosmic ray number density and the magnetic field energy density. In fact, their distributions are approximately statistically independent. We find that low-energy cosmic rays can become trapped between magnetic mirrors, whose location depends more on the structure of the field lines than on the field strength.

  12. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  13. Cosmic ray research in India: 1912-2012

    NASA Astrophysics Data System (ADS)

    Tonwar, Suresh C.

    2013-02-01

    The progress of research in cosmic rays in India over the last 100 years is reviewed, starting with the pioneering work of Debendra Mohan Bose and Homi Bhabha. Experimental research in cosmic rays in India received a big push with the establishment of the Tata Institute of Fundamental Research by Homi Bhabha in Bombay in 1945, the Physical Research Laboratory by Vikram Sarabhai in Ahemedabad in 1947 and the setting up of a cosmic ray research group by Piara Singh Gill at the Aligarh Muslim University in Aligarh in 1949. Studies on high energy interactions by B.V. Sreekantan and colleagues and on muons and neutrinos deep underground in KGF mines by M.G.K. Menon and coworkers were the highlights of the research work in India in 1950's and 60's. In 1970's and 80's, important advances were made in India in several areas, for example, search for proton decay in KGF mines by M.G.K. Menon et al, search for TeV cosmic gamma-ray sources at Ooty and Pachmari by P.V. Ramanamurthy and colleagues, search for PeV cosmic gamma ray sources by S.C. Tonwar et al at Ooty and by M.V.S. Rao and coworkers at KGF. In 1990's, Sreekantan and Tonwar initiated the GRAPES-3 project at Ooty to determine the composition of cosmic ray flux around the 'knee' in the primary energy spectrum at PeV energies using a large muon detector and a compact air shower array. Another major effort to search for TeV gamma-ray sources was initiated by H. Razdan and C.L. Bhat, initially at Gulmarg in Kashmir in the 1980's, leading to successful observations with a stereoscopic imaging atmospheric Cherenkov telescope at Mount Abu in early 2000. In recent years the Pachmari group and the Mount Abu group have joined together to install a sophisticated system of atmospheric Cherenkov detectors at Hanle in the Ladakh region at an altitude of 4200 m to continue studies on VHE sources of cosmic gammarays.

  14. Cosmic Dawn with WFIRST

    NASA Astrophysics Data System (ADS)

    Rhoads, James

    Central objectives: WFIRST-AFTA has tremendous potential for studying the epoch of "Cosmic Dawn" the period encompassing the formation of the first galaxies and quasars, and their impact on the surrounding universe through cosmological reionization. Our goal is to ensure that this potential is realized through the middle stages of mission planning, culminating in designs for both WFIRST and its core surveys that meet the core objectives in dark energy and exoplanet science, while maximizing the complementary Cosmic Dawn science. Methods: We will consider a combined approach to studying Cosmic Dawn using a judicious mixture of guest investigator data analysis of the primary WFIRST surveys, and a specifically designed Guest Observer program to complement those surveys. The Guest Observer program will serve primarily to obtain deep field observations, with particular attention to the capabilities of WFIRST for spectroscopic deep fields using the WFI grism. We will bring to bear our years of experience with slitless spectroscopy on the Hubble Space Telescope, along with an expectation of JWST slitless grism spectroscopy. We will use this experience to examine the implications of WFIRST’s grism resolution and wavelength coverage for deep field observations, and if appropriate, to suggest potential modifications of these parameters to optimize the science return on WFIRST. We have assembled a team of experts specializing in (1) Lyman Break Galaxies at redshifts higher than 7 (2) Quasars at high redshifts (3) Lyman-alpha galaxies as probes of reionization (4) Theoretical simulations of high-redshift galaxies (5) Simulations of grism observations (6) post-processing analysis to find emission line galaxies and high redshift galaxies (7) JWST observations and calibrations. With this team we intend to do end-to-end simulations starting with halo populations and expected spectra of high redshift galaxies and finally extracting what we can learn about (a) reionization

  15. Cosmic-ray tracing

    NASA Astrophysics Data System (ADS)

    Becker Tjus, Julia

    2018-04-01

    Active galactic nuclei are firm favourites to be revealed as the source of cosmic rays, but solid evidence has proven elusive. A model taking both local and global nuclei propagation into account may help to close the deal.

  16. Direct observations of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Müller, Dietrich

    2012-08-01

    The mysterious " radiation ... entering our atmosphere from above" discovered by Hess in 1912 is now known to be dominated by relativistic charged particles, mostly with energies in the GeV-range, but extending to energies higher by many orders of magnitude. As none of these particles can penetrate the earth's atmosphere without interaction, detailed studies of their composition and energy spectra require observations with high-altitude balloons or spacecraft. This became possible only towards the middle of the 20th century. The direct measurements have now revealed much detail about the Galactic cosmic rays below 1015eV, but do not yet provide much overlap with the air-shower region of energies. A historic overview of the measurements is given, beginning with the realization that the majority of the cosmic rays are protons. The discovery and astrophysical significance of the heavier nuclei, and of the ultra-heavy nuclei beyond iron and up to the actinides, are then described, and measurements of the isotopic composition are discussed. Observations of the individual energy spectra are reviewed, and finally, the detection of electrons, positrons, and anti-protons in the cosmic rays, and the searches for exotic or unusual phenomena are summarized. Emphasis is given to the fact that all of these discoveries have become possible through the evolution of increasingly sophisticated detection techniques, a process that is continuing through the present time. The precise knowledge of the abundance distributions of the elements in the cosmic rays and of their isotopic composition permits a comparison with the "universal abundance scale" and provides strong constraints on the origin of the cosmic-ray material in the interstellar medium. "Clock-isotopes" reveal the time history of the particles. The shapes of the energy spectra of the individual cosmic-ray components are related to evolving ideas about particle acceleration and propagation in the Galaxy. In conclusion

  17. Ionospheric Electron Density Measurements Using COSMIC

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Budzien, S. A.; Bernhardt, P. A.; Rocken, C.; Syndergaard, S.

    2007-12-01

    At 0140 UTC on April 15, 2006, the joint Taiwan-U.S. COSMIC/FORMOSAT-3 (Constellation Observing System for Meteorology, Ionosphere, and Climate and Formosa Satellite mission #3; hereafter COSMIC) mission, a constellation of six micro-satellites, was launched into a 512-km orbit from Vandenberg Air Force Base in California. Using on-board propulsion these satellites have been deployed to their final orbits at 800 km with 30 degrees of separation. This process has taken about 17 months following the launch. There are three instruments aboard each COSMIC satellite: the GPS Occultation Experiment (GOX), the Tri-Band Beacon (TBB), and the Tiny Ionospheric Photometer (TIP). These three instruments constitute a unique suite of instruments for studying the Earth's ionosphere. The GOX instrument operates by inferring the slant total electron content (the integral of the electron density along the line-of-sight) between the COSMIC satellites and the GPS satellites as a function of tangent height above the Earth's limb. These data can be inverted to produce electron density profiles in the E and F regions of the ionosphere. The TBB is a three frequency radio beacon that radiates coherently at 150, 400, and 1067 MHz. When the relative phases of the signals are measured between the COSMIC satellites and ground-based or space-based receivers, the total electron content along the line-of-sight can be determined. By making the measurements from a set of receivers, the two-dimensional distribution of electrons beneath the satellite can be determined using tomographic techniques. The TIP instrument measures the optical signature of the natural decay of the ionosphere produced via ecombination of the O+ ions and electrons. The TIP measurements can be used to characterize the morphology and dynamics of the global ionosphere. Additionally, the TIP measurements can be inverted in conjunction with the GPS occultation measurements, using tomographic techniques, to produce the two

  18. Determination and study of the cosmic-ray composition above 100 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, G.; Haines, T.J.; Hoffman, C.M.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new technique using ground-based measurements to determine the cosmic-ray composition at energies around 10{sup 15} eV (the knee in the cosmic-ray spectrum). Cosmic rays are high-energy nuclei that continuously bombard the earth. Though cosmic rays were first detected in the 1870s it wasn`t until 1915 that their cosmic origin was established. At present, the authors still do not know the source of cosmic rays. At energies above 50 TeVmore » (1 TeV = 1 trillion electron-volts) they do not know the composition of the cosmic rays. At about 5 PeV (1PeV = 10{sup 15} eV) the cosmic ray spectrum steepens. Knowledge of the composition above and below this point can help determine the origin of cosmic rays.« less

  19. Do cosmic ray air showers initiate lightning?: A statistical analysis of cosmic ray air showers and lightning mapping array data

    NASA Astrophysics Data System (ADS)

    Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.

    2017-08-01

    It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate lightning via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow, cause the local atmosphere in a thundercloud to transition to a conducting state. In response to this claim, other researchers have published simulations showing that the electron density produced by RREA is far too small to be able to affect the conductivity in the cloud sufficiently to initiate lightning. In this paper, we compare 74 days of cosmic ray air shower data collected in north central Florida during 2013-2015, the recorded CRASs having primary energies on the order of 1016 eV to 1018 eV and zenith angles less than 38°, with Lightning Mapping Array (LMA) data, and we show that there is no evidence that the detected cosmic ray air showers initiated lightning. Furthermore, we show that the average probability of any of our detected cosmic ray air showers to initiate a lightning flash can be no more than 5%. If all lightning flashes were initiated by cosmic ray air showers, then about 1.6% of detected CRASs would initiate lightning; therefore, we do not have enough data to exclude the possibility that lightning flashes could be initiated by cosmic ray air showers.

