Science.gov

Sample records for cosmic rays results

  1. Early results from the ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Jansen, F.; Domingo, C.

    1995-01-01

    Data extraction and analysis of the LDEF Ultra Heavy Cosmic Ray Experiment is continuing. Almost twice the pre LDEF world sample has been investigated and some details of the charge spectrum in the region from Z approximately 70 up to and including the actinides are presented. The early results indicate r process enhancement over solar system source abundances.

  2. Ionization states of low-energy cosmic rays - Results from Spacelab 3 cosmic-ray experiment

    NASA Technical Reports Server (NTRS)

    Dutta, A.; Goswami, J. N.; Biswas, S.; Durgaprasad, N.; Mitra, B.; Singh, R. K.

    1993-01-01

    The Indian cosmic ray experiment Anuradha, conducted onboard Spacelab 3 during April 29-May 6, 1985 was designed to obtain information on the ionization states of low-energy cosmic rays, using the geomagnetic field as a rigidity filter to place an upper limit on the ionization state of individual cosmic ray particles. This paper presents data confirming the presence of three distinct groups of energetic particles in the near-earth space: (1) low-energy (15-25 MeV/nucleon) anomalous cosmic rays that are either singly ionized or consistent with their being in singly ionized state, (2) fully ionized galactic cosmic ray ions, and (3) partially ionized iron and sub-iron group ions (which account for about 20 percent of all the iron and sub-iron group ions detected at the Spacelab 3 orbit within the magnetosphere in the energy interval 25-125 MeV/nucleon). It is argued that these partially ionized heavy ions are indeed a part of the low-energy galactic cosmic rays present in the interplanetary space.

  3. Ultrahigh-Energy Cosmic Rays: Results and Prospects

    NASA Astrophysics Data System (ADS)

    Kampert, Karl-Heinz

    2013-12-01

    Observations of cosmic rays have been improved at all energies, both in terms of higher statistics and reduced systematics. As a result, the all-particle cosmic ray energy spectrum starts to exhibit more structures than could be seen previously. Most importantly, a second knee in the cosmic ray spectrum—dominated by heavy primaries—is reported just below 1017 eV. The light component, on the other hand, exhibits an ankle-like feature above 1017 eV and starts to dominate the flux at the ankle. The key question at the highest energies is about the origin of the flux suppression observed at energies above 5 · 1019 eV. Is this the long-awaited Greisen-Zatsepin-Kuzmin effect or the exhaustion of sources? The key to answering this question is again given by the still largely unknown mass composition at the highest energies. Data from different observatories do not quite agree, and common efforts have been started to settle that question. The high level of isotropy observed even at the highest energies starts to challenge a proton-dominated composition if extragalactic magnetic fields are on the order of a few nanogauss or more. We shall discuss the experimental and theoretical progress in the field and the prospects for the next decade.

  4. Galactic cosmic rays and the knee - Results from the KASCADE experiment

    SciTech Connect

    Hoerandel, J.R.; Glasstetter, R.; Kampert, K.-H.; Roth, M.; Apel, W.D.; Badea, F.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Gils, H.J.; Haungs, A.; Heck, D.; Klages, H.O.; Maier, G.; Mathes, H.J.; Mayer, H.J.; Milke, J.

    2005-11-22

    Results of the KASCADE air shower experiment investigating the origin of cosmic rays in the energy region from 1013 to 1017 eV are presented. Attention is drawn on the investigation of interactions in the atmosphere and the energy spectrum and mass composition of cosmic rays.

  5. Recent results from cosmic-ray measurements with LOFAR

    NASA Astrophysics Data System (ADS)

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Frieswijk, W.; Hörandel, J. R.; Krause, M.; Nelles, A.; Scholten, O.; ter Veen, S.; Thoudam, S.; van den Akker, M.

    2014-04-01

    LOFAR, the Low Frequency Array, is currently the world's largest distributed radio telescope observing at frequencies below 240 MHz. LOFAR is measuring cosmic-ray induced air-showers since June 2011 and has collected several hundreds of events with hundreds of antennas per individual event. We present measurements of the radio signal strength as well as high-precision measurements of wavefront curvature and polarization. These will enable us to disentangle the different emission mechanisms at play, such as geomagnetic radiation, charge excess, and Askaryan or Cherenkov effects, leading to a full understanding of the air-shower radio emission. Furthermore we give a first example on how the full complexity of the signal enables radio measurements to be used to study primary particle composition.

  6. Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.

  7. FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS

    SciTech Connect

    Thoudam, Satyendra

    2013-11-20

    Recently, the Fermi Space Telescope discovered two large γ-ray emission regions, the so-called Fermi bubbles, that extend up to ∼50° above and below the Galactic center (GC). The γ-ray emission from the bubbles is found to follow a hard spectrum with no significant spatial variation in intensity and spectral shape. The origin of the emission is still not clearly understood. Suggested explanations include the injection of cosmic-ray (CR) nuclei from the GC by high-speed Galactic winds, electron acceleration by multiple shocks, and stochastic electron acceleration inside the bubbles. In this Letter, it is proposed that the γ-rays may be the result of diffusive injection of Galactic CR protons during their propagation through the Galaxy. Considering that the bubbles are slowly expanding, and CRs undergo much slower diffusion inside the bubbles than in the average Galaxy and at the same time suffer losses due to adiabatic expansion and inelastic collisions with the bubble plasma, this model can explain the observed intensity profile, the emission spectrum and the measured luminosity without invoking any additional particle production processes, unlike other existing models.

  8. First results of the cosmic ray muon variation study by means of the scintillation muon hodoscope

    NASA Astrophysics Data System (ADS)

    Ampilogov, N. V.; Astapov, I. I.; Barbashina, N. S.; Borog, V. V.; Dmitrieva, A. N.; Kovylyaeva, A. A.; Kompaniets, K. G.; Petrukhin, A. A.; Shutenko, V. V.; Yashin, I. I.

    2016-02-01

    The new scintillation muon hodoscope to study cosmic ray muon flux variations was created in MEPhI. The basic characteristics of the hodoscope (sensitivity area, precision of the muon track reconstruction, ‘live’ time etc.) are comparable with other hodoscopes (TEMP and URAGAN) of MEPhI. Modular design is a distinctive feature of the detector, supplying relativity easy transportability, and low maintenance requirements give a possibility of a long-term autonomic operation. First results of the cosmic ray muon variation study by means of the scintillation muon hodoscope are presented and discussed.

  9. First Results From GLAST-LAT Integrated Towers Cosmic Ray Data Taking And Monte Carlo Comparison

    SciTech Connect

    Brigida, M.; Caliandro, A.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giordano, F.; Giglietto, N.; Loparco, F.; Marangelli, B.; Mazziotta, M.N.; Mirizzi, N.; Raino, S.; Spinelli, P.; /Bari U. /INFN, Bari

    2007-02-15

    GLAST Large Area Telescope (LAT) is a gamma ray telescope instrumented with silicon-strip detector planes and sheets of converter, followed by a calorimeter (CAL) and surrounded by an anticoincidence system (ACD). This instrument is sensitive to gamma rays in the energy range between 20 MeV and 300 GeV. At present, the first towers have been integrated and pre-launch data taking with cosmic ray muons is being performed. The results from the data analysis carried out during LAT integration will be discussed and a comparison with the predictions from the Monte Carlo simulation will be shown.

  10. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-08-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  11. Source abundances and propagation of relativistic cosmic rays up to Z equals 30 - HEAO 3 results

    NASA Technical Reports Server (NTRS)

    Koch-Miramond, L.

    1982-01-01

    Results from the cosmic ray isotope experiment on board the HEAO 3 satellite are reviewed, noting their impact on astrophysics. The gamma ray telescope comprised 5 Cerenkov detectors and a flash tube hodoscope with 4 trays, and collected data on 7 million events in the energy range 0.7-20 GeV/nucleon during the 1.6 yr mission duration. Three ranges of momentum were detected, and it was found that the ratios of secondary to primary species decreased steeply with increasing energy. A progressive steepening of the energy dependence of abundance ratios from Al/Si and K/Fe was observed, which has been interpreted as a progressive decrease of the amount of primary component from Al to Na and K. The secondary to primary ratios are accounted for with an exponential pathlength distribution from Fe down to Na and N. Comparisons are made of elemental abundances in cosmic ray sources, the local galactic environment, and the solar energetic particle composition. The data is noted to be compatible with a model of an injection of cosmic ray particles by stellar flares in a two-stage acceleration process.

  12. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  13. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  14. The Origin of Cosmic Rays

    ScienceCinema

    Blasi, Pasquale [INAF/Arcetri-Italy and Fermilab, Italy

    2010-01-08

    Cosmic Rays reach the Earth from space with energies of up to more than 1020 eV, carrying information on the most powerful particle accelerators that Nature has been able to assemble. Understanding where and how cosmic rays originate has required almost one century of investigations, and, although the last word is not written yet, recent observations and theory seem now to fit together to provide us with a global picture of the origin of cosmic rays of unprecedented clarity. Here we will describe what we learned from recent observations of astrophysical sources (such as supernova remnants and active galaxies) and we will illustrate what these observations tell us about the physics of particle acceleration and transport. We will also discuss the ?end? of the Galactic cosmic ray spectrum, which bridges out attention towards the so called ultra high energy cosmic rays (UHECRs). At ~1020 eV the gyration scale of cosmic rays in cosmic magnetic fields becomes large enough to allow us to point back to their sources, thereby allowing us to perform ?cosmic ray astronomy?, as confirmed by the recent results obtained with the Pierre Auger Observatory. We will discuss the implications of these observations for the understanding of UHECRs, as well as some questions which will likely remain unanswered and will be the target of the next generation of cosmic ray experiments.

  15. On Ultra-high-energy Cosmic Rays and Their Resultant Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Gavish, Eyal; Eichler, David

    2016-05-01

    The Fermi Large Area Telescope collaboration has recently reported on 50 months of measurements of the isotropic extragalactic gamma-ray background (EGRB) spectrum between 100 MeV and 820 GeV. Ultra-high-energy cosmic ray (UHECR) protons interact with the cosmic microwave background photons and produce cascade photons of energies 10 MeV–1 TeV that contribute to the EGRB flux. We examine seven possible evolution models for UHECRs and find that UHECR sources that evolve as the star formation rate (SFR), medium low luminosity active galactic nuclei type-1 (L = 1043.5 erg s‑1 in the [0.5–2] KeV band), and BL Lacertae objects (BL Lacs) are the most acceptable given the constraints imposed by the observed EGRB. Other possibilities produce too much secondary γ-radiation. In all cases, the decaying dark matter (DM) contribution improves the fit at high energy, but the contribution of still unresolved blazars, which would leave the smallest role for decaying DM, may yet provide an alternative improvement. The possibility that the entire EGRB can be fitted with resolvable but not-yet-resolved blazars, as recently claimed by Ajello et al., would leave little room in the EGRB to accommodate γ-rays from extragalactic UHECR production, even for many source evolution rates that would otherwise be acceptable. We find that under the assumption of UHECRs being mostly protons, there is not enough room for producing extragalactic UHECRs with active galactic nucleus, gamma-ray burst, or even SFR source evolution. Sources that evolve as BL Lacs, on the other hand, would produce much less secondary γ-radiation and would remain a viable source of UHECRs, provided that they dominate.

  16. SAS-2 gamma-ray results from the galactic plane and their implications for galactic structure and galactic cosmic-ray dynamics

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1977-01-01

    The final SAS-2 results related to high energy galactic gamma-ray emission show a strong correlation with galactic structural features seen at other wavelenghts, when the known gamma-ray sources are subtracted. Theoretical considerations and analysis of the gamma-ray data suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density is enhanced where the matter density is greatest on the scale of the galactic arms. This concept has been explored in a galactic model that assumes: (1) cosmic rays are galactic and not universal; (2)on the scale of the galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3)the cosmic ray scale height is significantly larger than the scale height to the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of over 2:1.

  17. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  18. Abundances of secondary elements among the ultra heavy cosmic rays: Results from HEAO-3

    NASA Technical Reports Server (NTRS)

    Klarmann, J.; Stone, E. C.; Binns, W. R.; Israel, M. H.; Margolis, S. H.; Waddington, C. J.; Garrard, T. L.; Kertzman, M. P.

    1985-01-01

    Observations of the abundances of elements of charge 62 or Z or = 73 in the cosmic radiation from the HEAO-3 Heavy Nuclei Experiment (HNE) are discussed. These elements, having solar, and presumably source, abundances much less than the heavier Pt and Pb groups, are expected to be largely products of spallation. Thus they are indicators of the conditions prevailing during the propagation of cosmic rays. The abundances have changed from those reported previously due to a different data selection. This results in better charge resolution and in a higher mean energy for the particles. All the particles included were required to have had a cutoff rigidity R sub c 5 GV. This allowed the charge determination to be based solely on the Cherenkov measurement.

  19. Cosmic-ray astrochemistry.

    PubMed

    Indriolo, Nick; McCall, Benjamin J

    2013-10-01

    Gas-phase chemistry in the interstellar medium is driven by fast ion-molecule reactions. This, of course, demands a mechanism for ionization, and cosmic rays are the ideal candidate as they can operate throughout the majority of both diffuse and dense interstellar clouds. Aside from driving interstellar chemistry via ionization, cosmic rays also interact with the interstellar medium in ways that heat the ambient gas, produce gamma rays, and produce light element isotopes. In this paper we review the observables generated by cosmic-ray interactions with the interstellar medium, focusing primarily on the relevance to astrochemistry. PMID:23812538

  20. Relativistic heavy cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Fernandez, J. I.; Israel, M. H.; Klarmann, J.; Binns, W. R.

    1972-01-01

    During three balloon flights of a 1 sq m sr ionization chamber/Cerenkov counter detector system, measurements were made of the atmospheric attenuation, flux, and charge composition of cosmic ray nuclei with 16 is less than or = Z is less than or = 30 and rigidity greater than 4.5 GV. The attenuation mean free path in air of VH (20 less than or = Z less than or = 30) nuclei is found to be 19.7 + or - 1.6 g/sq cm, a value somewhat greater than the best previous measurement. The attenuation mean free path of iron is found to be 15.6 + or - 2.2 g/sq cm, consistent with predictions of geometric cross-section formulae. An absolute flux of VH nuclei 10 to 20% higher than earlier experiments at similar geomagnetic cutoff and level of solar activity was measured. The relative abundances of even-charged nuclei are found to be in good agreement with results of other recent high resolution counter experiments. The observed cosmic ray chemical composition implies relative abundances at the cosmic ray source of Ca/Fe = 0.12 + or - 0.04 and S/Fe = 0.14 + or - 0.05.

  1. Fermi LAT Results and Perspectives in Measurements of High Energy Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    Real breakthrough during last 1-1.5 years in cosmic ray electrons: ATIC, HESS, Pamela, and finally Fermi-LAT. New quality data have made it possible to start quantitative modeling. With the new data more puzzles than before on CR electrons origin. Need "multi-messenger" campaign: electrons, positrons, gammas, X-ray, radio, neutrino... It is viable that we are dealing with at least two distinct mechanisms of "primary" electron (both signs) production: a softer spectrum of negative electrons, and a harder spectrum of both e(+)+e(-). Exotic (e.g. DM) origin is not ruled out. Upper limits on CR electrons anisotropy are set. Good perspectives to have the Fermi LAT results on proton spectrum and positron fraction.

  2. Eleventh European Cosmic Ray Symposium

    NASA Astrophysics Data System (ADS)

    1988-08-01

    The biannual Symposium includes all aspects of cosmic ray research. The scientific program was organized under three main headings: cosmic rays in the heliosphere, cosmic rays in the interstellar and extragalactic space, and properties of high-energy interactions as studied by cosmic rays. Selected short communications out of 114 contributed papers were indexed separately for the INIS database.

  3. Antiprotons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.; Streitmatter, R. E.

    1987-01-01

    Recent experimental observations and results are discussed. It was found that the approximately 50 antiprotons collected in balloon experiments to date have generated considerable theoretical interest. Clearly, confirmatory experiments and measurements over an extended energy range are required before definite conclusions are drawn. Antiproton measurements have a bearing on astrophysical problems ranging from cosmic ray propagation to issues of cosmological import. The next generation of balloon experiments and the Particle Astrophysics Magnet Facility being discussed for operation on NASA's space station should provide data and insights of highest interest.

  4. First results from the MACRO (Monopole, Astophysics, Cosmic Ray Observatory) detector at the Gran Sasso Laboratory

    SciTech Connect

    Calicchio, M.; De Cataldo, G.; De Marzo, C.; Erriquez, O.; Favuzzi, C.; Giglietto, N.; Nappi, E.; Spinelli, P.; Cecchini, S.; D'Antone, I.; Giacomelli, G.; Mandrioli, G.; Margiotta-Neri, A.; Matteuzzi, P.; Pal, B.; Patrizii, L.; Predieri, F.; Sanzani, G.L.; Serra, P.; Spurio, M.; Ahlen, S.P.; Ficenec, D.; Hazen, E.; Klein, S.; Levin, D.; Marin, A.; Stone, J.L.; Sulak, L.R.; Worstell, W.; Barish, B.; Coutu, S.; Hong, J.T.; Liu, G

    1989-01-01

    The MACRO (Monopole, Astrophysics, Cosmic Ray Observatory) detector which is being installed at the underground Gran Sasso Laboratory (LNGS) is described in detail. The performance of the detector's first supermodule ({approximately}800 m{sup 2}sr), which had its initial data run from February 27 to May 30, 1989, is reported. About 245,000 muon triggers were recorded during this first run. Preliminary results are presented on: the measured vertical muon flux; the detection features of MACRO as a high energy muon and muon neutrino telescope; the measured lateral spread and multiplicity distributions of muon bundles; a search for GUT magnetic monopoles; a search for electron anti-neutrinos from stellar collapses. In addition, there are results obtained in conjunction with the EAS-TOP detector located on top of the Gran Sasso mountain. 24 refs., 22 figs.

  5. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, Edward C.; Mewaldt, Richard A.; Prince, Thomas A.

    1992-01-01

    Discussed here is research in cosmic ray and gamma ray astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology. The primary activities discussed involve the development of new instrumentation and techniques for future space flight. In many cases these instrumentation developments were tested in balloon flight instruments designed to conduct new investigations in cosmic ray and gamma ray astrophysics. The results of these investigations are briefly summarized. Specific topics include a quantitative investigation of the solar modulation of cosmic ray protons and helium nuclei, a study of cosmic ray positron and electron spectra in interplanetary and interstellar space, the solar modulation of cosmic rays, an investigation of techniques for the measurement and interpretation of cosmic ray isotopic abundances, and a balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen.

  6. Protostars: Forges of cosmic rays?

    NASA Astrophysics Data System (ADS)

    Padovani, M.; Marcowith, A.; Hennebelle, P.; Ferrière, K.

    2016-05-01

    Context. Galactic cosmic rays are particles presumably accelerated in supernova remnant shocks that propagate in the interstellar medium up to the densest parts of molecular clouds, losing energy and their ionisation efficiency because of the presence of magnetic fields and collisions with molecular hydrogen. Recent observations hint at high levels of ionisation and at the presence of synchrotron emission in protostellar systems, which leads to an apparent contradiction. Aims: We want to explain the origin of these cosmic rays accelerated within young protostars as suggested by observations. Methods: Our modelling consists of a set of conditions that has to be satisfied in order to have an efficient cosmic-ray acceleration through diffusive shock acceleration. We analyse three main acceleration sites (shocks in accretion flows, along the jets, and on protostellar surfaces), then we follow the propagation of these particles through the protostellar system up to the hot spot region. Results: We find that jet shocks can be strong accelerators of cosmic-ray protons, which can be boosted up to relativistic energies. Other promising acceleration sites are protostellar surfaces, where shocks caused by impacting material during the collapse phase are strong enough to accelerate cosmic-ray protons. In contrast, accretion flow shocks are too weak to efficiently accelerate cosmic rays. Though cosmic-ray electrons are weakly accelerated, they can gain a strong boost to relativistic energies through re-acceleration in successive shocks. Conclusions: We suggest a mechanism able to accelerate both cosmic-ray protons and electrons through the diffusive shock acceleration mechanism, which can be used to explain the high ionisation rate and the synchrotron emission observed towards protostellar sources. The existence of an internal source of energetic particles can have a strong and unforeseen impact on the ionisation of the protostellar disc, on the star and planet formation

  7. Recent Results from RHIC&Some Lessons for Cosmic-RayPhysicists

    SciTech Connect

    Klein, Spencer R.

    2006-10-01

    The Relativistic Heavy Ion Collider (RHIC) studies nuclear matter under a variety of conditions. Cold nuclear matter is probed with deuteron-gold collisions, while hot nuclear matter (possibly a quark-gluon plasma (QGP)) is created in heavy-ion collisions. The distribution of spin in polarized nucleons is measured with polarized proton collisions, and photoproduction is studied using the photons that accompany heavy nuclei. The deuteron-gold data shows less forward particle production than would be expected from a superposition of pp collisions, as expected due to saturation/shadowing. Particle production in AA collisions is well described by a model of an expanding fireball in thermal equilibrium. Strong hydrodynamic flow and jet quenching shows that the produced matter interacts very strongly. These phenomena are consistent with new non-perturbative interactions near the transition temperature to the QGP. This report discusses these results, and their implications for cosmic-ray physicists.

  8. First result from the AMS experiment: the beginning of a rich cosmic ray program

    NASA Astrophysics Data System (ADS)

    Pohl, Martin

    2014-05-01

    More than 100 years after the discovery of cosmic rays by Victor Hess, our knowledge of their sources and transport is still rather rudimentary. This does not only concern the astrophysical phenomena, which create and accelerate charged particles, but also the potential role of particle physics and cosmological mechanisms.

  9. Cosmic Ray Dosimetry

    NASA Astrophysics Data System (ADS)

    Si Belkhir, F.; Attallah, R.

    2010-10-01

    Radiation levels at aircraft cruising altitudes are twenty times higher than at sea level. Thus, on average, a typical airline pilot receives a larger annual radiation dose than some one working in nuclear industry. The main source of this radiation is from galactic cosmic radiation, high energy particles generated by exploding stars within our own galaxy. In this work we study cosmic rays dosimetry at various aviation altitudes using the PARMA model.

  10. Supernova and cosmic rays

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.

    1981-01-01

    A general overview of supernova astronomy is presented, followed by a discussion of the relationship between SN and galactic cosmic rays. Pre-supernova evolution is traced to core collapse, explosion, and mass ejection. The two types of SN light curves are discussed in terms of their causes, and the different nucleosynthetic processes inside SNs are reviewed. Physical events in SN remnants are discussed. The three main connections between cosmic rays and SNs, the energy requirement, the acceleration mechanism, and the detailed composition of CR, are detailed.

  11. Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2015-12-01

    The multi-facet nature of the origin of cosmic rays is such that some of the problems currently met in our path to describing available data are due to oversimplified models of CR acceleration and transport, and others to lack of knowledge of the physical processes at work in certain conditions. On the other hand, the phenomenology of cosmic rays, as arising from better observations, is getting so rich that it makes sense to try to distinguish the problems that derive from too simple views of Nature and those that are challenging the very foundations of the existing paradigms. Here I will briefly discuss some of these issues.

  12. Solar Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Leonty I.

    2001-05-01

    The book summarizes the results of solar cosmic-ray (SCR) investigations since 1942. The present monograph, unlike the reviews published earlier, treats the problem in self-contained form, in all its associations - from fundamental astrophysical aspects to geophysical and astronautical applications. It includes a large amount of new data, accumulated during the last two or three decades of space research. As a result of the `information burst' in space physics, there are a lot of new interesting theoretical concepts, models, and ideas that deserve attention. The author gives an extensive bibliography which covers incompartially the main achievements and failures in this field. The book will be helpful for a wide audience of space physicists and it will be relevant to graduate and postgraduate courses.

  13. Cosmic Ray Scattering Radiography

    NASA Astrophysics Data System (ADS)

    Morris, C. L.

