Science.gov

Sample records for cost high temperature

  1. Low Cost Cryocoolers for High Temperature Superconductor Communication Filters

    NASA Technical Reports Server (NTRS)

    Brown, Davina

    1998-01-01

    This final report describes the work performed by a consortium of Industry and Government to develop low cost cryocoolers. The specific application was for low cost commercial based high temperature superconductor communication filters. This program was initiated in January 1995 and resulted in the successful demonstration of an HTS filter dewar cooled by a low cost pulse tube cryocooler. Further development of this cryocooler technology is proceeding through various contracts underway and proposed at this time.

  2. Low-Cost Manufacturing of High- Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Sutter, James K.

    1998-01-01

    Major goals of NASA and the Integrated High Performance Turbine Engine Technology (IHPTET) initiative include improvements in the affordability of propulsion systems, significant increases in the thrust/weight ratio, and increases in the temperature capability of components of gas turbine engines. Members of NASA Lewis Research Center's HITEMP project worked cooperatively with Allison Advanced Development Corporation to develop a manufacturing method to produce low-cost components for gas turbine engines. Affordability for these polymer composites is defined by the savings in acquisition and life-cycle costs associated with engine weight reduction. To lower engine component costs, the Lewis/Allison team focused on chopped graphite fiber/polyimide resin composites. The high-temperature polyimide resin chosen, PMR-II-50, was developed at NASA Lewis.

  3. Low Cost Manufacturing Approach of High Temperature PMC Components

    NASA Technical Reports Server (NTRS)

    Kannmacher, Kevin

    1997-01-01

    The overall objective is to develop a satisfactory sheet molding compound (SMC) of a high temperature polyimide, such as PMR-11-50, VCAP-75, or NB2-76, and to develop compression molding processing parameters for a random, chopped fiber, high temperature, sheet molding compound that will be more affordable than the traditional hand lay-up fabrication methods. Compression molding will reduce manufacturing costs of composites by: (1) minimizing the conventional machining required after fabrication due to the use of full 360 deg matched tooling, (2) reducing fabrication time by minimizing the intensive hand lay-up operations associated with individual ply fabrication techniques, such as ply orientation and ply count and (3) possibly reducing component mold time by advanced B-staging prior to molding. This program is an integral part of Allison's T406/AE engine family's growth plan, which will utilize technologies developed under NASA's Sub-sonic Transport (AST) programs, UHPTET initiatives, and internally through Allison's IR&D projects. Allison is aggressively pursuing this next generation of engines, with both commercial and military applications, by reducing the overall weight of the engine through the incorporation of advanced, lightweight, high temperature materials, such as polymer matrix composites. This infusion of new materials into the engine is also a major factor in reducing engine cost because it permits the use of physically smaller structural components to achieve the same thrust levels as the generation that it replaced. A lighter, more efficient propulsion system translates to a substantial cost and weight savings to an airframe's structure.

  4. High-temperature superconducting transformer performance, cost, and market evaluation

    SciTech Connect

    Dirks, J.A.; Dagle, J.E.; DeSteese, J.G.; Huber, H.D.; Smith, S.A.; Currie, J.W.; Merrick, S.B.; Williams, T.A.

    1993-09-01

    Recent laboratory breakthroughs in high-temperature superconducting (HTS) materials have stimulated both the scientific community and general public with questions regarding how these materials can be used in practical applications. While there are obvious benefits from using HTS materials (most notably the potential for reduced energy losses in the conductors), a number of issues (such as overall system energy losses, cost, and reliability) may limit applications of HTS equipment, even if the well known materials problems are solved. This study examined the future application potential of HTS materials to power transformers. This study effort was part of a US Department of Energy (DOE) Office of Energy Storage and Distribution (OESD) research program, Superconductivity Technology for Electric Power Systems (STEPS). The study took a systems perspective to gain insights to help guide DOE in managing research designed to realize the vision of HTS applications. Specific objectives of the study were as follows: to develop an understanding of the fundamental HTS transformer design issues that can provide guidance for developing practical devices of interest to the electric utility industry; to identify electric utility requirements for HTS transformers and to evaluate the potential for developing a commercial market; to evaluate the market potential and national benefits for HTS transformers that could be achieved by a successful HTS development program; to develop an integrated systems analysis framework, which can be used to support R&D planning by DOE, by identifying how various HTS materials characteristics impact the performance, cost, and national benefits of the HTS application.

  5. Low-Cost Resin Transfer Molding Process Developed for High-Temperature Polyimide Matrix Composites

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The use of high-temperature polymer matrix composites (PMC's) in aircraft engine applications can significantly reduce engine weight and improve performance and fuel efficiency. High-temperature PMC's, such as those based on the PMR-15 polyimide matrix resin developed by the NASA Lewis Research Center, have been used extensively in military applications where performance improvements have justified their use regardless of the cost involved in producing the component. However, in commercial engines cost is a primary driver, and PMC components must be produced at costs comparable to those of the metal components that they will replace.

  6. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  7. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.

    1997-01-01

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  8. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  9. Low-Cost, High Glass-Transition Temperature, Thermosetting Polyimide Developed

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.

    1999-01-01

    PMR-15 polyimide, developed in the mid-1970's at the NASA Lewis Research Center, is recognized as a state-of-the-art high-temperature resin for composite applications in the temperature range of 500 to 550 F (260 to 288 C). PMR-15 offers easy processing and good property retention at a reasonable cost. For these reasons, it is widely used in both military and commercial aircraft engine components. Traditionally, polyimide composites have been designed for long-term use at 500 to 600 F over thousands of hours. However, new applications in reusable launch vehicles (RLV's) require lightweight materials that can perform for short times (tens of hours) at temperatures between 800 and 1000 F (425 and 538 C). Current efforts at Lewis are focused on raising the use temperature of polyimide composites by increasing the glass-transition temperature of the matrix resins. Achieving this dramatic increase in the upper use temperature without sacrificing polymer and composite processability is a major technical challenge.

  10. A High-Temperature Fiber Sensor Using a Low Cost Interrogation Scheme

    PubMed Central

    Barrera, David; Sales, Salvador

    2013-01-01

    Regenerated Fibre Bragg Gratings have the potential for high-temperature monitoring. In this paper, the inscription of Fibre Bragg Gratings (FBGs) and the later regeneration process to obtain Regenerated Fiber Bragg Gratings (RFBGs) in high-birefringence optical fiber is reported. The obtained RFBGs show two Bragg resonances corresponding to the slow and fast axis that are characterized in temperature terms. As the temperature increases the separation between the two Bragg resonances is reduced, which can be used for low cost interrogation. The proposed interrogation setup is based in the use of optical filters in order to convert the wavelength shift of each of the Bragg resonances into optical power changes. The design of the optical filters is also studied in this article. In first place, the ideal filter is calculated using a recursive method and defining the boundary conditions. This ideal filter linearizes the output of the interrogation setup but is limited by the large wavelength shift of the RFBG with temperature and the maximum attenuation. The response of modal interferometers as optical filters is also analyzed. They can be easily tuned shifting the optical spectrum. The output of the proposed interrogation scheme is simulated in these conditions improving the sensitivity. PMID:24008282

  11. Synthesis and development of low cost, high temperature N-arylene polybenzimidazole foam material

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.

    1975-01-01

    Polymer (and foam) studies followed two basic routes: (1) formation of high molecular weight uncyclized polyamide followed by subsequent fusion and cyclodehydration to yield NABI (foam) and (2) polymer and foam formation by reaction of diphenyl esters (or anhydrides) with the tetramine. The latter route was found much more attractive since considerable versatility in both basic polymer structure and crosslinkability is achievable. Preliminary studies on BAB, phthalic anhydride (PA), and 3, 3 (prime), 4, 4(prime) benzo pheno netetracarboxylic acid dianhydride (BTDA) as crosslinked polymer precursors were conducted. Nonmelting rigid char forming foams with densities as low as 2.7 lb/cubic ft. were achieved. The program was successful in the preparation of a potentially low cost, low density, high char yield, high temperature foam material.

  12. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the

  13. Candidate alloys for cost-effective, high-efficiency, high-temperature compact/foil heat-exchangers

    SciTech Connect

    Evans, Neal D; Maziasz, Philip J; Shingledecker, John P; Pint, Bruce A; Yamamoto, Yukinori

    2007-01-01

    Solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) systems operate at high temperatures (up to 1000 C and 650 C, respectively), which makes them especially attractive sources for combined heat and power (CHP) cogeneration. However, improvements in the efficiency of heat exchange in these fuel cells require both development and careful processing of advanced cost-effective alloys for use in such high-temperature service conditions. The high-temperature properties of both sheet and foil forms of several alloys being considered for use in compact heat-exchangers (recuperators) have been characterized. Mechanical and creep-rupture testing, oxidation studies, and microstructural studies have been performed on commercially available sheet and foil forms of alloy 347, alloys 625, HR230, HR120, and the new AL20-25+Nb. These studies have led to a mechanistic understanding of the responses of these alloys to anticipated service conditions, and suggest that these alloys developed for gas- and micro-turbine recuperator applications are also suitable for use in fuel cell heat-exchangers. Additional work is still required to achieve foil forms with creep life comparable to thicker-section wrought product forms of the same alloys.

  14. Electromagnetic Modelling of Fiber Sensors for Low-Cost and High Sensitivity Temperature Monitoring.

    PubMed

    Scarcia, William; Palma, Giuseppe; Falconi, Mario Christian; de Leonardis, Francesco; Passaro, Vittorio M N; Prudenzano, Francesco

    2015-01-01

    An accurate design of an innovative fiber optic temperature sensor is developed. The sensor is based on a cascade of three microstructured optical fibers (MOFs). In the first one a suitable cascade of long period gratings is designed into the core. A single mode intermediate and a rare-earth activated Fabry-Perot optical cavity are the other two sensor MOF sections. An exhaustive theoretic feasibility investigation is performed employing computer code. The complete set-up for temperature monitoring can be obtained by utilizing only a low cost pump diode laser at 980 nm wavelength and a commercial optical power detector. The simulated sensitivity S = 315.1 μW/°C and the operation range ΔT = 100 °C is good enough for actual applications. PMID:26633397

  15. Electromagnetic Modelling of Fiber Sensors for Low-Cost and High Sensitivity Temperature Monitoring

    PubMed Central

    Scarcia, William; Palma, Giuseppe; Falconi, Mario Christian; de Leonardis, Francesco; Passaro, Vittorio M. N.; Prudenzano, Francesco

    2015-01-01

    An accurate design of an innovative fiber optic temperature sensor is developed. The sensor is based on a cascade of three microstructured optical fibers (MOFs). In the first one a suitable cascade of long period gratings is designed into the core. A single mode intermediate and a rare-earth activated Fabry-Perot optical cavity are the other two sensor MOF sections. An exhaustive theoretic feasibility investigation is performed employing computer code. The complete set-up for temperature monitoring can be obtained by utilizing only a low cost pump diode laser at 980 nm wavelength and a commercial optical power detector. The simulated sensitivity S = 315.1 μW/°C and the operation range ΔT = 100 °C is good enough for actual applications. PMID:26633397

  16. Ultra-High Performance, High-Temperature Superconducting Wires via Cost-effective, Scalable, Co-evaporation Process

    SciTech Connect

    Kim, Dr. Hosup; Oh, Sang-Soo; Ha, HS; Youm, D; Moon, SH; Kim, JH; Heo, YU; Dou, SX; Wee, Sung Hun; Goyal, Amit

    2014-01-01

    Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 m thick SmBa2Cu3O7- (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. Thick SmBCO layers deposited under optimized conditions exhibit excellent cube-on-cube epitaxy. Such excellent structural epitaxy over the entire thickness results in exceptionally high Ic performance, with average Ic over 1000 A/cm for the entire 22 meter long wire and maximum Ic over 1,500 A/cm for a short 12 cm long tape. The Ic values reported in this work are the highest values ever reported from any lengths of cuprate-based HTS wire or conductor.