  20. Th/U/Pu/Cm dating of galactic cosmic rays with the extremely heavy cosmic ray composition observer

    NASA Astrophysics Data System (ADS)

    Westphal, Andrew J.; Weaver, Benjamin A.; Tarlé, Gregory

    The principal goal of ECCO, the Extremely-heavy Cosmic-ray Composition Observer, is the measurement of the age of heavy galactic cosmic-ray nuclei using the extremely rare actinides (Th, U, Pu, Cm) as clocks. ECCO is one of two cosmic-ray instruments comprising the Heavy Nuclei Explorer (HNX), which was recently selected as one of several missions for Phase A study under NASA's Small class Explorer (SMEX) program. ECCO is based on the flight heritage of Trek, an array of barium-phosphate glass tracketch detectors deployed on the Russian space station Mir from 1991-1995. Using Trek, we measured the abundances of elements with Z > 70 in the galactic cosmic rays (GCRs). Trek consisted of a 1 m 2 array of stacks of individually polished thin BP-1 glass detectors. ECCO will be a much larger instrument, but will achieve both excellent resolution and low cost through use of a novel detector configuration. Here we report the results of recent accelerator tests of the ECCO detectors that verify detector performance. We also show the expected charge and energy resolution of ECCO as a function of energy.

  1. Extracting the σ-term from low-energy pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Ruiz de Elvira, Jacobo; Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G.

    2018-02-01

    We present an extraction of the pion-nucleon (π N) scattering lengths from low-energy π N scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scattering-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large π N σ-term, {σ }π N=58(5) {{MeV}}, in agreement with, albeit less precise than, the determination from pionic atoms.

  2. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Kalousis, L. N.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Lange, G.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Pelkey, R.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; John, J. St.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-12-01

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) × 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be epsilondata=(97.1±0.1 (stat) ± 1.4 (sys))%, in good agreement with the Monte Carlo reconstruction efficiency epsilonMC = (97.4±0.1)%. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag ≈80% of the cosmic rays passing through the MicroBooNE detector.

  3. Elliptic flow of charged pions, protons and strange particles emitted in Pb + Au collisions at top SPS energy

    NASA Astrophysics Data System (ADS)

    Adamová, D.; Agakichiev, G.; Andronic, A.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielčíková, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Hering, G.; Holeczek, J.; Kalisky, M.; Krobath, G.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Miśkowiec, D.; Panebrattsev, Y.; Petchenova, O.; Petráček, V.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Schuchmann, S.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Yurevich, S.; Yurevich, V.; Ceres Collaboration

    Differential elliptic flow spectra v2(pT) of π-, KS0, p, Λ have been measured at √{sNN}=17.3 GeV around midrapidity by the CERN-CERES/NA45 experiment in mid-central Pb + Au collisions (10% of σgeo). The pT range extends from about 0.1 GeV/c (0.55 GeV/c for Λ) to more than 2 GeV/c. Protons below 0.4 GeV/c are directly identified by dE/dx. At higher pT, proton elliptic flow is derived as a constituent, besides π+ and K+, of the elliptic flow of positive pion candidates. This retrieval requires additional inputs: (i) of the particle composition, and (ii) of v2(pT) of positive pions. For (i), particle ratios obtained by NA49 are adapted to CERES conditions; for (ii), the measured v2(pT) of negative pions is substituted, assuming π+ and π- elliptic flow magnitudes to be sufficiently close. The v2(pT) spectra are compared to ideal-hydrodynamics calculations. In synopsis of the series π--KS0-p-Λ, flow magnitudes are seen to fall with decreasing pT progressively even below hydro calculations with early kinetic freeze-out (Tf=160 MeV) leaving not much time for hadronic evolution. The proton v2(pT) data show a downward swing towards low pT with excursions into negative v2 values. The pion-flow isospin asymmetry observed recently by STAR at RHIC, invalidating in principle our working assumption, is found in its impact on proton flow bracketed from above by the direct proton flow data, and not to alter any of our conclusions. Results are discussed in perspective of recent viscous hydrodynamics studies which focus on late hadronic stages.

  4. Cosmic microwave background bispectrum from recombination.

    PubMed

    Huang, Zhiqi; Vernizzi, Filippo

    2013-03-08

    We compute the cosmic microwave background temperature bispectrum generated by nonlinearities at recombination on all scales. We use CosmoLib2nd, a numerical Boltzmann code at second order to compute cosmic microwave background bispectra on the full sky. We consistently include all effects except gravitational lensing, which can be added to our result using standard methods. The bispectrum is peaked on squeezed triangles and agrees with the analytic approximation in the squeezed limit at the few percent level for all the scales where this is applicable. On smaller scales, we recover previous results on perturbed recombination. For cosmic-variance limited data to l(max)=2000, its signal-to-noise ratio is S/N=0.47, corresponding to f(NL)(eff)=-2.79, and will bias a local signal by f(NL)(loc) ~/= 0.82.

  5. Semi-inclusive charged-pion electroproduction off protons and deuterons: Cross sections, ratios, and access to the quark-parton model at low energies

    DOE PAGES

    Asaturyan, R.; Ent, R.; Mkrtchyan, H.; ...

    2012-01-01

    A large set of cross sections for semi-inclusive electroproduction of charged pions (π ±) from both proton and deuteron targets was measured. The data are in the deep-inelastic scattering region with invariant mass squared W 2 > 4 GeV 2 and range in four-momentum transfer squared 2 < Q 2 < 4 (GeV/c) 2, and cover a range in the Bjorken scaling variable 0.2 < x < 0.6. The fractional energy of the pions spans a range 0.3 < z < 1, with small transverse momenta with respect to the virtual-photon direction, P t 2 < 0.2 (GeV/c) 2. Themore » invariant mass that goes undetected, M x or W', is in the nucleon resonance region, W' < 2 GeV. The new data conclusively show the onset of quark-hadron duality in this process, and the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark → pion production mechanisms. The x, z and P t 2 dependences of several ratios (the ratios of favored-unfavored fragmentation functions, charged pion ratios, deuteron-hydrogen and aluminum-deuteron ratios for π + and π -) have been studied. The ratios are found to be in good agreement with expectations based upon a high-energy quark-parton model description. We find the azimuthal dependences to be small, as compared to exclusive pion electroproduction, and consistent with theoretical expectations based on tree-level factorization in terms of transverse-momentum-dependent parton distribution and fragmentation functions. In the context of a simple model, the initial transverse momenta of d quarks are found to be slightly smaller than for u quarks, while the transverse momentum width of the favored fragmentation function is about the same as for the unfavored one, and both fragmentation widths are larger than the quark widths.« less

  6. Ultrahigh Energy Cosmic Rays: Old Physics or New Physics?

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2004-01-01

    We consider the advantages of and the problems associated with hypotheses to explain the origin of ultrahigh energy cosmic rays (UHECR: E greater than 10 EeV) and the "trans-GZK" cosmic rays (TGZK: E greater than 100 EeV) both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).

  7. The basis for cosmic ray feedback: Written on the wind

    PubMed Central

    Zweibel, Ellen G.

    2017-01-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed. PMID:28579734

  8. The basis for cosmic ray feedback: Written on the wind

    NASA Astrophysics Data System (ADS)

    Zweibel, Ellen G.

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback. Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  9. The basis for cosmic ray feedback: Written on the wind.

    PubMed

    Zweibel, Ellen G

    2017-05-01

    Star formation and supermassive black hole growth in galaxies appear to be self-limiting. The mechanisms for self-regulation are known as feedback . Cosmic rays, the relativistic particle component of interstellar and intergalactic plasma, are among the agents of feedback. Because cosmic rays are virtually collisionless in the plasma environments of interest, their interaction with the ambient medium is primarily mediated by large scale magnetic fields and kinetic scale plasma waves. Because kinetic scales are much smaller than global scales, this interaction is most conveniently described by fluid models. In this paper, I discuss the kinetic theory and the classical theory of cosmic ray hydrodynamics (CCRH) which follows from assuming cosmic rays interact only with self-excited waves. I generalize CCRH to generalized cosmic ray hydrodynamics, which accommodates interactions with extrinsic turbulence, present examples of cosmic ray feedback, and assess where progress is needed.

  10. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  11. Sources of cosmic dust in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Carrillo-Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.; Plane, J. M. C.

    2016-12-01

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d-1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  12. Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    NASA Astrophysics Data System (ADS)

    Bilki, B.; Repond, J.; Xia, L.; Eigen, G.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Lima, J. G. R.; Salcido, R.; Zutshi, V.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Dannheim, D.; Folger, G.; Ivantchenko, V.; Klempt, W.; Lucaci-Timoce, A.-I.; Ribon, A.; Schlatter, D.; Sicking, E.; Uzhinskiy, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Morin, L.; Brianne, E.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Tran, H. L.; Buhmann, P.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Norbeck, E.; Northacker, D.; Onel, Y.; van Doren, B.; Wilson, G. W.; Wing, M.; Combaret, C.; Caponetto, L.; Eté, R.; Grenier, G.; Han, R.; Ianigro, J. C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Corriveau, F.; Bobchenko, B.; Chistov, R.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mironov, D.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Dulucq, F.; Fleury, J.; Frisson, T.; Martin-Chassard, G.; Pöschl, R.; Raux, L.; Richard, F.; Rouëné, J.; Seguin-Moreau, N.; de la Taille, Ch.; Anduze, M.; Boudry, V.; Brient, J.-C.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Matthieu, A.; Mora de Freitas, P.; Musat, G.; Ruan, M.; Videau, H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Weber, S.

    2015-04-01

    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using GEANT4 version 9.6 are compared.