    2015-12-01

    Cosmic ray muons are ubiquitous, are highly penetrating, and can be used to measure material densities by either measuring the stopping rate or by measuring the scattering of transmitted muons. The Los Alamos team has studied scattering radiography for a number of applications. Some results will be shown of scattering imaging for a range of practical applications, and estimates will be made of the utility of scattering radiography for nondestructive assessments of large structures and for geological surveying. Results of imaging the core of the Toshiba Nuclear Critical Assembly (NCA) Reactor in Kawasaki, Japan and simulations of imaging the damaged cores of the Fukushima nuclear reactors will be presented. Below is an image made using muons of a core configuration for the NCA reactor.

  14. Cosmic rays from cosmic strings with condensates

    SciTech Connect

    Vachaspati, Tanmay

    2010-02-15

    We revisit the production of cosmic rays by cusps on cosmic strings. If a scalar field ('Higgs') has a linear interaction with the string world sheet, such as would occur if there is a bosonic condensate on the string, cusps on string loops emit narrow beams of very high energy Higgses which then decay to give a flux of ultrahigh energy cosmic rays. The ultrahigh energy flux and the gamma to proton ratio agree with observations if the string scale is {approx}10{sup 13} GeV. The diffuse gamma ray and proton fluxes are well below current bounds. Strings that are lighter and have linear interactions with scalars produce an excess of direct and diffuse cosmic rays and are ruled out by observations, while heavier strings ({approx}10{sup 15} GeV) are constrained by their gravitational signatures. This leaves a narrow window of parameter space for the existence of cosmic strings with bosonic condensates.

  15. Discovery of cosmic rays

    NASA Astrophysics Data System (ADS)

    Carlson, Per

    2013-02-01

    The mysterious invisible radiation that ionized air was studied a century ago by many scientists. Finally, on 7 August 1912, Victor Hess in his seventh balloon flight that year, reached an altitude of about 5000 m. With his electroscopes on board the hydrogen-filled balloon he observed that the ionization instead of decreasing with altitude increased significantly. Hess had discovered cosmic rays, a discovery that gave him the 1936 Nobel Prize in physics. When research resumed after World War I focus was on understanding the nature of the cosmic radiation. Particles or radiation? Positive or negative? Electrons, positrons or protons? Progress came using new instruments like the Geiger-Muller tube and around 1940 it was clear that cosmic rays were mostly protons.

  16. Cosmic ray antiprotons from nearby cosmic accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Jagdish C.; Gupta, Nayantara

    2015-05-01

    The antiproton flux measured by PAMELA experiment might have originated from Galactic sources of cosmic rays. These antiprotons are expected to be produced in the interactions of cosmic ray protons and nuclei with cold protons. Gamma rays are also produced in similar interactions inside some of the cosmic accelerators. We consider a few nearby supernova remnants observed by Fermi LAT. Many of them are associated with molecular clouds. Gamma rays have been detected from these sources which most likely originate in decay of neutral pions produced in hadronic interactions. The observed gamma ray fluxes from these SNRs are used to find out their contributions to the observed diffuse cosmic ray antiproton flux near the earth.

  17. ISOTOPIC COMPOSITION OF LIGHT NUCLEI IN COSMIC RAYS: RESULTS FROM AMS-01

    SciTech Connect

    Aguilar, M.; Alcaraz, J.; Berdugo, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Azzarello, P.; Battiston, R.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Barao, F.; Barreira, G.; Basile, M.; Bellagamba, L.; Bartoloni, A.; Becker, R.; Becker, U.; Berges, P.

    2011-08-01

    The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper, we present measurements of the isotopic ratios {sup 2}H/{sup 4}He, {sup 3}He/{sup 4}He, {sup 6}Li/{sup 7}Li, {sup 7}Be/({sup 9}Be+{sup 10}Be), and {sup 10}B/{sup 11}B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June.

  18. Galactic cosmic rays and nucleosynthesis

    SciTech Connect

    Kiener, Juergen

    2010-03-01

    The nucleosynthesis of the light elements Li, Be and B by galactic cosmic rays is presented. Observations of cosmic rays and the nuclear reactions responsible for Li, Be and B nucleosynthesis are described, followed by some words on propagation. At the end, some open questions concerning galactic cosmic rays are discussed.

  19. Results on the energy dependence of cosmic-ray charge composition

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.

    1973-01-01

    Results of measurements by a balloon-borne ionization spectrometer of the energy dependence of high-energy cosmic-ray charge composition. The results presented are greatly improved over those obtained earlier by Ormes et al. (1971) by the use of a multidimensional charge analysis with more efficient background rejection, and a more accurate energy determination. Complex couplings between the charge, energy, and trajectory information were taken into account and are discussed. The spectra of individual elements up to oxygen and of groups of nuclei up through iron were measured up to almost 100 GeV per nucleon. The energy spectrum of the secondary nuclei, B + N, is found to be steeper than that of the primary nuclei, C + O, in agreement with Smith et al. (1973). The most dramatic finding is that the spectrum of the iron nuclei is flatter than that of the carbon and oxygen nuclei by 0.57 plus or minus 0.14 of a power.

  20. RELATIVE COMPOSITION AND ENERGY SPECTRA OF LIGHT NUCLEI IN COSMIC RAYS: RESULTS FROM AMS-01

    SciTech Connect

    Aguilar, M.; Alcaraz, J.; Berdugo, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Azzarello, P.; Battiston, R.; Anderhub, H.; Ao, L.; Arefiev, A.; Arruda, L.; Barao, F.; Barreira, G.; Basile, M.; Bellagamba, L.; Bartoloni, A.; Becker, R.; Becker, U.; Bene, P.

    2010-11-20

    Measurement of the chemical and isotopic composition of cosmic rays is essential for the precise understanding of their propagation in the galaxy. While the model parameters are mainly determined using the B/C ratio, the study of extended sets of ratios can provide stronger constraints on the propagation models. In this paper, the relative abundances of light-nuclei lithium, beryllium, boron, and carbon are presented. The secondary-to-primary ratios Li/C, Be/C, and B/C have been measured in the kinetic energy range 0.35-45 GeV nucleon{sup -1}. The isotopic ratio {sup 7}Li/{sup 6}Li is also determined in the magnetic rigidity interval 2.5-6.3 GV. The secondary-to-secondary ratios Li/Be, Li/B, and Be/B are also reported. These measurements are based on the data collected by the Alpha Magnetic Spectrometer AMS-01 during the STS-91 space shuttle flight in 1998 June. Our experimental results are in substantial agreement with other measurements, where they exist. We describe our light-nuclei data with a diffusive-reacceleration model. A 10%-15% overproduction of Be is found in the model predictions and can be attributed to uncertainties in the production cross-section data.

  1. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  2. Cloud chamber visualization of primary cosmic rays

    SciTech Connect

    Earl, James A.

    2013-02-07

    From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

  3. Anuradha and low-energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Biswas, S.; Durgaprasad, N.; Mitra, Banashree; Dutta, A.

    1993-01-01

    After critically reviewing observational results obtained by astronomical spacecraft in the interplanetary medium for several aspects of galactic cosmic rays (GCRs) and anomalous cosmic rays (ACRs), attention is given to spacecraft data gathered in the magnetosphere and a detailed description is given of the Anuradha cosmic-ray experiment carried by Spacelab-3. The Anuradha results discussed concern the orbit average flux and ionization state of ACRs, the origins of partially ionized galactic cosmic-ray sub-Fe and Fe ions, and the significance of enhanced abundance ratios of sub-Fe and Fe ions in GCRs inside the magnetosphere.

  4. Galactic cosmic ray composition

    NASA Technical Reports Server (NTRS)

    Meyer, J. P.

    1986-01-01

    An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.

  5. Cosmic Rays in Thunderstorms

    NASA Astrophysics Data System (ADS)

    Buitink, Stijn; Scholten, Olaf; van den Berg, Ad; Ebert, Ute

    2013-04-01

    Cosmic Rays in Thunderstorms Cosmic rays are protons and heavier nuclei that constantly bombard the Earth's atmosphere with energies spanning a vast range from 109 to 1021 eV. At typical altitudes up to 10-20 km they initiate large particle cascades, called extensive air showers, that contain millions to billions of secondary particles depending on their initial energy. These particles include electrons, positrons, hadrons and muons, and are concentrated in a compact particle front that propagates at relativistic speed. In addition, the shower leaves behind a trail of lower energy electrons from ionization of air molecules. Under thunderstorm conditions these electrons contribute to the electrical and ionization processes in the cloud. When the local electric field is strong enough the secondary electrons can create relativistic electron run-away avalanches [1] or even non-relativistic avalanches. Cosmic rays could even trigger lightning inception. Conversely, strong electric fields also influence the development of the air shower [2]. Extensive air showers emit a short (tens of nanoseconds) radio pulse due to deflection of the shower particles in the Earth's magnetic field [3]. Antenna arrays, such as AERA, LOFAR and LOPES detect these pulses in a frequency window of roughly 10-100 MHz. These systems are also sensitive to the radiation from discharges associated to thunderstorms, and provide a means to study the interaction of cosmic ray air showers and the electrical processes in thunderstorms [4]. In this presentation we discuss the involved radiation mechanisms and present analyses of thunderstorm data from air shower arrays [1] A. Gurevich et al., Phys. Lett. A 165, 463 (1992) [2] S. Buitink et al., Astropart. Phys. 33, 1 (2010) [3] H. Falcke et al., Nature 435, 313 (2005) [4] S. Buitink et al., Astron. & Astrophys. 467, 385 (2007)

  6. Cosmic ray modulation

    NASA Astrophysics Data System (ADS)

    Agarwal Mishra, Rekha; Mishra, Rajesh Kumar

    2016-07-01

    Propagation of cosmic rays to and inside the heliosphere, encounter an outward moving solar wind with cyclic magnetic field fluctuation and turbulence, causing convection and diffusion in the heliosphere. Cosmic ray counts from the ground ground-based neutron monitors at different cut of rigidity show intensity changes, which are anti-correlated with sunspot numbers. They also lose energy as they propagate towards the Earth and experience various types of modulations due to different solar activity indices. In this work, we study the first three harmonics of cosmic ray intensity on geo-magnetically quiet days over the period 1965-2014 for Beijing, Moscow and Tokyo neutron monitoring stations located at different cut off rigidity. The amplitude of first harmonic remains high for low cutoff rigidity as compared to high cutoff rigidity on quiet days. The diurnal amplitude significantly decreases during solar activity minimum years. The diurnal time of maximum significantly shifts to an earlier time as compared to the corotational direction having different cutoff rigidities. The time of maximum for first harmonic significantly shifts towards later hours and for second harmonic it shifts towards earlier hours at low cutoff rigidity station as compared to the high cut off rigidity station on quiet days. The amplitude of second/third harmonics shows a good positive correlation with solar wind velocity, while the others (i.e. amplitude and phase) have no significant correlation on quiet days. The amplitude and direction of the anisotropy on quiet days does not show any significant dependence on high-speed solar wind streams for these neutron monitoring stations of different cutoff rigidity threshold. Keywords: cosmic ray, cut off rigidity, quiet days, harmonics, amplitude, phase.

  7. Cosmic Rays Across the Universe

    NASA Astrophysics Data System (ADS)

    Gould Zweibel, Ellen

    2016-01-01

    Cosmic rays play an important role in the dynamics, energetics, and chemisry of gas inside and outside galaxies. It has long been recognized that gamma ray astronomy is a powerful probe of cosmic ray acceleration and propagation, and that gamma ray data, combined with other observations of cosmic rays and of the host medium and with modeling, can provide an integrated picture of cosmic rays and their environments. I will discuss the plasma physics underlying this picture, where it has been successful, and where issues remain.

  8. Deuterium and He-3 in cosmic rays

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1989-01-01

    Observation of a large flux of antiprotons in cosmic rays prompted many to postulate new ideas relating to the origin and propagation of cosmic rays in the Galaxy, within the framework of the secondary hypothesis. Under this hypothesis, cosmic rays traverse a large amount of matter either in the source region or in the interstellar space. As a result, large amounts of deuterium and He-3 are also produced as a consequence of spallation of helium and heavier nuclei. In this paper, the spectra of these isotopes are derived, using various models for the propagation of cosmic rays and compare with the existing observations.

  9. A hysteresis effect in cosmic ray modulation

    NASA Technical Reports Server (NTRS)

    Verschell, H. J.; Mendell, R. B.; Korff, S. A.

    1974-01-01

    The rigidity dependence is investigated in the modulation of cosmic ray protons and alphas at intermediate (2-13 Gv) rigidities during the declines and recoveries of the cosmic ray flux near cosmic ray minimum. The results include the finding that sudden changes in the modulation of the primary cosmic rays are initiated by large solar particle outflow and begin as type I Forbush decreases. Typically, the modulation spectrum becomes flatter at intermediate rigidity below 13 Gv and steeper at rigidities above 13 Gv during early recovery.

  10. The Cosmic Ray Observatory Project: Results of a Summer High-School Student, Teacher, University Scientist Partnership Using a Capstone Research Experience

    ERIC Educational Resources Information Center

    Shell, Duane F.; Snow, Gregory R.; Claes, Daniel R.

    2011-01-01

    This paper reports results from evaluation of the Cosmic Ray Observatory Project (CROP), a student, teacher, scientist partnership to engage high-school students and teachers in school based cosmic ray research. Specifically, this study examined whether an intensive summer workshop experience could effectively prepare teacher-student teams to…

  11. The Cosmic Ray Electron Excess

    NASA Technical Reports Server (NTRS)

    Chang, J.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Christl, M.; Ganel, O.; Guzik, T. G.; Isbert, J.; Kim, K. C.; Kuznetsov, E. N.; Panasyuk, M. I.; Panov, A. D.; Schmidt, W. K. H.; Seo, E. S.; Sokolskaya, N. V.; Watts, J. W.; Wefel, J. P.; Wu, J.; Zatsepin, V. I.

    2008-01-01

    This slide presentation reviews the possible sources for the apparent excess of Cosmic Ray Electrons. The presentation reviews the Advanced Thin Ionization Calorimeter (ATIC) instrument, the various parts, how cosmic ray electrons are measured, and shows graphs that review the results of the ATIC instrument measurement. A review of Cosmic Ray Electrons models is explored, along with the source candidates. Scenarios for the excess are reviewed: Supernova remnants (SNR) Pulsar Wind nebulae, or Microquasars. Each of these has some problem that mitigates the argument. The last possibility discussed is Dark Matter. The Anti-Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission is to search for evidence of annihilations of dark matter particles, to search for anti-nuclei, to test cosmic-ray propagation models, and to measure electron and positron spectra. There are slides explaining the results of Pamela and how to compare these with those of the ATIC experiment. Dark matter annihilation is then reviewed, which represent two types of dark matter: Neutralinos, and kaluza-Kline (KK) particles, which are next explained. The future astrophysical measurements, those from GLAST LAT, the Alpha Magnetic Spectrometer (AMS), and HEPCAT are reviewed, in light of assisting in finding an explanation for the observed excess. Also the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) could help by revealing if there are extra dimensions.

  12. Cosmic rays and hadronic interactions

    NASA Astrophysics Data System (ADS)

    Lipari, Paolo

    2015-08-01

    The study of cosmic rays, and more in general of the "high energy universe" is at the moment a vibrant field that, thanks to the observations by several innovative detectors for relativistic charged particles, gamma-rays, and neutrinos continue to generate surprising and exciting results. The progress in the field is rapid but many fundamental problems remain open. There is an intimate relation between the study of the high energy universe and the study of the properties of hadronic interactions. High energy cosmic rays can only be studied detecting the showers they generate in the atmosphere, and for the interpretation of the data one needs an accurate modeling of the collisions between hadrons. Also the study of cosmic rays inside their sources and in the Galaxy requires a precise description of hadronic interactions. A program of experimental studies at the LHC and at lower energy, designed to address the most pressing problems, could significantly reduce the existing uncertainties and is very desirable. Such an experimental program would also have a strong intrinsic scientific interest, allowing the broadening and deepening of our understanding of Quantum Chromo Dynamics in the non-perturbative regime, the least understood sector of the Standard Model of particle physics. It should also be noted that the cosmic ray spectrum extends to particles with energy E ˜ 1020 eV, or a nucleon-nucleon c.m. energy √s ≃ 430 TeV, 30 times higher than the current LHC energy. Cosmic ray experiments therefore offer the possibility to perform studies on the properties of hadronic interactions that are impossible at accelerators.

  13. Cosmic Rays: "A Thin Rain of Charged Particles."

    ERIC Educational Resources Information Center

    Friedlander, Michael

    1990-01-01

    Discussed are balloons and electroscopes, understanding cosmic rays, cosmic ray paths, isotopes and cosmic-ray travel, sources of cosmic rays, and accelerating cosmic rays. Some of the history of the discovery and study of cosmic rays is presented. (CW)

  14. Cosmic ray biannual variation

    NASA Technical Reports Server (NTRS)

    Attolini, M. R.; Cecchini, S.; Cinicastagnoli, G.; Galli, M.

    1985-01-01

    The study of the cosmic ray (CR) power spectrum has revealed a significant variation with a period around 2 yr that cannot be explained as a high order harmonic of the 11 yr solar cycle. Comparative study of the correlation on different time scales between CR intensity and Rz, aa, high speed streams and polar hole size has put in evidence that a high degree of coherency exists between each couple of variables at 1.58 to 1.64 yr, except between CR and Rz. On the other hand cyclic variation on a short time scale, around 26 months, has been claimed to be present in the neutrino flux. Critical tests of this hypothesis are considered and a preliminary result seems to indicate that the hypothesis of the existence of a 1.6 yr periodicity in the neutrino data during the measurement time interval, has a significance or = 99.9%. The possible origin of this variation as due to a contribution either of CR interactions in the upper atmosphere or to the solar dynamics, are discussed.

  15. The Cosmic Ray Observatory Project: Results of a Summer High-School Student, Teacher, University Scientist Partnership Using a Capstone Research Experience

    NASA Astrophysics Data System (ADS)

    Shell, Duane F.; Snow, Gregory R.; Claes, Daniel R.

    2011-04-01

    This paper reports results from evaluation of the Cosmic Ray Observatory Project (CROP), a student, teacher, scientist partnership to engage high-school students and teachers in school based cosmic ray research. Specifically, this study examined whether an intensive summer workshop experience could effectively prepare teacher—student teams to engage in cutting edge high-energy physics research. Results showed that teachers and students could acquire enough knowledge about cosmic ray physics and self-efficacy for conducting cosmic ray research during a summer workshop to be full participants in an SSP conducting research in their schools, and a capstone anchoring approach using an authentic research activity was effective for motivating student engagement in didactic classroom learning. CROP demonstrated "proof of concept" that setting up cosmic ray detector arrays in schools run by teachers and students was feasible, but found that set-up and operation in a high-school was technically difficult.

  16. Low-Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Wiedenbeck, M. E.; ACE/CRIS Collaboration

    2002-12-01

    Cosmic rays with energies below about 10 GeV/nucleon have been measured with high precision as a result of experiments on the HEAO, Ulysses, and ACE spacecrafts. The observations provide energy spectra, elemental abundances, and isotopic composition for elements up through Z=30. They include both stable and radioactive nuclides that are synthesized in stars or are produced by nuclear fragmentation during diffusion at high energies through interstellar medium. From these data one obtains a rather detailed picture of the origin of low-energy cosmic rays. For refractory species, the cosmic-ray source composition closely resembles that of the Sun, suggesting that cosmic rays are accelerated from a well-mixed sample of interstellar matter. A chemical fractionation process has depleted the abundances of volatile elements relative to refractories. Using various radioactive clock isotopes it has been shown that particle acceleration occurs at least 105 years after supernova nucleosynthesis and that the accelerated particles diffuse in the Galaxy for approximately 15 Myr after acceleration. Energy spectra and secondary-to-primary ratios are reasonably well accounted for by models in which particles gain the bulk of their energy in a single encounter with a strong shock. Among the large number of species that have been measured, 22Ne stands out as the only nuclide with an abundance that is clearly much different than solar. To test models proposed to account for this anomaly, the data are being analyzed for predicted smaller effects on abundances of other nuclides. In addition to providing a detailed understanding of the origin and acceleration of low-energy cosmic rays, these data are providing constraints on the chemical evolution of interstellar matter. This work was supported by NASA at Caltech (under grant NAG5-6912), JPL, NASA/GSFC, and Washington U.

  17. Results and perspectives of cosmic ray mass composition studies with EAS arrays in the Tunka Valley

    NASA Astrophysics Data System (ADS)

    Prosin, V. V.; Budnev, N. M.; Chiavassa, A.; Dyachok, A. N.; Epimakhov, S. N.; Fenu, F.; Fomin, Yu A.; Gress, O. A.; Gress, T. I.; Kalmykov, N. N.; Karpov, N. I.; Korosteleva, E. E.; Kozhin, V. A.; Kuzmichev, L. A.; Lubsandorzhiev, B. K.; Lubsandorzhiev, N. B.; Mirgazov, R. R.; Monhoev, R. D.; Osipova, E. A.; Panasyuk, M. I.; Pankov, L. V.; Popova, E. G.; Ptuskin, V. S.; Semeney, Yu A.; Silaev, A. A.; Silaev, A. A., Jr.; Skurikhin, A. V.; Spiering, C.; Sulakov, V. P.; Sveshnikova, L. G.; Zagorodnikov, A. V.

    2016-05-01

    The study of the cosmic ray mass composition in the energy range 1016 - 1018 eV is one of the main aims of Tunka-133. This EAS Cherenkov array started data acquisition in the Tunka Valley (50 km from Lake Baikal) in autumn 2009. Tunka-133 provides a measurement of the EAS maximum depth (Xmax) with an accuracy of about 30 g/cm2 . Further mass composition analyses at the highest energies (1017 - 1018 eV) will be based on the comparison of primary energy measured by the radio method and the densities of charged particles measured by shielded and unshielded detectors. The high duty cycle of the common operation of the new scintillation array (Tunka-Grande) and the radio extension of the experiment (Tunka-REX) will provide a high statistics of events.

  18. AMS-02 results support the secondary origin of cosmic ray positrons.

    PubMed

    Blum, Kfir; Katz, Boaz; Waxman, Eli

    2013-11-22

    We show that the recent AMS-02 positron fraction measurement is consistent with a secondary origin for positrons and does not require additional primary sources such as pulsars or dark matter. The measured positron fraction at high energy saturates the previously predicted upper bound for secondary production, obtained by neglecting radiative losses. This coincidence, which will be further tested by upcoming AMS-02 data at higher energy, is a compelling indication for a secondary source. Within the secondary model, the AMS-02 data imply a cosmic ray propagation time in the Galaxy of <10(6) yr and an average traversed interstellar matter density of ~1 cm(-3), comparable to the density of the Milky Way gaseous disk, at a rigidity of 300 GV. PMID:24313471

  19. Cosmic ray test results of the DO prototype scintillating fiber tracker

    SciTech Connect

    Adams, D.; Bertram, I.; Adams, M.; Chung, M.; Baumbaugh, B.; Bross, A.; Casey, D.; Cretsinger, C.; Chang, S.; Cooper, C.

    1995-01-01

    The performance of a large scale scintillating fiber tracker with VLPC readout has been studied in a cosmic-ray test. Approximately 9.6 photoelectrons per single layer per trigger were detected at a VLPC bias voltage of 6.5V. The doublet efficiency was nearly 100% at a 0.1% noise level and a position resolution of about 140{mu}m was measured. The authors also studied the relationship between VLPC performance and VLPC bias voltage by measuring single fiber efficiency as a function of VLPC bias in the range 6.2V to 7.0V at a fixed temperature of 6.5{degrees}K. They observed no significant variation in VLPC performance within this bias range.