  17. Ultra-High Performance, High-Temperature Superconducting Wires via Cost-effective, Scalable, Co-evaporation Process

    PubMed Central

    Kim, Ho-Sup; Oh, Sang-Soo; Ha, Hong-Soo; Youm, Dojun; Moon, Seung-Hyun; Kim, Jung Ho; Dou, Shi Xue; Heo, Yoon-Uk; Wee, Sung-Hun; Goyal, Amit

    2014-01-01

    Long-length, high-temperature superconducting (HTS) wires capable of carrying high critical current, Ic, are required for a wide range of applications. Here, we report extremely high performance HTS wires based on 5 μm thick SmBa2Cu3O7 − δ (SmBCO) single layer films on textured metallic templates. SmBCO layer wires over 20 meters long were deposited by a cost-effective, scalable co-evaporation process using a batch-type drum in a dual chamber. All deposition parameters influencing the composition, phase, and texture of the films were optimized via a unique combinatorial method that is broadly applicable for co-evaporation of other promising complex materials containing several cations. Thick SmBCO layers deposited under optimized conditions exhibit excellent cube-on-cube epitaxy. Such excellent structural epitaxy over the entire thickness results in exceptionally high Ic performance, with average Ic over 1,000 A/cm-width for the entire 22 meter long wire and maximum Ic over 1,500 A/cm-width for a short 12 cm long tape. The Ic values reported in this work are the highest values ever reported from any lengths of cuprate-based HTS wire or conductor. PMID:24752189

  18. LARC(tm) RP46 Polyimide Low Cost High Temperature Technology

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.

    2000-01-01

    The LARC(tm) RP46 polyimide was developed in 1991 at NASA Langley Research Center as an ultra-high-performance composite matrix resin for use in aircraft engine components, as well as a more environmentally friendly alternative to commercially available high temperature matrix resins. The LARC(tm) RP46 polyimide is prepared with non-toxic 3,4'-oxyldianiline(ODA). This chemistry has led to several improved performance characteristics over similar high temperature polyimides. These improvements include: (1) 700 F use temperature; (2) Significantly less moisture absorption; (3) Better chemical corrosion resistance; (4) Greater microcracking resistance; (5) Higher structural durability. The 700 F use temperature LARC(tm) RP46 is 150 F higher than that of commonly used PMR-type high temperature resins. In addition, it features significantly less moisture absorption and is therefore less susceptible to moisture induced damage. It also has better corrosion resistance to chemicals, greater microcracking resistance, and higher durability with regard to structural integrity.

  19. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  20. INCOLOY alloy 803, a cost effective alloy for high temperature service

    SciTech Connect

    Ganesan, P.; Plyburn, J.A.; Tassen, C.S.

    1995-12-31

    INCOLOY alloy 800 was the first of the 800 series of alloys invented by Inco Alloys International in the 1940`s. Because of its excellent oxidation and carburization resistance as well as high temperature creep strength, alloy 800 found uses for many applications such as heat treating hardware, petrochemical processing, home appliances, food processing, industrial heating, super-heater and re-heater tubing and soon became the workhorse material for the chemical processing industries. Alloy 803 has superior resistance to oxidation and carburization without sacrificing mechanical properties. In this paper the history of alloy 800 with introductions of alloys 800H and 800HT and the differences in properties and chemical compositions among them will be described. The development of alloy 803 for petrochemical applications is also covered. The performance of alloy 803 in cyclic oxidation, carburization and sulfidation tests will be presented and compared with several alloys including alloy HPM. The mechanical properties of alloy 803 including room temperature and high temperature tensile data and stress rupture and creep strengths up to 1,093 C (2,000 F) will be presented. The choice of available filler metals and welding electrodes to join alloy 803, using gas metal arc welding and shielded metal arc welding processes, will also be presented.

  1. Driving Down HB-LED Costs. Implementation of Process Simulation Tools and Temperature Control Methods of High Yield MOCVD Growth

    SciTech Connect

    Quinn, William

    2012-04-30

    . Programmatically, improvements made in Phase I are applied to developments of Phase II when applicable. Phase three is the culmination of the individual tasks from both phases one and two applied to proposed production platforms. We selectively combine previously demonstrated tasks and other options to develop a high-volume production-worthy MOCVD system demonstrating >3x throughput, 1.3x capital efficiency, and 0.7x cost of ownership. In a parallel demonstration we validate the concept of an improved, larger deposition system which utilizes the predictive modeling of chemistry-based flow analysis and extensions of the improvements demonstrated on the current platforms. This validation includes the build and testing of a prototype version of the hardware and demonstration of 69% reduction in the cost of ownership. Also, in this phase we present a stand-alone project to develop a high-temperature system which improves source efficiency by 30% while concurrently increasing growth rate by 1.3x. The material quality is held to the same material quality specifications of our existing baseline processes. The merits of other line item tasks in phase three are discussed for inclusion on next-generation platforms.

  2. Large capacity, multi-fuel, and high temperature working fluid heaters to optimize CSP plant cost, complexity and annual generation

    NASA Astrophysics Data System (ADS)

    Peterseim, J. H.; Viscuso, L.; Hellwig, U.; McIntyre, P.

    2016-05-01

    This paper analyses the potential to optimize high temperature fluid back-up systems for concentrating solar power (CSP) plants by investigating the cost impact of component capacity and the impact of using multiple fuels on annual generation. Until now back-up heaters have been limited to 20MWth capacity but larger units have been realised in other industries. Installing larger units yields economy-of-scale benefits through improved manufacturing, optimised transport, and minimized on-site installation work. Halving the number of back-up boilers can yield cost reduction of 23% while minimizing plant complexity and on-site construction risk. However, to achieve these benefits it is important to adapt the back-up heaters to the plant's requirements (load change, capacity, minimum load, etc.) and design for manufacture, transport and assembly. Despite the fact that biomass availability is decreasing with increasing direct normal irradiance (DNI), some biomass is available in areas suitable for CSP plants. The use of these biomass resources is beneficial to maximise annual renewable energy generation, substitute natural gas, and use locally/seasonally available biomass resources that may not be used otherwise. Even small biomass quantities of only 50,000 t/a can increase the capacity factor of a 50MWe parabolic trough plant with 7h thermal energy storage from 40 to 49%. This is a valuable increase and such a concept is suitable for new plants and retrofit applications. However, similar to the capacity optimisation of back-up heaters, various design criteria have to be considered to ensure a successful project.

  3. Development of Low-Cost Austenitic Stainless Gas-Turbine and Diesel Engine Components with Enhanced High-Temperature Reliability

    SciTech Connect

    Maziasz, P.J.; Swindeman, R.W.; Browning, P.F.; Frary, M.E.; Pollard, M.J.; Siebenaler, C.W.; McGreevy, T.E.

    2004-06-01

    In July of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Solar Turbines, Inc. and Caterpillar, Inc. (Caterpillar Technical Center) to evaluate commercial cast stainless steels for gas turbine engine and diesel engine exhaust component applications relative to the materials currently being used. If appropriate, the goal was to develop cast stainless steels with improved performance and reliability rather than switch to more costly cast Ni-based superalloys for upgraded performance. The gas-turbine components considered for the Mercury-50 engine were the combustor housing and end-cover, and the center-frame hot-plate, both made from commercial CF8C cast austenitic stainless steel (Fe-l9Cr-12Ni-Nb,C), which is generally limited to use at below 650 C. The advanced diesel engine components considered for truck applications (C10, C12, 3300 and 3400) were the exhaust manifold and turbocharger housing made from commercial high SiMo ductile cast iron with uses limited to 700-750 C or below. Shortly after the start of the CRADA, the turbine materials emphasis changed to wrought 347H stainless steel (hot-plate) and after some initial baseline tensile and creep testing, it was confirmed that this material was typical of those comprising the abundant database; and by 2000, the emphasis of the CRADA was primarily on diesel engine materials. For the diesel applications, commercial SiMo cast iron and standard cast CN12 austenitic stainless steel (Fe-25Cr-13Ni-Nb,C,N,S) baseline materials were obtained commercially. Tensile and creep testing from room temperature to 900 C showed the CN12 austenitic stainless steel to have far superior strength compared to SiMo cast iron above 550 C, together with outstanding oxidation resistance. However, aging at 850 C reduced room-temperature ductility of the standard CN12, and creep-rupture resistance at 850 C was less than expected, which triggered a focused

  4. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  5. High temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L.

    1991-01-01

    The aerospace and electronics industries have an ever increasing need for higher performance materials. In recent years, linear aromatic polyimides have been proven to be a superior class of materials for various applications in these industries. The use of this class of polymers as adhesives is continuing to increase. Several NASA Langley developed polyimides show considerable promise as adhesives because of their high glass transition temperatures, thermal stability, resistance to solvents/water, and their potential for cost effective manufacture.

  6. A Finemet-type alloy as a low-cost candidate for high-temperature magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Franco, V.; Blázquez, J. S.; Conde, C. F.; Conde, A.

    2006-01-01

    The refrigerant capacity (RC) of Fe68.5Mo5Si13.5B9Cu1Nb3 alloy is studied. For the amorphous sample, RC =63Jkg-1 for an optimal reversible cycle with cold and hot ends at 328K and 520K, respectively, for a maximum applied field H =15kOe. Nanocrystallization diminishes both the peak entropy change and RC of the material. Although the measured RC is smaller than for Gd5Ge1.9Si2Fe0.1 (240Jkg-1 for H =50kOe), the Mo-Finemet alloy is more than 20 times cheaper, the applied field employed is smaller, and the temperature span of the optimal cycle is increased. This makes this alloy a promising material for high-temperature refrigeration.

  7. The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process

    SciTech Connect

    Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

    2008-06-24

    The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

  8. High temperature future

    SciTech Connect

    Sheinkopf, K.

    1994-09-01

    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  9. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  10. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  11. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  12. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  13. The development of new, low-cost perfluoroalkylether fluids with excellent low and high-temperature properties

    NASA Technical Reports Server (NTRS)

    Bierschenk, Thomas R.; Kawa, Hajimu; Juhlke, Timothy J.; Lagow, Richard J.

    1988-01-01

    A series of perfluoroalkylether (PFAE) fluids were synthesized by direct fluorination. Viscosity-temperature properties, oxidation stabilities, oxidation-corrosion properties, and lubricity were determined. The fluids were tested in the presence of common elastomers to check for compatibility. The bulk modulus of each was measured to determine if any could be used as nonflammable aircraft hydraulic fluid. It was determined that as the carbon to oxygen ratio decreases, the viscometric properties improve, the fluids may become poor lubricants, the bulk modulus increases, the surface tension increases, and the fluid density increases. The presence of difluoromethylene oxide units in the polymer does not seriously lower the oxidation and oxidation-corrosion stabilities as long as the difluoromethylene oxide units are separated by other units.

