Science.gov

Sample records for cosmic rays clouds

  1. Cosmic rays, clouds, and climate.

    PubMed

    Carslaw, K S; Harrison, R G; Kirkby, J

    2002-11-29

    It has been proposed that Earth's climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. This proposal stems from an observed correlation between cosmic ray intensity and Earth's average cloud cover over the course of one solar cycle. Some scientists question the reliability of the observations, whereas others, who accept them as reliable, suggest that the correlation may be caused by other physical phenomena with decadal periods or by a response to volcanic activity or El Niño. Nevertheless, the observation has raised the intriguing possibility that a cosmic ray-cloud interaction may help explain how a relatively small change in solar output can produce much larger changes in Earth's climate. Physical mechanisms have been proposed to explain how cosmic rays could affect clouds, but they need to be investigated further if the observation is to become more than just another correlation among geophysical variables. PMID:12459578

  2. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  3. Possible cosmic ray signatures in clouds?

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Parsons, R. D.; Wolfendale, A. W.

    2009-11-01

    The role of cosmic rays in cloud formation, by cloud condensation nuclei, is still not fully understood. Although it has been claimed by a number of authors that cosmic ray effects should be small—or even non-existent—it is still argued by others that cosmic ray effects do occur. The present work draws attention to the fact that cosmic rays do not constitute a continuous stream of particles but are characterized by occasional near-simultaneous showers of particles. Under certain circumstances, such showers should leave a signature in clouds—near vertical 'cigar-shaped clouds'—and this work describes their properties. Our own observations have revealed no such structure, but it would be valuable to have a more careful search made.

  4. THE INTERACTION OF COSMIC RAYS WITH DIFFUSE CLOUDS

    SciTech Connect

    Everett, John E.; Zweibel, Ellen G.

    2011-10-01

    We study the change in cosmic-ray pressure, the change in cosmic-ray density, and the level of cosmic-ray-induced heating via Alfven-wave damping when cosmic rays move from a hot ionized plasma to a cool cloud embedded in that plasma. The general analysis method outlined here can apply to diffuse clouds in either the ionized interstellar medium or in galactic winds. We introduce a general-purpose model of cosmic-ray diffusion building upon the hydrodynamic approximation for cosmic rays (from McKenzie and Voelk and Breitschwerdt and collaborators). Our improved method self-consistently derives the cosmic-ray flux and diffusivity under the assumption that the streaming instability is the dominant mechanism for setting the cosmic-ray flux and diffusion. We find that, as expected, cosmic rays do not couple to gas within cool clouds (cosmic rays exert no forces inside of cool clouds), that the cosmic-ray density does not increase within clouds (it may decrease slightly in general, and decrease by an order of magnitude in some cases), and that cosmic-ray heating (via Alfven-wave damping and not collisional effects as for {approx}10 MeV cosmic rays) is only important under the conditions of relatively strong (10 {mu}G) magnetic fields or high cosmic-ray pressure ({approx}10{sup -11} erg cm{sup -3}).

  5. Cosmic ray decreases and magnetic clouds

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1993-01-01

    A study has been made of energetic particle data, obtained from IMP 8, in conjunction with solar wind field and plasma data at the times of reported magnetic clouds. It is shown that magnetic clouds can cause a depression of the cosmic ray flux but high fields are required. A depression of 3 percent in a neutron monitor requires a field of about 25 nT. Such high fields are found only in a subset of coronal ejecta. The principal cause for Forbush decreases associated with energetic shocks is probably turbulence in the postshock region, although some shocks will be followed by an ejecta with a high field. Each event is different. The lower-energy particles can help in identifying the dominant processes in individual events.

  6. Cosmic ray decreases and magnetic clouds

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    1992-01-01

    Energetic particle data, obtained from IMP 8, in conjunction with solar wind field and plasma data at the times of reported magnetic clouds was studied. It is shown that magnetic clouds can cause a depression of the cosmic ray flux but high fields are required. A depression of 3 percent in a neutron monitor requires a field of about 25 nT. Such high fields are found only in a subset of coronal ejecta. The principal cause for Forbush decreases associated with energetic shocks is probably turbulence in the post-shock region although some shocks will be followed by an ejecta with a high field. Each event is different. The lower energy particles can help in identifying the dominant processes in individual events.

  7. Influence of magnetic clouds on cosmic ray intensity variations

    NASA Technical Reports Server (NTRS)

    Yadav, R. S.; Yadav, N. R.; BADRUDDIN; Agrawal, S. P.

    1985-01-01

    Neutron monitor data has been analyzed to study the nature of galactic cosmic ray transient modulation associated with three types of interplanetary magnetic clouds - clouds associated with shocks, stream interfaces and cold magnetic enhancements.

  8. Gamma Rays, Cosmic Rays, and Extinct Radioactivity in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.; Jin, Liping

    1995-10-01

    We investigate causal connection between two astonishingly big numbers: the very large 26Al concentration (5 × 10-5 of 27Al) in the early solar system and the very large nuclear excitation rate in Orion clouds. We present three separate pictures attributing 26Al within the early solar system and other molecular cloud cores to special cosmic-ray irradiation of those cloud cores. These pictures reinterpret the large 26Al/27Al ratio found in the early solar accretion disk, and seem not to be relevant to the present interstellar 1.5 Msun of 26Al. These three pictures of cosmic-ray irradiation of molecular clouds accounting for their high 26Al content are: 1. High flux of low-energy cosmic ray 0, Na, Mg, and Si nuclei stopping in the clouds with partial conversion to 26Al by nuclear interactions while they stop (Clayton 1994); 2. Stopping of low-energy galactic cosmic rays, which are known (at 100 MeV nucleon-1) to carry the very large activity 26Al/27Al = 0.1 and which we argue to be absorbed by cloud cores; 3. Stopping of newly synthesized particles accelerated from local ejecta of supernovae and W-R star winds, which carry activities as great as 26Al/27Al = 0.01 from those events. In these pictures the cosmic rays may be very different in origin than the galactic cosmic rays. At low energy they are injected into clouds and stopped in the cloud cores. We normalize our expectations for massive clouds to the inelastic nuclear excitation rates of 12C*(4.43 MeV) and 16O*(6.13 MeV) gamma rays emerging from the clouds in Orion (Bloemen et al. 1994). Picture 1 is plagued by very large power requirements if the accelerated particles are predominantly hydrogen. Nonetheless, we show that several other extinct radioactivity concentrations that accompanied 26Al in the early solar system would be coproduced by ordinary cosmic-ray composition. Our most promising construction of picture 1 appears to be anomalous acceleration of 16O ions (as known from the solar wind) to several Me

  9. Cosmic ray decreases affect atmospheric aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Svensmark, Henrik; Bondo, Torsten; Svensmark, Jacob

    2009-08-01

    Close passages of coronal mass ejections from the sun are signaled at the Earth's surface by Forbush decreases in cosmic ray counts. We find that low clouds contain less liquid water following Forbush decreases, and for the most influential events the liquid water in the oceanic atmosphere can diminish by as much as 7%. Cloud water content as gauged by the Special Sensor Microwave/Imager (SSM/I) reaches a minimum ≈7 days after the Forbush minimum in cosmic rays, and so does the fraction of low clouds seen by the Moderate Resolution Imaging Spectroradiometer (MODIS) and in the International Satellite Cloud Climate Project (ISCCP). Parallel observations by the aerosol robotic network AERONET reveal falls in the relative abundance of fine aerosol particles which, in normal circumstances, could have evolved into cloud condensation nuclei. Thus a link between the sun, cosmic rays, aerosols, and liquid-water clouds appears to exist on a global scale.

  10. ASPIRE - Cloud Chambers as an Introduction to Cosmic Ray Observation

    NASA Astrophysics Data System (ADS)

    Callahan, Julie; Matthews, John; Jui, Charles

    2012-03-01

    ASPIRE is the K12 - Education & Public Outreach program for the Telescope Array ultra-high energy cosmic ray research project in Utah. The Telescope Array experiment studies ultra-high energy cosmic rays with an array of ˜500 surface scintillator detectors and three fluorescence telescope stations observing over 300 square miles in the West Desert of Utah. Telescope Array is a collaboration of international institutions from the United States, Japan, Korea, Russia and Belgium. Cloud chambers are an inexpensive and easy demonstration to visually observe evidence of charged particles and cosmic ray activity both for informal events as well as for K12 classroom activities. Join us in building a cloud chamber and observe cosmic rays with these table-top demonstrations. A brief overview of the Telescope Array project in Millard County, Utah will also be presented.

  11. Low Clouds and Cosmic Rays: Possible Reasons for Correlation Changes

    NASA Astrophysics Data System (ADS)

    Veretenenko, S. V.; Ogurtsov, M. G.

    2015-03-01

    In this work we investigated the nature of correlations between low cloud cover anomalies (LCA) and galactic cosmic ray (GCR) variations detected on the decadal time scale, as well as possible reasons for the violation of these correlations in the early 2000s. It was shown that the link between cloud cover at middle latitudes and GCR fluxes is not direct, but it is realized through GCR influence on the development of extratropical baric systems (cyclones and troughs) which form cloud field. As the sign of GCR effects on the troposphere dynamics seems to depend on the strength of the stratospheric polar vortex, a possible reason for the violation of a positive correlation between LCA and GCR fluxes in the early 2000s may be the change of the vortex state which resulted in the reversal of GCR effects on extratropical cyclone development.

  12. Remote sensing of clouds and aerosols with cosmic rays

    NASA Astrophysics Data System (ADS)

    Neronov, Andrii; Malyshev, Denys; Dmytriiev, Anton

    2014-05-01

    Remote sensing of atmosphere is conventionally done via a study of extinction/scattering of light from natural (Sun, Moon) or artificial (laser) sources. Cherenkov emission from extensive air showers generated by cosmic rays provides one more natural light source distributed throughout the atmosphere. We show that Cherenkov light carries information on three-dimensional distribution of clouds and aerosols in the atmosphere and on the size distribution and scattering phase function of cloud/aerosol particles. Therefore, it could be used for the atmospheric sounding. The new atmospheric sounding method could be implemented via an adjustment of technique of imaging Cherenkov telescopes. The atmospheric sounding data collected in this way could be used both for atmospheric science and for the improvement of the quality of astronomical gamma-ray observations.

  13. Cosmic-ray ionisation of dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Vaupre, Solenn

    2015-07-01

    Cosmic rays (CR) are of tremendous importance in the dynamical and chemical evolution of interstellar molecular clouds, where stars and planets form. CRs are likely accelerated in the shells of supernova remnants (SNR), thus molecular clouds nearby can be irradiated by intense fluxes of CRs. CR protons have two major effects on dense molecular clouds: 1) when they encounter the dense medium, high-energy protons (>280 MeV) create pions that decay into gamma-rays. This process makes SNR-molecular cloud associations intense GeV and/or TeV sources whose spectra mimic the CR spectrum. 2) at lower energies, CRs penetrate the cloud and ionise the gas, leading to the formation of molecular species characteristic of the presence of CRs, called tracers of the ionisation. Studying these tracers gives information on low-energy CRs that are unaccessible to any other observations. I studied the CR ionisation of molecular clouds next to three SNRs: W28, W51C and W44. These SNRs are known to be interacting with the nearby clouds, from the presence of shocked gas, OH masers and pion-decay induced gamma-ray emission. My work includes millimeter observations and chemical modeling of tracers of the ionisation in these dense molecular clouds. In these three regions, we determined an enhanced CR ionisation rate, supporting the hypothesis of an origin of the CRs in the SNR nearby. The evolution of the CR ionisation rate with the distance to the SNR brings valuable constraints on the propagation properties of low-energy CRs. The method used relies on observations of the molecular ions HCO+ and DCO+, which shows crucial limitations at high ionisation. Therefore, I investigated, both through modeling and observations, the chemical abundances of several other species to try and identity alternative tracers of the ionisation. In particular, in the W44 region, observations of N2H+ bring additional constraints on the physical conditions, volatile abundances in the cloud, and the ionisation

  14. Interstellar Dust Charging in Dense Molecular Clouds: Cosmic Ray Effects

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Padovani, M.; Galli, D.; Caselli, P.

    2015-10-01

    The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold, dense molecular cloud to investigate two mechanisms of dust charging that have, thus far, been neglected: the collection of suprathermal CR electrons and protons by grains and photoelectric emission from grains due to the UV radiation generated by CRs. These two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: while the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities n({{{H}}}2) between ˜104 and ˜106 cm-3. The charging effect of CRs is of a generic nature, and is therefore expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary disks.

  15. Cosmic-ray-induced photodestruction of interstellar molecules in dense clouds

    SciTech Connect

    Sternberg, A.; Dalgarno, A.; Lepp, S.

    1987-09-01

    The ultraviolet spectrum of radiation generated by cosmic rays inside dense molecular clouds is presented, and the resulting rates of photodissociation for a variety of interstellar molecules are estimated. The effects of this radiation on the chemistry of dense molecular clouds are discussed, and it is argued that the cosmic-ray-induced photons will significantly inhibit the production of complex molecular species. 30 references.

  16. SUPERNOVA REMNANT KES 17: AN EFFICIENT COSMIC RAY ACCELERATOR INSIDE A MOLECULAR CLOUD

    SciTech Connect

    Gelfand, Joseph D.; Castro, Daniel; Slane, Patrick O.; Temim, Tea; Hughes, John P.; Rakowski, Cara E-mail: cara.rakowski@gmail.com

    2013-11-10

    The supernova remnant Kes 17 (SNR G304.6+0.1) is one of a few but growing number of remnants detected across the electromagnetic spectrum. In this paper, we analyze recent radio, X-ray, and γ-ray observations of this object, determining that efficient cosmic ray acceleration is required to explain its broadband non-thermal spectrum. These observations also suggest that Kes 17 is expanding inside a molecular cloud, though our determination of its age depends on whether thermal conduction or clump evaporation is primarily responsible for its center-filled thermal X-ray morphology. Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 is important for understanding how cosmic rays are accelerated in supernova remnants.

  17. Gamma Ray Constraints on Astrochemistry: Cosmic-Ray Flux and Molecular Cloud Masses

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick

    2016-01-01

    As cosmic rays traverse the interstellar medium, they interact with the ambient material in a variety of ways. Some of these include the ionization and excitation of neutral atoms and molecules, the spallation (fragmentation) of heavier nuclei into light element isotopes, and inelastic collisions that produce neutral pions which rapidly decay into pairs of gamma ray photons. Each interaction generates an observable, and each interaction has an energy dependent cross section, such that a suite of observations should be able to constrain the cosmic-ray energy spectrum in a variety of environments outside of our solar system. I am currently using proton spectra inferred in molecular clouds for energies above ~1 GeV from Fermi-LAT observations in concert with abundances of molecular ions sensitive to the cosmic-ray ionization rate that constrain the flux of 1-10 MeV particles for the purpose of investigating how the particle spectrum changes between different locations in our Galaxy, and between diffuse and dense molecular gas. Additionally, somewhere between diffuse and dense gas lies the "CO-dark" molecular gas, a regime where hydrogen is in molecular form but CO has yet to reach an appreciable abundance. Estimates of the H2 mass based solely on CO emission do not account for this material, and it has been estimated that up to 30% of the gas in a molecular cloud is in this phase. Cosmic-ray protons do interact with this material though, and the flux of pionic gamma rays from a molecular cloud can be used to place constraints on the amount of CO-dark molecular gas.

  18. Cosmic ray induced ionisation of a molecular cloud shocked by the W28 supernova remnant

    NASA Astrophysics Data System (ADS)

    Vaupré, S.; Hily-Blant, P.; Ceccarelli, C.; Dubus, G.; Gabici, S.; Montmerle, T.

    2014-08-01

    Cosmic rays are an essential ingredient in the evolution of the interstellar medium, as they dominate the ionisation of the dense molecular gas, where stars and planets form. However, since they are efficiently scattered by the galactic magnetic fields, many questions remain open, such as where exactly they are accelerated, what is their original energy spectrum, and how they propagate into molecular clouds. In this work we present new observations and discuss in detail a method that allows us to measure the cosmic ray ionisation rate towards the molecular clouds close to the W28 supernova remnant. To perform these measurements, we use CO, HCO+, and DCO+ millimetre line observations and compare them with the predictions of radiative transfer and chemical models away from thermodynamical equilibrium. The CO observations allow us to constrain the density, temperature, and column density towards each observed position, while the DCO+/HCO+ abundance ratios provide us with constraints on the electron fraction and, consequently, on the cosmic ray ionisation rate. Towards positions located close to the supernova remnant, we find cosmic ray ionisation rates much larger (≳100) than those in standard galactic clouds. Conversely, towards one position situated at a larger distance, we derive a standard cosmic ray ionisation rate. Overall, these observations support the hypothesis that the γ rays observed in the region have a hadronic origin. In addition, based on CR diffusion estimates, we find that the ionisation of the gas is likely due to 0.1-1 GeV cosmic rays. Finally, these observations are also in agreement with the global picture of cosmic ray diffusion, in which the low-energy tail of the cosmic ray population diffuses at smaller distances than the high-energy counterpart.

  19. Cosmic rays and the dynamic balance in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.; Ozel, Mehmet E.; Stone, Robert G.

    1990-01-01

    Present and future measurement of the Large Magellanic Cloud (LMC) particularly in the radio and high energy gamma ray range offer the possibility of understanding the density and distribution of the cosmic rays in a galaxy other than our own and the role that they play in galactic dynamic balance. After a study of the consistency of the measurements and interpretation of the synchrotron radiation from our own galaxy, the cosmic ray distribution for the LMC is calculated under the assumption that the cosmic ray nucleon to electron ratio is the same and the relation to the magnetic fields are the same, although the implications of alternatives are discussed. It is seen that the cosmic ray density level appears to be similar to that in our own galaxy, but varying in position in a manner generally consistent with the concept of correlation with the matter on a broad scale.

  20. Cosmic-ray acceleration during the impact of shocks on dense clouds

    NASA Technical Reports Server (NTRS)

    Jones, T. W.; Kang, Hyesung

    1993-01-01

    In order to elucidate the properties of diffusive shock acceleration in nonuniform environments, an extensive set of simulations of the dynamical interactions between plane nonradiative shocks and dense gas clouds was carried out initially in static equilibrium with their environments. These time-dependent calculations are based on the two-fluid model for diffusive cosmic ray transport, and include the dynamically active energetic proton component of the cosmic rays as well as passive electron and magnetic field components. Except when the incident shock is itself already dominated by cosmic ray pressure, it is found that the presence of the cloud adds little to the net acceleration efficiency of the original shock and can, in fact, reduce slightly the net amount of energy transferred to cosmic rays after a given time. It is found that, in 2D cloud simulations, the always-weak bow shock and the shock inside the cloud are less important to acceleration during the interaction than the tail shock.

  1. Cosmic-Ray-Induced Ionization in Molecular Clouds Adjacent to Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Schuppan, F.; Becker, J. K.; Black, J. H.; Casanova, S.; Mandelartz, M.

    Energetic gamma rays (GeV to TeV photon energy) have been detected toward several supernova remnants (SNR) that are associated with molecular clouds. If the gamma rays are produced mainly by hadronic processes rather than leptonic processes like bremsstrahlung, then the flux of energetic cosmic ray nuclei (>1GeV) required to produce the gamma rays can be inferred at the site where the particles are accelerated in SNR shocks. It is of great interest to understand the acceleration of the cosmic rays of lower energy (<1GeV) that accompany the energetic component. These particles of lower energy are most effective in ionizing interstellar gas, which leaves an observable imprint on the interstellar ion chemistry. A correlation of energetic gamma radiation with enhanced interstellar ionization can thus be used to support the hadronic origin of the gamma rays and to constrain the acceleration of ionizing cosmic rays in SNR. Using observational gamma ray data, the primary cosmic ray proton spectrum can be modeled for E>1GeV, and careful extrapolation of the spectrum to lower energies offers a method to calculate the ionization rate of the molecular cloud.

  2. Cosmic rays in the Large and Small Magellanic Clouds and the relationship to our Galaxy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.; Sreekumar, P.

    1991-01-01

    Information on the cosmic rays in the Large and Small Magellanic Clouds may be obtained from measurements of the synchrotron radiation related to the energetic electrons, which are believed to contain only about 1 percent of the cosmic rays energy. Assuming the same ratio as in our Galaxy between the cosmic ray electrons and nucleons, the energy density distribution may be estimated. This prediction is compared to that deduced from the matter density distribution, the concept of dynamic balance, and an appropriate coupling scale. For the LMC, the condition of quasi-equilibrium seems satisfied as is required for dynamic balance to be a valid concept, but for the SMC, this seems not to be the case.

  3. Studies on the Effect of Cloud Coverage and Galactic Cosmic Ray on Stratospheric Moistening

    NASA Astrophysics Data System (ADS)

    Maitra, Animesh; Saha, Upal; Das, Saurabh

    2012-07-01

    Increased stratospheric water vapor is one of the significant causes of global warming as increased stratospheric water vapor acts to cool the stratosphere but it warms the underlying troposphere. The sun can influence the clouds by mediating through Galactic cosmic rays (GCR) which controls the nucleation of water droplets in the atmosphere. The role of primary GCR in generating low-level cloud condensation nuclei reflects solar energy back into space affecting the temperature on earth. In the present study, variations of different types of cloud coverage (low, mid and high) are correlated with the intensity of GCR flux and their effects on the stratospheric moistening in the equatorial, mid- latitude and polar region have been investigated for the years 2004 and 2005 using the Aura's Microwave Limb Sounder (MLS) water vapor data, ISCCP cloud data and GCR from neutron monitor observations at Calgary (51.080 N, 245.870 E). The relation between GCR and stratospheric moistening is also investigated in this paper. Additionally, the latitudinal variation of different types of cloud coverage is also studied for the same period. The southern mid-latitudinal region has the highest coverage of low-level cloud, followed by the equatorial region. Both the Polar Regions are highly covered with mid-level cloud. The mid-latitudinal region shows highest coverage of high-cloud, followed by the equatorial region. Lower level clouds exert a large net cooling effect on the climate indicating an inter-relationship between cosmic ray and cloud coverage. However, the mid and high cloud coverage have no significant correlation with GCR flux. The stratospheric moistening is controlled by transport of water vapour from troposphere to stratosphere through the tropopause region and the oxidation of methane within the stratosphere. Water vapour plays a major role in the chemistry and radiative budget of the stratosphere. One possible water vapor source in the stratosphere is the advection of

  4. Quantifying the importance of galactic cosmic rays in cloud microphysical processes

    NASA Astrophysics Data System (ADS)

    Rawal, Akhilesh.; Tripathi, Sachchida Nand.; Michael, Marykutty.; Srivastava, Atul K.; Harrison, Richard G.

    2013-09-01

    Galactic Cosmic Rays are one of the major sources of ion production in the troposphere and stratosphere. Recent studies have shown that ions form electrically charged clusters which may grow to become cloud droplets. Aerosol particles charge by the attachment of ions and electrons. The collision efficiency between a particle and a water droplet increases, if the particle is electrically charged, and thus aerosol-cloud interactions can be enhanced. Because these microphysical processes may change radiative properties of cloud and impact Earth's climate it is important to evaluate these processes' quantitative effects. Five different models developed independently have been coupled to investigate this. The first model estimates cloud height from dew point temperature and the temperature profile. The second model simulates the cloud droplet growth from aerosol particles using the cloud parcel concept. In the third model, the scavenging rate of the aerosol particles is calculated using the collision efficiency between charged particles and droplets. The fourth model calculates electric field and charge distribution on water droplets and aerosols within cloud. The fifth model simulates the global electric circuit (GEC), which computes the conductivity and ionic concentration in the atmosphere in altitude range 0-45 km. The first four models are initially coupled to calculate the height of cloud, boundary condition of cloud, followed by growth of droplets, charge distribution calculation on aerosols and cloud droplets and finally scavenging. These models are incorporated with the GEC model. The simulations are verified with experimental data of charged aerosol for various altitudes. Our calculations showed an effect of aerosol charging on the CCN concentration within the cloud, due to charging of aerosols increase the scavenging of particles in the size range 0.1 μm to 1 μm.

  5. Cosmic-ray slowing down in molecular clouds: Effects of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Chabot, Marin

    2016-01-01

    Context. A cosmic ray (CR) spectrum propagated through ISM contains very few low-energy (<100 MeV) particles. Recently, a local CR spectrum, with strong low energy components, has been proposed to be responsible for the over production of H3+ molecule in some molecular clouds. Aims: We aim to explore the effects of the chemical composition of low-energy cosmic rays (CRs) when they slow down in dense molecular clouds without magnetic fields. We considered both ionization and solid material processing rates. Methods: We used galatic CR chemical composition from proton to iron. We propagated two types of CR spectra through a cloud made of H2: those CR spectra with different contents of low energy CRs and those assumed to be initially identical for all CR species. The stopping and range of ions in matter (SRIM) package provided the necessary stopping powers. The ionization rates were computed with cross sections from recent semi-empirical laws, while effective cross sections were parametrized for solid processing rates using a power law of the stopping power (power 1 to 2). Results: The relative contribution to the cloud ionization of proton and heavy CRs was found identical everywhere in the irradiated cloud, no matter which CR spectrum we used. As compared to classical calculations, using protons and high-energy behaviour of ionization processes (Z2 scaling), we reduced absolute values of ionization rates by few a tens of percents but only in the case of spectrum with a high content of low-energy CRs. We found, using the same CR spectrum, the solid material processing rates to be reduced between the outer and inner part of thick cloud by a factor 10 (as in case of the ionization rates) or by a factor 100, depending on the type of process.

  6. Cosmic-ray astrochemistry.

    PubMed

    Indriolo, Nick; McCall, Benjamin J

    2013-10-01

    Gas-phase chemistry in the interstellar medium is driven by fast ion-molecule reactions. This, of course, demands a mechanism for ionization, and cosmic rays are the ideal candidate as they can operate throughout the majority of both diffuse and dense interstellar clouds. Aside from driving interstellar chemistry via ionization, cosmic rays also interact with the interstellar medium in ways that heat the ambient gas, produce gamma rays, and produce light element isotopes. In this paper we review the observables generated by cosmic-ray interactions with the interstellar medium, focusing primarily on the relevance to astrochemistry. PMID:23812538

  7. Developing a Webcam-Based Data Logger to Analyze Cosmic Rays in a Cloud Chamber

    NASA Astrophysics Data System (ADS)

    Nealon, Kelly; Bellis, Matt

    2015-04-01

    Muons from secondary cosmic rays provide students with an opportunity to interact with a natural phenomenon that relies both on special relativity and fairly sophisticated particle physics knowledge. In many physics departments, undergraduate students set up a pair of scintillators in coincidence to measure the rate of these muons and in some cases, measure their angular dependence, but this requires specialized and potentially expensive equipment. We have spent the past year formalizing a design of a cloud chamber that relies not on dry ice, but Peltier thermoelectric coolers, that can be built for about one hundred dollars worth of equipment. With this design we can see the tracks left by cosmic rays, however to turn it into a useful undergraduate physics lab requires some sort of data logger. This poster details our efforts to use an off-the-shelf webcam to trigger on the change in image when a cosmic ray track appears in the chamber. We use this to estimate the rate and angular dependence and compare our results to other measurements. The successes and limitations of this approach will be discussed.

  8. Cosmic Rays and MHD Turbulence Generation in Interstellar Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Caglar, M.; Lazarian, A.

    2016-06-01

    The diffusive propagation of nonrelativistic cosmic ray (CR) protons undergoing energy losses by ionization in a dense homogeneous infinitely extended interstellar molecular cloud (MC) is investigated. The steady-state transport equation for the differential number density of nonrelativistic CR protons is solved with the boundary condition that at the edge of cloud it agrees with the interstellar CR number density. It is shown that giant interstellar MCs with column depths much greater than about 7\\cdot {10}22 cm‑2 are an efficient sink of nonrelativistic CRs. At small penetration depths the CRs lose energy by ionizing and heating the molecular gas, whereas at large penetration depths they are collectively dissipated by the streaming instability, which transfers one-half of the energy density of the incoming interstellar nonrelativistic CRs to Alfvénic magnetic field turbulence.

  9. Probing the climatological impact of a cosmic ray-cloud connection through low-frequency radio observations

    NASA Astrophysics Data System (ADS)

    Magee, Nathan; Kavic, Michael

    2012-01-01

    It has been proposed that cosmic ray events could have a causal relationship with cloud formation rates. Given the weak constraints on the role that cloud formation plays in climate forcing it is essential to understand the role such a relationship could have in shaping the Earth's climate. This issue has been previously investigated in the context of the long-term effect of cosmic ray events on climate. However, in order to establish whether or not such a relationship exists, measurements of short-timescale solar events, individual cosmic ray events, and spatially correlated cloud parameters could be of great significance. Here we propose such a comparison using observations from a pair of radio telescopes arrays, the Long Wavelength Array (LWA) and the Eight-meter-wavelength Transient Array (ETA). These low-frequency radio arrays have a unique ability to simultaneously conduct solar, ionospheric and cosmic rays observations and are thus ideal for such a comparison. We will outline plans for a comparison using data from these instruments, satellite images of cloud formation as well as expected cloud formation rates from numerical models. We present some preliminary results illustrating the efficacy of this type of comparison and discuss future plans to carryout this program.

  10. Cosmic-ray distribution and the dynamic balance in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.; Stone, Robert G.; Ozel, Mehmet E.; Sreekumar, P.

    1991-01-01

    The cosmic-ray energy density distribution for the LMC is calculated quantitatively based on the concept of dynamic balance and a scale of coupling between the cosmic rays and matter in a range allowed by present observations. Based on the very slowly varying ratio of the cosmic-ray electron to nucleon energy density ratio with relevant local galactic conditions and the close similarities to the galaxy, the cosmic-ray nucleon density distribution in the LMC is also determined from cosmic-ray electron density distribution deduced from synchrotron radiation measurements in a manner consistent with dynamic balance. It is seen that within uncertainties there is quantitative agreement between the two for a cosmic-ray, matter coupling scale of about 2.5 kiloparsecs both in terms of magnitude and distribution, thus supporting both the concept of dynamic balance and the galactic origin of the bulk of cosmic rays. Future gamma-ray astronomy measurement above 100 MeV will be able to provide a test of this cosmic-ray density distribution for the LMC.

  11. Cosmic ray antiprotons from nearby cosmic accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish C.; Gupta, Nayantara

    2015-05-01

    The antiproton flux measured by PAMELA experiment might have originated from Galactic sources of cosmic rays. These antiprotons are expected to be produced in the interactions of cosmic ray protons and nuclei with cold protons. Gamma rays are also produced in similar interactions inside some of the cosmic accelerators. We consider a few nearby supernova remnants observed by Fermi LAT. Many of them are associated with molecular clouds. Gamma rays have been detected from these sources which most likely originate in decay of neutral pions produced in hadronic interactions. The observed gamma ray fluxes from these SNRs are used to find out their contributions to the observed diffuse cosmic ray antiproton flux near the earth.

  12. Temperature Spectra of Interstellar Dust Grains Heated by Cosmic Rays. I. Translucent Clouds

    NASA Astrophysics Data System (ADS)

    Kalvāns, Juris

    2016-06-01

    Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas–grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating, f T , s‑1, determines how often a certain temperature T CR, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with a comprehensive and updated data set on CR-induced whole-grain heating. We present calculations of f T and T CR spectra for bare olivine grains with radius a of 0.05, 0.1, and 0.2 μm and such grains covered with ice mantles of thickness 0.1a and 0.3a. Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with A V = 2 mag. Energy deposition by CRs in grain material was calculated with the srim program. We report full T CR spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum T CR values. The calculated data set can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20–30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.

  13. A young supernova remnant illuminating nearby molecular clouds with cosmic rays

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Pühlhofer, G.; Santangelo, A.

    2016-06-01

    The supernova remnant (SNR) HESS J1731-347 displays strong nonthermal TeV γ-ray and X-ray emission, thus the object is presently accelerating particles to very high energies. A distinctive feature of this young SNR is the nearby (~30 pc in projection) extended source HESS J1729-345, which is currently unidentified but is in spatial projection coinciding with known molecular clouds (MC). We model the SNR evolution to explore whether the TeV emission from HESS J1729-345 can be explained as emission from runaway hadronic cosmic rays (CRs) that are illuminating these MCs. The observational data of HESS J1729-345 and HESS J1731-347 can be reproduced using core-collapse SN models for HESS J1731-347. Starting with different progenitor stars and their presupernova environment, we model potential SNR evolution histories along with the CR acceleration in the SNR and the diffusion of the CRs. A simplified three-dimensional structure of the MCs is introduced based on data of that region, adopting a distance of 3.2 kpc to the source. A Monte Carlo based diffusion model for the escaping CRs is developed to deal with the inhomogeneous environment. The fast SNR forward shock speed, as implied from the X-ray data, can easily be explained when employing scenarios with progenitor star masses between 20 M⊙ and 25 M⊙, where the SNR shock is still expanding inside the main-sequence (MS) bubble at present time. The TeV spectrum of HESS J1729-345 is satisfactorily fitted by the emission from the highest energy CRs that have escaped the SNR, using a standard Galactic CR diffusion coefficient in the interclump medium. The TeV image of HESS J1729-345 can be explained with a reasonable three-dimensional structure of MCs. The TeV emission from the SNR itself is dominated by leptonic emission in this model. We also explore scenarios where the shock is starting to encounter the dense MS progenitor wind bubble shell. The escaping hadronic CR hypothesis for the γ-ray emission of HESS J1729

  14. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  15. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  16. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  17. Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995-2009

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    2011-01-01

    We summarize the response of the galactic cosmic ray (CGR) intensity to the passage of the more than 300 interplanetary coronal mass ejections (ICMEs) and their associated shocks that passed the Earth during 1995-2009, a period that encompasses the whole of Solar Cycle 23. In approx.80% of cases, the GCR intensity decreased during the passage of these structures, i.e., a "Forbush decrease" occurred, while in approx.10% there was no significant change. In the remaining cases, the GCR intensity increased. Where there was an intensity decrease, minimum intensity was observed inside the ICME in approx.90% of these events. The observations confirm the role of both post-shock regions and ICMEs in the generation of these decreases, consistent with many previous studies, but contrary to the conclusion of Reames, Kahler, and Tylka (Astrophys. 1. Lett. 700, L199, 2009) who, from examining a subset of ICMEs with flux-rope-like magnetic fields (magnetic clouds) argued that these are "open structures" that allow free access of particles including GCRs to their interior. In fact, we find that magnetic clouds are more likely to participate in the deepest GCR decreases than ICMEs that are not magnetic clouds.

  18. Properties of ices and grains - An experimental study. [galactic cosmic ray irradiation of comets in Oort cloud

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1983-01-01

    Proton irradiation of a variety of ice mixtures was carried out to study the effect of galactic cosmic ray irradiation of comets in the Oort Cloud. Three significant effects were noted: (1) production of new molecules; (2) production of a more energetic ice at low temperatures; (3) production of a non-volatile, complex organic residue. These phenomena suggest various effects on new comets approaching the sun including enhanced activity. Experiments on the condensation of silicate grains provide information on the condensation mechanism and properties of grains. Controlled annealing of the amorphous condensates shows how crystallization occurs. Infrared spectra of different stages of crystallization contain features that may identify composition, structure and history of refractory material.

  19. Protostars: Forges of cosmic rays?

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Marcowith, A.; Hennebelle, P.; Ferrière, K.

    2016-05-01

    Context. Galactic cosmic rays are particles presumably accelerated in supernova remnant shocks that propagate in the interstellar medium up to the densest parts of molecular clouds, losing energy and their ionisation efficiency because of the presence of magnetic fields and collisions with molecular hydrogen. Recent observations hint at high levels of ionisation and at the presence of synchrotron emission in protostellar systems, which leads to an apparent contradiction. Aims: We want to explain the origin of these cosmic rays accelerated within young protostars as suggested by observations. Methods: Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient cosmic-ray acceleration through diffusive shock acceleration. We analyse three main acceleration sites (shocks in accretion flows, along the jets, and on protostellar surfaces), then we follow the propagation of these particles through the protostellar system up to the hot spot region. Results: We find that jet shocks can be strong accelerators of cosmic-ray protons, which can be boosted up to relativistic energies. Other promising acceleration sites are protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate cosmic-ray protons. In contrast, accretion flow shocks are too weak to efficiently accelerate cosmic rays. Though cosmic-ray electrons are weakly accelerated, they can gain a strong boost to relativistic energies through re-acceleration in successive shocks. Conclusions: We suggest a mechanism able to accelerate both cosmic-ray protons and electrons through the diffusive shock acceleration mechanism, which can be used to explain the high ionisation rate and the synchrotron emission observed towards protostellar sources. The existence of an internal source of energetic particles can have a strong and unforeseen impact on the ionisation of the protostellar disc, on the star and planet formation

  20. Development of cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It is pointed out that most advances of cosmic-ray physics have been directly related to the development of observational techniques. A review is presented of the history of the evolution of the techniques and equipment for the study of cosmic-ray physics, taking into account the new scientific advances accompanying each new development related to experimental technology. All of the early observations were performed by means of ionization chambers. These chambers had already been in use for a number of years, when they were first applied to the study of cosmic rays in the early years of this century. However, an application to the low-intensity cosmic radiation required special refinements. Attention is given to the design of suitable electrometers, the development of self-recording instruments, the 'tube counter', the development of the coincidence method, a cosmic-ray 'telescope', a magnetic lens for cosmic rays, an arrangement of Geiger-Mueller counters for the demonstration of secondary radiation, cloud chambers, scintillation counters, and air shower experiments.

  1. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  2. Cosmic Rays and Global Warming

    SciTech Connect

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  3. Eleventh European Cosmic Ray Symposium

    NASA Astrophysics Data System (ADS)

    1988-08-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific program was organized under three main headings: cosmic rays in the heliosphere, cosmic rays in the interstellar and extragalactic space, and properties of high-energy interactions as studied by cosmic rays. Selected short communications out of 114 contributed papers were indexed separately for the INIS database.

  4. Cosmic Ray Dosimetry

    NASA Astrophysics Data System (ADS)

    Si Belkhir, F.; Attallah, R.

    2010-10-01

    Radiation levels at aircraft cruising altitudes are twenty times higher than at sea level. Thus, on average, a typical airline pilot receives a larger annual radiation dose than some one working in nuclear industry. The main source of this radiation is from galactic cosmic radiation, high energy particles generated by exploding stars within our own galaxy. In this work we study cosmic rays dosimetry at various aviation altitudes using the PARMA model.

  5. TOWARD UNDERSTANDING THE COSMIC-RAY ACCELERATION AT YOUNG SUPERNOVA REMNANTS INTERACTING WITH INTERSTELLAR CLOUDS: POSSIBLE APPLICATIONS TO RX J1713.7-3946

    SciTech Connect

    Inoue, Tsuyoshi; Yamazaki, Ryo; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2012-01-01

    Using three-dimensional magnetohydrodynamic simulations, we investigate general properties of a blast wave shock interacting with interstellar clouds. The pre-shock cloudy medium is generated as a natural consequence of the thermal instability that simulates realistic clumpy interstellar clouds and their diffuse surrounding. The shock wave that sweeps the cloudy medium generates a turbulent shell through the vorticity generations that are induced by shock-cloud interactions. In the turbulent shell, the magnetic field is amplified as a result of turbulent dynamo action. The energy density of the amplified magnetic field can locally grow comparable to the thermal energy density, particularly at the transition layers between clouds and the diffuse surrounding. In the case of a young supernova remnant (SNR) with a shock velocity {approx}> 10{sup 3} km s{sup -1}, the corresponding strength of the magnetic field is approximately 1 mG. The propagation speed of the shock wave is significantly stalled in the clouds because of the high density, while the shock maintains a high velocity in the diffuse surrounding. In addition, when the shock wave hits the clouds, reflection shock waves are generated that propagate back into the shocked shell. From these simulation results, many observational characteristics of the young SNR RX J1713.7-3946 that is suggested to be interacting with molecular clouds can be explained as follows. The reflection shocks can accelerate particles in the turbulent downstream region where the magnetic field strength reaches 1 mG, which causes short-time variability of synchrotron X-rays. Since the shock velocity is stalled locally in the clouds, the temperature in the shocked cloud is suppressed far below 1 keV. Thus, thermal X-ray line emission would be faint even if the SNR is interacting with molecular clouds. We also find that the photon index of the {pi}{sup 0}-decay gamma rays generated by cosmic-ray protons can be 1.5 (corresponding energy flux

  6. Toward Understanding the Cosmic-Ray Acceleration at Young Supernova Remnants Interacting with Interstellar Clouds: Possible Applications to RX J1713.7-3946

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Yamazaki, Ryo; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2012-01-01

    Using three-dimensional magnetohydrodynamic simulations, we investigate general properties of a blast wave shock interacting with interstellar clouds. The pre-shock cloudy medium is generated as a natural consequence of the thermal instability that simulates realistic clumpy interstellar clouds and their diffuse surrounding. The shock wave that sweeps the cloudy medium generates a turbulent shell through the vorticity generations that are induced by shock-cloud interactions. In the turbulent shell, the magnetic field is amplified as a result of turbulent dynamo action. The energy density of the amplified magnetic field can locally grow comparable to the thermal energy density, particularly at the transition layers between clouds and the diffuse surrounding. In the case of a young supernova remnant (SNR) with a shock velocity >~ 103 km s-1, the corresponding strength of the magnetic field is approximately 1 mG. The propagation speed of the shock wave is significantly stalled in the clouds because of the high density, while the shock maintains a high velocity in the diffuse surrounding. In addition, when the shock wave hits the clouds, reflection shock waves are generated that propagate back into the shocked shell. From these simulation results, many observational characteristics of the young SNR RX J1713.7-3946 that is suggested to be interacting with molecular clouds can be explained as follows. The reflection shocks can accelerate particles in the turbulent downstream region where the magnetic field strength reaches 1 mG, which causes short-time variability of synchrotron X-rays. Since the shock velocity is stalled locally in the clouds, the temperature in the shocked cloud is suppressed far below 1 keV. Thus, thermal X-ray line emission would be faint even if the SNR is interacting with molecular clouds. We also find that the photon index of the π0-decay gamma rays generated by cosmic-ray protons can be 1.5 (corresponding energy flux is νF νvpropν0.5) because

  7. Supernova and cosmic rays

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.

    1981-01-01

    A general overview of supernova astronomy is presented, followed by a discussion of the relationship between SN and galactic cosmic rays. Pre-supernova evolution is traced to core collapse, explosion, and mass ejection. The two types of SN light curves are discussed in terms of their causes, and the different nucleosynthetic processes inside SNs are reviewed. Physical events in SN remnants are discussed. The three main connections between cosmic rays and SNs, the energy requirement, the acceleration mechanism, and the detailed composition of CR, are detailed.

  8. Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2015-12-01

    The multi-facet nature of the origin of cosmic rays is such that some of the problems currently met in our path to describing available data are due to oversimplified models of CR acceleration and transport, and others to lack of knowledge of the physical processes at work in certain conditions. On the other hand, the phenomenology of cosmic rays, as arising from better observations, is getting so rich that it makes sense to try to distinguish the problems that derive from too simple views of Nature and those that are challenging the very foundations of the existing paradigms. Here I will briefly discuss some of these issues.

  9. Cosmic rays from cosmic strings with condensates

    SciTech Connect

    Vachaspati, Tanmay

    2010-02-15

    We revisit the production of cosmic rays by cusps on cosmic strings. If a scalar field ('Higgs') has a linear interaction with the string world sheet, such as would occur if there is a bosonic condensate on the string, cusps on string loops emit narrow beams of very high energy Higgses which then decay to give a flux of ultrahigh energy cosmic rays. The ultrahigh energy flux and the gamma to proton ratio agree with observations if the string scale is {approx}10{sup 13} GeV. The diffuse gamma ray and proton fluxes are well below current bounds. Strings that are lighter and have linear interactions with scalars produce an excess of direct and diffuse cosmic rays and are ruled out by observations, while heavier strings ({approx}10{sup 15} GeV) are constrained by their gravitational signatures. This leaves a narrow window of parameter space for the existence of cosmic strings with bosonic condensates.

  10. Development of the cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  11. Discovery of cosmic rays

    NASA Astrophysics Data System (ADS)

    Carlson, Per

    2013-02-01

    The mysterious invisible radiation that ionized air was studied a century ago by many scientists. Finally, on 7 August 1912, Victor Hess in his seventh balloon flight that year, reached an altitude of about 5000 m. With his electroscopes on board the hydrogen-filled balloon he observed that the ionization instead of decreasing with altitude increased significantly. Hess had discovered cosmic rays, a discovery that gave him the 1936 Nobel Prize in physics. When research resumed after World War I focus was on understanding the nature of the cosmic radiation. Particles or radiation? Positive or negative? Electrons, positrons or protons? Progress came using new instruments like the Geiger-Muller tube and around 1940 it was clear that cosmic rays were mostly protons.

  12. OT2_alopezse_3: Mapping the cosmic ray ionisation rate across the Northern end of the Orion A iant molecular cloud

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.