  20. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    The Large Area Telescope on-board the Fermi Gamma-Ray Space Telescope has collected more than 10 million cosmic ray electrons with energy above 7 GeV since its science operation on orbit. High energy electrons rapidly lose their energy by synchrotron radiation on Galactic magnetic fields and by inverse Compton scattering on the interstellar radiation field. The typical distance over which a 1 TeV electron loses half its total energy is estimated to be 300-400 pc.This makes them a unique tool for probing nearby Galactic space. Observed spectrum has a harder spectral index than was previously reported and suggests the presence of nearby sources of high energy electrons. One of viable candidates are nearby pulsars, possibly some of recently discovered by Fermi. At the same time the dark matter origin of such sources cannot be ruled out. I will also report our current upper limits on cosmic ray electrons anisotropy which helps to set constraints on their local sources.

  1. Anisotropy and corotation of galactic cosmic rays.

    PubMed

    Amenomori, M; Ayabe, S; Bi, X J; Chen, D; Cui, S W; Danzengluobu; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Huang, Q; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lou, Y-Q; Lu, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, B; Wang, H; Wang, X; Wang, Y G; Wu, H R; Xue, L; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhang, J L; Zhang, N J; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhaxisangzhu; Zhou, X X

    2006-10-20

    The intensity of Galactic cosmic rays is nearly isotropic because of the influence of magnetic fields in the Milky Way. Here, we present two-dimensional high-precision anisotropy measurement for energies from a few to several hundred teraelectronvolts (TeV), using the large data sample of the Tibet Air Shower Arrays. Besides revealing finer details of the known anisotropies, a new component of Galactic cosmic ray anisotropy in sidereal time is uncovered around the Cygnus region direction. For cosmic-ray energies up to a few hundred TeV, all components of anisotropies fade away, showing a corotation of Galactic cosmic rays with the local Galactic magnetic environment. These results have broad implications for a comprehensive understanding of cosmic rays, supernovae, magnetic fields, and heliospheric and Galactic dynamic environments. PMID:17053141

  2. Results of investigation of muon fluxes of superhigh energy cosmic rays with X-ray emulsion chambers

    NASA Technical Reports Server (NTRS)

    Ivanenko, I. P.; Ivanova, M. A.; Kuzmichev, L. A.; Ilyina, N. P.; Mandritskaya, K. V.; Osipova, E. A.; Rakobolskaya, I. V.; Zatsepin, G. T.

    1985-01-01

    The overall data from the investigation of the cosmic ray muon flux in the range of zenith angles (0-90) deg within the energy range (3.5 to 5.0) TeV is presented. The exposure of large X-ray emulsion chambers underground was 1200 tons. year. The data were processe using the method which was applied in the experiment Pamir and differred from the earlier applied one. The obtained value of a slope power index of the differential energy spectrum of the global muon flux is =3.7 that corresponds to the slope of the pion generation differential spectrum, gamma sub PI = 2.75 + or - .04. The analysis of the muon zenith-angular distribution showed that the contribution of rapid generation muons in the total muon flux agree the best with the value .2% and less with .7% at a 90% reliability level.

  3. Cosmic-Rays and Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Meli, A.

    2013-07-01

    Cosmic-rays are subatomic particles of energies ranging between a few eV to hundreds of TeV. These particles register a power-law spectrum, and it seems that most of them originate from astrophysical galactic and extragalactic sources. The shock acceleration in superalfvenic astrophysical plasmas, is believed to be the main mechanism responsible for the production of the non-thermal cosmic-rays. Especially, the importance of the very high energy cosmic-ray acceleration, with its consequent gamma-ray radiation and neutrino production in the shocks of the relativistic jets of Gamma Ray Bursts, is a favourable theme of study. I will discuss the cosmic-ray shock acceleration mechanism particularly focusing on simulation studies of cosmic-ray acceleration occurring in the relativistic shocks of GRB jets.

  4. Superbubbles and Local Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Streitmatter, Robert E.; Jones, Frank C.

    2005-01-01

    We consider the possibility that distinctive features of the local cosmic ray spectra and composition are influenced by the Solar system being embedded within the cavity of an ancient superbubble. Shifts in the measured cosmic ray composition between 10(exp 11) and 10(exp 20) eV as well as the "knee" and "second knee" may be understood in this picture.

  5. Cosmic Rays and Experiment CZELTA

    SciTech Connect

    Smolek, Karel; Nyklicek, Michal

    2007-11-26

    This paper gives a review of the physics of cosmic rays with emphasis on the methods of detection and study. A summary is given of the Czech project CZELTA which is part of a multinational program to study cosmic rays with energies above 10{sup 14} eV.

  6. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2010-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The exising models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  7. Testing Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.

    2009-01-01

    Models of the Galactic Cosmic Ray Environment are used for designing and planning space missions. The existing models will be reviewed. Spectral representations from these models will be compared with measurements of galactic cosmic ray spectra made on balloon flights and satellite flights over a period of more than 50 years.

  8. Cosmic Ray research in Armenia

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Mirzoyan, R.; Zazyan, M.

    2009-11-01

    Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East-West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.

  9. Genesis and propagation of cosmic rays

    SciTech Connect

    Shapiro, M.M.; Wefel, J.P.

    1988-01-01

    This book presents a panorama of contemporary state-of-the-art knowledge on the origin of cosmic rays and how they propagate through space. Twenty-eight articles cover such topics as objects which generate cosmic rays, processes which accelerate particles to cosmic ray energies, the interaction of cosmic rays with their environment, elementary particles in cosmic rays, how to detect cosmic rays and future experiments to measure highly energetic particles.

  10. Gamma rays, cosmic rays, and galactic structure

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1977-01-01

    Observations of cosmic and gamma radiation by SAS-2 satellite are summarized and analyzed to determine processes responsible for producing observed galactic radiation. In addition to the production of gamma rays in discrete galactic objects such as pulsars, there are three main mechanisms by which high-energy (greater than 100 MeV) radiation is produced by high-energy interactions involving cosmic rays in interstellar space. These processes, which produce what may be called diffuse galactic gamma-rays, are: (1) the decay of pi mesons produced by interactions of cosmic ray nucleons with interstellar gas nuclei; (2) the bremsstrahlung radiation produced by cosmic ray electrons interacting in the Coulomb fields of nuclei of interstellar gas atoms; and (3) Compton interactions between cosmic ray electrons and low-energy photons in interstellar space.

  11. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Models of Pulsars

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    This viewgraph presentation describes, in detail, the Fermi Large Area Telescope (LAT) and GLAST Burst Monitor (GBM). Observations made from the June 11, 2008 launch and a discussion of observations made of high energy cosmic ray electrons is also presented.

  12. Cosmic Ray Energetics And Mass

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2014-08-01

    The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for ~161 days in six flights over Antarctica. High energy cosmic-ray data were collected over a wide energy range from ~ 10^10 to > 10^14 eV at an average altitude of ~38.5 km with ~3.9 g/cm2 atmospheric overburden. Cosmic-ray elements from protons (Z = 1) to iron nuclei (Z = 26) are separated with excellent charge resolution. Building on success of the balloon flights, the payload is being reconfigured for exposure on the International Space Station (ISS). This ISS-CREAM instrument is configured with the CREAM calorimeter for energy measurements, and four finely segmented Silicon Charge Detector layers for precise charge measurements. In addition, the Top and Bottom Counting Detectors (TCD and BCD) and Boronated Scintillator Detector (BSD) have been newly developed. The TCD and BCD are scintillator based segmented detectors to separate electrons from nuclei using the shower profile differences, while BSD distinguishes electrons from nuclei by detecting thermal neutrons that are dominant in nuclei induced showers. An order of magnitude increase in data collecting power is possible by utilizing the ISS to reach the highest energies practical with direct measurements. The project status including results from on-going analysis of existing data and future plans will be discussed.

  13. Results of the study of low-energy cosmic rays in the AIaKS experiment on Prognoz-4 and Prognoz-6

    NASA Astrophysics Data System (ADS)

    Kolchin, A. A.; Lebedev, V. V.; Levchenko, V. F.; Repin, A. I.; Skrebtsov, G. P.

    The paper presents results of an investigation of the chemical composition and energy spectra of the nuclear component of cosmic rays from hydrogen to iron in the 1-10 MeV/nucleon range determined with the semiconductor AIaKS spectrometer on Prognoz-4 and Prognoz-6. Particular attention is given to the composition of recurrent and background fluxes at approximately 1 MeV/nucleon, and to the enrichment of solar cosmic rays by heavy elements in intense flares.

  14. Cosmic rays in the heliosphere

    NASA Technical Reports Server (NTRS)

    Webber, William R.

    1987-01-01

    The different types of cosmic ray particles and their role in the heliosphere are briefly described. The rates of various energetic particles were examined as a function of time and used to derive various differential energy gradients. The Pioneer and Voyager cosmic ray observations throughout the heliosphere are indeed giving a perspective on the three-dimensional character and size of the heliosphere. Most clearly the observations are emphasizing the role that transient variations in the outer heliosphere, and most likely the heliospheric boundary shock, play in the 11 year solar cycle modulation of cosmic rays.

  15. Numerical Cosmic-Ray Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Miniati, F.

    2009-04-01

    We present a numerical method for integrating the equations describing a system made of a fluid and cosmic-rays. We work out the modified characteristic equations that include the CR dynamical effects in smooth flows. We model the energy exchange between cosmic-rays and the fluid, due to diffusive processes in configuration and momentum space, with a flux conserving method. For a specified shock acceleration efficiency as a function of the upstream conditions and shock Mach number, we modify the Riemann solver to take into account the cosmic-ray mediation at shocks without resolving the cosmic-ray induced substructure. A self-consistent time-dependent shock solution is obtained by using our modified solver with Glimm's method. Godunov's method is applied in smooth parts of the flow.

  16. Cosmic rays, clouds, and climate.

    PubMed

    Carslaw, K S; Harrison, R G; Kirkby, J

    2002-11-29

    It has been proposed that Earth's climate could be affected by changes in cloudiness caused by variations in the intensity of galactic cosmic rays in the atmosphere. This proposal stems from an observed correlation between cosmic ray intensity and Earth's average cloud cover over the course of one solar cycle. Some scientists question the reliability of the observations, whereas others, who accept them as reliable, suggest that the correlation may be caused by other physical phenomena with decadal periods or by a response to volcanic activity or El Niño. Nevertheless, the observation has raised the intriguing possibility that a cosmic ray-cloud interaction may help explain how a relatively small change in solar output can produce much larger changes in Earth's climate. Physical mechanisms have been proposed to explain how cosmic rays could affect clouds, but they need to be investigated further if the observation is to become more than just another correlation among geophysical variables. PMID:12459578

  17. Cosmic ray transport near the heliopause

    NASA Astrophysics Data System (ADS)

    Strauss, R. D.; Fichtner, H.; Potgieter, M. S.; le Roux, J. A.; Luo, X.

    2015-09-01

    In this paper we summarize our modelling efforts for cosmic rays near the heliopause, and discuss whether galactic cosmic ray modulation beyond the heliopause is possible and present an explanation for the anisotropic nature of the observed cosmic ray intensities in the very local interstellar medium. We show that (i) modulation beyond the heliopause is possible, but highly dependent on the assumed parameters (most notable, the perpendicular diffusion coefficient). Treating the heliopause as a tangential discontinuity, significantly damps this modulation effect and leads to modelled results that are similar to Voyager 1 observations. (ii) By choosing an appropriate functional form of the perpendicular diffusion coefficient on the pitch-angle level, we are able to account for the anisotropic behaviour observed for both galactic and anomalous cosmic rays in the local interstellar medium.

  18. Unveiling the Origin of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Olinto, Angela V.

    2015-04-01

    The origin of cosmic rays, relativistic particles that range from below GeVs to hundreds of EeVs, is a century old mystery. Extremely energetic phenomena occurring over a wide range of scales, from the Solar System to distant galaxies, are needed to explain the non-thermal particle spectrum that covers over 12 orders of magnitude. Space Missions are the most effective platforms to study the origin and history of these cosmic particles. Current missions probe particle acceleration and propagation in the Solar System and in our Galaxy. This year ISS-CREAM and CALET join AMS in establishing the International Space Station as the most active site for studying the origin of Galactic cosmic rays. These missions will study astrophysical cosmic ray accelerators as well as other possible sources of energetic particles such as dark matter annihilation or decay. In the future, the ISS may also be the site for studying extremely high-energy extragalactic cosmic rays with JEM-EUSO. We review recent results in the quest for unveiling the sources of energetic particles with balloons and space payloads and report on activities of the Cosmic ray Science Interest Group (CosmicSIG) under the Physics of the Cosmos Program Analysis Group (PhysPAG).

  19. Development of cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It is pointed out that most advances of cosmic-ray physics have been directly related to the development of observational techniques. A review is presented of the history of the evolution of the techniques and equipment for the study of cosmic-ray physics, taking into account the new scientific advances accompanying each new development related to experimental technology. All of the early observations were performed by means of ionization chambers. These chambers had already been in use for a number of years, when they were first applied to the study of cosmic rays in the early years of this century. However, an application to the low-intensity cosmic radiation required special refinements. Attention is given to the design of suitable electrometers, the development of self-recording instruments, the 'tube counter', the development of the coincidence method, a cosmic-ray 'telescope', a magnetic lens for cosmic rays, an arrangement of Geiger-Mueller counters for the demonstration of secondary radiation, cloud chambers, scintillation counters, and air shower experiments.

  20. Cosmic-ray backgrounds in infrared bolometers

    NASA Technical Reports Server (NTRS)

    Nolt, I. G.; Radostitz, J. V.; Carlotti, M.; Carli, B.; Mencaraglia, F.

    1985-01-01

    Model calculations for the production of cosmic ray events in IR detectors by energy impulses due to fast charged particles' ionization trails are presently compared to the pulse-amplitude spectrum observed from a balloon at an altitude of 38 km. The results are pertinent to the current understanding of cosmic ray backgrounds found in all high sensitivity bolometer applications. The observed signal transients are in all details consistent with the modeling of known cosmic charged particle flux characteristics and with the detector response. Generally, the optics design should minimize detector/substrate cross section.

  1. Cosmic radioactivity and INTEGRAL results

    SciTech Connect

    Diehl, Roland

    2014-05-02

    Gamma-ray lines from radioactive decay of unstable isotopes co-produced by nucleosynthesis in massive stars and supernova have been measured since more than thirty years. Over the past ten years, INTEGRAL complemented the first sky survey made by COMPTEL. The {sup 26}A1 isotope with 1 My decay time had been first direct proof of currently-ongoing nucleosynthesis in our Galaxy. This has now become a tool to study the ∼My history of specific source regions, such as massive-star groups and associations in nearby regions which can be discriminated from the galactic-plane background, and the inner Galaxy, where Doppler shifted lines add to the astronomical information about bar and spiral structure. Recent findings suggest that superbubbles show a remarkable asymmetry, on average, in the spiral arms of our galaxy. {sup 60}Fe is co-produced by the sources of {sup 26}A1, and the isotopic ratio from their nucleosynthesis encodes stellar-structure information. Annihilation gamma-rays from positrons in interstellar space show a puzzling bright and extended source region central to our Galaxy, but also may be partly related to nucleosynthesis. {sup 56}Ni and {sup 44}Ti isotope gamma-rays have been used to constrain supernova explosion mechanisms. Here we report latest results using the accumulated multi-year database of INTEGRAL observations, and discuss their astrophysical interpretations, connecting to other traces of cosmic radioactivity and to other cosmic messengers.

  2. Cosmic Rays and Global Warming

    SciTech Connect

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  3. Efficacy of Cosmic Ray Shields

    NASA Astrophysics Data System (ADS)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  4. Nonlinear Cosmic Ray Diffusion Theories

    NASA Astrophysics Data System (ADS)

    Shalchi, Andreas

    Within cosmic ray transport theory, we investigate the interaction between energetic charged particles like electrons, protons, or heavy ions and astrophysical plasmas such as the solar wind or the interstellar medium. These particles interact with a background magnetic field B 0 and with turbulent electric and magnetic fields ýE and ýB, and they therefore experience scattering parallel and perpendicular to B 0. In this introductory chapter, general properties of cosmic rays are discussed, as well as the unperturbed motion of the particles. Furthermore, the physics of parallel and perpendicular scattering is investigated. At the end of this chapter, we consider observed mean free paths of cosmic rays in the heliosphere and in the interstel- lar medium. One aim of this book is to demonstrate that a nonlinear description of particle transport is necessary to reproduce these measurements.

  5. Spiral arms as cosmic ray source distributions

    NASA Astrophysics Data System (ADS)

    Werner, M.; Kissmann, R.; Strong, A. W.; Reimer, O.

    2015-04-01

    The Milky Way is a spiral galaxy with (or without) a bar-like central structure. There is evidence that the distribution of suspected cosmic ray sources, such as supernova remnants, are associated with the spiral arm structure of galaxies. It is yet not clearly understood what effect such a cosmic ray source distribution has on the particle transport in our Galaxy. We investigate and measure how the propagation of Galactic cosmic rays is affected by a cosmic ray source distribution associated with spiral arm structures. We use the PICARD code to perform high-resolution 3D simulations of electrons and protons in galactic propagation scenarios that include four-arm and two-arm logarithmic spiral cosmic ray source distributions with and without a central bar structure as well as the spiral arm configuration of the NE2001 model for the distribution of free electrons in the Milky Way. Results of these simulation are compared to an axisymmetric radial source distribution. Also, effects on the cosmic ray flux and spectra due to different positions of the Earth relative to the spiral structure are studied. We find that high energy electrons are strongly confined to their sources and the obtained spectra largely depend on the Earth's position relative to the spiral arms. Similar finding have been obtained for low energy protons and electrons albeit at smaller magnitude. We find that even fractional contributions of a spiral arm component to the total cosmic ray source distribution influences the spectra on the Earth. This is apparent when compared to an axisymmetric radial source distribution as well as with respect to the Earth's position relative to the spiral arm structure. We demonstrate that the presence of a Galactic bar manifests itself as an overall excess of low energy electrons at the Earth. Using a spiral arm geometry as a cosmic ray source distributions offers a genuine new quality of modeling and is used to explain features in cosmic ray spectra at the Earth

  6. Fun Times with Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    Who would have thought cosmic rays could be so hip? Although discovered 90 years ago on death-defying manned balloon flights hip even by twenty-first-century extremesport standards cosmic rays quickly lost popularity as way-cool telescopes were finding way-too-cool phenomena across the electromagnetic spectrum. Yet cosmic rays are back in vogue, boasting their own set of superlatives. Scientists are tracking them down with new resolve from the Arctic to Antarctica and even on the high western plains of Argentina. Theorists, too, now see cosmic rays as harbingers of funky physics. Cosmic rays are atomic and subatomic particles - the fastest moving bits of matter in the universe and the only sample of matter we have from outside the solar system (with the exception of interstellar dust grains). Lower-energy cosmic rays come from the Sun. Mid-energy particles come from stellar explosions - either spewed directly from the star like shrapnel, or perhaps accelerated to nearly the speed of light by shock waves. The highest-energy cosmic rays, whose unequivocal existence remains one of astronomy's greatest mysteries, clock in at a staggering 10(exp 19) to 10(exp 22) electron volts. This is the energy carried in a baseball pitch; seeing as how there are as many atomic particles in a baseball as there are baseballs in the Moon, that s one powerful toss. No simple stellar explosion could produce them. At a recent conference in Albuquerque, scientists presented the first observational evidence of a possible origin for the highest-energy variety. A team led by Elihu Boldt at NASA s Goddard Space Flight Center found that five of these very rare cosmic rays (there are only a few dozen confirmed events) come from the direction of four 'retired' quasar host galaxies just above the arm of the Big Dipper, all visible with backyard telescopes: NGC 3610, NGC 3613, NGC 4589, and NGC 5322. These galaxies are billions of years past their glory days as the brightest beacons in the universe

  7. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  8. Aligned interactions in cosmic rays

    SciTech Connect

    Kempa, J.

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  9. Cosmic Ray Nuclei (CRN) detector investigation

    NASA Technical Reports Server (NTRS)

    Meyer, Peter; Muller, Dietrich; Lheureux, Jacques; Swordy, Simon

    1991-01-01

    The Cosmic Ray Nuclei (CRN) detector was designed to measure elemental composition and energy spectra of cosmic radiation nuclei ranging from lithium to iron. CRN was flown as part of Spacelab 2 in 1985, and consisted of three basic components: a gas Cerenkov counter, a transition radiation detector, and plastic scintillators. The results of the experiment indicate that the relative abundance of elements in this range, traveling at near relativistic velocities, is similar to those reported at lower energy.

  10. Cosmic-Ray Modulation Equations

    NASA Astrophysics Data System (ADS)

    Moraal, H.

    2013-06-01

    The temporal variation of the cosmic-ray intensity in the heliosphere is called cosmic-ray modulation. The main periodicity is the response to the 11-year solar activity cycle. Other variations include a 27-day solar rotation variation, a diurnal variation, and irregular variations such as Forbush decreases. General awareness of the importance of this cosmic-ray modulation has greatly increased in the last two decades, mainly in communities studying cosmogenic nuclides, upper atmospheric physics and climate, helio-climatology, and space weather, where corrections need to be made for these modulation effects. Parameterized descriptions of the modulation are even used in archeology and in planning the flight paths of commercial passenger jets. The qualitative, physical part of the modulation is generally well-understood in these communities. The mathematical formalism that is most often used to quantify it is the so-called Force-Field approach, but the origins of this approach are somewhat obscure and it is not always used correct. This is mainly because the theory was developed over more than 40 years, and all its aspects are not collated in a single document. This paper contains a formal mathematical description intended for these wider communities. It consists of four parts: (1) a description of the relations between four indicators of "energy", namely energy, speed, momentum and rigidity, (2) the various ways of how to count particles, (3) the description of particle motion with transport equations, and (4) the solution of such equations, and what these solutions mean. Part (4) was previously described in Caballero-Lopez and Moraal (J. Geophys. Res, 109: A05105, doi: 10.1029/2003JA010358, 2004). Therefore, the details are not all repeated here. The style of this paper is not to be rigorous. It rather tries to capture the relevant tools to do modulation studies, to show how seemingly unrelated results are, in fact, related to one another, and to point out the

  11. The microphysics and macrophysics of cosmic rays

    SciTech Connect

    Zweibel, Ellen G.

    2013-05-15

    This review paper commemorates a century of cosmic ray research, with emphasis on the plasma physics aspects. Cosmic rays comprise only ∼10{sup −9} of interstellar particles by number, but collectively their energy density is about equal to that of the thermal particles. They are confined by the Galactic magnetic field and well scattered by small scale magnetic fluctuations, which couple them to the local rest frame of the thermal fluid. Scattering isotropizes the cosmic rays and allows them to exchange momentum and energy with the background medium. I will review a theory for how the fluctuations which scatter the cosmic rays can be generated by the cosmic rays themselves through a microinstability excited by their streaming. A quasilinear treatment of the cosmic ray–wave interaction then leads to a fluid model of cosmic rays with both advection and diffusion by the background medium and momentum and energy deposition by the cosmic rays. This fluid model admits cosmic ray modified shocks, large scale cosmic ray driven instabilities, cosmic ray heating of the thermal gas, and cosmic ray driven galactic winds. If the fluctuations were extrinsic turbulence driven by some other mechanism, the cosmic ray background coupling would be entirely different. Which picture holds depends largely on the nature of turbulence in the background medium.

  12. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  13. The Heliosphere and Galactic Cosmic Rays

    NASA Video Gallery

    The heliosphere deflects galactic cosmic rays from entering the system. Galactic cosmic rays are a very high energy form of particle radiation that are extremely difficult to shield against and are...

  14. Evaluation of Galactic Cosmic Ray Models

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Heiblim, Samuel; Malott, Christopher

    2009-01-01

    Models of the galactic cosmic ray spectra have been tested by comparing their predictions to an evaluated database containing more than 380 measured cosmic ray spectra extending from 1960 to the present.

  15. Ultra heavy cosmic ray experiment (A0178)

    NASA Technical Reports Server (NTRS)

    Thompson, A.; Osullivan, D.; Bosch, J.; Keegan, R.; Wenzel, K. P.; Jansen, F.; Domingo, C.