  14. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  15. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  16. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  17. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  18. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  19. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  20. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  1. High-Temperature Superconductivity

    SciTech Connect

    Peter Johnson

    2008-11-05

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  2. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  3. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  4. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  5. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-02-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  6. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  7. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  8. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  9. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  10. High temperature electronics technology

    NASA Astrophysics Data System (ADS)

    Dening, J. C.; Hurtle, D. E.

    1984-03-01

    This report summarizes the barrier metallization developments accomplished in a program intended to develop 300 C electronic controls capability for potential on-engine aircraft engine application. In addition, this report documents preliminary life test results at 300 C and above and discusses improved design practices required for high temperature integrated injection logic semiconductors. Previous Phase 1 activities focused on determining the viability of operating silicon semiconductor devices over the -55 C to +300 C temperature range. This feasibility was substantiated but the need for additional design work and process development was indicated. Phase 2 emphasized the development of a high temperature metallization system as the primary development need for high temperature silicon semiconductor applications.

  11. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  12. High-Temperature Lubricants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1980's, Lewis Research Center began a program to develop high-temperature lubricants for use on future aircraft flying at three or more times the speed of sound, which can result in vehicle skin temperatures as high as 1,600 degrees Fahrenheit. A material that emerged from this research is a plasma-sprayed, self-lubricating metal- glass-fluoride coating able to reduce oxidation at very high temperatures. Technology is now in commercial use under the trade name Surf-Kote C-800, marketed by Hohman Plating and Manufacturing Inc. and manufactured under a patent license from NASA. Among its uses are lubrication for sliding contact bearings, shaft seals for turbopumps, piston rings for high performance compressors and hot glass processing machinery; it is also widely used in missile and space applications.

  13. High temperature hydraulic seals

    NASA Astrophysics Data System (ADS)

    Williams, K. R.

    1993-05-01

    This program investigated and evaluated high temperature hydraulic sealing technology, including seals, fluids, and actuator materials. Test limits for fluid pressure and temperature were 8000 psi and 700 F respectively. The original plan to investigate CTFE fluid at 350 F as well as other fluids at higher temperatures was reduced in scope to include only the higher temperature investigation. Seals were obtained from 11 manufacturers. Design requirements including materials, dimensions, clearances, and tolerances were established and test modules were constructed from the detail designs which were produced. Nine piston seals and one rod seal were tested at temperatures ranging from -65 to +600 F and pressures to 6000 psi. Fluid performance under these conditions was evaluated. Details of this activity and results of the effort are summarized in this report.

  14. Development of metamaterial based low cost passive wireless temperature sensor

    NASA Astrophysics Data System (ADS)

    Karim, Hasanul; Shuvo, Mohammad Arif Ishtiaq; Delfin, Diego; Lin, Yirong; Choudhuri, Ahsan; Rumpf, R. C.

    2014-03-01

    Wireless passive temperature sensors are gaining increasing attention due to the ever-growing need of precise monitoring of temperature in high temperature energy conversion systems such as gas turbines and coal-based power plants. Unfortunately, the harsh environment such as high temperature and corrosive atmosphere present in these systems limits current solutions. In order to alleviate these issues, this paper presents the design, simulation, and manufacturing process of a low cost, passive, and wireless temperature sensor that can withstand high temperature and harsh environment. The temperature sensor was designed following the principle of metamaterials by utilizing Closed Ring Resonators (CRR) embedded in a dielectric matrix. The proposed wireless, passive temperature sensor behaves like an LC circuit that has a resonance frequency that depends on temperature. A full wave electromagnetic solver Ansys Ansoft HFSS was used to perform simulations to determine the optimum dimensions and geometry of the sensor unit. The sensor unit was prepared by conventional powder-binder compression method. Commercially available metal washers were used as CRR structures and Barium Titanate (BTO) was used as the dielectric materials. Response of the fabricated sensor at room temperature was analyzed using a pair of horn antenna connected with a network analyzer.

  15. High Temperature Structural Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Baillif, Faye F.; Grimsley, Brian W.; Marchello, Joseph M.

    1997-01-01

    The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties.

  16. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  17. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  18. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  19. High-temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1987-11-01

    In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.

  20. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  1. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  2. High Temperature Metallic Seal Development

    NASA Astrophysics Data System (ADS)

    Datta, Amit; More, D. Greg

    2002-10-01

    A high temperature static seal capable of long term operation at temperature ranging from 1400 F to 1800 F is presented. The contents include: 1) Development approach; 2) Stress relaxation curves; 3) High temperature seal test rig; 4) High temperature seal design; and 5) High temperature seal testing. This paper is in viewgraph form.

  3. High Temperature Thermosets

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1999-01-01

    A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.

  4. High-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Chin, Ken C.

    1990-01-01

    The current status of high-temperature superconductivity (HTSC) and near-term prospects are briefly reviewed with particular reference to Lockheed's experience. Emphasis is placed on an integrated approach to systems applications of HTSC thin films, which hold the greatest near-term promise. These new materials are applied in the production of smaller, more sensitive, and more efficient electronic components to meet the ever-increasing demands for higher-performance signal acquisition and processing systems, communications systems, and computers.

  5. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  6. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  7. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  8. High temperature drilling fluids

    SciTech Connect

    Stong, R.E.; Walinsky, S.W.

    1986-01-28

    This patent describes an aqueous drilling fluid suitable for high-temperature use. This fluid is composed of a water base. Clay is suspended in the base and from about 0.01-25 pounds per barrel total composition of a hydrolyzed terpolymer of maleic anhydride, styrene and a third monomer selected from acrylamide, methacrylamide, acrylic acid and metacrylic acid. The molar ratio of maleic anhydride to styrene to the third monomer is from about 30:10:60 to 50:40:10, and the alkali metal, ammonium and lower aliphatic amine salts thereof, the weight-average molecular weight of the hydrolyzed terpolymer is from about 500-10,000.

  9. The High Cost of Transportation.

    ERIC Educational Resources Information Center

    Rasicot, Julie

    1996-01-01

    Describes how school districts, faced with shrinking resources, have cut costs for student transportation. To combat rising transportation costs, districts have charged fees for student transportation, entered into private contracts, cut transportation services, used alternative fuels, and streamlined bus routes and schedules. (LMI)

  10. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M.; Tressler, R.E.

    1992-12-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100{degrees}C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter {times} 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  11. High temperature filter materials

    SciTech Connect

    Alvin, M.A.; Lippert, T.E.; Bachovchin, D.M. . Science and Technology Center); Tressler, R.E. )

    1992-01-01

    Objectives of this program are to identify the potential long-term thermal/chemical effects that advanced coal-based power generating system environments have on the stability of porous ceramic filter materials, as well as to assess the influence of these effects on filter operating performance and life. We have principally focused our efforts on developing an understanding of the stability of the alumina/mullite filter material at high temperature (i.e., 870, 980, and 1100[degrees]C) under oxidizing conditions which contain gas phase alkali species. Testing has typically been performed in two continuous flow-through, high temperature test facilities at the Westinghouse Science and Technology Center, using 7 cm diameter [times] 6.4 mm thick discs. (Alvin, 1992) Each disc of ceramic filter material is exposed for periods of 100 to 3,000 hours in duration. Additional efforts have been performed at Westinghouse to broaden our understanding of the stability of cordierite, cordierite-silicon nitride, reaction and sintered silicon nitride, and clay bonded silicon carbide under similar simulated advanced coal fired process conditions. The results of these efforts are presented in this paper.

  12. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  13. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  14. High Temperature Inspection System

    SciTech Connect

    Robinson, C.W.

    1999-01-26

    The Remote and Specialty Equipment Section (RSES) of the Savannah River Technology Center has developed a High Temperature Inspection System (HTIS) for remotely viewing the interior of the Defense Waste Processing Facility (DWPF) melter pour spout. The DWPF is a vitrification facility at the Savannah River Site where radioactive waste is processed, mixed and melted with glass frit in an electrically heated melter, and poured into canisters for long-term storage. The glass mixture is transferred from the melter to the canisters via the pour spout, a vertical interface between the melter and the canisters. During initial operation of the melter, problems were experienced with wicking of the glass stream to the sides of the pour spout resulting in pluggage of the pour spout. A removable insert was developed to eliminate the wicking problem. Routine cleaning of the pour spout and replacement of the insert requires that the pour spout interior be inspected on a regular basis. The HTIS was developed to perform the inspection. The HTIS provides two video images: one view for aligning the HTIS with the pour spout and the other for inspecting the pour spout wall condition and other surfaces. The HTIS is carried into the melter cell using an overhead crane and is remotely connected to the cell's telerobotic manipulator (TRM). An operator uses the TRM to insert the HTIS into the 2-inch (5.08 cm) diameter pour spout, rotate it 360 degrees, and then remove it. This application created many challenges for the inspection device, especially regarding size and temperature. The HTIS design allows the video cameras to stay below a safe operating temperature during use in the 1100 degrees C environment. Many devices are designed to penetrate a wall and extend into a heated chamber only a few inches, but the HTIS is inserted into the heated chamber 22 inches (55.88 cm). Other devices can handle the insertion length and small diameter, but they are not designed to handle the high

  15. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  16. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  17. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  18. High Temperature Hybrid Elastomers

    NASA Astrophysics Data System (ADS)

    Drake, Kerry Anthony

    Conventional high temperature elastomers are produced by chain polymerization of olefinic or fluorinated olefinic monomers. Ultimate thermal stabilities are limited by backbone bond strengths, lower thermal stability of cross-link sites relative to backbone bonds, and depolymerization or "unzipping" at high temperatures. In order to develop elastomers with enhanced thermal stability, hybrid thermally cross-linkable polymers that consisted only of organic-inorganic and aromatic bonds were synthesized and evaluated. The addition of phenylethynyl or phenylacetylinic functional groups to these polymers resulted in conversion of the polymers into high temperature elastomers when cross-linked by thermal curing. Polyphenyoxydiphenylsilanes were synthesized via several different condensation reactions. Results of these synthetic reactions, which utilized both hydroquinone and biphenol as monomers, were systematically evaluated to determine the optimal synthetic conditions for subsequent endcapping reactions. It was determined that dichlorodiphenylsilane condensations with biphenol in toluene or THF were best suited for this work. Use of excess dichlorodiphenylsilane yielded polymers of appropriate molecular weights with terminal reactive chlorosilane groups that could be utilized for coupling with phenylethynyl reagents in a subsequent reaction. Two new synthetic routes were developed to endcap biphenoxysilanes with ethynyl containing substituents, to yield polymers with cross-linkable end groups. Endcapping by lithiumphenylacetylide and 4[(4-fluorophenylethynyl))phenol yielded two new polymers that could be thermally cross-linked on heating above 300 °C. Successful endcapping was verified chemically by 13C NMR, FTIR and Raman analysis. Exothermic peaks consistent with ethynyl curing reactions were observed in endcapped polymers by DSC. A new diacetylinic polymer was prepared through reaction of 4,4'-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This

  19. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  20. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  1. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  2. High temperature lubricating process

    DOEpatents

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  3. High-temperature bearing lubricants

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Parker, R. J.; Zaretsky, E. V.