    2011-09-01

    Cosmic rays (CR) are ubiquitous in the Galaxy and have the important role of ionizing the dens gas of the ISM. New Herschel observations have shown the huge diagnostic power of the OH+ fundamental transition to measure the CR ionization rate in diffuse clouds. Based on previous "serendipity" observations toward OMC2-FIR4 within the KP CHESS, we discovered a tenuous foreground cloud absorbing the fundamental OH+ line. Similarly, Gupta et al. (2010) found an OH+ absorption component at a similar velocity towards Orion KL and estimated a large CR ionization rate more than 10 times larger than the average value observed in diffuse clouds . We propose here to roughly map the CR ionization rate in the direction of the OMC2 and OMC3 complex to understand its extent, nature, and, finally, the source of ionization.

  13. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  14. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  15. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  16. Cosmic ray modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  17. Relativistic heavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Binns, W. R.

    1972-01-01

    During three balloon flights of a 1 sq m sr ionization chamber/Cerenkov counter detector system, measurements were made of the atmospheric attenuation, flux, and charge composition of cosmic ray nuclei with 16 is less than or = Z is less than or = 30 and rigidity greater than 4.5 GV. The attenuation mean free path in air of VH (20 less than or = Z less than or = 30) nuclei is found to be 19.7 + or - 1.6 g/sq cm, a value somewhat greater than the best previous measurement. The attenuation mean free path of iron is found to be 15.6 + or - 2.2 g/sq cm, consistent with predictions of geometric cross-section formulae. An absolute flux of VH nuclei 10 to 20% higher than earlier experiments at similar geomagnetic cutoff and level of solar activity was measured. The relative abundances of even-charged nuclei are found to be in good agreement with results of other recent high resolution counter experiments. The observed cosmic ray chemical composition implies relative abundances at the cosmic ray source of Ca/Fe = 0.12 + or - 0.04 and S/Fe = 0.14 + or - 0.05.

  18. Cosmic Rays Across the Universe

    NASA Astrophysics Data System (ADS)

    Gould Zweibel, Ellen

    2016-01-01

    Cosmic rays play an important role in the dynamics, energetics, and chemisry of gas inside and outside galaxies. It has long been recognized that gamma ray astronomy is a powerful probe of cosmic ray acceleration and propagation, and that gamma ray data, combined with other observations of cosmic rays and of the host medium and with modeling, can provide an integrated picture of cosmic rays and their environments. I will discuss the plasma physics underlying this picture, where it has been successful, and where issues remain.

  19. Gamma ray line production from cosmic ray spallation reactions

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1985-01-01

    The gamma ray line intensities due to cosmic ray spallation reactions in clouds, the galactic disk and accreting binary pulsars are calculated. With the most favorable plausible assumptions, only a few lines may be detectable to the level of 0.0000001 per sq. cm per sec. The intensities are compared with those generated in nuclear excitation reactions.

  20. Catching Cosmic Rays with a DSLR

    ERIC Educational Resources Information Center

    Sibbernsen, Kendra

    2010-01-01

    Cosmic rays are high-energy particles from outer space that continually strike the Earth's atmosphere and produce cascades of secondary particles, which reach the surface of the Earth, mainly in the form of muons. These particles can be detected with scintillator detectors, Geiger counters, cloud chambers, and also can be recorded with commonly…

  1. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  2. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-08-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  3. Antiprotons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Streitmatter, R. E.

    1987-01-01

    Recent experimental observations and results are discussed. It was found that the approximately 50 antiprotons collected in balloon experiments to date have generated considerable theoretical interest. Clearly, confirmatory experiments and measurements over an extended energy range are required before definite conclusions are drawn. Antiproton measurements have a bearing on astrophysical problems ranging from cosmic ray propagation to issues of cosmological import. The next generation of balloon experiments and the Particle Astrophysics Magnet Facility being discussed for operation on NASA's space station should provide data and insights of highest interest.

  4. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2010-01-08

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the ?end? of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform ?cosmic ray astronomy?, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  5. Gamma rays from giant molecular clouds

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; Kanbach, Gottfried

    1990-01-01

    Giant Molecular Clouds (GMCs) are massive, bounded, cool, dense regions containing mostly H2, but also H I, CO, and other molecules. These clouds occupy less than 1 percent of the galactic volume, but are a substantial part of the interstellar mass. They are irradiated by the high energy cosmic rays which are possibly modulated by the matter and magnetic fields within the clouds. The product of cosmic-ray flux and matter density is traced by the emission of high energy gamma-rays. A spherical cloud model is considered and the gamma ray flux from several GMCs within 1 kpc of the sun which should be detectable by the EGRET (Energetic Gamma-Ray Experimental Telescope) instrument on GRO (Gamma Ray Observatory).

  6. Cosmic ray sampling of a clumpy interstellar medium

    SciTech Connect

    Boettcher, Erin; Zweibel, Ellen G.; Gallagher, J. S. III; Yoast-Hull, Tova M.

    2013-12-10

    How cosmic rays sample the multi-phase interstellar medium (ISM) in starburst galaxies has important implications for many science goals, including evaluating the cosmic ray calorimeter model for these systems, predicting their neutrino fluxes, and modeling their winds. Here, we use Monte Carlo simulations to study cosmic ray sampling of a simple, two-phase ISM under conditions similar to those of the prototypical starburst galaxy M82. The assumption that cosmic rays sample the mean density of the ISM in the starburst region is assessed over a multi-dimensional parameter space where we vary the number of molecular clouds, the galactic wind speed, the extent to which the magnetic field is tangled, and the cosmic ray injection mechanism. We evaluate the ratio of the emissivity from pion production in molecular clouds to the emissivity that would be observed if the cosmic rays sampled the mean density, and seek areas of parameter space where this ratio differs significantly from unity. The assumption that cosmic rays sample the mean density holds over much of parameter space; however, this assumption begins to break down for high cloud density, injection close to the clouds, and a very tangled magnetic field. We conclude by evaluating the extent to which our simulated starburst region behaves as a proton calorimeter and constructing the time-dependent spectrum of a burst of cosmic rays.

  7. Modulation of Cosmic Ray Precipitation Related to Climate

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.

    1998-01-01

    High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.

  8. Cosmic-Rays and Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Meli, A.

    2013-07-01

    Cosmic-rays are subatomic particles of energies ranging between a few eV to hundreds of TeV. These particles register a power-law spectrum, and it seems that most of them originate from astrophysical galactic and extragalactic sources. The shock acceleration in superalfvenic astrophysical plasmas, is believed to be the main mechanism responsible for the production of the non-thermal cosmic-rays. Especially, the importance of the very high energy cosmic-ray acceleration, with its consequent gamma-ray radiation and neutrino production in the shocks of the relativistic jets of Gamma Ray Bursts, is a favourable theme of study. I will discuss the cosmic-ray shock acceleration mechanism particularly focusing on simulation studies of cosmic-ray acceleration occurring in the relativistic shocks of GRB jets.

  9. Superbubbles and Local Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Streitmatter, Robert E.; Jones, Frank C.

    2005-01-01

    We consider the possibility that distinctive features of the local cosmic ray spectra and composition are influenced by the Solar system being embedded within the cavity of an ancient superbubble. Shifts in the measured cosmic ray composition between 10(exp 11) and 10(exp 20) eV as well as the "knee" and "second knee" may be understood in this picture.

  10. Cosmic Rays and Experiment CZELTA

    SciTech Connect

    Smolek, Karel; Nyklicek, Michal

    2007-11-26

    This paper gives a review of the physics of cosmic rays with emphasis on the methods of detection and study. A summary is given of the Czech project CZELTA which is part of a multinational program to study cosmic rays with energies above 10{sup 14} eV.

  11. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  12. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  13. Genesis and propagation of cosmic rays

    SciTech Connect

    Shapiro, M.M.; Wefel, J.P.

    1988-01-01

    This book presents a panorama of contemporary state-of-the-art knowledge on the origin of cosmic rays and how they propagate through space. Twenty-eight articles cover such topics as objects which generate cosmic rays, processes which accelerate particles to cosmic ray energies, the interaction of cosmic rays with their environment, elementary particles in cosmic rays, how to detect cosmic rays and future experiments to measure highly energetic particles.

  14. Gamma rays, cosmic rays, and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1977-01-01

    Observations of cosmic and gamma radiation by SAS-2 satellite are summarized and analyzed to determine processes responsible for producing observed galactic radiation. In addition to the production of gamma rays in discrete galactic objects such as pulsars, there are three main mechanisms by which high-energy (greater than 100 MeV) radiation is produced by high-energy interactions involving cosmic rays in interstellar space. These processes, which produce what may be called diffuse galactic gamma-rays, are: (1) the decay of pi mesons produced by interactions of cosmic ray nucleons with interstellar gas nuclei; (2) the bremsstrahlung radiation produced by cosmic ray electrons interacting in the Coulomb fields of nuclei of interstellar gas atoms; and (3) Compton interactions between cosmic ray electrons and low-energy photons in interstellar space.

  15. Solar Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Leonty I.

    2001-05-01

    The book summarizes the results of solar cosmic-ray (SCR) investigations since 1942. The present monograph, unlike the reviews published earlier, treats the problem in self-contained form, in all its associations - from fundamental astrophysical aspects to geophysical and astronautical applications. It includes a large amount of new data, accumulated during the last two or three decades of space research. As a result of the `information burst' in space physics, there are a lot of new interesting theoretical concepts, models, and ideas that deserve attention. The author gives an extensive bibliography which covers incompartially the main achievements and failures in this field. The book will be helpful for a wide audience of space physicists and it will be relevant to graduate and postgraduate courses.

  16. Cosmic Ray Scattering Radiography

    NASA Astrophysics Data System (ADS)

    Morris, C. L.

    2015-12-01

    Cosmic ray muons are ubiquitous, are highly penetrating, and can be used to measure material densities by either measuring the stopping rate or by measuring the scattering of transmitted muons. The Los Alamos team has studied scattering radiography for a number of applications. Some results will be shown of scattering imaging for a range of practical applications, and estimates will be made of the utility of scattering radiography for nondestructive assessments of large structures and for geological surveying. Results of imaging the core of the Toshiba Nuclear Critical Assembly (NCA) Reactor in Kawasaki, Japan and simulations of imaging the damaged cores of the Fukushima nuclear reactors will be presented. Below is an image made using muons of a core configuration for the NCA reactor.

  17. Early developments: Particle physics aspects of cosmic rays

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    2014-01-01

    Cosmic rays is the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. In subsequent cloud chamber investigations Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Measurements with nuclear emulsions by Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. The cloud chamber continued to be a powerful instrument in cosmic ray studies. Rochester and Butler found V's, which turned out to be shortlived neutral kaons decaying into a pair of charged pions. Also Λ's, Σ's, and Ξ's were found in cosmic rays. But after that accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A. Cosmic ray neutrino results were best explained by the assumption of neutrino oscillations opening a view beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of accelerators.

  18. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  19. Magnetic confinement of cosmic clouds

    NASA Technical Reports Server (NTRS)

    Azar, Michel; Thompson, W. B.

    1988-01-01

    The role of the magnetic field in the confinement or compression of interstellar gas clouds is reconsidered. The virial theorem for an isolated magnetized cloud in the presence of distant magnetic sources is reformulated in terms of moments of the internal and external currents, and an equilibrium condition is derived. This condition is applied to the interaction between isolated clouds for the simple- and artificial-case in which the field of each cloud is a dipole. With the simplest of statistical assumptions, the probability of any given cloud being compressed is calculated as about 10 percent, the magnetic field acting as a medium which transmits the kinetic pressure between clouds. Even when compression occurs the magnetic pressure 1/2 B-squared may decrease on leaving the cloud surface.

  20. Numerical Cosmic-Ray Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Miniati, F.

    2009-04-01

    We present a numerical method for integrating the equations describing a system made of a fluid and cosmic-rays. We work out the modified characteristic equations that include the CR dynamical effects in smooth flows. We model the energy exchange between cosmic-rays and the fluid, due to diffusive processes in configuration and momentum space, with a flux conserving method. For a specified shock acceleration efficiency as a function of the upstream conditions and shock Mach number, we modify the Riemann solver to take into account the cosmic-ray mediation at shocks without resolving the cosmic-ray induced substructure. A self-consistent time-dependent shock solution is obtained by using our modified solver with Glimm's method. Godunov's method is applied in smooth parts of the flow.

  1. Cosmic ray biannual variation

    NASA Technical Reports Server (NTRS)

    Attolini, M. R.; Cecchini, S.; Cinicastagnoli, G.; Galli, M.

    1985-01-01

    The study of the cosmic ray (CR) power spectrum has revealed a significant variation with a period around 2 yr that cannot be explained as a high order harmonic of the 11 yr solar cycle. Comparative study of the correlation on different time scales between CR intensity and Rz, aa, high speed streams and polar hole size has put in evidence that a high degree of coherency exists between each couple of variables at 1.58 to 1.64 yr, except between CR and Rz. On the other hand cyclic variation on a short time scale, around 26 months, has been claimed to be present in the neutrino flux. Critical tests of this hypothesis are considered and a preliminary result seems to indicate that the hypothesis of the existence of a 1.6 yr periodicity in the neutrino data during the measurement time interval, has a significance or = 99.9%. The possible origin of this variation as due to a contribution either of CR interactions in the upper atmosphere or to the solar dynamics, are discussed.

  2. The galactic cosmic ray ionization rate

    PubMed Central

    Dalgarno, A.

    2006-01-01

    The chemistry that occurs in the interstellar medium in response to cosmic ray ionization is summarized, and a review of the ionization rates that have been derived from measurements of molecular abundances is presented. The successful detection of large abundances of H3+ in diffuse clouds and the recognition that dissociative recombination of H3+ is fast has led to an upward revision of the derived ionization rates. In dense clouds the molecular abundances are sensitive to the depletion of carbon monoxide, atomic oxygen, nitrogen, water, and metals and the presence of large molecules and grains. Measurements of the relative abundances of deuterated species provide information about the ion removal mechanisms, but uncertainties remain. The models, both of dense and diffuse clouds, that are used to interpret the observations may be seriously inadequate. Nevertheless, it appears that the ionization rates differ in dense and diffuse clouds and in the intercloud medium. PMID:16894166

  3. Interacting Cosmic Rays with Molecular Clouds: A Bremsstrahlung Origin of Diffuse High-energy Emission from the Inner 2°×1° of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.; Hewitt, J. W.; Wardle, M.; Tatischeff, V.; Roberts, D. A.; Cotton, W.; Uchiyama, H.; Nobukawa, M.; Tsuru, T. G.; Heinke, C.; Royster, M.

    2013-01-01

    The high-energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray, and γ-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using the Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of ~GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of Fe I 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra, and the H.E.S.S. observatories. The inferred physical quantities from modeling multiwavelength emission in the context of bremsstrahlung emission from the inner ~300 × 120 pc of the Galactic center are constrained to have the cosmic-ray ionization rate ~1-10 × 10-15 s-1, molecular gas heating rate elevating the gas temperature to 75-200 K, fractional ionization of molecular gas 10-6-10-5, large-scale magnetic field 10-20 μG, the density of diffuse and dense molecular gas ~100 and ~103 cm-3 over 300 pc and 50 pc path lengths, and the variability of Fe I Kα 6.4 keV line emission on yearly timescales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV γ-rays detected by Fermi and that the cosmic-ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.

  4. Fermi-LAT Observations of High- and Intermediate-velocity Clouds: Tracing Cosmic Rays in the Halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    Tibaldo, L.; Digel, S. W.; Casandjian, J. M.; Franckowiak, A.; Grenier, I. A.; Jóhannesson, G.; Marshall, D. J.; Moskalenko, I. V.; Negro, M.; Orlando, E.; Porter, T. A.; Reimer, O.; Strong, A. W.

    2015-07-01

    It is widely accepted that cosmic rays (CRs) up to at least PeV energies are Galactic in origin. Accelerated particles are injected into the interstellar medium where they propagate to the farthest reaches of the Milky Way, including a surrounding halo. The composition of CRs coming to the solar system can be measured directly and has been used to infer the details of CR propagation that are extrapolated to the whole Galaxy. In contrast, indirect methods, such as observations of γ-ray emission from CR interactions with interstellar gas, have been employed to directly probe the CR densities in distant locations throughout the Galactic plane. In this article we use 73 months of data from the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV to search for γ-ray emission produced by CR interactions in several high- and intermediate-velocity clouds (IVCs) located at up to ∼7 kpc above the Galactic plane. We achieve the first detection of IVCs in γ rays and set upper limits on the emission from the remaining targets, thereby tracing the distribution of CR nuclei in the halo for the first time. We find that the γ-ray emissivity per H atom decreases with increasing distance from the plane at 97.5% confidence level. This corroborates the notion that CRs at the relevant energies originate in the Galactic disk. The emissivity of the upper intermediate-velocity Arch hints at a 50% decline of CR densities within 2 kpc from the plane. We compare our results to predictions of CR propagation models.

  5. ERRATUM: FERMI Large Area Telescope Study of Cosmic-Rays and the Interstellar Medium in Nearby Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A.W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Busetto, G.; S.Buson; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Ferrara, E. C.; Harding, A. K.; Nemmen, R.; Thompson, D. J.; Troja, E.

    2013-01-01

    In the published version of the paper, errors were made in calculating the exposure time due to an analysis mistake. While they do not affect gas emissivities of the R CrA and Cepheus & Polaris flare regions significantly (the differences are within the systematic uncertainty), that of the Chamaeleon region is increased by approx.20%. Although we claimed a difference of 50% in gas emissivity among these molecular cloud regions in the original paper, it is decreased to 30% (comparable to the sum of the statistical and systematic uncertainties) in the revised analysis. Therefore, our conclusion of the original paper, that a small variation (approx. 20%) of the CR density in the solar neighborhood exists, is not supported by the data if we take these uncertainties into account. On the other hand, the obtained XCO and XAv values, and the masses of gas calculated from them are not changed significantly (the differences are within the statistical errors). Errors and corrections in the original paper are summarized below. 1. In the Abstract (lines 5-6) and Section 3 (lines 4-5 in the 3rd paragraph) in the original paper, the gamma -ray emissivity above 250 MeV for the Chamaeleon region should be (7.2 +/- 0.1stat +/- 1.0sys) × 10(exp -27) photons/s/sr/H-atom, not (5.9 +/-0.1stat +0.9-1.0sys) × 10(exp -27) photons/s/sr/H-atom. 2. In the Abstract (lines 8-10), "Whereas the energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth, the measured emissivities from 250 MeV to 10 GeV indicate a variation of the CR density by approx.20% in the neighborhood of the solar system, even if we consider the systematic uncertainties." should be changed to "The energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth. Although the measured emissivities from 250 MeV to 10 GeV differ by approx.30% among these molecular cloud regions, the difference is not significant if we take the

  6. Efficacy of Cosmic Ray Shields

    NASA Astrophysics Data System (ADS)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  7. Nonlinear Cosmic Ray Diffusion Theories

    NASA Astrophysics Data System (ADS)

    Shalchi, Andreas

    Within cosmic ray transport theory, we investigate the interaction between energetic charged particles like electrons, protons, or heavy ions and astrophysical plasmas such as the solar wind or the interstellar medium. These particles interact with a background magnetic field B 0 and with turbulent electric and magnetic fields ýE and ýB, and they therefore experience scattering parallel and perpendicular to B 0. In this introductory chapter, general properties of cosmic rays are discussed, as well as the unperturbed motion of the particles. Furthermore, the physics of parallel and perpendicular scattering is investigated. At the end of this chapter, we consider observed mean free paths of cosmic rays in the heliosphere and in the interstel- lar medium. One aim of this book is to demonstrate that a nonlinear description of particle transport is necessary to reproduce these measurements.

  8. Compact dusty clouds in cosmic environment

    NASA Astrophysics Data System (ADS)

    Ivlev, Alexei; Tsytovich, Vadim; Burkert, Andreas

    We propose and discus a novel mechanism of the formation of compact dusty clouds in astrophysical environments. We show that the balance of forces operating in space dusty plasmas can cause the effect of dust self-confinement. As the result, cosmic dust can form stable spherical clouds (with typical sizes of the order of 10-100 AU or less and with total masses of the order of 10(-3) Earth mass or below), where the dust density can exceed the ambient level by many orders of magnitude. We predict that the formation of such clouds can occur in a broad range of plasma parameters, which indicates that this might be a fairly universal phenomenon operating in different astrophysical media. We argue that compact dusty clouds can be centers of rapid coagulations, and also operate as condensation seeds for a population of small-scale, cold, gaseous clumps in the diffuse interstellar medium.

  9. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe

  10. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  11. Aligned interactions in cosmic rays

    SciTech Connect

    Kempa, J.

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  12. The microphysics and macrophysics of cosmic rays

    SciTech Connect

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmic rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.

  13. On the level of the cosmic ray sea flux

    SciTech Connect

    Casanova, S.; Aharonian, F. A.; Gabici, S.; Torii, K.; Fukui, Y.; Onishi, T.; Yamamoto, H.; Kawamura, A.

    2009-04-08

    The study of Galactic diffuse {gamma} radiation combined with the knowledge of the distribution of the molecular hydrogen in the Galaxy offers a unique tool to probe the cosmic ray flux in the Galaxy. A methodology to study the level of the cosmic ray 'sea' and to unveil target-accelerator systems in the Galaxy, which makes use of the data from the high resolution survey of the Galactic molecular clouds performed with the NANTEN telescope and of the data from {gamma}-ray instruments, has been developed. Some predictions concerning the level of the cosmic ray 'sea' and the {gamma}-ray emission close to cosmic ray sources for instruments such as Fermi and Cherenkov Telescope Array are presented.

  14. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  15. The Heliosphere and Galactic Cosmic Rays

    NASA Video Gallery

    The heliosphere deflects galactic cosmic rays from entering the system. Galactic cosmic rays are a very high energy form of particle radiation that are extremely difficult to shield against and are...

  16. Cosmic rays and hadronic interactions

    NASA Astrophysics Data System (ADS)

    Lipari, Paolo

    2015-08-01

    The study of cosmic rays, and more in general of the "high energy universe" is at the moment a vibrant field that, thanks to the observations by several innovative detectors for relativistic charged particles, gamma-rays, and neutrinos continue to generate surprising and exciting results. The progress in the field is rapid but many fundamental problems remain open. There is an intimate relation between the study of the high energy universe and the study of the properties of hadronic interactions. High energy cosmic rays can only be studied detecting the showers they generate in the atmosphere, and for the interpretation of the data one needs an accurate modeling of the collisions between hadrons. Also the study of cosmic rays inside their sources and in the Galaxy requires a precise description of hadronic interactions. A program of experimental studies at the LHC and at lower energy, designed to address the most pressing problems, could significantly reduce the existing uncertainties and is very desirable. Such an experimental program would also have a strong intrinsic scientific interest, allowing the broadening and deepening of our understanding of Quantum Chromo Dynamics in the non-perturbative regime, the least understood sector of the Standard Model of particle physics. It should also be noted that the cosmic ray spectrum extends to particles with energy E ˜ 1020 eV, or a nucleon-nucleon c.m. energy √s ≃ 430 TeV, 30 times higher than the current LHC energy. Cosmic ray experiments therefore offer the possibility to perform studies on the properties of hadronic interactions that are impossible at accelerators.

  17. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  18. Cosmic Ray Energetics And Mass

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    The 6 flights of the Cosmic Ray Energetics and Mass (CREAM) balloon payload over Antarctica accumulated 161 days of exposure. The instrument is configured with complementary and redundant particle detectors for direct measurements of high energy cosmic ray elemental spectra. The calorimeter and Silicon Charge Detectors (SCD) from one of the two instruments are being re-configured for the International Space Station, dubbed ISS-CREAM. The other calorimeter and detectors that are too large to fit in the ISS Japanese Experiment Module Exposed Facility envelope are kept for balloon flights. The large area Timing Charged Detector (TCD) and newly developed Transition Radiation Detector (TRD) will be used for studying the propagation history of cosmic rays by measuring relative abundances of secondary particles, e.g., Boron. This Boron and Carbon Cosmic Rays in the Upper Stratosphere (BACCUS) balloon payload will provide in-flight cross calibration of the calorimeter and TRD for Z > 3 particles. The status of the payload construction and flight preparation will be reported.

  19. The Origin of Cosmic Rays: What can GLAST Say?

    NASA Technical Reports Server (NTRS)

    Ormes, Jonathan F.; Digel, Seith; Moskalenko, Igor V.; Moiseev, Alexander; Williamson, Roger

    2000-01-01

    Gamma rays in the band from 30 MeV to 300 GeV, used in combination with direct measurements and with data from radio and X-ray bands, provide a powerful tool for studying the origin of Galactic cosmic rays. Gamma-ray Large Area Space Telescope (GLAST) with its fine 10-20 arcmin angular resolution will be able to map the sites of acceleration of cosmic rays and their interactions with interstellar matter, It will provide information that is necessary to study the acceleration of energetic particles in supernova shocks, their transport in the interstellar medium and penetration into molecular clouds.

  20. Low-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M. E.; ACE/CRIS Collaboration

    2002-12-01

    Cosmic rays with energies below about 10 GeV/nucleon have been measured with high precision as a result of experiments on the HEAO, Ulysses, and ACE spacecrafts. The observations provide energy spectra, elemental abundances, and isotopic composition for elements up through Z=30. They include both stable and radioactive nuclides that are synthesized in stars or are produced by nuclear fragmentation during diffusion at high energies through interstellar medium. From these data one obtains a rather detailed picture of the origin of low-energy cosmic rays. For refractory species, the cosmic-ray source composition closely resembles that of the Sun, suggesting that cosmic rays are accelerated from a well-mixed sample of interstellar matter. A chemical fractionation process has depleted the abundances of volatile elements relative to refractories. Using various radioactive clock isotopes it has been shown that particle acceleration occurs at least 105 years after supernova nucleosynthesis and that the accelerated particles diffuse in the Galaxy for approximately 15 Myr after acceleration. Energy spectra and secondary-to-primary ratios are reasonably well accounted for by models in which particles gain the bulk of their energy in a single encounter with a strong shock. Among the large number of species that have been measured, 22Ne stands out as the only nuclide with an abundance that is clearly much different than solar. To test models proposed to account for this anomaly, the data are being analyzed for predicted smaller effects on abundances of other nuclides. In addition to providing a detailed understanding of the origin and acceleration of low-energy cosmic rays, these data are providing constraints on the chemical evolution of interstellar matter. This work was supported by NASA at Caltech (under grant NAG5-6912), JPL, NASA/GSFC, and Washington U.

  1. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  2. Terrestrial effects of high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  3. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  4. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Baldini, L.; Uchiyama, Y.

    2011-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of Galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TcV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a Galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  5. Cosmic Ray Studies with the Fermi Gamma-ray Space Telescope Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Baldini, L.; Uchiyama, Y.

    2012-01-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope provides both direct and indirect measurements of galactic cosmic rays (CR). The LAT high-statistics observations of the 7 GeV - 1 TeV electron plus positron spectrum and limits on spatial anisotropy constrain models for this cosmic-ray component. On a galactic scale, the LAT observations indicate that cosmic-ray sources may be more plentiful in the outer Galaxy than expected or that the scale height of the cosmic-ray diffusive halo is larger than conventional models. Production of cosmic rays in supernova remnants (SNR) is supported by the LAT gamma-ray studies of several of these, both young SNR and those interacting with molecular clouds.

  6. Development of cosmic x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Hayato, Asami; Tamagawa, Toru; Tsunoda, Naoko; Hashimoto, Shigehira; Miyamoto, Masao; Kohama, Mitsuhiro; Tokanai, Fuyuki; Hamagaki, Hideki; Inuzuka, Masahide; Miyasaka, Hiromasa; Sakurai, Ikuya; Makishima, Kazuo

    2006-06-01

    We present a performance study of a cosmic X-ray polarimeter which is based on the photoelectric effect in gas, and sensitive to a few to 30 keV range. In our polarimeter, the key device would be the 50 μm pitch Gas Electron Multiplier (GEM). We have evaluated the modulation factor using highly polarized X-ray, provided by a synchrotron accelerator. In the analysis, we selected events by the eccentricity of the charge cloud of the photoelectron track. As a result, we obtained the relationship between the selection criteria for the eccentricity and the modulation factors; for example, when we selected the events which have their eccentricity of > 0.95, the polarimeter exhibited with the modulation factor of 0.32. In addition, we estimated the Minimum Detectable Polarization degree (MDP) of Crab Nebula with our polarimeter and found 10 ksec observation is enough to detect the polarization, if we adopt suitable X-ray mirrors.

  7. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  8. The History of Cosmic Ray Studies after Hess

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    2013-06-01

    The discovery of cosmic rays by Victor Hess was confirmed with balloon flights at higher altitudes by Kolhörster. Soon the interest turned into questions about the nature of cosmic rays: gamma rays or particles? Subsequent investigations have established cosmic rays as the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. Many new results came now from studies with cloud chambers and nuclear emulsions. Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. Rochester and Butler found V's, which turned out to be short-lived neutral kaons decaying into a pair of charged pions. Λ's, Σ's and Ξ's were found in cosmic rays using nuclear emulsions. After that period, accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A and other accelerators in the sky. With the observation of neutrino oscillations one began to look beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of earth-bound accelerators.

  9. Cosmic rays and the birth of particle physics

    NASA Astrophysics Data System (ADS)

    Friedlander, Michael

    2013-02-01

    Twenty years after the discovery of cosmic rays, the methods of research and resulting discoveries were dramatically changed by the introduction of experimental methods that made visible the passage of individual particles. Between 1932 and 1955, tracks of cosmic rays were found in cloud chambers and special photographic emulsions. From measurements of the ionization produced along these tracks, the mass, charge and energy of a single relativistic particle could be determined. The dynamics of decays and collisions could be analyzed. Positrons and then electron-positron pairs were discovered, followed by muons and pions and then the inhabitants of the 'particle zoo'. Fundamental concepts were challenged. From the mid- 1950s, larger accelerators began to produce many of the 'new' particles, displacing cosmic rays from their prime role in particle studies. But without the initial discoveries in cosmic rays, there might well not be the modern industrial-scale particle physics research.

  10. Characterising CCDs with cosmic rays

    SciTech Connect

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  11. Characterising CCDs with cosmic rays

    DOE PAGESBeta

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  12. Antiprotons in the Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Nutter, Scott

    1999-10-01

    The HEAT (High Energy Antimatter Telescope) collaboration flew in May 1999 a balloon-borne instrument to measure the relative abundance of antiprotons and protons in the cosmic rays to kinetic energies of 30 GeV. The instrument uses a multiple energy loss technique to measure the Lorentz factor of through-going cosmic rays, a magnet spectrometer to measure momentum, and several scintillation counters to determine particle charge and direction (up or down in the atmosphere). The antiproton/proton abundance ratio as a function of energy is a probe of the propagation environment of protons through the galaxy. Existing measurements indicate a higher than expected value at both high and low energies. A confirming measurement could indicate peculiar antiproton sources, such as WIMPs or supersymmetric darkmatter candidates. A description of the instrument, details of the flight and instrument performance, and status of the data analysis will be given.

  13. Characterising CCDs with cosmic rays

    NASA Astrophysics Data System (ADS)

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-01

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. Furthermore, the small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  14. Cosmic Ray research in Armenia

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Mirzoyan, R.; Zazyan, M.

    2009-11-01

    Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East-West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.

  15. Cosmic ray variations during PCA type absorption

    NASA Technical Reports Server (NTRS)

    Kozin, I. D.

    1972-01-01

    It is shown based on data on the cosmic-ray neutron component, ionospheric soundings, and measurements of cosmic radio-emission absorption at Vostok station (Antarctica) that the ionization of the lower ionosphere increases during low intensity of Forbush-type cosmic rays. This is manifested in increased absorption and the appearance of strong sporadic layers in the E-region.

  16. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  17. Cosmic Ray Energetics And Mass

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2014-08-01

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for ~161 days in six flights over Antarctica. High energy cosmic-ray data were collected over a wide energy range from ~ 10^10 to > 10^14 eV at an average altitude of ~38.5 km with ~3.9 g/cm2 atmospheric overburden. Cosmic-ray elements from protons (Z = 1) to iron nuclei (Z = 26) are separated with excellent charge resolution. Building on success of the balloon flights, the payload is being reconfigured for exposure on the International Space Station (ISS). This ISS-CREAM instrument is configured with the CREAM calorimeter for energy measurements, and four finely segmented Silicon Charge Detector layers for precise charge measurements. In addition, the Top and Bottom Counting Detectors (TCD and BCD) and Boronated Scintillator Detector (BSD) have been newly developed. The TCD and BCD are scintillator based segmented detectors to separate electrons from nuclei using the shower profile differences, while BSD distinguishes electrons from nuclei by detecting thermal neutrons that are dominant in nuclei induced showers. An order of magnitude increase in data collecting power is possible by utilizing the ISS to reach the highest energies practical with direct measurements. The project status including results from on-going analysis of existing data and future plans will be discussed.

  18. Characterizing the Sites of Hadronic Cosmic Ray Acceleration

    NASA Astrophysics Data System (ADS)

    Pihlstrom, Ylva; Mesler, R.; Sjouwerman, L.; Frail, D.; Claussen, M.

    2012-01-01

    It has been argued that supernova remnant (SNRs) shocks are the acceleration sites for galactic cosmic rays. While this has been established for electrons, solid evidence for hadrons constituting the bulk of the cosmic rays have been lacking. Models of hadronic cosmic ray acceleration in SNRs predict a gamma-ray flux density depending on parameters like the environment density and distance. Few reliable estimates of those parameters exist. SNRs with cosmic rays interacting with molecular clouds are expected to be bright gamma-ray sources, and these sites can be traced using 1720 MHz OH masers. The masers give information about the density and kinematical distance estimates. Only 10% of galactic SNRs harbor OH masers, and we have therefore searched for a more frequently occurring SNR/cloud interaction tracer. We have detected 36 GHz and 44 GHz methanol masers associated with a few SNRs. Here we report on the result of a search for methanol masers in 21 SNRs, and in particular the details of our detections in Sgr A East. Combining observations and modeling of methanol masers in SNRs, we aim to better constrain the density and distance to SNRs with TeV emission. The goal is to test the hadronic cosmic ray models and to understand the mechanisms of particle acceleration in SNRs. This project is supported under NASA-Fermi grant NNX10A055G.

  19. Gamma-rays, cosmic rays, and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1976-01-01

    The relation of SAS-2 observations of galactic gamma-rays to the large scale distribution of cosmic rays and interstellar gas in the galaxy is reviewed. Starting with a discussion of production rates, the case for pion decay being the predominant production mechanism in the galactic disk above 100 MeV is reestablished, and it is also pointed out that Compton gamma-rays can be a significant source near l = 0. The concepts of four distinct galactic regions are defined, viz. the nebulodisk, ectodisk, radiodisk and exodisk. Bremsstrahlung and pion decay gamma-rays are associated with the first two (primarily the first) regions, and Compton gamma-rays and synchrotron radiation are associated with the latter two regions. On a large scale, the cosmic rays, interstellar gas (primarily H2 clouds in the inner galaxy) and gamma-ray emissivity all peak between 5 and 6 kpc from the galactic center. This correlation is related to correlation with other population I phenomena and is discussed in terms of the density wave concept of galactic structure.

  20. Cosmic rays in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Persic, Massimo; Rephaeli, Yoel

    2012-03-01

    The energy density of cosmic ray protons (CRp) in star-forming environments can be (i) measured from γ-ray πo-decay emission, (ii) inferred from the measured radio non-thermal synchrotron emission (once a theoretical p/e ratio and particle-field equipartition have been assumed), and (iii) estimated from the observed supernova rate and the deduced CRp residency time. For most of the currently available galaxies where these methods can be simultaneously applied, the results of the various methods agree and suggest that CRp energy densities range from Script O(10-1) eV cm-3 in very quiet environments up to Script O(102) eV cm-3 in very active ones. The only case for which the methods do not agree is the Small Magellanic Cloud, where the discrepancy between measured and estimated CRp energy density may be due to a smaller characteristic CR confinement volume.

  1. Ionisation as indicator for cosmic ray acceleration

    NASA Astrophysics Data System (ADS)

    Schuppan, F.; Röken, C.; Fedrau, N.; Becker Tjus, J.

    2014-06-01

    Astrospheres and wind bubbles of massive stars are believed to be sources of cosmic rays with energies E ≲ 1 TeV. These particles are not directly detectable, but their impact on surrounding matter, in particular ionisation of atomic and molecular hydrogen, can lead to observable signatures. A correlation study of both gamma ray emission, induced by proton-proton interactions of cosmic ray protons with kinetic energies Ep ≥ 280 MeV with ambient hydrogen, and ionisation induced by cosmic ray protons of kinetic energies Ep < 280 MeV can be performed in order to study potential sources of (sub)TeV cosmic rays.

  2. Calibration of particle detectors for secondary cosmic rays using gamma-ray beams from thunderclouds

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Chilingaryan, S.; Hovsepyan, G.

    2015-09-01

    After observation of hundreds of Thunderstorm Ground Enhancements (TGEs) we measure energy spectra of particles originated in clouds and directed towards Earth. We use these "beams" for calibration of cosmic ray detectors located beneath the clouds at an altitude of 3200 m at Mount Aragats in Armenia. The calibrations of particle detectors with fluxes of TGE gamma rays are in good agreement with simulation results and allow estimation of the energy thresholds and efficiencies of numerous particle detectors used for studying galactic and solar cosmic rays.

  3. Galactic cosmic ray composition and energy spectra

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1994-01-01

    Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.

  4. Underground measurements on secondary cosmic rays

    NASA Technical Reports Server (NTRS)

    Fenton, A. G.; Wilson, C. W.; Fenton, K. B.

    1985-01-01

    Measurements made at the Poatina cosmic ray station (41.8 S 149.9 E, 347 m.w.e.) from August 1983 to July 1984 are summarized. The cosmic ray primary particles responsible for events detected at the station have a median primary energy of 1.2 TeV. The motivation for part of this work came from the reported detection of narrow angle anisotropies in the arrival direction of cosmic rays.

  5. Deuterium and He-3 in cosmic rays

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1989-01-01

    Observation of a large flux of antiprotons in cosmic rays prompted many to postulate new ideas relating to the origin and propagation of cosmic rays in the Galaxy, within the framework of the secondary hypothesis. Under this hypothesis, cosmic rays traverse a large amount of matter either in the source region or in the interstellar space. As a result, large amounts of deuterium and He-3 are also produced as a consequence of spallation of helium and heavier nuclei. In this paper, the spectra of these isotopes are derived, using various models for the propagation of cosmic rays and compare with the existing observations.

  6. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  7. Anuradha and low-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Biswas, S.; Durgaprasad, N.; Mitra, Banashree; Dutta, A.

    1993-01-01

    After critically reviewing observational results obtained by astronomical spacecraft in the interplanetary medium for several aspects of galactic cosmic rays (GCRs) and anomalous cosmic rays (ACRs), attention is given to spacecraft data gathered in the magnetosphere and a detailed description is given of the Anuradha cosmic-ray experiment carried by Spacelab-3. The Anuradha results discussed concern the orbit average flux and ionization state of ACRs, the origins of partially ionized galactic cosmic-ray sub-Fe and Fe ions, and the significance of enhanced abundance ratios of sub-Fe and Fe ions in GCRs inside the magnetosphere.

  8. A hysteresis effect in cosmic ray modulation

    NASA Technical Reports Server (NTRS)

    Verschell, H. J.; Mendell, R. B.; Korff, S. A.

    1974-01-01

    The rigidity dependence is investigated in the modulation of cosmic ray protons and alphas at intermediate (2-13 Gv) rigidities during the declines and recoveries of the cosmic ray flux near cosmic ray minimum. The results include the finding that sudden changes in the modulation of the primary cosmic rays are initiated by large solar particle outflow and begin as type I Forbush decreases. Typically, the modulation spectrum becomes flatter at intermediate rigidity below 13 Gv and steeper at rigidities above 13 Gv during early recovery.

  9. A Journey Through Researches on Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R.; Roy, M.; Barman, P.; Mukherjee, C. D.

    2013-04-01

    Cosmic ray causes hazards to microelectronic circuits. Presence of charged particles in the atmosphere was first noticed by Coloumb in 1785. But cosmic ray was discovered by Victor Hess in 1912. However new era of particle physics was started with the invention of neutron monitor in 1948 by John A. Simpson. New information regarding the energy spectrum, anisotropy, latitudinal, longitudinal and daily variation of cosmic ray has added the scientific yield one by one from the analysis of the data of different monitors over the globe. This paper is a brief account of the striking events of cosmic ray which may be the background of future researchers.

  10. High-energy cosmic ray interactions

    SciTech Connect

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  11. Cosmic Rays in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Potgieter, M. S.

    The international heliospheric year (IHY) has the purpose to promote research on the Sun-Heliosphere system outward to the local interstellar medium - the new frontier. This includes fostering international scientific cooperation in the study of heliophysical phenomena now and in the future. Part of this process is to communicate research done on the heliosphere, especially to the scientific community in Africa. A short review is given of the numerical modeling of the heliosphere, and of the modulation of cosmic rays and how these particles are used to probe the heliosphere to understand its basic features. Projects of both a theoretical and numerical nature are proposed for the IHY.

  12. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  13. Origin of high energy Galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.

    1990-01-01

    The flux of cosmic ray antiprotons and the chemical composition in the region of the 'knee' of the cosmic ray energy spectrum are discussed. The importance of a direct determination of the energy spectrum of each major component of cosmic radiation through the knee region is stressed, and the necessary kinds of experiments are described. It is emphasized that antiprotons are a unique probe of acceleration and propagation of energetic particles in the galaxy because of the high threshold for their production.

  14. Early history of cosmic rays at Chicago

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  15. History of cosmic ray research in Finland

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Valtonen, E.; Vainio, R.; Tanskanen, P. J.; Aurela, A. M.

    2009-11-01

    The history of cosmic ray research in Finland can be traced back to the end of 1950s, when first ground-based cosmic ray measurements started in Turku. The first cosmic ray station was founded in Oulu in 1964 performing measurements of cosmic rays by a muon telescope, which was later complemented by a neutron monitor. Since the 1990s, several research centers and universities, such as The Finnish Meteorological Institute, Helsinki University of Technology, University of Oulu, University of Turku and University of Helsinki have been involved in space science projects, such as SOHO, AMS, Cluster, Cassini, BepiColombo, etc. At the same time, ground-based cosmic ray measurements have reached a new level, including a fully automatic on-line database in Oulu and a new muon measuring underground site in Pyhäsalmi. Research groups in Helsinki, Oulu and Turku have also extensive experience in theoretical investigations of different aspects of cosmic ray physics. Cosmic ray research has a 50-year long history in Finland, covering a wide range from basic long-running ground-based observations to high-technology space-borne instrumentation and sophisticated theoretical studies. Several generations of researchers have been involved in the study ensuring transfer of experience and building the recognized Finnish research school of cosmic ray studies.

  16. Cosmic Rays and Clouds, 2. Atmospheric Electric Field Effect In Different Neutron Multiplicities According To Emilio Segre' Observatory One Minute Data

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Dorman, I. V.; Iucci, N.; Ne'Eman, Yu.; Pustil'Nik, L. A.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.

    On the basis of cosmic ray and atmospheric electric field one minute data obtained by NM and EFS of Emilio Segre' Observatory (hight 2025 m above s.l., cut-off rigidity for vertical direction 10.8 GV) we determine the atmospheric electric field effect in CR for total neutron intensity and for multiplicities m=1, m=2, m=3, m=4, m=5, m=6, and m=7. For comparison and excluding primary CR variations we use also one minute data on neutron multiplicities obtained by NM of University "Roma Tre" (about sea level, cut-off rigidity 6.7 GV). In February 2000 were observed 14 periods of thun- derstorms with different durations (up to about 1000 min), the maximum strength of electric field was 110 kV/m. Thunderstorms were observed also in March 2000 (6 pe- riods with maximal field 112 kV/m), in April 2000 (9; 70 kV/m), in May 2000 (4; 10 kV/m), in October 2000 (10; 70 kV/m), in November 2000 (5; 50 kV/m), in De- cember 2000 (7; 88 kV/m), in January 2001 (12; 62 kV/m), in February 2001 (10; 88 kV/m). According to the theoretical calculations of Dorman and Dorman (1995) the electric field effect in the NM counting rate must be caused mainly by captchuring of slow negative muons by lead nucleus with escaping few neutrons. As it was shown in Dorman et al. (1999), the biggest electric field effect is expected in the multiplicity m=1, much smaller in m=2 and negligible effect is expected in higher multiplicities. We will control this conclusion on the basis of our experimental data. Obtained results give a possibility to estimate total acceleration and deceleration of CR particles by the atmospheric electric field. REFERENCES: Dorman L.I. and Dorman I.V., 1995. "Cosmic-ray atmospheric electric field effects". Canadian J. of Physics, Vol. 73, pp. 440-443. L.I. Dorman, I.V. Dorman, N. Iucci, M. Parisi, G. Villoresi, and I.G. Zuk- erman, 1999. "Emilio Segre' Observatory and Expected Time-Variations of Neutron Monitor Total and Multiplicities Counting Rates Caused by Cosmic Ray Particle

  17. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  18. Cosmic-Ray Modulation Equations

    NASA Astrophysics Data System (ADS)

    Moraal, H.