  13. Gravitational-wave stochastic background from cosmic strings.

    PubMed

    Siemens, Xavier; Mandic, Vuk; Creighton, Jolien

    2007-03-16

    We consider the stochastic background of gravitational waves produced by a network of cosmic strings and assess their accessibility to current and planned gravitational wave detectors, as well as to big bang nucleosynthesis (BBN), cosmic microwave background (CMB), and pulsar timing constraints. We find that current data from interferometric gravitational wave detectors, such as Laser Interferometer Gravitational Wave Observatory (LIGO), are sensitive to areas of parameter space of cosmic string models complementary to those accessible to pulsar, BBN, and CMB bounds. Future more sensitive LIGO runs and interferometers such as Advanced LIGO and Laser Interferometer Space Antenna (LISA) will be able to explore substantial parts of the parameter space.

  14. Nuclear Physics in Space: What We Can Learn From Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    Studies and discoveries in cosmic-ray physics and generally in Astrophysics provide a fertile ground for research in many areas of Particle Physics and Cosmology, such as the search for dark matter, antimatter, new particles, and exotic physics, studies of the nucleosynthesis, origin of Galactic and extragalactic gamma-ray diffuse emission, formation of the large scale structure of the universe etc. In several years new missions are planned for cosmic-ray experiments, which will tremendously increase the quality and accuracy of cosmic-ray data. On the other hand, direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way galaxy and present only a snapshot of very dynamic processes. It has been recently realized that direct information about the fluxes and spectra of cosmic rays in distant locations is provided by the Galactic diffuse gamma-rays, therefore, complementing the local cosmic-ray studies. A wealth of information is also contained in the isotopic abundances of cosmic rays, therefore, accurate evaluation of the isotopic production cross sections is of primary importance for Astrophysics of cosmic rays, studies of the galactic chemical evolution, and Cosmology. In this talk, I will show new results obtained with GALPROP, the most advanced numerical model for cosmic-ray propagation, which includes in a self-consistent way all cosmic-ray species (stable and long-lived radioactive isotopes from H to Ni, antiprotons, positrons and electrons, gamma rays and synchrotron radiation), and all relevant processes and reactions.

  15. COSMIC monthly progress report

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Activities of the Computer Software Management and Information Center (COSMIC) are summarized for the month of April 1994. Tables showing the current inventory of programs available from COSMIC are presented and program processing and evaluation activities are summarized. Five articles were prepared for publication in the NASA Tech Brief Journal. These articles (included in this report) describe the following software items: GAP 1.0 - Groove Analysis Program, Version 1.0; SUBTRANS - Subband/Transform MATLAB Functions for Image Processing; CSDM - COLD-SAT Dynamic Model; CASRE - Computer Aided Software Reliability Estimation; and XOPPS - OEL Project Planner/Scheduler Tool. Activities in the areas of marketing, customer service, benefits identification, maintenance and support, and disseminations are also described along with a budget summary.

  16. Ultra heavy cosmic ray experiment (A0178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K. P.; Jansen, F.; Domingo, C.

    1992-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels using 16 peripheral LDEF trays. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m sr, giving a total exposure factor of 170 sq m sr y at an orbital inclination of 28.4 degs. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide cosmic rays. Results are presented including a sample of ultra heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of + or - 0.8e for uranium and + or - 0.6e for the platinum-lead group. Astrophysical implications of the UHCRE charge spectrum are discussed.

  17. JUPITER AS A GIANT COSMIC RAY DETECTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmer, P. B.; Stark, C. R.; Helling, Ch., E-mail: pr33@st-andrews.ac.uk

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmicmore » ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.« less

  18. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and acosmic-ray lifetime for escape of 27 (+19, -9) x 10(exp 6) years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  19. Measurement of Charged Pions from Neutrino-produced Nuclear Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Clifford N.

    2014-01-01

    A method for identifying stopped pions in a high-resolution scintillator bar detector is presented. I apply my technique to measure the axial mass M Δ Afor production of the Δ(1232) resonance by neutrino, with the result M Δ A = 1.16±0.20 GeV (68% CL) (limited by statistics). The result is produced from the measured spectrum of reconstructed momentum-transfer Q 2. I proceed by varying the value of M Δ A in a Rein-Sehgal-based Monte Carlo to produce the best agreement, using shape only (not normalization). The consistency of this result with recent reanalyses of previous bubble-chamber experiments is discussed.

  20. Model selection for pion photoproduction

    DOE PAGES

    Landay, J.; Doring, M.; Fernandez-Ramirez, C.; ...

    2017-01-12

    Partial-wave analysis of meson and photon-induced reactions is needed to enable the comparison of many theoretical approaches to data. In both energy-dependent and independent parametrizations of partial waves, the selection of the model amplitude is crucial. Principles of the S matrix are implemented to a different degree in different approaches; but a many times overlooked aspect concerns the selection of undetermined coefficients and functional forms for fitting, leading to a minimal yet sufficient parametrization. We present an analysis of low-energy neutral pion photoproduction using the least absolute shrinkage and selection operator (LASSO) in combination with criteria from information theory andmore » K-fold cross validation. These methods are not yet widely known in the analysis of excited hadrons but will become relevant in the era of precision spectroscopy. As a result, the principle is first illustrated with synthetic data; then, its feasibility for real data is demonstrated by analyzing the latest available measurements of differential cross sections (dσ/dΩ), photon-beam asymmetries (Σ), and target asymmetry differential cross sections (dσ T/d≡Tdσ/dΩ) in the low-energy regime.« less

  1. Cosmic transparency and acceleration

    NASA Astrophysics Data System (ADS)

    Holanda, R. F. L.; Pereira, S. H.; Jain, Deepak

    2018-01-01

    In this paper, by considering an absorption probability independent of photon wavelength, we show that current type Ia supernovae (SNe Ia) and gamma-ray burst (GRB) observations plus high-redshift measurements of the cosmic microwave background (CMB) radiation temperature support cosmic acceleration regardless of the transparent-universe assumption. Two flat scenarios are considered in our analyses: the Λ CDM model and a kinematic model. We consider τ (z )=2 ln (1 +z )ɛ, where τ (z ) denotes the opacity between an observer at z =0 and a source at z . This choice is equivalent to deforming the cosmic distance duality relation as DLDA-1=(1 +z )2+ɛ and, if the absorption probability is independent of photon wavelength, the CMB temperature evolution law is TCMB(z )=T0(1 +z )1+2 ɛ /3. By marginalizing on the ɛ parameter, our analyses rule out a decelerating universe at 99.99% C.L. for all scenarios considered. Interestingly, by considering only SNe Ia and GRBs observations, we obtain that a decelerated universe—indicated by ΩΛ≤0.33 and q0>0 —is ruled out around 1.5 σ C.L. and 2 σ C.L., respectively, regardless of the transparent-universe assumption.

  2. Early history of cosmic rays at Chicago

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  3. Recoil Polarization for Δ Excitation in Pion Electroproduction

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.; Roché, R. E.; Chai, Z.; Jones, M. K.; Gayou, O.; Sarty, A. J.; Frullani, S.; Aniol, K.; Beise, E. J.; Benmokhtar, F.; Bertozzi, W.; Boeglin, W. U.; Botto, T.; Brash, E. J.; Breuer, H.; Brown, E.; Burtin, E.; Calarco, J. R.; Cavata, C.; Chang, C. C.; Chant, N. S.; Chen, J.-P.; Coman, M.; Crovelli, D.; de Leo, R.; Dieterich, S.; Escoffier, S.; Fissum, K. G.; Garde, V.; Garibaldi, F.; Georgakopoulus, S.; Gilad, S.; Gilman, R.; Glashausser, C.; Hansen, J.-O.; Higinbotham, D. W.; Hotta, A.; Huber, G. M.; Ibrahim, H.; Iodice, M.; de Jager, C. W.; Jiang, X.; Klimenko, A.; Kozlov, A.; Kumbartzki, G.; Kuss, M.; Lagamba, L.; Laveissière, G.; Lerose, J. J.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Margaziotis, D. J.; Marie, F.; Markowitz, P.; McAleer, S.; Meekins, D.; Michaels, R.; Milbrath, B. D.; Mitchell, J.; Nappa, J.; Neyret, D.; Perdrisat, C. F.; Potokar, M.; Punjabi, V. A.; Pussieux, T.; Ransome, R. D.; Roos, P. G.; Rvachev, M.; Saha, A.; Širca, S.; Suleiman, R.; Strauch, S.; Templon, J. A.; Todor, L.; Ulmer, P. E.; Urciuoli, G. M.; Weinstein, L. B.; Wijesooriya, K.; Wojtsekhowski, B.; Zheng, X.; Zhu, L.

    2005-08-01

    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q2=1.0 (GeV/c)2, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re (S1+/M1+)=-(6.84±0.15)% and Re (E1+/M1+)=-(2.91±0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and ℓπ≤1 truncation.

  4. Spin-Dependent Cross Sections in Pion Produc- tion

    NASA Astrophysics Data System (ADS)

    Pintex Collaboration; von Przewoski, B.; Dzemidzic, M.; Doskow, J.; Meyer, H. O.; Pollock, R. E.; Rinckel, T.; Sperisen, F.; Wolanski, M.; Haeberli, W.; Lorentz, B.; Quin, P.; Rathmann, F.; Schwartz, B.; Wise, T.; Daehnick, W.; Flammang, R.; Tedeschi, D.; Pancella, P. V.

    1997-04-01

    An experiment to measure ΔσL and ΔσT for pion production in pp scattering is in preparation at the Indiana Cooler. Both, pparrowppπ^circ and pparrowpnπ^+ reactions, will be studied. Either two charged particles or the neutron and the proton are detected in the exit channel. The experiment requires the acceleration of longitudinally polarized stored protons. Recently, longitudinally polarized beam has been successfully stored and accelerated to 400 MeV. The experiment uses the Wisconsin/IUCF polarized storage cell target. Upgrades to the experimental setup which has been used previously for a measurement of spin correlation parameters in pp elastic scattering will be discussed. The detector response is studied by means of a Monte Carlo simulation. Expected performance parameters will be presented.