    1968-01-01

    Synthetic paraffinic oil lubricates ball bearings at temperatures in the 600 degrees F range. The lubricant contains antiwear and antifoam additives, is thermally stable in the high temperature range, but requires protection from oxygen.

  4. High temperature LSI

    NASA Technical Reports Server (NTRS)

    Dening, D. C.; Ragonese, L. J.; Lee, C. Y.

    1982-01-01

    Integrated injection logic (1,2) technology for reliable operation under a -55 C to +300 C, temperature range is discussed. Experimental measurements indicate that an 80 mv signal swing is available at 300 C with 100 micro A injection current per gate. In addition, modeling results predict how large gate fan-ins can decrease the maximum thermal operational limits. These operational limits and the longterm reliability factors associated with device metallization are evaluated via specialized test mask.

  5. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  6. Materials for high-temperature catalytic combustion

    SciTech Connect

    Ramesh, K.S.; Cox, J.L.; Parks, W.P. Jr.

    1994-04-01

    Catalytic combustion systems for gas turbines must operate at temperatures of at least 1200{degrees}C. Support structure material must retain its integrity under prolonged exposure to high temperature, thermal cycling, and severe chemical conditions; and the material must be capable of being formed into thin sections. The performance requirements of a high-temperature stable ceramic support must be balanced with reasonable costs of preparation. An increasing number of materials have potential for successful exposure to high-temperature conditions. Two major problems of high-temperature catalyst systems are loss of surface area and catalytic activity. Incorporation of the catalytic component into the host lattice can circumvent this problem. Use of supporting active metal oxides on carrier materials with high thermal resistance appears to be a very promising way to make stable catalysts. The challenge will be to provide sufficient low-temperature activity and high-temperature stability; therefore, there exists a need to engineer catalytic materials for high-temperature combustion environments. Developments in catalytic materials and preparation procedures are reviewed. Future areas of research are discussed.

  7. Patients With High Mental Health Costs Incur Over 30 Percent More Costs Than Other High-Cost Patients.

    PubMed

    de Oliveira, Claire; Cheng, Joyce; Vigod, Simone; Rehm, Jürgen; Kurdyak, Paul

    2016-01-01

    A small proportion of health care users, called high-cost patients, account for a disproportionately large share of health care costs. Most literature on these patients has focused on the entire population. However, high-cost patients whose use of mental health care services is substantial are likely to differ from other members of the population. We defined a mental health high-cost patient as someone for whom mental health-related services accounted for at least 50 percent of total health care costs. We examined these patients' health care utilization and costs in Ontario, Canada. We found that their average cost for health care, in 2012 Canadian dollars, was $31,611. In contrast, the cost was $23,681 for other high-cost patients. Mental health high-cost patients were younger, lived in poorer neighborhoods, and had different health care utilization patterns, compared to other high-cost patients. These findings should be considered when implementing policies or interventions to address quality of care for mental health patients so as to ensure that mental health high-cost patients receive appropriate care in a cost-effective manner. Furthermore, efforts to manage mental health patients' health care use should address their complex profile through integrated multidisciplinary health care delivery. PMID:26733699

  8. High temperature interface superconductivity

    DOE PAGESBeta

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  9. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  10. Investigations into High Temperature Components and Packaging

    SciTech Connect

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  11. High-temperature ceramic receivers

    SciTech Connect

    Jarvinen, P. O.

    1980-01-01

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  12. Cost effective machining and inspection of structural ceramic components for advanced high temperature application. Final CRADA report for CRADA number Y-1292-0151

    SciTech Connect

    Abbatiello, L.A.; Haselkorn, M.

    1996-11-29

    This Cooperative Research and Development Agreement (CRADA) was a mutual research and development (R and D) effort among the participants to investigate a range of advanced manufacturing technologies for two silicon nitride (Si{sub 3}N{sub 4}) ceramic materials. The general objective was to identify the most cost-effective part manufacturing processes for the ceramic materials of interest. The focus was determining the relationship between material removal rates, surface quality, and the structural characteristics of each ceramic resulting from three innovative processes. These innovated machining processes were studied using silicon nitride advanced materials. The particular (Si{sub 3}N{sub 4}) materials of interest were sintered GS-44 from the Norton Company, and reaction-bonded Ceraloy 147-3. The processes studied included the following activities: (1) direct laser machining; (2) rotary ultrasonic machining; and (3) diamond abrasive grinding, including both resinoid and vitreous-bonded grinding wheels. Both friable and non-friable diamond types were included within the abrasive grinding study. The task also conducted a comprehensive survey of European experience in use of ceramic materials, principally aluminum oxide. Originally, the effort of this task was to extend through a prototype manufacturing demonstration of selected engine components. During the execution of this program, however changes were made to the scope of the project, altering the goals. The Program goal became only the development of assessment of their impacts on product strength and surface condition.

  13. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  14. Robust, low-cost data loggers for stream temperature, flow intermittency, and relative conductivity monitoring

    USGS Publications Warehouse

    Chapin, Thomas; Todd, Andrew S.; Zeigler, Matthew P.

    2014-01-01

    Water temperature and streamflow intermittency are critical parameters influencing aquatic ecosystem health. Low-cost temperature loggers have made continuous water temperature monitoring relatively simple but determining streamflow timing and intermittency using temperature data alone requires significant and subjective data interpretation. Electrical resistance (ER) sensors have recently been developed to overcome the major limitations of temperature-based methods for the assessment of streamflow intermittency. This technical note introduces the STIC (Stream Temperature, Intermittency, and Conductivity logger); a robust, low-cost, simple to build instrument that provides long-duration, high-resolution monitoring of both relative conductivity (RC) and temperature. Simultaneously collected temperature and RC data provide unambiguous water temperature and streamflow intermittency information that is crucial for monitoring aquatic ecosystem health and assessing regulatory compliance. With proper calibration, the STIC relative conductivity data can be used to monitor specific conductivity.

  15. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  16. Experimental study of low-cost fiber optic distributed temperature sensor system performance

    NASA Astrophysics Data System (ADS)

    Dashkov, Michael V.; Zharkov, Alexander D.

    2016-03-01

    The distributed control of temperature is an actual task for various application such as oil & gas fields, high-voltage power lines, fire alarm systems etc. The most perspective are optical fiber distributed temperature sensors (DTS). They have advantages on accuracy, resolution and range, but have a high cost. Nevertheless, for some application the accuracy of measurement and localization aren't so important as cost. The results of an experimental study of low-cost Raman based DTS based on standard OTDR are represented.

  17. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  18. A batteryless temperature sensor based on high temperature sensitive material

    NASA Astrophysics Data System (ADS)

    Bakkali, Asma; Pelegri-Sebastia, José; Laghmich, Youssef; Lyhyaoui, Abdelouahid

    2016-05-01

    The major challenge in wireless sensor networks is the reduction of energy consumption. Passive wireless sensor network is an attractive solution for measuring physical parameters in harsh environment for large range of applications requiring sensing devices with low cost of fabrication, small size and long term measurement stability. Batteryless temperature sensing techniques are an active research field. The approach developed in our work holds a promising future for temperature sensor applications in order to successfully reduce the energy consumption. The temperature sensor presented in this paper is based on the electromagnetic transduction principle using the integration of the high temperature sensitive material into a passive structure. Variation in temperature makes the dielectric constant of this material changing, and such modification induces variation in the resonant frequencies of high-Q whispering-gallery modes (WGM) in the millimeter-wave frequency range. Following the results achieved, the proposed device shows a linear response to the increasing temperature and these variations can be remotely detected from a radar interrogation. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  19. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  20. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-06

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  1. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  2. Containerless high temperature calorimeter apparatus

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B. (Inventor)

    1981-01-01

    A calorimeter apparatus for measuring high temperature thermophysical properties of materials is disclosed which includes a containerless heating apparatus in which the specimen is suspended and heated by electron bombardment.

  3. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  4. High temperature energy harvester for wireless sensors

    NASA Astrophysics Data System (ADS)

    Köhler, J. E.; Heijl, R.; Staaf, L. G. H.; Zenkic, S.; Svenman, E.; Lindblom, A.; Palmqvist, A. E. C.; Enoksson, P.

    2014-09-01

    Implementing energy harvesters and wireless sensors in jet engines will simplify development and decrease costs by reducing the need for cables. Such a device could include a small thermoelectric generator placed in the cooling channels of the jet engine where the temperature is between 500-900 °C. This paper covers the synthesis of suitable thermoelectric materials, design of module and proof of concept tests of a thermoelectric module. The materials and other design variables were chosen based on an analytic model and numerical analysis. The module was optimized for 600-800 °C with the thermoelectric materials n-type Ba8Ga16Ge30 and p-type La-doped Yb14MnSb11, both with among the highest reported figure-of-merit values, zT, for bulk materials in this region. The materials were synthesized and their structures confirmed by x-ray diffraction. Proof of concept modules containing only two thermoelectric legs were built and tested at high temperatures and under high temperature gradients. The modules were designed to survive an ambient temperature gradient of up to 200 °C. The first measurements at low temperature showed that the thermoelectric legs could withstand a temperature gradient of 123 °C and still be functional. The high temperature measurement with 800 °C on the hot side showed that the module remained functional at this temperature.

  5. High temperature storage loop : final design report.

    SciTech Connect

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650%C2%B0C) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOE's SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  6. Towards high-performance, low-cost quartz sensors with high-density, well-separated, vertically aligned ZnO nanowires by low-temperature, seed-less, single-step, double-sided growth.

    PubMed

    Orsini, Andrea; Medaglia, Pier Gianni; Scarpellini, David; Pizzoferrato, Roberto; Falconi, Christian

    2013-09-01

    Resonant sensors with nanostructured surfaces have long been considered as an emergent platform for high-sensitivity transduction because of the potentially very large sensing areas. Nevertheless, until now only complex, time-consuming, expensive and sub-optimal fabrication procedures have been described; in fact, especially with reference to in-liquid applications, very few devices have been reported. Here, we first demonstrate that, by immersing standard, ultra-low-cost quartz resonators with un-polished silver electrodes in a conventional zinc nitrate/HMTA equimolar nutrient solution, the gentle contamination from the metallic package allows direct growth on the electrodes of arrays of high-density (up to 10 μm⁻²) and well-separated (no fusion at the roots) ZnO nanowires without any seed layer or thermal annealing. The combination of high-density and good separation is ideal for increasing the sensing area; moreover, this uniquely simple, single-step process is suitable for conventional, ultra-low-cost and high-frequency quartzes, and results in devices that are already packaged and ready to use. As an additional advantage, the process parameters can be effectively optimized by measuring the quartz admittance before and after growth. As a preliminary test, we show that the sensitivity to the liquid properties of high-frequency (i.e. high sensitivity) quartzes can be further increased by nearly one order of magnitude and thus show the highest ever reported frequency shifts of an admittance resonance in response to immersion in both ethanol and water. PMID:23924776

  7. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  8. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  9. Temperature controlled high voltage regulator

    DOEpatents

    Chiaro, Jr., Peter J.; Schulze, Gerald K.

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  10. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  11. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  12. Gallium phosphide high temperature diodes

    SciTech Connect

    Chaffin, R.J.; Dawson, L.R.