    2013-06-01

    The temporal variation of the cosmic-ray intensity in the heliosphere is called cosmic-ray modulation. The main periodicity is the response to the 11-year solar activity cycle. Other variations include a 27-day solar rotation variation, a diurnal variation, and irregular variations such as Forbush decreases. General awareness of the importance of this cosmic-ray modulation has greatly increased in the last two decades, mainly in communities studying cosmogenic nuclides, upper atmospheric physics and climate, helio-climatology, and space weather, where corrections need to be made for these modulation effects. Parameterized descriptions of the modulation are even used in archeology and in planning the flight paths of commercial passenger jets. The qualitative, physical part of the modulation is generally well-understood in these communities. The mathematical formalism that is most often used to quantify it is the so-called Force-Field approach, but the origins of this approach are somewhat obscure and it is not always used correct. This is mainly because the theory was developed over more than 40 years, and all its aspects are not collated in a single document. This paper contains a formal mathematical description intended for these wider communities. It consists of four parts: (1) a description of the relations between four indicators of "energy", namely energy, speed, momentum and rigidity, (2) the various ways of how to count particles, (3) the description of particle motion with transport equations, and (4) the solution of such equations, and what these solutions mean. Part (4) was previously described in Caballero-Lopez and Moraal (J. Geophys. Res, 109: A05105, doi: 10.1029/2003JA010358, 2004). Therefore, the details are not all repeated here. The style of this paper is not to be rigorous. It rather tries to capture the relevant tools to do modulation studies, to show how seemingly unrelated results are, in fact, related to one another, and to point out the

  19. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments. PMID:17053141

  20. Investigation of Reacceleration on Cosmic Ray

    NASA Astrophysics Data System (ADS)

    Lu, Yuxi; Picot-Clemente, Nicolas; Seo, Eun-Suk

    2016-03-01

    Cosmic rays are high energy charged particles, originating from outer space, that travel at nearly the speed of light and strike the Earth from all directions. One century after the discovery of cosmic rays, their origin and propagation processes remain obscure. GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation in the Galaxy. I performed a preliminary study using two different propagation models with the GALPROP code in order to reproduce latest cosmic-ray nuclei measurements. I analyzed multiple propagation parameters for each model, studied their effect on cosmic-ray spectra, optimized and tried a preliminary modification of the code to fit cosmic-ray data such as BESS-Polar, AMS, CREAM, etc.

  1. High energy physics in cosmic rays

    SciTech Connect

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  2. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  3. Galactic and solar cosmic rays - Variations and origin

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Blokh, Ia. L.; Gushchina, R. T.; Dorman, I. V.; Dorman, L. I.

    Past and current research efforts at IZMIRAN (the Soviet Institute for the Study of Terrestrial Magnetism, the Ionosphere, and the Propagation of Radio Waves) on galactic and solar cosmic rays is reviewed. Particular attention is given to investigations of penumbra effects manifested in cosmic rays, long-term cosmic-ray variations, cosmic-ray anisotropy, cosmic-ray fluctuations, the possible relationship between cosmic-ray variations and atmospheric ozone, the stellar anisotropy of cosmic rays, and cosmic-ray propagation in the interstellar medium.

  4. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  5. Explaining TeV Cosmic-Ray Anisotropies with Non-diffusive Cosmic-Ray Propagation

    NASA Astrophysics Data System (ADS)

    Harding, J. Patrick; Fryer, Chris L.; Mendel, Susan

    2016-05-01

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the details of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. The features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.

  6. Terrestrial Effects of High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    2011-01-01

    On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Increased ionization could lead to changes in atmospheric chemistry, resulting in ozone depletion. This could increase the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit can could possibly enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates radiation dose from cosmic rays causing DNA damage and increase in the mutation rates, which can have serious biological implications for terrestrial and sub-terrestrial life. This radiation dose is an important constraint on the habitability of a planet. Using CORSIKA, we perform massive computer simulations and construct lookup tables from 10 GeV - 1 PeV primaries (1 PeV - 0.1 ZeV in progress), which can be used to quantify these effects. These tables are freely available to the community and can be used for other studies, not necessarily relevant to Astrobiology. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. This could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  7. A ready-to-use galactic cosmic ray model

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Berger, Thomas; Mrigakshi, Alankrita I.; Reitz, Günther

    2013-02-01

    Galactic cosmic ray nuclei close to Earth are of great importance in different fields of research. By studying their intensity in near-Earth interplanetary space and modeling their modulation in the heliosphere it is possible to gain knowledge both about the structure of the heliosphere and the transport processes within. Additionally, secondary phenomena like cloud formation, ionization processes in the atmosphere, cosmogenic nuclide production and radiation exposure in space and at aviation altitudes are related to the intensity of the galactic cosmic rays and their modulation in the heliosphere. In order to improve the knowledge about these processes and underlying mechanisms it is often beneficial to perform numerical simulations. A necessary prerequisite for such simulations is a model describing the galactic cosmic ray intensities for all particle types and energies of importance. Several of these models exist in the literature. However, many of these do not provide essential characteristics like the description of heavier nuclei or it is difficult to associate them to recent or actual solar modulation conditions. In this work a model is presented which describes the galactic cosmic ray spectra of nuclei based on a single parameter. The values of this parameter for different solar modulation conditions are derived from measurements of the Advanced Composition Explorer (ACE) spacecraft and Oulu neutron monitor count rates. Comparing the galactic cosmic ray spectra predicted by the model to a comprehensive set of experimental data from literature shows very good agreement.

  8. WINDS, CLUMPS, AND INTERACTING COSMIC RAYS IN M82

    SciTech Connect

    Yoast-Hull, Tova M.; Everett, John E.; Zweibel, Ellen G.; Gallagher, J. S. III

    2013-05-01

    We construct a family of models for the evolution of energetic particles in the starburst galaxy M82 and compare them to observations to test the calorimeter assumption that all cosmic ray energy is radiated in the starburst region. Assuming constant cosmic ray acceleration efficiency with Milky Way parameters, we calculate the cosmic-ray proton and primary and secondary electron/positron populations as a function of energy. Cosmic rays are injected with Galactic energy distributions and electron-to-proton ratio via Type II supernovae at the observed rate of 0.07 yr{sup -1}. From the cosmic ray spectra, we predict the radio synchrotron and {gamma}-ray spectra. To more accurately model the radio spectrum, we incorporate a multiphase interstellar medium in the starburst region of M82. Our model interstellar medium is highly fragmented with compact dense molecular clouds and dense photoionized gas, both embedded in a hot, low density medium in overall pressure equilibrium. The spectra predicted by this one-zone model are compared to the observed radio and {gamma}-ray spectra of M82. {chi}{sup 2} tests are used with radio and {gamma}-ray observations and a range of model predictions to find the best-fit parameters. The best-fit model yields constraints on key parameters in the starburst zone of M82, including a magnetic field strength of {approx}250 {mu}G and a wind advection speed in the range of 300-700 km s{sup -1}. We find that M82 is a good electron calorimeter but not an ideal cosmic-ray proton calorimeter and discuss the implications of our results for the astrophysics of the far-infrared-radio correlation in starburst galaxies.

  9. Sulphur mountain: Cosmic ray intensity records

    SciTech Connect

    Venkatesan, D.; Mathews, T.

    1985-01-01

    This book deals with the comic ray intensity registrations at the Sulphur Mountain Cosmic Ray Laboratory. The time series of intensity form a valuable data-set, for studying cosmic ray intensity variations and their dependence on solar activity. The IGY neutron monitor started operating from July 1, 1957 and continued through 1963. Daily mean values are tabulated for the period and these are also represented in plots. This monitor was set up by the National Research Council of Canada.

  10. Gamma-ray astronomy and the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Recent observations of cosmic gamma radiation are reviewed. It is shown that this radiation consists of an extragalactic background as well as a bright band of galactic radiation lying in the plane of the Milky Way and produced primarily by cosmic-ray collisions with interstellar gas atoms. The galactic gamma radiation is divided into a near component apparently associated with Gould's belt and a far component originating about 15,000 light years away and narrowly confined to the galactic plane. A Great Galactic Ring is identified which is 35,000 light years in diameter and in which most galactic cosmic rays are produced and supernovae and pulsars are concentrated. The physical mechanisms responsible for the production of most of the cosmic gamma rays in the Galaxy are examined, and the origin of galactic cosmic rays is considered. It is concluded that the cosmic rays are produced either in supernova explosions or in the pulsars they leave behind

  11. Cosmic ray injection spectrum at the galactic sources

    NASA Astrophysics Data System (ADS)

    Lagutin, Anatoly; Tyumentsev, Alexander; Volkov, Nikolay

    The spectra of cosmic rays measured at Earth are different from their source spectra. A key to understanding this difference, being crucial for solving the problem of cosmic-ray origin, is the determination of how cosmic-ray (CR) particles propagate through the turbulent interstellar medium (ISM). If the medium is a quasi-homogeneous the propagation process can be described by a normal diffusion model. However, during a last few decades many evidences, both from theory and observations, of the existence of multiscale structures in the Galaxy have been found. Filaments, shells, clouds are entities widely spread in the ISM. In such a highly non-homogeneous (fractal-like) ISM the normal diffusion model certainly is not kept valid. Generalization of this model leads to what is known as "anomalous diffusion". The main goal of the report is to retrieve the cosmic ray injection spectrum at the galactic sources in the framework of the anomalous diffusion (AD) model. The anomaly in this model results from large free paths ("Levy flights") of particles between galactic inhomogeneities. In order to evaluate the CR spectrum at the sources, we carried out new calculation of the CR spectra at Earth. AD equation in terms of fractional derivatives have been used to describe CR propagation from the nearby (r≤1 kpc) young (t≤ 1 Myr) and multiple old distant (r > 1 kpc) sources. The assessment of the key model parameters have been based on the results of the particles diffusion in the cosmic and laboratory plasma. We show that in the framework of the anomalous diffusion model the locally observed basic features of the cosmic rays (difference between spectral exponents of proton, He and other nuclei, "knee" problem, positron to electron ratio) can be explained if the injection spectrum at the main galactic sources of cosmic rays has spectral exponent p˜ 2.85. The authors acknowledge support from The Russian Foundation for Basic Research grant No. 14-02-31524.

  12. Superdiffusion of cosmic rays: Implications for cosmic ray acceleration

    SciTech Connect

    Lazarian, A.; Yan, Huirong

    2014-03-20

    Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian and Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x {sup 3} for freely streaming CRs. The dependence changes to x {sup 3/2} for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.

  13. Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.

  14. Cosmic ray transport in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.

    2015-09-01

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  15. Cosmic ray transport in astrophysical plasmas

    SciTech Connect

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  16. Unveiling the Origin of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.

    2015-04-01

    The origin of cosmic rays, relativistic particles that range from below GeVs to hundreds of EeVs, is a century old mystery. Extremely energetic phenomena occurring over a wide range of scales, from the Solar System to distant galaxies, are needed to explain the non-thermal particle spectrum that covers over 12 orders of magnitude. Space Missions are the most effective platforms to study the origin and history of these cosmic particles. Current missions probe particle acceleration and propagation in the Solar System and in our Galaxy. This year ISS-CREAM and CALET join AMS in establishing the International Space Station as the most active site for studying the origin of Galactic cosmic rays. These missions will study astrophysical cosmic ray accelerators as well as other possible sources of energetic particles such as dark matter annihilation or decay. In the future, the ISS may also be the site for studying extremely high-energy extragalactic cosmic rays with JEM-EUSO. We review recent results in the quest for unveiling the sources of energetic particles with balloons and space payloads and report on activities of the Cosmic ray Science Interest Group (CosmicSIG) under the Physics of the Cosmos Program Analysis Group (PhysPAG).

  17. JUPITER AS A GIANT COSMIC RAY DETECTOR

    SciTech Connect

    Rimmer, P. B.; Stark, C. R.; Helling, Ch.

    2014-06-01

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.

  18. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  19. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  20. Space science: Cosmic rays beyond the knees

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew M.

    2016-03-01

    The development of a radio technique for detecting cosmic rays casts fresh light on the origins of some of these accelerated particles, and suggests that they might have travelled much farther than was previously thought. See Letter p.70

  1. Cosmic ray transport near the heliopause

    NASA Astrophysics Data System (ADS)

    Strauss, R. D.; Fichtner, H.; Potgieter, M. S.; le Roux, J. A.; Luo, X.

    2015-09-01

    In this paper we summarize our modelling efforts for cosmic rays near the heliopause, and discuss whether galactic cosmic ray modulation beyond the heliopause is possible and present an explanation for the anisotropic nature of the observed cosmic ray intensities in the very local interstellar medium. We show that (i) modulation beyond the heliopause is possible, but highly dependent on the assumed parameters (most notable, the perpendicular diffusion coefficient). Treating the heliopause as a tangential discontinuity, significantly damps this modulation effect and leads to modelled results that are similar to Voyager 1 observations. (ii) By choosing an appropriate functional form of the perpendicular diffusion coefficient on the pitch-angle level, we are able to account for the anisotropic behaviour observed for both galactic and anomalous cosmic rays in the local interstellar medium.

  2. Elemental advances of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The elemental composition of the cosmic-ray source is different from that which has been generally taken as the composition of the solar system. No general enrichment of products of either r-process or s-process nucleosynthesis accounts for the differences over the entire range of ultraheavy (Z 30) elements; specific determination of nucleosynthetic contributions to the differences depends upon an understanding of the nature of any acceleration fractionation. Comparison between the cosmic-ray source abundances and the abundances of C1 and C2 chondritic meteorites suggests that differences between the cosmic-ray source and the standard (C1) solar system may not be due to acceleration fractionation of the cosmic rays, but rather to a fractionation of the C1 abundances with respect to the interstellar abundances.

  3. Heliosphere Changes Affect Cosmic Ray Penetration

    NASA Video Gallery

    The changes in the size of our solar system’s boundaries also cause changes to the galactic cosmic rays that enter the solar system. Although these boundaries do a good job of deflecting the majo...

  4. Relativistic transport theory for cosmic-rays

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented.

  5. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  6. IMF Prediction with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Evenson, P. A.; Kuwabara, T.; Pei, C.

    2013-12-01

    Cosmic rays impacting Earth have passed through and interacted with the interplanetary magnetic field (IMF) surrounding Earth, and in some sense they carry information on the three-dimensional structure of that field. This work uses neutron monitor data in an effort to extract that information and use it to predict the future behavior of the IMF, especially the north-south component (Bz) which is so crucial in determining geomagnetic activity. We consider 161 events from a published list of interplanetary coronal mass ejections and compare hourly averages of the predicted field with the actual field measured later. We find that the percentage of events with 'good' predictions of Bz (in the sense of having a positive correlation between the prediction and the subsequent measurement) varies from about 85% for predictions 1 hour into the future to about 60% for predictions 4 hours into the future. We present several ideas for how the method might be improved in future implementations. Supported by NASA grant NNX08AQ01G and NSF grant ANT-0739620.

  7. Radar Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2012-03-01

    Progress in the study of high energy cosmic ray physics is limited by low flux. In order to collect substantial statistics above 10^19 eV, the two largest ground arrays currently in operation cover 800 km^2 (Telescope Array, Utah) and 3000 km^2 (Auger Observatory, Argentina). The logistics and cost of an order-of-magnitude increase in ground array aperture is prohibitive. In the literature, radar detection experiments have been proposed but substantial results have not been reported. We have deployed a low-power (1500 W) bistatic radar facility overlapping the Telescope Array (TA) in Delta, Utah. Data acquisition systems for the radar receivers were developed in parallel. This system has taught us a great deal, but our current focus is building and deploying a 40 kW transmitter and new high-gain transmitting antenna. Theoretical simulations of CR air shower scattering of radar show that coincidences with the ground array should be detected with this new system. An FCC license for the new transmitter/antenna has been obtained. Systems monitoring and data logging systems, as well as a new, intelligent self-triggered DAQ continue to be developed. We hope to deploy the self-triggered DAQ during the first few months of 2012 and complete the transmitte

  8. Source composition of cosmic rays

    SciTech Connect

    Silberberg, R.; Tsao, C.H. ); Shapiro, M.M. )

    1990-03-20

    A theory is developed that yields great improvement in deriving the cosmic-ray source abundances for energies below 10{sup 12} eV/u. In addition, based on the acceleration theory of Voelk and Biermann and on nucleosynthesis processes in pre-supernova stars, a theory is presented for the source composition at 10{sup 12}--10{sup 15} eV/u. The strong shock wave of young supernova remnant accelerates the wind particles of the pre-supernova red, blue supergiant stars and Wolf-Rayet (WR) stars to energies up to 10{sup 15} eV/u. They contain the nucleosynthesis products of the CNO cycle and of He-burning. They accelerate the flare particles in interstellar space. The composition below 10{sup 12} eV/u differs from that of the general stellar photosphere by: (1) Suppression of elements with a large FIP ({gt}10 eV) by a factor of 4; (2) The depletion of light nuclei (Z{le}10); (3) A large contribution of WC stars to {sup 12}C, {sup 16}O and {sup 22}Ne, with renormalization of the initial (Z{gt}2)/(Z{le}2) abundances of Prantzos et al., based on general elemental abundances.

  9. Cosmic Rays and Space Weather

    NASA Astrophysics Data System (ADS)

    Dorman, Lev

    In this review-paper we consider following problems. 1. Cosmic rays (CR) as element of space weather 1.1. Influence of CR on the Earth's atmosphere and global climate change 1.2. Radia-tion hazard from galactic CR 1.3. Radiation hazard from solar CR 1.4. Radiation hazard from energetic particle precipitation from radiation belts 2. CR as tool for space weather forecasting 2.1. Forecasting of the part of global climate change caused by CR intensity variations 2.2. Forecasting of radiation hazard for aircrafts and spacecrafts caused by variations of galactic CR intensity 2.3. Forecasting of the radiation hazard from solar CR events by using on-line one-min ground neutron monitors network and satellite data 2.4. Forecasting of great magnetic storms hazard by using on-line one hour CR intensity data from ground based world-wide network of neutron monitors and muon telescopes 3. CR, space weather, and satellite anomalies 4. CR, space weather, and people health

  10. Cosmic Ray Interaction Models: an Overview

    NASA Astrophysics Data System (ADS)

    Ostapchenko, Sergey

    2016-07-01

    I review the state-of-the-art concerning the treatment of high energy cosmic ray interactions in the atmosphere, discussing in some detail the underlying physical concepts and the possibilities to constrain the latter by current and future measurements at the Large Hadron Collider. The relation of basic characteristics of hadronic interactions tothe properties of nuclear-electromagnetic cascades induced by primary cosmic rays in the atmosphere is addressed.

  11. Cosmic ray test of INO RPC stack

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Datar, V. M.; Kalmani, S. D.; Lahamge, S. M.; Mondal, N. K.; Nagaraj, P.; Pal, S.; Reddy, L. V.; Redij, A.; Samuel, D.; Saraf, M. N.; Satyanarayana, B.; Shinde, R. R.; Verma, P.

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m ×1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  12. Spaced-based Cosmic Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  13. Cosmic ray produced isotopes in terrestrial systems.

    NASA Astrophysics Data System (ADS)

    Lal, D.

    1998-12-01

    Continuing improvements in the sensitivity of measurement of cosmic ray produced isotopes in environmental samples have progressively broadened the scope of their applications to characterise and quantify a wide variety of processes in Earth and planetary sciences. In this article, the author concentrates on the new developments in the field of nuclear geophysics, based on isotopic changes produced by cosmic rays in the terrestrial systems. This field, which is best described as cosmic ray geophysics, has roots with the discovery of cosmogenic 14C on the Earth by Willard Libby in 1948, and grew rapidly at first, but slowed down during the '60s and '70s. In the '80s, there was a renaissance in cosmic ray produced isotope studies, thanks mainly to the developments of the accelerator mass spectrometry technique capable of measuring minute amounts of radioactivity in terrestrial samples. This technological advance has considerably enhanced the applications of cosmic ray produced isotopes and today one finds them being used to address diverse problems in Earth and planetary sciences. The author discusses the present scope of the field of cosmic ray geophysics with an emphasis on geomorphology. It is stressed that this is the decade in which this field, which has been studied passionately by geographers, geomorphologists and geochemists for more than five decades, has at its service nuclear methods to introduce numeric time controls in the range of centuries to millions of years.

  14. Models of Cosmic-Ray Origin

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.

    2001-08-01

    Two models of cosmic-ray genesis are compared: (a) the author s red-dwarf hypothesis requiring the injection of seed particles from coronal mass ejections (CME) prior to shock acceleration, and (b) the direct acceleration of thermal ions and of grains in the ISM, proposed by Meyer, Drury and Ellison. Both models agree that shocks in the expanding envelopes of supernova remnants are principally responsible for acceleration to cosmic-ray energies. Both are designed to overcome the mismatch between the source composition of the Galactic cosmic rays (GCR) and the composition of the thermal ISM gas. Model (a) utilizes the prolific emissions of energetic particles from active dMe and dKe stars via their CME as the agents of seed-particle injection into the ISM. The composition of these seed particles is governed by the FIP (first-ionization potential) selection mechanism that operates for both Galactic cosmic rays and solar energetic particles. Hence it is consistent with the cosmic-ray source composition. Model (b) relies on the sputtering and acceleration of grains in the ISM (along with acceleration of thermal ions) to provide the known source composition. This model considers the FIP ordering of GCR abundances as purely coincidental, and it attributes the relative source abundances to selection according to volatility. Recent cosmic-ray observations in favor of each model are cited.

  15. Cosmic-ray backgrounds in infrared bolometers

    NASA Technical Reports Server (NTRS)

    Nolt, I. G.; Radostitz, J. V.; Carlotti, M.; Carli, B.; Mencaraglia, F.

    1985-01-01

    Model calculations for the production of cosmic ray events in IR detectors by energy impulses due to fast charged particles' ionization trails are presently compared to the pulse-amplitude spectrum observed from a balloon at an altitude of 38 km. The results are pertinent to the current understanding of cosmic ray backgrounds found in all high sensitivity bolometer applications. The observed signal transients are in all details consistent with the modeling of known cosmic charged particle flux characteristics and with the detector response. Generally, the optics design should minimize detector/substrate cross section.

  16. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  17. Spiral arms as cosmic ray source distributions

    NASA Astrophysics Data System (ADS)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth

  18. Spallation processes and nuclear interaction products of cosmic rays

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.

    1990-01-01

    Most cosmic-ray nuclei heavier than helium have suffered nuclear collisions in the interstellar gas, with transformation of nuclear composition. The isotopic and elemental composition at the sources has to be inferred from the observed composition near the Earth. The source composition permits tests of current ideas on sites of origin, nucleosynthesis in stars, evolution of stars, the mixing and composition of the interstellar medium and injection processes prior to acceleration. The effects of nuclear spallation, production of radioactive nuclides and the time dependence of their decay provide valuable information on the acceleration and propagation of cosmic rays, their nuclear transformations, and their confinement time in the Galaxy. The formation of spallation products that only decay by electron capture and are relatively long-lived permits an investigation of the nature and density fluctuations (like clouds) of the interstellar medium. Since nuclear collisions yield positrons, antiprotons, gamma rays and neutrinos, we shall discuss these topics briefly.

  19. Contributions to the 19th International Cosmic Ray Conference

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.

  20. Cascaded Gamma Rays as a Probe of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Murase, Kohta

    2014-06-01

    Very-high-energy (VHE) and ultra-high-energy (UHE) gamma rays from extragalactic sources experience electromagnetic cascades during their propagation in intergalactic space. Recent gamma-ray data on TeV blazars and the diffuse gamma-ray background may have hints of the cascade emission, which are especially interesting if it comes from UHE cosmic rays. I show that cosmic-ray-induced cascades can be discriminated from gamma-ray-induced cascades with detailed gamma-ray spectra. I also discuss roles of structured magnetic fields, which suppress inverse-Compton pair halos/echoes but lead to guaranteed signals - synchrotron pair halos/echoes.

  1. Spectral evolution of gamma-rays from adiabatically expanding sources in dense clouds

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1985-01-01

    The excess of antiprotons (P) observed in cosmic ray was attributed to their production in supernova (SN) envelopes expanding in dense clouds. While creating P, gamma rays are also produced and these clouds would shine as gamma-ray sources. The evolution of the gamma-ray spectrum is calculated for clouds of r sub H = 10.000 and 100.000/cu cm.

  2. Positron fraction in cosmic rays and models of cosmic-ray propagation

    SciTech Connect

    Cowsik, R.; Burch, B.

    2010-07-15

    The positron fraction observed by PAMELA and other experiments up to {approx}100 GeV is analyzed in terms of models of cosmic-ray propagation. It is shown that generically we expect the positron fraction to reach {approx}0.6 at energies of several TeV, and its energy dependence bears an intimate but subtle connection with that of the boron to carbon ratio in cosmic rays. The observed positron fraction can be fit in a model that assumes a significant fraction of the boron below {approx}10 GeV is generated through spallation of cosmic-ray nuclei in a cocoonlike region surrounding the sources, and the positrons of energy higher than a few GeV are almost exclusively generated through cosmic-ray interactions in the general interstellar medium. Such a model is consistent with the bounds on cosmic-ray anisotropies and other observations.

  3. Mathematical model of formation of Kordylewski cosmic dust clouds

    NASA Astrophysics Data System (ADS)

    Sal'nikova, T. V.; Stepanov, S. Ya.

    2015-07-01

    The question of occurrence of cosmic dust clouds, which were found by Kordylewski in 1961 in the vicinity of libration point L 5 of the Earth-Moon system, still causes debates and concern. We explain theoretically the phenomenon of the apparent vanishing and appearance of the Kordylewski cosmic dust clouds in the vicinity of triangular libration points L 4 and L 5 of the Earth-Moon system. The possibility of occurrence of two such clouds rotating around libration points L 4 and two clouds rotating around point L 5 is shown and optimal times for their observation from the Earth are determined. The investigation is performed based on analysis of a stable periodic motion in a planar restricted circular problem of three bodies, Earth-Moon—Particle, allowing for perturbations from the Sun under the assumption that the orbits of the Earth and Moon are circular and lie in one plane.

  4. Gev-Tev Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Lavalle, Julien

    2015-03-01

    This short review aims at presenting the way we currently understand, model, and constrain the transport of cosmic rays in the GeV-TeV energy domain. This is a research field per se, but is also an important tool e.g. to improve our understanding of the cosmic-ray sources, of the diffuse non-thermal Galactic emissions (from radio wavelengths to gamma-rays), or in searches for dark matter annihilation signals. This review is mostly dedicated to particle physicists or more generally to non-experts.

  5. Cosmic Ray Nuclei (CRN) detector investigation

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Muller, Dietrich; Lheureux, Jacques; Swordy, Simon

    1991-01-01

    The Cosmic Ray Nuclei (CRN) detector was designed to measure elemental composition and energy spectra of cosmic radiation nuclei ranging from lithium to iron. CRN was flown as part of Spacelab 2 in 1985, and consisted of three basic components: a gas Cerenkov counter, a transition radiation detector, and plastic scintillators. The results of the experiment indicate that the relative abundance of elements in this range, traveling at near relativistic velocities, is similar to those reported at lower energy.

  6. Ultra heavy cosmic ray experiment (A0178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K. P.; Jansen, F.; Domingo, C.

    1992-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels using 16 peripheral LDEF trays. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m sr, giving a total exposure factor of 170 sq m sr y at an orbital inclination of 28.4 degs. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide cosmic rays. Results are presented including a sample of ultra heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of + or - 0.8e for uranium and + or - 0.6e for the platinum-lead group. Astrophysical implications of the UHCRE charge spectrum are discussed.

  7. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  8. Monopole annihilation and highest energy cosmic rays

    SciTech Connect

    Bhattacharjee, P. Indian Institute of Astrophysics, Sarjapur Road, Koramangala, Bangalore 560 034 ); Sigl, G. NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 )

    1995-04-15

    Cosmic rays with energies exceeding 10[sup 20] eV have been detected. The origin of these highest energy cosmic rays remains unknown. Established astrophysical acceleration mechanisms encounter severe difficulties in accelerating particles to these energies. Alternative scenarios where these particles are created by the decay of cosmic topological defects have been suggested in the literature. In this paper we study the possibility of producing the highest energy cosmic rays through a process that involves the formation of metastable magnetic monopole-antimonopole bound states and their subsequent collapse. The annihilation of the heavy monopole-antimonopole pairs constituting the monopolonia can produce energetic nucleons, [gamma] rays, and neutrinos whose expected flux we estimate and discuss in relation to experimental data so far available. The monopoles we consider are the ones that could be produced in the early Universe during a phase transition at the grand unification energy scale. We find that observable cosmic ray fluxes can be produced with monopole abundances compatible with present bounds.

  9. Heliolatitude distribution of galactic cosmic rays

    SciTech Connect

    Antonucci, E.; Attolini, M.R.; Cecchini, S.; Galli, M.

    1985-08-01

    An analysis of the annual and semiannual variation of the galactic cosmic ray intensity has been performed for the period 1953-1979 by using the data from the Climax and Dourbes neutron monitors. This analysis, based on a method developed for searching periodicities and recurrences in the cosmic ray intensity, has confirmed the existence of such variations and their phase changes associated with the reversals of the solar magnetic dipole. Hence the importance in the cosmic ray transport of transverse diffusion arising from drift effects due to the curvature and gradient of the interplanetary magnetic field is confirmed, since this is the mechanism which can explain the dependence on the solar magnetic cycle. Such a mechanism is effective when the polarity configuration of the interplanetary magnetic field is well defined and stable. A phase advance of the semiannual variation is observed, which can be explained through the modulation of the heliolatitude distribution of cosmic rays by the activity of the solar magnetic regions migrating in both hemispheres toward the equator, during the 11-year cycle of solar activity. A residual annual variation, detectable when averaging out the effects of the magnetic cycle or when the polarity configuration of the interplanetary magnetic field is not well defined, probably indicates the existence of a preferential azimuthal direction for the access of low-energy galactic cosmic rays into the heliosphere, along the galactic magnetic field.

  10. Electron capture decay of cosmic rays: A model of the inhomogeneous interstellar medium

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1985-01-01

    Traditional analyses of cosmic ray composition seek to identify the sources through a determination of a the isotopic abundances of these nuclei prior to acceleration. At the same time, it is both necessary and interesting to understand the nature of the medium through which cosmic rays pass before arriving at detectors. In fact, only within a model of the interstellar medium (ISM) sampled by cosmic rays can a refined estimate of source composition be made. An elaboration of the traditional model of the ISM used in studying cosmic ray propagation is explored. Inhomogeneity of the ISM is accomodated in this model. Within this model it is found that the abundances of some electron apture isotopes, are very sensitive to density inhomogeneities which might be expected in the ISM. These nuclei therefore measure the penetration of heavy cosmic rays into interstellar clouds.

  11. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the 'knee' energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the 'knee' energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  12. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the "knee" energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the "knee" energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  13. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  14. One century of cosmic rays - A particle physicist's view

    NASA Astrophysics Data System (ADS)

    Sutton, Christine

    2015-12-01

    Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  15. Anomalous isotopic composition of cosmic rays

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-06-20

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of /sup 22/Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables.

  16. Progenitor model of cosmic ray knee

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Bhadra, Arunava

    2016-01-01

    The primary energy spectrum of cosmic rays exhibits a knee at about 3 PeV where a change in the spectral index occurs. Despite many efforts, the origin of such a feature in the spectrum is not satisfactorily solved yet. Here it is proposed that the steepening of the spectrum beyond the knee may be a consequence of the mass distribution of the progenitor of the cosmic ray source. The proposed speculative model can account for all the major observed features of cosmic rays without invoking any fine tuning to match flux or spectra at any energy point. The prediction of the proposed model regarding the primary composition scenario beyond the knee is quite different from most of the prevailing models of the knee, and thereby can be discriminated from precise experimental measurement of the primary composition.

  17. Cosmic ray modulation and merged interaction regions

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.; Mcdonald, F. B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s.

  18. Galactic Cosmic Rays and the Light Elements

    NASA Astrophysics Data System (ADS)

    Parizot, Etienne

    2001-10-01

    The study of the light elements abundances in low metallicity stars offers a unique way to learn about the past content of our Galaxy in energetic particles (EPs). This study teaches us that either the light elements are not produced by cosmic rays interactions in the interstellar medium (ISM), as has been thought for 30 years, or the cosmic rays are not what one usually thinks they are, namely standard interstellar material accelerated by the shock waves generated by supernova explosions. In any case, we have to revise our understanding of the EPs in the Galaxy. Relying on the observational evidence about Li, Be and B Galactic evolution as well as about the distribution of massive stars, we show that most of the EPs responsible for the production of light elements must be accelerated inside superbubbles, as is probably the case for the standard Galactic cosmic rays as well.

  19. Ion acceleration to cosmic ray energies

    NASA Technical Reports Server (NTRS)

    Lee, Martin A.

    1990-01-01

    The acceleration and transport environment of the outer heliosphere is described schematically. Acceleration occurs where the divergence of the solar-wind flow is negative, that is at shocks, and where second-order Fermi acceleration is possible in the solar-wind turbulence. Acceleration at the solar-wind termination shock is presented by reviewing the spherically-symmetric calculation of Webb et al. (1985). Reacceleration of galactic cosmic rays at the termination shock is not expected to be important in modifying the cosmic ray spectrum, but acceleration of ions injected at the shock up to energies not greater than 300 MeV/charge is expected to occur and to create the anomalous cosmic ray component. Acceleration of energetic particles by solar wind turbulence is expected to play almost no role in the outer heliosphere. The one exception is the energization of interstellar pickup ions beyond the threshold for acceleration at the quasi-perpendicular termination shock.

  20. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1992-01-01

    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed.

  1. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1991-01-01

    The Long Duration Exposure Facility (LDEF) Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of 4 pressure vessels (3 experiment tray). The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 2000 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Postflight work to date and the current status of the experiment are reviewed. Provisional results from analysis of preflight and postflight calibrations are presented.

  2. The structure of cosmic ray shocks

    NASA Astrophysics Data System (ADS)

    Axford, W. I.; Leer, E.; McKenzie, J. F.

    1982-07-01

    The acceleration of cosmic rays by steady shock waves has been discussed in brief reports by Leer et al. (1976) and Axford et al. (1977). This paper presents a more extended version of this work. The energy transfer and the structure of the shock wave is discussed in detail, and it is shown that even for moderately strong shock waves most of the upstream energy flux in the background gas is transferred to the cosmic rays. This holds also when the upstream cosmic ray pressure is very small. For an intermediate Mach-number regime the overall shock structure is shown to consist of a smooth transition followed by a gas shock (cf. Drury and Voelk, 1980).

  3. The HEAO-3 Cosmic Ray Isotope spectrometer

    NASA Technical Reports Server (NTRS)

    Bouffard, M.; Engelmann, J. J.; Koch, L.; Soutoul, A.; Lund, N.; Peters, B.; Rasmussen, I. L.

    1982-01-01

    This paper describes the Cosmic Ray Isotope instrument launched aboard the HEAO-3 satellite on September 20, 1979. The primary purpose of the experiment is to measure the isotopic composition of cosmic ray nuclei from Be-7 to Fe-58 over the energy range 0.5 to 7 GeV/nucleon. In addition charge spectra will be measured between beryllium and tin over the energy range 0.5 to 25 GeV/nucleon. The charge and isotope abundances measured by the experiment provide essential information needed to further our understanding of the origin and propagation of high energy cosmic rays. The instrument consists of 5 Cerenkov counters, a 4 element neon flash tube hodoscope and a time-of-flight system. The determination of charge and energy for each particle is based on the multiple Cerenkov technique and the mass determination will be based upon a statistical analysis of particle trajectories in the geomagnetic field.

  4. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  5. PARSEC: PARametrized Simulation Engine for Cosmic rays

    NASA Astrophysics Data System (ADS)

    Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias

    2015-02-01

    PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

  6. Detectors of Cosmic Rays, Gamma Rays, and Neutrinos

    SciTech Connect

    Altamirano, A.; Navarra, G.

    2009-04-30

    We summarize the main features, properties and performances of the typical detectors in use in Cosmic Ray Physics. A brief historical and general introduction will focus on the main classes and requirements of such detectors.

  7. The origin of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2013-11-01

    One century ago Viktor Hess carried out several balloon flights that led him to conclude that the penetrating radiation responsible for the discharge of electroscopes was of extraterrestrial origin. One century from the discovery of this phenomenon seems to be a good time to stop and think about what we have understood about Cosmic Rays. The aim of this review is to illustrate the ideas that have been and are being explored in order to account for the observable quantities related to cosmic rays and to summarize the numerous new pieces of observation that are becoming available. In fact, despite the possible impression that development in this field is somewhat slow, the rate of new discoveries in the last decade or so has been impressive, and mainly driven by beautiful pieces of observation. At the same time scientists in this field have been able to propose new, fascinating ways to investigate particle acceleration inside the sources, making use of multifrequency observations that range from the radio, to the optical, to X-rays and gamma rays. These ideas can now be confronted with data. I will mostly focus on supernova remnants as the most plausible sources of Galactic cosmic rays, and I will review the main aspects of the modern theory of diffusive particle acceleration at supernova remnant shocks, with special attention for the dynamical reaction of accelerated particles on the shock and the phenomenon of magnetic field amplification at the shock. Cosmic-ray escape from the sources is discussed as a necessary step to determine the spectrum of cosmic rays at the Earth. The discussion of these theoretical ideas will always proceed parallel to an account of the data being collected especially in X-ray and gamma-ray astronomy. In the end of this review I will also discuss the phenomenon of cosmic-ray acceleration at shocks propagating in partially ionized media and the implications of this phenomenon in terms of width of the Balmer line emission. This field of

  8. Cosmic strings and ultra-high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani

    1989-01-01

    The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.

  9. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  10. What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies

    SciTech Connect

    Bloom, Elliott

    2000-10-10

    Gamma rays in the band from 20 MeV to 300 GeV, used in combination with data from radio and X-ray bands, provide a powerful tool for studying the origin of cosmic rays in our sister galaxies Andromeda and the Magellanic Clouds. Gamma-ray Large Area Space Telescope (GLAST) will spatially resolve these galaxies and measure the spectrum and intensity of diffuse gamma radiation from the collisions of cosmic rays with gas and dust in them. Observations of Andromeda will give an external perspective on a spiral galaxy like the Milky Way. Observations of the Magellanic Clouds will permit a study of cosmic rays in dwarf irregular galaxies, where the confinement is certainly different and the massive star formation rate is much greater.

  11. Cosmic Rays: studies and measurements before 1912

    NASA Astrophysics Data System (ADS)

    De Angelis, Alessandro

    2013-06-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  12. Propagation of heavy cosmic-ray nuclei

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1984-01-01

    Techniques for modeling the propagation of heavy cosmic-ray nuclei, and the required atomic and nuclear data, are assembled in this paper. Emphasis is on understanding nuclear composition in the charge range Z = 3-83. Details of the application of 'matrix methods' above a few hundred MeV/nucleon, a new treatment of electron capture decay, and a new table of cosmic ray-stable isotopes are presented. Computation of nuclear fragmentation cross sections, stopping power, and electron stripping and attachment are briefly reviewed.

  13. Energy loss measurement of cosmic ray muons

    NASA Astrophysics Data System (ADS)

    Unger, Joseph

    1993-02-01

    Measurements of energy losses of high energy cosmic ray muons in an ionization chamber are presented. The chamber consists of 16 single gap layers, and the liquid tetra methyl silane (TMS) was used as active medium. The absolute energy loss and the relativistic rise were measured and compared with theoretical calculations. The importance of the measurements within the framework of the cosmic ray experiment KASCADE (German acronym for Karlsruhe Shower Core and Array Detector) are discussed, especially with respect to energy calibration of hadrons and high energy muons above 1 TeV.

  14. Time variation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Evenson, Paul

    1988-01-01

    Time variations in the flux of galactic cosmic rays are the result of changing conditions in the solar wind. Maximum cosmic ray fluxes, which occur when solar activity is at a minimum, are well defined. Reductions from this maximum level are typically systematic and predictable but on occasion are rapid and unexpected. Models relating the flux level at lower energy to that at neutron monitor energy are typically accurate to 20 percent of the total excursion at that energy. Other models, relating flux to observables such as sunspot number, flare frequency, and current sheet tilt are phenomenological but nevertheless can be quite accurate.

  15. Galactic cosmic ray antiprotons and supersymmetry

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Walsh, T.; Rudaz, S.

    1985-01-01

    The physics of the annihilation of photinos is considered as a function of mass in detail, in order to obtain the energy spectra of the cosmic ray antiprotons produced under the assumption that photinos make up the missing mass in the galactic halo. The modulated spectrum is at 1 a.w. with the cosmic ray antiprotons data. A very intriguing fit is obtained to all of the present antiprotons up to 13.4 GeV data for similar to 15 GeV. A cutoff is predicted in the antiprotons spectrum at E = photino mass above which only a small flux from secondary production should remain.

  16. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  17. Discovery of Lyalpha Clouds in Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Stocke, John T.; Shull, J. M.; Penton, S. V.; Donahue, M.; Carilli, C.

    1995-05-01

    The HST/GHRS + G160M grating was used to obtain high resolution spectra of four very bright AGN located behind voids in the nearby distribution of bright galaxies (i.e. CfA and Arecibo redshift survey regions). A total of 9 Lyalpha absorption lines were discovered ranging in equivalent widths from 28 to 240 m Angstroms at velocities of cz=1500-10000 km/s. Of these 9, we identify 7 with supercluster structures and two in voids: one in the sightline of Mrk 501 at cz=7740 km/s and one in the sightline of Mrk 421 at cz=3020 km/s. Optical spectroscopy at Palomar and redshifted HI imaging at Westerbork fail to find faint galaxies or HI clouds close to the void absorption system in the Mrk 501 case. Thus, the voids are not entirely devoid of matter and not all Lyalpha clouds are associated with galaxies. Also, since the pathlengths through voids and superclusters probed by our observations thus far are nearly equal, there is some evidence that statistically the Lyalpha clouds avoid the voids. The nearest galaxy neighbors to these absorbing clouds are 0.45--5.9 Mpc away and thus too far away to be physically associated by most models, although some of the smaller nearest neighbor distances suggest a tidal debris origin to these clouds. Our results on local Lyalpha clouds are in full agreement with those found by Weymann, Morris et al. for the 3C273 sightline but disagree with results for the higher equivalent width systems where much closer cloud-galaxy associations were found by Lanzetta et al.

  18. Research in cosmic and gamma ray astrophysics: Cosmic physics portion

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen

    1993-01-01

    Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.

  19. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    2013-10-01

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  20. Microphysics of Cosmic Ray Driven Plasma Instabilities

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Brandenburg, A.; Malkov, M. A.; Osipov, S. M.

    Energetic nonthermal particles (cosmic rays, CRs) are accelerated in supernova remnants, relativistic jets and other astrophysical objects. The CR energy density is typically comparable with that of the thermal components and magnetic fields. In this review we discuss mechanisms of magnetic field amplification due to instabilities induced by CRs. We derive CR kinetic and magnetohydrodynamic equations that govern cosmic plasma systems comprising the thermal background plasma, comic rays and fluctuating magnetic fields to study CR-driven instabilities. Both resonant and non-resonant instabilities are reviewed, including the Bell short-wavelength instability, and the firehose instability. Special attention is paid to the longwavelength instabilities driven by the CR current and pressure gradient. The helicity production by the CR current-driven instabilities is discussed in connection with the dynamo mechanisms of cosmic magnetic field amplification.

  1. The Isotopic Composition of Cosmic-Ray Iron and Nickel

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M.; Binns, W.; Christian, E.; Cummings, A.; George, J.; Hink, P.; Klarmann, J.; Leske, R.; Lijowski, M.; Mewaldt, R.; Stone, E.; Rosenvinge, T. von

    2000-01-01

    Observations from the Cosmic Ray Isotope Spectrometer (CRIS) on ACE have been used to derive contraints on the locations, physical conditions, and time scales for cosmic-ray acceleration and transport.

  2. Nineteenth International Cosmic Ray Conference. OG Sessions, Volume 3

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume addresses cosmic ray sources and acceleration, interstellar propagation and nuclear interactions, and detection techniques and instrumentation.

  3. Cosmic gamma-rays and cosmic nuclei above 1 TeV

    NASA Technical Reports Server (NTRS)

    Watson, A. A.

    1986-01-01

    Work on cosmic gamma rays and cosmic nuclei above I TeV is described and evaluated. The prospect that gamma ray astronomy above I TeV will give new insights into high energy cosmic ray origin within our galaxy is particularly bright.

  4. Compact dusty clouds in a cosmic environment

    SciTech Connect

    Tsytovich, V. N.; Ivlev, A. V.; Burkert, A.; Morfill, G. E.

    2014-01-10

    A novel mechanism of the formation of compact dusty clouds in astrophysical environments is discussed. It is shown that the balance of collective forces operating in space dusty plasmas can result in the effect of dust self-confinement, generating equilibrium spherical clusters. The distribution of dust and plasma density inside such objects and their stability are investigated. Spherical dusty clouds can be formed in a broad range of plasma parameters, suggesting that this process of dust self-organization might be a generic phenomenon occurring in different astrophysical media. We argue that compact dusty clouds can represent condensation seeds for a population of small-scale, cold, gaseous clumps in the diffuse interstellar medium. They could play an important role in regulating its small-scale structure and its thermodynamical evolution.