  5. Heliospheric Impact on Cosmic Rays Modulation

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  6. Cosmic Times: Astronomy History and Science for the Classroom

    NASA Astrophysics Data System (ADS)

    Lochner, James C.; Mattson, B.

    2008-05-01

    Cosmic Times is a series of curriculum support materials and classroom activities for upper middle school and high school students which teach the nature of science by exploring the history of our understanding of the universe during the past 100 years. Starting with the confirmation of Einstein's theory of gravity in 1919 to the current conundrum posed by the discovery of dark energy, Cosmic Times examines the discoveries, the theories, and the people involved in this changing [understanding] of the universe. Cosmic Times takes the form of 6 posters, each resembling the front page of a newspaper from a particular time in this history with articles describing the discoveries. Each poster is accompanied by 4-5 classroom lessons which enable students to examine the science concepts behind the discoveries, develop techniques to improve science literacy, and investigate the nature of science using historical examples. Cosmic Times directly connects with the IYA theme of Astronomy in the Classroom, as well as the general theme of the impact of astronomy history. Cosmic Times has been developed with a freelance writer to write the articles for the posters, a group of teachers to develop the lessons, and evaluator to provide testing of the materials with a group of rural teachers in underserved communities. This poster presentation previews the Cosmic Times materials, which are posted on http://cosmictimes.gsfc.nasa.gov/ as they become available. Cosmic Times is funded in part via a NASA IDEAS grant.

  7. The Cosmic Background Explorer.

    ERIC Educational Resources Information Center

    Gulkis, Samuel; And Others

    1990-01-01

    Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)

  8. Connecting blazars with ultrahigh-energy cosmic rays and astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Resconi, E.; Coenders, S.; Padovani, P.; Giommi, P.; Caccianiga, L.

    2017-06-01

    We present a strong hint of a connection between high-energy γ-ray emitting blazars, very high energy neutrinos, and ultrahigh-energy cosmic rays. We first identify potential hadronic sources by filtering γ-ray emitters in spatial coincidence with the high-energy neutrinos detected by IceCube. The neutrino filtered γ-ray emitters are then correlated with the ultrahigh-energy cosmic rays from the Pierre Auger Observatory and the Telescope Array by scanning in γ-ray flux (Fγ) and angular separation (θ) between sources and cosmic rays. A maximal excess of 80 cosmic rays (42.5 expected) is found at θ ≤ 10° from the neutrino-filtered γ-ray emitters selected from the second hard Fermi-LAT catalogue (2FHL) and for Fγ(>50 GeV) ≥ 1.8 × 10-11 ph cm-2 s-1. The probability for this to happen is 2.4 × 10-5, which translates to ˜2.4 × 10-3 after compensation for all the considered trials. No excess of cosmic rays is instead observed for the complement sample of γ-ray emitters (I.e. not in spatial connection with IceCube neutrinos). A likelihood ratio test comparing the connection between the neutrino-filtered and the complement source samples with the cosmic rays favours a connection between neutrino-filtered emitters and cosmic rays with a probability of ˜1.8 × 10-3 (2.9σ) after compensation for all the considered trials. The neutrino-filtered γ-ray sources that make up the cosmic rays excess are blazars of the high synchrotron peak type. More statistics is needed to further investigate these sources as candidate cosmic ray and neutrino emitters.

  9. Planetary Habitability over Cosmic-Time Based on Cosmic-Ray Levels

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Biermann, Peter L.

    2016-01-01

    Extreme cosmic-ray (CR) fluxes have a negative effect on life when flux densities are high enough to cause excessive biological, especially DNA, damage. The CR history of a planet plays an important role in its potential surface habitation. Both global and local CR conditions determine the ability of life to survive for astrobiologically relevant time periods. We highlight two CR life-limiting factors: 1) General galactic activity, starburst and AGN, was up by about a factor of 30 at redshift 1 - 2, per comoving frame, averaged over all galaxies. And 2) AGN activity is highly intermittent, so extreme brief but powerful bursts (Her A for example) can be detrimental at great distances. This means that during such brief bursts of AGN activity the extragalactic CRs might even overpower the local galactic CRs. But as shown by the starburst galaxy M82, the local CRs in a starburst can also be quite high. Moreover, in our cosmic neighborhood we have several super-massive black holes. These are in M31, M32, M81, NGC5128 (Cen A), and in our own Galaxy, all within about 4 Mpc today. Within about 20 Mpc today there are many more super-massive black holes. Cen A is of course the most famous one now, since it may be a major source of the ultra-high-energy CRs (UHECRs). Folding in what redshift means in terms of cosmic time, this implies that there may have been little chance for life to survive much earlier than Earth's starting epoch. We speculate, on whether the very slow start oflife on Earth is connected to the decay of disturbing CR activity.

  10. Sources of cosmic dust in the Earth's atmosphere.

    PubMed

    Carrillo-Sánchez, J D; Nesvorný, D; Pokorný, P; Janches, D; Plane, J M C

    2016-12-16

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d -1 ), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  11. Scientific results from the Cosmic Background Explorer (COBE)

    PubMed Central

    Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.; Smoot, G. F.; Weiss, R.; Wright, E. L.

    1993-01-01

    The National Aeronautics and Space Administration (NASA) has flown the COBE satellite to observe the Big Bang and the subsequent formation of galaxies and large-scale structure. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the cosmic microwave background is that of a black body of temperature T = 2.73 ± 0.06 K, with no deviation from a black-body spectrum greater than 0.25% of the peak brightness. The data from the Differential Microwave Radiometers (DMR) show statistically significant cosmic microwave background anisotropy, consistent with a scale-invariant primordial density fluctuation spectrum. Measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the cosmic infrared background. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the cosmic infrared background limits. PMID:11607383

  12. Sources of cosmic dust in the Earth's atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.

    2016-01-01

    Abstract There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d−1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud. PMID:28275286

  13. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  14. Cosmic Radiation Detection and Observations

    NASA Astrophysics Data System (ADS)

    Ramirez Chavez, Juan; Troncoso, Maria

    Cosmic rays consist of high-energy particles accelerated from remote supernova remnant explosions and travel vast distances throughout the universe. Upon arriving at earth, the majority of these particles ionize gases in the upper atmosphere, while others interact with gas molecules in the troposphere and producing secondary cosmic rays, which are the main focus of this research. To observe these secondary cosmic rays, a detector telescope was designed and equipped with two silicon photomultipliers (SiPMs). Each SiPM is coupled to a bundle of 4 wavelength shifting optical fibers that are embedded inside a plastic scintillator sheet. The SiPM signals were amplified using a fast preamplifier with coincidence between detectors established using a binary logic gate. The coincidence events were recorded with two devices; a digital counter and an Arduino micro-controller. For detailed analysis of the SiPM waveforms, a DRS4 sensory digitizer captured the waveforms for offline analysis with the CERN software package Physics Analysis Workstation in a Linux environment. Results from our experiments would be presented. Hartnell College STEM Internship Program.

  15. The Need for Direct High-Energy Cosmic-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Jones, Frank C.; Streitmatter, Robert

    2004-01-01

    Measuring the chemical composition of the cosmic rays in the energy region of greater than or equal to 10(exp 12)eV would be highly useful in settling several nagging questions concerning the propagation of cosmic rays in the galaxy. In particular an accurate measurement of secondary to primary ratios such as Boron to Carbon would gibe clear evidence as to whether the propagation of cosmic rays is determined by a diffusion coefficient that varies with the particle's energy as E(sup 0.5) or E(sup 0.3). This would go a long ways in helping us to understand the anistropy (or lack thereof) of the highest energy cosmic rays and the power requirements for producing those particles at approximately equal to 10(exp 18) eV which are believed to be highest energy particles produced in the Galaxy. This would be only one of the benefits of a mission such as ACCESS to perform direct particle measurements on very high energy cosmic rays.

  16. On pulsating cosmic /radio/ noise absorption

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1981-01-01

    It has been proposed that some absorption events measured on riometers are actually due to backscatter of cosmic radio noise by E-region plasma waves (D'Angelo, 1976, 1978; D'Angelo and Mehta, 1980). Assuming that DC or nearly DC absorption is a viable process, it is shown that it may also be operative in producing pulsations in cosmic noise absorption on riometers, with periods ranging from a few seconds to several minutes.

  17. Searching for Dark Matter with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2015-04-01

    One of the most exciting possibilities in cosmic ray research is the potential to discover new phenomena. A number of elementary particles were discovered in cosmic rays before modern-day accelerators became available to study their detailed properties. Since the discovery of cosmic ray antiprotons in 1979 using a balloon-borne magnet spectrometer, a series of magnet spectrometers have been flown to search for the signature of dark matter annihilation in antiprotons and positrons. Being the same as particles except for their opposite charge sign, antiparticles are readily distinguished as they bend in opposite directions in the magnetic field. As long-duration balloon flights over Antarctica became available, not only antiproton to proton ratios but also measurements of antiproton energy spectra became possible. More recently, space missions are also providing precision measurements of electron and position energy spectra. With other measurements to constrain cosmic ray propagation models, these new measurements play key roles in constraining dark-matter models for understanding the nature of dark matter. Recent results, their implications, and outlook for the field will be presented.

  18. Primary cosmic rays on the lunar surface

    NASA Technical Reports Server (NTRS)

    Vernov, S. N.; Lavrukhina, A. K.