    1992-01-01

    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels using 16 peripheral LDEF trays. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m sr, giving a total exposure factor of 170 sq m sr y at an orbital inclination of 28.4 degs. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide cosmic rays. Results are presented including a sample of ultra heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of + or - 0.8e for uranium and + or - 0.6e for the platinum-lead group. Astrophysical implications of the UHCRE charge spectrum are discussed.

  16. Cosmic Ray Interactions in Shielding Materials

    SciTech Connect

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

    2011-09-08

    This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earth’s surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earth’s surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

  17. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1991-01-01

    The Long Duration Exposure Facility (LDEF) Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of 4 pressure vessels (3 experiment tray). The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 2000 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Postflight work to date and the current status of the experiment are reviewed. Provisional results from analysis of preflight and postflight calibrations are presented.

  18. Cosmic Ray Energetics And Mass

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    The 6 flights of the Cosmic Ray Energetics and Mass (CREAM) balloon payload over Antarctica accumulated 161 days of exposure. The instrument is configured with complementary and redundant particle detectors for direct measurements of high energy cosmic ray elemental spectra. The calorimeter and Silicon Charge Detectors (SCD) from one of the two instruments are being re-configured for the International Space Station, dubbed ISS-CREAM. The other calorimeter and detectors that are too large to fit in the ISS Japanese Experiment Module Exposed Facility envelope are kept for balloon flights. The large area Timing Charged Detector (TCD) and newly developed Transition Radiation Detector (TRD) will be used for studying the propagation history of cosmic rays by measuring relative abundances of secondary particles, e.g., Boron. This Boron and Carbon Cosmic Rays in the Upper Stratosphere (BACCUS) balloon payload will provide in-flight cross calibration of the calorimeter and TRD for Z > 3 particles. The status of the payload construction and flight preparation will be reported.

  19. The LDEF ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Smit, A.; Domingo, C.

    1992-01-01

    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed.

  20. Propagation of Cosmic Rays and Diffuse Galactic Gamma Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    This paper presents an introduction to the astrophysics of cosmic rays and diffuse gamma-rays and discusses some of the puzzles that have emerged recently due to more precise data and improved propagation models: the excesses in Galactic diffuse gamma-ray emission, secondary antiprotons and positrons, and the flatter than expected gradient of cosmic rays in the Galaxy. These also involve the dark matter, a challenge to modern physics, through its indirect searches in cosmic rays. Though the final solutions are yet to be found, I discuss some ideas and results obtained mostly with the numerical propagation model GALPROP. A fleet of spacecraft and balloon experiments targeting these specific issues is set to lift off in a few years, imparting a feeling of optimism that a new era of exciting discoveries is just around the corner. A complete and comprehensive discussion of all the recent results is not attempted here due to the space limitations.

  1. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  2. Ionization by Cosmic Rays in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Norman, R. B.; Gronoff, G.; Mertens, C. J.; Blattnig, S.

    2011-12-01

    In-situ measurements by Cassini-Huygens have shown the importance of ionizing particles (solar photons, magnetospheric electrons and protons, cosmics rays) on the atmosphere of Titan. Ionizing particles play an important role in the atmospheric chemistry of Titan and must therefore be accurately modeled to understand the contribution of the differing sources of ionization. To model the initial galactic cosmic ray environment, the Badwar-O'Neill cosmic ray spectrum model was adapted for use at Titan. The Aeroplanets model, an electron transport model for the study of airglow and aurora, was then coupled to the Planetocosmics model, a Monte-carlo cosmic ray transport and energy deposition model, to compute ion production from cosmic rays. In addition, the NAIRAS model, a cosmic ray irradiation model adapted for fast computations, was adopted to the Titan environment and, for the first time, used to compute an ionization profile on a planet other than Earth and compared to the Planetocosmics results. For the first time, the importance of high charge cosmic rays on the ionization of the Titan atmosphere was demonstrated. High charge cosmic rays were found to be especially important below an altitude of 400 km, contributing significantly to the total ionization. Specifically, between 200 km and 400 km, alpha and higher charge cosmic rays are responsible for 40% of the ionization. The increase due to high charge cosmic rays was found for both the Planetocosmics and NAIRAS models.

  3. Time variation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Evenson, Paul

    1988-01-01

    Time variations in the flux of galactic cosmic rays are the result of changing conditions in the solar wind. Maximum cosmic ray fluxes, which occur when solar activity is at a minimum, are well defined. Reductions from this maximum level are typically systematic and predictable but on occasion are rapid and unexpected. Models relating the flux level at lower energy to that at neutron monitor energy are typically accurate to 20 percent of the total excursion at that energy. Other models, relating flux to observables such as sunspot number, flare frequency, and current sheet tilt are phenomenological but nevertheless can be quite accurate.

  4. Cosmic Ray Observatories for Space Weather Studies.

    NASA Astrophysics Data System (ADS)

    González, Xavier

    2016-07-01

    The Mexican Space Weather Service (SCiESMEX) was created in October 2014. Some observatories measure data for the service at different frequencies and particles. Two cosmic ray observatories detect the particle variations attributed to solar emissions, and are an important source of information for the SCiESMEX. The Mexico City Cosmic Ray Observatory consists of a neutron monitor (6-NM-64) and a muon telescope, that detect the hadronic and hard component of the secondary cosmic rays in the atmosphere. It has been in continous operation since 1990. The Sierra Negra Cosmic Ray Observatory consists of a solar neutron telescope and the scintillator cosmic ray telescope. These telescopes can detect the neutrons, generated in solar flares and the hadronic and hard components of the secondary cosmic rays. It has been in continous operation since 2004. We present the two observatories and the capability to detect variations in the cosmic rays, generated by the emissions of the solar activity.

  5. High energy cosmic ray physics with underground muons in MACRO. I. Analysis methods and experimental results

    SciTech Connect

    Bellotti, R.; Cafagna, F.; Calicchio, M.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Erriquez, O.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Guarnaccia, P.; Mazziotta, M.N.; Montaruli, T.; Raino, A.; Spinelli, P.; Cecchini, S.; Dekhissi, H.; Fantini, R.; Giacomelli, G.; Mandrioli, G.; Margiotta-Neri, A.; Patrizii, L.; Popa, V.; Serra-Lugaresi, P.; Spurio, M.; Togo, V.; Hong, J.T.; Kearns, E.; Okada, C.; Orth, C.; Stone, J.L.; Sulak, L.R.; Barish, B.C.; Goretti, M.; Katsavounidis, E.; Kyriazopoulou, S.; Michael, D.G.; Nolty, R.; Peck, C.W.; Scholberg, K.; Walter, C.W.; Lane, C.; Steinberg, R.; Battistoni, G.; Bilokon, H.; Bloise, C.; Carboni, M.; Chiarella, V.; Forti, C.; Iarocci, E.; Marini, A.; Patera, V.; Ronga, F.; Satta, L.; Sciubba, A.; Spinetti, M.; Valente, V.; Antolini, R.; Bosio, T.; Di Credico, A.; Grillo, A.; Gustavino, C.; Mikheyev, S.; Parlati, S.; Reynoldson, J.; Scapparone, E.; Bower, C.; Habig, A.; Hawthorne, A.; Heinz, R.; Miller, L.; Mufson, S.; Musser, J.; De Mitri, I.; Monacelli, P.; Bernardini, P.; Mancarella, G.; Martello, D.; Palamara, O.; Petrera, S.; Pistilli, P.; Ricciardi, M.; Surdo, A.; Baker, R.; and others

    1997-08-01

    In this paper, the first of a two-part work, we present the reconstruction and measurement of muon events detected underground by the MACRO experiment at Gran Sasso (E{sub {mu}}{ge} 1.3 TeV in atmosphere). The main aim of this work is to discuss the muon multiplicity distribution as measured in the detector. The data sample analyzed consists of 4.4{times}10{sup 6} muon events, of which {approximately} 263000 are multiple muons, corresponding to a total live time of 5850 h. In this sample, the observed multiplicities extend above N{sub {mu}}=35, with intermuon separations up to 50 m and beyond. Additional complementing measurements, such as the inclusive muon flux, the angular distribution, and the muon separation distribution (decoherence), are also included. The physical interpretation of the results presented here is reported in the following companion paper. {copyright} {ital 1997} {ital The American Physical Society}

  6. Gamma-ray astronomy and the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    New surveys of galactic gamma ray emission together with millimeter wave radio surveys indicated that cosmic rays were produced as the result of supernova explosions in our galaxy with the most intense production occurring in a Great Galactic Ring about 35,000 light years in diameter where supernova remnants and pulsars were concentrated.

  7. Characterising CCDs with cosmic rays

    SciTech Connect

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  8. Characterising CCDs with cosmic rays

    DOE PAGESBeta

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-06

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. The small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurementmore » technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.« less

  9. Characterising CCDs with cosmic rays

    NASA Astrophysics Data System (ADS)

    Fisher-Levine, M.; Nomerotski, A.

    2015-08-01

    The properties of cosmic ray muons make them a useful probe for measuring the properties of thick, fully depleted CCD sensors. The known energy deposition per unit length allows measurement of the gain of the sensor's amplifiers, whilst the straightness of the tracks allows for a crude assessment of the static lateral electric fields at the sensor's edges. Furthermore, the small volume in which the muons deposit their energy allows measurement of the contribution to the PSF from the diffusion of charge as it drifts across the sensor. In this work we present a validation of the cosmic ray gain measurement technique by comparing with radioisotope gain measurments, and calculate the charge diffusion coefficient for prototype LSST sensors.

  10. Antiprotons in the Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Nutter, Scott

    1999-10-01

    The HEAT (High Energy Antimatter Telescope) collaboration flew in May 1999 a balloon-borne instrument to measure the relative abundance of antiprotons and protons in the cosmic rays to kinetic energies of 30 GeV. The instrument uses a multiple energy loss technique to measure the Lorentz factor of through-going cosmic rays, a magnet spectrometer to measure momentum, and several scintillation counters to determine particle charge and direction (up or down in the atmosphere). The antiproton/proton abundance ratio as a function of energy is a probe of the propagation environment of protons through the galaxy. Existing measurements indicate a higher than expected value at both high and low energies. A confirming measurement could indicate peculiar antiproton sources, such as WIMPs or supersymmetric darkmatter candidates. A description of the instrument, details of the flight and instrument performance, and status of the data analysis will be given.

  11. New approach to cosmic ray investigations above the knee

    NASA Astrophysics Data System (ADS)

    Bogdanov, A. G.; Kokoulin, R. P.; Petrukhin, A. A.

    2016-05-01

    It is assumed that at energies around the knee the nucleus-nucleus interaction is drastically changed due to production of blobs of quark-gluon matter with very large orbital momentum. This approach allows explain all so-called unusual events observed in cosmic rays and gives a new connection between results of EAS investigations and energy spectrum and mass composition of primary cosmic rays. To check this approach, the experiments in cosmic rays and at LHC are proposed.

  12. Cosmic ray variations during PCA type absorption

    NASA Technical Reports Server (NTRS)

    Kozin, I. D.

    1972-01-01

    It is shown based on data on the cosmic-ray neutron component, ionospheric soundings, and measurements of cosmic radio-emission absorption at Vostok station (Antarctica) that the ionization of the lower ionosphere increases during low intensity of Forbush-type cosmic rays. This is manifested in increased absorption and the appearance of strong sporadic layers in the E-region.

  13. Cosmic Ray Helium Intensities over the Solar Cycle from ACE

    NASA Technical Reports Server (NTRS)

    DeNolfo, G. A.; Yanasak, N. E.; Binns, W. R.; Cohen, C. M. S.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink. P. L.; Israel, M. H.; Lave, K.; Leske, R. A.; Mewaldt, R. A.; Moskalenko, I. V.; Ogliore, R.; Stone, E. C.; Von Rosenvinge, T. T.; Wiedenback, M. E.

    2007-01-01

    Observations of cosmic-ray helium energy spectra provide important constraints on cosmic ray origin and propagation. However, helium intensities measured at Earth are affected by solar modulation, especially below several GeV/nucleon. Observations of helium intensities over a solar cycle are important for understanding how solar modulation affects galactic cosmic ray intensities and for separating the contributions of anomalous and galactic cosmic rays. The Cosmic Ray Isotope Spectrometer (CRIS) on ACE has been measuring cosmic ray isotopes, including helium, since 1997 with high statistical precision. We present helium elemental intensities between approx. 10 to approx. 100 MeV/nucleon from the Solar Isotope Spectrometer (SIS) and CRIS observations over a solar cycle and compare these results with the observations from other satellite and balloon-borne instruments, and with GCR transport and solar modulation models.

  14. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  15. Current Status of Astrophysics of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Moskalenko, Igor

    2016-03-01

    I will review the current instrumentation and recent results. I will discuss which measurements have to be done in the near future to significantly advance our knowledge about the phenomenon of cosmic rays, their sources, and their interactions with the interstellar medium. A support from NASA APRA Grant No. NNX13AC47G is greatly acknowledged.

  16. Variations of the cosmic ray general component in Antarctica

    NASA Technical Reports Server (NTRS)

    Kurguzova, A. I.; Svirzhevsky, N. S.; Charakhchyan, T. N.; Krasotkin, A. F.

    1985-01-01

    A cosmic ray variations, zonal cosmic ray modulation, was found in the lower atmosphere from the sonde measurement results. The variations give rise to anomalies in the latitude distributions of the cosmic ray charged component and the anomalous north-south asymmetry. To find the nature of the variations, the cosmic ray general component was measured with the same detectors as in the sonde measurements gas discharge counters and the counter telescopes with 7-mm Al filters detecting the electrons of energy above 200 keV and 5 MeV. The measurement data obtained in Antarctica in the years 1978 to 1983 are presented and discussed.

  17. Final Report for NA-22/DTRA Cosmic Ray Project

    SciTech Connect

    Wurtz, Ron E.; Chapline, George F.; Glenn, Andrew M.; Nakae, Les F.; Pawelczak, Iwona A.; Sheets, Steven A.

    2015-07-21

    The primary objective of this project was to better understand the time-correlations between the muons and neutrons produced as a result of high energy primary cosmic ray particles hitting the atmosphere, and investigate whether these time correlations might be useful in connection with the detection of special nuclear materials. During the course of this project we did observe weak correlations between secondary cosmic ray muons and cosmic ray induced fast neutrons. We also observed strong correlations between tertiary neutrons produced in a Pb pile by secondary cosmic rays and minimum ionizing particles produced in association with the tertiary neutrons.

  18. A database of charged cosmic rays

    NASA Astrophysics Data System (ADS)

    Maurin, D.; Melot, F.; Taillet, R.

    2014-09-01

    Aims: This paper gives a description of a new online database and associated online tools (data selection, data export, plots, etc.) for charged cosmic-ray measurements. The experimental setups (type, flight dates, techniques) from which the data originate are included in the database, along with the references to all relevant publications. Methods: The database relies on the MySQL5 engine. The web pages and queries are based on PHP, AJAX and the jquery, jquery.cluetip, jquery-ui, and table-sorter third-party libraries. Results: In this first release, we restrict ourselves to Galactic cosmic rays with Z ≤ 30 and a kinetic energy per nucleon up to a few tens of TeV/n. This corresponds to more than 200 different sub-experiments (i.e., different experiments, or data from the same experiment flying at different times) in as many publications. Conclusions: We set up a cosmic-ray database (CRDB) and provide tools to sort and visualise the data. New data can be submitted, providing the community with a collaborative tool to archive past and future cosmic-ray measurements. http://lpsc.in2p3.fr/crdb; Contact: crdatabase@lpsc.in2p3.fr

  19. Radar Detection of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2012-03-01

    Progress in the study of high energy cosmic ray physics is limited by low flux. In order to collect substantial statistics above 10^19 eV, the two largest ground arrays currently in operation cover 800 km^2 (Telescope Array, Utah) and 3000 km^2 (Auger Observatory, Argentina). The logistics and cost of an order-of-magnitude increase in ground array aperture is prohibitive. In the literature, radar detection experiments have been proposed but substantial results have not been reported. We have deployed a low-power (1500 W) bistatic radar facility overlapping the Telescope Array (TA) in Delta, Utah. Data acquisition systems for the radar receivers were developed in parallel. This system has taught us a great deal, but our current focus is building and deploying a 40 kW transmitter and new high-gain transmitting antenna. Theoretical simulations of CR air shower scattering of radar show that coincidences with the ground array should be detected with this new system. An FCC license for the new transmitter/antenna has been obtained. Systems monitoring and data logging systems, as well as a new, intelligent self-triggered DAQ continue to be developed. We hope to deploy the self-triggered DAQ during the first few months of 2012 and complete the transmitte

  20. Ionisation as indicator for cosmic ray acceleration

    NASA Astrophysics Data System (ADS)

    Schuppan, F.; Röken, C.; Fedrau, N.; Becker Tjus, J.

    2014-06-01

    Astrospheres and wind bubbles of massive stars are believed to be sources of cosmic rays with energies E ≲ 1 TeV. These particles are not directly detectable, but their impact on surrounding matter, in particular ionisation of atomic and molecular hydrogen, can lead to observable signatures. A correlation study of both gamma ray emission, induced by proton-proton interactions of cosmic ray protons with kinetic energies Ep ≥ 280 MeV with ambient hydrogen, and ionisation induced by cosmic ray protons of kinetic energies Ep < 280 MeV can be performed in order to study potential sources of (sub)TeV cosmic rays.

  1. A cosmic rays experiment

    NASA Astrophysics Data System (ADS)

    Pérez Munguía, Gustavo; Pineda de Carías, María Cristina

    1995-01-01

    In this paper we present the results of an experiment performed to detect the total flux of muons incident over Tegucigalpa (Honduras) the day of the total solar eclipse of the 11 July, 1991; and also a comparison with data obtained before the eclipse and registered in the past years.

  2. Galactic cosmic ray composition and energy spectra

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1994-01-01

    Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.

  3. Underground measurements on secondary cosmic rays

    NASA Technical Reports Server (NTRS)

    Fenton, A. G.; Wilson, C. W.; Fenton, K. B.

    1985-01-01

    Measurements made at the Poatina cosmic ray station (41.8 S 149.9 E, 347 m.w.e.) from August 1983 to July 1984 are summarized. The cosmic ray primary particles responsible for events detected at the station have a median primary energy of 1.2 TeV. The motivation for part of this work came from the reported detection of narrow angle anisotropies in the arrival direction of cosmic rays.

  4. Propagation of cosmic rays in the galaxy

    NASA Technical Reports Server (NTRS)

    Daniel, R. R.; Stephens, S. A.

    1974-01-01

    The characteristics of a model for analyzing the propagation of cosmic rays are discussed. The requirements for analyzing the relevant observational data on cosmic rays are defines as: (1) the chemical and isotopic composition of cosmic rays as a function of energy, (2) the flux and energy spectrum of the individual nucleonic components, (3) the flux and energy spectrum of the electronic component, (4) the cosmic ray prehistory, and (5) the degree of isotropy in their arrival directions as a function of energy. It is stated that the model which has been able to bring to pass the greatest measure of success is the galactic confinement model.

  5. High-energy cosmic ray interactions

    SciTech Connect

    Engel, Ralph; Orellana, Mariana; Reynoso, Matias M.; Vila, Gabriela S.

    2009-04-30

    Research into hadronic interactions and high-energy cosmic rays are closely related. On one hand--due to the indirect observation of cosmic rays through air showers--the understanding of hadronic multiparticle production is needed for deriving the flux and composition of cosmic rays at high energy. On the other hand the highest energy particles from the universe allow us to study the characteristics of hadronic interactions at energies far beyond the reach of terrestrial accelerators. This is the summary of three introductory lectures on our current understanding of hadronic interactions of cosmic rays.

  6. A Journey Through Researches on Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R.; Roy, M.; Barman, P.; Mukherjee, C. D.

    2013-04-01

    Cosmic ray causes hazards to microelectronic circuits. Presence of charged particles in the atmosphere was first noticed by Coloumb in 1785. But cosmic ray was discovered by Victor Hess in 1912. However new era of particle physics was started with the invention of neutron monitor in 1948 by John A. Simpson. New information regarding the energy spectrum, anisotropy, latitudinal, longitudinal and daily variation of cosmic ray has added the scientific yield one by one from the analysis of the data of different monitors over the globe. This paper is a brief account of the striking events of cosmic ray which may be the background of future researchers.

  7. Cosmic Rays in the Heliosphere

    NASA Astrophysics Data System (ADS)

    Potgieter, M. S.

    The international heliospheric year (IHY) has the purpose to promote research on the Sun-Heliosphere system outward to the local interstellar medium - the new frontier. This includes fostering international scientific cooperation in the study of heliophysical phenomena now and in the future. Part of this process is to communicate research done on the heliosphere, especially to the scientific community in Africa. A short review is given of the numerical modeling of the heliosphere, and of the modulation of cosmic rays and how these particles are used to probe the heliosphere to understand its basic features. Projects of both a theoretical and numerical nature are proposed for the IHY.

  8. Synchrotron x-ray fluorescence analyses of stratospheric cosmic dust: New results for chondritic and nickel-depleted particles

    SciTech Connect

    Flynn, G.J.; Sutton, S.R.

    1989-06-01

    Trace element abundance determinations were performed using synchrotron x-ray fluorescence on nine particles collected from the stratosphere and classified as ''cosmic''. Improvements to the Synchrotron Light Source allowed the detection of all elements between Cr and Mo, with the exceptions of Co and As, in our largest particle. The minor and trace element abundance patterns of three Ni-depleted particles were remarkably similar to those of extraterrestrial igneous rocks. Fe/Ni and Fe/Mn ratios suggest that one of these may be of lunar origin. All nine particles exhibited an enrichment in Br, ranging form 1.3 to 38 times the Cl concentration. Br concentrations were uncorrelated with particle size, as would be expected for a surface correlated component acquires from the stratosphere. 27 refs., 4 figs., 2 tabs.

  9. Spatial-dependent Propagation of Cosmic Rays Results in the Spectrum of Proton, Ratios of P/P, and B/C, and Anisotropy of Nuclei

    NASA Astrophysics Data System (ADS)

    Guo, Yi-Qing; Tian, Zhen; Jin, Chao

    2016-03-01

    Recent precise measurements of cosmic ray spectra revealed an anomalous hardening at ∼200 GV, observed by the ATIC, CREAM, PAMELA, and AMS02 experiments. Particularly, the latest observation of the \\bar{p}/p ratio by AMS02 demonstrated a flat distribution, which further validated the spectral anomalies of secondary particles. All those new phenomena indicated that the conventional propagation model of cosmic rays meets a challenge. In this work, the spatial-dependent diffusion coefficient D(r,z,p) is employed by tracing the source distribution under the physical picture of the two-halo model in the DRAGON package. Under such a scenario, the model calculation will result in two-component spectra for primary nuclei. Due to the smaller rigidity dependence of D(r,z,p) in the galactic disk, the ratios secondary-to-primary will inevitably be flatter and the expected anisotropy of cosmic rays will be much more attenuated than in the conventional model. As a result, we can reproduce the spectral hardening of protons, the flat ratios of \\bar{p}/p and B/C, and consistent anisotropy from ∼100 GeV to ∼100 TeV by only adopting one set of spatial-dependent diffusion coefficients D(r,z,p) in a galactic disk.

  10. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  11. From cosmic ray source to the Galactic pool

    NASA Astrophysics Data System (ADS)

    Schure, K. M.; Bell, A. R.

    2014-01-01

    The Galactic cosmic ray spectrum is a remarkably straight power law. Our current understanding is that the dominant sources that accelerate cosmic rays up to the knee (3 × 1015 eV) or perhaps even the ankle (3 × 1018 eV), are young Galactic supernova remnants. In theory, however, there are various reasons why the spectrum may be different for different sources, and may not even be a power law if non-linear shock acceleration applies during the most efficient stages of acceleration. We show how the spectrum at the accelerator translates to the spectrum that makes up the escaping cosmic rays that replenish the Galactic pool of cosmic rays. We assume that cosmic ray confinement, and thus escape, is linked to the level of magnetic field amplification, and that the magnetic field is amplified by streaming cosmic rays according to the non-resonant hybrid or resonant instability. When a fixed fraction of the energy is transferred to cosmic rays, it turns out that a source spectrum that is flatter than E-2 will result in an E-2 escape spectrum, whereas a steeper source spectrum will result in an escape spectrum with equal steepening. This alleviates some of the concern that may arise from expected flat or concave cosmic ray spectra associated with non-linear shock modification.