  5. Propagation of Cosmic Rays and Diffuse Galactic Gamma Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    This paper presents an introduction to the astrophysics of cosmic rays and diffuse gamma-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models: the excesses in Galactic diffuse gamma-ray emission, secondary antiprotons and positrons, and the flatter than expected gradient of cosmic rays in the Galaxy. These also involve the dark matter, a challenge to modern physics, through its indirect searches in cosmic rays. Though the final solutions are yet to be found, I discuss some ideas and results obtained mostly with the numerical propagation model GALPROP. A fleet of spacecraft and balloon experiments targeting these specific issues is set to lift off in a few years, imparting a feeling of optimism that a new era of exciting discoveries is just around the corner. A complete and comprehensive discussion of all the recent results is not attempted here due to the space limitations.

  6. Current Status of Astrophysics of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Moskalenko, Igor

    2016-03-01

    I will review the current instrumentation and recent results. I will discuss which measurements have to be done in the near future to significantly advance our knowledge about the phenomenon of cosmic rays, their sources, and their interactions with the interstellar medium. A support from NASA APRA Grant No. NNX13AC47G is greatly acknowledged.

  7. Cosmic Ray Origin, Acceleration and Propagation

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    2000-01-01

    This paper summarizes highlights of the OG3.1, 3.2 and 3.3 sessions of the 26th International Cosmic Ray Conference in Salt Lake City, which were devoted to issues of origin/composition, acceleration and propagation.

  8. A database of charged cosmic rays

    NASA Astrophysics Data System (ADS)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  9. High energy interactions of cosmic ray particles

    NASA Technical Reports Server (NTRS)

    Jones, L. W.

    1986-01-01

    The highlights of seven sessions of the Conference dealing with high energy interactions of cosmic rays are discussed. High energy cross section measurements; particle production-models of experiments; nuclei and nuclear matter; nucleus-nucleus collision; searches for magnetic monopoles; and studies of nucleon decay are covered.

  10. Student Projects in Cosmic Ray Detection

    NASA Astrophysics Data System (ADS)

    Brouwer, W.; Pinfold, J.; Soluk, R.; McDonough, B.; Pasek, V.; Bao-shan, Zheng

    2009-11-01

    The Alberta Large-area Time-coincidence Array (ALTA) study has been in existence for about 10 years under the direction of Jim Pinfold of the Centre for Particle Physics at the University of Alberta. The purpose of the ALTA project is to involve Alberta high schools, and primarily their physics classes, to assist in the detection of the presence of cosmic ray bursts in different Alberta locations. These cosmic rays involve highspeed elementary particles, many from far outside our solar system and even from outside our galaxy. These particles collide with the particles in our atmosphere, break up these molecules into rather exotic elementary particles which often reach the surface of the Earth and can be detected by fairly simple equipment. One of the objectives of ALTA is to determine the nature of some of the most energetic cosmic ray particles whose origin is still not known. Recently 2the Pierre Auger Collaboration has confirmed that the highest energy cosmic rays appear to be coming from nearby galaxies. The mechanism for their production is still not well understood.

  11. Cosmic Ray Diffusion Tensor Throughout the Heliosphere

    NASA Astrophysics Data System (ADS)

    Pei, C.; Bieber, J. W.; Breech, B.; Burger, R. A.; Clem, J.; Matthaeus, W. H.

    2008-12-01

    We calculate the cosmic ray diffusion tensor based on a recently developed model of magnetohydrodynamic (MHD) turbulence in the expanding solar wind [Breech et al., 2008.]. Parameters of this MHD model are tuned by using published observations from Helios, Voyager 2, and Ulysses. We present solutions of two turbulence parameter sets and derive the characteristics of the cosmic ray diffusion tensor for each. We determine the parallel diffusion coefficient of the cosmic ray following the method presented in Bieber et al. [1995]. We use the nonlinear guiding center (NLGC) theory to obtain the perpendicular diffusion coefficient of the cosmic ray [Matthaeus et al. 2003]. We find that (1) the radial mean free path decreases from 1 AU to 20 AU for both turbulence scenarios; (2) after 40 AU the radial mean free path is nearly constant; (3) the radial mean free path is dominated by the parallel component before 20 AU, after which the perpendicular component becomes important; (4) the rigidity P dependence of the parallel component of the diffusion tensor is proportional to P.404 for one turbulence scenario and P.374 for the other at 1 AU from 0.1 GVto 10 GV, but in the outer heliosphere its dependence becomes stronger above 4 GV; (5) the rigidity P dependence of the perpendicular component of the diffusion tensor is very weak. Supported by NASA Heliophysics Guest Investigator grant NNX07AH73G and by NASA Heliophysics Theory grant NNX08AI47G.

  12. Numerical likelihood analysis of cosmic ray anisotropies

    SciTech Connect

    Carlos Hojvat et al.

    2003-07-02

    A numerical likelihood approach to the determination of cosmic ray anisotropies is presented which offers many advantages over other approaches. It allows a wide range of statistically meaningful hypotheses to be compared even when full sky coverage is unavailable, can be readily extended in order to include measurement errors, and makes maximum unbiased use of all available information.

  13. Cosmic Ray Transport in the Distant Heliosheath

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Adams, James H.; Washimi, H.

    2011-01-01

    The character of energetic particle transport in the distant heliosheath and especially in the vicinity of the heliopause could be quite distinct from the other regions of the heliosphere. The magnetic field structure is dominated by a tightly wrapped oscillating heliospheric current sheet which is transported to higher latitudes by the nonradial heliosheath flows. Both Voyagers have, or are expected to enter a region dominated by the sectored field formed during the preceding solar maximum. As the plasma flow slows down on approach to the heliopause, the distance between the folds of the current sheet decreases to the point where it becomes comparable to the cyclotron radius of an energetic ion, such as a galactic cosmic ray. Then, a charged particle can effectively drift across a stack of magnetic sectors with a speed comparable with the particle s velocity. Cosmic rays should also be able to efficiently diffuse across the mean magnetic field if the distance between sector boundaries varies. The region of the heliopause could thus be much more permeable to cosmic rays than was previously thought. This new transport proposed mechanism could explain the very high intensities (approaching the model interstellar values) of galactic cosmic rays measured by Voyager 1 during 2010-2011.

  14. Cosmic rays from primordial black holes

    NASA Technical Reports Server (NTRS)

    Macgibbon, Jane H.; Carr, B. J.

    1991-01-01

    The quark and gluon emission from primordial black holes (PBHs) which may have formed from initial density perturbations or phase transitions in the early universe are investigated. If the PBHs formed from scale-invariant initial density perturbations in the radiation dominated era, it is found that the emission can explain or contribute significantly to the extragalactic photon and interstellar cosmic-ray electron, positron, and antiproton spectra around 0.1-1 GeV. In particular, the PBH emission strongly resembles the cosmic-ray gamma-ray spectrum between 50 and 170 MeV. The upper limits on the PBH density today from the gamma-ray, e(+), e(-), and antiproton data are comparable, provided that the PBHs cluster to the same degree as the other matter in the Galactic halo.

  15. Validation of Cosmic Ray Ionization Model CORIMIA applied for solar energetic particles and Anomalous Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Asenovski, S.; Velinov, P.; Mateev, L.

    2016-02-01

    Based on the electromagnetic interaction between the cosmic ray (CR) and the atmospheric neutral constituents, CORIMIA (COsmic Ray Ionization Model) gives an estimation of the dynamical ionization condition of the lower ionosphere and middle atmosphere (about 30-120 km). Galactic Cosmic Rays (GCR), modified by solar wind and later by geomagnetic and atmospheric cut offs, produce ionization in the entire atmosphere. In this paper we show the GCR ionization in periods of solar minimum and maximum. Despite the considerably lower energies than GCR, Anomalous Cosmic Rays (ACR) contribute to the ionization state mostly over the polar regions and as we present here this contribution is comparable with those of GCR. Solar energetic particles (SEP), which differ vastly from one another for different solar events, can be responsible for significant ionization over the high latitude regions. Here we compare flows of SEP caused by two of the most powerful solar proton events at February 23, 1956 and January 20, 2005.

  16. Re-evaluation of cosmic ray cutoff terminology

    NASA Technical Reports Server (NTRS)

    Cooke, D. J.; Humble, J. E.; Shea, M. A.; Smart, D. F.; Lund, N.; Rasmussen, I. L.; Byrnak, B.; Goret, P.; Petrou, N.

    1985-01-01

    The study of cosmic ray access to locations inside the geomagnetic field has evolved in a manner that has led to some misunderstanding and misapplication of the terminology originally developed to describe particle access. This paper presents what is believed to be a useful set of definitions for cosmic ray cutoff terminology for use in theoretical and experimental cosmic ray studies.

  17. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  18. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  19. Heliospheric Impact on Cosmic Rays Modulation

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    2016-07-01

    Heliospheric Impact on Cosmic RaysModulation B. K. Tiwari Department of Physics, A. P. S. University, Rewa (M.P.), btiwari70@yahoo.com Cosmic rays (CRs) flux at earth is modulated by the heliosphereric magnetic field and the structure of the heliosphere, controls by solar outputs and their variability. Sunspots numbers (SSN) is often treated as a primary indicator of solar activity (SA). GCRs entering the helioshphere are affected by the interplanetary magnetic field (IMF) and solar wind speed, their modulation varies with the varying solar activity. The observation based on data recoded from Omniweb data Centre for solar- interplanetary activity indices and monthly mean count rate of cosmic ray intensity (CRI) data from neutron monitors of different cut-off rigidities(Rc) (Moscow Rc=2.42Gv and Oulu Rc=0.80Gv). During minimum solar activity periodof solar cycle 23/24, the sun is remarkably quiet, weakest strength of the IMF and least dense and slowest, solar wind speed, whereas, in 2003, highest value of yearly averaged solar wind speed (~568 Km/sec) associated with several coronal holes, which generate high speed wind stream has been recorded. It is observed that GCRs fluxes reduces and is high anti-correlated with SSN (0.80) and IMF (0.86). CRI modulation produces by a strong solar flare, however, CME associated solar flare produce more disturbance in the interplanetary medium as well as in geomagnetic field. It is found that count rate of cosmic ray intensity and solar- interplanetary parameters were inverse correlated and solar indices were positive correlated. Keywords- Galactic Cosmic rays (GCRs), Sunspot number (SSN), Solar activity (SA), Coronal Mass Ejection (CME), Interplanetary magnetic field (IMF)

  20. On the high-energy gamma-ray signature of cosmic-ray sources

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Ozel, M. E.; Morris, D. J.

    1988-01-01

    Monte Carlo simulations of the gamma-ray emission from hypothetical cosmic-ray sources are performed. Sources which might correspond to acceleration by supernova shocks in 'average' interstellar conditions and deep within giant molecular clouds are considered. The consequences of dropping the common assumption that the cosmic-ray spectrum at the sources is the same as that observed at earth are examined. Spectral effects which can be related to the depth of the material shroud and the population of accelerated particles are explored using these simulations and are described. The results are compared with the COS B catalog of gamma-ray sources, and the implications for the underlying particle populations and source mechanisms are discussed.

  1. Ionization states of low-energy cosmic rays - Results from Spacelab 3 cosmic-ray experiment

    NASA Technical Reports Server (NTRS)

    Dutta, A.; Goswami, J. N.; Biswas, S.; Durgaprasad, N.; Mitra, B.; Singh, R. K.

    1993-01-01

    The Indian cosmic ray experiment Anuradha, conducted onboard Spacelab 3 during April 29-May 6, 1985 was designed to obtain information on the ionization states of low-energy cosmic rays, using the geomagnetic field as a rigidity filter to place an upper limit on the ionization state of individual cosmic ray particles. This paper presents data confirming the presence of three distinct groups of energetic particles in the near-earth space: (1) low-energy (15-25 MeV/nucleon) anomalous cosmic rays that are either singly ionized or consistent with their being in singly ionized state, (2) fully ionized galactic cosmic ray ions, and (3) partially ionized iron and sub-iron group ions (which account for about 20 percent of all the iron and sub-iron group ions detected at the Spacelab 3 orbit within the magnetosphere in the energy interval 25-125 MeV/nucleon). It is argued that these partially ionized heavy ions are indeed a part of the low-energy galactic cosmic rays present in the interplanetary space.

  2. Cosmic ray interactions in the ground: Temporal variations in cosmic ray intensities and geophysical studies

    NASA Technical Reports Server (NTRS)

    Lal, D.

    1986-01-01

    Temporal variations in cosmic ray intensity have been deduced from observations of products of interactions of cosmic ray particles in the Moon, meteorites, and the Earth. Of particular interest is a comparison between the information based on Earth and that based on other samples. Differences are expected at least due to: (1) differences in the extent of cosmic ray modulation, and (2) changes in the geomagnetic dipole field. Any information on the global changes in the terrestrial cosmic ray intensity is therefore of importance. In this paper a possible technique for detecting changes in cosmic ray intensity is presented. The method involves human intervention and is applicable for the past 10,000 yrs. Studies of changes over longer periods of time are possible if supplementary data on age and history of the sample are available using other methods. Also discussed are the possibilities of studying certain geophysical processes, e.g., erosion, weathering, tectonic events based on studies of certain cosmic ray-produced isotopes for the past several million years.

  3. Cosmic ray physics with the OPERA Detector

    NASA Astrophysics Data System (ADS)

    Brugiere, T.

    2010-04-01

    OPERA is a long-baseline neutrino experiment located in the Hall C of the underground Gran Sasso Laboratory at an average depth of 3.8 km.w.e., corresponding to muon energies at surface higher than 1.5 TeV. In this paper we focus on the potentialities of OPERA used as a cosmic ray detector. We report on the measurement of the atmospheric muon charge ratio, on the analysis of upgoing muons induced by atmospheric neutrinos and on the large cosmics showers inducing coincidences between different experiments in Gran Sasso.

  4. Cosmic ray propagation with CRPropa 3

    NASA Astrophysics Data System (ADS)

    Alves Batista, R.; Erdmann, M.; Evoli, C.; Kampert, K.-H.; Kuempel, D.; Mueller, G.; Sigl, G.; Van Vliet, A.; Walz, D.; Winchen, T.

    2015-05-01

    Solving the question of the origin of ultra-high energy cosmic rays (UHECRs) requires the development of detailed simulation tools in order to interpret the experimental data and draw conclusions on the UHECR universe. CRPropa is a public Monte Carlo code for the galactic and extragalactic propagation of cosmic ray nuclei above ∼ 1017 eV, as well as their photon and neutrino secondaries. In this contribution the new algorithms and features of CRPropa 3, the next major release, are presented. CRPropa 3 introduces time-dependent scenarios to include cosmic evolution in the presence of cosmic ray deflections in magnetic fields. The usage of high resolution magnetic fields is facilitated by shared memory parallelism, modulated fields and fields with heterogeneous resolution. Galactic propagation is enabled through the implementation of galactic magnetic field models, as well as an efficient forward propagation technique through transformation matrices. To make use of the large Python ecosystem in astrophysics CRPropa 3 can be steered and extended in Python.

  5. Gamma-ray astronomy and the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    New surveys of galactic gamma ray emission together with millimeter wave radio surveys indicated that cosmic rays were produced as the result of supernova explosions in our galaxy with the most intense production occurring in a Great Galactic Ring about 35,000 light years in diameter where supernova remnants and pulsars were concentrated.

  6. Resolving photons from cosmic ray in DAMPE

    NASA Astrophysics Data System (ADS)

    Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing

    2016-07-01

    The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.

  7. In Search of Cosmic Rays: A Student Physics Project Aimed at Finding the Origin of Cosmic Rays.

    ERIC Educational Resources Information Center

    Antonelli, Jamie; Mahoney, Sean; Streich, Derek; Liebl, Michael

    2001-01-01

    Describes an ongoing project, the Cosmic Ray Observatory Project (CROP), being conducted by the University of Nebraska in partnership with several high schools. Each school group has installed cosmic ray detectors, and initial activities have included calibrating equipment, gathering preliminary data, and learning about cosmic ray showers. Aims to…

  8. Empirical model for the Earth's cosmic ray shadow at 400 KM: Prohibited cosmic ray access

    NASA Technical Reports Server (NTRS)

    Humble, J. E.; Smart, D. F.; Shea, M. A.

    1985-01-01

    The possibility to construct a unit sphere of access that describes the cosmic radiation allowed to an Earth-orbiting spacecraft is discussed. It is found that it is possible to model the occluded portion of the cosmic ray sphere of access as a circular projection with a diameter bounded by the satellite-Earth horizon. Maintaining tangency at the eastern edge of the spacecraft-Earth horizon, this optically occluded area is projected downward by an angle beta which is a function of the magnetic field inclination and cosmic ray arrival direction. This projected plane, corresponding to the forbidden area of cosmic ray access, is bounded by the spacecraft-Earth horizon in easterly directions, and is rotated around the vertical axis by an angle alpha from the eastern direction, where the angle alpha is a function of the offset dipole latitude of the spacecraft.

  9. Active Galactic Nuclei:. Sources for Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Biermann, P. L.; Becker, J. K.; Caramete, L.; Gergely, L.; Mariş, I. C.; Meli, A.; de Souza, V.; Stanev, T.

    Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.

  10. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  11. Gamma-Ray Emission From Crushed Clouds in Supernova Remnants

    SciTech Connect

    Uchiyama, Yasunobu; Blandford, Roger D.; Funk, Stefan; Tajima, Hiroyasu; Tanaka, Takaaki; /KIPAC, Menlo Park

    2010-10-27

    It is shown that the radio and gamma-ray emission observed from newly-found 'GeV-bright' supernova remnants (SNRs) can be explained by a model, in which a shocked cloud and shock-accelerated cosmic rays (CRs) frozen in it are simultaneously compressed by the supernova blastwave as a result of formation of a radiative cloud shock. Simple reacceleration of pre-existing CRs is generally sufficient to power the observed gamma-ray emission through the decays of {pi}{sup 0}-mesons produced in hadronic interactions between high-energy protons (nuclei) and gas in the compressed-cloud layer. This model provides a natural account of the observed synchrotron radiation in SNRs W51C, W44 and IC 443 with flat radio spectral index, which can be ascribed to a combination of secondary and reaccelerated electrons and positrons.

  12. On the cosmic ray diffusion in a violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Bykov, A. M.; Toptygin, I. N.

    1985-01-01

    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.

  13. On the cosmic ray diffusion in a violent interstellar medium

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Toptygin, I. N.

    1985-08-01

    A variety of the available observational data on the cosmic ray (CR) spectrum, anisotropy and composition are in good agreement with a suggestion on the diffusion propagation of CR with energy below 10(15) eV in the interstellar medium. The magnitude of the CR diffusion coefficient and its energy dependence are determined by interstellar medium (ISM) magnetic field spectra. Direct observational data on magnetic field spectra are still absent. A theoretical model to the turbulence generation in the multiphase ISM is resented. The model is based on the multiple generation of secondary shocks and concomitant large-scale rarefactions due to supernova shock interactions with interstellar clouds. The distribution function for ISM shocks are derived to include supernova statistics, diffuse cloud distribution, and various shock wave propagation regimes. This permits calculation of the ISM magnetic field fluctuation spectrum and CR diffusion coefficient for the hot phase of ISM.

  14. Nuclear composition of solar cosmic rays

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.

    1974-01-01

    Experimental observations of the elemental and isotopic composition of solar flare particles are discussed. Sources and characteristics of particle-emitting solar flare events are reviewed, and techniques for separating particle species are briefly described. Data are presented for the elemental composition of the solar atmosphere, and the possibility of determining the solar helium abundance from solar cosmic-ray observations is explored. The main experimental determinations of heavy element abundances at energies greater and less than 10 MeV/nucleon are summarized, and techniques for measuring the ionic charge composition of solar cosmic rays are outlined. Models explaining heavy element enhancements are described along with processes leading to gamma-ray emission during solar flare events. Observations of the rare isotopes of hydrogen and helium during solar flare events are noted, and a lower atmospheric limit is derived for nuclear reactions leading to positron decay. The possibility of investigating low-energy solar cosmic rays by measuring the relative abundances of different elements is evaluated.

  15. The elemental and isotopic composition of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1982-01-01

    Galactic cosmic rays represent samples of matter from areas outside the solar system. New information regarding the elemental composition of cosmic rays has been obtained in connection with the French-Danish experiment on HEA0-3 and recent balloon experiments. The energy dependence of the source composition is considered along with a comparison of cosmic ray and solar system abundances, and the N-14 source abundance. Attention is given to cosmic ray clocks and the Mn-54 problem, advances concerning cross section measurements, and cosmic ray isotopes. The considered new observations suggest that cosmic ray elemental abundance differences from the solar system continue to be ordered by atomic parameters such as first ionization potential, at least up through Z equals 40. The isotopic composition of the cosmic ray source is found to be unlike that of the solar system.

  16. Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 1

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. The topic areas covered in this volume include gamma ray bursts, gamma rays from point sources, and diffuse gamma ray emission.

  17. Cosmic gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Vedrenne, G.

    1981-06-01

    The general characteristics of gamma-ray bursts are considered. During the period from 1967 to 1977 62 gamma-ray bursts were discovered. Between September 1978 and December 1980 more than 40 bursts were observed with the aid of interplanetary spacecraft, including the Pioneer Venus Orbiter, ISEE-C, Helios B, Vela, Prognoz 7, Venera 11, and Venera 12. The time structures are discussed along with the spectra, and the burst intensity distribution. Attention is given to events observed on March 5, April 6, November 4, and November 19, 1979, taking into account the location of each event. The implications of the more recent results are discussed. It is pointed out that for a better understanding of the origin of the emissions, it is necessary to have a coordinated observation program with several satellites separated by large distances.

  18. New insights from cosmic gamma rays

    NASA Astrophysics Data System (ADS)

    Roland, Diehl

    2016-04-01

    The measurement of gamma rays from cosmic sources at ~MeV energies is one of the key tools for nuclear astrophysics, in its study of nuclear reactions and their impacts on objects and phenomena throughout the universe. Gamma rays trace nuclear processes most directly, as they originate from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. Additionally, the unique gamma-ray signature from the annihilation of positrons falls into this astronomical window and is discussed here: Cosmic positrons are often produced from β-decays, thus also of nuclear physics origins. The nuclear reactions leading to radioactive isotopes occur inside stars and stellar explosions, which therefore constitute the main objects of such studies. In recent years, both thermonuclear and core-collapse supernova radioactivities have been measured though 56Ni, 56Co, and 44Ti lines, and a beginning has thus been made to complement conventional supernova observations with such measurements of the prime energy sources of supernova light created in their deep interiors. The diffuse radioactive afterglow of massive-star nucleosynthesis in gamma rays is now being exploited towards astrophysical studies on how massive stars feed back their energy and ejecta into interstellar gas, as part of the cosmic cycle of matter through generations of stars enriching the interstellar gas and stars with metals. Large interstellar cavities and superbubbles have been recognised to be the dominating structures where new massive-star ejecta are injected, from 26Al gamma-ray spectroscopy. Also, constraints on the complex interiors of stars derive from the ratio of 60Fe/26Al gamma rays. Finally, the puzzling bulge-dominated intensity distribution of positron annihilation gamma rays is measured in greater detail, but still not understood; a recent microquasar flare provided evidence that such objects may be prime sources for positrons in interstellar space, rather than

  19. Radiative Energy Loss by Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.

  20. Hydromagnetic waves and cosmic ray diffusion theory

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Voelk, H. J.

    1975-01-01

    Pitch angle diffusion of cosmic rays in hydromagnetic wave fields is considered strictly within the quasilinear approximation. It is shown that the popular assumption of an isotropic power spectrum tensor of magnetic fluctuations requires in this case equal forms and magnitudes of Alfven and magnetosonic wave spectra - a situation which is generally unlikely. The relative contributions to the pitch angle diffusion coefficient from the cyclotron resonances and Landau resonance due to the different types of waves are evaluated for a typical situation in the solar wind. Since in this approximation also the Landau resonance does not lead to particle reflections a proper consideration of the nonlinear particle orbits is indeed necessary to overcome the well known difficulties of quasilinear scattering theory for cosmic rays near 90 degrees pitch angle.

  1. Astroparticle Physics: Detectors for Cosmic Rays

    SciTech Connect

    Salazar, Humberto; Villasenor, Luis

    2006-09-25

    We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection of extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.

  2. Cosmic rays, solar activity and the climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.; Wolfendale, A. W.

    2013-12-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialization is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this letter a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialization is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  3. Antiprotons in cosmic rays and their implications

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1989-01-01

    A brief description of the experiments carried out so far to measure the energy spectrum of antiprotons is made and the reason for the excitement in this field of research is elucidated. The observed spectrum appears to be different form the other components of cosmic rays. Various physical processes by which antiprotons could be created are summarized. The equilibrium spectrum of antiprotons in the Galaxy, arising from each of these processes, is derived for different propagation models. It is shown that no single model can predict correctly the observed data over the entire energy region. However, the recent data at low energies suggest that the conventional models with large amount of matter traversal by cosmic rays, either in the source region or during propagation, can reproduce the data closely. The implications of these propagation models for other components are discussed and the need for more observations is emphasized.

  4. The HEAT Cosmic Ray Antiproton Experiment

    NASA Astrophysics Data System (ADS)

    Nutter, Scott

    1998-10-01

    The HEAT (High Energy Antimatter Telescope) collaboration is constructing a balloon-borne instrument to measure the relative abundance of antiprotons and protons in the cosmic rays to kinetic energies of 30 GeV. The instrument uses a multiple energy loss technique to measure the Lorentz factor of through-going cosmic rays, a magnet spectrometer to measure momentum, and several scintillation counters to determine particle charge and direction (up or down in the atmosphere). The antiproton to proton abundance ratio as a function of energy is a probe of the propagation environment of protons through the galaxy. Existing measurements indicate a higher than expected value at both high and low energies. A confirming measurement could indicate peculiar antiproton sources, such as WIMPs or supersymmetric darkmatter candidates.

  5. Cosmic Rays, Solar Activity and the Climate

    NASA Astrophysics Data System (ADS)

    Sloan, T.

    2013-02-01

    Although it is generally believed that the increase in the mean global surface temperature since industrialisation is caused by the increase in green house gases in the atmosphere, some people cite solar activity, either directly or through its effect on cosmic rays, as an underestimated contributor to such global warming. In this paper a simplified version of the standard picture of the role of greenhouse gases in causing the global warming since industrialisation is described. The conditions necessary for this picture to be wholly or partially wrong are then introduced. Evidence is presented from which the contributions of either cosmic rays or solar activity to this warming is deduced. The contribution is shown to be less than 10% of the warming seen in the twentieth century.

  6. Search for Antihelium in the Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Golden, R. L.; Stochaj, S. J.; Stephens, S. A.; Moiseev, A. A.; Ormes, J. F.; Streitmatter, R. E.; Bowen, T.; Moats, A.; Lloyd-Evans, J.

    1997-04-01

    On 1987 August 22 a balloon flight was conducted using the Goddard Space Flight Center Low-Energy Antiproton configuration of the New Mexico State University balloon-borne magnet spectrometer. The launch site was Prince Albert, Saskatchewan, Canada. The balloon flew at an average atmospheric depth of 4.7 g cm-2 for more than 22 hr. During this period a sample of 4.2 × 104 helium nuclei was gathered. No antihelium candidates were found in this sample. The resultant upper limit for the ratio of antihelium to helium in cosmic rays over the rigidity interval from 1 to 25 GV/c is 9 × 10-5 at 95% confidence. This limit is below the predicted level, assuming equal matter and antimatter in the extragalactic cosmic rays.

  7. Cosmic Ray Induced Bit-Flipping Experiment

    NASA Astrophysics Data System (ADS)

    Pu, Ge; Callaghan, Ed; Parsons, Matthew; Cribflex Team

    2015-04-01

    CRIBFLEX is a novel approach to mid-altitude observational particle physics intended to correlate the phenomena of semiconductor bit-flipping with cosmic ray activity. Here a weather balloon carries a Geiger counter and DRAM memory to various altitudes; the data collected will contribute to the development of memory device protection. We present current progress toward initial flight and data acquisition. This work is supported by the Society of Physics Students with funding from a Chapter Research Award.

  8. Cosmic ray studies with an Interstellar Probe

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.

    1990-01-01

    Among the NASA mission concepts that have been suggested for the 21st century is an Interstellar Probe that might be accelerated to a velocity of about 10 to 20 AU/yr, allowing it to leave the heliosphere, ultimately reaching a radial distance of about 500 to 1000 AU in about 50 years. Previous studies of such a mission, and its potential significance for cosmic ray studies, both within the heliosphere, and beyond, in interstellar space are discussed.

  9. Rigidity Dependence of Cosmic Ray Modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2012-07-01

    The various observed harmonics of the cosmic ray variation may be understood on a unified basis if the free space cosmic ray anisotropy is non-sinusoidal in form. The major objective of this paper is to study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-1990 for Deep River, Goose Bay and Tokyo neutron monitoring stations. The amplitude of first harmonic remains high for Deep River having low cutoff rigidity as compared to Tokyo neutron monitor having high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases in 1987 at Deep River and in 1986 at Tokyo during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction at both the stations having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station i.e. Deep River as compared to the high cut off rigidity station i.e. Tokyo on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The solar wind velocity significantly remains in the range 350 to 425 km/s i.e. being nearly average on quiet days. The amplitude and direction of the anisotropy on quiet days are weakly dependent on high-speed solar wind streams for these neutron monitoring stations of low and high cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics.

  10. Cosmic ray gradients in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Fillius, W.; Wake, B.; Ip, W.-H.; Axford, I.

    1983-01-01

    Launched in 1972 and 1973 respectively, the Pioneer 10 and 11 spacecraft are now probing the outer heliosphere on their final escape from the sun. The data in this paper extend for almost an entire solar cycle from launch to early 1983, when Pioneer 10 was at a heliocentric distance of 29 AU and Pioneer 11, 13 AU. The UCSD instruments on board were used to study the gradient, and to look at the time and spatial variations of the cosmic ray intensities.

  11. Cosmic Ray Energetics and Mass (CREAM)

    NASA Technical Reports Server (NTRS)

    Coutu, Stephane

    2005-01-01

    The CREAM instrument was flown on a Long Duration Balloon in Antarctica in December 2004 and January 2005, achieving a flight duration record of nearly 42 days. It detected and recorded cosmic ray primary particles ranging in type from hydrogen to iron nuclei and in energy from 1 TeV to several hundred TeV. With the data collected we will have the world's best measurement of the energy spectra and mass composition of nuclei in the primary cosmic ray flux at these energies, close to the astrophysical knee . The instrument utilized a thin calorimeter, a transition radiation detector and a timing charge detector, which also provided time-of-flight information. The responsibilities of our group have been with the timing charge detector (TCD), and with the data acquisition electronics and ground station support equipment. The TCD utilized fast scintillators to measure the charge of the primary cosmic ray before any interactions could take place within the calorimeter. The data acquisition electronics handled the output of the various detectors, in a fashion fully integrated with the payload bus. A space-qualified flight computer controlled the acquisition, and was used for preliminary trigger information processing and decision making. Ground support equipment was used to monitor the health of the payload, acquire and archive the data transmitted to the ground, and to provide real-time control of the instrument in flight.

  12. Erich Regener - a forgotten cosmic ray pioneer

    NASA Astrophysics Data System (ADS)

    Carlson, Per; Watson, Alan

    2013-04-01

    In the 1930s the German physicist Erich Regener (1881-1955), did important work on the measurement of the rate production of ionisation in the atmosphere and deep under-water. He discovered, along with one of his students, Georg Pfotzer, the altitude at which the production of ionisation in the atmosphere reaches a maximum, often and misleadingly called the Pfotzer maximum. He was one of the first to estimate the energy density of cosmic rays, an estimate used by Baade and Zwicky to postulate that supernovae might be the source of cosmic rays. Yet Regener's name is little known largely because he was forced to take early retirement by the National Socialists in 1937 as his wife had Jewish ancestors. In this paper we review his work on cosmic rays and the subsequent influence that he had on the subject through his son, his son-in-law, his grandson and his students. He was nominated for the Nobel Prize in Physics by Schroedinger in 1938. He died in 1955 at the age of 73.

  13. Modulation of low-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Sari, J. W.

    1975-01-01

    The relation between the diffusion coefficient of cosmic rays in the solar wind and the power spectrum of interplanetary magnetic field fluctuations, established in recent theories, is tested directly for low energy protons (below 80 MeV). In addition, an attempt is made to determine whether the particles are scattered by magnetic field discontinuities or by fluctuations between discontinuities. Predictions of a perturbation solution of the Fokker-Planck equation are compared with observations of the cosmic ray radial gradient. It is found that at energies between 40 and 80 MeV, galactic cosmic ray protons respond to changes in the predicted diffusion coefficients (i.e., the relationship under consideration holds at these low energies). The relation between changes in the proton flux and modulation parameters is best when the contribution of discontinuities is subtracted, which means that scattering is caused by fluctuations between discontinuities. There appears to be no distinct relation between changes in the modulation parameters and changes in the intensity of 20 to 40 MeV protons.

  14. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  15. Acceleration of cosmic rays in Tycho's SNR.

    NASA Astrophysics Data System (ADS)

    Morlino, G.; Caprioli, D.

    We apply the non-linear diffusive shock acceleration theory in order to describe the properties of SN 1572 (G120.1+1.4, hereafter simply Tycho). By analyzing its multi-wavelength spectrum, we show how Tycho's forward shock (FS) is accelerating protons up to ˜ 500 TeV, channeling into cosmic rays more than 10 per cent of its kinetic energy. We find that the streaming instability induced by cosmic rays is consistent with all the observational evidences indicating a very efficient magnetic field amplification (up to ˜ 300 mu G), in particular the X-ray morphology of the remnant. We are able to explain the gamma-ray spectrum from the GeV up to the TeV band, recently measured respectively by Fermi-LAT and VERITAS, as due to pion decay produced in nuclear collisions by accelerated nuclei scattering against the background gas. We also show that emission due to the accelerated electrons does not play a relevant role in the observed gamma-ray spectrum.

  16. Ionization by Cosmic Rays in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Norman, R. B.; Gronoff, G.; Mertens, C. J.; Blattnig, S.

    2011-12-01

    In-situ measurements by Cassini-Huygens have shown the importance of ionizing particles (solar photons, magnetospheric electrons and protons, cosmics rays) on the atmosphere of Titan. Ionizing particles play an important role in the atmospheric chemistry of Titan and must therefore be accurately modeled to understand the contribution of the differing sources of ionization. To model the initial galactic cosmic ray environment, the Badwar-O'Neill cosmic ray spectrum model was adapted for use at Titan. The Aeroplanets model, an electron transport model for the study of airglow and aurora, was then coupled to the Planetocosmics model, a Monte-carlo cosmic ray transport and energy deposition model, to compute ion production from cosmic rays. In addition, the NAIRAS model, a cosmic ray irradiation model adapted for fast computations, was adopted to the Titan environment and, for the first time, used to compute an ionization profile on a planet other than Earth and compared to the Planetocosmics results. For the first time, the importance of high charge cosmic rays on the ionization of the Titan atmosphere was demonstrated. High charge cosmic rays were found to be especially important below an altitude of 400 km, contributing significantly to the total ionization. Specifically, between 200 km and 400 km, alpha and higher charge cosmic rays are responsible for 40% of the ionization. The increase due to high charge cosmic rays was found for both the Planetocosmics and NAIRAS models.

  17. Measurements of the cosmic-ray Be/B ratio and the age of cosmic rays

    NASA Technical Reports Server (NTRS)

    Brown, J. W.; Stone, E. C.; Vogt, R. E.

    1974-01-01

    The ratio Be/B depends on whether the confinement time of cosmic rays in the Galaxy is long or short compared to the radioactive half-life of Be-10. We report observations of this ratio which were obtained with a dE/dx-Cerenkov detector launched into a polar orbit on OGO-6 as part of the Caltech Solar and Galactic Cosmic Ray Experiment. Be/B ratios were determined for various rigidity thresholds up to 15 GV. We find no statistically significant rigidity dependence of the ratio, which is 0.41 plus or minus 0.02 when averaged over all observed cutoffs. Additional calculations suggest that if the present fragmentation parameters are correct, then the lifetime of cosmic rays in the Galaxy is less then 10 m.y.

  18. Cosmic-ray-induced photodissociation and photoionization rates of interstellar molecules

    SciTech Connect

    Gredel, R.; Lepp, S.; Dalgarno, A.; Herbst, E. Duke Univ., Durham, NC )

    1989-12-01

    In the Prasad-Tarafdar mechanism, ultraviolet photons are created in the interior of dense interstellar clouds by the impact excitation of molecular hydrogen by secondary electrons generated by cosmic-ray ionization. Detailed calculations of the emission spectrum are described, and the resulting photodissociation and photoionization rates of a wide range of interstellar molecules are calculated. 84 refs.

  19. Cosmic Ray and Tev Gamma Ray Generation by Quasar Remnants

    NASA Technical Reports Server (NTRS)

    Boldt, Elihu; Loewenstein, Michael; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Results from new broadband (radio to X-ray) high-resolution imaging studies of the dormant quasar remnant cores of nearby giant elliptical galaxies are now shown to permit the harboring of compact dynamos capable of generating the highest energy cosmic ray particles and associated curvature radiation of TeV photons. Confirmation would imply a global inflow of interstellar gas all the way to the accretion powered supermassive black hole at the center of the host galaxy.

  20. The intergalactic propagation of ultrahigh energy cosmic ray nuclei

    SciTech Connect

    Hooper, Dan; Sarkar, Subir; Taylor, Andrew M.; /Oxford U.

    2006-08-01

    We investigate the propagation of ultra-high energy cosmic ray nuclei (A = 1-56) from cosmologically distant sources through the cosmic radiation backgrounds. Various models for the injected composition and spectrum and of the cosmic infrared background are studied using updated photodisintegration cross-sections. The observational data on the spectrum and the composition of ultra-high energy cosmic rays are jointly consistent with a model where all of the injected primary cosmic rays are iron nuclei (or a mixture of heavy and light nuclei).

  1. Key scientific problems from Cosmic Ray History

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    Recently was published the monograph "Cosmic Ray History" by Lev Dorman and Irina Dorman (Nova Publishers, New York). What learn us and what key scientific problems formulated the Cosmic Ray History? 1. As many great discoveries, the phenomenon of cosmic rays was discovered accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. 2. At the beginning of the 20th century, in connection with the discovery of natural radioactivity, it became apparent that this problem is mainly solved: it was widely accepted that the main source of the air ionization were α, b, and γ - radiations from radioactive substances in the ground (γ-radiation was considered as the most important cause because α- and b-radiations are rapidly absorbed in the air). 3. The general accepted wrong opinion on the ground radioactivity as main source of air ionization, stopped German meteorologist Franz Linke to made correct conclusion on the basis of correct measurements. In fact, he made 12 balloon flights in 1900-1903 during his PhD studies at Berlin University, carrying an electroscope to a height of 5500 m. The PhD Thesis was not published, but in Thesis he concludes: "Were one to compare the presented values with those on ground, one must say that at 1000 m altitude the ionization is smaller than on the ground, between 1 and 3 km the same amount, and above it is larger with values increasing up to a factor of 4 (at 5500 m). The uncertainties in the observations only allow the conclusion that the reason for the ionization has to be found first in the Earth." Nobody later quoted Franz Linke and although he had made the right measurements, he had reached the wrong conclusions, and the discovery of CR became only later on about 10 years. 4. Victor Hess, a

  2. Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis

    NASA Astrophysics Data System (ADS)

    Zarrouk, N.; Bennaceur, R.

    2009-07-01

    Exposure to cosmic rays may have both a direct and indirect effect on Earth's organisms. The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which may cool the planet by blocking out more of the Sun's rays, is also associated with cosmic rays. They also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our planet's ozone layer, which protects us from the Sun's harmful ultraviolet rays. On the ground, humans are protected from cosmic particles by the planet's atmosphere. In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray variation, and we have better depicted periods or harmonics other than the 11-year solar modulation cycles.

  3. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-07-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  4. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-05-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  5. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; Leske, R. A.; Mewaldt, R. A.; Moskalenko, I. V.; Ogliore, R.; Stone, E. C.; Von Rosenvinge, T. T.; Wiedenback, M. E.

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  6. Muon acceleration in cosmic-ray sources

    SciTech Connect

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  7. A Cosmic Zoo in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    2010-06-01

    Astronomers often turn their telescopes to the Large Magellanic Cloud (LMC), one of the closest galaxies to our own Milky Way, in their quest to understand the Universe. In this spectacular new image from the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile, a celestial menagerie of different objects and phenomena in part of the LMC is on display, ranging from vast globular clusters to the remains left by brilliant supernovae explosions. This fascinating observation provides data for a wide variety of research projects unravelling the life and death of stars and the evolution of galaxies. The Large Magellanic Cloud (LMC) is only about 160 000 light-years from our own Milky Way - very close on a cosmic scale. This proximity makes it a very important target as it can be studied in far more detail than more distant systems. The LMC lies in the constellation of Dorado (the Swordfish), deep in the southern sky and well placed for observations from ESO's observatories in Chile. It is one of the galaxies forming the Local Group surrounding the Milky Way [1]. Though enormous on a human scale, the LMC is less than one tenth the mass of our home galaxy and spans just 14 000 light-years compared to about 100 000 light-years for the Milky Way. Astronomers refer to it as an irregular dwarf galaxy [2]. Its irregularity, combined with its prominent central bar of stars suggests to astronomers that tidal interactions with the Milky Way and fellow Local Group galaxy, the Small Magellanic Cloud, could have distorted its shape from a classic barred spiral into its modern, more chaotic form. This image is a mosaic of four pictures from the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. The image covers a region of sky more than four times as large as the full Moon. The huge field of view of this camera makes it possible to see a very wide range of objects in the LMC in a single picture, although only a small part of the entire

  8. Compact cosmic ray detector for unattended atmospheric ionization monitoring

    SciTech Connect

    Aplin, K. L.; Harrison, R. G.

    2010-12-15

    Two vertical cosmic ray telescopes for atmospheric cosmic ray ionization event detection are compared. Counter A, designed for low power remote use, was deployed in the Welsh mountains; its event rate increased with altitude as expected from atmospheric cosmic ray absorption. Independently, Counter B's event rate was found to vary with incoming particle acceptance angle. Simultaneous co-located comparison of both telescopes exposed to atmospheric ionization showed a linear relationship between their event rates.

  9. New approach to cosmic ray investigations above the knee

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. G.; Kokoulin, R. P.; Petrukhin, A. A.

    2016-05-01

    It is assumed that at energies around the knee the nucleus-nucleus interaction is drastically changed due to production of blobs of quark-gluon matter with very large orbital momentum. This approach allows explain all so-called unusual events observed in cosmic rays and gives a new connection between results of EAS investigations and energy spectrum and mass composition of primary cosmic rays. To check this approach, the experiments in cosmic rays and at LHC are proposed.

  10. The isotopic composition of cosmic-ray calcium

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; George, J. S.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; Rosenvinge, T. T. von

    2001-01-01

    We find that the relative abundance of cosmic ray calcium isotopes in the cosmic-ray source are very similar to those found in solar-system material, in spite of the fact that different types of stars are thought to be responsible for producing these two isotopes. This observation is consistent with the view that cosmic rays are derived from a mixed sample of interstellar matter.

  11. Investigation of primary cosmic rays at the Moon's surface

    SciTech Connect

    Kalmykov, N. N. Konstantinov, A. A.; Muhamedshin, R. A.; Podorozhniy, D. M.; Sveshnikova, L. G.; Turundaevskiy, A. N.; Tkachev, L. G.; Chubenko, A. P.; Vasilyev, O. A.

    2013-01-15

    The possibility of experimentally studying primary cosmic rays at the Moon's surface is considered. A mathematical simulations of showers initiated in the lunar regolith by high-energy particles of primary cosmic rays is performed. It is shown that such particles can in principle be recorded by simultaneously detecting three components of backscattered radiation (secondary neutrons, gamma rays, and radio emission).

  12. Cosmic ray intensity variations in connection with the level of precipitation and ground temperature variations

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Pustil'Nik, L. A.

    negligible effect is expected in higher multiplicities. We control this conclusion on the basis of our experimental data. Obtained results give a possibility to estimate total acceleration and deceleration of CR particles by the atmospheric electric field. We consider also the possible influence of CR air ionization (especially by secondary energetic electrons) on thunderstorms and lightnings, and through this -- on climate. References: Dorman L.I. and I.V. Dorman ``Possible influence of cosmic rays on climate through thunderstorm clouds, 1. Theory on cosmic ray connection with atmospheric electric field phenomenon''. Report on the Session D2.1/C2.2/E3.1 of COSPAR-2004.