    1977-01-01

    Results are reported for determination of the galactic cosmic ray flux during various time intervals in the 1965-1972 period, on the basis of data from the instruments of a spacecraft that made a soft landing on the lunar surface, and from the radioactivity of samples returned by the spacecraft. During minimum solar activity (the second half of 1965 and the beginning of 1966) I sub 0 (E greater than or equal to 30 percent MeV/nucleon) was determined to be 0.43 (plus or minus 10 percent). These values, within the error limits of the determinations, agree with the corresponding values of galactic cosmic ray intensities determined by stratospheric measurements. The mean flux of galactic cosmic rays over the past million years is equal to I (E greater or equal to 100 MeV/nucleon) + 0.28 (plus or minus 20 percent). This value agrees with the mean flux of modulated cosmic rays during the period of the nineteenth solar cycle. The mean flux of solar protons between 1965 and 1972 was 2.46.

  19. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2017-12-01

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less

  20. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2017-12-20

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. In this paper, we present a method of using an external 0.5 m (L) × 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersectingmore » different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be ϵ data=(97.1±0.1 (stat) ± 1.4 (sys))%, in good agreement with the Monte Carlo reconstruction efficiency ϵ MC = (97.4±0.1)%. In conclusion, this analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag ≈80% of the cosmic rays passing through the MicroBooNE detector.« less

  1. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. In this paper, we present a method of using an external 0.5 m (L) × 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersectingmore » different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to be ϵ data=(97.1±0.1 (stat) ± 1.4 (sys))%, in good agreement with the Monte Carlo reconstruction efficiency ϵ MC = (97.4±0.1)%. In conclusion, this analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag ≈80% of the cosmic rays passing through the MicroBooNE detector.« less

  2. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; et al.

    2017-07-31

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less

  3. The Influence of COSMIC Satellite Data on Regional Analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Y.

    2006-12-01

    The atmospheric limb sounding technique making use of radio signals transmitted by the Global Position System (GPS) has emerged as a promising approach for global atmospheric measurements. As demonstrated by the proof-of-concept GPS Meteorology (GPS/MET) experiment and more recently by the CHAMP and SAC-C missions, the GPS radio occultation (RO) sounding data are of high accuracy and high vertical resolution. On 15 April 2006, the joint U.S.-Taiwan COSMIC/FORMOSAT-3 mission, a constellation of six microsatellites, was launched from the Vandenberg Air Force Base. These satellites are being deployed to their final orbits, which would take about a year. During the early phase of the deployment, the satellites are closely located. This offers a unique opportunity to examine the precision of the GPS RO measurements. The COSMIC data are available in near real-time for global weather analysis and prediction and for climate monitoring. Currently, COSMIC is producing approximately 1300 GPS RO soundings per day at the end of August 2006. This number will be increased as the satellites are further separated through the deployment process. Radio occultation measures phase and amplitude of the microwave signals emitted from GPS. These signals are inverted to obtain profiles of signal bending, atmospheric refractivity, pressure temperature and water vapor. The main objective of the COSMIC/FORMOSAT-3 mission is to demonstrate the value of these radio occultation products for weather forecasting, climate monitoring, ionospheric research and space weather prediction. This presentation will provide an overview of the COSMIC/FORMOSAT-3 program. We will present results on the influence of COSMIC data on the regional analysis over the data void regions, particularly over the tropics and high latitudes. For further information on the COSMIC/FORMOSAT-3, please refer to http://www.cosmic.ucar.edu/.

  4. Flavor dependence of the pion and kaon form factors and parton distribution functions

    DOE PAGES

    Hutauruk, Parada T. P.; Cloët, Ian C.; Thomas, Anthony W.

    2016-09-01

    The separate quark flavor contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many features of the available empirical data. The larger mass of the strange quark naturally explains the empirical fact that the ratio u(K) + (x)/u(pi) + (x) drops below unity at large x, with a value of approximately Mmore » $$2\\atop{u}$$/Ms$$2\\atop{s}$$ as x → 1. With regard to the elastic form factors we report a large flavor dependence, with the u-quark contribution to the kaon form factor being an order of magnitude smaller than that of the s-quark at large Q 2, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total K + and π + form factors differ by only 10%. Lastly, in general we find that flavor breaking effects are typically around 20%.« less

  5. Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Girlanda, L.; Schiavilla, R.

    In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q 3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q 2 and Q 4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For themore » total 5291 $pp$ and $np$ data in this range, we obtain a Χ 2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, R L and R S respectively, ranging from (R L,R S)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  6. Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances

    DOE PAGES

    Piarulli, M.; Girlanda, L.; Schiavilla, R.; ...

    2015-02-26

    In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q 3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q 2 and Q 4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For themore » total 5291 $pp$ and $np$ data in this range, we obtain a Χ 2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, R L and R S respectively, ranging from (R L,R S)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less

  7. Flavor dependence of the pion and kaon form factors and parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutauruk, Parada T. P.; Cloët, Ian C.; Thomas, Anthony W.

    The separate quark flavor contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many features of the available empirical data. The larger mass of the strange quark naturally explains the empirical fact that the ratio u(K) + (x)/u(pi) + (x) drops below unity at large x, with a value of approximately Mmore » $$2\\atop{u}$$/Ms$$2\\atop{s}$$ as x → 1. With regard to the elastic form factors we report a large flavor dependence, with the u-quark contribution to the kaon form factor being an order of magnitude smaller than that of the s-quark at large Q 2, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total K + and π + form factors differ by only 10%. Lastly, in general we find that flavor breaking effects are typically around 20%.« less

  8. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  9. COSMIC RADIATION AND TUBERCULOSIS. IV. INFLUENCE OF COSMIC RADIATION ON TUBERCULOSIS AT HIGH ALTITUDE (3,130 M) AND AT SEA-LEVEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, S.G.

    1964-01-01

    At high altitude (3,130 m) tuberculous mice exposed to cosmic radiation under 10 cm of lead showed significantly greater mean survival time and a significantly greater number of survivors than tuberculous mice exposed to direct cosmic radiation. Tuberculous mice exposed to cosmic radiation at high altitude under 10 cm of lead showed a significantly greater mean survival time than tuberculous mice kept at sea level, exposed to direct cosmic radiation, and to cosmic radiation under 1, 2, and 10 cm of lead. The correlation analysis shows that a decreas in lung lesions is associated with an increase in survival time.more » The decrease in lung lesions is associated with an enlargement of the spleen. At high altitude the female showed a significantly greater number of survivors than the male. At sea level no significant difference was observed. On the average the female showed a significantly greater number of survivors. The beneficial effect of daylight with ultraviolet light on tuberculous mice was manifested in a lower maximum of mortality and in a significant decrease of lung and spleen lesions. (auth)« less

  10. Applications of Cosmic Muon Tracking at Shallow Depth Underground

    NASA Astrophysics Data System (ADS)

    Oláh, L.; Barnaföldi, G. G.; Hamar, G.; Melegh, H. G.; Surányi, G.; Varga, D.

    2014-06-01

    A portable cosmic muon telescope has been developed for environmental and geophysical applications, as well as cosmic background measurements for nuclear research in underground labs by the REGARD group (Wigner RCP of the HAS and Eötvös Loránd University collaboration on gaseous detector R&D). The modular, low power consuming (5 W) Close Cathode Chamber-based tracking system has 10 mrad angular resolution with its sensitive area of 0.1 m2. The angular distribution of cosmic muons has been measured at shallow depth underground (< 70 meter-rock-equivalent) in four different remote locations. Application of cosmic muon detection for the reconstruction of underground caverns and building structures are demonstrated by the measurements.

  11. The Hubble Web: The Dark Matter Problem and Cosmic Strings

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon

    2009-07-01

    I propose a reinterpretation of cosmic dark matter in which a rigid network of cosmic strings formed at the end of inflation. The cosmic strings fulfill three functions: At recombination they provide an accretion mechanism for virializing baryonic and warm dark matter into disks. These cosmic strings survive as configurations which thread spiral and elliptical galaxies leading to the observed flatness of rotation curves and the Tully-Fisher relation. We find a relationship between the rotational velocity of the galaxy and the string tension and discuss the testability of this model.

  12. Large-angle production of charged pions with incident pion beams on nuclear targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apollonio, M.; Chimenti, P.; Giannini, G.

    2009-12-15

    Measurements of the double-differential {pi}{sup {+-}} production cross section in the range of momentum 100{<=}p{<=}800 MeV/c and angle 0.35{<=}{theta}{<=}2.15 rad using {pi}{sup {+-}} beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radiusmore » cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d{sup 2}{sigma}/dp d{theta} at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.« less

  13. Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions at √{sNN} = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kostarakis, P.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, H.; Yang, P.; Yano, S.; Yasin, Z.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-09-01

    The production of charged pions, kaons and (anti)protons has been measured at mid-rapidity (- 0.5 < y < 0) in p-Pb collisions at √{sNN} = 5.02 TeV using the ALICE detector at the LHC. Exploiting particle identification capabilities at high transverse momentum (pT), the previously published pT spectra have been extended to include measurements up to 20 GeV/c for seven event multiplicity classes. The pT spectra for pp collisions at √{ s} = 7 TeV, needed to interpolate a pp reference spectrum, have also been extended up to 20 GeV/c to measure the nuclear modification factor (RpPb) in non-single diffractive p-Pb collisions. At intermediate transverse momentum (2 pion ratio increases with multiplicity in p-Pb collisions, a similar effect is not present in the kaon-to-pion ratio. The pT dependent structure of such increase is qualitatively similar to those observed in pp and heavy-ion collisions. At high pT (> 10 GeV / c), the particle ratios are consistent with those reported for pp and Pb-Pb collisions at the LHC energies. At intermediate pT the (anti)proton RpPb shows a Cronin-like enhancement, while pions and kaons show little or no nuclear modification. At high pT the charged pion, kaon and (anti)proton RpPb are consistent with unity within statistical and systematic uncertainties.