  12. Terrestrial effects of high energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    On geological timescales, the Earth is likely to be exposed to higher than the usual flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere, initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles and photons. Increased ionization leads to changes in atmospheric chemistry, resulting in ozone depletion. This increases the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit, which could enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of hadronic interactions of the primary cosmic rays with the atmosphere are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates the radiation dose from cosmic rays causing damage to DNA and an increase in mutation rates and cancer, which can have serious biological implications for surface and sub-surface life. Using CORSIKA, we perform massive computer simulations and construct lookup tables for 10 GeV - 1 PeV primaries, which can be used to quantify these effects from enhanced cosmic ray exposure to any astrophysical source. These tables are freely available to the community and can be used for other studies. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. Increased radiation dose from muons could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  13. THE COSMIC-RAY INTENSITY NEAR THE ARCHEAN EARTH

    SciTech Connect

    Cohen, O.; Drake, J. J.; Kota, J.

    2012-11-20

    We employ three-dimensional state-of-the-art magnetohydrodynamic models of the early solar wind and heliosphere and a two-dimensional model for cosmic-ray transport to investigate the cosmic-ray spectrum and flux near the Archean Earth. We assess how sensitive the cosmic-ray spectrum is to changes in the sunspot placement and magnetic field strength, the large-scale dipole magnetic field strength, the wind ram pressure, and the Sun's rotation period. Overall, our results confirm earlier work that suggested the Archean Earth would have experienced a greatly reduced cosmic-ray flux than is the case today. The cosmic-ray reduction for the early Sun is mainly due to the shorter solar rotation period and tighter winding of the Parker spiral, and to the different surface distribution of the more active solar magnetic field. These effects lead to a global reduction of the cosmic-ray flux at 1 AU by up to two orders of magnitude or more. Variations in the sunspot magnetic field have more effect on the flux than variations in the dipole field component. The wind ram pressure affects the cosmic-ray flux through its influence on the size of the heliosphere via the pressure balance with the ambient interstellar medium. Variations in the interstellar medium pressure experienced by the solar system in orbit through the Galaxy could lead to order of magnitude changes in the cosmic-ray flux at Earth on timescales of a few million years.

  14. Early developments: Particle physics aspects of cosmic rays

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    2014-01-01

    Cosmic rays is the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. In subsequent cloud chamber investigations Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Measurements with nuclear emulsions by Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. The cloud chamber continued to be a powerful instrument in cosmic ray studies. Rochester and Butler found V's, which turned out to be shortlived neutral kaons decaying into a pair of charged pions. Also Λ's, Σ's, and Ξ's were found in cosmic rays. But after that accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A. Cosmic ray neutrino results were best explained by the assumption of neutrino oscillations opening a view beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of accelerators.

  15. A 3-Dimensional Analysis of the Galactic Gamma-Ray Emission Resulting from Cosmic-Ray Interactions with the Interstellar Gas and Radiation Fields

    NASA Technical Reports Server (NTRS)

    Sodroski, Thomas J.; Dwek, Eli (Technical Monitor)

    2001-01-01

    The contractor will provide support for the analysis of data under ADP (NRA 96-ADP- 09; Proposal No . 167-96adp). The primary task objective is to construct a 3-D model for the distribution of high-energy (20 MeV - 30 GeV) gamma-ray emission in the Galactic disk. Under this task the contractor will utilize data from the EGRET instrument on the Compton Gamma-Ray Observatory, H I and CO surveys, radio-continuum surveys at 408 MHz, 1420 MHz, 5 GHz, and 19 GHz, the COBE Diffuse Infrared Background Experiment (DIME) all-sky maps from 1 to 240 p, and ground-based B, V, J, H, and K photometry. The respective contributions to the gamma-ray emission from cosmic ray/matter interactions, inverse Compton scattering, and extragalactic emission will be determined.

  16. A Three-Dimensional Analysis of the Galactic Gamma-Ray Emission Resulting from Cosmic-Ray Interaction with the Interstellar Gas and Radiation Fields

    NASA Technical Reports Server (NTRS)

    Sodraski, Thomas J.; Dwek, Eli

    1998-01-01

    This final report outlines the progress of the contractor's support for the analysis of data under ADP (NRA 96-ADP-08; Proposal No. 167-96 adp). The primary task object was to construct a 3-D model for the distribution of high-energy (20 MeV-30 GeV) gamma-ray emission in the Galactic disk. Under this task the contractor was to utilize data from the EGRET instrument on the Compton Gamma-Ray Observatory, HI and CO surveys, radio-continuum surveys at 408 MHz, 1420 MHz, 5 GHz, and 19 GHz, the COBE Diffuse Infrared Background Experiment (DIRBE) all-sky maps from I to 240 um, and ground-based B,V, J, H and K photometry. The respective contributions to the high-latitude gamma-ray emission from cosmic ray-matter interactions, inverse Compton scattering, and extra-galactic emission were to be determined.

  17. A Three-Dimensional Analysis of the Galactic Gamma-Ray Emission Resulting from Cosmic-Ray Interactions with the Interstellar Gas and Radiation Fields

    NASA Technical Reports Server (NTRS)

    Sodroski, Thomas J.; Dwek, Eli

    2000-01-01

    The primary task objective is to construct a 3-D model for the distribution of high-energy (20 MeV - 30 GeV) gamma-ray emission in the Galactic disk. Under this task the contractor will utilize data from the EGRET instrument on the Compton Gamma-Ray Observatory, H I and CO surveys, radio-continuum surveys at 408 MHz, 1420 MHz, 5 GHz, and 19 GHz, the COBE Diffuse Infrared Background Experiment (DIRBE) all-sky maps from 1 to 240 microns, and ground-based B, V, J, H, and K photometry. The respective contributions to the gamma-ray emission from cosmic ray/matter interactions, inverse Compton scattering, and extragalactic emission will be determined.

  18. Origin of high energy Galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.

    1990-01-01

    The flux of cosmic ray antiprotons and the chemical composition in the region of the 'knee' of the cosmic ray energy spectrum are discussed. The importance of a direct determination of the energy spectrum of each major component of cosmic radiation through the knee region is stressed, and the necessary kinds of experiments are described. It is emphasized that antiprotons are a unique probe of acceleration and propagation of energetic particles in the galaxy because of the high threshold for their production.

  19. Primary cosmic ray positrons and galactic annihilation radiation

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The observation (Leventhal et al, 1978) of positron annihilation radiation at 0.511 MeV from the direction of the Galactic Center is reexamined, suggesting the possibility of a primary positron component of the cosmic rays. The observed 0.511 MeV emission requires a positron production rate nearly two orders of magnitude greater than the production rate of secondary cosmic ray positrons from pion decay produced in cosmic ray interactions. Possible sources of positrons are reviewed with both supernovae and pulsars appearing to be the more likely candidates. If only about 1% of these positrons were accelerated along with the cosmic ray nucleons and electrons to energies not less than 100 MeV, it is believed that these primary positrons would be comparable in intensity to those secondary positrons resulting from pion decay. Some observational evidence for the existence of primary positrons in the cosmic rays is also discussed.

  20. Stopping Cooling Flows with Cosmic-Ray Feedback

    NASA Astrophysics Data System (ADS)

    Mathews, William G.

    2009-04-01

    Multi-Gyr two-dimensional calculations describe the gas dynamical evolution of hot gas in the Virgo cluster resulting from intermittent cavities formed with cosmic rays. Without cosmic rays, the gas evolves into a cooling flow, depositing about 85 solar masses per year of cold gas in the cluster core—such uninhibited cooling conflicts with X-ray spectra and many other observations. When cosmic rays are produced or deposited 10 kpc from the cluster center in bursts of about 1059 erg lasting 20 Myr and spaced at intervals of 200 Myr, the central cooling rate is greatly reduced to {\\dot{M}} ≈ 0.1-1 solar masses per year, consistent with observations. After cosmic rays diffuse through the cavity walls, the ambient gas density is reduced and is buoyantly transported 30-70 kpc out into the cluster. Cosmic rays do not directly heat the gas and the modest shock heating around young cavities is offset by global cooling as the cluster gas expands. After several Gyr the hot gas density and temperature profiles remain similar to those observed, provided the time-averaged cosmic-ray luminosity is about L cr = 2.7 × 1043 erg s-1, approximately equal to the bolometric cooling rate LX within only ~56kpc. If an appreciable fraction of the relativistic cosmic rays is protons, gamma rays produced by pion decay following inelastic p-p collisions may be detected with the Fermi Gamma-Ray Telescope.

  1. Cosmic Ray and Tev Gamma Ray Generation by Quasar Remnants

    NASA Technical Reports Server (NTRS)

    Boldt, Elihu; Loewenstein, Michael; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Results from new broadband (radio to X-ray) high-resolution imaging studies of the dormant quasar remnant cores of nearby giant elliptical galaxies are now shown to permit the harboring of compact dynamos capable of generating the highest energy cosmic ray particles and associated curvature radiation of TeV photons. Confirmation would imply a global inflow of interstellar gas all the way to the accretion powered supermassive black hole at the center of the host galaxy.

  2. Early history of cosmic rays at Chicago

    NASA Astrophysics Data System (ADS)

    Yodh, Gaurang B.

    2013-02-01

    Cosmic ray studies at the University of Chicago were started by Arthur Compton during the late 1920s. The high points of cosmic ray studies at Chicago under Compton and Marcel Schein are the focus of this report, which summarizes the research done at Chicago up to the end of World War II.

  3. History of cosmic ray research in Finland

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Valtonen, E.; Vainio, R.; Tanskanen, P. J.; Aurela, A. M.

    2009-11-01

    The history of cosmic ray research in Finland can be traced back to the end of 1950s, when first ground-based cosmic ray measurements started in Turku. The first cosmic ray station was founded in Oulu in 1964 performing measurements of cosmic rays by a muon telescope, which was later complemented by a neutron monitor. Since the 1990s, several research centers and universities, such as The Finnish Meteorological Institute, Helsinki University of Technology, University of Oulu, University of Turku and University of Helsinki have been involved in space science projects, such as SOHO, AMS, Cluster, Cassini, BepiColombo, etc. At the same time, ground-based cosmic ray measurements have reached a new level, including a fully automatic on-line database in Oulu and a new muon measuring underground site in Pyhäsalmi. Research groups in Helsinki, Oulu and Turku have also extensive experience in theoretical investigations of different aspects of cosmic ray physics. Cosmic ray research has a 50-year long history in Finland, covering a wide range from basic long-running ground-based observations to high-technology space-borne instrumentation and sophisticated theoretical studies. Several generations of researchers have been involved in the study ensuring transfer of experience and building the recognized Finnish research school of cosmic ray studies.

  4. Search for Antihelium in the Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Golden, R. L.; Stochaj, S. J.; Stephens, S. A.; Moiseev, A. A.; Ormes, J. F.; Streitmatter, R. E.; Bowen, T.; Moats, A.; Lloyd-Evans, J.

    1997-04-01

    On 1987 August 22 a balloon flight was conducted using the Goddard Space Flight Center Low-Energy Antiproton configuration of the New Mexico State University balloon-borne magnet spectrometer. The launch site was Prince Albert, Saskatchewan, Canada. The balloon flew at an average atmospheric depth of 4.7 g cm-2 for more than 22 hr. During this period a sample of 4.2 × 104 helium nuclei was gathered. No antihelium candidates were found in this sample. The resultant upper limit for the ratio of antihelium to helium in cosmic rays over the rigidity interval from 1 to 25 GV/c is 9 × 10-5 at 95% confidence. This limit is below the predicted level, assuming equal matter and antimatter in the extragalactic cosmic rays.

  5. Radiative Energy Loss by Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Ahern, Sean C.; Norbury, John W.; Tripathi, R. K.

    2002-01-01

    Interactions between galactic cosmic rays and matter are a primary focus of the NASA radiation problem. The electromagnetic forces involved are for the most part well documented. Building on previous research, this study investigated the relative importance of the weak forces that occur when a cosmic ray impinges on different types of materials. For the familiar electromagnetic case, it is known that energy lost in the form of radiation is more significant than that lost via contact collisions the rate at which the energy is lost is also well understood. Similar results were derived for the weak force case. It was found that radiation is also the dominant mode of energy loss in weak force interactions and that weak force effects are indeed relatively weak compared to electromagnetic effects.

  6. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  7. High energy physics in cosmic rays

    SciTech Connect

    Jones, Lawrence W.

    2013-02-07

    In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic ray program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.

  8. Investigation of Reacceleration on Cosmic Ray

    NASA Astrophysics Data System (ADS)

    Lu, Yuxi; Picot-Clemente, Nicolas; Seo, Eun-Suk

    2016-03-01

    Cosmic rays are high energy charged particles, originating from outer space, that travel at nearly the speed of light and strike the Earth from all directions. One century after the discovery of cosmic rays, their origin and propagation processes remain obscure. GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation in the Galaxy. I performed a preliminary study using two different propagation models with the GALPROP code in order to reproduce latest cosmic-ray nuclei measurements. I analyzed multiple propagation parameters for each model, studied their effect on cosmic-ray spectra, optimized and tried a preliminary modification of the code to fit cosmic-ray data such as BESS-Polar, AMS, CREAM, etc.

  9. SLAC Cosmic Ray Telescope Facility

    SciTech Connect

    Va'vra, J.

    2010-02-15

    SLAC does not have a test beam for the HEP detector development at present. We have therefore created a cosmic ray telescope (CRT) facility, which is presently being used to test the FDIRC prototype. We have used it in the past to debug this prototype with the original SLAC electronics before going to the ESA test beam. Presently, it is used to test a new waveform digitizing electronics developed by the University of Hawaii, and we are also planning to incorporate the new Orsay TDC/ADC electronics. As a next step, we plan to put in a full size DIRC bar box with a new focusing optics, and test it together with a final SuberB electronics. The CRT is located in building 121 at SLAC. We anticipate more users to join in the future. This purpose of this note is to provide an introductory manual for newcomers.

  10. Galactic and solar cosmic rays - Variations and origin

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Blokh, Ia. L.; Gushchina, R. T.; Dorman, I. V.; Dorman, L. I.

    Past and current research efforts at IZMIRAN (the Soviet Institute for the Study of Terrestrial Magnetism, the Ionosphere, and the Propagation of Radio Waves) on galactic and solar cosmic rays is reviewed. Particular attention is given to investigations of penumbra effects manifested in cosmic rays, long-term cosmic-ray variations, cosmic-ray anisotropy, cosmic-ray fluctuations, the possible relationship between cosmic-ray variations and atmospheric ozone, the stellar anisotropy of cosmic rays, and cosmic-ray propagation in the interstellar medium.

  11. SOLAR SYSTEM OBJECTS AS COSMIC RAYS DETECTORS

    SciTech Connect

    Privitera, P.; Motloch, P.

    2014-08-10

    In a recent Letter, Jupiter is presented as an efficient detector for Ultra-High Energy Cosmic Rays (UHECRs), through measurement by an Earth-orbiting satellite of gamma rays from UHECRs showers produced in Jupiter's atmosphere. We show that this result is incorrect, due to erroneous assumptions on the angular distribution of shower particles. We evaluated other solar system objects as potential targets for UHECRs detection, and found that the proposed technique is either not viable or not competitive with traditional ground-based UHECRs detectors.

  12. Cosmic ray interactions in starbursting galaxies

    NASA Astrophysics Data System (ADS)

    Yoast-Hull, Tova M.

    High quality gamma-ray and radio observations of nearby galaxies offer an unprecedented opportunity to quantitatively study the properties of their cosmic ray populations. Accounting for various interactions and energy losses, I developed a multi-component, single-zone model of the cosmic ray populations in the central molecular zones of star-forming galaxies. Using observational knowledge of the interstellar medium and star formation, I successfully predicted the radio, gamma-ray, and neutrino spectra for nearby starbursts. Using chi-squared tests to compare the models with observational radio and gamma-ray data, I placed constraints on magnetic field strengths, cosmic ray energy densities, and galactic wind (advection) speeds. The initial models were applied to and tested on the prototypical starburst galaxy M82. To further test the model and to explore the differences in environment between starbursts and active galactic nuclei, I studied NGC 253 and NGC 1068, both nearby giant spiral galaxies which have been detected in gamma-rays. Additionally, I demonstrated that the excess GeV energy gamma-ray emission in the Galactic Center is likely not diffuse emission from an additional population of cosmic rays accelerated in supernova remnants. Lastly, I investigated cosmic ray populations in the starburst nuclei of Arp 220, a nearby ultraluminous infrared galaxy which displays a high-intensity mode of star formation more common in young galaxies, and I showed that the nuclei are efficient cosmic-ray proton calorimeters.

  13. Explaining TeV Cosmic-Ray Anisotropies with Non-diffusive Cosmic-Ray Propagation

    NASA Astrophysics Data System (ADS)

    Harding, J. Patrick; Fryer, Chris L.; Mendel, Susan

    2016-05-01

    Constraining the behavior of cosmic ray data observed at Earth requires a precise understanding of how the cosmic rays propagate in the interstellar medium. The interstellar medium is not homogeneous; although turbulent magnetic fields dominate over large scales, small coherent regions of magnetic field exist on scales relevant to particle propagation in the nearby Galaxy. Guided propagation through a coherent field is significantly different from random particle diffusion and could be the explanation of spatial anisotropies in the observed cosmic rays. We present a Monte Carlo code to propagate cosmic particle through realistic magnetic field structures. We discuss the details of the model as well as some preliminary studies which indicate that coherent magnetic structures are important effects in local cosmic-ray propagation, increasing the flux of cosmic rays by over two orders of magnitude at anisotropic locations on the sky. The features induced by coherent magnetic structure could be the cause of the observed TeV cosmic-ray anisotropy.

  14. Sulphur mountain: Cosmic ray intensity records

    SciTech Connect

    Venkatesan, D.; Mathews, T.

    1985-01-01

    This book deals with the comic ray intensity registrations at the Sulphur Mountain Cosmic Ray Laboratory. The time series of intensity form a valuable data-set, for studying cosmic ray intensity variations and their dependence on solar activity. The IGY neutron monitor started operating from July 1, 1957 and continued through 1963. Daily mean values are tabulated for the period and these are also represented in plots. This monitor was set up by the National Research Council of Canada.

  15. Gamma Rays, Cosmic Rays, and Extinct Radioactivity in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.; Jin, Liping

    1995-10-01

    V nucleon-1, resulting in both 4.43 and 6.13 MeV gamma ray lines and 12C(16O, pn)26Al in the clouds. Those ions ease the risk of producing too much 53Mn, which plagues each picture unless proton bombardment is suppressed by the acceleration mechanism. We confirm that overabundance of 9Be in solar matter also plagues irradiations producing 26Al within it unless those energies are less than about 10 MeV nucleon-1. We motivate each of these pictures by advancing a magnetized raisin-pudding model of molecular clouds and their embedded cores. The model suggests that both the nuclear interactions and the stopping of the ions occur preferentially within the dense cores of molecular clouds, which causes those cores to accumulate larger 26Al/27Al ratios than does the bulk of the molecular clouds. We argue that cosmic rays from OB associations drive the turbulence within molecular clouds near them. It is possible that these processes, rather than fresh radioactivity ejected from stars, cause star-forming regions to contain several of the extinct radioactivities near levels found in the early solar system. A new chapter in the relationship of OB associations and cosmic rays to the origins of solar systems has been opened by the COMPTEL detection.

  16. Gamma-ray astronomy and the origin of cosmic rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Recent observations of cosmic gamma radiation are reviewed. It is shown that this radiation consists of an extragalactic background as well as a bright band of galactic radiation lying in the plane of the Milky Way and produced primarily by cosmic-ray collisions with interstellar gas atoms. The galactic gamma radiation is divided into a near component apparently associated with Gould's belt and a far component originating about 15,000 light years away and narrowly confined to the galactic plane. A Great Galactic Ring is identified which is 35,000 light years in diameter and in which most galactic cosmic rays are produced and supernovae and pulsars are concentrated. The physical mechanisms responsible for the production of most of the cosmic gamma rays in the Galaxy are examined, and the origin of galactic cosmic rays is considered. It is concluded that the cosmic rays are produced either in supernova explosions or in the pulsars they leave behind

  17. PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy.

    PubMed

    Adriani, O; Barbarino, G C; Bazilevskaya, G A; Bellotti, R; Boezio, M; Bogomolov, E A; Bonechi, L; Bongi, M; Bonvicini, V; Borisov, S; Bottai, S; Bruno, A; Cafagna, F; Campana, D; Carbone, R; Carlson, P; Casolino, M; Castellini, G; Consiglio, L; De Pascale, M P; De Santis, C; De Simone, N; Di Felice, V; Galper, A M; Gillard, W; Grishantseva, L; Hofverberg, P; Jerse, G; Karelin, A V; Koldashov, S V; Krutkov, S Y; Kvashnin, A N; Leonov, A; Malvezzi, V; Marcelli, L; Mayorov, A G; Menn, W; Mikhailov, V V; Mocchiutti, E; Monaco, A; Mori, N; Nikonov, N; Osteria, G; Papini, P; Pearce, M; Picozza, P; Pizzolotto, C; Ricci, M; Ricciarini, S B; Rossetto, L; Simon, M; Sparvoli, R; Spillantini, P; Stozhkov, Y I; Vacchi, A; Vannuccini, E; Vasilyev, G; Voronov, S A; Wu, J; Yurkin, Y T; Zampa, G; Zampa, N; Zverev, V G

    2010-09-17

    The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the Galaxy. More precise secondary production models are required for a complete interpretation of the results. PMID:20867623

  18. PAMELA Results on the Cosmic-Ray Antiproton Flux from 60 MeV to 180 GeV in Kinetic Energy

    SciTech Connect

    Adriani, O.; Bonechi, L.; Spillantini, P.; Barbarino, G. C.; Bazilevskaya, G. A.; Kvashnin, A. N.; Stozhkov, Y. I.; Bellotti, R.; Bruno, A.; Monaco, A.; Boezio, M.; Bonvicini, V.; Mocchiutti, E.; Pizzolotto, C.; Vacchi, A.; Zampa, G.; Zampa, N.; Bogomolov, E. A.; Krutkov, S. Y.; Vasilyev, G.

    2010-09-17

    The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the Galaxy. More precise secondary production models are required for a complete interpretation of the results.

  19. Cosmic Magnetic Fields and Their Influence on Ultra-High Energy Cosmic Ray Propagation

    NASA Astrophysics Data System (ADS)

    Sigl, Günter; Miniati, Francesco; Enßlin, Torsten A.

    2004-11-01

    We discuss the influence of large scale cosmic magnetic fields on the propagation of hadronic cosmic rays above 1019 eV based on large scale structure simulations. Our simulations suggest that rather substantial deflection up to several tens of degrees at 1020 eV are possible for nucleon primaries. Further, spectra and composition of cosmic rays from individual sources can depend on magnetic fields surrounding these sources in intrinsically unpredictable ways. This is true even if deflection from such individual sources is small. We conclude that the influence of large scale cosmic magnetic fields on ultra-high energy cosmic ray propagation is currently hard to quantify. We discuss possible reasons for discrepant results of simulations by Dolag et al. which predict deflections of at most a few degrees for nucleons. We finally point out that even in these latter simulations a possible heavy component would in general suffer substantial deflection.

  20. High-Energy Cosmic Ray Event Data from the Pierre Auger Cosmic Ray Observatory

    DOE Data Explorer

    The Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina is the result of an international collaboration funded by 15 countries and many different organizations. Its mission is to capture high-energy cosmic ray events or air showers for research into their origin and nature. The Pierre Auger Collaboration agreed to make 1% of its data available to the public. The Public Event Explorer is a search tool that allows users to browse or search for and display figures and data plots of events collected since 2004. The repository is updated daily, and, as of June, 2014, makes more than 35,000 events publicly available. The energy of a cosmic ray is measured in Exa electron volts or EeV. These event displays can be browsed in order of their energy level from 0.1 to 41.1 EeV. Each event has an individual identification number.