  13. Radiation Hazard from Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf

    2006-03-01

    Space radiation is a major hazard to astronauts in long-duration human space explosion. Astronauts are exposed to an enormous amount of radiation during their missions away from the Earth in outer space. Deep space is a rich environment of protons, gamma rays and cosmic rays. A healthy 40 years old man staying on Earth away from large doses of radiation stands a 20% chance of dying from cancer. If the same person travels into a 3- year Mars mission, the added risk should increase by 19%. This indicates that there is 39% chance of having cancer after he comes back to Earth. Female astronaut chances to get cancer is even almost double the above percentage. The greatest threat to astronauts en route to the red planet is galactic cosmic rays (GCR). GCRs penetrate through the skin of spaceships and people like tiny firearm bullets, breaking the strands of DNA molecules, damaging genes, and killing cells. Understanding the nature of the GCRs, their effect on biological cells, and their interactions with different shielding materials is the key point to shield against them in long space missions. In this paper we will present a model to evaluate the biological effects of GCRs and suggestion different ways to shield against them.

  14. Origin and propagation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-01-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.

  15. A cosmic-ray-mediated shock in the solar system

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1981-01-01

    It is pointed out that the flare-induced blast wave of Aug. 4, 1972, the most violent disturbance in the solar wind on record, produced cosmic rays with an efficiency of about 50%. Such a high efficiency is predicted by the self-regulating production model of cosmic-ray origin in shocks. Most interplanetary shocks, according to simple theoretical analysis, are not strong enough to produce cosmic rays efficiently. However, if shock strength is the key parameter governing efficiency, as present interplanetary data suggest, then shocks from supernova blasts, quasar outbursts, and other violent astrophysical phenomena should be extremely efficient sources of cosmic rays.

  16. A model for the proton spectrum and cosmic ray anisotropy

    NASA Technical Reports Server (NTRS)

    Xu, C.

    1985-01-01

    The problem of the origin of the cosmic rays is still uncertain. As a theory, it should explain the support of particles and energy, the mechanism of acceleration and propagation as well as some important features obtained directly from cosmic ray experiments, such as the power spectrum and the knee. There are two kinds of models for interpreting the knee of the cosmic ray spectrum. One is the leaky box model. Another model suggests that the cut-off rigidity of the main sources causes the knee. The present paper studies the spectrum and the anisotropy of cosmic rays in an isotropic diffuse model with explosive discrete sources in an infinite galaxy.

  17. Isotopic composition of cosmic-ray boron and nitrogen

    NASA Technical Reports Server (NTRS)

    Krombel, K. E.; Wiedenbeck, M. E.

    1988-01-01

    New measurements of the cosmic-ray boron and nitrogen isotopes at earth and of the elemental abundances of boron, carbon, nitrogen, and oxygen are presented. A region of mutually allowed values for the cosmic-ray nitrogen source ratios is determined, and the cosmic-ray escape mean free path is determined as a function of energy using a leaky box model for cosmic-ray propagation in the Galaxy. Relative to O-16, a N-15 source abundance consistent with solar system composition and a N-14 source abundance which is a factor of about three underabundant relative to the solar value are found.

  18. Variations of the cosmic ray general component in Antarctica

    NASA Technical Reports Server (NTRS)

    Kurguzova, A. I.; Svirzhevsky, N. S.; Charakhchyan, T. N.; Krasotkin, A. F.

    1985-01-01

    A cosmic ray variations, zonal cosmic ray modulation, was found in the lower atmosphere from the sonde measurement results. The variations give rise to anomalies in the latitude distributions of the cosmic ray charged component and the anomalous north-south asymmetry. To find the nature of the variations, the cosmic ray general component was measured with the same detectors as in the sonde measurements gas discharge counters and the counter telescopes with 7-mm Al filters detecting the electrons of energy above 200 keV and 5 MeV. The measurement data obtained in Antarctica in the years 1978 to 1983 are presented and discussed.

  19. Cosmic-ray record in solar system matter

    SciTech Connect

    Reedy, R.C.; Arnold, J.R.; Lal, D.

    1983-01-14

    The energetic nuclei in cosmic rays interact with meteoroids, the moon, planets, and other solar system matter. The nucleides and heavy nuclei tracks produced by the cosmic-ray particles in these targets contain a wealth of information about the history of the objects and temporal ans spatial variations in the particle fluxes. Most lunar samples and many meteorites ahve complex histories of cosmic-ray exposure from erosion, gardening, fragmentation, orbital changes, and other processes. There appear to be variations in the past fluxes of solar particles, and possibly also galactic cosmic rays, on time scales of 10/sup 4/ to 10/sup 7/ years.

  20. Final Report for NA-22/DTRA Cosmic Ray Project

    SciTech Connect

    Wurtz, Ron E.; Chapline, George F.; Glenn, Andrew M.; Nakae, Les F.; Pawelczak, Iwona A.; Sheets, Steven A.

    2015-07-21

    The primary objective of this project was to better understand the time-correlations between the muons and neutrons produced as a result of high energy primary cosmic ray particles hitting the atmosphere, and investigate whether these time correlations might be useful in connection with the detection of special nuclear materials. During the course of this project we did observe weak correlations between secondary cosmic ray muons and cosmic ray induced fast neutrons. We also observed strong correlations between tertiary neutrons produced in a Pb pile by secondary cosmic rays and minimum ionizing particles produced in association with the tertiary neutrons.

  1. Turbulent heating in solar cosmic ray theory

    NASA Technical Reports Server (NTRS)

    Weatherall, J.

    1983-01-01

    The heating of minor ions in solar flares by wave-wave-particle interaction with Langmuir waves, or ion acoustic waves, can be described by a diffusion equation in velocity-space for the particle distribution function. The dependence of the heating on the ion charge and mass, and on the composition of the plasma, is examined in detail. It is found that the heating mechanisms proposed by Ibragimov and Kocharov cannot account for the enhanced abundances of heavy elements in the solar cosmic rays.

  2. The galactic origin of cosmic rays. I

    NASA Astrophysics Data System (ADS)

    Colgate, S. A.

    The theoretical basis for the supernova envelope shock origin of cosmic rays is reviewed. The theoretical explanation of the SN Type I light curve requires the ejection of a relativistic mass fraction. The criterion of the adiabatic deceleration by Alfven wave trapping neither applies in theory, when beta is greater than 1, or practice, as in the Starfish high-altitude nuclear explosion experiment. Arguments of delayed acceleration due to K-capture are not applicable to SN ejecta because a period of prompt recombination exists before subsequent stripping in propagation.

  3. Fine structure in cosmic ray spectra

    NASA Astrophysics Data System (ADS)

    Wolfendale, A. W.; Erlykin, A. D.

    2013-02-01

    The case is made for there being more 'structure' in the cosmic ray energy spectra than just the well-known knee at several PeV and the ankle at several EeV. Specifically, there seems to be a 'dip' or 'kink' at about 100 GeV/nucleon, a possible 'bump' at about 10 TeV, an 'iron peak' at 60 PeV and the possibility of further structure before the ankle is reached. The significance of the structures will be assessed.

  4. Cosmic Ray Induced Bit-Flipping Experiment

    NASA Astrophysics Data System (ADS)

    Callaghan, Edward; Parsons, Matthew

    2015-04-01

    CRIBFLEX is a novel approach to mid-altitude observational particle physics intended to correlate the phenomena of semiconductor bit-flipping with cosmic ray activity. Here a weather balloon carries a Geiger counter and DRAM memory to various altitudes; the data collected will contribute to the development of memory device protection. We present current progress toward initial flight and data acquisition. This work is supported by the Society of Physics Students with funding from a Chapter Research Award. Supported by a Society of Physics Students Chapter Research Award.

  5. Acceleration and propagation of solar cosmic rays

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Podgorny, A. I.

    2015-12-01

    Analysis of the solar cosmic ray measurements on the Geostationary Orbital Environmental Satellite (GOES) spacecraft indicated that the duration of solar flare relativistic proton large pulses is comparable with the solar wind propagation duration from the Sun to the Earth. The front of the proton flux from flares on the western solar disk approaches the Earth with a flight time along the Archimedean spiral magnetic field line of 15-20 min. The proton flux from eastern flares is registered in the Earth's orbit 3-5 h after the flare onset. These particles apparently propagate across IMF owing to diffusion.

  6. Correlation between cosmic rays and ozone depletion.

    PubMed

    Lu, Q-B

    2009-03-20

    This Letter reports reliable satellite data in the period of 1980-2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008-2009 and probably another large hole around 2019-2020, according to the 11-yr CR cycle. PMID:19392251

  7. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory

    DOE Data Explorer

    The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The Public Event Explorer is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of June, 2014, makes more than 35,000 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

    The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

  8. Transition from Galactic to extragalactic cosmic rays and cosmic ray anisotropy

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Kachelrieß, M.; Semikoz, D. V.; Sigl, G.

    2013-06-01

    This talk based on results of ref. [1], where we constrain the energy at which the transition from Galactic to extragalactic cosmic rays occurs by computing the anisotropy at Earth of cosmic rays emitted by Galactic sources. Since the diffusion approximation starts to loose its validity for E/Z ≳ 10(16-17) eV, we propagate individual cosmic rays using Galactic magnetic field models and taking into account both their regular and turbulent components. The turbulent field is generated on a nested grid which allows spatial resolution down to fractions of a parsec. If the primary composition is mostly light or intermediate around E ˜ 1018 eV, the transition at the ankle is ruled out, except in the unlikely case of an extreme Galactic magnetic field with strength >10 μG. Therefore, the fast rising proton contribution suggested by KASCADE-Grande data between 1017 eV and 1018 eV should be of extragalactic origin. In case heavy nuclei dominate the flux at E > 1018 eV, the transition energy can be close to the ankle, if Galactic cosmic rays are produced by sufficiently frequent transients as e.g. magnetars.

  9. Cosmic rays as probes of atmospheric electric fields

    NASA Astrophysics Data System (ADS)

    Scholten, O.; Trinh, G. T. N.; Schellart, P.; Ebert, U.; Rutjes, C.; Nelles, A.; Buitink, S.; ter Veen, S.; Horandel, J.; Corstanje, A.; Rachen, J. P.; Thoudam, S.; Falcke, H.; Koehn, C. C.; van den Berg, A. A. M.; de Vries, K. K. D.; Rossetto, L.

    2015-12-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate radio waves which have been detected with LOFAR, a large and dense array of simple antennas primarily developed for radio-astronomy observations.LOFAR has observed air showers under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. For air showers under fair-weather conditions the intensity as well as the polarization of the radio emission can be understood rather accurately from the present models.For air showers measured under thunderstorm conditions we observe large differences in the intensity and polarization patterns from the fair weather models. We will show that the linear as well as the circular polarization of the radio waves carry clear information on the orientation of the electric fields at different heights in the thunderstorm clouds. We will show for the first time that the circular polarization of the radio waves tells about the change of orientation of the fields with altitude. We will show that from the measured data at LOFAR the thunderstorm electric fields can be reconstructed.We thus have established the measurement of radio emission from extensive air showers induced by cosmic rays as a new tool to probe the atmospheric electric fields present in thunderclouds in a non-intrusive way.

  10. Actinides in the Source of Cosmic Rays and the Present Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Higdon, J. C.; Kratz, K. -L.

    2003-01-01

    The abundances of the actinide elements in the cosmic rays can provide critical constraints on the major sites of their acceleration. Using recent calculations of the r-process yields in core collapse supernovae, we have determined the actinide abundances averaged over various assumed time intervals for their supernova generation and their cosmic-ray acceleration. Using standard Galactic chemical evolution models, we have also determined the expected actinide abundances in the present interstellar medium. From these two components, we have calculated the U/Th and other actinide abundances expected in the supernova-active cores of superbubbles, as a function of their ages and mean metallicity resulting from dilution with interstellar cloud debris. Then, using observations of the fractions of Galactic supernovae that occur in superbubbles and in the rest of the interstellar medium, we calculate the expected actinide abundances in cosmic rays accelerated by Galactic supernovae. We find that the current measurements of actinide/Pt-group and preliminary estimates of the UPuCm/Th ratio in cosmic rays are all consistent with the expected values if superbubble cores have mean metallicities of around 3 times solar. Such metallicities are quite comparable to the superbubble core metallicities inferred from other cosmic-ray observations. Future, more precise measurements of these ratios with experiments such as ECCO are needed to provide a better measure of the mean source metallicity sampled by the local Galactic cosmic rays. Measurements of the cosmic- ray actinide abundances have been favorably compared with the protosolar ratio, inferred from present solar system abundances, to infer that the cosmic rays are accelerated from the general interstellar medium. We suggest, however, that such an inference is not valid because the expected actinide abundances in the present interstellar medium are very different from the protosolar values, which sampled the interstellar medium

  11. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation

    NASA Astrophysics Data System (ADS)

    Kulmala, M.; Riipinen, I.; Nieminen, T.; Hulkkonen, M.; Sogacheva, L.; Manninen, H. E.; Paasonen, P.; Petäjä, T.; Dal Maso, M.; Aalto, P. P.; Viljanen, A.; Usoskin, I.; Vainio, R.; Mirme, S.; Mirme, A.; Minikin, A.; Petzold, A.; Hõrrak, U.; Plaß-Dülmer, C.; Birmili, W.; Kerminen, V.-M.

    2010-02-01

    Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996-2008) that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII). We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically significantly less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation events, and so for the connected aerosol-climate effects as well.

  12. Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation

    NASA Astrophysics Data System (ADS)

    Kulmala, M.; Riipinen, I.; Nieminen, T.; Hulkkonen, M.; Sogacheva, L.; Manninen, H. E.; Paasonen, P.; Petäjä, T.; Dal Maso, M.; Aalto, P. P.; Viljanen, A.; Usoskin, I.; Vainio, R.; Mirme, S.; Mirme, A.; Minikin, A.; Petzold, A.; Hõrrak, U.; Plaß-Dülmer, C.; Birmili, W.; Kerminen, V.-M.

    2009-10-01

    Aerosol particles affect the Earth's radiative balance by directly scattering and absorbing solar radiation and, indirectly, through their activation into cloud droplets. Both effects are known with considerable uncertainty only, and translate into even bigger uncertainties in future climate predictions. More than a decade ago, variations in galactic cosmic rays were suggested to closely correlate with variations in atmospheric cloud cover and therefore constitute a driving force behind aerosol-cloud-climate interactions. Later, the enhancement of atmospheric aerosol particle formation by ions generated from cosmic rays was proposed as a physical mechanism explaining this correlation. Here, we report unique observations on atmospheric aerosol formation based on measurements at the SMEAR II station, Finland, over a solar cycle (years 1996-2008) that shed new light on these presumed relationships. Our analysis shows that none of the quantities related to aerosol formation correlates with the cosmic ray-induced ionisation intensity (CRII). We also examined the contribution of ions to new particle formation on the basis of novel ground-based and airborne observations. A consistent result is that ion-induced formation contributes typically less than 10% to the number of new particles, which would explain the missing correlation between CRII and aerosol formation. Our main conclusion is that galactic cosmic rays appear to play a minor role for atmospheric aerosol formation, and so for the connected aerosol-climate effects as well.

  13. Transport of cosmic rays across the heliopause

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Luo, X.; Pogorelov, N.

    2015-12-01

    The heliopause (HP) is a boundary that separates the flow with embedded magnetic field of solar origin in the inner heliosheath from that of the interstellar origin in the outer heliosheath. According to the theory of ideal MHD, it should be a tangential discontinuity, but magnetic reconnection or instability can make it more complicated. Voyager 1 crossed the HP in August 2012 at a radial distance of 122 AU from the Sun. The behaviors of Galactic cosmic rays (GCR) and anomalous cosmic rays (ACR) at the HP crossing are very complex. The intensity of GCR experiences step-like increases to reach a nearly steady interstellar level in the outer heliosheath. Its angular distribution changes from isotropic inside the HP to bidirectional anisotropy that appear on and off for several periods of time in the outer heliosheath. The ACR intensity experiences several episodes of decreases near the HP before it eventually disappears. The anisotropy of ACR in the partial depression regions is pancake-like, indicating there is some temporary trapping of particles of near-90° pitch angles. The information has provided us clues for understanding the properties of particle transport in the turbulence of the interstellar magnetic field. In this paper, we review results of model calculations of GCR and ACR transport across the HP. With the observations and modeling results, we can now establish constraints on the properties of particle scattering, diffusion, and interstellar magnetic field turbulence level.

  14. Optical and Ionization Basic Cosmic Ray Detector

    NASA Astrophysics Data System (ADS)

    Felix, Julian; Andrade, Diego A.; Araujo, Aurora C.; Arceo, Luis; Cervantes, Carlos A.; Molina, Jorge A.; Palacios, Luz R.

    2014-03-01

    There are drift tubes, operating in the Geiger mode, to detect ionization radiation and there are Cerenkov radiation detectors based on photomultiplier tubes. Here is the design, the construction, the operation and the characterization of a hybrid detector that combines both a drift tube and a Cerenkov detector, used mainly so far to detect cosmic rays. The basic cell is a structural Aluminum 101.6 cm-long, 2.54 cm X 2.54 cm-cross section, 0.1 cm-thick tube, interiorly polished to mirror and slightly covered with TiCO2, and filed with air, and Methane-Ar at different concentrations. There is a coaxial 1 mil Tungsten wire Au-coated at +700 to +1200 Volts electronically instrumented to read out in both ends; and there is in each end of the Aluminum tube a S10362-11-100U Hamamatsu avalanche photodiode electronically instrumented to be read out simultaneously with the Tungsten wire signal. This report is about the technical operation and construction details, the characterization results and potential applications of this hybrid device as a cosmic ray detector element. CONACYT, Mexico.

  15. Studies of the cosmic ray penumbra

    NASA Astrophysics Data System (ADS)

    Cooke, David J.

    1988-08-01

    The penumbra is the term used to refer to the interval of space which lies, for any given particle rigidity, between the solid angle zone within which all such particles have free access, and the region within which particle access is completely forbidden. The term is also used to refer, in a specific direction, to the rigidity interval between the lowest rigidity for which any particle may enter in the given direction, and the rigidity below which particle access is completely forbidden in the same direction. Typically the penumbra consists of a mixture of allowed and forbidden trajectories. This question of access of charged primary cosmic rays to points within the magnetic field of a plant is of great interest in numbers of areas of physics. It is very difficult, however, to map the allowed and forbidden regions of access, because of the time-consuming nature of the calculations involved. The present research has involved a systematic study of the nature of the characteristic zones of access in order to produce techniques by which information about the cosmic ray penumbra may efficiently be derived. The work has then focused on the mapping and study of the phenomenology of the penumbra.

  16. Time Variation of Cosmic Ray Arrival Directions

    NASA Astrophysics Data System (ADS)

    Corbett, Henry; Desiati, P.

    2014-01-01

    Experimental data from the IceCube Neutrino Observatory have been used to characterize the anisotropy in the arrival directions of muons produced in cosmic ray air showers. The anisotropy can be fairly well described as a superposition of a dipole and quadrupole of unknown origin in celestial equatorial coordinates. It is also expected to be described as a dipole associated with the Compton-Getting effect in a coordinate system fixed with respect to the Sun. We utilized IceCube data collected from 2008 through 2011, containing 3.69 x 10^10 events with a median cosmic ray particle energy of 20 TeV. We limited our analysis to data from four azimuthal regions, allowing the rotation of the Earth to trace out a periodic signal. We used a Lomb-Scargle periodogram to approximate a frequency spectrum from the event rates. The frequency spectrum contained four peaks with a significance level greater than 5σ, including a peak at 0.997 day^-1 that is consistent with a sideband caused by modulation of the solar dipole. If further analysis confirms this modulation, interference between the solar and sidereal time frames will need to be considered in future analyses of the anisotropy. This work was partially supported by the National Science Foundation's REU program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  17. Lunar monitoring outpost of cosmic rays

    NASA Astrophysics Data System (ADS)

    Panasyuk, Mikhail; Kalmykov, Nikolai; Turundaevskiy, Andrey; Chubenko, Alexander; Podorozhny, Dmitry; Mukhamedshin, Rauf; Sveshnikova, Lubov; Tkachev, Leonid; Konstantinov, Andrey

    The basic purpose of the planned NEUTRONIUM-100 experiment considers expansion of the direct measurements of cosmic rays spectra and anisotropy to the energy range of ~1017 eV with element-by-element resolution of the nuclear component. These measurements will make it possible to solve the problem of the “knee” of the spectrum and to make choice between the existing models of the cosmic rays origin and propagation. The proposed innovative method of energy measurements is based on the simultaneous detection of different components of back scattered radiation generated by showers produced by the primary particle in the regolyth (neutrons, gamma rays and radio waves). A multi-module system disposed on the Moon's surface is proposed for particles registration. Each module consists of a radio antenna, contiguous to the regolyth, scintillation detectors with gadolinium admixture and silicon charge detectors. Scintillation detectors record electrons and gamma-rays of back scattered radiation and delayed neutrons. The area of the experimental facility will be at least ~100 m2, suitable for upgrading. Average density of the detecting equipment is evaluated as 10-20 g/m2. Taking into account the weight of the equipment delivered from the Earth will be about 10 tons it is possible to compose an eqperimental facility with geometric factor of 150-300 m2sr. The Moon provides unique conditions for this experiment due to presence of the absorbing material and absence of atmosphere. The experiment will allow expansion of the measurements up to ~1017 eV with element-by-element resolution of the nuclear component. Currently direct measurements reach energy range of up to ~1015 eV, and Auger shower method does not provide information about the primary particle's charge. It is expected that ~15 particles with energy >1017 eV will be detected by the proposed experimental equipment per year. It will provide an opportunity to solve the problems of the current high-energy astrophysics.

  18. X-ray Production By Cosmic Muons

    NASA Astrophysics Data System (ADS)

    Mrdja, D.; Bikit, I.; Aničin, I.; Vesković, M.; Forkapić, S.

    2007-04-01

    Muons have a small cross section for interactions and high energy, so they are very penetrating and give the significant contribution to the gamma spectra of Ge detectors, even in deep underground laboratories. One of the muon interaction effects with material is X-rays production. Having in mind that gold is often used as a detectors component, in this paper the production of X-rays in gold sample is analyzed by using an coincidence system based on plastic scintillation detector and Ge detector. The Au disc-shaped sample with mass of 40.6 g, radius 3.34 cm and 0.06 cm thickness was inside 12 cm thick lead shield of extended range HPGe detector. The plastic detector of 0.5 × 0.5 × 0.05 m dimensions was placed above the lead shield at the distance of 32 cm from detector endcap. The producing rate of Kα rays per Au mass unit from coincidence gamma spectrum is determined as R ~7.1 × 10-4 g-1s-1. Taking in account the measured muon flux of Φ=54 s-1m-2, the muon cross section σKα~ 43 Barn, for Au Kα X-rays production is calculated. Also, the cross sections of X-ray production by cosmic muons in lead and tungsten are measured. Unexpectedly, the results obtained did not reveal Z dependence in the Z= 74-82 region.

  19. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free

  20. Ultrahigh Energy Cosmic Rays: Old Physics or New Physics?

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2004-01-01

    We consider the advantages of and the problems associated with hypotheses to explain the origin of ultrahigh energy cosmic rays (UHECR: E greater than 10 EeV) and the "trans-GZK" cosmic rays (TGZK: E greater than 100 EeV) both through "old physics" (acceleration in cosmic sources) and "new physics" (new particles, topological defects, fat neutrino cross sections, Lorentz invariance violation).

  1. From cosmic ray source to the Galactic pool

    NASA Astrophysics Data System (ADS)

    Schure, K. M.; Bell, A. R.

    2014-01-01

    The Galactic cosmic ray spectrum is a remarkably straight power law. Our current understanding is that the dominant sources that accelerate cosmic rays up to the knee (3 × 1015 eV) or perhaps even the ankle (3 × 1018 eV), are young Galactic supernova remnants. In theory, however, there are various reasons why the spectrum may be different for different sources, and may not even be a power law if non-linear shock acceleration applies during the most efficient stages of acceleration. We show how the spectrum at the accelerator translates to the spectrum that makes up the escaping cosmic rays that replenish the Galactic pool of cosmic rays. We assume that cosmic ray confinement, and thus escape, is linked to the level of magnetic field amplification, and that the magnetic field is amplified by streaming cosmic rays according to the non-resonant hybrid or resonant instability. When a fixed fraction of the energy is transferred to cosmic rays, it turns out that a source spectrum that is flatter than E-2 will result in an E-2 escape spectrum, whereas a steeper source spectrum will result in an escape spectrum with equal steepening. This alleviates some of the concern that may arise from expected flat or concave cosmic ray spectra associated with non-linear shock modification.

  2. Cosmic Rays in the Heliosphere: Requirements for Future Observations

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.

    2013-06-01

    Since the publication of Cosmic Rays in the Heliosphere in 1998 there has been great progress in understanding how and why cosmic rays vary in space and time. This paper discusses measurements that are needed to continue advances in relating cosmic ray variations to changes in solar and interplanetary activity and variations in the local interstellar environment. Cosmic ray acceleration and transport is an important discipline in space physics and astrophysics, but it also plays a critical role in defining the radiation environment for humans and hardware in space, and is critical to efforts to unravel the history of solar activity. Cosmic rays are measured directly by balloon-borne and space instruments, and indirectly by ground-based neutron, muon and neutrino detectors, and by measurements of cosmogenic isotopes in ice cores, tree-rings, sediments, and meteorites. The topics covered here include: what we can learn from the deep 2008-2009 solar minimum, when cosmic rays reached the highest intensities of the space era; the implications of 10Be and 14C isotope archives for past and future solar activity; the effects of variations in the size of the heliosphere; opportunities provided by the Voyagers for discovering the origin of anomalous cosmic rays and measuring cosmic-ray spectra in interstellar space; and future space missions that can continue the exciting exploration of the heliosphere that has occurred over the past 50 years.

  3. Using the information of cosmic rays to predict influence epidemic

    NASA Astrophysics Data System (ADS)

    Yu, Z. D.

    1985-08-01

    A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.

  4. Nineteenth International Cosmic Ray Conference. SH Sessions, Volume 5

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume contains papers addressing cosmic ray gradients in the heliosphere; siderial, diurnal, and long term modulations; geomagnetic and atmospheric effects; cosmogenic nuclides; solar neutrinos; and detection techniques.

  5. Elemental composition and energy spectra of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1988-01-01

    A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.

  6. Elemental composition, isotopes, electrons and positrons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.

    1979-01-01

    Papers presented at the 16th International Cosmic Ray Conference, Kyoto, Japan, dealing with the composition of cosmic rays are reviewed. Particular interest is given to data having bearing on nucleosynthesis sites, supernovae, gamma-process, comparison with solar system composition, multiplicity of sources, and the energy dependence of composition.

  7. Using the information of cosmic rays to predict influence epidemic

    NASA Technical Reports Server (NTRS)

    Yu, Z. D.

    1985-01-01

    A correlation between the incidence of influenza pandemics and increased cosmic ray activity is made. A correlation is also made between the occurrence of these pandemics and the appearance of bright novae, e.g., Nova Eta Car. Four indices based on increased cosmic ray activity and novae are proposed to predict future influenza pandemics and viral antigenic shifts.

  8. Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)

    NASA Technical Reports Server (NTRS)

    Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.

    1984-01-01

    Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.

  9. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  10. Ninteenth International Cosmic Ray Conference. OG Sessions, Volume 2

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Contributed papers addressing cosmic ray origin and galactic phenomena are compiled. Topic areas include the composition, spectra, and anisotropy of cosmic ray nuclei with energies and 1 TeV, isotopes, antiprotons and related subjects, and electrons, positrons, and measurements of synchrotron radiation.

  11. Ninteenth International Cosmic Ray Conference. SH Sessions, Volume 4

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic Ray Conference are compiled. This volume covers solar and heliospheric phenomena, specifically, particle acceleration; cosmic ray compsotion, spectra, and anisotropy; propagation of solar and interplanetary energetic particles; solar-cycle modulation; and propagation of galactic particles in the heliosphere.

  12. A simulation of high energy cosmic ray propagation 2

    NASA Technical Reports Server (NTRS)

    Honda, M.; Kamata, K.; Kifune, T.; Matsubara, Y.; Mori, M.; Nishijima, K.

    1985-01-01

    The cosmic ray propagation in the Galactic arm is simulated. The Galactic magnetic fields are known to go along with so called Galactic arms as a main structure with turbulences of the scale about 30pc. The distribution of cosmic ray in Galactic arm is studied. The escape time and the possible anisotropies caused by the arm structure are discussed.

  13. Charge 4/3 leptons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Yamashita, Y.; Imaeda, K.; Wada, T.; Yamamoto, I.

    1985-01-01

    A cosmic ray counter telescope has been operated at zenith angles of 0, 40, 44, and 60 degs in order to look for charge 4/3 particles. A few million clean single cosmic rays of each zenith angle are analyzed.

  14. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 7

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers submitted for presentation at the 19th International Cosmic ray Conference are compiled. This volume contains papers which address various aspects of extensive air showers (EAS) produced by energetic particles and gamma rays.

  15. Stopping Cooling Flows with Cosmic-Ray Feedback

    NASA Astrophysics Data System (ADS)

    Mathews, William G.

    2009-04-01

    Multi-Gyr two-dimensional calculations describe the gas dynamical evolution of hot gas in the Virgo cluster resulting from intermittent cavities formed with cosmic rays. Without cosmic rays, the gas evolves into a cooling flow, depositing about 85 solar masses per year of cold gas in the cluster core—such uninhibited cooling conflicts with X-ray spectra and many other observations. When cosmic rays are produced or deposited 10 kpc from the cluster center in bursts of about 1059 erg lasting 20 Myr and spaced at intervals of 200 Myr, the central cooling rate is greatly reduced to {\\dot{M}} ≈ 0.1-1 solar masses per year, consistent with observations. After cosmic rays diffuse through the cavity walls, the ambient gas density is reduced and is buoyantly transported 30-70 kpc out into the cluster. Cosmic rays do not directly heat the gas and the modest shock heating around young cavities is offset by global cooling as the cluster gas expands. After several Gyr the hot gas density and temperature profiles remain similar to those observed, provided the time-averaged cosmic-ray luminosity is about L cr = 2.7 × 1043 erg s-1, approximately equal to the bolometric cooling rate LX within only ~56kpc. If an appreciable fraction of the relativistic cosmic rays is protons, gamma rays produced by pion decay following inelastic p-p collisions may be detected with the Fermi Gamma-Ray Telescope.

  16. Key scientific problems from Cosmic Ray History

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    2016-07-01

    Recently was published the monograph "Cosmic Ray History" by Lev Dorman and Irina Dorman (Nova Publishers, New York). What learn us and what key scientific problems formulated the Cosmic Ray History? 1. As many great discoveries, the phenomenon of cosmic rays was discovered accidentally, during investigations that sought to answer another question: what are sources of air ionization? This problem became interesting for science about 230 years ago in the end of the 18th century, when physics met with a problem of leakage of electrical charge from very good isolated bodies. 2. At the beginning of the 20th century, in connection with the discovery of natural radioactivity, it became apparent that this problem is mainly solved: it was widely accepted that the main source of the air ionization were α, b, and γ - radiations from radioactive substances in the ground (γ-radiation was considered as the most important cause because α- and b-radiations are rapidly absorbed in the air). 3. The general accepted wrong opinion on the ground radioactivity as main source of air ionization, stopped German meteorologist Franz Linke to made correct conclusion on the basis of correct measurements. In fact, he made 12 balloon flights in 1900-1903 during his PhD studies at Berlin University, carrying an electroscope to a height of 5500 m. The PhD Thesis was not published, but in Thesis he concludes: "Were one to compare the presented values with those on ground, one must say that at 1000 m altitude the ionization is smaller than on the ground, between 1 and 3 km the same amount, and above it is larger with values increasing up to a factor of 4 (at 5500 m). The uncertainties in the observations only allow the conclusion that the reason for the ionization has to be found first in the Earth." Nobody later quoted Franz Linke and although he had made the right measurements, he had reached the wrong conclusions, and the discovery of CR became only later on about 10 years. 4. Victor Hess, a

  17. The isotopic composition of cosmic-ray beryllium and its implication for the cosmic ray's age

    NASA Technical Reports Server (NTRS)

    Lukasiak, A.; Ferrando, P.; Mcdonald, F. B.; Webber, W. R.

    1994-01-01

    We report a new measurement of the cosmic-ray isotopic composition of beryllium in the low-energy range from 35 to 113 MeV per nucleon. This measurement was made using the High Energy Telescope of the CRS experiment on the Voyager 1 and 2 spacecraft during the time period from 1977 to 1991. In this overall time period of 14 years the average solar modulation level was about 500 MV. The cosmic-ray beryllium isotopes were completely separated with an average mass resolution sigma of 0.185 amu. The isotope fractions of Be-7, Be-9, and Be-10 obtained are 52.4 +/- 2.9%, 43.3 +/- 3.7%, and 4.3 +/- 1.5%, respectively. The measured cosmic-ray abundances of Be-7 and Be-9 are found to be in agreement with calculations based on standard Leaky-Box model for the interstellar propagation of cosmic-ray nuclei using the recent cross sections of the New Mexico-Saclay collaboration. From our observed ratio Be-10/Be = 4.3 +/- 1.5% we deduce an average interstellar density of about 0.28 (+0.14, -0.11) atoms/cu cm, and acosmic-ray lifetime for escape of 27 (+19, -9) x 10(exp 6) years. The surviving fraction of Be-10 is found to be 0.19 +/- 0.07. Modifications to the conclusions of the Leaky-Box model when a diffusion + convection halo model for propagation is used are also considered.

  18. The cosmic ray interplanetary radial gradient from 1972 - 1985

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Lockwood, J. A.

    1985-01-01

    It is now established that the solar modulation of cosmic rays is produced by turbulent magnetic fields propagated outward by the solar wind. Changes in cosmic ray intensity are not simultaneous throughout the modulation region, thus requiring time dependent theories for the cosmic ray modulation. Fundamental to an overall understanding of this observed time dependent cosmic ray modulation is the behavior of the radial intensity gradient with time and heliocentric distance over the course of a solar modulation cycle. The period from 1977 to 1985 when data are available from the cosmic ray telescopes on Pioneer (P) 10, Voyager (V) 1 and 2, and IMP 8 spacecraft is studied. Additional data from P10 and other IMP satellites for 1972 to 1977 can be used to determine the gradient at the minimum in the solar modulation cycle and as a function of heliocentric distance. All of these telescopes have thresholds for protons and helium nuclei of E 60 MeV/nucleon.

  19. PREFACE: 24th European Cosmic Ray Symposium (ECRS)

    NASA Astrophysics Data System (ADS)

    2015-08-01

    The 24th European Cosmic Ray Symposium (ECRS) took place in Kiel, Germany, at the Christian-Albrechts-Universität zu Kiel from September 1 - 5, 2014, The first symposium was held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two "strands" joined together in 1976 with the meeting in Leeds. The 24th ECRS covered a wide range of scientific issues divided into the following topics: HECR-I Primary cosmic rays I (experiments) HECR-II Primary cosmic rays II (theory) MN Cosmic ray muons and neutrinos GR GeV and TeV gamma astronomy SH Energetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEO Cosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) INS Future Instrumentation DM Dark Matter The organizers are very grateful to the Deutsche Forschungs Gemeinschaft for supporting the symposium.

  20. Primary cosmic ray positrons and galactic annihilation radiation

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The observation (Leventhal et al, 1978) of positron annihilation radiation at 0.511 MeV from the direction of the Galactic Center is reexamined, suggesting the possibility of a primary positron component of the cosmic rays. The observed 0.511 MeV emission requires a positron production rate nearly two orders of magnitude greater than the production rate of secondary cosmic ray positrons from pion decay produced in cosmic ray interactions. Possible sources of positrons are reviewed with both supernovae and pulsars appearing to be the more likely candidates. If only about 1% of these positrons were accelerated along with the cosmic ray nucleons and electrons to energies not less than 100 MeV, it is believed that these primary positrons would be comparable in intensity to those secondary positrons resulting from pion decay. Some observational evidence for the existence of primary positrons in the cosmic rays is also discussed.

  1. Secondary antiprotons - A valuable cosmic-ray probe

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1977-01-01

    Even in the absence of antiprotons in the primary cosmic rays, a flux of secondary antiprotons will be produced in collisions between cosmic rays and interstellar gas. The predicted antiproton fraction increases with increasing cosmic-ray confinement, so that observations of antiprotons will provide a probe of models of cosmic-ray confinement. It is shown that the expected antiproton fraction (for energies of at least about 10 GeV) ranges between 0.00023 for the 'leaky box' model and 0.0018 for the 'closed box' model. In addition, attention is called to the fact that a detection of cosmic-ray antiprotons at or above a level of 0.0002 will provide a valuable lower limit to the antiproton lifetime.

  2. Tevatron QCD for Cosmic-Rays

    SciTech Connect

    Sonnenschein, Lars; /RWTH Aachen U.

    2010-12-01

    The two multi-purpose experiments D0 and CDF are operated at the Tevatron collider, where proton anti-proton collisions take place at a centre of mass energy of 1.96 TeV in Run II. In the kinematic plane of Q{sup 2}-scale and (anti-)proton momentum fraction x, Tevatron jet measurements cover a wide range, with phase space regions in common and beyond the HERA ep-collider reach. The kinematic limit of the Auger experiment is given by a centre of mass energy of 100 TeV. Cosmic rays cover a large region of the kinematic phase space at low momenta x, corresponding to forward proton/diffractive physics and also at low scales, corresponding to the hadronization scale and the underlying event. Therefore of particular interest are exclusive and diffractive measurements as well as underlying event, double parton scattering and minimum bias measurements. The kinematic limit of the Tevatron corresponds to the PeV energy region below the knee of the differential cosmic particle flux energy distribution. The data discussed here are in general corrected for detector effects, such as efficiency and acceptance. Therefore they can be used directly for testing and improving existing event generators and any future calculations/models. Comparisons take place at the hadronic final state (particle level).

  3. A Portable Classroom Cosmic Ray Detector

    NASA Astrophysics Data System (ADS)

    Matis, Howard

    2012-03-01

    Normally, one has to work at an accelerator to demonstrate the principles of particle physics. We have developed a portable cosmic ray detector, the Berkeley Lab Detector, that can bring high energy physics experimentation into the classroom. The detector, which is powered by either batteries or AC power, consists of two scintillator paddles with a printed circuit board. The printed circuit board takes the analog signals from the paddles, compares them, and determines whether the pulses arrived at the same time. It has a visual display and a computer output. The output is compatible with commonly found probes in high schools and colleges. A bright high school student can assemble it. Teachers and students have used a working detector on six of the world's continents. These activities have included cross country trips, science projects, and classroom demonstrations. A complete description can be found at the web site: cosmic.lbl.gov. Besides, basic particle physics, the detector can be used to teach statistics and also to provide an opportunity where students have to determine how much data are taken. In this presentation, we will demonstrate the detector and describe some of the projects that teachers and students have completed with it.

  4. Cosmic ray environment model for Earth orbit

    NASA Technical Reports Server (NTRS)

    Edmonds, L.

    1985-01-01

    A set of computer codes, which include the effects of the Earth's magnetic field, used to predict the cosmic ray environment (atomic numbers 1 through 28) for a spacecraft in a near-Earth orbit is described. A simple transport analysis is used to approximate the environment at the center of a spherical shield of arbitrary thickness. The final output is in a form (a Heinrich Curve) which has immediate applications for single event upset rate predictions. The codes will culate the time average environment for an arbitrary number (fractional or whole) of circular orbits. The computer codes were run for some selected orbits and the results, which can be useful for quick estimates of single event upset rates, are given. The codes were listed in the language HPL, which is appropriate or a Hewlett Packard 9825B desk top computer. Extensive documentation of the codes is available from COSMIC, except where explanations have been deferred to references where extensive documentation can be found. Some qualitative aspects of the effects of mass and magnetic shielding are also discussed.

  5. A cocoon of freshly accelerated cosmic rays detected by Fermi in the Cygnus superbubble

    NASA Astrophysics Data System (ADS)

    Grenier, Isabelle A.; Tibaldo, Luigi; Fermi-LAT Collaboration

    2013-02-01

    Conspicuous stellar clusters, with high densities of massive stars, powerful stellar winds, and intense UV flux, have formed over the past few million years in the large molecular clouds of the Cygnus X region, 1.4 kpc away from the Sun. By capturing the gamma-ray signal of young cosmic rays spreading in the interstellar medium surrounding the clusters, the Fermi Large Area Telescope (LAT) has confirmed the long-standing hypothesis that massive-star forming regions host cosmic-ray factories. The 50-pc wide cocoon of energetic particles appears to fill the interstellar cavities carved by the stellar activity. The cocoon provides a first test case to study the impact of wind-powered turbulence on the early phases of cosmic-ray diffusion (between the sources and the Galaxy at large) and to study the acceleration potential of this type of superbubble environment for in-situ cosmic-ray production or to energize Galactic cosmic rays passing by.

  6. Effects of Cosmic Rays on Atmospheric Chlorofluorocarbon Dissociation and Ozone Depletion

    SciTech Connect

    Lu, Q.-B.; Sanche, L.

    2001-08-13

    Data from satellite, balloon, and ground-station measurements show that ozone loss is strongly correlated with cosmic-ray ionization-rate variations with altitude, latitude, and time. Moreover, our laboratory data indicate that the dissociation induced by cosmic rays for CF{sub 2}Cl {sub 2} and CFCl{sub 3} on ice surfaces in the polar stratosphere at an altitude of {approx}15 km is quite efficient, with estimated rates of 4.3 x 10{sup -5} and 3.6 x 10{sup -4} s{sup -1}, respectively. These findings suggest that dissociation of chlorofluorocarbons by capture of electrons produced by cosmic rays and localized in polar stratospheric cloud ice may play a significant role in causing the ozone hole.

  7. Interplanetary flow systems associated with cosmic ray modulation in 1977 - 1980

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Mcdonald, F. B.; Ness, N. F.; Schwenn, R.; Lazarus, A. J.; Mariani, F.

    1983-01-01

    The hydromagnetic flow configurations associated with cosmic ray modulation in 1977 to 1980 were determined using solar wind plasma and magnetic field data from Voyagers 1 and 2 and Helios 1. The modulation was related to two types of large scale systems of flows: one containing a number of transients such as shocks, post shock flows and magnetic clouds; the other consisting primarily of a series of quasi-stationary flows following interaction regions containing a stream interface and often bounded by a forward reverse shock pair. Each of the three major episodes of cosmic ray modulation was characterized by the passage of the system of transient flows. Plateaus in the cosmic ray intensity time profile were associated with the passage of systems of corotating streams.

  8. PREFACE: 23rd European Cosmic Ray Symposium (and 32nd Russian Cosmic Ray Conference)

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Kokoulin, R. P.; Lidvansky, A. S.; Meroshnichenko, L. I.; Panasyuk, M. I.; Panov, A. D.; Wolfendale, A. W.

    2013-02-01

    The 23rd European Cosmic Ray Symposium (ECRS) took place in Moscow at the Lomonosov Moscow State University (3-7 July 2012), and was excellently organized by the Skobeltsyn Institute of Nuclear Physics of the Lomonosov Moscow State University, with the help of the Russian Academy of Sciences and the Council on the Complex Problem of Cosmic Rays of the Russian Academy of Sciences. The first symposia were held in 1968 in Lodz, Poland (high energy, extensive air showers and astrophysical aspects) and in Bern (solar and heliospheric phenomena) and the two 'strands' joined together in 1976 with the meeting in Leeds. Since then the symposia, which have been very successful, have covered all the major topics with some emphasis on European collaborations and on meeting the demands of young scientists. Initially, a driving force was the need to overcome the divisions caused by the 'Cold War' but the symposia continued even when that threat ceased and they have shown no sign of having outlived their usefulness. 2012 has been an important year in the history of cosmic ray studies, in that it marked the centenary of the discovery of enigmatic particles in the perilous balloon ascents of Victor Hess. A number of conferences have taken place in Western Europe during the year, but this one took place in Moscow as a tribute to the successful efforts of many former USSR and other Eastern European scientists in discovering the secrets of the subject, often under very difficult conditions. The symposium covers a wide range of scientific issues divided into the following topics: PCR-IPrimary cosmic rays I (E < 1015 eV) PCR-IIPrimary cosmic rays II (E > 1015 eV) MNCosmic ray muons and neutrinos GAGeV and TeV gamma astronomy SHEnergetic particles in the heliosphere (solar and anomalous CRs and GCR modulation) GEOCosmic rays and geophysics (energetic particles in the atmosphere and magnetosphere of the Earth) On a personal note, as I step down as co-founder and chairman of the

  9. Cosmic ray anisotropies at high energies

    NASA Technical Reports Server (NTRS)

    Martinic, N. J.; Alarcon, A.; Teran, F.

    1986-01-01

    The directional anisotropies of the energetic cosmic ray gas due to the relative motion between the observers frame and the one where the relativistic gas can be assumed isotropic is analyzed. The radiation fluxes formula in the former frame must follow as the Lorentz invariance of dp/E, where p, E are the 4-vector momentum-energy components; dp is the 3-volume element in the momentum space. The anisotropic flux shows in such a case an amplitude, in a rotating earth, smaller than the experimental measurements from say, EAS-arrays for primary particle energies larger than 1.E(14) eV. Further, it is shown that two consecutive Lorentz transformations among three inertial frames exhibit the violation of dp/E invariance between the first and the third systems of reference, due to the Wigner rotation. A discussion of this result in the context of the experimental anisotropic fluxes and its current interpretation is given.