  14. Contributions to the 19th International Cosmic Ray Conference

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.

  15. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.

  16. Type-I cosmic-string network

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Takashi; Sendouda, Yuuiti; Takahashi, Keitaro; Yamauchi, Daisuke; Yoo, Chul-Moon

    2013-10-01

    We study the network of Type-I cosmic strings using the field-theoretic numerical simulations in the Abelian-Higgs model. For Type-I strings, the gauge field plays an important role, and thus we find that the correlation length of the strings is strongly dependent upon the parameter β, the ratio between the masses of the scalar field and the gauge field, namely, β=mφ2/mA2. In particular, if we take the cosmic expansion into account, the network becomes densest in the comoving box for a specific value of β for β<1.

  17. Monitoring cosmic radiation on aircraft

    NASA Astrophysics Data System (ADS)

    Bentley, Robert D.; Iles, R. H. A.; Jones, J. B. L.; Hunter, R.; Taylor, G. C.; Thomas, D. J.

    2002-03-01

    The Earth is constantly bombarded by cosmic radiation that can be either galactic or solar in origin. At aircraft altitudes, the radiation levels are much higher than at sea level and recent European legislation has classified aircrew as radiation workers. University College London is working with Virgin Atlantic Airways on a 3 year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether models currently used to predict radiation exposure of aircrew are adequate. It will also try to determine whether solar flare activity can cause significant enhancement to the predicted doses.

  18. Compact cosmic ray detector for unattended atmospheric ionization monitoring

    NASA Astrophysics Data System (ADS)

    Aplin, K. L.; Harrison, R. G.

    2010-12-01

    Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates.

  19. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    NASA Technical Reports Server (NTRS)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  20. Cosmic Ray investigations on peak Musala in Bulgaria: A memoir

    NASA Astrophysics Data System (ADS)

    Kavlakov, S.

    2009-11-01

    A very brief historical description of the Bulgarian Cosmic Ray investigations, in the Cosmic Ray Station on peak Musala (2925 m.a.s.l.) is presented. Difficulties of the high mountain measurements that time are mentioned, together with the hard emotional and successful work done by a small staff of young Bulgarian cosmic ray scientists.

  1. Cosmic Ray Studies with IceCube

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier

    In this contribution we will give an overview of the cosmic ray studies conducted within the IceCube collaboration. The IceCube detector in the geographical south pole can be used to measure various characteristics of the extensive air showers induced by high energy cosmic rays. With IceTop, the surface component of the detector, we detect the electromagnetic and muon components of the air showers, while with the deep detector we detect the high energy muons. We have measured the energy spectrum of cosmic ray primaries in the range between 1.58PeV and 1.26 EeV. A combined analysis of the high energy muon bundles in the ice and the air shower footprint in IceTop provides a measure of primary composition. We will also discuss how the sensitivity to low energy muons in the air showers has the potential to produce additional measures of primary composition.

  2. Cosmic distance duality and cosmic transparency

    NASA Astrophysics Data System (ADS)

    Nair, Remya; Jhingan, Sanjay; Jain, Deepak

    2012-12-01

    We compare distance measurements obtained from two distance indicators, Supernovae observations (standard candles) and Baryon acoustic oscillation data (standard rulers). The Union2 sample of supernovae with BAO data from SDSS, 6dFGS and the latest BOSS and WiggleZ surveys is used in search for deviations from the distance duality relation. We find that the supernovae are brighter than expected from BAO measurements. The luminosity distances tend to be smaller then expected from angular diameter distance estimates as also found in earlier works on distance duality, but the trend is not statistically significant. This further constrains the cosmic transparency.

  3. The STScI STIS Pipeline V: Cosmic Ray Rejection

    NASA Astrophysics Data System (ADS)

    Baum, Stefi; Hsu, J. C.; Hodge, Phil; Ferguson, Harry

    1996-07-01

    In this ISR we describe calstis-2, the calstis calibration module which combines CRSPLIT exposures to produce a single cosmic ray rejected image. Cosmic ray rejection in the STIS pipeline will follow the same basic philosophy as does the STSDAS task crrej - a series of separate CRSPLIT exposures are combined to produce a single summed image, where discrepant (different by some number of sigma from the guess value) are discarded in forming the output image. The calstis pipeline is able to perform this cosmic ray rejection because the individually commanded exposures are associated together into a single dataset by TRANS and generic conversion. The crrej will also exist as a task in STSDAS to allow users to reperform the cosmic ray rejection, altering the input parameters.

  4. The Energetic Trans-Iron Cosmic-ray Experiment (ENTICE)

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Adams. J. H.; Barghouty, A. F.; Christian, E. R.; Cummings, A. C.; Hams, T.; Israel, M. H.; Labrador, A. W.; Leske, R. A.; Link, J. T.; hide

    2009-01-01

    The ENTICE experiment is one of two instruments that comprise the "Orbiting Astrophysical Spectrometer in Space (OASIS)", which is presently undergoing a NASA "Astrophysics Strategic Mission Concept Study". ENTICE is designed to make high precision measurements of the abundances of individual elements from neon through the actinides and, in addition, will search for possible superheavy nuclei in the galactic cosmic rays. The ENTICE instrument utilizes silicon detectors, aerogel and acrylic Cherenkov counters, and a scintillating optical fiber hodoscope to measure the charge and energy of these ultra-heavy nuclei for energies greater than 0.5 GeV/nucleon. It is a large instrument consisting of four modules with a total effective geometrical factor of approx.20 sq m sr. Measurements made in space for a period of three years with ENTICE will enable us to determine if cosmic rays include a component of recently synthesized transuranic elements (Pu-94 and Cm-96), to measure the age of that component, and to test the model of the OB association origin of galactic cosmic rays. Additionally, these observations will enable us to study how diffusive shock acceleration of cosmic rays operates differently on interstellar grains and gas. Keywords: cosmic rays Galaxy:abundances

  5. The Probe of Inflation and Cosmic Origins

    NASA Astrophysics Data System (ADS)

    Hanany, Shaul; Inflation Probe Mission Study Team

    2018-01-01

    The Probe of Inflation and Cosmic Origins will map the polarization of the cosmic microwave background over the entire sky with unprecedented sensitivity. It will search for gravity wave signals from the inflationary epoch, thus probing quantum gravity and constraining the energy scale of inflation; it will test the standard model of particle physics by measuring the number of light particles in the Universe and the mass of the neutrino; it will elucidate the nature of dark matter and search for new forms of matter in the early Universe; it will constrain star formation history over cosmic time; and it will determine the mechanisms of structure formation from galaxy cluster to stellar scales. I will review the status of design of this probe-scale mission.

  6. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1992-01-01

    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed.

  7. The Astrobiological Case for Our Cosmic Ancestry

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    With steadily mounting evidence that points to a cosmic origin of terrestrial life, a cultural barrier prevails against admitting that such a connection exists. Astronomy continues to reveal the presence of organic molecules and organic dust on a huge cosmic scale, amounting to a third of interstellar carbon tied up in this form. Just as the overwhelming bulk of organics on Earth stored over geological timescales are derived from the degradation of living cells, so it seems most likely that interstellar organics in large measure also derive from biology. As we enter a new decade -- the year 2010 -- a clear pronouncement of our likely alien ancestry and of the existence of extraterrestrial life on a cosmic scale would seem to be overdue.

  8. The astrobiological case for our cosmic ancestry

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    2010-04-01

    With steadily mounting evidence that points to a cosmic origin of terrestrial life, a cultural barrier prevails against admitting that such a connection exists. Astronomy continues to reveal the presence of organic molecules and organic dust on a huge cosmic scale, amounting to a third of interstellar carbon tied up in this form. Just as the overwhelming bulk of organics on Earth stored over geological timescales are derived from the degradation of living cells, so it seems likely that interstellar organics in large measure also derive from biology. As we enter a new decade - the year 2010 - a clear pronouncement of our likely alien ancestry and of the existence of extraterrestrial life on a cosmic scale would seem to be overdue.

  9. Cosmological consistency tests of gravity theory and cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Ishak-Boushaki, Mustapha B.

    2017-01-01

    Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.

  10. An estimation of Canadian population exposure to cosmic rays.

    PubMed

    Chen, Jing; Timmins, Rachel; Verdecchia, Kyle; Sato, Tatsuhiko

    2009-08-01

    The worldwide average exposure to cosmic rays contributes to about 16% of the annual effective dose from natural radiation sources. At ground level, doses from cosmic ray exposure depend strongly on altitude, and weakly on geographical location and solar activity. With the analytical model PARMA developed by the Japan Atomic Energy Agency, annual effective doses due to cosmic ray exposure at ground level were calculated for more than 1,500 communities across Canada which cover more than 85% of the Canadian population. The annual effective doses from cosmic ray exposure in the year 2000 during solar maximum ranged from 0.27 to 0.72 mSv with the population-weighted national average of 0.30 mSv. For the year 2006 during solar minimum, the doses varied between 0.30 and 0.84 mSv, and the population-weighted national average was 0.33 mSv. Averaged over solar activity, the Canadian population-weighted average annual effective dose due to cosmic ray exposure at ground level is estimated to be 0.31 mSv.

  11. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-04-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10-8 in some regions of the cosmic string parameter space.

  12. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R.X.; hide

    2014-01-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp -8) in some regions of the cosmic string parameter space.

  13. Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors.