    1981-01-01

    The purpose of this work is to develop high temperature (> 300/sup 0/C) diodes for geothermal and other energy applications. A comparison of reverse leakage currents of Si, GaAs and GaP is made. Diodes made from GaP should be usable to > 500/sup 0/C. An LPE process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers have been cut into die and metallized to make the diodes. These diodes produce leakage currents below 10/sup -3/ A/cm/sup 2/ at 400/sup 0/C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  13. Temperature optimization of high con

    NASA Astrophysics Data System (ADS)

    Sabry, M.

    2016-06-01

    Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD) simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  14. Containerless high-temperature calorimeter

    NASA Technical Reports Server (NTRS)

    Lacy, L. L.; Nisen, D. B.; Robinson, M. B.

    1979-01-01

    Samples are heated by electron bombardment in high-temperature calorimeter that operates from 1,000 to 3,600 C yet consumes less that 100 watts at temperatures less than 2,500 C. Contamination of samples is kept to minimum by suspending them from wire in vacuum chamber. Various sample slopes such as wires, dishs, spheres, rods, or irregular bodies can be accommodated and only about 100 nq of samples are needed for accurate measurements.

  15. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  16. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  17. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  18. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  19. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  20. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  1. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  2. "Green" High-Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  3. High-Speed, High-Temperature Finger Seal Test Results

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Kumar, Arun; Delgado, Irebert R.

    2002-01-01

    Finger seals have significantly lower leakage rates than conventional labyrinth seals used in gas turbine engines and are expected to decrease specific fuel consumption by over 1 percent and to decrease direct operating cost by over 0.5 percent. Their compliant design accommodates shaft growth and motion due to thermal and dynamic loads with minimal wear. The cost to fabricate these finger seals is estimated to be about half the cost to fabricate brush seals. A finger seal has been tested in NASA's High Temperature, High Speed Turbine Seal Test Rig at operating conditions up to 1200 F, 1200 ft/s, and 75 psid. Static, performance and endurance test results are presented. While seal leakage and wear performance are acceptable, further design improvements are needed to reduce the seal power loss.

  4. High-Temperature Electrostatic Levitator

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1994-01-01

    High-temperature electrostatic levitator provides independent control of levitation and heating of sample in vacuum. Does not cause electromagnetic stirring in molten sample (such stirring causes early nucleation in undercooling). Maintenance of levitating force entails control of electrostatic field and electrical charge on sample.

  5. High-Temperature Vibration Damper

    NASA Technical Reports Server (NTRS)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  6. High-temperature plasma physics

    SciTech Connect

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

  7. A solar high temperature kiln

    NASA Astrophysics Data System (ADS)

    Huettenhoelscher, N.; Bergmann, K.

    1981-11-01

    The feasibility of using solar energy in developing countries for baking ceramic construction materials was investigated. The solar high temperature kiln is described. It uses two parabolic concentrators which direct available radiation into the baking chamber. The Sun tracker has only one axis. Preliminary test results with the prototype kiln were satisfactory.

  8. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  9. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  10. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  11. High-Temperature Graphite/Phenolic Composite

    NASA Technical Reports Server (NTRS)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  12. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  13. High-temperature containerless calorimeter

    NASA Technical Reports Server (NTRS)

    Robinson, M. B.; Lacy, L. L.

    1985-01-01

    A high-temperature (greater than 1500 K) containerless calorimeter is described and its usefulness demonstrated. The calorimeter uses the technique of omnidirectional electron bombardment of pendant drops to achieve an isothermal test environment. The small heat input into the sample (i.e., 15-50 W) can be controlled and measured. The apparatus can be used to determine the total hemispherical emissivity, specific heat, heat of fusion, surface tension, and equilibrium melting temperature of small molten drops in the temperature range of 1500 to 3500 K. The total hemispherical emissivity and specific heat of pure niobium and two alloys of niobium-germanium have been measured in the temperature range of 1700 to 2400 K. As reported in the literature, the total hemispherical emissivity varied as a function of temperature. However, specific heat values for both the pure metal and alloys seem to be independent of temperature. Specific heat for the liquid alloy phase was also measured and compared to the solid phase.

  14. High Temperature Irradiation Resistant Thermocouple (HTIR-TC)

    ScienceCinema

    None

    2013-05-28

    INL researchers have created a new thermocouple that can resist high temperature and radiation. This device will improve safety and reduce costs associated with unit failures. Learn more about INL research at http://www.facebook.com/idahonationallaboratory

  15. High Temperature Irradiation Resistant Thermocouple (HTIR-TC)

    SciTech Connect

    2011-01-01

    INL researchers have created a new thermocouple that can resist high temperature and radiation. This device will improve safety and reduce costs associated with unit failures. Learn more about INL research at http://www.facebook.com/idahonationallaboratory

  16. Solute strengthening at high temperatures

    NASA Astrophysics Data System (ADS)

    Leyson, G. P. M.; Curtin, W. A.

    2016-08-01

    The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Δ E(τ ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of Δ E(τ ) . The new model predicts that the well-established low-temperature, with energy barrier Δ {{E}\\text{b}} and zero temperature flow stress {τy0} , transitions to a near-logarithmic form for stresses in the regime 0.2<τ /{τy0}≤slant 0.5 and then transitions to a power-law form at even lower stresses τ /{τy0}<0.03 . Δ {{E}\\text{b}} and {τy0} remains as the reference energy and stress scales over the entire range of stresses. The model is applied to literature data on solution strengthening in Cu alloys and captures the experimental results quantitatively and qualitatively. Most importantly, the model accurately captures the transition in strength from the low-temperature to intermediate-temperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility.

  17. High temperature sorbents for oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1994-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C comprising a porous alumina silicate support, such as zeolite, containing from 1 to 10 percent by weight of ion exchanged transition metal, such as copper or cobalt ions, and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum is described. The activation temperature, oxygen sorption, and reducibility are all improved by the presence of the platinum activator.

  18. High Temperature Sorbents for Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  19. High-Temperature Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.

    1994-01-01

    Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.

  20. High-Speed, High-Temperature Finger Seal Test Evaluated

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.

    2003-01-01

    A finger seal, designed and fabricated by Honeywell Engines, Systems and Services, was tested at the NASA Glenn Research Center at surface speeds up to 1200 ft/s, air temperatures up to 1200 F, and pressures across the seal of 75 psid. These are the first test results obtained with NASA s new High-Temperature, High-Speed Turbine Seal Test Rig (see the photograph). The finger seal is an innovative design recently patented by AlliedSignal Engines, which has demonstrated considerably lower leakage than commonly used labyrinth seals and is considerably cheaper than brush seals. The cost to produce finger seals is estimated to be about half of the cost to produce brush seals. Replacing labyrinth seals with fingers seals at locations that have high-pressure drops in gas turbine engines, typically main engine and thrust seals, can reduce air leakage at each location by 50 percent or more. This directly results in a 0.7- to 1.4-percent reduction in specific fuel consumption and a 0.35- to 0.7-percent reduction in direct operating costs . Because the finger seal is a contacting seal, this testing was conducted to address concerns about its heat generation and life capability at the higher speeds and temperatures required for advanced engines. The test results showed that the seal leakage and wear performance are acceptable for advanced engines.

  1. High temperature drilling mud composition

    SciTech Connect

    Alexander, W.

    1988-10-18

    This patent describes a composition having improved rheological properties and improved stability at high temperatures and pressure for use in a water-based drilling mud comprising a high-yield bentonite, a low-yield bentonite and leonardite, wherein the weight ratio of the high-yield bentonite to the low-yield bentonites in the range of about 10:1 to about 1:1, and the leonardite is present in the amount of about 0.1% to 1.0% by total dry weight of the composition.

  2. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  3. A Low-Cost CMOS Programmable Temperature Switch

    PubMed Central

    Li, Yunlong; Wu, Nanjian

    2008-01-01

    A novel uncalibrated CMOS programmable temperature switch with high temperature accuracy is presented. Its threshold temperature Tth can be programmed by adjusting the ratios of width and length of the transistors. The operating principles of the temperature switch circuit is theoretically explained. A floating gate neural MOS circuit is designed to compensate automatically the threshold temperature Tth variation that results form the process tolerance. The switch circuit is implemented in a standard 0.35 μm CMOS process. The temperature switch can be programmed to perform the switch operation at 16 different threshold temperature Tths from 45—120°C with a 5°C increment. The measurement shows a good consistency in the threshold temperatures. The chip core area is 0.04 mm2 and power consumption is 3.1 μA at 3.3V power supply. The advantages of the temperature switch are low power consumption, the programmable threshold temperature and the controllable hysteresis.

  4. NSTX High Temperature Sensor Systems

    SciTech Connect

    B.McCormack; H.W. Kugel; P. Goranson; R. Kaita; et al

    1999-11-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed.

  5. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  6. Motor for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  7. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  8. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  9. High-Temperature Polyimide Resin

    NASA Technical Reports Server (NTRS)

    Vanucci, Raymond D.; Malarik, Diane C.

    1990-01-01

    Improved polyimide resin used at continuous temperatures up to 700 degrees F (371 degrees C). PMR-II-50, serves as matrix for fiber-reinforced composites. Material combines thermo-oxidative stability with autoclave processability. Used in such turbine engine components as air-bypass ducts, vanes, bearings, and nozzle flaps. Other potential applications include wing and fuselage skins on high-mach-number aircraft and automotive engine blocks and pistons.

  10. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  11. High-temperature structural ceramics.

    PubMed

    Katz, R N

    1980-05-23

    The unique properties of ceramics based on silicon carbide and silicon nitride make them prime candidates for use in advanced energy conversion systems. These compounds are the bases for broad families of engineering materials, whose properties are reviewed. The relationships between processing, microstructure, and properties are discussed. A review and assessment of recent progress in the use of these materials in high-temperature engineering systems, and vehicular engines in particular, is presented. PMID:17772807

  12. High-temperature geothermal cableheads

    SciTech Connect

    Coquat, J.A.; Eifert, R.W.

    1981-11-01

    Two high-temperature, corrosion-resistant logging cableheads which use metal seals and a stable fluid to achieve proper electrical terminations and cable-sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable-sonde interface were absent during demonstration hostile-environment loggings in which these cableheads were used.

  13. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  14. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  15. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  16. High Temperature Fluoride Salt Test Loop

    SciTech Connect

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  17. High-temperature solar central receivers

    NASA Astrophysics Data System (ADS)

    Skinrood, A. C.

    1981-07-01

    Designs and concepts for solar central receiver thermal power plants are reviewed. Concentrations of over 1,000 suns are now possible, and seven prototype plants, producing from 1-10 MWe, are close to completion, employing cavity and external receiver configurations. Heat transfer fluids are discussed, noting that the water/steam cycle is emerging as the dominant mode; liquid sodium is benefitting from extensive testing for nuclear power plants; molten salt provides thermal storage at $10-30/kWt-hr; high temperature gas systems (815 C) can be applied for gypsum board drying and NH3 production. Heliostats are all of a steel/glass configuration and require mass production to become economical. Thermal storage systems, applications for repowering in conjunction with conventional power plants, and cogeneration for electricity/process heat are examined, and power costs are projected to match those of coal if the central receiver construction costs can be halved.

  18. Properties Of Low Cost, High Volume Glasses

    NASA Astrophysics Data System (ADS)

    Lind, M. A.; Hartman, J. S.; Buckwalter, C. Q.