  10. Cosmic Ray Variability and Galactic Dynamics

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail

    2007-05-01

    The spectral analysis of fluctuations of biodiversity (Rohde & Muller, 2005) and the subsequent re-analysis of the diversity record, species origination and extinction rates, gene duplication, etc (Melott & Liebermann, 2007) indicate the presence of a 62$\\pm$3My cyclicity, for the last 500My. Medvedev & Melott (2006) proposed that the cyclicity may be related to the periodicity of the Solar motion with respect to the Galactic plane, which exhibits a 63My oscillation, and the inhomogeneous distribution of Cosmic Rays (CR) throughout the Milky Way, which may affect the biosphere by changing mutation rate, climate, food chain, etc. Here we present a model of CR propagation in the Galactic magnetic fields, in the presence of both the mean field gradient and the strong MHD turbulence in the interstellar medium. We explore the "magnetic shielding effect" as a function of CR energy and composition and estimate the resultant flux of mutagenic secondary muons at the Earth surface.

  11. TIROS-N Cosmic Ray study

    NASA Technical Reports Server (NTRS)

    Blandford, J. T., Jr.; Pickel, J. C.

    1980-01-01

    An experimental and analytical study was performed on the impact of galactic cosmic rays on the TIROS-N satellite memory in orbit. Comparisons were made of systems equipped with the Harris HMI-6508 1 x 1024 CMOS/bulk RAM and the RCA CDP-1821 1 x 1024 bit CMOS/SOS RAM. Based upon the experimental results, estimated bit error rates were determined. These were at least 8.0 bit errors/day for a 300 kilobit memory with the HMI-6508 and .014 bit errors/day with the CDF-1821. It was also estimated that the HMI-6508 latchup rate in orbit is at least two orders of magnitude less than the bit error rates; the CDP-1821 will not latchup.

  12. Strong earthquakes, novae and cosmic ray environment

    NASA Technical Reports Server (NTRS)

    Yu, Z. D.

    1985-01-01

    Observations about the relationship between seismic activity and astronomical phenomena are discussed. First, after investigating the seismic data (magnitude 7.0 and over) with the method of superposed epochs it is found that world seismicity evidently increased after the occurring of novae with apparent magnitude brighter than 2.2. Second, a great many earthquakes of magnitude 7.0 and over occurred in the 13th month after two of the largest ground level solar cosmic ray events (GLEs). The causes of three high level phenomena of global seismic activity in 1918-1965 can be related to these, and it is suggested that according to the information of large GLE or bright nova predictions of the times of global intense seismic activity can be made.

  13. Cosmic ray propagation in galactic turbulence

    SciTech Connect

    Evoli, Carmelo; Yan, Huirong E-mail: hryan@pku.edu.cn

    2014-02-10

    We revisit propagation of galactic cosmic rays (CRs) in light of recent advances in CR diffusion theory in realistic interstellar turbulence. We use a tested model of turbulence in which it has been shown that fast modes dominate scattering of CRs. As a result, propagation becomes inhomogeneous and environment dependent. By adopting the formalism of the nonlinear theory developed by Yan and Lazarian, we calculate the diffusion of CRs self-consistently from first principles. We assume a two-phase model for the Galaxy to account for different damping mechanisms of the fast modes, and we find that the energy dependence of the diffusion coefficient is mainly affected by medium properties. We show that it gives a correct framework to interpret some of the recent CR puzzles.

  14. Estimates of cellular mutagenesis from cosmic rays

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1994-01-01

    A parametric track structure model is used to estimate the cross section as a function of particle velocity and charge for mutations at the hypoxanthine guanine phosphoribosyl transferase (HGPRT) locus in human fibroblast cell cultures. Experiments that report the fraction of mutations per surviving cell for human lung and skin fibroblast cells indicate small differences in the mutation cross section for these two cell lines when differences in inactivation rates between these cell lines are considered. Using models of cosmic ray transport, the mutation rate at the HGPRT locus is estimated for cell cultures in space flight and rates of about 2 to 10 x 10(exp -6) per year are found for typical spacecraft shielding. A discussion of how model assumptions may alter the predictions is also presented.

  15. The Skylab ultraheavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Price, P. B.; Shirk, E. K.

    1975-01-01

    Cosmic-ray nuclides of charge Z from 65 to 110 were detected with a Lexan sheet array mounted on the spacecraft. The charge distribution showed 83 nuclei of Z not less than 65, 6 nuclei of charge not less than 90, one with Z not less than 93, and no superheavy nuclei (Z not less than 110). Measured Pb/Pt and U/Pt abundance ratios are examined for information on a possible r-process, on solar system abundances, and on the time and time scale of the related nucleosynthesis events. The resolution of the experiment is deemed adequate to rule out the presence of superheavy nuclei. Experimental procedures, statistical treatment, and correlation with balloon data are discussed.

  16. Early Cosmic Ray Research with Balloons

    NASA Astrophysics Data System (ADS)

    Walter, Michael

    2013-06-01

    The discovery of cosmic rays by Victor Hess during a balloon flight in 1912 at an altitude of 5350 m would not have been possible without the more than one hundred years development of scientific ballooning. The discovery of hot air and hydrogen balloons and their first flights in Europe is shortly described. Scientific ballooning was mainly connected with activities of meteorologists. It was also the geologist and meteorologist Franz Linke, who probably observed first indications of a penetrating radiation whose intensity seemed to increase with the altitude. Karl Bergwitz and Albert Gockel were the first physicists studying the penetrating radiation during balloon flights. The main part of the article deals with the discovery of the extraterrestrial radiation by V. Hess and the confirmation by Werner Kolhörster.

  17. Directional clustering in highest energy cosmic rays

    SciTech Connect

    Goldberg, Haim; Weiler, Thomas J.

    2001-09-01

    An unexpected degree of small-scale clustering is observed in highest-energy cosmic ray events. Some directional clustering can be expected due to purely statistical fluctuations for sources distributed randomly in the sky. This creates a background for events originating in clustered sources. We derive analytic formulas to estimate the probability of random cluster configurations, and use these formulas to study the strong potential of the HiRes, Auger, Telescope Array and EUSO-OWL-AirWatch facilities for deciding whether any observed clustering is most likely due to nonrandom sources. For a detailed comparison to data, our analytical approach cannot compete with Monte Carlo simulations, including experimental systematics. However, our derived formulas do offer two advantages: (i) easy assessment of the significance of any observed clustering, and most importantly, (ii) an explicit dependence of cluster probabilities on the chosen angular bin size.

  18. Propagation and nucleosynthesis of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Giler, M.; Wibig, T.

    1985-01-01

    The observed fluxes of cosmic ray (C.R.) ultraheavy elements depend on their charge and mass spectrum at the sources and on the propagation effects, on the distribution of path lengths traversed by the particles on their way from the sources to the observation point. The effect of different path length distributions (p.l.d.) on the infered source abunances is analyzed. It seems that it is rather difficult to fit a reasonable p.l.d. so that the obtained source spectrum coincides with the Solar System (SS) abundances in more detail. It suggests that the nucleosynthesis conditions for c.r. nuclei may differ from that for SS matter. The nucleosynthesis of ultraheavy elements fitting its parameters to get the c.r. source abundances is calculated. It is shown that it is possible to get a very good agreement between the predicted and the observed source abundance.

  19. Galactic Cosmic Rays in the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Florinski, V.; Washimi, H.; Pogorelov, N. V.; Adams, J. H.

    2010-01-01

    We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations

  20. Underground cosmic-ray experiment EMMA

    NASA Astrophysics Data System (ADS)

    Kuusiniemi, P.; Bezrukov, L.; Enqvist, T.; Fynbo, H.; Inzhechik, L.; Joutsenvaara, J.; Kalliokoski, T.; Loo, K.; Lubsandorzhiev, B.; Monto, T.; Petkov, V.; Räihä, T.; Sarkamo, J.; Slupecki, M.; Trzaska, W. H.; Virkajärvi, A.

    2013-02-01

    EMMA (Experiment with MultiMuon Array) is a new approach to study the composition of cosmic rays at the knee region (1 - 10 PeV). The array will measure the multiplicity and lateral distribution of the high-energy muon component of an air shower and its arrival direction on an event-by-event basis. The array operates in the Pyhäsalmi Mine, Finland, at a depth of 75 metres (or 210 m.w.e) corresponding to the cut-off energy of approximately 50 GeV for vertical muons. The data recording with a partial array has started and preliminary results of the first test runs are presented.

  1. Extragalactic cosmic rays and their signatures

    NASA Astrophysics Data System (ADS)

    Berezinsky, V.

    2014-01-01

    The signatures of UHE proton propagation through CMB radiation are pair-production dip and GZK cutoff. The visible manifestations of these two spectral features are ankle, which is intrinsic part of the dip, beginning of GZK cutoff in the differential spectrum and E in integral spectrum. Observed practically in all experiments since 1963, the ankle is usually interpreted as a feature caused by transition from galactic to extragalactic cosmic rays. Using the mass composition measured by HiRes, Telescope Array and Auger detectors at energy (1-3) EeV, calculated anisotropy of galactic cosmic rays at these energies, and the elongation curves we strongly argue against the interpretation of the ankle given above. The transition must occur at lower energy, most probably at the second knee as the dip model predicts. The other prediction of the dip model, the shape of the dip, is well confirmed by HiRes, Telescope Array (TA), AGASA and Yakutsk detectors, and, after recalibration of energies, by Auger detector. Predicted beginning of GZK cutoff and E agree well with HiRes and TA data. However, directly measured mass composition remains a puzzle. While HiRes and TA detectors observe the proton-dominated mass composition, as required by the dip model, the data of Auger detector strongly evidence for nuclei mass composition becoming progressively heavier at energy higher than 4 EeV and reaching Iron at energy about 35 EeV. The Auger-based scenario is consistent with another interpretation of the ankle at energy Ea≈4 EeV as transition from extragalactic protons to extragalactic nuclei. The heavy-nuclei dominance at higher energies may be provided by low-energy of acceleration for protons Epmax∼4 EeV and rigidity-dependent EAmax=ZEpmax for nuclei. The highest energy suppression may be explained as nuclei-photodisintegration cutoff.

  2. Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.

    NASA Technical Reports Server (NTRS)

    Wang, H. T.

    1973-01-01

    The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.

  3. Cosmic ray drift, shock wave acceleration and the anomalous component of cosmic rays

    NASA Technical Reports Server (NTRS)

    Pesses, M. E.; Jokipii, J. R.; Eichler, D.

    1981-01-01

    A model of the anomalous component of the quiet-time cosmic ray flux is presented in which ex-interstellar neutral particles are accelerated continuously in the polar regions of the solar-wind termination shock, and then drift into the equatorial regions of the inner heliosphere. The observed solar-cycle variations, radial gradient, and apparent latitude gradient of the anomalous component are a natural consequence of this model.

  4. Cosmic ray anisotropy as signature for the transition from galactic to extragalactic cosmic rays

    SciTech Connect

    Giacinti, G.; Kachelrieß, M.; Semikoz, D.V.; Sigl, G.

    2012-07-01

    We constrain the energy at which the transition from Galactic to extragalactic cosmic rays occurs by computing the anisotropy at Earth of cosmic rays emitted by Galactic sources. Since the diffusion approximation starts to loose its validity for E/Z∼>10{sup 16−17} eV, we propagate individual cosmic rays using Galactic magnetic field models and taking into account both their regular and turbulent components. The turbulent field is generated on a nested grid which allows spatial resolution down to fractions of a parsec. Assuming sufficiently frequent Galactic CR sources, the dipole amplitude computed for a mostly light or intermediate primary composition exceeds the dipole bounds measured by the Auger collaboration around E ≈ 10{sup 18} eV. Therefore, a transition at the ankle or above would require a heavy composition or a rather extreme Galactic magnetic field with strength ∼>10 μG. Moreover, the fast rising proton contribution suggested by KASCADE-Grande data between 10{sup 17} eV and 10{sup 18} eV should be of extragalactic origin. In case heavy nuclei dominate the flux at E∼>10{sup 18} eV, the transition energy can be close to the ankle, if Galactic CRs are produced by sufficiently frequent transients as e.g. magnetars.

  5. Intergalactic shock acceleration and the cosmic gamma-ray background

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    2002-11-01

    We investigate numerically the contribution to the cosmic gamma-ray background from cosmic-ray ions and electrons accelerated at intergalactic shocks associated with cosmological structure formation. We show that the kinetic energy of accretion flows in the low-redshift intergalactic medium is thermalized primarily through moderately strong shocks, which allow for an efficient conversion of shock ram pressure into cosmic-ray pressure. Cosmic rays accelerated at these shocks produce a diffuse gamma-ray flux which is dominated by inverse Compton emission from electrons scattering off cosmic microwave background photons. Decay of neutral π mesons generated in p-p inelastic collisions of the ionic cosmic-ray component with the thermal gas contribute about 30 per cent of the computed emission. Based on experimental upper limits on the photon flux above 100 MeV from nearby clusters we constrain the efficiency of conversion of shock ram pressure into relativistic CR electrons to <~1 per cent. Thus, we find that cosmic rays of cosmological origin can generate an overall significant fraction of order 20 per cent and no more than 30 per cent of the measured gamma-ray background.

  6. Probing cosmic-ray acceleration and propagation with H{sub 3}{sup +} observations

    SciTech Connect

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J.

    2015-01-22

    As cosmic rays traverse the interstellar medium (ISM) they interact with the ambient gas in various ways. These include ionization of atoms and molecules, spallation of nuclei, excitation of nuclear states, and production of pions among others. All of these interactions produce potential observables which may be used to trace the flux of cosmic rays. One such observable is the molecular ion H{sub 3}{sup +}-produced via the ionization of an H{sub 2} molecule and its subsequent collision with another H{sub 2}-which can be identified by absorption lines in the 3.5-4 μm spectral region. We have detected H{sub 3}{sup +} in several Galactic diffuse cloud sight lines and used the derived column densities to infer ζ{sub 2}, the cosmic-ray ionization rate of H{sub 2}. Ionization rates determined in this way vary from about 7×10{sup −17} s{sup −1} to about 8×10{sup −16} s{sup −1}, and suggest the possibility of discrete sources producing high local fluxes of low-energy cosmic rays. Theoretical calculations of the ionization rate from postulated cosmic-ray spectra also support this possibility. Our recent observations of H{sub 3}{sup +} near the supernova remnant IC 443 (a likely site of cosmic-ray acceleration) point to even higher ionization rates, on the order of 10{sup −15} s{sup −1}. Together, all of these results can further our understanding of the cosmic-ray spectrum both near the acceleration source and in the general Galactic ISM.

  7. Supernova Remnants Interacting with Molecular Clouds: X-Ray and Gamma-Ray Signatures

    NASA Astrophysics Data System (ADS)

    Slane, Patrick; Bykov, Andrei; Ellison, Donald C.; Dubner, Gloria; Castro, Daniel

    2015-05-01

    The giant molecular clouds (MCs) found in the Milky Way and similar galaxies play a crucial role in the evolution of these systems. The supernova explosions that mark the death of massive stars in these regions often lead to interactions between the supernova remnants (SNRs) and the clouds. These interactions have a profound effect on our understanding of SNRs. Shocks in SNRs should be capable of accelerating particles to cosmic ray (CR) energies with efficiencies high enough to power Galactic CRs. X-ray and γ-ray studies have established the presence of relativistic electrons and protons in some SNRs and provided strong evidence for diffusive shock acceleration as the primary acceleration mechanism, including strongly amplified magnetic fields, temperature and ionization effects on the shock-heated plasmas, and modifications to the dynamical evolution of some systems. Because protons dominate the overall energetics of the CRs, it is crucial to understand this hadronic component even though electrons are much more efficient radiators and it can be difficult to identify the hadronic component. However, near MCs the densities are sufficiently high to allow the γ-ray emission to be dominated by protons. Thus, these interaction sites provide some of our best opportunities to constrain the overall energetics of these particle accelerators. Here we summarize some key properties of interactions between SNRs and MCs, with an emphasis on recent X-ray and γ-ray studies that are providing important constraints on our understanding of cosmic rays in our Galaxy.

  8. Plasma effects on extragalactic ultra-high-energy cosmic ray hadron beams in cosmic voids

    SciTech Connect

    Krakau, S.; Schlickeiser, R. E-mail: rsch@tp4.rub.de

    2014-07-01

    The linear instability of an ultrarelativistic hadron beam (Γ {sub b} ≈ 10{sup 6}) in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of collective electrostatic and aperiodic electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays (E > 10{sup 15} eV) from their distant sources to Earth. We calculate minimum instability growth times that are orders of magnitude shorter than the cosmic ray propagation time in the IGM. Due to nonlinear effects, especially the modulation instability, the cosmic ray beam stabilizes and can propagate with nearly no energy loss through the IGM.

  9. Cosmic Magnetic Fields and Their Influence on Ultra-High Energy Cosmic Ray Propagation

    NASA Astrophysics Data System (ADS)

    Sigl, Günter; Miniati, Francesco; Enßlin, Torsten A.

    2004-11-01

    We discuss the influence of large scale cosmic magnetic fields on the propagation of hadronic cosmic rays above 1019 eV based on large scale structure simulations. Our simulations suggest that rather substantial deflection up to several tens of degrees at 1020 eV are possible for nucleon primaries. Further, spectra and composition of cosmic rays from individual sources can depend on magnetic fields surrounding these sources in intrinsically unpredictable ways. This is true even if deflection from such individual sources is small. We conclude that the influence of large scale cosmic magnetic fields on ultra-high energy cosmic ray propagation is currently hard to quantify. We discuss possible reasons for discrepant results of simulations by Dolag et al. which predict deflections of at most a few degrees for nucleons. We finally point out that even in these latter simulations a possible heavy component would in general suffer substantial deflection.

  10. Cosmic Ray Self-Confinement, Escape and Transport

    NASA Astrophysics Data System (ADS)

    Malkov, Mikhail

    2014-10-01

    Propagation of cosmic rays (CR) in a self-confinement regime is discussed. A self-similar solution for a CR-cloud expansion along the magnetic field strongly deviates from test-particle results. The normalized CR partial pressure is close to P (p , z , t) = 2 [ | z |5/3 +zdif5 / 3 (p , t) ]- 3 / 5 exp [ -z2 / 4DB (p) t ] , where p is the momentum of CR and z is directed along the field. The core of the cloud expands as zdif ~√{DNL p t } and decays in time as P ~ 2zdif- 1 (t) . The diffusion coefficient DNL is strongly suppressed compared to its background value DB: DNL ~DB exp - Π <> 1 , the CRs drive Alfven waves efficiently enough to build a transport barrier (P ~ 2 / | z | -``pedestal'') that strongly reduces the leakage. The solution has a spectral break in momentum spectrum at p =pbr , where pbr satisfies the following equation DNLpbr ~=z2 / t . Magnetic focusing effects in CR transport are briefly discussed. Partially supported by NASA through ATP NNX14AH36G.

  11. Cosmic-ray Exposure Ages of Meteorites

    NASA Astrophysics Data System (ADS)

    Herzog, G. F.

    2003-12-01

    The classic idea of a cosmic-ray exposure (CRE) age for a meteorite is based on a simple but useful picture of meteorite evolution, the one-stage irradiation model. The precursor rock starts out on a parent body, buried under a mantle of material many meters thick that screens out cosmic rays. At a time ti, a collision excavates a precursor rock - a "meteoroid." The newly liberated meteoroid, now fully exposed to cosmic rays, orbits the Sun until a time tf, when it strikes the Earth, where the overlying blanket of air (and possibly of water or ice) again shuts out almost all cosmic rays (cf. Masarik and Reedy, 1995). The quantity tf-ti is called the CRE age, t. To obtain the CRE age of a meteorite, we measure the concentrations in it of one or more cosmogenic nuclides (Table 1), which are nuclides that cosmic rays produce by inducing nuclear reactions. Many shorter-lived radionuclides excluded from Table 1 such as 22Na (t1/2=2.6 yr) and 60Co (t1/2=5.27 yr) can also furnish valuable information, but can be measured only in meteorites that fell within the last few half-lives of those nuclides (see, e.g., Leya et al. (2001) and references therein). Table 1. Cosmogenic nuclides used for calculating exposure ages NuclideHalf-lifea (Myr) Radionuclides 14C0.005730 59Ni0.076 41Ca0.1034 81Kr0.229 36Cl0.301 26Al0.717 10Be1.51 53Mn3.74 129I15.7 Stable nuclides 3He 21Ne 38Ar 83Kr 126Xe a http://www2.bnl.gov/ton. CRE ages have implications for several interrelated questions. From how many different parent bodies do meteorites come? How well do meteorites represent the population of the asteroid belt? How many distinct collisions on each parent body have created the known meteorites of each type? How often do asteroids collide? How big and how energetic were the collisions that produced meteoroids? What factors control the CRE age of a meteorite and how do meteoroid orbits evolve through time? We will touch on these questions below as we examine the data.By 1975, the CRE ages of

  12. Intensities of high-energy cosmic rays at Mount Kanbala

    NASA Technical Reports Server (NTRS)

    Ren, J. R.; Kuang, H. H.; Huo, A. X.; Lu, S. L.; Su, S.; Wang, Y. X.; Xue, Y. G.; Wang, C. R.; He, M.; Zhang, N. J.

    1985-01-01

    The energy spectra of atmospheric cosmic rays at Mt. Kanbala (520 g/sq cm.) are measured with emulsion chambers. The power indexes of the spectra are values of about 2.0 for both gamma-rays and hadrons. Those fluxes are consistent with the ones expected from the model of primary cosmic rays with heavy nuclei of high content in the energy around 10 to the 15th power eV.

  13. Anisotropy of TeV Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Pogorelov, Nikolai; Desiati, Paolo; DuVernois, Michael

    2016-07-01

    TeV cosmic rays are significantly deflected by the magnetic field of the heliosphere, and they gain or lose energies in heliospheric electric field that in the meantime drives the motion of plasma. These propagation mechanisms will cause the map of TeV cosmic rays seen at the Earth to look different from the map seen in the local interstellar medium without the presence of the heliosphere. We have developed a method of using Liouville's theorem to map out particle distribution function to Earth from the local interstellar medium, where we assume that the cosmic rays have small pitch-angle anisotropy harmonics up to the second order and a small uniform spatial density gradient. The amount of heliospheric distortion can be determined by tracing the trajectories of cosmic rays propagating through the heliosphere. In this paper, we apply this method to TeV cosmic ray propagation through a MHD-kinetic model of the heliosphere and try to fit observations from Tibet ASgamma and IceCube experiments. We are able to locate features in the TeV cosmic ray anisotropy that are associated with the interstellar magnetic field, hydrogen deflection plane, heliotail, and solar corona. Some of the features are also slightly affected by the solar cycle and interstellar magnetic turbulence. The results provide us powerful tools to explore large-scale heliospheric structures as well as to determine the cosmic ray distribution in the local interstellar medium.

  14. The role of cosmic rays on magnetic field diffusion and the formation of protostellar discs

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Galli, D.; Hennebelle, P.; Commerçon, B.; Joos, M.

    2014-11-01

    Context. The formation of protostellar discs is severely hampered by magnetic braking, as long as magnetic fields remain frozen in the gas. The latter condition depends on the levels of ionisation that characterise the innermost regions of a collapsing cloud. Aims: The chemistry of dense cloud cores and, in particular, the ionisation fraction is largely controlled by cosmic rays. The aim of this paper is to evaluate whether the attenuation of the flux of cosmic rays expected in the regions around a forming protostar is sufficient to decouple the field from the gas, thereby influencing the formation of centrifugally supported disc. Methods: We adopted the method developed in a former study to compute the attenuation of the cosmic-ray flux as a function of the column density and the field strength in clouds threaded by poloidal and toroidal magnetic fields. We applied this formalism to models of low- and high-mass star formation extracted from numerical simulations of gravitational collapse that include rotation and turbulence. Results: For each model we determine the size of the magnetic decoupling zone, where collapse or rotation motion becomes unaffected by the local magnetic field. In general, we find that decoupling only occurs when the attenuation of cosmic rays is taken into account with respect to a calculation in which the cosmic-ray ionisation rate is kept constant. The extent of the decoupling zone also depends on the dust grain size distribution and is larger if large grains (of radius ~10-5 cm) are formed by compression and coagulation during cloud collapse. The decoupling region disappears for the high-mass case. This is due to magnetic field diffusion caused by turbulence that is not included in the low-mass models. Conclusions: We conclude that a realistic treatment of cosmic-ray propagation and attenuation during cloud collapse may lead to a value of the resistivity of the gas in the innermost few hundred AU around a forming protostar that is higher

  15. Testing the Role of Cosmic Ray Reacceleration in the Galaxy

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Simpson, J. A.

    1999-05-01

    Cosmic rays constitute a super-thermal gas of charged particles magnetically confined within the Galaxy. While propagating though the interstellar medium (ISM), cosmic ray nuclei undergo nuclear spallation reactions, producing both stable (i.e., Be and B) and unstable secondary nuclei. Consistent cosmic ray confinement times of ~ 20 Myr have been reported from measurements of the radioactive secondary isotopes (10) Be, (26) Al, (36) Cl and (54) Mn using data from the High Energy Telescope (HET) on the Ulysses spacecraft. It is generally accepted that Galactic cosmic rays of energy less than ~ 10(14) eV are accelerated by supernova shocks in the ISM. Reacceleration of existing cosmic rays in the ISM is implicit in interstellar shock acceleration models, but whether reacceleration plays a significant role in cosmic ray production and interstellar propagation is largely unknown. The abundances of secondary electron-capture isotopes provide a crucial test of cosmic ray reacceleration. Electron-capture is suppressed during interstellar propagation because cosmic ray nuclei are essentially stripped of their electrons. If, however, cosmic rays experience significant reacceleration, nuclei will have spent time at lower energies where electron pick-up, and hence electron capture, is more likely than at higher energies. Thus, electron capture secondary isotopes would be less abundant (and their daughters, more abundant) than otherwise predicted. The abundance ratio of (49) V to (51) V is a particularly sensitive test of this effect. The latest Ulysses HET data is used to address this problem. This research was supported in part by NASA/JPL Contract 955432 and NASA Grant NAG5-5179.

  16. Cosmic ray nuclei from extragalactic and galactic pulsars

    NASA Astrophysics Data System (ADS)

    Fang, Ke

    2013-02-01

    In an extragalactic newly-born pulsar, nuclei striped off the star surface can be accelerated to extreme energies and leave the source through dense supernova surroundings. The escaped ultrahigh energy cosmic rays can explain both UHE energy spectral and atmospheric depth observations. In addition, assuming that Galactic pulsars accelerate cosmic rays with the same injection composition, very high energy cosmic rays from local pulsars can meet the flux measurements from above the knee to the ankle, and at the same time, agree with the detected composition trend.

  17. Small-scale Anisotropies of Cosmic Rays from Relative Diffusion

    NASA Astrophysics Data System (ADS)

    Ahlers, Markus; Mertsch, Philipp

    2015-12-01

    The arrival directions of multi-TeV cosmic rays show significant anisotropies at small angular scales. It has been argued that this small-scale structure can naturally arise from cosmic ray scattering in local turbulent magnetic fields that distort a global dipole anisotropy set by diffusion. We study this effect in terms of the power spectrum of cosmic ray arrival directions and show that the strength of small-scale anisotropies is related to properties of relative diffusion. We provide a formalism for how these power spectra can be inferred from simulations and motivate a simple analytic extension of the ensemble-averaged diffusion equation that can account for the effect.

  18. Global modulation of cosmic rays in the heliosphere

    NASA Astrophysics Data System (ADS)

    Potgieter, Marius

    2016-07-01

    It is possible, now for the first time, to describe the total, global modulation of cosmic rays in the heliosphere using Voyager observations from the Earth to the heliopause and from the PAMELA space mission at the Earth, in comparison with comprehensive numerical models. The very local interstellar spectra for several cosmic ray species have become much better known so that together with knowledge of where the heliopause is located, comprehensive modelling has taken a huge step forward. New and exciting observations, with ample challenges to theoretical and modelling approaches to the acceleration, transport and modulation of cosmic rays in the heliosphere will be reviewed in this presentation.

  19. Calculations of cosmic-ray helium transport in shielding materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1993-01-01

    The transport of galactic cosmic-ray helium nuclei and their secondaries through bulk shielding is considered using the straight-ahead approximation to the Boltzmann equation. A data base for nuclear interaction cross sections and secondary particle energy spectra for high-energy light-ion breakup is presented. The importance of the light ions H-2, H-3, and He-3 for cosmic-ray risk estimation is discussed, and the estimates of the fractional contribution to the neutron flux from helium interactions compared with other particle interactions are presented using a 1977 solar minimum cosmic-ray spectrum.

  20. The cosmic-ray shock structure problem for relativistic shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  1. Cosmic-ray acceleration at stellar wind terminal shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Axford, W. I.; Forman, M. A.

    1985-01-01

    Steady-state spherically symmetric analytic solutions of the cosmic-ray transport equations, applicable to the problem of acceleration of cosmic rays at the terminal shock to a stellar wind, are studied. The spectra, graidents, and flow patterns of particles modulated and accelerated by the stellar wind and shock are investigated by means of monoenergetic-source solutions at finite radius, as well as solutions with monoenergetic and power-law galactic spectra. On the basis of calculations given, early-type stars could supply a significant fraction of the 3 x 10 to the 40th ergs/sec required by galactic cosmic rays.

  2. Satellite measurements of the isotopic composition of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1979-01-01

    The individual isotopes of galactic cosmic ray Ne, Mg, and Si at 100 MeV/nucleon were clearly resolved with an rms mass resolution of 0.20 amu. The results suggest the cosmic ray source is enriched in Ne-22, Mg-25, and Mg-26 when compared to the solar system. The ratio of (Mg-25)+(Mg-26) to Mg-24, which is approximately 0.49 compared to the solar system value of 0.27, suggest that the cosmic ray source and solar system material were synthesized under different conditions.

  3. The Telescope Array Ultra High Energy Cosmic Ray Obsrevatory

    NASA Astrophysics Data System (ADS)

    Matthews, John

    2016-07-01

    The Telescope Array measures the properties of ultra high energy cosmic ray induced extensive air showers. We do this using a variety of techniques including an array of scintillator detectors to sample the footprint of the air shower when it reaches the Earth's surface and telescopes to measure the fluorescence and Cerenkov light of the air shower. From this we determine the energy spectrum and chemical composition of the primary particles. We also search for sources of cosmic rays and anisotropy. We have found evidence of a possible source of ultra high energy cosmic rays in the northern sky. The experiment and its most recent measurements will be discussed.

  4. Cosmic Ray Observation for Nuclear Astrophysics:. Corona Program

    NASA Astrophysics Data System (ADS)

    Hasebe, Nobuyuki; Kobayashi, M. N.

    2003-04-01

    Cosmic Ray Observation for Nuclei Astrophysics (CORONA) program is a large-scaled spacecraft or space station approach for nuclear composition of relativistic cosmic rays 10 ≦ Z ≦ 92 and of low-energy isotopes 1 ≦ Z ≦ 58 in space. A large area Spectrometer for Ultraheavy Nuclear Composition (SUNC) and a Large Isotope Telescope Array (LITA) are proposed in this program. CORONA program focuses on the composition of elements beyond the iron-peak nuclei (Z > 60) and the isotopic composition of ultraheavy particles (Z > 30) in galactic cosmic rays as well as solar and interplanetary particles. The observation of nuclear composition covers a wide range of scientific themes including studies of nucleosynthesis of cosmic ray sources, chemical evolution of galactic material, the characteristic time of cosmic rays, heating and acceleration mechanism of cosmic ray particles. Observation of solar particle events also make clear the physical process of transient solar events emitting wide range of radio, X-ray/gamma-ray, plasma and energetic particle radiation, and particle acceleration mechanism driven by CME.

  5. Gamma ray bursts and extreme energy cosmic rays

    SciTech Connect

    Scarsi, Livio

    1998-06-15

    Extreme Energy Cosmic Ray particles (EECR) with E>10{sup 20} eV arriving on Earth with very low flux ({approx}1 particle/Km{sup 2}-1000yr) require for their investigation very large detecting areas, exceeding values of 1000 km{sup 2} sr. Projects with these dimensions are now being proposed: Ground Arrays ('Auger' with 2x3500 km{sup 2} sr) or exploiting the Earth Atmosphere as seen from space ('AIR WATCH' and OWL,'' with effective area reaching 1 million km{sup 2} sr). In this last case, by using as a target the 10{sup 13} tons of air viewed, also the high energy neutrino flux can be investigated conveniently. Gamma Rays Bursts are suggested as a possible source for EECR and the associated High Energy neutrino flux.

  6. Study of cosmic ray motion in cosmic space near the earth

    NASA Technical Reports Server (NTRS)

    Budilov, V. K.; Ivanov, V. I.; Kozak, L. V.; Mirkin, L. A.; Tsukerman, I. G.

    1975-01-01

    Data are presented on experimental installations developed in the cosmic ray variations laboratory in Kazgu (Alma-Ata). Various experiments on modelling the interaction of plasma with the geomagnetic field as well as the plasma distribution in quiet and disturbed fields are described. The characteristics of the meson supertelescope using scintillators (effective area, 10 sq m) for vertical alignments designed to study microvariations of the cosmic rays and their interrelation with magnetospheric fluctuations and the study of solar wind parameters are given.

  7. Particle acceleration in cosmic sites. Astrophysics issues in our understanding of cosmic rays

    NASA Astrophysics Data System (ADS)

    Diehl, R. L.

    2009-11-01

    Particles are accelerated in cosmic sites probably under conditions very different from those at terrestrial particle accelerator laboratories. Nevertheless, specific experiments which explore plasma conditions and stimulate particle acceleration carry significant potential to illuminate some aspects of the cosmic particle acceleration process. Here we summarize our understanding of cosmic particle acceleration, as derived from observations of the properties of cosmic ray particles, and through astronomical signatures caused by these near their sources or throughout their journey in interstellar space. We discuss the candidate-source object variety, and what has been learned about their particle-acceleration characteristics. We conclude identifying open issues as they are discussed among astrophysicists. - The cosmic ray differential intensity spectrum across energies from 1010 eV to 1021 eV reveals a rather smooth power-law spectrum. Two kinks occur at the “knee” (≃1015 eV) and at the “ankle” (≃ 3×1018 eV). It is unclear if these kinks are related to boundaries between different dominating sources, or rather related to characteristics of cosmic-ray propagation. Currently we believe that galactic sources dominate up to 1017 eV or even above, and the extragalactic origin of cosmic rays at highest energies merges rather smoothly with galactic contributions throughout the 1015-1018 eV range. Pulsars and supernova remnants are among the prime candidates for galactic cosmic-ray production, while nuclei of active galaxies are considered best candidates to produce ultrahigh-energy cosmic rays of extragalactic origin. The acceleration processes are probably related to shocks formed when matter is ejected into surrounding space from energetic sources such as supernova explosions or matter accreting onto black holes. Details of shock acceleration are complex, as relativistic particles modify the structure of the shock, and simple approximations or perturbation

  8. Gamma-ray emitting supernova remnants as the origin of Galactic cosmic rays?

    NASA Astrophysics Data System (ADS)

    Becker Tjus, Julia; Eichmann, Björn; Kroll, Mike; Nierstenhöfer, Nils

    2016-08-01

    The origin of cosmic rays is one of the long-standing mysteries in physics and astrophysics. Simple arguments suggest that a scenario of supernova remnants (SNRs) in the Milky Way as the dominant sources for the cosmic ray population below the knee could work: a generic calculation indicates that these objects can provide the energy budget necessary to explain the observed flux of cosmic rays. However, this argument is based on the assumption that all sources behave in the same way, i.e. they all have the same energy budget, spectral behavior and maximum energy. In this paper, we investigate if a realistic population of SNRs is capable of producing the cosmic ray flux as it is observed below the knee. We use 21 SNRs that are well-studied from radio wavelengths up to gamma-ray energies and derive cosmic ray spectra under the assumption of hadronic emission. The cosmic ray spectra show a large variety in their energy budget, spectral behavior and maximum energy. These sources are assumed to be representative for the total class of SNRs, where we assume that about 100-200 cosmic ray emitting SNRs should be present today. Finally, we use these source spectra to simulate the cosmic ray transport from individual SNRs in the Galaxy with the GALPROP code for cosmic ray propagation. We find that the cosmic ray budget can be matched well for these sources. We conclude that gamma-ray emitting SNRs can be a representative sample of cosmic ray emitting sources. In the future, experiments like CTA and HAWC will help to distinguish hadronic from leptonic sources and to further constrain the maximum energy of the sources and contribute to producing a fully representative sample in order to further investigate the possibility of SNRs being the dominant sources of cosmic rays up to the knee.

  9. De-excitation Nuclear Gamma-Ray Line Emission from Low-energy Cosmic Rays in the Inner Galaxy

    NASA Astrophysics Data System (ADS)

    Benhabiles-Mezhoud, H.; Kiener, J.; Tatischeff, V.; Strong, A. W.

    2013-02-01

    Recent observations of high ionization rates of molecular hydrogen in diffuse interstellar clouds point to a distinct low-energy cosmic-ray component. Supposing that this component is made of nuclei, two models for the origin of such particles are explored and low-energy cosmic-ray spectra are calculated, which, added to the standard cosmic-ray spectra, produce the observed ionization rates. The clearest evidence of the presence of such low-energy nuclei between a few MeV nucleon-1 and several hundred MeV nucleon-1 in the interstellar medium would be a detection of nuclear γ-ray line emission in the range E γ ~ 0.1-10 MeV, which is strongly produced in their collisions with the interstellar gas and dust. Using a recent γ-ray cross section compilation for nuclear collisions, γ-ray line emission spectra are calculated alongside the high-energy γ-ray emission due to π0 decay, the latter providing normalization of the absolute fluxes by comparison with Fermi-LAT observations of the diffuse emission above E γ = 0.1 GeV. Our predicted fluxes of strong nuclear γ-ray lines from the inner Galaxy are well below the detection sensitivities of the International Gamma-Ray Astrophysics Laboratory, but a detection, especially of the 4.4 MeV line, seems possible with new-generation γ-ray telescopes based on available technology. We also predict strong γ-ray continuum emission in the 1-8 MeV range, which, in a large part of our model space for low-energy cosmic rays, considerably exceeds the estimated instrument sensitivities of future telescopes.

  10. DE-EXCITATION NUCLEAR GAMMA-RAY LINE EMISSION FROM LOW-ENERGY COSMIC RAYS IN THE INNER GALAXY

    SciTech Connect

    Benhabiles-Mezhoud, H.; Kiener, J.; Tatischeff, V.; Strong, A. W.

    2013-02-15

    Recent observations of high ionization rates of molecular hydrogen in diffuse interstellar clouds point to a distinct low-energy cosmic-ray component. Supposing that this component is made of nuclei, two models for the origin of such particles are explored and low-energy cosmic-ray spectra are calculated, which, added to the standard cosmic-ray spectra, produce the observed ionization rates. The clearest evidence of the presence of such low-energy nuclei between a few MeV nucleon{sup -1} and several hundred MeV nucleon{sup -1} in the interstellar medium would be a detection of nuclear {gamma}-ray line emission in the range E {sub {gamma}} {approx} 0.1-10 MeV, which is strongly produced in their collisions with the interstellar gas and dust. Using a recent {gamma}-ray cross section compilation for nuclear collisions, {gamma}-ray line emission spectra are calculated alongside the high-energy {gamma}-ray emission due to {pi}{sup 0} decay, the latter providing normalization of the absolute fluxes by comparison with Fermi-LAT observations of the diffuse emission above E {sub {gamma}} = 0.1 GeV. Our predicted fluxes of strong nuclear {gamma}-ray lines from the inner Galaxy are well below the detection sensitivities of the International Gamma-Ray Astrophysics Laboratory, but a detection, especially of the 4.4 MeV line, seems possible with new-generation {gamma}-ray telescopes based on available technology. We also predict strong {gamma}-ray continuum emission in the 1-8 MeV range, which, in a large part of our model space for low-energy cosmic rays, considerably exceeds the estimated instrument sensitivities of future telescopes.

  11. Nonlinear Transport of Cosmic Rays in Turbulent Magnetic Field

    NASA Astrophysics Data System (ADS)

    Yan, H.; Xu, S.

    2014-09-01

    Recent advances in both the MHD turbulence theory and cosmic ray observations call for revisions in the paradigm of cosmic ray transport. We use the models of magnetohydrodynamic turbulence that were tested in numerical simulations, in which turbulence is injected at large scale and cascades to small scales. We shall present the nonlinear results for cosmic ray transport, in particular, the cross field transport of CRs. We demonstrate that the concept of cosmic ray subdiffusion in general does not apply and the perpendicular motion is well described by normal diffusion with M A4 dependence. Moreover, on scales less than the injection scale of turbulence, CRs' transport becomes super-diffusive. Quantitative predictions for both the normal diffusion on large scale and super diffusion on small scale are confirmed with recent numerical simulations. Implication for shock acceleration is briefly discussed.

  12. Cosmic Rays and Their Radiative Processes in Numerical Cosmology

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Miniati, Francesco; Jones, Tom W.; Kang, Hyesung

    2000-01-01

    A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive, acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 128 (exp 3) cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.

  13. Enhanced cosmic ray anisotropies and the extended solar magnetic field

    SciTech Connect

    Swinson, D.B.; Saito, T.; Mori, S.

    1981-10-01

    Saito's two-hemisphere model for the three-dimensional magnetic structure of the inner heliomagnetosphere is used to determine the orientation of the two solar magnetic hemispheres. This orientation, as viewed from the earth, varies throughout the year. The orientations during 1974 are presented and are confirmed by satellite data for the interplanetary magnetic field. These data suggest a role for the field component perpendicular to the ecliptic plane B/sub z/ in giving rise to cosmic ray anisotropies detected at the earth. It is shown that an enhanced solar diurnal variation in cosmic ray intensity at the earth can arise from the constructive interference of three cosmic ray anisotropies, two of which depend on the direction of the interplanetary magnetic field. This is demonstrated by using cosmic ray data from the Nagaya muon telescope and underground muon telescopes in Bolivia, Embudo (New Mexico), and Socorro (New Mexico).

  14. Plans for Extreme Energy Cosmic Ray Observations from Space

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2004-01-01

    Cosmic rays have been detected at energies beyond 10(exp 20) eV, where Universe is predicted to become opaque to protons. The acceleration of cosmic rays to such extreme energies in known astrophysical objects has also proven difficult to understand, leading to many suggestions that new physics may be required to explain their existence. This has prompted the construction of new experiments designed to detect cosmic rays with fluxes below 1 particle/km/century and follow their spectrum to even higher energies. To detect large numbers of these particles, the next generation of these experiments must be performed on space-based platforms that look on very large detection volumes in the Earth's atmosphere. The talk will review the experimental and theoretical investigations of extreme energy cosmic rays and discuss the present and planned experiments to extend measurements beyond 10(exp 21) eV.

  15. Searches for Anisotropy of Cosmic Rays with the Telescope Array

    NASA Astrophysics Data System (ADS)

    Cady, Robert; Telescope Array Collaboration

    2016-03-01

    With over seven years of data from the TA surface detector array, we will present the results of various searches for anisotropies in the arrival direction of cosmic rays, including an update of the hotspot above 57 EeV.

  16. Cosmic Rays Variation Before Changes in Sun-Earth Environment

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2011-12-01

    Influence of cosmic rays variations on the Sun-Earth Environment has been observed before the changes in the atmospheric temperature, outbreak of influenza, cyclone, earthquake and tsunami. It has been recorded by Sun Observatory Heleospheric Observatory (SOHO) satellite data. Before the earthquake and tsunami the planetary indices (Kp) and Electron flux (E-flux) shows sudden changes followed by the atmospheric perturbations including very high temperature rise to sudden fall resulting snowfall in high altitude and rainfall in tropical areas. The active fault zones shows sudden faulting after the sudden drop in cosmic ray intensity and rise in Kp and E-flux. Besides the geo-environment the extraterrestrial influence on outbreak of H1N1 influenza has also been recorded based on the Mexico Cosmic ray data and its correlation with SOHO records. Distant stars have the potential to influence the heliophysical parameters by showering cosmic rays.

  17. Cosmic-Ray Effects of Propagating Shocks Including the Heliosheath

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.; Kota, J.

    2001-08-01

    It has been known for a long time (Jokipii, et al, 1993) that the e~@ects of tt he heliosphere on cosmic rays extends beyond the termination shock and into the heliosheath. The inclusion of the region beyond the termination shock into models of modulation is still relatively recent. The previously-published model resultshave all been for a stationary system. We have modi~Aed our two-dimensional heliosperic cosmic-ray simulation code to be time dependent and to include a propagating shock wave which propagates out from the Sun and into the Heliosheath. The code follows the time variation of the intensity of both galacticand anomalous cosmic rays as the shock propagates past the point of observation and beyond. The results from the model simulations will be compared with recent observational results suggesting e~@ects of the heliosheath on galacticc and anomalous cosmic rays.