    The event displays provide station data, cosmic ray incoming direction, various energy measurements, plots, vector-based images, and an ASCII data file.

  1. Transition from Galactic to extragalactic cosmic rays and cosmic ray anisotropy

    NASA Astrophysics Data System (ADS)

    Giacinti, G.; Kachelrieß, M.; Semikoz, D. V.; Sigl, G.

    2013-06-01

    This talk based on results of ref. [1], where we constrain the energy at which the transition from Galactic to extragalactic cosmic rays occurs by computing the anisotropy at Earth of cosmic rays emitted by Galactic sources. Since the diffusion approximation starts to loose its validity for E/Z ≳ 10(16-17) eV, we propagate individual cosmic rays using Galactic magnetic field models and taking into account both their regular and turbulent components. The turbulent field is generated on a nested grid which allows spatial resolution down to fractions of a parsec. If the primary composition is mostly light or intermediate around E ˜ 1018 eV, the transition at the ankle is ruled out, except in the unlikely case of an extreme Galactic magnetic field with strength >10 μG. Therefore, the fast rising proton contribution suggested by KASCADE-Grande data between 1017 eV and 1018 eV should be of extragalactic origin. In case heavy nuclei dominate the flux at E > 1018 eV, the transition energy can be close to the ankle, if Galactic cosmic rays are produced by sufficiently frequent transients as e.g. magnetars.

  2. Superdiffusion of cosmic rays: Implications for cosmic ray acceleration

    SciTech Connect

    Lazarian, A.; Yan, Huirong

    2014-03-20

    Diffusion of cosmic rays (CRs) is the key process for understanding their propagation and acceleration. We employ the description of spatial separation of magnetic field lines in magnetohydrodynamic turbulence in Lazarian and Vishniac to quantify the divergence of the magnetic field on scales less than the injection scale of turbulence and show that this divergence induces superdiffusion of CR in the direction perpendicular to the mean magnetic field. The perpendicular displacement squared increases, not as the distance x along the magnetic field, which is the case for a regular diffusion, but as the x {sup 3} for freely streaming CRs. The dependence changes to x {sup 3/2} for the CRs propagating diffusively along the magnetic field. In the latter case, we show that it is important to distinguish the perpendicular displacement with respect to the mean field and to the local magnetic field. We consider how superdiffusion changes the acceleration of CRs in shocks and show how it decreases efficiency of the CRs acceleration in perpendicular shocks. We also demonstrate that in the case when the small-scale magnetic field is generated in the pre-shock region, an efficient acceleration can take place for the CRs streaming without collisions along the magnetic loops.

  3. Anisotropy of TeV Galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Pogorelov, Nikolai; Desiati, Paolo; DuVernois, Michael

    2016-07-01

    TeV cosmic rays are significantly deflected by the magnetic field of the heliosphere, and they gain or lose energies in heliospheric electric field that in the meantime drives the motion of plasma. These propagation mechanisms will cause the map of TeV cosmic rays seen at the Earth to look different from the map seen in the local interstellar medium without the presence of the heliosphere. We have developed a method of using Liouville's theorem to map out particle distribution function to Earth from the local interstellar medium, where we assume that the cosmic rays have small pitch-angle anisotropy harmonics up to the second order and a small uniform spatial density gradient. The amount of heliospheric distortion can be determined by tracing the trajectories of cosmic rays propagating through the heliosphere. In this paper, we apply this method to TeV cosmic ray propagation through a MHD-kinetic model of the heliosphere and try to fit observations from Tibet ASgamma and IceCube experiments. We are able to locate features in the TeV cosmic ray anisotropy that are associated with the interstellar magnetic field, hydrogen deflection plane, heliotail, and solar corona. Some of the features are also slightly affected by the solar cycle and interstellar magnetic turbulence. The results provide us powerful tools to explore large-scale heliospheric structures as well as to determine the cosmic ray distribution in the local interstellar medium.

  4. Cosmic ray transport in astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.

    2015-09-01

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  5. Cosmic ray transport in astrophysical plasmas

    SciTech Connect

    Schlickeiser, R.

    2015-09-15

    Since the development of satellite space technology about 50 years ago the solar heliosphere is explored almost routinely by several spacecrafts carrying detectors for measuring the properties of the interplanetary medium including energetic charged particles (cosmic rays), solar wind particle densities, and electromagnetic fields. In 2012, the Voyager 1 spacecraft has even left what could be described as the heliospheric modulation region, as indicated by the sudden disappearance of low energy heliospheric cosmic ray particles. With the available in-situ measurements of interplanetary turbulent electromagnetic fields and of the momentum spectra of different cosmic ray species in different interplanetary environments, the heliosphere is the best cosmic laboratory to test our understanding of the transport and acceleration of cosmic rays in space plasmas. I review both the historical development and the current state of various cosmic ray transport equations. Similarities and differences to transport theories for terrestrial fusion plasmas are highlighted. Any progress in cosmic ray transport requires a detailed understanding of the electromagnetic turbulence that is responsible for the scattering and acceleration of these particles.

  6. Satellite measurements of the isotopic composition of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1979-01-01

    The individual isotopes of galactic cosmic ray Ne, Mg, and Si at 100 MeV/nucleon were clearly resolved with an rms mass resolution of 0.20 amu. The results suggest the cosmic ray source is enriched in Ne-22, Mg-25, and Mg-26 when compared to the solar system. The ratio of (Mg-25)+(Mg-26) to Mg-24, which is approximately 0.49 compared to the solar system value of 0.27, suggest that the cosmic ray source and solar system material were synthesized under different conditions.

  7. Searches for Anisotropy of Cosmic Rays with the Telescope Array

    NASA Astrophysics Data System (ADS)

    Cady, Robert; Telescope Array Collaboration

    2016-03-01

    With over seven years of data from the TA surface detector array, we will present the results of various searches for anisotropies in the arrival direction of cosmic rays, including an update of the hotspot above 57 EeV.

  8. JUPITER AS A GIANT COSMIC RAY DETECTOR

    SciTech Connect

    Rimmer, P. B.; Stark, C. R.; Helling, Ch.

    2014-06-01

    We explore the feasibility of using the atmosphere of Jupiter to detect ultra-high-energy cosmic rays (UHECRs). The large surface area of Jupiter allows us to probe cosmic rays of higher energies than previously accessible. Cosmic ray extensive air showers in Jupiter's atmosphere could in principle be detected by the Large Area Telescope (LAT) on the Fermi observatory. In order to be observed, these air showers would need to be oriented toward the Earth, and would need to occur sufficiently high in the atmosphere that the gamma rays can penetrate. We demonstrate that, under these assumptions, Jupiter provides an effective cosmic ray ''detector'' area of 3.3 × 10{sup 7} km{sup 2}. We predict that Fermi-LAT should be able to detect events of energy >10{sup 21} eV with fluence 10{sup –7} erg cm{sup –2} at a rate of about one per month. The observed number of air showers may provide an indirect measure of the flux of cosmic rays ≳ 10{sup 20} eV. Extensive air showers also produce a synchrotron signature that may be measurable by Atacama Large Millimeter/submillimeter Array (ALMA). Simultaneous observations of Jupiter with ALMA and Fermi-LAT could be used to provide broad constraints on the energies of the initiating cosmic rays.

  9. Consistency of cosmic-ray source abudances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    A model was examined in which the cosmic ray abundances of elements from C to Fe are consistent with explosive nucleosynthesis. The observed abundance of cosmic rays near the earth, cosmic ray source abundance, and solar system abundance are discussed along with the ratios of cosmic ray sources to the solar system abundances.

  10. A Simplified Model for the Acceleration of Cosmic Ray Particles

    ERIC Educational Resources Information Center

    Gron, Oyvind

    2010-01-01

    Two important questions concerning cosmic rays are: Why are electrons in the cosmic rays less efficiently accelerated than nuclei? How are particles accelerated to great energies in ultra-high energy cosmic rays? In order to answer these questions we construct a simple model of the acceleration of a charged particle in the cosmic ray. It is not…

  11. Elemental advances of ultraheavy cosmic rays

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The elemental composition of the cosmic-ray source is different from that which has been generally taken as the composition of the solar system. No general enrichment of products of either r-process or s-process nucleosynthesis accounts for the differences over the entire range of ultraheavy (Z 30) elements; specific determination of nucleosynthetic contributions to the differences depends upon an understanding of the nature of any acceleration fractionation. Comparison between the cosmic-ray source abundances and the abundances of C1 and C2 chondritic meteorites suggests that differences between the cosmic-ray source and the standard (C1) solar system may not be due to acceleration fractionation of the cosmic rays, but rather to a fractionation of the C1 abundances with respect to the interstellar abundances.

  12. Possible cosmic ray signatures in clouds?

    NASA Astrophysics Data System (ADS)

    Erlykin, A. D.; Parsons, R. D.; Wolfendale, A. W.

    2009-11-01

    The role of cosmic rays in cloud formation, by cloud condensation nuclei, is still not fully understood. Although it has been claimed by a number of authors that cosmic ray effects should be small—or even non-existent—it is still argued by others that cosmic ray effects do occur. The present work draws attention to the fact that cosmic rays do not constitute a continuous stream of particles but are characterized by occasional near-simultaneous showers of particles. Under certain circumstances, such showers should leave a signature in clouds—near vertical 'cigar-shaped clouds'—and this work describes their properties. Our own observations have revealed no such structure, but it would be valuable to have a more careful search made.

  13. Space science: Cosmic rays beyond the knees

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew M.

    2016-03-01

    The development of a radio technique for detecting cosmic rays casts fresh light on the origins of some of these accelerated particles, and suggests that they might have travelled much farther than was previously thought. See Letter p.70

  14. Relativistic transport theory for cosmic-rays

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented.

  15. Heliosphere Changes Affect Cosmic Ray Penetration

    NASA Video Gallery

    The changes in the size of our solar system’s boundaries also cause changes to the galactic cosmic rays that enter the solar system. Although these boundaries do a good job of deflecting the majo...

  16. IMF Prediction with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Bieber, J. W.; Evenson, P. A.; Kuwabara, T.; Pei, C.

    2013-12-01

    Cosmic rays impacting Earth have passed through and interacted with the interplanetary magnetic field (IMF) surrounding Earth, and in some sense they carry information on the three-dimensional structure of that field. This work uses neutron monitor data in an effort to extract that information and use it to predict the future behavior of the IMF, especially the north-south component (Bz) which is so crucial in determining geomagnetic activity. We consider 161 events from a published list of interplanetary coronal mass ejections and compare hourly averages of the predicted field with the actual field measured later. We find that the percentage of events with 'good' predictions of Bz (in the sense of having a positive correlation between the prediction and the subsequent measurement) varies from about 85% for predictions 1 hour into the future to about 60% for predictions 4 hours into the future. We present several ideas for how the method might be improved in future implementations. Supported by NASA grant NNX08AQ01G and NSF grant ANT-0739620.

  17. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  18. Cosmic Rays and Space Weather

    NASA Astrophysics Data System (ADS)

    Dorman, Lev

    In this review-paper we consider following problems. 1. Cosmic rays (CR) as element of space weather 1.1. Influence of CR on the Earth's atmosphere and global climate change 1.2. Radia-tion hazard from galactic CR 1.3. Radiation hazard from solar CR 1.4. Radiation hazard from energetic particle precipitation from radiation belts 2. CR as tool for space weather forecasting 2.1. Forecasting of the part of global climate change caused by CR intensity variations 2.2. Forecasting of radiation hazard for aircrafts and spacecrafts caused by variations of galactic CR intensity 2.3. Forecasting of the radiation hazard from solar CR events by using on-line one-min ground neutron monitors network and satellite data 2.4. Forecasting of great magnetic storms hazard by using on-line one hour CR intensity data from ground based world-wide network of neutron monitors and muon telescopes 3. CR, space weather, and satellite anomalies 4. CR, space weather, and people health

  19. Source composition of cosmic rays

    SciTech Connect

    Silberberg, R.; Tsao, C.H. ); Shapiro, M.M. )

    1990-03-20

    A theory is developed that yields great improvement in deriving the cosmic-ray source abundances for energies below 10{sup 12} eV/u. In addition, based on the acceleration theory of Voelk and Biermann and on nucleosynthesis processes in pre-supernova stars, a theory is presented for the source composition at 10{sup 12}--10{sup 15} eV/u. The strong shock wave of young supernova remnant accelerates the wind particles of the pre-supernova red, blue supergiant stars and Wolf-Rayet (WR) stars to energies up to 10{sup 15} eV/u. They contain the nucleosynthesis products of the CNO cycle and of He-burning. They accelerate the flare particles in interstellar space. The composition below 10{sup 12} eV/u differs from that of the general stellar photosphere by: (1) Suppression of elements with a large FIP ({gt}10 eV) by a factor of 4; (2) The depletion of light nuclei (Z{le}10); (3) A large contribution of WC stars to {sup 12}C, {sup 16}O and {sup 22}Ne, with renormalization of the initial (Z{gt}2)/(Z{le}2) abundances of Prantzos et al., based on general elemental abundances.

  20. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-05-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  1. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-07-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  2. Early Results from the LRO Cosmic Ray Telescope for the Effects of Radiation (CRaTER) During this Historic Solar Minimum (Invited)

    NASA Astrophysics Data System (ADS)

    Spence, H. E.; Kasper, J. C.; Golightly, M. J.; Blake, J. B.; Mazur, J. E.; Townsend, L. W.; Case, A. W.; Looper, M. D.; Larsen, B. A.; Stubbs, T. J.; Zeitlin, C. J.; Semones, E.; Onsager, T. G.; Huang, C.; Jordan, A.

    2009-12-01

    We describe early results from a new instrument, the Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which is providing measurements of energetic particles while in orbit around the Moon onboard the Lunar Reconnaissance Orbiter (LRO) mission. CRaTER measures the effects of ionizing energy loss in matter due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR), specifically in six silicon solid-state detectors and after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaTER investigation quantifies the linear energy transfer (LET) spectrum in these materials through direct measurements with the lunar space radiation environment, particularly the interactions of ions with energies above 10 MeV. Combined with models of radiation transport through materials, CRaTER LET measurements constrain models of the biological effects of ionizing radiation in the lunar environment as well as provide valuable information on radiation effects on electronic systems in deep space. In addition to these human exploration goals, CRaTER measurement capabilities provide new insights on the spatial and temporal variability of the SEP and GCR populations and their interactions with the lunar surface. We present an overview of the CRaTER instrument, its exploration and science goals, and early results from flight observations obtained since LRO’s launch in June 2009 until present, an interesting interval during this historic solar minimum accompanied by record high GCR intensity.

  3. Cosmic Ray Interaction Models: an Overview

    NASA Astrophysics Data System (ADS)

    Ostapchenko, Sergey

    2016-07-01

    I review the state-of-the-art concerning the treatment of high energy cosmic ray interactions in the atmosphere, discussing in some detail the underlying physical concepts and the possibilities to constrain the latter by current and future measurements at the Large Hadron Collider. The relation of basic characteristics of hadronic interactions tothe properties of nuclear-electromagnetic cascades induced by primary cosmic rays in the atmosphere is addressed.

  4. Cosmic ray test of INO RPC stack

    NASA Astrophysics Data System (ADS)

    Bhuyan, M.; Datar, V. M.; Kalmani, S. D.; Lahamge, S. M.; Mondal, N. K.; Nagaraj, P.; Pal, S.; Reddy, L. V.; Redij, A.; Samuel, D.; Saraf, M. N.; Satyanarayana, B.; Shinde, R. R.; Verma, P.

    2012-01-01

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m ×1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  5. Cosmic ray exposure dating with in situ produced cosmogenic 3He: results from young Hawaiian lava flows

    USGS Publications Warehouse

    Kurz, M.D.; Colodner, D.; Trull, T.W.; Moore, R.B.; O'Brien, K.

    1990-01-01

    In an effort to determine the in situ production rate of spallation-produced cosmogenic 3He, and evaluate its use as a surface exposure chronometer, we have measured cosmogenic helium contents in a suite of Hawaiian radiocarbon-dated lava flows. The lava flows, ranging in age from 600 to 13,000 years, were collected from Hualalai and Mauna Loa volcanoes on the island of Hawaii. Because cosmic ray surface-exposure dating requires the complete absence of erosion or soil cover, these lava flows were selected specifically for this purpose. The 3He production rate, measured within olivine phenocrysts, was found to vary significantly, ranging from 47 to 150 atoms g-1 yr-1 (normalized to sea level). Although there is considerable scatter in the data, the samples younger than 10,000 years are well-preserved and exposed, and the production rate variations are therefore not related to erosion or soil cover. Data averaged over the past 2000 years indicate a sea-level 3He production rate of 125 ?? 30 atoms g-1 yr-1, which agrees well with previous estimates. The longer record suggests a minimum in sea level normalized 3He production rate between 2000 and 7000 years (55 ?? 15 atoms g-1 yr-1), as compared to samples younger than 2000 years (125 ?? 30 atoms g-1 yr-1), and those between 7000 and 10,000 years (127 ?? 19 atoms g-1 yr-1). The minimum in production rate is similar in age to that which would be produced by variations in geomagnetic field strength, as indicated by archeomagnetic data. However, the production rate variations (a factor of 2.3 ?? 0.8) are poorly determined due to the large uncertainties in the youngest samples and questions of surface preservation for the older samples. Calculations using the atmospheric production model of O'Brien (1979) [35], and the method of Lal and Peters (1967) [11], predict smaller production rate variations for similar variation in dipole moment (a factor of 1.15-1.65). Because the production rate variations, archeomagnetic data

  6. Cosmic-Ray Effects of Propagating Shocks Including the Heliosheath

    NASA Astrophysics Data System (ADS)

    Jokipii, J. R.; Kota, J.

    2001-08-01

    It has been known for a long time (Jokipii, et al, 1993) that the e~@ects of tt he heliosphere on cosmic rays extends beyond the termination shock and into the heliosheath. The inclusion of the region beyond the termination shock into models of modulation is still relatively recent. The previously-published model resultshave all been for a stationary system. We have modi~Aed our two-dimensional heliosperic cosmic-ray simulation code to be time dependent and to include a propagating shock wave which propagates out from the Sun and into the Heliosheath. The code follows the time variation of the intensity of both galacticand anomalous cosmic rays as the shock propagates past the point of observation and beyond. The results from the model simulations will be compared with recent observational results suggesting e~@ects of the heliosheath on galacticc and anomalous cosmic rays.

  7. Development of cosmic x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Hayato, Asami; Tamagawa, Toru; Tsunoda, Naoko; Hashimoto, Shigehira; Miyamoto, Masao; Kohama, Mitsuhiro; Tokanai, Fuyuki; Hamagaki, Hideki; Inuzuka, Masahide; Miyasaka, Hiromasa; Sakurai, Ikuya; Makishima, Kazuo

    2006-06-01

    We present a performance study of a cosmic X-ray polarimeter which is based on the photoelectric effect in gas, and sensitive to a few to 30 keV range. In our polarimeter, the key device would be the 50 μm pitch Gas Electron Multiplier (GEM). We have evaluated the modulation factor using highly polarized X-ray, provided by a synchrotron accelerator. In the analysis, we selected events by the eccentricity of the charge cloud of the photoelectron track. As a result, we obtained the relationship between the selection criteria for the eccentricity and the modulation factors; for example, when we selected the events which have their eccentricity of > 0.95, the polarimeter exhibited with the modulation factor of 0.32. In addition, we estimated the Minimum Detectable Polarization degree (MDP) of Crab Nebula with our polarimeter and found 10 ksec observation is enough to detect the polarization, if we adopt suitable X-ray mirrors.

  8. Models of Cosmic-Ray Origin

    NASA Astrophysics Data System (ADS)

    Shapiro, M. M.

    2001-08-01

    Two models of cosmic-ray genesis are compared: (a) the author s red-dwarf hypothesis requiring the injection of seed particles from coronal mass ejections (CME) prior to shock acceleration, and (b) the direct acceleration of thermal ions and of grains in the ISM, proposed by Meyer, Drury and Ellison. Both models agree that shocks in the expanding envelopes of supernova remnants are principally responsible for acceleration to cosmic-ray energies. Both are designed to overcome the mismatch between the source composition of the Galactic cosmic rays (GCR) and the composition of the thermal ISM gas. Model (a) utilizes the prolific emissions of energetic particles from active dMe and dKe stars via their CME as the agents of seed-particle injection into the ISM. The composition of these seed particles is governed by the FIP (first-ionization potential) selection mechanism that operates for both Galactic cosmic rays and solar energetic particles. Hence it is consistent with the cosmic-ray source composition. Model (b) relies on the sputtering and acceleration of grains in the ISM (along with acceleration of thermal ions) to provide the known source composition. This model considers the FIP ordering of GCR abundances as purely coincidental, and it attributes the relative source abundances to selection according to volatility. Recent cosmic-ray observations in favor of each model are cited.

  9. Spaced-based Cosmic Ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2016-03-01

    The bulk of cosmic ray data has been obtained with great success by balloon-borne instruments, particularly with NASA's long duration flights over Antarctica. More recently, PAMELA on a Russian Satellite and AMS-02 on the International Space Station (ISS) started providing exciting measurements of particles and anti-particles with unprecedented precision upto TeV energies. In order to address open questions in cosmic ray astrophysics, future missions require spaceflight exposures for rare species, such as isotopes, ultra-heavy elements, and high (the ``knee'' and above) energies. Isotopic composition measurements up to about 10 GeV/nucleon that are critical for understanding interstellar propagation and origin of the elements are still to be accomplished. The cosmic ray composition in the knee (PeV) region holds a key to understanding the origin of cosmic rays. Just last year, the JAXA-led CALET ISS mission, and the DAMPE Chinese Satellite were launched. NASA's ISS-CREAM completed its final verification at GSFC, and was delivered to KSC to await launch on SpaceX. In addition, a EUSO-like mission for ultrahigh energy cosmic rays and an HNX-like mission for ultraheavy nuclei could accomplish a vision for a cosmic ray observatory in space. Strong support of NASA's Explorer Program category of payloads would be needed for completion of these missions over the next decade.

  10. Cosmic ray produced isotopes in terrestrial systems.

    NASA Astrophysics Data System (ADS)

    Lal, D.

    1998-12-01

    Continuing improvements in the sensitivity of measurement of cosmic ray produced isotopes in environmental samples have progressively broadened the scope of their applications to characterise and quantify a wide variety of processes in Earth and planetary sciences. In this article, the author concentrates on the new developments in the field of nuclear geophysics, based on isotopic changes produced by cosmic rays in the terrestrial systems. This field, which is best described as cosmic ray geophysics, has roots with the discovery of cosmogenic 14C on the Earth by Willard Libby in 1948, and grew rapidly at first, but slowed down during the '60s and '70s. In the '80s, there was a renaissance in cosmic ray produced isotope studies, thanks mainly to the developments of the accelerator mass spectrometry technique capable of measuring minute amounts of radioactivity in terrestrial samples. This technological advance has considerably enhanced the applications of cosmic ray produced isotopes and today one finds them being used to address diverse problems in Earth and planetary sciences. The author discusses the present scope of the field of cosmic ray geophysics with an emphasis on geomorphology. It is stressed that this is the decade in which this field, which has been studied passionately by geographers, geomorphologists and geochemists for more than five decades, has at its service nuclear methods to introduce numeric time controls in the range of centuries to millions of years.