    1980-02-01

    The properties of new and weathered samples of low cost, high volume glasses have been studied to determine their usefulness for solar energy applications. Glasses of varying compositions produced by float, drawn, rolled, fusion, and twin ground techniques were examined. Spectral transmittance and reflectance were measured and solar weighted values calculated. Laser raytrace techniques were used to evaluate surface parallelism and bulk homogeneity. Compositional changes were examined with scanning electron microscopy, X-ray fluorescence, and Auger electron spectroscopy. These techniques were used in conjunction with ellipsometry to study the surface effects associated with weathering.

  19. High efficiency, low cost scrubber upgrades

    SciTech Connect

    Klingspor, J.S.; Walters, M.

    1998-07-01

    ABB introduced the LS-2 technology; a limestone based wet FGD system, which is capable of producing high purity gypsum from low grade limestone, in late 1995. Drawing from 30,000 MWe of worldwide wet FGD experience, ABB has incorporated several innovations in the new system designed to reduce the overall cost of SO{sub 2} compliance. Collectively, these improvements are referred to as LS-2. The improvements include a compact high efficiency absorber, a simple dry grinding system, a closed coupled flue gas reheat system, and a tightly integrated dewatering system. The compact absorber includes features such a high velocity spray zone, significantly improved gas-liquid contact system, compact reaction tank, and a high velocity mist eliminator. The LS-2 system is being demonstrated at Ohio Edison's Niles Plant at the 130 MWe level, and this turnkey installation was designed and erected in a 20-month period. At Niles, all of the gypsum is sold to a local wallboard manufacturer. Many of the features included in the LS-2 design and demonstrated at Niles can be used to improve the efficiency and operation of existing systems including open spray towers and tray towers. The SO{sub 2} removal efficiency can be significantly improved by installing the high efficiency LS-2 style spray header design and the unique wall rings. The absorber bypass can be eliminated or reduced by including the LS-2 style high velocity mist eliminator. Also, the LS-2 style spray header design combined with wall rings allow for an increase in absorber gas velocity at a maintained or improved performance without the need for costly upgrades of the absorber recycle pumps. the first upgrade using LS-2 technology was done at CPA's Coal Creek Station (2{times}545 MWe). The experience form the scrubber upgrade at Coal Creek is discussed along with operating results.

  20. HITCAN: High temperature composite analyzer

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Lackney, Joseph J.; Chamis, Christos C.; Murthy, Pappu L. N.

    1990-01-01

    A computer code, HITCAN (High Temperature Composite Analyzer) was developed to analyze/design metal matrix composite structures. HITCAN is based on composite mechanics theories and computer codes developed at NASA LeRC over the last two decades. HITCAN is a general purpose code for predicting the global structural and local stress-strain response of multilayered (arbitrarily oriented) metal matrix structures both at the constituent (fiber, matrix, and interphase) and the structure level and including the fabrication process effects. The thermomechanical properties of the constituents are considered to be nonlinearly dependent on several parameters including temperature, stress, and stress rate. The computational procedure employs an incremental iterative nonlinear approach utilizing a multifactor-interaction material behavior model. HITCAN features and analysis capabilities (static, load stepping, modal, and buckling) are demonstrated through typical example problems.

  1. Compensated High Temperature Strain Gage

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A device for measuring strain in substrates at high temperatures in which the thermally induced apparent strain is nulled is described. Two gages are used, one active gage and one compensating gage. Both gages are placed on the substrate to be gaged; the active gage is attached such that it responds to mechanical and thermally induced apparent strain while the compensating gage is attached such that it does not respond to mechanical strain and and measures only thermally induced apparent strain. A thermal blanket is placed over the two gages to maintain the gages at the same temperature. The two gages are wired as adjacent arms of a wheatstone bridge which nulls the thermally induced apparent strain giving a true reading of the mechanical strain in the substrate.

  2. High temperature size selective membranes

    SciTech Connect

    Yates, S.F.; Swamikannu, A.X.

    1993-09-01

    The high temperature membrane, capable of operation above 550{degree}C, is designed to be a composite membrane composed of a thin layer of a size selective membrane supported by a microporous ceramic support. The kinetic diameters of H{sub 2} and CO{sub 2} are 2.96 {Angstrom} and 4.00 {Angstrom}. The thin layer will be made from CMS whose pore size will be controlled to be less than 4 {Angstrom}. The membrane will be truly size selective and be impermeable to carbon dioxide. The membrane will have higher selectivity than membranes which operate on Knudsen diffusion mechanism. The ceramic support will be fabricated from Allied Signal`s proprietary Blackglas{trademark} resin. The ceramic material, noted for its high thermal and oxidative resistance, has a coefficient of thermal expansion which matches closely that of CMS. The close match will insure mechanical integrity when the membrane is subjected to thermal cycles. The CMS layer will be produced by controlled pyrolysis of polymeric precursors. Pore size will be suitably modified by post-treatments to the carbon. The composite membrane will be tested for its permeation properties at 550{degree}C or higher. Thermal, mechanical and chemical stability of the membrane will be assessed. We have produced several samples of CMS from polymeric precursors. We have initiated work also on the preparation of microporous supports from Blackglas{trademark} resin. We have completed the design of the high temperature membrane pilot plant. The membrane cell was fabricated out of two kinds of stainless steel. The inner parts are made of SS 316 and the outer ring made of SS 420. The greater thermal expansion of the SS 316 will help obtain a leak free seal at the operating temperatures.

  3. High temperature drilling MUD stabilizer

    SciTech Connect

    Block, J.

    1985-10-15

    Aqueous drilling fluids containing a hydroxy containing alumina component such as AlO(OH) and a polyvinyl alcohol (PVA) reaction product such as an aldehyde reacted PVA are stabilized for use at temperatures as high as 350/sup 0/ F. (177/sup 0/ C.) by adding stabilizer anions such as sulfate, tartrate and citrate to the resulting drilling fluid. The anions can be added as an acid or in the salt form with sodium and potassium salts being preferred. The salts are preferably added in 0.2 to 10% by weight of the drilling fluid. These stabilized drilling fluids can also be used in seawater.

  4. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  5. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  6. High temperature sealed electrochemical cell

    SciTech Connect

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  7. High Temperature Acoustic Liner Technology

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Posey, Joe W.

    1999-01-01

    This paper describes work currently in progress at Langley on liner concepts that employ structures that may be suitable for broadband exhaust noise attenuation in high speed flow environments and at elevated temperatures characteristic of HSCT applications. Because such liners will need to provide about 10 dB suppression over a 2 to 3 octave frequency range, conventional single-degree-of-freedom resonant structures will not suffice. Bulk absorbers have the needed broadband absorption characteristic; however, at lower frequencies they tend to be inefficient.

  8. Advanced high-temperature batteries

    NASA Technical Reports Server (NTRS)

    Nelson, Paul A.

    1989-01-01

    The promise of very high specific energy and power was not yet achieved for practical battery systems. Some recent approaches are discussed for new approaches to achieving high performance for lithium/DeS2 cells and sodium/metal chloride cells. The main problems for the development of successful LiAl/FeS2 cells were the instability of the FeS2 electrode, which has resulted in rapidly declining capacity, the lack of an internal mechanism for accommodating overcharge of a cell, thus requiring the use of external charge control on each individual cell, and the lack of a suitable current collector for the positive electrode other than expensive molybdenum sheet material. Much progress was made in solving the first two problems. Reduction of the operating temperatures to 400 C by a change in electrolyte composition has increased the expected life to 1000 cycles. Also, a lithium shuttle mechanism was demonstrated for selected electrode compositions that permits sufficient overcharge tolerance to adjust for the normally expected cell-to-cell deviation in coulombic efficiency. Sodium/sulfur batteries and sodium/metal chloride batteries have demonstrated good reliability and long cycle life. For applications where very high power is desired, new electrolyte coinfigurations would be required. Design work was carried out for the sodium/metal chloride battery that demonstrates the feasibility of achieving high specific energy and high power for large battery cells having thin-walled high-surface area electrolytes.

  9. Rechargeable high-temperature batteries [Book Chapter

    SciTech Connect

    Cairns, Elton J.

    1981-01-01

    There has been growing research and development effort in the area of high-specific-energy, high-specific-power rechargeable batteries since the mid 1960s and it has been used in electric vehicles, electric utility networks, and solar- and wind-powered electric generator systems. Nonaqueous systems have been found to be the most attractive candidates for the above relatively large-scale applications. Only the high-temperature cells offer the attractive combination of features sought for the cited applications: a specific energy above 100 Wh/kg, a specific power above 100 W/kg, a cycle life in excess of 500 cycles (at 100% depth of discharge), and a projected cost of less than $50† per kWh of energy storage capability.

  10. High modulus high temperature glass fibers

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1973-01-01

    The search for a new high-modulus, high-temperature glass fiber involved the preparation of 500 glass compositions lying in 12 glass fields. These systems consisted primarily of low atomic number oxides and rare-earth oxides. Direct optical measurements of the kinetics of crystallization of the cordierite-rare earth system, for example, showed that the addition of rare-earth oxides decreased the rate of formation of cordierite crystals. Glass samples prepared from these systems proved that the rare-earth oxides made large specific contributions to the Young's modulus of the glasses. The best glasses have moduli greater than 21 million psi, the best glass fibers have moduli greater than 18 million psi, and the best glass fiber-epoxy resin composites have tensile strengths of 298,000 psi, compressive strengths of at least 220,000 psi, flexural strengths of 290,000 psi, and short-beam shear strengths of almost 17,000 psi.

  11. Overcoming the high cost of EV batteries

    SciTech Connect

    Wright, S.R.

    1995-07-01

    Electric Vehicles (EV`s) are a solution to three major problems facing the US today. The commercialization of EV`s will reduce the growing trade deficit, provide economic gains from a new electric automobile industry, and help alleviate the air pollution problems encountered in many of America`s largest cities. The existence of EV`s is not the answer; their increasing use is. This increase in deployment will largely depend on vehicle price and not range limitations as many would have you believe. The price of an EV will be determined by the auto makers with their economics determining the ultimate price to the consumer. The cost of EV batteries is considered to be a major hurdle in achieving an affordable EV. Prices of EV batteries at this time cannot be controlled by the auto manufacturers. How high is this cost hurdle and what measures can be taken to reduce this obstacle and facilitate the successful commercialization of EV`s? This paper discusses a variety of alternatives. Each sector of industry may favor a particular solution, but, in order for the EV industry to thrive, all sectors must agree to work together to provide for customer needs.

  12. High performance RGB LED backlight in high temperature environment

    NASA Astrophysics Data System (ADS)

    Grabski, Grzegorz; Gurr, Walter; Green, John

    2008-04-01

    The Aerospace and Defense display industry is in the midst of converting light the sources used in AMLCD backlighting technology from fluorescent lamps to LEDs. Although challenging, the fluorescent backlighting technology delivered good product in high end applications. LEDs, however, have the promise of even greater efficiency and lower cost. The history of LED backlighting is short and very dynamic; expectations are high and promises are many. It appears that for engineers developing backlights for high performance displays life has not become easier with the change of the technology. This paper will discuss just one of many challenges engineer's face: operation of LED backlights in high temperature environments. It will present experimental data showing several advantages of the RGB LED technology over other lamp technologies for high performance commercial and military application.

  13. High efficiency low cost solar cell power

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Blocker, W.