  18. The Determination of the Muon Magnetic Moment from Cosmic Rays

    ERIC Educational Resources Information Center

    Amsler, C.

    1974-01-01

    Describes an experiment suited for use in an advanced laboratory course in particle physics. The magnetic moment of cosmic ray muons which have some polarization is determined with an error of about five percent. (Author/GS)

  19. Thunderstorms, cosmic rays, and solar-lunar influences

    SciTech Connect

    Lethbridge, M.D.

    1990-08-20

    A study of cosmic rays and thunderstorm frequency has shown a decrease in thunderstorms at the time of high cosmic rays and an increase in thunderstorms 2-4 days later. This was done by superposed epoch analysis of thunderstorms over the eastern two thirds of the United States for 1957-1976. When data for spring and fall months were used, the minimum deepened. When high cosmic rays near full and new moon for these months were key days, the minimum deepened again and was significant at less than the 0.01% level. It is believed that when the Sun, Earth, and Moon are aligned, particulate matter in the lower stratosphere is modulated and acted upon by cosmic rays, bringing about an immediate decrease in thunderstorms.

  20. Cosmic-ray exposure records and origins of meteorites

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.

    1985-01-01

    The cosmic-ray records of meteorites are used to infer much about their origins and recent histories. The methods used to interpret meteorites' cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Spallogenic radionuclides, stable nuclides, and measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measuremetns, plus theoretical modeling of complex histories, improves the ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages.

  1. A cosmochemical view of cosmic rays and solar particles

    NASA Technical Reports Server (NTRS)

    Price, P. B.

    1973-01-01

    The composition of cosmic rays and solar particles is reviewed with emphasis on the question of whether they are representative samples of Galactic and solar matter. The composition of solar particles changes with energy and from flare to flare. A strong excess of heavy elements at energies below a few MeV/nuc decreases with energy, and at energies above 15 MeV/nuc the composition of solar particles resembles that of galactic cosmic rays somewhat better than that of the solar atmosphere. The elements Ne through Pb have remarkably similar abundances in cosmic ray sources and in the matter of the solar system. The lighter elements are depleted in cosmic rays, whereas U and Th may be enriched or not, depending on whether the meteoritic or solar abundance of Th is used.

  2. On wave stability in relativistic cosmic-ray hydrodynamics

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1989-01-01

    Wave stability of a two-fluid hydrodynamical model describing the acceleration of cosmic rays by the first-order Fermi mechanism in relativistic, cosmic-ray-modified shocks is investigated. For a uniform background state, the short- and long-wavelength wave speeds are shown to interlace, thus assuring wave stability in this case. A JWKB analysis is performed to investigate the stability of short-wavelength thermal gas sound waves in the smooth, decelerating supersonic flow upstream of a relativistic, cosmic-ray-modified shock. The stability of the waves is assessed both in terms of the fluid velocity and density perturbations, as well as in terms of the wave action. The stability and interaction of the short-wavelength cosmic-ray coherent mode with the background flow is also studied.

  3. Drift Kinetic Theory and Cosmic Rays

    SciTech Connect

    Webb, G. M.; Le Roux, J. A.; Zank, G. P.

    2009-11-11

    Starting from the Vlasov or Boltzmann equation for cosmic rays in a random and regular magnetic field, we introduce guiding center coordinates and transform the velocity to a frame moving at the electric field drift velocity. The resultant equation is written in terms of the parallel and perpendicular momentum and gyro-phase of the particle, and describes spatial particle transport in guiding center coordinates. Using the drift ordering in which the gyro-scale and gyro-period are assumed short compared to the background flow length and time scales, and averaging over the gyro-phase gives the drift kinetic equation in which the adiabatic moment and total particle energy in the inertial frame are used to describe the momentum and energy of the particle. If the parallel electric field is small, the adiabatic moment of the particles is conserved to lowest order in the drift ordering. The resultant drift kinetic equation properly takes into account the energy changes of the particles due to drifts along the electric field, and betatron acceleration, but contains only the lowest order approximation for the guiding center drift velocity to describe the spatial advection of the particles. A further transformation of variables, in which the particle momentum and pitch angle are specified in the local fluid frame, gives the focussed transport equation derived by Skilling to describe particle transport in a moving plasma medium, such as the solar wind. The connections to previous derivations of the Skilling's pitch angle focussed transport equation are discussed.

  4. Cosmic ray sources, acceleration and propagation

    NASA Technical Reports Server (NTRS)

    Ptuskin, V. S.

    1986-01-01

    A review is given of selected papers on the theory of cosmic ray (CR) propagation and acceleration. The high isotropy and a comparatively large age of galactic CR are explained by the effective interaction of relativistic particles with random and regular electromagnetic fields in interstellar medium. The kinetic theory of CR propagation in the Galaxy is formulated similarly to the elaborate theory of CR propagation in heliosphere. The substantial difference between these theories is explained by the necessity to take into account in some cases the collective effects due to a rather high density of relativisitc particles. In particular, the kinetic CR stream instability and the hydrodynamic Parker instability is studied. The interaction of relativistic particles with an ensemble of given weak random magnetic fields is calculated by perturbation theory. The theory of CR transfer is considered to be basically completed for this case. The main problem consists in poor information about the structure of the regular and the random galactic magnetic fields. An account is given of CR transfer in a turbulent medium.

  5. Cosmic Rays for High School Students

    NASA Astrophysics Data System (ADS)

    Bardeen, Marjorie; Peterson, Robert; Jordan, Thomas

    2012-03-01

    We discuss a suite of QuarkNet activities that provide data from the Fermilab cosmic ray DAQ for three learning modes: survey, exploration and investigation. Teachers and students assemble our classroom detectors. They study data locally and/or upload data to a server for others; students without detectors have access to the data. In survey mode, students may sum columns, draw plots comparing columns, calculate descriptive statistics. They can describe patterns and may indicate outliers. Exploration mode provides visual or tabular data for doing measurements that couple values in different columns for a newly derived measurement. Students still draw plots, calculate statistics and describe patterns. Students may attend a master class performing these tasks in a group setting. Students in investigation mode use data and provided analysis and investigation tools to perform research-type investigations. Students can investigate relationships between measurements extant in the data as well as relationships between the presented data and external data sets. They also may perform the same tasks that they do in other modes e.g., draw plots. Students use a project map associated with a browser-based e-Lab to guide their investigations.

  6. Cosmic ray measurements around the knee

    NASA Astrophysics Data System (ADS)

    Chiavassa, Andrea

    2016-07-01

    Primary cosmic rays of energy greater than ˜ 1014 eV must be studied by indirect experiments measuring the particles generated in the EAS (Extensive Air Shower) development in atmosphere. These experiments are mainly limited by the systematic errors due to their energy calibration. I will discuss the main sources of these errors: the choice of the hadronic interaction model and of the mass of the primary particle (that cannot be measured on a event by event basis). I will then summarize some recent measurements of the all particle spectrum, and I will show that, keeping into account the differences due to the energy calibration, they all agree on the spectral shape. Then I will describe the measurements of the light and heavy primaries mass groups spectra, discussing the claimed features. Using a simple calculation of the elemental spectra (based on the hypothesis that the knee energies follow a Peter's cycle) I will try to discuss if all these results can be interpreted in a common picture.

  7. The escape model for Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Kachelrieß, M.; Semikoz, D. V.

    2015-08-01

    The escape model explains the cosmic ray (CR) knee by energy-dependent CR leakage from the Milky Way, with an excellent fit to all existing data. We test this model calculating the trajectories of individual CRs in the Galactic magnetic field. We find that the CR escape time τesc(E) exhibits a knee-like structure around E/Z = few × 1015 eV for small coherence lengths and strengths of the turbulent magnetic field. The resulting intensities for different groups of nuclei are consistent with the ones determined by KASCADE and KASCADE-Grande, using simple power-laws as injection spectra. The transition from Galactic to extragalactic CRs happens in this model at low energies and is terminated below ≈ 3 × 1018 eV. The intermediate energy region up to the ankle is populated by CRs accelerated in starburst galaxies. This model provides a good fit to ln(A) data, while the estimated CR dipole anisotropy is close to, or below, upper limits in the energy range 1017 - 1018 eV. The phase of the dipole is expected to change between 1 × 1017 and 3 × 1018 eV.

  8. Measurement of cosmic rays with LOFAR

    NASA Astrophysics Data System (ADS)

    Rossetto, L.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.

    2016-05-01

    The LOw Frequency ARay (LOFAR) is a multipurpose radio-antenna array aimed to detect radio signals in the 10 – 240 MHz frequency range, covering a large surface in Northern Europe with a higher density in the Northern Netherlands. Radio emission in the atmosphere is produced by cosmic-ray induced air showers through the interaction of charged particles with the Earth magnetic field. The detection of radio signals allows to reconstruct several properties of the observed cascade. We review here all important results achieved in the last years. We proved that the radio-signal distribution at ground level is described by a two-dimensional pattern, which is well fitted by a double Gaussian function. The radio-signal arrival time and polarization have been measured, thus providing additional information on the extensive air shower geometry, and on the radio emission processes. We also showed that the radio signal reaches ground in a thin, curved wavefront which is best parametrized by a hyperboloid shape centred around the shower axis. Radio emission has also been studied under thunderstorm conditions and compared to fair weather conditions. Moreover, by using a hybrid reconstruction technique, we performed mass composition measurements in the energy range 1017 – 1018 eV.

  9. A Cosmic Ray Telescope For Educational Purposes

    NASA Astrophysics Data System (ADS)

    Voulgaris, G.; Kazanas, S.; Chamilothoris, I.

    2010-01-01

    Cosmic ray detectors are widely used, for educational purposes, in order to motivate students to the physics of elementary particles and astrophysics. Using a ``telescope'' of scintillation counters, the directional characteristics, diurnal variation, correlation with solar activity, can be determined, and conclusions about the composition, origin and interaction of elementary particles with the magnetic field of earth can be inferred. A telescope was built from two rectangular scintillator panels with dimensions: 91.6×1.9×3.7 cm3. The scintillators are placed on top of each other, separated by a fixed distance of 34.6 cm. They are supported by a wooden frame which can be rotated around a horizontal axis. Direction is determined by the coincidence of the signals of the two PMTs. Standard NIM modules are used for readout. This device is to be used in the undergraduate nuclear and particle physics laboratory. The design and construction of the telescope as well as some preliminary results are presented.

  10. Space Weather, Cosmic Rays, and Satellite Anomalies

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    Results are presented of the Satellite Anomaly Project, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment. Anomaly data from the USSR and Russian “Kosmos” series satellites in the period 1971-1999 are combined into one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluencies of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high altitude orbit satellites ( 5000 events) and low altitude (about 800 events). No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in behavior. Satellites were divided into several groups according to their orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits, and this should be taken into account when developing anomaly frequency models. The preliminary anomaly frequency models are presented.

  11. Solution to the Cosmic Ray Anisotropy Problem

    NASA Astrophysics Data System (ADS)

    Mertsch, Philipp; Funk, Stefan

    2015-01-01

    In the standard diffusive picture for transport of cosmic rays (CRs), a gradient in the CR density induces a typically small, dipolar anisotropy in their arrival directions. This is being widely advertised as a tool for finding nearby sources. However, the predicted dipole amplitude at TeV and PeV energies exceeds the measured one by almost 2 orders of magnitude. Here, we critically examine the validity of this prediction, which is based on averaging over an ensemble of turbulent magnetic fields. We focus on (1) the deviations of the dipole in a particular random realization from the ensemble average, and (2) the possibility of a misalignment between the regular magnetic field and the CR gradient. We find that if the field direction and the gradient direction are close to ˜90 ° , the dipole amplitude is considerably suppressed and can be reconciled with observations, which sheds light on a long-standing problem. Furthermore, we show that the dipole direction in general does not coincide with the gradient direction, thus hampering the search for nearby sources.

  12. Solution to the cosmic ray anisotropy problem.

    PubMed

    Mertsch, Philipp; Funk, Stefan

    2015-01-16

    In the standard diffusive picture for transport of cosmic rays (CRs), a gradient in the CR density induces a typically small, dipolar anisotropy in their arrival directions. This is being widely advertised as a tool for finding nearby sources. However, the predicted dipole amplitude at TeV and PeV energies exceeds the measured one by almost 2 orders of magnitude. Here, we critically examine the validity of this prediction, which is based on averaging over an ensemble of turbulent magnetic fields. We focus on (1) the deviations of the dipole in a particular random realization from the ensemble average, and (2) the possibility of a misalignment between the regular magnetic field and the CR gradient. We find that if the field direction and the gradient direction are close to ∼90°, the dipole amplitude is considerably suppressed and can be reconciled with observations, which sheds light on a long-standing problem. Furthermore, we show that the dipole direction in general does not coincide with the gradient direction, thus hampering the search for nearby sources. PMID:25635539

  13. Solar Cosmic Ray Acceleration and Propagation

    NASA Astrophysics Data System (ADS)

    Podgorny, I. M.; Podgorny, A. I.

    2016-05-01

    The GOES data for emission of flare protons with the energies of 10 - 100 MeV are analyzed. Proton fluxes of ~1032 accelerated particles take place at the current sheet decay. Proton acceleration in a flare occurs along a singular line of the current sheet by the Lorentz electric field, as in the pinch gas discharge. The duration of proton flux measured on the Earth orbit is by 2 - 3 orders of magnitude longer than the duration of flares. The high energy proton flux from the flares that appear on the western part of the solar disk arrives to Earth with the time of flight. These particles propagate along magnetic lines of the Archimedes spiral connecting the flare with the Earth. Protons from the flare on the eastern part of the solar disk begin to register with a delay of several hours. Such particles cannot get on the magnetic field line connecting the flare with the Earth. These protons reach the Earth, moving across the interplanetary magnetic field. The particles captured by the magnetic field in the solar wind are transported with solar wind and due to diffusion across the magnetic field. The patterns of solar cosmic rays generation demonstrated in this paper are not always observed in the small ('1 cm-2 s-1 ster-1) proton events.

  14. Comments on cosmic ray research in Brazil

    NASA Astrophysics Data System (ADS)

    da Silveira, Enio F.

    2013-05-01

    Cosmic Rays (CR) have been studied since their discovery by Victor Hess in the years 1911-1913. Interestingly, research in Physics in Brazil started with experiments on CR. Bernhard Gross (INT/Rio), Gleb Wataghin and Giuseppe Occhialini (USP) carried out their investigations on CR in Brazil in the 30's. Franz X. Roser worked with V. Hess (Nobel Prize, 1936) and Cesar Lattes collaborated with Cecil Powell (Nobel Prize, 1950). Nowadays, most of CR research in Brazil is conducted by the Pierre Auger Project. Nevertheless, there is an enormous lack of information on the effects of CR in matter, particularly in organic and biological materials, which motivates measurements of relevant physicochemical data, such as parameters of crystalline structure modifications, sputtering yields and cross sections for inducing associative or dissociative processes of atoms, molecules and molecular fragments. A fascinating question about CR is whether they are/were one of the agents responsible for the transformation of inorganic into organic material, synthesizing pre-biotic molecules in the whole Universe. The physicochemical effects of CR analogues in condensed gases, analyzed by Mass Spectrometry and Infrared Spectroscopy - subject of our own work on CR - are discussed at the end of this article.

  15. A Cosmic Ray Telescope For Educational Purposes

    SciTech Connect

    Voulgaris, G.; Kazanas, S.; Chamilothoris, I.

    2010-01-21

    Cosmic ray detectors are widely used, for educational purposes, in order to motivate students to the physics of elementary particles and astrophysics. Using a 'telescope' of scintillation counters, the directional characteristics, diurnal variation, correlation with solar activity, can be determined, and conclusions about the composition, origin and interaction of elementary particles with the magnetic field of earth can be inferred. A telescope was built from two rectangular scintillator panels with dimensions: 91.6x1.9x3.7 cm{sup 3}. The scintillators are placed on top of each other, separated by a fixed distance of 34.6 cm. They are supported by a wooden frame which can be rotated around a horizontal axis. Direction is determined by the coincidence of the signals of the two PMTs. Standard NIM modules are used for readout. This device is to be used in the undergraduate nuclear and particle physics laboratory. The design and construction of the telescope as well as some preliminary results are presented.

  16. Calibration of the Galactic Cosmic Ray Flux

    NASA Technical Reports Server (NTRS)

    Mathew, K. J.; Marti, K.

    2004-01-01

    We report first Xe data on the cross-calibration of I-129-Xe-129(sub n) ages with conventional CRE ages, a method which is expected to provide information on the long-term constancy of the galactic cosmic ray (GCR) flux. We studied isotopic signatures of Xe released in stepwise heating, decomposition and melting of troilites in the Cape York iron meteorite to identify isotopic shifts in Xe-129 and Xe-131 due to neutron capture in Te-128 and Te-130. We also resolve components due to extinct 129I, spallation and fission Xe. There has recently been much speculation on the constancy of GCR over long time scales, as may be inferred from iron meteorites. If GCRs originate from supernova events, this provides the basis for postulating increased fluxes at locations with higher than average densities of supernovae, specifically in OB-associations. The solar system at present appears to be inside a local bubble between spiral arms and may experience an increased GCR flux.

  17. Maximum entropy analysis of cosmic ray composition

    NASA Astrophysics Data System (ADS)

    Nosek, Dalibor; Ebr, Jan; Vícha, Jakub; Trávníček, Petr; Nosková, Jana

    2016-03-01

    We focus on the primary composition of cosmic rays with the highest energies that cause extensive air showers in the Earth's atmosphere. A way of examining the two lowest order moments of the sample distribution of the depth of shower maximum is presented. The aim is to show that useful information about the composition of the primary beam can be inferred with limited knowledge we have about processes underlying these observations. In order to describe how the moments of the depth of shower maximum depend on the type of primary particles and their energies, we utilize a superposition model. Using the principle of maximum entropy, we are able to determine what trends in the primary composition are consistent with the input data, while relying on a limited amount of information from shower physics. Some capabilities and limitations of the proposed method are discussed. In order to achieve a realistic description of the primary mass composition, we pay special attention to the choice of the parameters of the superposition model. We present two examples that demonstrate what consequences can be drawn for energy dependent changes in the primary composition.

  18. Applications of Cosmic Ray Muon Radiography

    NASA Astrophysics Data System (ADS)

    Guardincerri, E.; Durham, J. M.; Morris, C. L.; Rowe, C. A.; Poulson, D. C.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D. J.

    2015-12-01

    The Dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are underway to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only confirmed known subsurface reinforcement is a chain of iron and stone around the dome's base. Tomography with cosmic ray muons is a non-destructive imaging method that can be used to image the interior of the wall and therefore ascertain the layout and status of any iron substructure in the dome. We will show the results from a muon tomography measurement of iron hidden in a mockup of the dome's wall performed at Los Alamos National Lab in 2015. The sensitivity of this technique, and the status of this project will be also discussed. At last, we will show results on muon attenuation radiography of larger shallow targets.

  19. Drift Kinetic Theory and Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Le Roux, J. A.; Zank, G. P.

    2009-11-01

    Starting from the Vlasov or Boltzmann equation for cosmic rays in a random and regular magnetic field, we introduce guiding center coordinates and transform the velocity to a frame moving at the electric field drift velocity. The resultant equation is written in terms of the parallel and perpendicular momentum and gyro-phase of the particle, and describes spatial particle transport in guiding center coordinates. Using the drift ordering in which the gyro-scale and gyro-period are assumed short compared to the background flow length and time scales, and averaging over the gyro-phase gives the drift kinetic equation in which the adiabatic moment and total particle energy in the inertial frame are used to describe the momentum and energy of the particle. If the parallel electric field is small, the adiabatic moment of the particles is conserved to lowest order in the drift ordering. The resultant drift kinetic equation properly takes into account the energy changes of the particles due to drifts along the electric field, and betatron acceleration, but contains only the lowest order approximation for the guiding center drift velocity to describe the spatial advection of the particles. A further transformation of variables, in which the particle momentum and pitch angle are specified in the local fluid frame, gives the focussed transport equation derived by Skilling [1] to describe particle transport in a moving plasma medium, such as the solar wind. The connections to previous derivations of the Skilling's pitch angle focussed transport equation are discussed.

  20. Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Colon, Rafael Antonio; Moncada, Roberto; Guerra, Juan; Anchordoqui, Luis

    2016-01-01

    The search for the origin(s) of ultra-high energy (UHE) cosmic rays (CR) remains one of the cornerstones of high energy astrophysics. The previously proposed sources of acceleration for these UHECRs were gamma-ray bursts (GRB) and active galactic nuclei (AGN) due to their energetic activity and powerful jets. However, a problem arises between the acceleration method and the observed CR spectrum. The CRs from GRBs or AGN jets are assumed to undergo Fermi acceleration and a source injection spectrum proportional to E^-2 is expected. However, the most recent fits to the spectrum and nuclear composition suggest an injection spectrum proportional to E^-1. It is well known that such a hard spectrum is characteristic of unipolar induction of rotating compact objects. When this method is applied to the AGN cores, they prove to be much too luminous to accelerate CR nuclei without photodisintegrating, thus creating significant energy losses. Instead, here we re-examine the possibility of these particles being accelerated around the much less luminous quasar remnants, or dead quasars. We compare the interaction times of curvature radiation and photodisintegration, the two primary energy loss considerations with the acceleration time scale. We show that the energy losses at the source are not significant enough as to prevent these CRs from reaching the maximum observed energies. Using data from observatories in the northern and southern sky, the Telescope Array and the Pierre Auger Observatory respectively, two hotspots have been discerned which have some associated quasar remnants that help to motivate our study.

  1. Cosmic-ray Positrons from Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Venter, C.; Kopp, A.; Harding, A. K.; Gonthier, P. L.; Büsching, I.

    2015-07-01

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.

  2. The Cosmic Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Djorgovski, S. G.; Frail, D. A.; Kulkarni, S. R.; Sari, R.; Bloom, J. S.; Galama, T. J.; Harrison, F. A.; Price, P. A.; Fox, D.; Reichart, D. E.; Yost, S.; Berger, E.; Diercks, A.; Goodrich, R.; Chaffee, F.

    2002-12-01

    Cosmic γ-ray bursts are one of the great frontiers of astrophysics today. They are a playground of relativists and observers alike. They may teach us about the death of stars and the birth of black holes, the physics in extreme conditions, and help us probe star formation in the distant and obscured universe. In this review we summarise some of the remarkable progress in this field over the past few years. While the nature of the GRB progenitors is still unsettled, it now appears likely that at least some bursts originate in explosions of very massive stars, or at least occur in or near the regions of massive star formation. The physics of the burst afterglows is reasonably well understood, and has been tested and confirmed very well by the observations. Bursts are found to be beamed, but with a broad range of jet opening angles; the mean γ-ray energies after the beaming corrections are ~ 1051 erg. Bursts are associated with faint ( ~ 25 mag) galaxies at cosmological redshifts, with ~ 1. The host galaxies span a range of luminosities and morphologies, but appear to be broadly typical for the normal, actively star-forming galaxy populations at comparable redshifts and magnitudes. Some of the challenges for the future include: the nature of the short bursts and possibly other types of bursts and transients; use of GRBs to probe the obscured star formation in the universe, and possibly as probes of the very early universe; and their detection as sources of high-energy particles and gravitational waves.

  3. Cosmic Ray Anomalies from the MSSM?

    SciTech Connect

    Cotta, R.C.; Conley, J.A.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2011-08-11

    The recent positron excess in cosmic rays (CR) observed by the PAMELA satellite may be a signal for dark matter (DM) annihilation. When these measurements are combined with those from FERMI on the total (e{sup +} + e{sup -}) ux and from PAMELA itself on the {anti p}p ratio, these and other results are difficult to reconcile with traditional models of DM, including the conventional minimal Supergravity (mSUGRA) version of Supersymmetry even if boosts as large as 10{sup 3-4} are allowed. In this paper, we combine the results of a previously obtained scan over a more general 19-parameter subspace of the Minimal Supersymmetric Standard Model (MSSM) with a corresponding scan over astrophysical parameters that describe the propagation of CR. We then ascertain whether or not a good fit to this CR data can be obtained with relatively small boost factors while simultaneously satisfying the additional constraints arising from gamma ray data. We find that a specific subclass of MSSM models where the Lightest Supersymmetric Particle (LSP) is mostly pure bino and annihilates almost exclusively into {tau} pairs comes very close to satisfying these requirements. The lightest in this set of models is found to be relatively close in mass to the LSP and is in some cases the nLSP. These models lead to a significant improvement in the overall fit to the data by {approx}1 unit of {chi}{sup 2}/dof in comparison to the best fit without Supersymmetry while employing boosts in the range {approx}100-200. The implications of these models for future experiments are discussed.

  4. Cosmic Ray Muons Timing in the ATLAS Detector

    SciTech Connect

    Meirose, Bernhard

    2009-12-17

    In this talk I discuss the use of calorimeter timing both for detector commissioning and in searches for new physics. In particular I present real and simulated cosmic ray muons data (2007) results for the ATLAS Tile Calorimeter system. The analysis shows that several detector errors such as imperfect calibrations can be uncovered. I also demonstrate the use of ATLAS Tile Calorimeter's excellent timing resolution in suppressing cosmic ray fake missing transverse energy (E{sub T}) in searches for supersymmetry.

  5. The effect of cosmic rays on thunderstorm electricity

    NASA Technical Reports Server (NTRS)

    Bragin, Y. A.

    1975-01-01

    The inflow of charges of small ions, formed by cosmic rays, into thunderstorm cells is estimated on the basis of rocket measurements of ionic concentrations below 90 km. Out of the two processes that form the thunderstorm charge (generation and separation of charges), the former is supposed to be caused by cosmic rays, and the nature of separation is assumed to be the same as in other thunderstorm theories.

  6. Origin of cosmic rays in the spiral galaxy NGC 3310

    SciTech Connect

    Duric, N.

    1984-01-01

    The problem of cosmic ray production in the spiral galaxy NGC 3310 is addressed by analyzing and comparing optical and radio continuum data. Tentative results indicate that on global scales relativistic electrons may be produced in the shock front associated with the density wave while on local scales extreme population I objects may be producing them. It is inferred that the same conclusions apply to all cosmic rays produced in the disk. 9 references.

  7. Low energy cosmic ray studies from a lunar base

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, Mark E.

    1990-01-01

    Studies of cosmic ray nuclei with energies less than about 7 GeV/nucleon in low earth orbit are hampered by the geomagnetic field. Even in high inclination orbits these effects can be significant. The lunar surface (or lunar orbit) provides an attractive site for carrying out low energy cosmic ray studies which require large detectors. The rationale and requirements for this type of experiment are described.

  8. First zonal harmonic component of cosmic ray neutron intensity

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Yahagi, N.; Chiba, T.

    1985-01-01

    Cosmic ray neutron data from the cosmic ray stations from the worldwide network in 1966, 1967 and 1969 are analyzed by means of the three dimensional analysis method by Nagashima. The variations of the north-south anisotropy, which is the first zonal harmonic component obtained from the analysis are studied. The result obtained confirms earlier findings. Relationship of the anisotropy to the interplanetary magnetic field sector polarity is also studied.

  9. Strangelets accelerated by pulsars in galactic cosmic rays

    SciTech Connect

    Cheng, K. S.; Usov, V. V.

    2006-12-15

    It is shown that nuggets of strange quark matter may be extracted from the surface of pulsars and accelerated by strong electric fields to high energies if pulsars are strange stars with the crusts, comprised of nuggets embedded in a uniform electron background. Such high energy nuggets called usually strangelets give an observable contribution into galactic cosmic rays and may be detected by the upcoming cosmic ray experiment Alpha Magnetic Spectrometer AMS-02 on the International Space Station.

  10. Cosmic Ray Ruggedness of Power Semiconductor Devices for Hybrid Vehicles

    NASA Astrophysics Data System (ADS)

    Nishida, Shuichi; Shoji, Tomoyuki; Ohnishi, Toyokazu; Fujikawa, Touma; Nose, Noboru; Ishiko, Masayasu; Hamada, Kimimori

    Power semiconductors that are used under high voltage conditions in hybrid vehicles (HVs) are required to have a high destruction tolerance against cosmic rays as well as to meet conventional quality standards. In this paper, the failure mechanism for single event burnouts (SEB) induced by cosmic rays in insulated gate bipolar transistors (IGBTs) was investigated. Device destruction tolerance can be greatly improved by adopting an optimized device design that greatly suppresses parasitic thyristor action.

  11. Consistency of cosmic-ray source abundances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    Certain results regarding the ratio of cosmic-ray sources (CRS) and Solar System abundances are the same as those obtained from explosive nucleosynthesis. Such a model is consistent with the fact that in the Solar System Mg, Si, and Fe are believed to be produced by explosive nucleosynthesis, whereas C and O are mainly products of other processes. The model considered explains the carbon-to-oxygen ratio in the cosmic rays.

  12. ROBAST: ROOT-based ray-tracing library for cosmic-ray telescopes

    NASA Astrophysics Data System (ADS)

    Okumura, Akira

    2016-03-01

    ROBAST (ROOT-based simulator for ray tracing) is a non-sequential ray-tracing simulation library developed for wide use in optical simulations of gamma-ray and cosmic-ray telescopes. The library is written in C++ and fully utilizes the geometry library of the ROOT analysis framework, and can build the complex optics geometries typically used in cosmic ray experiments and ground-based gamma-ray telescopes.

  13. Cosmic Rays in the Gamma-ray Sky

    NASA Astrophysics Data System (ADS)

    Brandt, T. J.

    2016-03-01

    Instruments directly measuring properties of cosmic rays (CRs) have given us insight into their origins, acceleration mechanisms, and propagation. Indirect measurements provide complementary information which can help disentangle particle types and energetics at sources such as supernova remnants (SNRs), can suggest new sources, and can trace the propagation of CRs through, for instance, interactions with a galaxy's interstellar medium. Gamma rays are particularly good at indirectly illuminating CRs as they are sensitive to the pion decay channel (CR+p+ -->π0 --> γ + γ). Recent work, e.g., using the pion turn-on energy to show proton acceleration in 3 SNRs and mapping CR interactions with Galactic gas using Fermi-LAT, bears this out. The survey capability of instruments like Fermi and HAWC nicely complements the isotropized CRs measured near Earth while VERITAS, MAGIC, and HESS Imaging Air Cherenkov Telescopes (IACTs) provide greater insight into potential sources, including constraining maximum energy both within and beyond our Galaxy. Upcoming IACTs like CTA will greatly enhance this. This talk will explore recent results and potential future insights into CRs using gamma-ray emission and touch on direct measurements made with gamma-ray instruments. This work was supported in part by the Fermi-LAT Collaboration.

  14. A local recent supernova - Evidence from X-rays, Al-26 radioactivity and cosmic rays

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.; Cox, Donald P.; Michel, Curtis F.

    1986-01-01

    Possible ways in which cosmic rays could have been contaminated by a local recent supernova are discussed, and ways in which this contamination may be affecting interpretation of Al-26 gamma radiation and locally observed cosmic rays as samples of the average Galactic distribution are considered. Mass spectra of cosmic rays are examined to see whether there is enrichment by a population arising from supernova preacceleration. The reinterpretation of the anomalous component in terms of a local supernova model is addressed.

  15. Galactic cosmic-ray modulation near the heliopause

    SciTech Connect

    Guo, X.; Florinski, V.

    2014-09-20

    We investigate the modulation of galactic cosmic rays in the inner and outer heliosheaths using three-dimensional numerical simulations. The model is based on the Parker transport equation integrated using a stochastic phase-space trajectory method. Integration is performed on a plasma background obtained from a global three-dimensional magnetohydrodynamic simulations. Our results predict a negligible amount of modulation in the outer heliosheath because of weak scattering of cosmic ray ions owing to very low levels of magnetic fluctuation power at wavenumbers relevant to the transport of cosmic rays with MeV to GeV energies. This means that the heliopause may be treated as a Dirichlet-type boundary for the purpose of energetic particle modeling. We present models with and without drift velocity to facilitate comparison with papers published earlier. We also attempt to reproduce the sudden step-like increases of cosmic-ray intensity observed by Voyager 1 before its encounter with the heliopause. Our results indicate that very slow cross-field diffusion in the outer heliosheath could produce a large gradient of cosmic rays inside the heliospheric boundary. The resulting large gradient in cosmic-ray intensity near the heliopause qualitatively agrees with recent Voyager 1 observations.

  16. Ultra-heavy cosmic rays: Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1977-01-01

    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  17. Ultraheavy cosmic rays - Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1978-01-01

    The recent extreme ultraheavy cosmic-ray observations (Z greater than or equal to 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar-system abundances is also used. There is the continued strong indication of an r-process dominance in the extreme ultraheavy cosmic rays. It is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fitted with the same r-process calculation which also fits the solar-system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. An estimate is also made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  18. Cosmic-ray modulation at solar maximum: modeling

    NASA Astrophysics Data System (ADS)

    Kota, J.; Jokipii, J.

    The modulation of the galactic and anomalous cosmic rays is a result of the energy loss cosmic rays suffer during their passage through the heliospheric magnetic and electric fields. By contrast with the years of quiet heliosphere, which can be described with a tilted dipole model that remains stable for several solar rotations, cosmic-ray modulation during the periods of the active Sun is thought to be dominated by transient events. Propagating disturbances forming global merged interaction regions (GMIRs) act as propagating barriers. The heliospheric current sheet (HCS) dividing the opposite polarities of the heliospheric magnetic field (HMF) becomes highly tilted and may contain a significant quadrupole component, leading to a warped current sheet with a profound north-south asymmetry. We present numerical simulations to model cosmic-ray transport and acceleration in the heliosphere during solar maximum. Our 2-D and 3-D codes are extended to include several transients. We consider various complex configurations of the HMF, as well as a dynamical variation of the tilted current sheet, involving meridional field components. We discuss the effects of GMIRs on galactic and anomalous cosmic rays, and compare the time evolution of the two different species, as the disturbance propagates outward through the termination shock (TS) into the heliosheath. Some aspects of cosmic-ray modulation beyond the TS, in the subsonic heliosheath will also be addressed.

  19. Student Measurements of Cosmic Rays on an International Scale

    NASA Astrophysics Data System (ADS)

    Peterson, Robert S.

    2006-12-01

    As part of the QuarkNet Collaboration, teachers and students capture cosmic ray data using scintillator hardware the students construct. These data support student inquiry into cosmic ray flux, provide coincidence timing of cosmic ray showers, measure muon lifetime, and analyze their cosmic ray detector performance. Students share these data with others by using a browser friendly “e-Lab” portal. After three years, the QuarkNet “e-Lab” portal contains over 7000 days of cosmic ray data from 70 high schools. The nature of web based tools and data retrieval allow anyone with an Internet connection to engage freely the available resources investigating cosmic rays. The Internet now allows international students to participate in the Collaboration. With the coming of the LHC in CERN and plans underway for siting the ILC, particle physics includes more international institutions. QuarkNet supports this international effort by sharing resources with teachers and students abroad. This talk examines the new inclusion of distant students who contribute their data from around the globe with time synchronous coverage. Simultaneous data strengthens the questions students can examine. Examples of global research questions will be covered, and examples given of student research. Additional international members may join; account procedures will be described.

  20. Common origin of the high energy astronomical gamma rays, neutrinos and cosmic ray positrons?

    NASA Astrophysics Data System (ADS)

    Dado, Shlomo; Dar, Arnon

    2016-03-01

    We show that the observed fluxes, spectra and sky distributions of the high energy astronomical neutrinos, gamma rays and cosmic ray positrons satisfy the simple relations expected from their common production in hadronic collisions in/near source of high energy cosmic rays with diffuse matter.

  1. Heliospheric Energetic Particles and Galactic Cosmic Ray Modulation

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga

    2015-08-01

    The paper presents an overview of the SH ‘Solar and Heliospheric cosmic rays’ session of the 24th European Cosmic Ray Symposium (ECRS), Kiel, Germany, 2014. It covers the topics of Solar Energetic Particle (SEP) origin, acceleration and transport at the Sun and in the interplanetary medium, also from the aspect of multi-spacecraft observations, as well as the Galactic Cosmic Ray (GCR) short- and long-term variations and the Jovian electron variations in the heliosphere. Relevant instruments and methods presented are also covered by this review. The paper is written from a personal perspective, emphasizing those results that the author found most interesting.

  2. A New Measurement of the Cosmic X-ray Background

    SciTech Connect

    Moretti, A.

    2009-05-11

    I present a new analytical description of the cosmic X-ray background (CXRB) spectrum in the 1.5-200 keV energy band, obtained by combining the new measurement performed by the Swift X-ray telescope (XRT) with the recently published Swift burst alert telescope (BAT) measurement. A study of the cosmic variance in the XRT band (1.5-7 keV) is also presented. I find that the expected cosmic variance (expected from LogN-LogS) scales as {omega}{sup -0.3}(where {omega} is the surveyed area) in very good agreement with XRT data.

  3. Interactions of cosmic rays with the venusian atmosphere during different periods of solar activity

    NASA Astrophysics Data System (ADS)

    Plainaki, Christina; Paschalis, Pavlos; Grassi, Davide; Mavromichalaki, Helen; Andriopoulou, Maria

    2016-04-01

    Interactions of the galactic and solar cosmic ray particles with the atmosphere of Venus result in extensive nuclear and electromagnetic cascades that can affect cloud formation and chemistry in deep atmospheric layers. Variability in the energy spectrum of the cosmic ray particles and in their integrated flux and direction would have possible effects in the local neutral densities, particle ionization and escape. It is therefore of significant importance to understand and quantify such space weather phenomena at Venus, in the context of future mission preparation and also data interpretations of previous missions (e.g. Venus Express). In this paper, we perform a calculation of the atmosphere ionization and ion production rates caused by cosmic rays, as a function of depth in the Venusian atmosphere. We examine the interactions of the planet's atmosphere with galactic and solar cosmic rays (during solar energetic particle events). The latter scenario was studied for two paradigm cases: the very energetic solar event in October 1989 and the recent, less energetic, solar event in May 2012, assuming that the directional and energy properties of the solar particles allowed their arrival and penetration to the Venusian atmosphere. For the event in 2012, we considered the solar particle properties (integrated flux and spectrum) obtained by the NMBANGLE PPOLA model (Plainaki et al., 2010; 2014) applied previously for the Earth case, scaled to the distance of Venus (i.e. 0.72 AU from the Sun). In order to simulate the actual cascade in the atmosphere initiated by the incoming cosmic ray fluxes we use a Monte Carlo modeling technique based on the Geant4 software, previously applied for the Earth case (Paschalis et al., 2014), namely DYASTIMA. Our predictions are afterwards compared to other estimations derived from previous studies. The current method is furthermore proposed as a paradigm for studying cosmic ray-atmosphere interactions in the terrestrial planets possessing

  4. Constraining the Cosmic-ray Acceleration Efficiency in the Supernova Remnant IC 443

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam Michael; Federman, Steven R.; Jenkins, Edward B.; Caprioli, Damiano; Wallerstein, George

    2015-08-01

    Supernova remnants are widely believed to be the sources responsible for the acceleration of Galactic cosmic rays. Over the last several years, observations made with the Fermi Gamma-ray Space Telescope have confirmed that cosmic-ray nuclei are indeed accelerated in some supernova remnants, including IC 443, which is a prototype for supernova remnants interacting with molecular clouds. However, the details concerning the particle acceleration processes in middle aged remnants are not fully understood, in part because the basic model parameters are not always well constrained. Here, we present preliminary results of a Hubble Space Telescope investigation into the physical conditions in diffuse molecular gas interacting with IC 443. We examine high-resolution FUV spectra of two stars, one that probes the interior region of the supernova remnant, and the other located just outside the visible edge of IC 443. With this arrangement, we are able to evaluate the densities and temperatures in neutral gas clumps positioned both ahead of and behind the supernova shock front. From these measurements, we obtain estimates for the post-shock temperature and the shock velocity in the interclump medium. We discuss the efficacy of these results for constraining both the age of IC 443, and also the cosmic-ray acceleration efficiency. Finally, we report the first detection of boron in a supernova remnant, and discuss the usefulness of the B/O ratio in constraining the cosmic-ray content of the gas interacting with IC 443.

  5. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  6. Propagation of Cosmic Rays: Nuclear Physics in Cosmic-Ray Studies

    SciTech Connect

    Moskalenko, Igor V.; Mashnik, Stepan G.

    2005-05-24

    The nuclei fraction in cosmic rays (CR) far exceeds the fraction of other CR species, such as antiprotons, electrons, and positrons. Thus the majority of information obtained from CR studies is based on interpretation of isotopic abundances using CR propagation models where the nuclear data and isotopic production cross sections in p- and {alpha}-induced reactions are the key elements. This paper presents an introduction to the astrophysics of CR and diffuse {gamma}-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models. Merging with cosmology and particle physics, astrophysics of CR has become a very dynamic field with a large potential of breakthrough and discoveries in the near future. Exploiting the data collected by the CR experiments to the fullest requires accurate nuclear cross sections.

  7. Propagation of Cosmic Rays: Nuclear Physics in Cosmic-ray Studies

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.; Strong, Andrew W.; Mashnik, Stepan G.

    2004-01-01

    The nuclei fraction in cosmic rays (CR) far exceeds the fraction of other CR species, such as antiprotons, electrons, and positrons. Thus the majority of information obtained from CR studies is based on interpretation of isotopic abundances using CR propagation models where the nuclear data and isotopic production cross sections in p- and alpha-induced reactions are the key elements. This paper presents an introduction to the astrophysics of CR and diffuse gamma-rays and dimsses some of the puzzles that have emerged recently due to more precise data and improved propagation models. Merging with cosmology and particle physics, astrophysics of CR has become a very dynamic field with a large potential of breakthrough and discoveries in the near fume. Exploiting the data collected by the CR experiments to the fullest requires accurate nuclear cross sections.

  8. Commissioning of the ATLAS Semiconductor Tracker with cosmic rays

    NASA Astrophysics Data System (ADS)

    Stanecka, E.; Atlas Sct Collaboration

    2007-10-01

    This paper presents the results of the tests with cosmic rays of the ATLAS Semiconductor Tracker (SCT) as well as operational experience of running the fully integrated silicon detector during the commissioning of the completed SCT. Prior to inserting into ATLAS, the barrel part of the SCT has been integrated with the Transition Radiation Tracker (TRT) barrel and tested with cosmic rays. A sector of 468 SCT modules has been powered and read simultaneously with TRT modules in physics mode. In total 500 thousand events were recorded during cosmic runs and processed with the ATLAS off-line reconstruction software. The SCT performance was measured in terms of the average noise occupancy per channel (4.5×10-5) and the overall efficiency (>99%). The tests with cosmic rays proved full functionality of the complex Detector Control System (DCS) which provides control, monitoring and safety functions for the detector electronics.

  9. Cosmic-ray record in solar system matter

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.; Arnold, J. R.; Lal, D.

    1983-01-01

    The interaction of galactic cosmic rays (GCR) and solar cosmic rays (SCR) with bodies in the solar system is discussed, and what the record of that interaction reveals about the history of the solar system is considered. The influence of the energy, charge, and mass of the particles on the interaction is addressed, showing long-term average fluxes of solar protons, predicted production rates for heavy-nuclei tracks and various radionuclides as a function of depth in lunar rock, and integral fluxes of protons emitted by solar flares. The variation of the earth's magnetic field, the gardening of the lunar surface, and the source of meteorites and cosmic dust are studied using the cosmic ray record. The time variation of GCR, SCR, and VH and VVH nuclei is discussed for both the short and the long term.

  10. Ionization and heating by X-rays and cosmic rays

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel

    2015-09-01

    High-energy radiation from the central T Tauri and protostars plays an important role in shaping protoplanetary disks and influences their evolution. Such radiation, in particular X-rays and extreme-ultraviolet (EUV) radiation, is predominantly generated in unstable stellar magnetic fields (e.g., the stellar corona), but also in accretion hot spots. Even jets may produce X-ray emission. Cosmic rays, i.e., high-energy particles either from the interstellar space or from the star itself, are of crucial importance. Both highenergy photons and particles ionize disk gas and lead to heating. Ionization and heating subsequently drive chemical networks, and the products of these processes are accessible through observations of molecular line emission. Furthermore, ionization supports the magnetorotational instability and therefore drives disk accretion, while heating of the disk surface layers induces photoevaporative flows. Both processes are crucial for the dispersal of protoplanetary disks and therefore critical for the time scales of planet formation. This chapter introduces the basic physics of ionization and heating starting from a quantum mechanical viewpoint, then discusses relevant processes in astrophysical gases and their applications to protoplanetary disks, and finally summarizes some properties of the most important high-energy sources for protoplanetary disks. 14th Lecture from Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  11. Are cosmic rays modulated beyond the heliopause?

    SciTech Connect

    Kóta, J.; Jokipii, J. R.