  11. Correlation between cosmic rays and ozone depletion.

    PubMed

    Lu, Q-B

    2009-03-20

    This Letter reports reliable satellite data in the period of 1980-2007 covering two full 11-yr cosmic ray (CR) cycles, clearly showing the correlation between CRs and ozone depletion, especially the polar ozone loss (hole) over Antarctica. The results provide strong evidence of the physical mechanism that the CR-driven electron-induced reaction of halogenated molecules plays the dominant role in causing the ozone hole. Moreover, this mechanism predicts one of the severest ozone losses in 2008-2009 and probably another large hole around 2019-2020, according to the 11-yr CR cycle. PMID:19392251

  12. First zonal harmonic component of cosmic ray neutron intensity

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Yahagi, N.; Chiba, T.

    1985-01-01

    Cosmic ray neutron data from the cosmic ray stations from the worldwide network in 1966, 1967 and 1969 are analyzed by means of the three dimensional analysis method by Nagashima. The variations of the north-south anisotropy, which is the first zonal harmonic component obtained from the analysis are studied. The result obtained confirms earlier findings. Relationship of the anisotropy to the interplanetary magnetic field sector polarity is also studied.

  13. Cosmic Ray Muons Timing in the ATLAS Detector

    SciTech Connect

    Meirose, Bernhard

    2009-12-17

    In this talk I discuss the use of calorimeter timing both for detector commissioning and in searches for new physics. In particular I present real and simulated cosmic ray muons data (2007) results for the ATLAS Tile Calorimeter system. The analysis shows that several detector errors such as imperfect calibrations can be uncovered. I also demonstrate the use of ATLAS Tile Calorimeter's excellent timing resolution in suppressing cosmic ray fake missing transverse energy (E{sub T}) in searches for supersymmetry.

  14. Origin of cosmic rays in the spiral galaxy NGC 3310

    SciTech Connect

    Duric, N.

    1984-01-01

    The problem of cosmic ray production in the spiral galaxy NGC 3310 is addressed by analyzing and comparing optical and radio continuum data. Tentative results indicate that on global scales relativistic electrons may be produced in the shock front associated with the density wave while on local scales extreme population I objects may be producing them. It is inferred that the same conclusions apply to all cosmic rays produced in the disk. 9 references.

  15. Consistency of cosmic-ray source abundances with explosive nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Ramaty, R.

    1973-01-01

    Certain results regarding the ratio of cosmic-ray sources (CRS) and Solar System abundances are the same as those obtained from explosive nucleosynthesis. Such a model is consistent with the fact that in the Solar System Mg, Si, and Fe are believed to be produced by explosive nucleosynthesis, whereas C and O are mainly products of other processes. The model considered explains the carbon-to-oxygen ratio in the cosmic rays.

  16. Galactic Cosmic Rays: From Earth to Sources

    NASA Technical Reports Server (NTRS)

    Brandt, Theresa J.

    2012-01-01

    For nearly 100 years we have known that cosmic rays come from outer space, yet proof of their origin, as well as a comprehensive understanding of their acceleration, remains elusive. Direct detection of high energy (up to 10(exp 15)eV), charged nuclei with experiments such as the balloon-born, antarctic Trans-Iron Galactic Element Recorder (TIGER) have provided insight into these mysteries through measurements of cosmic ray abundances. The abundance of these rare elements with respect to certain intrinsic properties suggests that cosmic rays include a component of massive star ejecta. Supernovae and their remnants (SNe & SNRs), often occurring at the end of a massive star's life or in an environment including massive star material, are one of the most likely candidates for sources accelerating galactic comic ray nuclei up to the requisite high energies. The Fermi Gamma-ray Space Telescope Large Area Detector (Fermi LAT) has improved our understanding of such sources by widening the window of observable energies and thus into potential sources' energetic processes. In combination with multiwavelength observations, we are now better able to constrain particle populations (often hadron-dominated at GeV energies) and environmental conditions, such as the magnetic field strength. The SNR CTB 37A is one such source which could contribute to the observed galactic cosmic rays. By assembling populations of SNRs, we will be able to more definitively define their contribution to the observed galactic cosmic rays, as well as better understand SNRs themselves. Such multimessenger studies will thus illuminate the long-standing cosmic ray mysteries, shedding light on potential sources, acceleration mechanisms, and cosmic ray propagation.

  17. Cosmic Rays Variation Before Changes in Sun-Earth Environment

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.

    2011-12-01

    Influence of cosmic rays variations on the Sun-Earth Environment has been observed before the changes in the atmospheric temperature, outbreak of influenza, cyclone, earthquake and tsunami. It has been recorded by Sun Observatory Heleospheric Observatory (SOHO) satellite data. Before the earthquake and tsunami the planetary indices (Kp) and Electron flux (E-flux) shows sudden changes followed by the atmospheric perturbations including very high temperature rise to sudden fall resulting snowfall in high altitude and rainfall in tropical areas. The active fault zones shows sudden faulting after the sudden drop in cosmic ray intensity and rise in Kp and E-flux. Besides the geo-environment the extraterrestrial influence on outbreak of H1N1 influenza has also been recorded based on the Mexico Cosmic ray data and its correlation with SOHO records. Distant stars have the potential to influence the heliophysical parameters by showering cosmic rays.

  18. Cosmic rays and the birth of particle physics

    NASA Astrophysics Data System (ADS)

    Friedlander, Michael

    2013-02-01

    Twenty years after the discovery of cosmic rays, the methods of research and resulting discoveries were dramatically changed by the introduction of experimental methods that made visible the passage of individual particles. Between 1932 and 1955, tracks of cosmic rays were found in cloud chambers and special photographic emulsions. From measurements of the ionization produced along these tracks, the mass, charge and energy of a single relativistic particle could be determined. The dynamics of decays and collisions could be analyzed. Positrons and then electron-positron pairs were discovered, followed by muons and pions and then the inhabitants of the 'particle zoo'. Fundamental concepts were challenged. From the mid- 1950s, larger accelerators began to produce many of the 'new' particles, displacing cosmic rays from their prime role in particle studies. But without the initial discoveries in cosmic rays, there might well not be the modern industrial-scale particle physics research.

  19. Nonlinear Transport of Cosmic Rays in Turbulent Magnetic Field

    NASA Astrophysics Data System (ADS)

    Yan, H.; Xu, S.

    2014-09-01

    Recent advances in both the MHD turbulence theory and cosmic ray observations call for revisions in the paradigm of cosmic ray transport. We use the models of magnetohydrodynamic turbulence that were tested in numerical simulations, in which turbulence is injected at large scale and cascades to small scales. We shall present the nonlinear results for cosmic ray transport, in particular, the cross field transport of CRs. We demonstrate that the concept of cosmic ray subdiffusion in general does not apply and the perpendicular motion is well described by normal diffusion with M A4 dependence. Moreover, on scales less than the injection scale of turbulence, CRs' transport becomes super-diffusive. Quantitative predictions for both the normal diffusion on large scale and super diffusion on small scale are confirmed with recent numerical simulations. Implication for shock acceleration is briefly discussed.

  20. Cosmic Rays and Their Radiative Processes in Numerical Cosmology

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Miniati, Francesco; Jones, Tom W.; Kang, Hyesung

    2000-01-01

    A cosmological hydrodynamic code is described, which includes a routine to compute cosmic ray acceleration and transport in a simplified way. The routine was designed to follow explicitly diffusive, acceleration at shocks, and second-order Fermi acceleration and adiabatic loss in smooth flows. Synchrotron cooling of the electron population can also be followed. The updated code is intended to be used to study the properties of nonthermal synchrotron emission and inverse Compton scattering from electron cosmic rays in clusters of galaxies, in addition to the properties of thermal bremsstrahlung emission from hot gas. The results of a test simulation using a grid of 128 (exp 3) cells are presented, where cosmic rays and magnetic field have been treated passively and synchrotron cooling of cosmic ray electrons has not been included.

  1. Origin and propagation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Cesarsky, Catherine J.; Ormes, Jonathan F.

    1987-01-01

    The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information.

  2. Development of the cosmic ray techniques

    NASA Technical Reports Server (NTRS)

    Rossi, B.

    1982-01-01

    It has been found that most advances of cosmic-ray physics have been directly related to the development of observational techniques. The history of observational techniques is discussed, taking into account ionization chambers, refinements applied to ionization chambers to make them suitable for an effective use in the study of cosmic radiation, the Wulf-type electrometer, the electrometer designed by Millikan and Neher, the Geiger-Mueller counter, the experiment of Bothe and Kolhoerster, the coincidence circuit, and a cosmic-ray 'telescope'. Attention is given to a magnetic lens for cosmic rays, a triangular arrangement of Geiger-Mueller counters used to demonstrate the production of a secondary radiation, a stereoscopic cloud-chamber photograph of showers, the cloud-chamber picture which provided the first evidence of the positive electron, and arrangements for studying photon components, mu-mesons, and air showers.

  3. The relationship between the galactic matter distribution, cosmic ray dynamics, and gamma ray production

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.

    1976-01-01

    Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.

  4. The History of Cosmic Ray Studies after Hess

    NASA Astrophysics Data System (ADS)

    Grupen, Claus

    2013-06-01

    The discovery of cosmic rays by Victor Hess was confirmed with balloon flights at higher altitudes by Kolhörster. Soon the interest turned into questions about the nature of cosmic rays: gamma rays or particles? Subsequent investigations have established cosmic rays as the birthplace of elementary particle physics. The 1936 Nobel prize was shared between Victor Hess and Carl Anderson. Anderson discovered the positron in a cloud chamber. The positron was predicted by Dirac several years earlier. Many new results came now from studies with cloud chambers and nuclear emulsions. Anderson and Neddermeyer saw the muon, which for some time was considered to be a candidate for the Yukawa particle responsible for nuclear binding. Lattes, Powell, Occhialini and Muirhead clarified the situation by the discovery of the charged pions in cosmic rays. Rochester and Butler found V's, which turned out to be short-lived neutral kaons decaying into a pair of charged pions. Λ's, Σ's and Ξ's were found in cosmic rays using nuclear emulsions. After that period, accelerators and storage rings took over. The unexpected renaissance of cosmic rays started with the search for solar neutrinos and the observation of the supernova 1987A and other accelerators in the sky. With the observation of neutrino oscillations one began to look beyond the standard model of elementary particles. After 100 years of cosmic ray research we are again at the beginning of a new era, and cosmic rays may contribute to solve the many open questions, like dark matter and dark energy, by providing energies well beyond those of earth-bound accelerators.

  5. Galactic cosmic-ray modulation near the heliopause

    SciTech Connect

    Guo, X.; Florinski, V.

    2014-09-20

    We investigate the modulation of galactic cosmic rays in the inner and outer heliosheaths using three-dimensional numerical simulations. The model is based on the Parker transport equation integrated using a stochastic phase-space trajectory method. Integration is performed on a plasma background obtained from a global three-dimensional magnetohydrodynamic simulations. Our results predict a negligible amount of modulation in the outer heliosheath because of weak scattering of cosmic ray ions owing to very low levels of magnetic fluctuation power at wavenumbers relevant to the transport of cosmic rays with MeV to GeV energies. This means that the heliopause may be treated as a Dirichlet-type boundary for the purpose of energetic particle modeling. We present models with and without drift velocity to facilitate comparison with papers published earlier. We also attempt to reproduce the sudden step-like increases of cosmic-ray intensity observed by Voyager 1 before its encounter with the heliopause. Our results indicate that very slow cross-field diffusion in the outer heliosheath could produce a large gradient of cosmic rays inside the heliospheric boundary. The resulting large gradient in cosmic-ray intensity near the heliopause qualitatively agrees with recent Voyager 1 observations.

  6. Heliospheric Energetic Particles and Galactic Cosmic Ray Modulation

    NASA Astrophysics Data System (ADS)

    Malandraki, Olga

    2015-08-01

    The paper presents an overview of the SH ‘Solar and Heliospheric cosmic rays’ session of the 24th European Cosmic Ray Symposium (ECRS), Kiel, Germany, 2014. It covers the topics of Solar Energetic Particle (SEP) origin, acceleration and transport at the Sun and in the interplanetary medium, also from the aspect of multi-spacecraft observations, as well as the Galactic Cosmic Ray (GCR) short- and long-term variations and the Jovian electron variations in the heliosphere. Relevant instruments and methods presented are also covered by this review. The paper is written from a personal perspective, emphasizing those results that the author found most interesting.

  7. Cascaded Gamma Rays as a Probe of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Murase, Kohta

    2014-06-01

    Very-high-energy (VHE) and ultra-high-energy (UHE) gamma rays from extragalactic sources experience electromagnetic cascades during their propagation in intergalactic space. Recent gamma-ray data on TeV blazars and the diffuse gamma-ray background may have hints of the cascade emission, which are especially interesting if it comes from UHE cosmic rays. I show that cosmic-ray-induced cascades can be discriminated from gamma-ray-induced cascades with detailed gamma-ray spectra. I also discuss roles of structured magnetic fields, which suppress inverse-Compton pair halos/echoes but lead to guaranteed signals - synchrotron pair halos/echoes.

  8. Contributions to the 19th International Cosmic Ray Conference

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Various aspects of cosmic radiation, its measurements and their patterns are presented. Measurement techniques and variations in solar cosmic ray patterns and calculations of elemental abundances are reviewed.

  9. Low-energy cosmic ray protons from nuclear interactions of cosmic rays with the interstellar medium.

    NASA Technical Reports Server (NTRS)

    Wang, H. T.

    1973-01-01

    The intensity of low-energy (less than 100 MeV) protons from nuclear interactions of higher-energy (above 100 MeV) cosmic rays with the interstellar medium is calculated. The resultant intensity in the 10- to 100-MeV range is larger by a factor of 3-5 than the observed proton intensity near earth. The calculated intensity from nuclear interactions constitutes a lower limit on the actual proton intensity in interstellar space.

  10. Ultra-heavy cosmic rays: Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1977-01-01

    Extreme ultraheavy cosmic ray observations (Z greater or equal 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar system abundances is used also. There is the continued strong indication of an r-process dominance in the extreme ultra-heavy cosmic rays. However it is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fit with the same r-process calculation which also fits the solar system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. As estimate also is made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  11. Ultraheavy cosmic rays - Theoretical implications of recent observations

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Hainebach, K. L.; Schramm, D. N.; Anglin, J. D.

    1978-01-01

    The recent extreme ultraheavy cosmic-ray observations (Z greater than or equal to 70) are compared with r-process models. A detailed cosmic ray propagation calculation is used to transform the calculated source distributions to those observed at the earth. The r-process production abundances are calculated using different mass formulae and beta-rate formulae; an empirical estimate based on the observed solar-system abundances is also used. There is the continued strong indication of an r-process dominance in the extreme ultraheavy cosmic rays. It is shown that the observed high actinide/Pt ratio in the cosmic rays cannot be fitted with the same r-process calculation which also fits the solar-system material. This result suggests that the cosmic rays probably undergo some preferential acceleration in addition to the apparent general enrichment in heavy (r-process) material. An estimate is also made of the expected relative abundance of superheavy elements in the cosmic rays if the anomalous heavy xenon in carbonaceous chondrites is due to a fissioning superheavy element.

  12. Cosmic-ray modulation at solar maximum: modeling

    NASA Astrophysics Data System (ADS)

    Kota, J.; Jokipii, J.

    The modulation of the galactic and anomalous cosmic rays is a result of the energy loss cosmic rays suffer during their passage through the heliospheric magnetic and electric fields. By contrast with the years of quiet heliosphere, which can be described with a tilted dipole model that remains stable for several solar rotations, cosmic-ray modulation during the periods of the active Sun is thought to be dominated by transient events. Propagating disturbances forming global merged interaction regions (GMIRs) act as propagating barriers. The heliospheric current sheet (HCS) dividing the opposite polarities of the heliospheric magnetic field (HMF) becomes highly tilted and may contain a significant quadrupole component, leading to a warped current sheet with a profound north-south asymmetry. We present numerical simulations to model cosmic-ray transport and acceleration in the heliosphere during solar maximum. Our 2-D and 3-D codes are extended to include several transients. We consider various complex configurations of the HMF, as well as a dynamical variation of the tilted current sheet, involving meridional field components. We discuss the effects of GMIRs on galactic and anomalous cosmic rays, and compare the time evolution of the two different species, as the disturbance propagates outward through the termination shock (TS) into the heliosheath. Some aspects of cosmic-ray modulation beyond the TS, in the subsonic heliosheath will also be addressed.

  13. Transport of cosmic rays across the heliopause

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Luo, X.; Pogorelov, N.

    2015-12-01

    The heliopause (HP) is a boundary that separates the flow with embedded magnetic field of solar origin in the inner heliosheath from that of the interstellar origin in the outer heliosheath. According to the theory of ideal MHD, it should be a tangential discontinuity, but magnetic reconnection or instability can make it more complicated. Voyager 1 crossed the HP in August 2012 at a radial distance of 122 AU from the Sun. The behaviors of Galactic cosmic rays (GCR) and anomalous cosmic rays (ACR) at the HP crossing are very complex. The intensity of GCR experiences step-like increases to reach a nearly steady interstellar level in the outer heliosheath. Its angular distribution changes from isotropic inside the HP to bidirectional anisotropy that appear on and off for several periods of time in the outer heliosheath. The ACR intensity experiences several episodes of decreases near the HP before it eventually disappears. The anisotropy of ACR in the partial depression regions is pancake-like, indicating there is some temporary trapping of particles of near-90° pitch angles. The information has provided us clues for understanding the properties of particle transport in the turbulence of the interstellar magnetic field. In this paper, we review results of model calculations of GCR and ACR transport across the HP. With the observations and modeling results, we can now establish constraints on the properties of particle scattering, diffusion, and interstellar magnetic field turbulence level.

  14. Positron fraction in cosmic rays and models of cosmic-ray propagation

    SciTech Connect

    Cowsik, R.; Burch, B.

    2010-07-15

    The positron fraction observed by PAMELA and other experiments up to {approx}100 GeV is analyzed in terms of models of cosmic-ray propagation. It is shown that generically we expect the positron fraction to reach {approx}0.6 at energies of several TeV, and its energy dependence bears an intimate but subtle connection with that of the boron to carbon ratio in cosmic rays. The observed positron fraction can be fit in a model that assumes a significant fraction of the boron below {approx}10 GeV is generated through spallation of cosmic-ray nuclei in a cocoonlike region surrounding the sources, and the positrons of energy higher than a few GeV are almost exclusively generated through cosmic-ray interactions in the general interstellar medium. Such a model is consistent with the bounds on cosmic-ray anisotropies and other observations.

  15. Cosmic rays in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Persic, Massimo; Rephaeli, Yoel

    2012-03-01

    The energy density of cosmic ray protons (CRp) in star-forming environments can be (i) measured from γ-ray πo-decay emission, (ii) inferred from the measured radio non-thermal synchrotron emission (once a theoretical p/e ratio and particle-field equipartition have been assumed), and (iii) estimated from the observed supernova rate and the deduced CRp residency time. For most of the currently available galaxies where these methods can be simultaneously applied, the results of the various methods agree and suggest that CRp energy densities range from Script O(10-1) eV cm-3 in very quiet environments up to Script O(102) eV cm-3 in very active ones. The only case for which the methods do not agree is the Small Magellanic Cloud, where the discrepancy between measured and estimated CRp energy density may be due to a smaller characteristic CR confinement volume.

  16. Gev-Tev Galactic Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Lavalle, Julien

    2015-03-01

    This short review aims at presenting the way we currently understand, model, and constrain the transport of cosmic rays in the GeV-TeV energy domain. This is a research field per se, but is also an important tool e.g. to improve our understanding of the cosmic-ray sources, of the diffuse non-thermal Galactic emissions (from radio wavelengths to gamma-rays), or in searches for dark matter annihilation signals. This review is mostly dedicated to particle physicists or more generally to non-experts.

  17. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, J.; BenZvi, S.; Bravo, S.; Jensen, K.; Karn, P.; Meehan, M.; Peacock, J.; Plewa, M.; Ruggles, T.; Santander, M.; Schultz, D.; Simons, A. L.; Tosi, D.

    2016-04-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available.

  18. Commissioning of the ATLAS Semiconductor Tracker with cosmic rays

    NASA Astrophysics Data System (ADS)

    Stanecka, E.; Atlas Sct Collaboration

    2007-10-01

    This paper presents the results of the tests with cosmic rays of the ATLAS Semiconductor Tracker (SCT) as well as operational experience of running the fully integrated silicon detector during the commissioning of the completed SCT. Prior to inserting into ATLAS, the barrel part of the SCT has been integrated with the Transition Radiation Tracker (TRT) barrel and tested with cosmic rays. A sector of 468 SCT modules has been powered and read simultaneously with TRT modules in physics mode. In total 500 thousand events were recorded during cosmic runs and processed with the ATLAS off-line reconstruction software. The SCT performance was measured in terms of the average noise occupancy per channel (4.5×10-5) and the overall efficiency (>99%). The tests with cosmic rays proved full functionality of the complex Detector Control System (DCS) which provides control, monitoring and safety functions for the detector electronics.

  19. THE INTERACTION OF COSMIC RAYS WITH DIFFUSE CLOUDS

    SciTech Connect

    Everett, John E.; Zweibel, Ellen G.

    2011-10-01

    We study the change in cosmic-ray pressure, the change in cosmic-ray density, and the level of cosmic-ray-induced heating via Alfven-wave damping when cosmic rays move from a hot ionized plasma to a cool cloud embedded in that plasma. The general analysis method outlined here can apply to diffuse clouds in either the ionized interstellar medium or in galactic winds. We introduce a general-purpose model of cosmic-ray diffusion building upon the hydrodynamic approximation for cosmic rays (from McKenzie and Voelk and Breitschwerdt and collaborators). Our improved method self-consistently derives the cosmic-ray flux and diffusivity under the assumption that the streaming instability is the dominant mechanism for setting the cosmic-ray flux and diffusion. We find that, as expected, cosmic rays do not couple to gas within cool clouds (cosmic rays exert no forces inside of cool clouds), that the cosmic-ray density does not increase within clouds (it may decrease slightly in general, and decrease by an order of magnitude in some cases), and that cosmic-ray heating (via Alfven-wave damping and not collisional effects as for {approx}10 MeV cosmic rays) is only important under the conditions of relatively strong (10 {mu}G) magnetic fields or high cosmic-ray pressure ({approx}10{sup -11} erg cm{sup -3}).

  20. Optical and Ionization Basic Cosmic Ray Detector

    NASA Astrophysics Data System (ADS)

    Felix, Julian; Andrade, Diego A.; Araujo, Aurora C.; Arceo, Luis; Cervantes, Carlos A.; Molina, Jorge A.; Palacios, Luz R.

    2014-03-01

    There are drift tubes, operating in the Geiger mode, to detect ionization radiation and there are Cerenkov radiation detectors based on photomultiplier tubes. Here is the design, the construction, the operation and the characterization of a hybrid detector that combines both a drift tube and a Cerenkov detector, used mainly so far to detect cosmic rays. The basic cell is a structural Aluminum 101.6 cm-long, 2.54 cm X 2.54 cm-cross section, 0.1 cm-thick tube, interiorly polished to mirror and slightly covered with TiCO2, and filed with air, and Methane-Ar at different concentrations. There is a coaxial 1 mil Tungsten wire Au-coated at +700 to +1200 Volts electronically instrumented to read out in both ends; and there is in each end of the Aluminum tube a S10362-11-100U Hamamatsu avalanche photodiode electronically instrumented to be read out simultaneously with the Tungsten wire signal. This report is about the technical operation and construction details, the characterization results and potential applications of this hybrid device as a cosmic ray detector element. CONACYT, Mexico.

  1. Monopole annihilation and highest energy cosmic rays

    SciTech Connect

    Bhattacharjee, P. Indian Institute of Astrophysics, Sarjapur Road, Koramangala, Bangalore 560 034 ); Sigl, G. NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 )

    1995-04-15

    Cosmic rays with energies exceeding 10[sup 20] eV have been detected. The origin of these highest energy cosmic rays remains unknown. Established astrophysical acceleration mechanisms encounter severe difficulties in accelerating particles to these energies. Alternative scenarios where these particles are created by the decay of cosmic topological defects have been suggested in the literature. In this paper we study the possibility of producing the highest energy cosmic rays through a process that involves the formation of metastable magnetic monopole-antimonopole bound states and their subsequent collapse. The annihilation of the heavy monopole-antimonopole pairs constituting the monopolonia can produce energetic nucleons, [gamma] rays, and neutrinos whose expected flux we estimate and discuss in relation to experimental data so far available. The monopoles we consider are the ones that could be produced in the early Universe during a phase transition at the grand unification energy scale. We find that observable cosmic ray fluxes can be produced with monopole abundances compatible with present bounds.