    1978-01-01

    A concept for generating high-efficiency, low-cost, solar-cell power is outlined with reference to solar cell parameters, optical concentrators, and thermal control procedures. A design for a 12.5-kw power module for space operation is discussed noting the optical system, spectrum splitter, light conversion system, cell cooling, power conditioner, and tracking mechanism. It is found that for an unconcentrated array, efficiency approaches 60% when ten or more bandgaps are used. For a 12-band system, a computer program distributed bandgaps for maximum efficiency and equal cell currents. Rigid materials and thin films have been proposed for optical components and prisms, gratings, and dichroic mirrors have been recommended for spectrum splitting. Various radiator concepts are noted including that of Weatherston and Smith (1960) and Hedgepeth and Knapp (1978). The concept may be suitable for the Solar Power Satellite.

  14. Multifunctional, High-Temperature Nanocomposites

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G.; Siochi, Emilie J.; Working, Dennis C.; Criss, Jim M.; Watson, Kent A.; Delozier, Donavon M.; Ghose, Sayata

    2007-01-01

    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (<10 poise at a temperature of 280 C), excellent melt stability (lifetime >2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well

  15. Low-Cost High-Performance MRI.

    PubMed

    Sarracanie, Mathieu; LaPierre, Cristen D; Salameh, Najat; Waddington, David E J; Witzel, Thomas; Rosen, Matthew S

    2015-01-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm(3) imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices. PMID:26469756

  16. Low-Cost High-Performance MRI

    PubMed Central

    Sarracanie, Mathieu; LaPierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-01-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5–3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices. PMID:26469756

  17. Low-Cost High-Performance MRI

    NASA Astrophysics Data System (ADS)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (<10 mT) will complement traditional MRI, providing clinically relevant images and setting new standards for affordable (<$50,000) and robust portable devices.

  18. Sialons as high temperature insulators

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Kuo, Y. S.

    1978-01-01

    Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.

  19. High Temperature Materials for Chemical Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  20. Voluntary running in deer mice: speed, distance, energy costs and temperature effects.

    PubMed

    Chappell, Mark A; Garland, Theodore; Rezende, Enrico L; Gomes, Fernando R

    2004-10-01

    The energetics of terrestrial locomotion are of considerable interest to ecologists and physiologists, but nearly all of our current knowledge comes from animals undergoing forced exercise. To explore patterns of energy use and behavior during voluntary exercise, we developed methods allowing nearly continuous measurements of metabolic rates in freely behaving small mammals, with high temporal resolution over periods of several days. We used this approach to examine relationships between ambient temperature (Ta), locomotor behavior and energy costs in the deer mouse, a small mammal that routinely encounters a large range of temperatures in its natural habitat. We tested for individual consistency in running behavior and metabolic traits, and determined how locomotor costs vary with speed and Ta. Because of the importance of thermoregulatory costs in small mammals, we checked for substitution of exercise heat for thermostatic heat production at Ta below the thermal neutral zone and determined the fraction of the daily energy budget comprising exercise costs. Locomotor behavior was highly variable among individuals but had high repeatability, at least over short intervals. We found few temperature-related changes in speed or distance run, but Ta strongly affected energy costs. Partial substitution of exercise heat for thermogenic heat occurred at low Ta. This reduced energy expenditure during low-temperature running by 23-37%, but running costs comprised a fairly minor fraction of the energy budget, so the daily energy savings via substitution were much smaller. Deer mice did not adjust running speed to maximize metabolic economy, as they seldom used the high speeds that provide the lowest cost of transport. The highest voluntary speeds (4-5 km h(-1)) were almost always below the predicted maximal aerobic speed, and were much less than the species' maximal sprint speed. Maximum voluntarily attained rates of oxygen consumption (VO2) were highest at low Ta, but rarely

  1. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  2. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  3. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  4. Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  5. Note: High temperature pulsed solenoid valve.

    PubMed

    Shen, Wei; Sulkes, Mark

    2010-01-01

    We have developed a high temperature pulsed solenoid valve with reliable long term operation to at least 400 degrees C. As in earlier published designs, a needle extension sealing a heated orifice is lifted via solenoid actuation; the solenoid is thermally isolated from the heated orifice region. In this new implementation, superior sealing and reliability were attained by choosing a solenoid that produces considerably larger lifting forces on the magnetically actuated plunger. It is this property that facilitates easily attainable sealing and reliability, albeit with some tradeoff in attainable gas pulse durations. The cost of the solenoid valve employed is quite low and the necessary machining quite simple. Our ultimate level of sealing was attained by making a simple modification to the polished seal at the needle tip. The same sealing tip modification could easily be applied to one of the earlier high T valve designs, which could improve the attainability and tightness of sealing for these implementations. PMID:20113132

  6. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  7. High temperature thruster technology for spacecraft propulsion

    NASA Astrophysics Data System (ADS)

    Schneider, Steven J.

    A technology program has been underway since 1985 to develop high temperature oxidation-resistant thrusters for spacecraft applications. The successful development of this technology will provide the basis for the design of higher performance satellite engines with reduced plume contamination. Alternatively, this technology program will provide a material with high thermal margin to operate at conventional temperatures and provide increased life for refuelable or reusable spacecraft. The new chamber material consists of a rhenium substrate coated with iridium for oxidation protection. This material increases the operating temperature of thrusters to 2200°C, a significant increase over the 1400°C of the silicide-coated niobium chambers currently used. Stationkeeping class 22 N engines fabricated from iridium-coated rhenium have demonstrated steady state specific impulses 20 to 25 seconds higher than niobium chambers. Ir-Re apogee class 440 N engines are expected to deliver an additional 10 to 15 seconds. These improved performances are obtained by reducing or eliminating the fuel film cooling requirements in the combustion chamber while operating at the same overall mixture ratio as conventional engines. The program is attempting to envelope flight qualification requirements to reduce the potential risks and costs of flight qualification programs.

  8. High power densities from high-temperature material interactions

    SciTech Connect

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  9. Evaluation of a low-cost and accurate ocean temperature logger on subsurface mooring systems

    SciTech Connect

    Tian, Chuan; Deng, Zhiqun; Lu, Jun; Xu, Xiaoyang; Zhao, Wei; Xu, Ming

    2014-06-23

    Monitoring seawater temperature is important to understanding evolving ocean processes. To monitor internal waves or ocean mixing, a large number of temperature loggers are typically mounted on subsurface mooring systems to obtain high-resolution temperature data at different water depths. In this study, we redesigned and evaluated a compact, low-cost, self-contained, high-resolution and high-accuracy ocean temperature logger, TC-1121. The newly designed TC-1121 loggers are smaller, more robust, and their sampling intervals can be automatically changed by indicated events. They have been widely used in many mooring systems to study internal wave and ocean mixing. The logger’s fundamental design, noise analysis, calibration, drift test, and a long-term sea trial are discussed in this paper.

  10. High-Power, High-Temperature Superconductor Technology Development

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    2005-01-01

    Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.

  11. High-temperature gas filtration

    SciTech Connect

    Schiffer, H.P.; Laux, S.; Renz, U. . Lehrstuhl fuer Waermeuebertragung und Klimatechnik)

    1992-10-01

    High-temperature, high-pressure filtration is important to the development of fluidized-bed combustion (FBC) technology. This volume describes the commissioning and testing of a pilot-scale filter module rated at 1 to 4 bar pressure and up to 900[degrees]C. The module consists of an array of six porous sintered silicon carbide filter elements, designed to be cleaned on-line by jet pulses of compressed air. More than 2000 hours of exposure were achieved with FBC combustion gas with inlet dust concentrations of 500 to 40,000 ppM[sub w] at 200 to 650[degrees]C. Another 3500 hours of operation were achieved with simulated gas and injected dust. The filter elements were subjected to 60,000 cleaning cycles. No dust penetration through the filter modules was detected. After an initial stabilizing period, pressure drop remained moderate at less that 50 mbar (0.7 psi). The energy expended in pulse cleaning was negligible. No crusty deposits of dust were found on the filter elements during inspections, and no irreversible blinding occurred.

  12. High temperature autoclave vacuum seals

    NASA Technical Reports Server (NTRS)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.

    1971-01-01

    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  13. High Temperature Solid Lubricant Coating for High Temperature Wear Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)

    2014-01-01

    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  14. Oregon's High School Dropouts: Examining the Economic and Social Costs

    ERIC Educational Resources Information Center

    House, Emily Anne

    2010-01-01

    This analysis presents the public costs of high school dropouts in Oregon. It examines how dropouts in the state dramatically impact state finances through reduced tax revenues, increased Medicaid costs, and high incarceration rates. This study describes how much high school dropouts cost Oregon's tax-payers each year, and how much could be saved…

  15. Thermal disconnect for high-temperature batteries

    DOEpatents

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  16. Following the Money: Factors Associated with the Cost of Treating High-Cost Medicare Beneficiaries

    PubMed Central

    Reschovsky, James D; Hadley, Jack; Saiontz-Martinez, Cynthia B; Boukus, Ellyn R

    2011-01-01

    Objective To identify factors associated with the cost of treating high-cost Medicare beneficiaries. Data Sources A national sample of 1.6 million elderly, Medicare beneficiaries linked to 2004–2005 Community Tracking Study Physician Survey respondents and local market data from secondary sources. Study Design Using 12 months of claims data from 2005 to 2006, the sample was divided into predicted high-cost (top quartile) and lower cost beneficiaries using a risk-adjustment model. For each group, total annual standardized costs of care were regressed on beneficiary, usual source of care physician, practice, and market characteristics. Principal Findings Among high-cost beneficiaries, health was the predominant predictor of costs, with most physician and practice and many market factors (including provider supply) insignificant or weakly related to cost. Beneficiaries whose usual physician was a medical specialist or reported inadequate office visit time, medical specialist supply, provider for-profit status, care fragmentation, and Medicare fees were associated with higher costs. Conclusions Health reform policies currently envisioned to improve care and lower costs may have small effects on high-cost patients who consume most resources. Instead, developing interventions tailored to improve care and lowering cost for specific types of complex and costly patients may hold greater potential for “bending the cost curve.” PMID:21306368

  17. High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1994-01-01

    Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.

  18. Modeling Electricity Sector Vulnerabilities and Costs Associated with Water Temperatures Under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Miara, A.; Brinkman, G.; Ibanez, E.; Newmark, R. L.

    2014-12-01

    The reliability of the power sector is highly vulnerable to variability in the availability and temperature of water resources, including those that might result from potential climatic changes or from competition from other users. In the past decade, power plants throughout the United States have had to shut down or curtail generation due to a lack of available water or from elevated water temperatures. These disruptions in power plant performance can have negative impacts on energy security and can be costly to address. Analysis of water-related vulnerabilities requires modeling capabilities with high spatial and temporal resolution. This research provides an innovative approach to energy-water modeling by evaluating the costs and reliability of a power sector region under policy and climate change scenarios that affect water resource availability and temperatures. This work utilizes results from a spatially distributed river water temperature model coupled with a thermoelectric power plant model to provide inputs into an electricity production cost model that operates on a high spatial and temporal resolution. The regional transmission organization ISO-New England, which includes six New England states and over 32 Gigawatts of power capacity, is utilized as a case study. Hydrological data and power plant operations are analyzed over an eleven year period from 2000-2010 under four scenarios that include climate impacts on water resources and air temperatures as well as strict interpretations of regulations that can affect power plant operations due to elevated water temperatures. Results of these model linkages show how the power sector's reliability and economic performance can be affected by changes in water temperatures and water availability. The effective reliability and capacity value of thermal electric generators are quantified and discussed in the context of current as well as potential future water resource characteristics.