    2014-02-10

    We discuss the possible spatial variation of Galactic and anomalous cosmic rays (GCRs and ACRs) at and beyond the heliopause (HP). Remaining within the framework of the Parker transport equation and assuming incompressible plasma in the heliosheath, we consider highly idealized simple-flow models and compare our GCR results with recent publications of Scherer et al. and Strauss et al. First, we discuss an order-of-magnitude estimate and a simple spherical model to demonstrate that the modulation of GCRs beyond the HP must be quite small if the diffusion coefficient beyond the HP is greater than ≈10{sup 26} cm{sup 2} s{sup –1}, a value that is two orders of magnitude smaller than the value of 10{sup 28} cm{sup 2} s{sup –1} determined from observations of GCR composition. Second, we construct a non-spherical model, which allows lateral deflection of the flow and uses different diffusion coefficients parallel and perpendicular to the magnetic field. We find that modulation of GCRs beyond the HP remains small even if the perpendicular diffusion coefficient beyond the HP is quite small (≈10{sup 22} cm{sup 2} s{sup –1}) as long as the parallel diffusion is sufficiently fast. We also consider the case when the parallel diffusion beyond the HP is fast, but the perpendicular diffusion is as small as ≈10{sup 20} cm{sup 2} s{sup –1}; this results in a sharp, almost step-like increase of GCR flux (and decrease of ACRs) at the HP. Possible implications are briefly discussed. We further suggest the possibility that the observed sharp gradient of GCRs at the HP might push the HP closer to the Sun than previously thought.

  12. Energetic feedback in galaxies: Processing of interstellar silicate grains by cosmic rays

    SciTech Connect

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G W M; Dai, Z R; Graham, G; Bajt, S; Bradley, J P; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2006-05-10

    The formation and evolution of stars and galaxies is a complex process that involves the cooling and collapse of dense interstellar clouds as well as energetic feedback on these clouds. Interstellar dust grains are central to the radiative transfer, thermal balance, and molecular processes in these clouds and can provide an important diagnostic. Hence, the effects of energetic processing of interstellar dust may have significant consequences. r This may be studied in our own Galaxy, where observations have shown that an appreciable fraction of silicates formed in the outflows from red giants and supergiants have a crystalline structure. Yet, the fraction of crystalline silicates in the interstellar medium is very small, pointing towards an efficient crystalline crystalline-to to-amorphous conversion process. Here we report experimental and modeling results that show that relatively ''low'' energy (0.1 - 5.0 GeV) heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium. The implications of this are briefly discussed. We also examine the effects of cosmic ray processing of silicates in the solar system and in stellar debris disks. In the latter systems, cosmic ray processing may play a role for grains trapped in resonance with planetary companions. We speculate that energetic processing of interstellar dust is likely to be even more important in s star forming galaxies, which have higher cosmic ray fluxes due to tar their much larger star formation rates and their emerging active black holes with associated jets.

  13. Spectral breaks as a signature of cosmic ray induced turbulence in the Galaxy.

    PubMed

    Blasi, Pasquale; Amato, Elena; Serpico, Pasquale D

    2012-08-10

    We show that the complex shape of the cosmic ray (CR) spectrum, as recently measured by PAMELA and inferred from Fermi-LAT γ-ray observations of molecular clouds in the Gould belt, can be naturally understood in terms of basic plasma astrophysics phenomena. A break from a harder to a softer spectrum at rigidity R is approximately equal to 10 GV follows from a transition from transport dominated by advection of particles with Alfvén waves to a regime where diffusion in the turbulence generated by the same CRs is dominant. A second break at R is approximately equal to 200 GV happens when the diffusive propagation is no longer determined by the self-generated turbulence, but rather by the cascading of externally generated turbulence (for instance due to supernova bubbles) from large spatial scales to smaller scales where CRs can resonate. Implications of this scenario for the cosmic ray spectrum, grammage, and anisotropy are discussed. PMID:23006255

  14. Phantom Cosmic Ray Decreases and their Extraterrestrial Origins

    NASA Astrophysics Data System (ADS)

    Thomas, Simon; Owens, Mathew; Lockwood, Mike; Scott, Chris

    2014-05-01

    Galactic cosmic rays are extremely high energy charged particles accelerated at extra-solar sources such as supernovae, active galactic nuclei, quasars, and gamma-ray bursts. Upon arrival at Earth's atmosphere, they collide with air molecules to produce a shower of secondary particles. One product of this air shower is energetic neutrons, which can be detected at the Earth's surface. Neutron monitors have been routinely operating for more than half a century and have shown that the cosmic ray flux at the top of the atmosphere is modulated by the heliospheric magnetic field (HMF), both at solar cycle time scales and due to shorter-term HMF variations, such as result from coronal mass ejections (CMEs). When a CME passes over the Earth, the neutron monitor counts are reduced sharply and suddenly (in a matter of hours) due to the modulation of cosmic rays by the enhancement in the heliospheric magnetic field (HMF). Such a drop in neutron counts is known as a Forbush Decrease. We present examples of unusual Forbush Decreases where there is no disturbance in the HMF at Earth at the time, which we name 'Phantom Cosmic Ray Decreases' (PCRDs). For recent PCRD events, we examine STEREO in-situ data and in each case, we find a large CME in either STEREO-A or -B. We also study neutron counts for each event from a number of neutron monitors at different longitudes. Differences between the size of the cosmic ray decreases at different longitudes are shown to give information on the location of the cosmic ray modulation source. We thus propose that these PCRDs are caused by CMEs which have missed Earth but which are large and intense enough to block out galactic cosmic rays on trajectories toward Earth.

  15. Multiwavelength Signatures of Cosmic Ray Acceleration by Young Supernova Remnants

    SciTech Connect

    Vink, Jacco

    2008-12-24

    An overview is given of multiwavelength observations of young supernova remnants, with a focus on the observational signatures of efficient cosmic ray acceleration. Some of the effects that may be attributed to efficient cosmic ray acceleration are the radial magnetic fields in young supernova remnants, magnetic field amplification as determined with X-ray imaging spectroscopy, evidence for large post-shock compression factors, and low plasma temperatures, as measured with high resolution optical/UV/X-ray spectroscopy. Special emphasis is given to spectroscopy of post-shock plasma's, which offers an opportunity to directly measure the post-shock temperature. In the presence of efficient cosmic ray acceleration the post-shock temperatures are expected to be lower than according to standard equations for a strong shock. For a number of supernova remnants this seems indeed to be the case.

  16. SIMULATIONS OF DISK GALAXIES WITH COSMIC RAY DRIVEN GALACTIC WINDS

    SciTech Connect

    Booth, C. M.; Agertz, Oscar; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2013-11-01

    We present results from high-resolution hydrodynamic simulations of isolated Small Magellanic Cloud (SMC)- and Milky-Way-sized galaxies that include a model for feedback from galactic cosmic rays (CRs). We find that CRs are naturally able to drive winds with mass loading factors of up to ∼10 in dwarf systems. The scaling of the mass loading factor with circular velocity between the two simulated systems is consistent with η∝v{sub circ}{sup 1-2} required to reproduce the faint end of the galaxy luminosity function. In addition, simulations with CR feedback reproduce both the normalization and the slope of the observed trend of wind velocity with galaxy circular velocity. We find that winds in simulations with CR feedback exhibit qualitatively different properties compared to supernova-driven winds, where most of acceleration happens violently in situ near star forming sites. The CR-driven winds are accelerated gently by the large-scale pressure gradient established by CRs diffusing from the star-forming galaxy disk out into the halo. The CR-driven winds also exhibit much cooler temperatures and, in the SMC-sized system, warm (T ∼ 10{sup 4} K) gas dominates the outflow. The prevalence of warm gas in such outflows may provide a clue as to the origin of ubiquitous warm gas in the gaseous halos of galaxies detected via absorption lines in quasar spectra.

  17. Radar detection of ultra high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac J.

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment co-located with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, UT. The TARA detector combines a 40 kW transmitter and high gain transmitting antenna which broadcasts the radar carrier over the SD array and in the FD field of view to a 250 MS/s DAQ receiver. Data collection began in August, 2013. TARA stands apart from other cosmic ray radar experiments in that radar data is directly compared with conventional cosmic ray detector events. The transmitter is also directly controlled by TARA researchers. Waveforms from the FD-triggered data stream are time-matched with TA events and searched for signal using a novel signal search technique in which the expected (simulated) radar echo of a particular air shower is used as a matched filter template and compared to radio waveforms. This technique is used to calculate the radar cross-section (RCS) upper-limit on all triggers that correspond to well-reconstructed TA FD monocular events. Our lowest cosmic ray RCS upper-limit is 42 cm2 for an 11 EeV event. An introduction to cosmic rays is presented with the evolution of detection and the necessity of new detection techniques, of which radar detection is a candidate. The software simulation of radar scattering from cosmic rays follows. The TARA detector, including transmitter and receiver systems, are discussed in detail. Our search algorithm and methodology for calculating RCS is presented for the purpose of being repeatable. Search results are explained in context of the usefulness and future of cosmic ray radar detection.

  18. Galactic cosmic ray transport in the heliosphere: 1963-2013

    NASA Astrophysics Data System (ADS)

    Ygbuhay, Roger Caber

    The solution to the transport equation of galactic cosmic rays in the heliosphere is a continuing research problem. Galactic cosmic ray transport is influenced by four physical processes: outward convection due to a magnetized solar wind, inward diffusion along the interplanetary magnetic field line, particle drifts, and adiabatic cooling. Usually one uses simulations to solve for the components of the diffusion tensor applicable to galactic cosmic ray transport in the heliosphere. In this dissertation, I take a data driven approach and use experimental data from 18 neutron monitors of the world-wide network of cosmic ray neutron monitors from 1963 to 2013. These neutron monitors are grouped (NM1 and NM2) by their vertical geomagnetic cut-off rigidities (NM1 4.5 GV). I show the solution to the parameter (alpha) that is the ratio of cosmic ray perpendicular mean free path to the parallel mean free path using neutron monitor data based on the model of hard sphere scattering of cosmic rays in the solar wind plasma and flat heliospheric current sheet. I show my results for the diffusion coefficients, the vector components of the free-space anisotropy in the radial, east-west, and north-south directions as well as the cosmic ray gradients in the radial and transverse directions with respect to the ecliptic plane. I show how these parameters of the transport equation correlate with rigidity, the 11-year solar cycle, and the 22-year solar magnetic cycle. I will also compare my results to the published results from other researchers.

  19. Space-atmospheric interactions of energetic cosmic rays

    NASA Astrophysics Data System (ADS)

    Isar, Paula Gina

    2015-02-01

    Ultra-high energy cosmic rays are the most energetic particles in the Universe of which origin still remain a mystery since a century from their descovery. They are unique messengers coming from far beyond our Milky Way Galaxy, which provides insights into the fundamental matter, energy, space and time. As subatomic particles flying through space to nearly light speed, the ultra-high energy cosmic rays are so rare that they strike the Earth's atmosphere at a rate of up to only one particle per square kilometer per year or century. While the atmosphere is used as a giant calorimeter where cosmic rays induced air showers are initiated and the medium through which Cherenkov or fluorescence light or radio waves propagate, all cosmic ray measurements (performed either from space or ground) rely on an accurate atmospheric monitoring and understanding of atmospheric effects. The interdisciplinary link between Astroparticle Physics and Atmospheric Environment through the ultra-high energy comic rays space - atmospheric interactions, based on the present ground- and future space-based cosmic ray observatories, will be presented.

  20. Gamma-ray emitting supernova remnants as the origin of Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Kroll, M.; Becker Tjus, J.; Eichmann, B.; Nierstenhöfer, N.

    2015-11-01

    It is generally believed that the cosmic ray spectrum below the knee is of Galactic origin, although the exact sources making up the entire cosmic ray energy budget are still unknown. Including effects of magnetic amplification, Supernova Remnants (SNR) could be capable of accelerating cosmic rays up to a few PeV and they represent the only source class with a sufficient non-thermal energy budget to explain the cosmic ray spectrum up to the knee. Now, gamma-ray measurements of SNRs for the first time allow to derive the cosmic ray spectrum at the source, giving us a first idea of the concrete, possible individual contributions to the total cosmic ray spectrum. In this contribution, we use these features as input parameters for propagating cosmic rays from its origin to Earth using GALPROP in order to investigate if these supernova remnants reproduce the cosmic ray spectrum and if supernova remnants in general can be responsible for the observed energy budget.

  1. The relationship between the galactic matter distribution, cosmic ray dynamics, and gamma ray production

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.

    1976-01-01

    Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.

  2. Ultra high energy gamma rays, cosmic rays and neutrinos from accreting degenerate stars

    NASA Technical Reports Server (NTRS)

    Brecher, K.; Chanmugam, G.

    1985-01-01

    Super-Eddington accretion for a recently proposed unipolar induction model of cosmic ray acceleration in accreting binary star systems containing magnetic white dwarfs or neutron stars is considered. For sufficiently high accretion rates and low magnetic fields, the model can account for: (1) acceleration of cosmic ray nuclei up to energies of 10 to the 19th power eV; (2) production of more or less normal solar cosmic ray composition; (3) the bulk of cosmic rays observed with energies above 1 TeV, and probably even down to somewhat lower energies as well; and (4) possibly the observed antiproton cosmic ray flux. It can also account for the high ultra high energy (UHE) gamma ray flux observed from several accreting binary systems (including Cygnus X-3), while allowing the possibility of an even higher neutrino flux from these sources, with L sub nu/L sub gamma is approximately 100.

  3. Galactic cosmic ray modulation and interplanetary medium perturbations due to a long-living active region during October 1989

    NASA Technical Reports Server (NTRS)

    Bavassano, B.; Iucci, N.; Lepping, R. P.; Signorini, C.; Smith, E. J.; Villoresi, G.

    1994-01-01

    During October 1989, three very energetic flares were ejected by the same active region at longitudes 9 deg E, 32 deg W, and 57 deg W, respectively. The shape of the galactic cosmic ray variations suggests the presence of large magnetic cloud structures (Nagashima et al., 1990) following the shock-associated perturbations. In spite of long data gaps the interplanetary observations at Interplanetary Monitoring Platform (IMP) 8 (near the Earth) and International Cometary Explorer (ICE)(approximately 1 AU, approximately 65 deg W) confirm this possibility for the event related to the 9 deg E flare; the principal axes analysis shows that the interplanetary magnetic field variations at both spacecraft locations are mainly confined on a meridian plane. This result suggests that the western longitudinal extension of this cloud is indeed very large (greater than or equal to 5 deg). The nonnegligible depression in the cosmic ray intensity observed inside the possible cloud related to the 57 deg W flare indicates that also the eastern extension could be very wide. The analysis of neutron monitor data shows clearly the cosmic ray trapping effect of magnetic clouds; this mechanism seems to be responsible for the enhanced diurnal effect often observed during the recovery phase of Forbush decreases. We give an interpretation for the anisotropic cosmic ray peak occurring in the third event, and, related to that, we suggest that the Forbush decrease modulated region at the Earth's orbit could be somewhat wider than the magnetic cloud, as already anticipated by Nagashima et al. (1990). By this analysis, based mainly on cosmic ray data, we show that it is possible to do reasonable inferences on the large-scale structure of flare-related interplanetary perturbations when interplanetary medium data are not completely present.

  4. Propagation Model for Cosmic Ray Species in the Galaxy

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Moskalenko, I. V.; Jones, F. C.; Ptuskin, V. S.; Strong, A. W.; Mashnik, S. G.

    2002-01-01

    During the last decade there have been a number of space and balloon experiments with improved sensivity and statistics, which impose stricter constraints on cosmic ray propagation models. Propagation is the main issue in the interpretation of such data as antiproton and positron fluxes in cosmic rays, and diffuse gamma-ray emission. We develop a new propagation model that reproduces measurements of secondary antiprotons as well as primary and secondary nuclei. We will present results of our calculation of CR propagation in the Galaxy for this model using the GALPROP code.

  5. Dark matter identification with cosmic-ray antideuterons

    NASA Astrophysics Data System (ADS)

    von Doetinchem, Philip

    2016-05-01

    Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches with positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This report is a condensed summary of the article “Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuteron” [1].

  6. Transition radiation as a source of cosmic X-rays.

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Bleach, R. D.

    1972-01-01

    It is shown that transition radiation generated during the passage of relativistic charged particles through interstellar grains can be an important source of cosmic X-rays. In order to account for recent X-ray observations below 300 eV by transition radiation, an energy density in interstellar space of about 10 eV per cu cm in 10 MeV electrons is required. This seems to rule out transition radiation as an important source of diffuse cosmic X-rays in any energy region.

  7. Cosmological simulations of dwarf galaxies with cosmic ray feedback

    NASA Astrophysics Data System (ADS)

    Chen, Jingjing; Bryan, Greg L.; Salem, Munier

    2016-08-01

    We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic-rays generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain cosmic ray parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8-30 $\\times 10^{10}$ Msun. We find that including cosmic ray feedback (with diffusion) consistently leads to disk dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.

  8. Cosmic-ray Propagation and Interactions in the Galaxy

    SciTech Connect

    Strong, Andrew W.; Moskalenko, Igor V.; Ptuskin, Vladimir S.; /Troitsk, IZMIRAN

    2007-01-22

    We survey the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10{sup 15} eV. A guide to the previous reviews and essential literature is given, followed by an exposition of basic principles. The basic ideas of cosmic-ray propagation are described, and the physical origin of its processes are explained. The various techniques for computing the observational consequences of the theory are described and contrasted. These include analytical and numerical techniques. We present the comparison of models with data including direct and indirect--especially gamma-ray--observations, and indicate what we can learn about cosmic-ray propagation. Some particular important topics including electrons and antiparticles are chosen for discussion.

  9. Nineteenth International Cosmic Ray Conference. HE Sessions, Volume 6

    NASA Technical Reports Server (NTRS)

    Jones, F. C. (Compiler)

    1985-01-01

    Papers contributed to the 19th International Cosmic Ray Conference which address high energy interactions and related phenomena are compiled. Particular topic areas include cross sections; particle production; nuclei and nuclear matter; nucleus-nucleus collisions; gamma ray and hadron spectra; C-jets, a-jets, and super families; and emulsion chamber simulations.

  10. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  11. Significance of medium-energy gamma-ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1976-01-01

    The paper examines the medium-energy (about 10-30 MeV) galactic gamma-ray radiation from primary and secondary electrons and calculates the expected gamma-ray distribution for the specific model of Bignami et al. (1975) on the assumption that the cosmic rays are correlated with the matter on the scale of galactic arms. The energy spectrum typical of regions near the galactic center indicates a dramatic shift from a predominantly cosmic-ray nucleonic mechanism at higher energies to a cosmic-ray electron mechanism at the lower energies. This provides a most important and direct means of probing the cosmic-ray electrons as a function of galactic position by making gamma-ray observations in the few to 40 MeV energy range. Medium-energy gamma-ray astronomy is shown to be a valuable tool in galactic research.

  12. Estimates of galactic cosmic ray shielding requirements during solar minimum

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Nealy, John E.; Wilson, John W.; Simonsen, Lisa C.

    1990-01-01

    Estimates of radiation risk from galactic cosmic rays are presented for manned interplanetary missions. The calculations use the Naval Research Laboratory cosmic ray spectrum model as input into the Langley Research Center galactic cosmic ray transport code. This transport code, which transports both heavy ions and nucleons, can be used with any number of layers of target material, consisting of up to five different arbitrary constituents per layer. Calculated galactic cosmic ray fluxes, dose and dose equivalents behind various thicknesses of aluminum, water and liquid hydrogen shielding are presented for the solar minimum period. Estimates of risk to the skin and the blood-forming organs (BFO) are made using 0-cm and 5-cm depth dose/dose equivalent values, respectively, for water. These results indicate that at least 3.5 g/sq cm (3.5 cm) of water, or 6.5 g/sq cm (2.4 cm) of aluminum, or 1.0 g/sq cm (14 cm) of liquid hydrogen shielding is required to reduce the annual exposure below the currently recommended BFO limit of 0.5 Sv. Because of large uncertainties in fragmentation parameters and the input cosmic ray spectrum, these exposure estimates may be uncertain by as much as a factor of 2 or more. The effects of these potential exposure uncertainties or shield thickness requirements are analyzed.

  13. High Energy Cosmic Rays and Neutrinos from Newborn Pulsars

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Olinto, Angela

    2013-04-01

    Newborn pulsars offer favorable sites for cosmic ray acceleration and interaction. Particles could be striped off the star surface and accelerated in the pulsar wind up to PeV-100 EeV energies, depending on the pulsar's birth period and magnetic field strength. Once accelerated, the cosmic rays interact with the surrounding supernova ejecta until they escape the source. By assuming a normal distribution of pulsar birth periods centered at 300,ms, we find the combined contribution of extragalactic pulsars produce ultrahigh energy cosmic rays that agree with both the observed energy spectrum and composition trend reported by the Auger Observatory. Meanwhile, we point out their Galactic counterparts naturally give rise to a cosmic ray flux peaked at very high energies (VHE, between 10^16 and 10^18 ,eV), which can bridge the gap between predictions of cosmic rays produced by supernova remnants and the observed spectrum and composition just below the ankle. Young pulsars in the universe would also contribute to a diffuse neutrino background due to the photomeson interactions, whose detectability and typical neutrino energy are discussed. Lastly, we predict a neutrino emission level for the future birth of a nearby pulsar.

  14. Experimental Summary: Very High Energy Cosmic Rays and their Interactions

    NASA Astrophysics Data System (ADS)

    Kampert, Karl-Heinz

    2013-06-01

    The XVII International Symposium on Very High Energy Cosmic Ray Interactions, held in August of 2012 in Berlin, was the first one in the history of the Symposium,where a plethora of high precision LHC data with relevance for cosmic ray physics was presented. This report aims at giving a brief summary of those measurements andit discusses their relevance for observations of high energy cosmic rays. Enormous progress has been made also in air shower observations and in direct measurements of cosmic rays, exhibiting many more structure in the cosmic ray energy spectrum than just a simple power law with a knee and an ankle. At the highest energy, the flux suppression may not be dominated by the GZK-effect but by the limiting energy of a nearby source or source population. New projects and application of new technologies promise further advances also in the near future. We shall discuss the experimental and theoretical progress in the field and its prospects for coming years.

  15. Cosmic ray modulation and turbulent interaction regions near 11 AU

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Mcdonald, F. B.; Goldstein, M. L.; Lazarus, A. J.

    1985-01-01

    When Voyager 2 was near 11 AU, the counting rate of nuclei approx 75 MeV/nucleon decreased during the interval from July, 1982 to November, 1982, and it increased thereafter until August, 1983. A decrease in cosmic ray flux was generally associated with the passage of an interaction region in which the magnetic field strength B was higher than that predicted by the spiral field model, B sub p. Several large enhancements in B/B sup p were associated with merged interaction regions which probably resulted from the interaction of two or more distinct flows. During the passage of interaction regions the cosmic ray intensity decreased at a rate proportional to (B/B sup p -1), and during the passage of rarefaction regions (where B/B sup p 1) the cosmic ray intensity increased at a constant rate. The general form of the cosmic ray intensity profile during this approx 13 month minicycle can be described by integrating these relations using the observed B(t). Latitudinal variations of the interaction regions and of the short-term cosmic ray variations were identified.

  16. Global MHD simulations of cosmic ray driven galactic winds

    NASA Astrophysics Data System (ADS)

    Ruszkowski, Mateusz; Yang, Hsiang-Yi Karen; Gould Zweibel, Ellen

    2016-04-01

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magneto-hydrodynamical simulations of an isolated starbursting galaxy. We focus on the dynamical role of cosmic rays injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of cosmic rays along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching and mass loading factors depending on the details of the plasma physics. Cosmic rays stream away from the densest regions near the galactic disk along partially ordered magnetic fields and, in the process, accelerate more tenuous gas away from the galaxy. For cosmic ray acceleration efficiencies broadly consistent with the observational constraints, cosmic rays are likely to have a notable impact on the wind launching.

  17. The Energetic Trans-Iron Cosmic-ray Experiment (ENTICE)

    NASA Technical Reports Server (NTRS)

    Binns, W. R.; Adams. J. H.; Barghouty, A. F.; Christian, E. R.; Cummings, A. C.; Hams, T.; Israel, M. H.; Labrador, A. W.; Leske, R. A.; Link, J. T.; Mewwaldt, R. A.; Mitchell, J. W.; De Nolfo, G. A.; Sasaki, M.; Stone, E. C.; Waddington, C. J.; Wiedenbeck, M. E.

    2009-01-01

    The ENTICE experiment is one of two instruments that comprise the "Orbiting Astrophysical Spectrometer in Space (OASIS)", which is presently undergoing a NASA "Astrophysics Strategic Mission Concept Study". ENTICE is designed to make high precision measurements of the abundances of individual elements from neon through the actinides and, in addition, will search for possible superheavy nuclei in the galactic cosmic rays. The ENTICE instrument utilizes silicon detectors, aerogel and acrylic Cherenkov counters, and a scintillating optical fiber hodoscope to measure the charge and energy of these ultra-heavy nuclei for energies greater than 0.5 GeV/nucleon. It is a large instrument consisting of four modules with a total effective geometrical factor of approx.20 sq m sr. Measurements made in space for a period of three years with ENTICE will enable us to determine if cosmic rays include a component of recently synthesized transuranic elements (Pu-94 and Cm-96), to measure the age of that component, and to test the model of the OB association origin of galactic cosmic rays. Additionally, these observations will enable us to study how diffusive shock acceleration of cosmic rays operates differently on interstellar grains and gas. Keywords: cosmic rays Galaxy:abundances

  18. CHEMICAL COMPOSITION AND MAXIMUM ENERGY OF GALACTIC COSMIC RAYS

    SciTech Connect

    Shibata, M.; Katayose, Y.; Huang, J.; Chen, D.

    2010-06-20

    A model of the cosmic-ray energy spectrum is proposed that assumes various acceleration limits at multiple sources. The model describes the broken power-law energy spectrum of cosmic rays by superposition of multiple sources; a diffusive shock acceleration mechanism plays an essential role. The maximum energy of galactic cosmic rays is discussed based on a comparison of experimental data with calculations done using the proposed model. The model can describe the energy spectrum at very high energies of up to several times 10{sup 18} eV, but the observed highest-energy cosmic rays deviate from the model predictions, indicating a different origin, such as an extragalactic source. This model describes the steepening of the power index at the so-called knee. However, it was found that additional assumptions are needed to explain the sharpness of the knee. Two possible explanations for the structure of the knee are discussed in terms of nearby source(s) and the hard energy spectrum suggested by nonlinear effects of cosmic-ray acceleration mechanisms.

  19. Stability of a Cosmic-Ray-Magnetohydrodynamic System

    NASA Astrophysics Data System (ADS)

    Ko, Chung-Ming; Lo, Ying-Yi

    2009-02-01

    We study the stability of a four-fluid cosmic-ray-MHD system which comprises magnetized thermal plasma, cosmic rays, forward and backward propagating Alfvén waves. The coupling between the plasma, cosmic rays, and waves depends on the energy density of the waves. Local short-wavelength small perturbation analysis is performed on a background steady state. The magnetoacoustic modes of the plasma are modified and intertwined with cosmic ray and wave modes, while the plasma Alfvén mode is unaffected. The parameter space is large and the stable/unstable regions of the system are complicated. We discuss some special cases analytically and work out some general cases numerically. Roughly speaking, the system is more likely to be stable if the perturbations have very short wavelength, not propagating at large angle with background magnetic field, large cosmic ray energy density, not too small energy density for both waves and large thermal energy density (and no self-gravity).

  20. Cosmic ray anisotropies to 5 PeV

    SciTech Connect

    Erlykin, A. D.; Wolfendale, A. W. E-mail: a.w.wolfendale@durham.ac.uk

    2013-04-01

    Several large cosmic ray (CR) detectors have recently provided data on the arrival directions of CR, which taken together with previous data recorded over many decades allow the amplitude and phase of the first harmonic to be derived with reasonable precision and up to higher energies. We find a high degree of consistency amongst the various measurements. The new data indicate that at an energy above ∼ 0.1 PeV a change of the CR anisotropy sets in. The amplitude of the first harmonic, which rises to 3 TeV, then diminishes and begins to rise again. The direction of the phase also changes to the opposite one. A measure of understanding follows from the use of two-dimensional maps of cosmic ray excesses over the mean background. When the energy of cosmic rays approaches the PeV region, the excess of cosmic rays moves from the Galactic Anti-Centre to the opposite direction of the Galactic Centre. The possible role of such potential cosmic ray sources as the supernovae Monogem Ring and Vela, which could help to explain some of the observed results, is discussed.

  1. Modified non-linear Burgers' equations and cosmic ray shocks

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Webb, G. M.; Mckenzie, J. F.

    1988-01-01

    A reductive perturbation scheme is used to derive a generalized non-linear Burgers' equation, which includes the effects of dispersion, in the long wavelength regime for the two-fluid hydrodynamical model used to describe cosmic ray acceleration by the first-order Fermi process in astrophysical shocks. The generalized Burger's equation is derived for both relativistic and non-relativistic cosmic ray shocks, and describes the time evolution of weak shocks in the theory of diffusive shock acceleration. The inclusion of dispersive effects modifies the phase velocity of the shock obtained from the lower order non-linear Burger's equation through the introduction of higher order terms from the long wavelength dispersion equation. The travelling wave solution of the generalized Burgers' equation for a single shock shows that larger cosmic ray pressures result in broader shock transitions. The results for relativistic shocks show a steepening of the shock as the shock speed approaches the relativistic cosmic ray sound speed. The dependence of the shock speed on the cosmic ray pressure is also discussed.

  2. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  3. The acceleration rate of cosmic rays at cosmic ray modified shocks

    NASA Astrophysics Data System (ADS)

    Saito, Tatsuhiko; Hoshino, Masahiro; Amano, Takanobu

    It is a still controversial matter whether the production efficiency of cosmic rays (CRs) is relatively efficient or inefficient (e.g. Helder et al. 2009; Hughes et al. 2000; Fukui 2013). In upstream region of SNR shocks (the interstellar medium), the energy density of CRs is comparable to a substantial fraction of that of the thermal plasma (e.g. Ferriere 2001). In such a situation, CRs can possibly exert a back-reaction to the shocks and modify the global shock structure. These shocks are called cosmic ray modified shocks (CRMSs). In CRMSs, as a result of the nonlinear feedback, there are almost always up to three steady-state solutions for given upstream parameters, which are characterized by CR production efficiencies (efficient, intermediate and inefficient branch). We evaluate qualitatively the efficiency of the CR production in SNR shocks by considering the stability of CRMS, under the effects of i) magnetic fields and ii) injection, which play significant roles in efficiency of acceleration. By adopting two-fluid model (Drury & Voelk, 1981), we investigate the stability of CRMSs by means of time-dependent numerical simulations. As a result, we show explicitly the bi-stable feature of these multiple solutions, i.e., the efficient and inefficient branches are stable and the intermediate branch is unstable, and the intermediate branch transit to the inefficient one. This feature is independent of the effects of i) shock angles and ii) injection. Furthermore, we investigate the evolution from a hydrodynamic shock to CRMS in a self-consistent manner. From the results, we suggest qualitatively that the CR production efficiency at SNR shocks may be the least efficient.

  4. Cosmic rays and terrestrial life: A brief review

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra; Melott, Adrian L.

    2014-01-01

    “The investigation into the possible effects of cosmic rays on living organisms will also offer great interest.” - Victor F. Hess, Nobel Lecture, December 12, 1936 High-energy radiation bursts are commonplace in our Universe. From nearby solar flares to distant gamma ray bursts, a variety of physical processes accelerate charged particles to a wide range of energies, which subsequently reach the Earth. Such particles contribute to a number of physical processes occurring in the Earth system. A large fraction of the energy of charged particles gets deposited in the atmosphere, ionizing it, causing changes in its chemistry and affecting the global electric circuit. Remaining secondary particles contribute to the background dose of cosmic rays on the surface and parts of the subsurface region. Life has evolved over the past ∼3 billion years in presence of this background radiation, which itself has varied considerably during the period [1-3]. As demonstrated by the Miller-Urey experiment, lightning plays a very important role in the formation of complex organic molecules, which are the building blocks of more complex structures forming life. There is growing evidence of increase in the lightning rate with increasing flux of charged particles. Is there a connection between enhanced rate of cosmic rays and the origin of life? Cosmic ray secondaries are also known to damage DNA and cause mutations, leading to cancer and other diseases. It is now possible to compute radiation doses from secondary particles, in particular muons and neutrons. Have the variations in cosmic ray flux affected the evolution of life on earth? We describe the mechanisms of cosmic rays affecting terrestrial life and review the potential implications of the variation of high-energy astrophysical radiation on the history of life on earth.

  5. Cosmic Rays and Other Space Weather Factors Influenced on the Earth's Climate

    NASA Astrophysics Data System (ADS)

    Dorman, L.; Dai, U.; Kafri, A.; Pustil'nik, L.; Sternlieb, A.

    2015-09-01

    We consider possible effects of cosmic rays and some other space factors on the Earth's climate change. It is well known that the system of internal and external factors formatting the climate is very unstable; decreasing planetary temperature leads to an increase of snow surface, and decreasing of the total solar energy input into the system decreases the planetary temperature even more, etc. From this it follows that even energetically small factors acted long time may have a big influence on climate change. In our opinion, the most important of these factors are cosmic rays (CR) and space dust through their influence on formation of clouds, and thus, on climate. Are important also some rarely phenomena as impacts of asteroids and nearby supernova explosions.

  6. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    NASA Astrophysics Data System (ADS)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter

    2015-03-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  7. Gamma rays and cosmic rays at Venus: The Pioneer Venus gamma ray detector and considerations for future measurements

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Lawrence, David J.

    2015-05-01

    We draw attention to, and present a summary archive of the data from, the Pioneer Venus Orbiter Gamma-ray Burst Detector (OGBD), an instrument not originally conceived with Venus science in mind. We consider the possibility of gamma-ray flashes generated by lightning and model the propagation of gamma rays in the Venusian atmosphere, finding that if gamma rays originate at the upper range of reported cloud top altitudes (75 km altitude), they may be attenuated by factors of only a few, whereas from 60 km altitude they are attenuated by over two orders of magnitude. The present archive is too heavily averaged to reliably detect such a source (and we appeal to investigators who may have retained a higher-resolution archive), but the data do provide a useful and unique record of the cosmic ray flux at Venus 1978-1993. We consider other applications of future orbital gamma ray data, such as atmospheric occultations and the detection of volcanic materials injected high in the atmosphere.

  8. The origin of cosmic rays and TeV gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Maier, Gernot

    2013-06-01

    Cosmic rays are accelerated to high energies in Galactic and extragalactic objects like Supernova remnants (SNR) and active galactic nuclei (AGN). How these accelerators work and how efficient they accelerate different types of particles to energies of 1015 eV or beyond, is 100 years after the discovery of cosmic rays by Victor Hess, still unknown. Gamma rays trace cosmic rays at their site of acceleration and give crucial information on the nature and inner workings of these extreme objects. Gamma rays can be used to find the sources of cosmic rays and to determine their type, age and dynamics. We review in these proceedings the observational techniques and recent findings on gamma-ray emission from Supernova remnants.

  9. Cosmogenic neutrinos and ultra-high energy cosmic ray models

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Boncioli, D.; di Matteo, A.; Grillo, A. F.; Petrera, S.; Salamida, F.

    2015-10-01

    We use an updated version of SimProp, a Monte Carlo simulation scheme for the propagation of ultra-high energy cosmic rays, to compute cosmogenic neutrino fluxes expected on Earth in various scenarios. These fluxes are compared with the newly detected IceCube events at PeV energies and with recent experimental limits at EeV energies of the Pierre Auger Observatory. This comparison allows us to draw some interesting conclusions about the source models for ultra-high energy cosmic rays. We will show how the available experimental observations are almost at the level of constraining such models, mainly in terms of the injected chemical composition and cosmological evolution of sources. The results presented here will also be important in the evaluation of the discovery capabilities of the future planned ultra-high energy cosmic ray and neutrino observatories.

  10. IONS (ANURADHA): Ionization states of low energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Biswas, S.; Chakraborti, R.; Cowsik, R.; Durgaprasad, N.; Kajarekar, P. J.; Singh, R. K.; Vahia, M. N.; Yadav, J. S.; Dutt, N.; Goswami, J. N.

    1987-01-01

    IONS (ANURADHA), the experimental payload designed specifically to determine the ionization states, flux, composition, energy spectra and arrival directions of low energy (10 to 100 MeV/amu) anomalous cosmic ray ions of helium to iron in near-Earth space, had a highly successful flight and operation Spacelab-3 mission. The experiment combines the accuracy of a highly sensitive CR-39 nuclear track detector with active components included in the payload to achieve the experimental objectives. Post-flight analysis of detector calibration pieces placed within the payload indicated no measurable changes in detector response due to its exposure in spacelab environment. Nuclear tracks produced by alpha-particles, oxygen group and Fe ions in low energy anomalous cosmic rays were identified. It is calculated that the main detector has recorded high quality events of about 10,000 alpha-particles and similar number of oxygen group and heavier ions of low energy cosmic rays.

  11. Cosmic Rays from the Knee to the Ankle

    NASA Astrophysics Data System (ADS)

    Haungs, Andreas

    Investigations of the energy spectrum as well as the mass composition of cosmic rays in the energy range of PeV to EeV are important for understanding both, the origin of the galactic and the extragalactic cosmic rays. Recently, three modern experimental installations (KASCADE-Grande, IceTop, Tunka-133), dedicated to investigate this primary energy range, have published new results on the all-particle energy spectrum. In this short review these results are presented and the similarities and differences discussed. In addition, the effects of using different hadronic interaction models for interpreting the measured air-shower data will be examined. Finally, a brief discussion on the question if the present results are in agreement or in contradiction with astrophysical models for the transition from galactic to extragalactic origin of cosmic rays completes this paper.

  12. Cosmic rays muon flux measurements at Belgrade shallow underground laboratory

    SciTech Connect

    Veselinović, N. Dragić, A. Maletić, D. Joković, D. Savić, M. Banjanac, R. Udovičić, V. Aničin, I.

    2015-02-24

    The Belgrade underground laboratory is a shallow underground one, at 25 meters of water equivalent. It is dedicated to low-background spectroscopy and cosmic rays measurement. Its uniqueness is that it is composed of two parts, one above ground, the other bellow with identical sets of detectors and analyzing electronics thus creating opportunity to monitor simultaneously muon flux and ambient radiation. We investigate the possibility of utilizing measurements at the shallow depth for the study of muons, processes to which these muons are sensitive and processes induced by cosmic rays muons. For this purpose a series of simulations of muon generation and propagation is done, based on the CORSIKA air shower simulation package and GEANT4. Results show good agreement with other laboratories and cosmic rays stations.

  13. ORIGIN OF THE COSMIC-RAY SPECTRAL HARDENING

    SciTech Connect

    Tomassetti, Nicola

    2012-06-10

    Recent data from ATIC, CREAM, and PAMELA indicate that the cosmic-ray energy spectra of protons and nuclei exhibit a remarkable hardening at energies above 100 GeV nucleon{sup -1}. We propose that the hardening is an interstellar propagation effect that originates from a spatial change of the cosmic-ray transport properties in different regions of the Galaxy. The key hypothesis is that the diffusion coefficient is not separable into energy and space variables as usually assumed. Under this scenario, we can reproduce the observational data well. Our model has several implications for cosmic-ray acceleration/propagation physics and can be tested by ongoing experiments such as the Alpha Magnetic Spectrometer or Fermi-LAT.

  14. Cosmic ray transport and anisotropies to high energies

    NASA Astrophysics Data System (ADS)

    Biermann, P. L.; Caramete, L. I.; Meli, A.; Nath, B. N.; Seo, E.-S.; de Souza, V.; Becker Tjus, J.

    2015-10-01

    A model is introduced, in which the irregularity spectrum of the Galactic magnetic field beyond the dissipation length scale is first a Kolmogorov spectrum k-5/3 at small scales λ = 2 π/k with k the wave-number, then a saturation spectrum k-1, and finally a shock-dominated spectrum k-2 mostly in the halo/wind outside the Cosmic Ray disk. In an isotropic approximation such a model is consistent with the Interstellar Medium (ISM) data. With this model we discuss the Galactic Cosmic Ray (GCR) spectrum, as well as the extragalactic Ultra High Energy Cosmic Rays (UHECRs), their chemical abundances and anisotropies. UHECRs may include a proton component from many radio galaxies integrated over vast distances, visible already below 3 EeV.

  15. The elemental and isotopic composition of galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1983-01-01

    A directly accessible sample of matter which originates outside the solar system is provided by galactic cosmic rays. The present investigation is primarily concerned with progress related to questions raised regarding the similarity or difference between solar system matter and matter coming from outside the solar system. The investigation takes into account U.S. contributions to this topic over the period from 1979 to 1982. The cosmic ray (CR) abundances of all the elements from H to Ni (atomic number Z=1 to 28) have now been measured. Cosmic ray source (CRS) and solar system (SS) elemental compositions are listed in a table, and the ratio of CRS to SS abundance for 21 elements is shown in a graph. There is now clear evidence from CR isotope studies that the nucleosynthesis of CRS material has differed from that of SS material.

  16. Study cosmic ray modulation near the heliopause: A numerical approach

    NASA Astrophysics Data System (ADS)

    Luo, X.; Zhang, M.; Potgieter, M. S.; Feng, X.; Pogorelov, N. V.

    2016-03-01

    By incorporating the MagnetoHydroDynamic (MHD) global heliospheric data into the Parker's cosmic-rays (CRs) transport equation, we constructed a hybrid galactic cosmic ray transport model to study the galactic cosmic-rays (GCR) behaviour near the heliopause(HP). Based on this hybrid model, we found that: (1)By increasing the ratio of the parallel diffusion coefficient to the perpendicular diffusion coefficient in the outer heliosheath (the region near HP and beyond), the simulated radial flux gradient near the HP increases as well. As this ratio multiplying factor reaches 1010, the flux experiences a sudden jump near the HP, similar to what Voyager 1 had observed in 2012. (2)After increasing the ratio of the diffusion coefficients beyond the HP, more pseudo- particles in our numerical approach which have been traced from the upwind nose region exit in the downwind tail region. It is thus possible that they diffuse more directly from the tail region to the nose region.

  17. A comparison of models for supernova remnants including cosmic rays

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Drury, L. O'C.

    1992-11-01

    A simplified model which can follow the dynamical evolution of a supernova remnant including the acceleration of cosmic rays without carrying out full numerical simulations has been proposed by Drury, Markiewicz, & Voelk in 1989. To explore the accuracy and the merits of using such a model, we have recalculated with the simplified code the evolution of the supernova remnants considered in Jones & Kang, in which more detailed and accurate numerical simulations were done using a full hydrodynamic code based on the two-fluid approximation. For the total energy transferred to cosmic rays the two codes are in good agreement, the acceleration efficiency being the same within a factor of 2 or so. The dependence of the results of the two codes on the closure parameters for the two-fluid approximation is also qualitatively similar. The agreement is somewhat degraded in those cases where the shock is smoothed out by the cosmic rays.

  18. On Measuring Cosmic Ray Energy Spectra with the Rapidity Distributions

    NASA Technical Reports Server (NTRS)

    Bashindzhagyan, G.; Adams, J.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    An important goal of cosmic ray research is to measure the elemental energy spectra of galactic cosmic rays up to 10(exp 16) eV. This goal cannot be achieved with an ionization calorimeter because the required instrument is too massive for space flight. An alternate method will be presented. This method is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer. The proposed technique can be used over a wide range of energies (10 (exp 11) -10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a conceptual design for a new instrument (KLEM) will be presented. Due to its light weight, this instrument can have a large aperture enabling the direct measurement of cosmic rays to 1016 eV.

  19. Trek and ECCO: Abundance measurements of ultraheavy galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Westphal, Andrew J.

    2000-06-01

    Using the Trek detector, we have measured the abundances of the heaviest elements (with Z>70) in the galactic cosmic rays with sufficient charge resolution to resolve the even-Z elements. We find that the abundance of Pb compared to Pt is ~3 times lower than the value expected from the most widely-held class of models of the origin of galactic cosmic ray nuclei, that is, origination in a partially ionized medium with solar-like composition. The low abundance of Pb is, however, consistent with the interstellar gas and dust model of Meyer, Drury and Ellison, and with a source enriched in r-process material, proposed by Binns et al. A high-resolution, high-statistics measurement of the abundances of the individual actinides would distinguish between these models. This is the goal of ECCO, the Extremely Heavy Cosmic-ray Composition Observer, which we plan to deploy on the International Space Station. .

  20. Precision Cosmic Ray physics with space-born experiment

    NASA Astrophysics Data System (ADS)

    Incagli, Marco

    2016-07-01

    More than 100 years after their discoveries, cosmic rays have been extensively studied, both with balloon experiments and with ground observatories. More recently, the possibility of mounting detectors on satellites or on the International Space Station has allowed for a long duration (several years) continuous observation of primary cosmic rays, i.e. before their interaction with the earth atmosphere, thus opening a new regime of precision measurements. In this review, recent results from major space experiments, as Pamela, AMS02 and Fermi, as well as next generation experiments proposed for the International Space Station, for standalone satellites or for the yet to come Chinese Space Station, will be presented. The impact of these experiment on the knowledge of Cosmic Ray propagation will also be discussed.