    PubMed

    Aasi, J; Abadie, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Adams, C; Adams, T; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Allen, B; Allocca, A; Amador Ceron, E; Amariutei, D; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barker, D; Barnum, S H; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Bergmann, G; Berliner, J M; Bersanetti, D; Bertolini, A; Bessis, D; Betzwieser, J; Beyersdorf, P T; Bhadbhade, T; Bilenko, I A; Billingsley, G; Birch, J; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bowers, J; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brannen, C A; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Colombini, M; Constancio, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; De Rosa, R; Debreczeni, G; Degallaix, J; Del Pozzo, W; Deleeuw, E; Deléglise, S; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Díaz, M; Dietz, A; Dmitry, K; Donovan, F; Dooley, K L; Doravari, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J-C; Dwyer, S; Eberle, T; Edwards, M; Effler, A; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R; Flaminio, R; Foley, E; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fujimoto, M-K; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Garcia, J; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Gergely, L; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B; Hall, E; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Heefner, J; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Horrom, T; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hua, Z; Huang, V; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Iafrate, J; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jang, Y J; Jaranowski, P; Jiménez-Forteza, F; Johnson, W W; Jones, D; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Kéfélian, F; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, K; Kim, N; Kim, W; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kremin, A; Kringel, V; Królak, A; Kucharczyk, C; Kudla, S; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Le Roux, A; Leaci, P; Lebigot, E O; Lee, C-H; Lee, H K; Lee, H M; Lee, J; Lee, J; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levine, B; Lewis, J B; Lhuillier, V; Li, T G F; Lin, A C; Littenberg, T B; Litvine, V; Liu, F; Liu, H; Liu, Y; Liu, Z; Lloyd, D; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M J; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meier, T; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Mokler, F; Moraru, D; Moreno, G; Morgado, N; Mori, T; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nanda Kumar, D; Nardecchia, I; Nash, T; Naticchioni, L; Nayak, R; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nishida, E; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; Ortega Larcher, W; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Ou, J; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Peiris, P; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pindor, B; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poole, V; Poux, C; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Roever, C; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Soden, K; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stevens, D; Stochino, A; Stone, R; Strain, K A; Straniero, N; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Vahlbruch, H; Vajente, G; Vallisneri, M; van den Brand, J F J; Van Den Broeck, C; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vlcek, B; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vrinceanu, D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Walker, M; Wallace, L; Wan, Y; Wang, J; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wibowo, S; Wiesner, K; Wilkinson, C; Williams, L; Williams, R; Williams, T; Willis, J L; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yum, H; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, F; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zotov, N; Zucker, M E; Zweizig, J

    2014-04-04

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10(-8) in some regions of the cosmic string parameter space.

  14. Nineteenth International Cosmic Ray Conference. OG Sessions, Volume 3

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume addresses cosmic ray sources and acceleration, interstellar propagation and nuclear interactions, and detection techniques and instrumentation.

  15. Cosmic string catalysis of skyrmion decay

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth; Davis, Anne-Christine; Brandenberger, Robert

    1988-01-01

    The Callan-Witten picture is developed for monopole catalyzed skyrmion decay in order to analyze the corresponding cosmic string scenario. It is discovered that cosmic strings (both ordinary and superconducting) can catalyze proton decay, but that this catalysis only occurs on the scale of the core of the string. In order to do this we have to develop a vortex model for the superconducting string. An argument is also given for the difference in the enhancement factors for monopoles and strings.

  16. Cosmic Background Explorer (COBE) press kit

    NASA Technical Reports Server (NTRS)

    1989-01-01

    COBE, the Cosmic Background Explorer spacecraft, and its mission are described. COBE was designed to study the origin and dynamics of the universe including the theory that the universe began with a cataclysmic explosion referred to as the Big Bang. To this end, earth's cosmic background - the infrared radiation that bombards earth from every direction - will be measured by three sophisticated instruments: the Differential Microwave Radiometer (DMR), the Far Infrared Absolute Spectrophotometer (FIRAS), and the Diffuse Infrared Background Experiment (DIRBE).

  17. Modulation of Cosmic Ray Precipitation Related to Climate

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.

    1998-01-01

    High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.

  18. Probing the cosmic causes of errors in supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Cosmic rays from outer space are causing errors in supercomputers. The neutrons that pass through the CPU may be causing binary data to flip leading to incorrect calculations. Los Alamos National Laboratory has developed detectors to determine how much data is being corrupted by these cosmic particles.

  19. Classification of Solar Flares

    DTIC Science & Technology

    1988-11-01

    34proton flares," and flares which cause ground level effects are often called "GLE events" or " cosmic - ray flares." However, the term "proton flares...34 in general refers to both groups. Ellison et al (54) first noticed that cosmic - ray flares are typically two- ribbon flares, with two large Ha ribbons...atmosphere and combine with protons to produce deuterons and the 2.2 MeV gamma- ray line. Pions produced by nuclear interactions decay to muons , which in

  20. Charge-conjugation symmetric complete impulse approximation for the pion electromagnetic form factor in the covariant spectator theory

    DOE PAGES

    Biernat, Elmar P.; Gross, Franz; Peña, M. T.; ...

    2015-10-26

    The pion form factor is calculated in the framework of the charge-conjugation invariant covariant spectator theory. This formalism is established in Minkowski space, and the calculation is set up in momentum space. In a previous calculation we included only the leading pole coming from the spectator quark (referred to as the relativistic impulse approximation). In this study we also include the contributions from the poles of the quark which interacts with the photon and average over all poles in both the upper and lower half-planes in order to preserve charge conjugation invariance (referred to as the C-symmetric complete impulse approximation).more » We find that for small pion mass these contributions are significant at all values of the four-momentum transfer Q 2 but, surprisingly, do not alter the shape obtained from the spectator poles alone.« less

  1. Demonstration of Cosmic Microwave Background Delensing Using the Cosmic Infrared Background.

    PubMed

    Larsen, Patricia; Challinor, Anthony; Sherwin, Blake D; Mak, Daisy

    2016-10-07

    Delensing is an increasingly important technique to reverse the gravitational lensing of the cosmic microwave background (CMB) and thus reveal primordial signals the lensing may obscure. We present a first demonstration of delensing on Planck temperature maps using the cosmic infrared background (CIB). Reversing the lensing deflections in Planck CMB temperature maps using a linear combination of the 545 and 857 GHz maps as a lensing tracer, we find that the lensing effects in the temperature power spectrum are reduced in a manner consistent with theoretical expectations. In particular, the characteristic sharpening of the acoustic peaks of the temperature power spectrum resulting from successful delensing is detected at a significance of 16σ, with an amplitude of A_{delens}=1.12±0.07 relative to the expected value of unity. This first demonstration on data of CIB delensing, and of delensing techniques in general, is significant because lensing removal will soon be essential for achieving high-precision constraints on inflationary B-mode polarization.

  2. Cosmic Ray Acceleration from Multiple Galactic Wind Shocks

    NASA Astrophysics Data System (ADS)

    Cotter, Cory; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  3. Transport of cosmic ray nuclei in various materials

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1988-01-01

    Cosmic-ray heavy ions have become a concern in space radiation effects analyses. Heavy ions rapidly deposit energy and create dense ionization trails as they traverse materials. Collection of the free charge disrupts the operation of microelectronic circuits. This effect, called the single-event upset, can cause a loss of digital data. Passage of high linear energy transfer particles through the eyes has been observed by Apollo astronauts. These heavy ions have great radiobiological effectiveness and are the primary risk factor for leukemia induction on a manned Mars mission. Models of the transport of heavy cosmic-ray nuclei through materials depend heavily on our understanding of the cosmic-ray environment, nuclear spallation cross sections, and computer transport codes. Our group has initiated and pursued the development of a full capability for modeling these transport processes. A recent review of this ongoing effort is presented in Ref. 5. In this paper, we discuss transport methods and present new results comparing the attenuation of cosmic rays in various materials.

  4. Experimental cosmic statistics - I. Variance

    NASA Astrophysics Data System (ADS)

    Colombi, Stéphane; Szapudi, István; Jenkins, Adrian; Colberg, Jörg

    2000-04-01

    Counts-in-cells are measured in the τCDM Virgo Hubble Volume simulation. This large N-body experiment has 109 particles in a cubic box of size 2000h-1Mpc. The unprecedented combination of size and resolution allows, for the first time, a realistic numerical analysis of the cosmic errors and cosmic correlations of statistics related to counts-in-cells measurements, such as the probability distribution function PN itself, its factorial moments Fk and the related cumulants ψ and SNs. These statistics are extracted from the whole simulation cube, as well as from 4096 subcubes of size 125h-1Mpc, each representing a virtual random realization of the local universe. The measurements and their scatter over the subvolumes are compared to the theoretical predictions of Colombi, Bouchet & Schaeffer for P0, and of Szapudi & Colombi and Szapudi, Colombi & Bernardeau for the factorial moments and the cumulants. The general behaviour of experimental variance and cross-correlations as functions of scale and order is well described by theoretical predictions, with a few per cent accuracy in the weakly non-linear regime for the cosmic error on factorial moments. On highly non-linear scales, however, all variants of the hierarchical model used by SC and SCB to describe clustering appear to become increasingly approximate, which leads to a slight overestimation of the error, by about a factor of two in the worst case. Because of the needed supplementary perturbative approach, the theory is less accurate for non-linear estimators, such as cumulants, than for factorial moments. The cosmic bias is evaluated as well, and, in agreement with SCB, is found to be insignificant compared with the cosmic variance in all regimes investigated. While higher order statistics were previously evaluated in several simulations, this work presents textbook quality measurements of SNs, 3<=N<=10, in an unprecedented dynamic range of 0.05 <~ ψ <~ 50. In the weakly non-linear regime the results confirm

  5. Cosmic ray injection spectrum at the galactic sources

    NASA Astrophysics Data System (ADS)

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  6. First Accelerator Test of the Kinematic Lightweight Energy Meter (KLEM) Prototype

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J. H.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.; hide

    2002-01-01

    The essence of the KLEM (Kinematic Lightweight Energy Meter) instrument is to directly measure the elemental energy spectra of high-energy cosmic rays by determining the angular distribution of secondary particles produced in a target. The first test of the simple KLEM prototype has been performed at the CERN SPS test-beam with 180 GeV pions during 2001. The results of the first test analysis confirm that, using the KLEM method, the energy of 180 GeV pions can be measured with a relative error of about 67%, which is very close to the results of the simulation (65%).