  2. Heliolatitude distribution of galactic cosmic rays

    SciTech Connect

    Antonucci, E.; Attolini, M.R.; Cecchini, S.; Galli, M.

    1985-08-01

    An analysis of the annual and semiannual variation of the galactic cosmic ray intensity has been performed for the period 1953-1979 by using the data from the Climax and Dourbes neutron monitors. This analysis, based on a method developed for searching periodicities and recurrences in the cosmic ray intensity, has confirmed the existence of such variations and their phase changes associated with the reversals of the solar magnetic dipole. Hence the importance in the cosmic ray transport of transverse diffusion arising from drift effects due to the curvature and gradient of the interplanetary magnetic field is confirmed, since this is the mechanism which can explain the dependence on the solar magnetic cycle. Such a mechanism is effective when the polarity configuration of the interplanetary magnetic field is well defined and stable. A phase advance of the semiannual variation is observed, which can be explained through the modulation of the heliolatitude distribution of cosmic rays by the activity of the solar magnetic regions migrating in both hemispheres toward the equator, during the 11-year cycle of solar activity. A residual annual variation, detectable when averaging out the effects of the magnetic cycle or when the polarity configuration of the interplanetary magnetic field is not well defined, probably indicates the existence of a preferential azimuthal direction for the access of low-energy galactic cosmic rays into the heliosphere, along the galactic magnetic field.

  3. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the 'knee' energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the 'knee' energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  4. Supernova Remnants, Cosmic Rays, and GLAST

    SciTech Connect

    Reynolds, Steve

    2006-02-13

    The shock waves of supernova remnants (SNRs) are the traditional sources of Galactic cosmic rays, at least up to about 3000 TeV (the "knee" energy in the cosmic-ray spectrum). In the last decade or so, X-ray observations have confirmed in a few SNRs the presence of synchrotron-X-ray-emitting electrons with energies of order 100 TeV. TeV photons from SNRs have been observed with ground-based air Cerenkov telescopes as well, but it is still unclear whether they are due to hadronic processes (inelastic p-p scattering of cosmic-ray protons from thermal gas, with secondary neutral pions decaying to gamma rays), or to leptonic processes (inverse-Compton upscattering of cosmic microwave background photons, or bremsstrahlung). The spatial structure of synchrotron X-rays as observed with the Chandra X-ray Observatory suggests the remarkable possibility that magnetic fields are amplified by orders of magnitude in strong shock waves. The electron spectra inferred from X-rays reach 100 TeV, but at that energy are cutting off steeply, well below the "knee" energy. Are the cutoff processes due only to radiative losses so that ion spectra might continue unsteepened? Can we confirm the presence of energetic ions in SNRs at all? Are typical SNRs capable of supplying the pool of Galactic cosmic rays? Is strong magnetic-field amplification a property of strong astrophysical shocks in general? These major questions require the next generation of observational tools. I shall outline the theoretical and observational framework of particle acceleration to high energies in SNRs, and shall describe how GLAST will advance this field.

  5. X-ray Production By Cosmic Muons

    NASA Astrophysics Data System (ADS)

    Mrdja, D.; Bikit, I.; Aničin, I.; Vesković, M.; Forkapić, S.

    2007-04-01

    Muons have a small cross section for interactions and high energy, so they are very penetrating and give the significant contribution to the gamma spectra of Ge detectors, even in deep underground laboratories. One of the muon interaction effects with material is X-rays production. Having in mind that gold is often used as a detectors component, in this paper the production of X-rays in gold sample is analyzed by using an coincidence system based on plastic scintillation detector and Ge detector. The Au disc-shaped sample with mass of 40.6 g, radius 3.34 cm and 0.06 cm thickness was inside 12 cm thick lead shield of extended range HPGe detector. The plastic detector of 0.5 × 0.5 × 0.05 m dimensions was placed above the lead shield at the distance of 32 cm from detector endcap. The producing rate of Kα rays per Au mass unit from coincidence gamma spectrum is determined as R ~7.1 × 10-4 g-1s-1. Taking in account the measured muon flux of Φ=54 s-1m-2, the muon cross section σKα~ 43 Barn, for Au Kα X-rays production is calculated. Also, the cross sections of X-ray production by cosmic muons in lead and tungsten are measured. Unexpectedly, the results obtained did not reveal Z dependence in the Z= 74-82 region.

  6. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  7. One century of cosmic rays - A particle physicist's view

    NASA Astrophysics Data System (ADS)

    Sutton, Christine

    2015-12-01

    Experiments on cosmic rays and the elementary particles share a common history that dates back to the 19th century. Following the discovery of radioactivity in the 1890s, the paths of the two fields intertwined, especially during the decades after the discovery of cosmic rays. Experiments demonstrated that the primary cosmic rays are positively charged particles, while other studies of cosmic rays revealed various new sub-atomic particles, including the first antiparticle. Techniques developed in common led to the birth of neutrino astronomy in 1987 and the first observation of a cosmic γ-ray source by a ground-based cosmic-ray telescope in 1989.

  8. Characterizing the Sites of Hadronic Cosmic Ray Acceleration

    NASA Astrophysics Data System (ADS)

    Pihlstrom, Ylva; Mesler, R.; Sjouwerman, L.; Frail, D.; Claussen, M.

    2012-01-01

    It has been argued that supernova remnant (SNRs) shocks are the acceleration sites for galactic cosmic rays. While this has been established for electrons, solid evidence for hadrons constituting the bulk of the cosmic rays have been lacking. Models of hadronic cosmic ray acceleration in SNRs predict a gamma-ray flux density depending on parameters like the environment density and distance. Few reliable estimates of those parameters exist. SNRs with cosmic rays interacting with molecular clouds are expected to be bright gamma-ray sources, and these sites can be traced using 1720 MHz OH masers. The masers give information about the density and kinematical distance estimates. Only 10% of galactic SNRs harbor OH masers, and we have therefore searched for a more frequently occurring SNR/cloud interaction tracer. We have detected 36 GHz and 44 GHz methanol masers associated with a few SNRs. Here we report on the result of a search for methanol masers in 21 SNRs, and in particular the details of our detections in Sgr A East. Combining observations and modeling of methanol masers in SNRs, we aim to better constrain the density and distance to SNRs with TeV emission. The goal is to test the hadronic cosmic ray models and to understand the mechanisms of particle acceleration in SNRs. This project is supported under NASA-Fermi grant NNX10A055G.

  9. Galactic Cosmic Rays and the Light Elements

    NASA Astrophysics Data System (ADS)

    Parizot, Etienne

    2001-10-01

    The study of the light elements abundances in low metallicity stars offers a unique way to learn about the past content of our Galaxy in energetic particles (EPs). This study teaches us that either the light elements are not produced by cosmic rays interactions in the interstellar medium (ISM), as has been thought for 30 years, or the cosmic rays are not what one usually thinks they are, namely standard interstellar material accelerated by the shock waves generated by supernova explosions. In any case, we have to revise our understanding of the EPs in the Galaxy. Relying on the observational evidence about Li, Be and B Galactic evolution as well as about the distribution of massive stars, we show that most of the EPs responsible for the production of light elements must be accelerated inside superbubbles, as is probably the case for the standard Galactic cosmic rays as well.

  10. Ion acceleration to cosmic ray energies

    NASA Technical Reports Server (NTRS)

    Lee, Martin A.

    1990-01-01

    The acceleration and transport environment of the outer heliosphere is described schematically. Acceleration occurs where the divergence of the solar-wind flow is negative, that is at shocks, and where second-order Fermi acceleration is possible in the solar-wind turbulence. Acceleration at the solar-wind termination shock is presented by reviewing the spherically-symmetric calculation of Webb et al. (1985). Reacceleration of galactic cosmic rays at the termination shock is not expected to be important in modifying the cosmic ray spectrum, but acceleration of ions injected at the shock up to energies not greater than 300 MeV/charge is expected to occur and to create the anomalous cosmic ray component. Acceleration of energetic particles by solar wind turbulence is expected to play almost no role in the outer heliosphere. The one exception is the energization of interstellar pickup ions beyond the threshold for acceleration at the quasi-perpendicular termination shock.

  11. The structure of cosmic ray shocks

    NASA Astrophysics Data System (ADS)

    Axford, W. I.; Leer, E.; McKenzie, J. F.

    1982-07-01

    The acceleration of cosmic rays by steady shock waves has been discussed in brief reports by Leer et al. (1976) and Axford et al. (1977). This paper presents a more extended version of this work. The energy transfer and the structure of the shock wave is discussed in detail, and it is shown that even for moderately strong shock waves most of the upstream energy flux in the background gas is transferred to the cosmic rays. This holds also when the upstream cosmic ray pressure is very small. For an intermediate Mach-number regime the overall shock structure is shown to consist of a smooth transition followed by a gas shock (cf. Drury and Voelk, 1980).

  12. The HEAO-3 Cosmic Ray Isotope spectrometer

    NASA Technical Reports Server (NTRS)

    Bouffard, M.; Engelmann, J. J.; Koch, L.; Soutoul, A.; Lund, N.; Peters, B.; Rasmussen, I. L.

    1982-01-01

    This paper describes the Cosmic Ray Isotope instrument launched aboard the HEAO-3 satellite on September 20, 1979. The primary purpose of the experiment is to measure the isotopic composition of cosmic ray nuclei from Be-7 to Fe-58 over the energy range 0.5 to 7 GeV/nucleon. In addition charge spectra will be measured between beryllium and tin over the energy range 0.5 to 25 GeV/nucleon. The charge and isotope abundances measured by the experiment provide essential information needed to further our understanding of the origin and propagation of high energy cosmic rays. The instrument consists of 5 Cerenkov counters, a 4 element neon flash tube hodoscope and a time-of-flight system. The determination of charge and energy for each particle is based on the multiple Cerenkov technique and the mass determination will be based upon a statistical analysis of particle trajectories in the geomagnetic field.

  13. Anomalous isotopic composition of cosmic rays

    SciTech Connect

    Woosley, S.E.; Weaver, T.A.

    1980-06-20

    Recent measurements of nonsolar isotopic patterns for the elements neon and (perhaps) magnesium in cosmic rays are interpreted within current models of stellar nucleosynthesis. One possible explanation is that the stars currently responsible for cosmic-ray synthesis in the Galaxy are typically super-metal-rich by a factor of two to three. Other possibilities include the selective acceleration of certain zones or masses of supernovas or the enhancement of /sup 22/Ne in the interstellar medium by mass loss from red giant stars and planetary nebulas. Measurements of critical isotopic ratios are suggested to aid in distinguishing among the various possibilities. Some of these explanations place significant constraints on the fraction of cosmic ray nuclei that must be fresh supernova debris and the masses of the supernovas involved. 1 figure, 3 tables.

  14. Progenitor model of cosmic ray knee

    NASA Astrophysics Data System (ADS)

    Bijay, Biplab; Bhadra, Arunava

    2016-01-01

    The primary energy spectrum of cosmic rays exhibits a knee at about 3 PeV where a change in the spectral index occurs. Despite many efforts, the origin of such a feature in the spectrum is not satisfactorily solved yet. Here it is proposed that the steepening of the spectrum beyond the knee may be a consequence of the mass distribution of the progenitor of the cosmic ray source. The proposed speculative model can account for all the major observed features of cosmic rays without invoking any fine tuning to match flux or spectra at any energy point. The prediction of the proposed model regarding the primary composition scenario beyond the knee is quite different from most of the prevailing models of the knee, and thereby can be discriminated from precise experimental measurement of the primary composition.

  15. Cosmic ray modulation and merged interaction regions

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.; Mcdonald, F. B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s.

  16. PARSEC: PARametrized Simulation Engine for Cosmic rays

    NASA Astrophysics Data System (ADS)

    Bretz, Hans-Peter; Erdmann, Martin; Schiffer, Peter; Walz, David; Winchen, Tobias

    2015-02-01

    PARSEC (PARametrized Simulation Engine for Cosmic rays) is a simulation engine for fast generation of ultra-high energy cosmic ray data based on parameterizations of common assumptions of UHECR origin and propagation. Implemented are deflections in unstructured turbulent extragalactic fields, energy losses for protons due to photo-pion production and electron-pair production, as well as effects from the expansion of the universe. Additionally, a simple model to estimate propagation effects from iron nuclei is included. Deflections in the Galactic magnetic field are included using a matrix approach with precalculated lenses generated from backtracked cosmic rays. The PARSEC program is based on object oriented programming paradigms enabling users to extend the implemented models and is steerable with a graphical user interface.

  17. Does electromagnetic radiation accelerate galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  18. Galactic cosmic ray transport in the heliosphere: 1963-2013

    NASA Astrophysics Data System (ADS)

    Ygbuhay, Roger Caber

    The solution to the transport equation of galactic cosmic rays in the heliosphere is a continuing research problem. Galactic cosmic ray transport is influenced by four physical processes: outward convection due to a magnetized solar wind, inward diffusion along the interplanetary magnetic field line, particle drifts, and adiabatic cooling. Usually one uses simulations to solve for the components of the diffusion tensor applicable to galactic cosmic ray transport in the heliosphere. In this dissertation, I take a data driven approach and use experimental data from 18 neutron monitors of the world-wide network of cosmic ray neutron monitors from 1963 to 2013. These neutron monitors are grouped (NM1 and NM2) by their vertical geomagnetic cut-off rigidities (NM1 4.5 GV). I show the solution to the parameter (alpha) that is the ratio of cosmic ray perpendicular mean free path to the parallel mean free path using neutron monitor data based on the model of hard sphere scattering of cosmic rays in the solar wind plasma and flat heliospheric current sheet. I show my results for the diffusion coefficients, the vector components of the free-space anisotropy in the radial, east-west, and north-south directions as well as the cosmic ray gradients in the radial and transverse directions with respect to the ecliptic plane. I show how these parameters of the transport equation correlate with rigidity, the 11-year solar cycle, and the 22-year solar magnetic cycle. I will also compare my results to the published results from other researchers.

  19. Phantom Cosmic Ray Decreases and their Extraterrestrial Origins

    NASA Astrophysics Data System (ADS)

    Thomas, Simon; Owens, Mathew; Lockwood, Mike; Scott, Chris

    2014-05-01

    Galactic cosmic rays are extremely high energy charged particles accelerated at extra-solar sources such as supernovae, active galactic nuclei, quasars, and gamma-ray bursts. Upon arrival at Earth's atmosphere, they collide with air molecules to produce a shower of secondary particles. One product of this air shower is energetic neutrons, which can be detected at the Earth's surface. Neutron monitors have been routinely operating for more than half a century and have shown that the cosmic ray flux at the top of the atmosphere is modulated by the heliospheric magnetic field (HMF), both at solar cycle time scales and due to shorter-term HMF variations, such as result from coronal mass ejections (CMEs). When a CME passes over the Earth, the neutron monitor counts are reduced sharply and suddenly (in a matter of hours) due to the modulation of cosmic rays by the enhancement in the heliospheric magnetic field (HMF). Such a drop in neutron counts is known as a Forbush Decrease. We present examples of unusual Forbush Decreases where there is no disturbance in the HMF at Earth at the time, which we name 'Phantom Cosmic Ray Decreases' (PCRDs). For recent PCRD events, we examine STEREO in-situ data and in each case, we find a large CME in either STEREO-A or -B. We also study neutron counts for each event from a number of neutron monitors at different longitudes. Differences between the size of the cosmic ray decreases at different longitudes are shown to give information on the location of the cosmic ray modulation source. We thus propose that these PCRDs are caused by CMEs which have missed Earth but which are large and intense enough to block out galactic cosmic rays on trajectories toward Earth.

  20. Cosmic gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Vedrenne, G.

    1981-06-01

    The general characteristics of gamma-ray bursts are considered. During the period from 1967 to 1977 62 gamma-ray bursts were discovered. Between September 1978 and December 1980 more than 40 bursts were observed with the aid of interplanetary spacecraft, including the Pioneer Venus Orbiter, ISEE-C, Helios B, Vela, Prognoz 7, Venera 11, and Venera 12. The time structures are discussed along with the spectra, and the burst intensity distribution. Attention is given to events observed on March 5, April 6, November 4, and November 19, 1979, taking into account the location of each event. The implications of the more recent results are discussed. It is pointed out that for a better understanding of the origin of the emissions, it is necessary to have a coordinated observation program with several satellites separated by large distances.

  1. Detectors of Cosmic Rays, Gamma Rays, and Neutrinos

    SciTech Connect

    Altamirano, A.; Navarra, G.

    2009-04-30

    We summarize the main features, properties and performances of the typical detectors in use in Cosmic Ray Physics. A brief historical and general introduction will focus on the main classes and requirements of such detectors.

  2. The origin of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale

    2013-11-01

    One century ago Viktor Hess carried out several balloon flights that led him to conclude that the penetrating radiation responsible for the discharge of electroscopes was of extraterrestrial origin. One century from the discovery of this phenomenon seems to be a good time to stop and think about what we have understood about Cosmic Rays. The aim of this review is to illustrate the ideas that have been and are being explored in order to account for the observable quantities related to cosmic rays and to summarize the numerous new pieces of observation that are becoming available. In fact, despite the possible impression that development in this field is somewhat slow, the rate of new discoveries in the last decade or so has been impressive, and mainly driven by beautiful pieces of observation. At the same time scientists in this field have been able to propose new, fascinating ways to investigate particle acceleration inside the sources, making use of multifrequency observations that range from the radio, to the optical, to X-rays and gamma rays. These ideas can now be confronted with data. I will mostly focus on supernova remnants as the most plausible sources of Galactic cosmic rays, and I will review the main aspects of the modern theory of diffusive particle acceleration at supernova remnant shocks, with special attention for the dynamical reaction of accelerated particles on the shock and the phenomenon of magnetic field amplification at the shock. Cosmic-ray escape from the sources is discussed as a necessary step to determine the spectrum of cosmic rays at the Earth. The discussion of these theoretical ideas will always proceed parallel to an account of the data being collected especially in X-ray and gamma-ray astronomy. In the end of this review I will also discuss the phenomenon of cosmic-ray acceleration at shocks propagating in partially ionized media and the implications of this phenomenon in terms of width of the Balmer line emission. This field of

  3. Cosmic strings and ultra-high energy cosmic rays

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Pijushpani

    1989-01-01

    The flux is calculated of ultrahigh energy protons due to the process of cusp evaporation from cosmic string loops. For the standard value of the dimensionless cosmic string parameter epsilon is identical to G(sub mu) approx. = 10(exp -6), the flux is several orders of magnitude below the observed cosmic ray flux of ultrahigh energy protons. However, the flux at any energy initially increases as the value of epsilon is decreased. This at first suggests that there may be a lower limit on the value of epsilon, which would imply a lower limit on the temperature of a cosmic string forming phase transition in the early universe. However, the calculation shows that this is not the case -- the particle flux at any energy reaches its highest value at epsilon approx. = 10(exp -15) and it then decreases for further decrease of the value of epsilon. This is due to the fact that for too small values of epsilon (less than 10(exp -15)), the energy loss of the loops through the cusp evaporation process itself (rather than gravitational energy loss of the loops) becomes the dominant factor that controls the behavior of the number density of the loops at the relevant times of emission of the particles. The highest flux at any energy remains at least four orders of magnitude below the observed flux. There is thus no lower limit on epsilon.

  4. Terrestrial Effects of High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra

    2011-01-01

    On geological timescales, the Earth is likely to be exposed to an increased flux of high energy cosmic rays (HECRs) from astrophysical sources such as nearby supernovae, gamma ray bursts or by galactic shocks. These high-energy particles strike the Earth's atmosphere initiating an extensive air shower. As the air shower propagates deeper, it ionizes the atmosphere by producing charged secondary particles. Increased ionization could lead to changes in atmospheric chemistry, resulting in ozone depletion. This could increase the flux of solar UVB radiation at the surface, which is potentially harmful to living organisms. Increased ionization affects the global electrical circuit can could possibly enhance the low-altitude cloud formation rate. Secondary particles such as muons and thermal neutrons produced as a result of nuclear interactions are able to reach the ground, enhancing the biological radiation dose. The muon flux dominates radiation dose from cosmic rays causing DNA damage and increase in the mutation rates, which can have serious biological implications for terrestrial and sub-terrestrial life. This radiation dose is an important constraint on the habitability of a planet. Using CORSIKA, we perform massive computer simulations and construct lookup tables from 10 GeV - 1 PeV primaries (1 PeV - 0.1 ZeV in progress), which can be used to quantify these effects. These tables are freely available to the community and can be used for other studies, not necessarily relevant to Astrobiology. We use these tables to study the terrestrial implications of galactic shock generated by the infall of our galaxy toward the Virgo cluster. This could be a possible mechanism explaining the observed periodicity in biodiversity in paleobiology databases.

  5. Research in particles and fields. [cosmic rays, gamma rays, and cosmic plasma

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Buffington, A.; Davis, L., Jr.; Prince, T. A.; Vogt, R. E.

    1984-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are reviewed. Energetic particle and photon detector systems flown on spacecraft and balloons were used to carry out the investigations. Specific instruments mentioned are: the high energy isotope spectrometer telescope, the electron/isotope spectrometer, the heavy isotope spectrometer telescope, and magnetometers. Solar flares, planetary magnetospheres, element abundance, the isotopic composition of low energy cosmic rays, and heavy nuclei are among the topics receiving research attention.

  6. Cosmological simulations of dwarf galaxies with cosmic ray feedback

    NASA Astrophysics Data System (ADS)

    Chen, Jingjing; Bryan, Greg L.; Salem, Munier

    2016-08-01

    We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic-rays generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain cosmic ray parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8-30 $\\times 10^{10}$ Msun. We find that including cosmic ray feedback (with diffusion) consistently leads to disk dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.

  7. Cosmic Rays: studies and measurements before 1912

    NASA Astrophysics Data System (ADS)

    De Angelis, Alessandro

    2013-06-01

    The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.

  8. Energy loss measurement of cosmic ray muons

    NASA Astrophysics Data System (ADS)

    Unger, Joseph

    1993-02-01

    Measurements of energy losses of high energy cosmic ray muons in an ionization chamber are presented. The chamber consists of 16 single gap layers, and the liquid tetra methyl silane (TMS) was used as active medium. The absolute energy loss and the relativistic rise were measured and compared with theoretical calculations. The importance of the measurements within the framework of the cosmic ray experiment KASCADE (German acronym for Karlsruhe Shower Core and Array Detector) are discussed, especially with respect to energy calibration of hadrons and high energy muons above 1 TeV.

  9. Propagation of heavy cosmic-ray nuclei

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1984-01-01

    Techniques for modeling the propagation of heavy cosmic-ray nuclei, and the required atomic and nuclear data, are assembled in this paper. Emphasis is on understanding nuclear composition in the charge range Z = 3-83. Details of the application of 'matrix methods' above a few hundred MeV/nucleon, a new treatment of electron capture decay, and a new table of cosmic ray-stable isotopes are presented. Computation of nuclear fragmentation cross sections, stopping power, and electron stripping and attachment are briefly reviewed.

  10. Galactic cosmic ray antiprotons and supersymmetry

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Walsh, T.; Rudaz, S.

    1985-01-01

    The physics of the annihilation of photinos is considered as a function of mass in detail, in order to obtain the energy spectra of the cosmic ray antiprotons produced under the assumption that photinos make up the missing mass in the galactic halo. The modulated spectrum is at 1 a.w. with the cosmic ray antiprotons data. A very intriguing fit is obtained to all of the present antiprotons up to 13.4 GeV data for similar to 15 GeV. A cutoff is predicted in the antiprotons spectrum at E = photino mass above which only a small flux from secondary production should remain.