  7. Examining the cosmic acceleration with the latest Union2 supernova data

    NASA Astrophysics Data System (ADS)

    Li, Zhengxiang; Wu, Puxun; Yu, Hongwei

    2011-01-01

    In this Letter, by reconstructing the Om diagnostic and the deceleration parameter q from the latest Union2 Type Ia Supernova sample with and without the systematic error along with the baryon acoustic oscillation (BAO) and the cosmic microwave background (CMB), we study the cosmic expanding history, using the Chevallier-Polarski-Linder (CPL) parametrization. We obtain that Union2+BAO favor an expansion with a decreasing of the acceleration at z<0.3. However, once the CMB data is added in the analysis, the cosmic acceleration is found to be still increasing, indicating a tension between low redshift data and high redshift. In order to reduce this tension significantly, two different methods are considered and thus two different subsamples of Union2 are selected. We then find that two different subsamples+BAO+CMB give completely different results on the cosmic expanding history when the systematic error is ignored, with one suggesting a decreasing cosmic acceleration, the other just the opposite, although both of them alone with BAO support that the cosmic acceleration is slowing down. However, once the systematic error is considered, two different subsamples of Union2 along with BAO and CMB all favor an increasing of the present cosmic acceleration. Therefore a clear-cut answer on whether the cosmic acceleration is slowing down calls for more consistent data and more reliable methods to analyze them.

  8. REVIEWS OF TOPICAL PROBLEMS: Cosmic vacuum

    NASA Astrophysics Data System (ADS)

    Chernin, Artur D.

    2001-11-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered.

  9. Lagrangian methods of cosmic web classification

    NASA Astrophysics Data System (ADS)

    Fisher, J. D.; Faltenbacher, A.; Johnson, M. S. T.

    2016-05-01

    The cosmic web defines the large-scale distribution of matter we see in the Universe today. Classifying the cosmic web into voids, sheets, filaments and nodes allows one to explore structure formation and the role environmental factors have on halo and galaxy properties. While existing studies of cosmic web classification concentrate on grid-based methods, this work explores a Lagrangian approach where the V-web algorithm proposed by Hoffman et al. is implemented with techniques borrowed from smoothed particle hydrodynamics. The Lagrangian approach allows one to classify individual objects (e.g. particles or haloes) based on properties of their nearest neighbours in an adaptive manner. It can be applied directly to a halo sample which dramatically reduces computational cost and potentially allows an application of this classification scheme to observed galaxy samples. Finally, the Lagrangian nature admits a straightforward inclusion of the Hubble flow negating the necessity of a visually defined threshold value which is commonly employed by grid-based classification methods.

  10. Cosmic ray antiprotons at high energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Martin Wolfgang, E-mail: martin.winkler@su.se

    2017-02-01

    Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available formore » independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.« less

  11. Studying Cosmic Dawn with WFIRST

    NASA Astrophysics Data System (ADS)

    Rhoads, James; Malhotra, Sangeeta; Jansen, Rolf A.; Windhorst, Rogier; Tilvi, Vithal; Finkelstein, Steven; Wold, Isak; Papovich, Casey; Fan, Xiaohui; Mellema, Garrelt; Zackrisson, Erik; Jensen, Hannes; T

    2018-01-01

    Our understanding of Cosmic Dawn can be revolutionized using WFIRST's combination of wide-field, sensitive, high resolution near-infrared imaging and spectroscopy. Guest investigator studies of WFIRST's high latitude imaging survey and supernova search fields will yield orders of magnitude increases in our samples of Lyman break galaxies from z=7 to z>12. The high latitude spectrsocopic survey will enable an unprecedented search for z>7 quasars. Guest observer deep fields can extend these studies to flux levels of Hubble's deepest fields, over regions measured in square degrees. The resulting census of luminous objects in the Cosmic Dawn will provide key insights into the sources of the ultraviolet photons that powered reionization. Moreover, because WFIRST has a wide field (slitless) spectroscopic capability, it can be used to search for Lyman alpha emitting galaxies over the full history of reionization. By comparing the Lyman alpha galaxy statistics to those of continuum sources, we can directly probe the transparency of the intergalactic gas and chart reionization history.Our team is planning for both Guest Investigator and Guest Observer applications of WFIRST to studying Cosmic Dawn, and welcomes dialog with other interested members of the community.

  12. Simulations of ultra-high energy cosmic rays in the local Universe and the origin of cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Hackstein, S.; Vazza, F.; Brüggen, M.; Sorce, J. G.; Gottlöber, S.

    2018-04-01

    We simulate the propagation of cosmic rays at ultra-high energies, ≳1018 eV, in models of extragalactic magnetic fields in constrained simulations of the local Universe. We use constrained initial conditions with the cosmological magnetohydrodynamics code ENZO. The resulting models of the distribution of magnetic fields in the local Universe are used in the CRPROPA code to simulate the propagation of ultra-high energy cosmic rays. We investigate the impact of six different magneto-genesis scenarios, both primordial and astrophysical, on the propagation of cosmic rays over cosmological distances. Moreover, we study the influence of different source distributions around the Milky Way. Our study shows that different scenarios of magneto-genesis do not have a large impact on the anisotropy measurements of ultra-high energy cosmic rays. However, at high energies above the Greisen-Zatsepin-Kuzmin (GZK)-limit, there is anisotropy caused by the distribution of nearby sources, independent of the magnetic field model. This provides a chance to identify cosmic ray sources with future full-sky measurements and high number statistics at the highest energies. Finally, we compare our results to the dipole signal measured by the Pierre Auger Observatory. All our source models and magnetic field models could reproduce the observed dipole amplitude with a pure iron injection composition. Our results indicate that the dipole is observed due to clustering of secondary nuclei in direction of nearby sources of heavy nuclei. A light injection composition is disfavoured, since the increase in dipole angular power from 4 to 8 EeV is too slow compared to observation by the Pierre Auger Observatory.

  13. CMB temperature bispectrum induced by cosmic strings

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Ringeval, Christophe; Suyama, Teruaki

    2009-10-01

    The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay ℓ-6 for large multipole ℓ. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaître-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At ℓ˜500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with |fNLloc|≃103, if the strings contribute about 10% of the temperature power spectrum at ℓ=10. Current bounds on fNL are not derived using cosmic string bispectrum templates, and so our fNL estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.

  14. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  15. Heliospheric influence on the anisotropy of TeV cosmic rays

    DOE PAGES

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai

    2014-06-26

    This article provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. Lastly, the heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less

  16. Heliospheric influence on the anisotropy of TeV cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ming; Zuo, Pingbing; Pogorelov, Nikolai, E-mail: mzhang@fit.edu

    2014-07-20

    This paper provides a theory of using Liouville's theorem to map the anisotropy of TeV cosmic rays seen at Earth using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays, all of which make the anisotropy sensitive to the particle energy.more » When mapped through the magnetic and electric field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun's coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at a level roughly equal to a fraction of the overall anisotropy amplitude. The heliospheric influence becomes stronger at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in the heliosphere.« less

  17. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  18. Nonlocal Models of Cosmic Acceleration

    NASA Astrophysics Data System (ADS)

    Woodard, R. P.

    2014-02-01

    I review a class of nonlocally modified gravity models which were proposed to explain the current phase of cosmic acceleration without dark energy. Among the topics considered are deriving causal and conserved field equations, adjusting the model to make it support a given expansion history, why these models do not require an elaborate screening mechanism to evade solar system tests, degrees of freedom and kinetic stability, and the negative verdict of structure formation. Although these simple models are not consistent with data on the growth of cosmic structures many of their features are likely to carry over to more complicated models which are in better agreement with the data.

  19. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  20. Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p–Pb collisions at s NN = 5.02  TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.; Adamová, D.; Aggarwal, M. M.

    The production of charged pions, kaons and (anti)protons has been measured at mid-rapidity (-0.5 < y < 0) in p–Pb collisions at s NN =5.02 TeV using the ALICE detector at the LHC. Exploiting particle identification capabilities at high transverse momentum (p T ), the previously published p T spectra have been extended to include measurements up to 20 GeV/c for seven event multiplicity classes. The p T spectra for pp collisions at s=7 TeV, needed to interpolate a pp reference spectrum, have also been extended up to 20 GeV/c to measure the nuclear modification factor (R pPb ) in non-single diffractivemore » p–Pb collisions. At intermediate transverse momentum (2 < p T < 10 GeV/c) the proton-to-pion ratio increases with multiplicity in p–Pb collisions, a similar effect is not present in the kaon-to-pion ratio. The p T dependent structure of such increase is qualitatively similar to those observed in pp and heavy-ion collisions. At high p T ( > 10 GeV/c), the particle ratios are consistent with those reported for pp and Pb–Pb collisions at the LHC energies. At intermediate p T the (anti)proton R pPb shows a Cronin-like enhancement, while pions and kaons show little or no nuclear modification. At high p T the charged pion, kaon and (anti)proton R pPb are consistent with unity within statistical and systematic uncertainties.« less