  19. High Temperature Polyimide Materials in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Gates, Thomas S.

    2001-01-01

    At the end of the NASA High Speed Research (HSR) Program, NASA Langley Research Center (LaRC) began a program to screen the high-temperature Polymeric Composite Materials (PMCs) characterized by the HSR Durability Program for possible use in Reusable Launch Vehicles (RLVs) operating under extreme temperature conditions. The HSR Program focused on developing material-related technologies to enable a High Speed Civil Transport (HSCT) capable of operating temperatures ranging from 54 C (-65 F) to 177 C (350 F). A high-temperature polymeric resin, PETI-5 was used in the HSR Program to satisfy the requirements for performance and durability for a PMC. For RLVs, it was anticipated that this high temperature material would contribute to reducing the overall weight of a vehicle by eliminating or reducing the thermal protection required to protect the internal structural elements of the vehicle and increasing the structural strain limits. The tests were performed to determine temperature-dependent mechanical and physical proper-ties of IM7/PETI-5 composite over a temperature range from cryogenic temperature -253 C (-423F) to the material's maximum use temperature of 230 C (450 F). This paper presents results from the test program for the temperature-dependent mechanical and physical properties of IM7/PETI-5 composite in the temperature range from -253 C (-423 F) to 27 C (80 F).

  20. Silicon carbide high temperature thermoelectric flow sensor

    NASA Astrophysics Data System (ADS)

    Lei, Man I.

    Current high temperature flow measurement devices are bulky, expensive and have slow response time. Therefore, there has been increasing demand for developing a flow sensor that has high temperature capability yet is small in size, fast in response time, and low in cost through mass fabrication. In this thesis, a high temperature flow sensor utilizing micromachining and microfabrication technology has been designed, simulated, fabricated, packaged and tested. This micro flow sensor is developed based on heavily-nitrogen-doped polycrystalline silicon carbide (n-SiC) thin film, a high temperature semiconductor well known for its mechanical robustness and chemical inertness in high temperatures and harsh environments. The small thermal mass and wide operating temperature range provide an excellent platform for a flow sensor operating with the thermal sensing principle. The n-SiC thermoelectric flow sensor prototype developed here is based on the calorimetric sensing mechanism. The sensor has a n-SiC heater for thermal marker creation, an upstream and a downstream n-SiC/p-Si thermopile for flow sensing, and a n-SiC thermistor for ambient temperature monitoring. This device is packaged in a stainless steel enclosure with a bypass channel. The tested flow range is between 0 to 20,000 sccm. The flow sensor has demonstrated high temperature capability and mechanical robustness up to 450 °C on a hotplate at zero flow condition, and up to 300 °C in a heated flow stream. The device has a response time of 8 ms. Maximum power consumption is 96 mW when operated at 8 mA (12 V) and 45 mW when operated at 5 mA (9V), with a sensor warm-up time less than 1 minute. In addition, the thermoelectric properties of n-SiC have been thoroughly studied through the characterization of the electrical resistivity, the Seebeck coefficient and the thermal conductivity of n-SiC thin film. The 0.93 microm-thick, n-SiC thin film utilized in the thermoelectric flow sensor has an electrical

  1. High-temperature thermocouples and related methods

    DOEpatents

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  2. High-temperature ceramic superconductors

    NASA Astrophysics Data System (ADS)

    Mazdiyasni, K. S.

    1990-11-01

    The principal goals of this program are (1) to demonstrate fabrication of high-temperature ceramic superconductors via sol-gel method that can operate at or above 90 K with appropriate current density, J(sub c), in forms useful for application in resonant cavities, magnets, motors, sensors, computers, and other devices; and (2) to fabricate and demonstrate selected components made of these materials, including microwave cavities and magnetic shields. Chemical pathways for synthesis of 123 identified, process parameters window for sol-gel derived 123 fibers established, continuous flexible fibers 15 to 200 microns in diameter producted, fibers with T(sub c) is approximate or equal to 92.5 K, Delta T = 1.5 K, J(sub c) = 2000 A/sqcm at 77 K, 0 field; 4000 at 57K, 100 Oe was produced, formed adherent 123 oriented films on metals and ceramic substrates, achieved film T(sub c) is approximate or equal to 92 K, Delta T = 4 k, J(sub c) = 400 A/sq cm at 40 K, O field.

  3. High temperature suppression of dioxins.

    PubMed

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants. PMID:26716881

  4. Fitness costs associated with different frequencies and magnitudes of temperature change in the butterfly Bicyclus anynana.

    PubMed

    Franke, Kristin; Heitmann, Nadja; Tobner, Anne; Fischer, Klaus

    2014-04-01

    Plastic responses to changes in environmental conditions are ubiquitous and typically highly effective, but are predicted to incur costs. We here investigate the effects of different frequencies and magnitudes of temperature change in the tropical butterfly Bicyclus anynana, considering developmental (Experiment 1) and adult stage plasticity (Experiment 2). We predicted negative effects of more frequent temperature changes on development, immune function and/or reproduction. Results from Experiment 1 showed that repeated temperature changes during development, if involving large amplitudes, negatively affect larval time, larval growth rate and pupal mass, while adult traits remained unaffected. However, results from treatment groups with smaller temperature amplitudes yielded no clear patterns. In Experiment 2 prolonged but not repeated exposure to 39°C increased heat tolerance, potentially reflecting costs of repeatedly activating emergency responses. At the same time fecundity was more strongly reduced in the group with prolonged heat stress, suggesting a trade-off between heat tolerance and reproduction. Clear effects were restricted to conditions involving large temperature amplitudes or high temperatures. PMID:24679977

  5. Substitution of ceramics for high temperature alloys

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1978-01-01

    Ceramics such as silicon nitride and silicon carbide are currently receiving a great deal of attention as potential materials for advanced gas turbine engines. The primary advantage offered by ceramics is their high temperature capability which can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine engines is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.

  6. High temperature coatings for gas turbines

    DOEpatents

    Zheng, Xiaoci Maggie

    2003-10-21

    Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.

  7. Life-cycle costs of high-performance cells

    NASA Technical Reports Server (NTRS)

    Daniel, R.; Burger, D.; Reiter, L.

    1985-01-01

    A life cycle cost analysis of high efficiency cells was presented. Although high efficiency cells produce more power, they also cost more to make and are more susceptible to array hot-spot heating. Three different computer analysis programs were used: SAMICS (solar array manufacturing industry costing standards), PVARRAY (an array failure mode/degradation simulator), and LCP (lifetime cost and performance). The high efficiency cell modules were found to be more economical in this study, but parallel redundancy is recommended.

  8. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  9. ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT

    SciTech Connect

    M. G. McKellar; E. A. Harvego; A. M. Gandrik

    2010-11-01

    An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322°C and 750°C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

  10. High Temperature Chemistry at NASA: Hot Topics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  11. Aiming high but keeping costs low.

    PubMed

    Hough, Steve; Nicholls, Andrew

    2010-04-01

    Steve Hough, national sales manager, CEP Claddings, and Andrew Nicholls, sales director, CEP Ceilings, explain how modern cladding and ceiling materials can enhance the appearance of modern hospital buildings while offering practical, cost-saving, and environmental advantages. PMID:20446486

  12. Evaluation of high temperature pressure sensors.

    PubMed

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 °C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis. PMID:21456794

  13. Evaluation of high temperature pressure sensors

    SciTech Connect

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-03-15

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  14. The High Cost of Building a Better University

    ERIC Educational Resources Information Center

    Guckert, Donald J.; King, Jeri Ripley

    2004-01-01

    Why does it cost so much? is a question often asked about university construction. On college and university campuses, the cost of new construction and renovation will appear high relative to other construction efforts in our communities. Part of the explanation of the high construction cost lies in the complexity of what we build, the codes…

  15. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  16. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    SciTech Connect

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  17. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  18. High temperature thermal energy storage in moving sand

    NASA Technical Reports Server (NTRS)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  19. High Temperature Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Wang, D. S.

    1983-01-01

    Gaps between ceramic tiles filled with ceramic-coated fabric that withstands temperatures as high as 2,000 degrees F (1,300 degrees C). Reusable high-temperature gap filler is made of fabric coated with ceramic slurry and bonded in place with room-temperature-vulcanized adhesive. Procedure used in kilns and furnaces.

  20. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  1. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  2. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  3. The High Cost of Saving Energy Dollars.

    ERIC Educational Resources Information Center

    Rose, Patricia

    1985-01-01

    In alternative financing a private company provides the capital and expertise for improving school energy efficiency. Savings are split between the school system and the company. Options for municipal leasing, cost sharing, and shared savings are explained along with financial, procedural, and legal considerations. (MLF)

  4. Deep Trek High Temperature Electronics Project

    SciTech Connect

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  5. High temperature ceramic interface study

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  6. HIGH TEMPERATURE CONDENSED PHASE MASS SPECTROMETRIC ANALYSIS

    EPA Science Inventory

    Our current studies with high temperature ion emitting materials have demonstrated a significant lack of methods for determining chemical species in condensed phase materials in general, and at elevated temperatures in particular. We have developed several new research techniques...

  7. Sky-High Temperatures Inside 'Bounce Houses'

    MedlinePlus

    ... medlineplus.gov/news/fullstory_160408.html Sky-High Temperatures Inside 'Bounce Houses' Hot party toys may pose ... similar to closed cars. During hot summer weather, temperatures inside these play structures may climb to levels ...

  8. High temperature tensile testing of ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1988-01-01

    The various components of a high temperature tensile testing system are evaluated. The objective is the high temperature tensile testing of SiC fiber reinforced reaction bonded Si3N4 specimens at test temperatures up to 1650 C (3000 F). Testing is to be conducted in inert gases and air. Gripping fixtures, specimen configurations, furnaces, optical strain measuring systems, and temperature measurement techniques are reviewed. Advantages and disadvantages of the various techniques are also noted.

  9. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  10. High temperature durable catalyst development

    NASA Technical Reports Server (NTRS)

    Snow, G. C.; Tong, H.

    1981-01-01

    A program has been carried out to develop a catalytic reactor capable of operation in environments representative of those anticipated for advanced automotive gas turbine engines. A reactor consisting of a graded cell honeycomb support with a combination of noble metal and metal oxide catalyst coatings was built and successfully operated for 1000 hr. At an air preheat temperature of 740 K and a propane/air ratio of 0.028 by mass, the adiabatic flame temperature was held at about 1700 K. The graded cell monolithic reaction measured 5 cm in diameter by 10.2 cm in length and was operated at a reference velocity of 14.0 m/s at 1 atm. Measured NOx levels remained below 5 ppm, while unburned hydrocarbon concentrations registered near zero and carbon monoxide levels were nominally below 20 ppm.

  11. A high-temperature heat sensitive element

    NASA Technical Reports Server (NTRS)

    Oguro, M.

    1986-01-01

    This invention concerns the high-temperature heat sensitive element which is stable at high temperatures. A solid solution of the main component MgO-Al2O3-Cr2O3-Fe2O3 which contains spinel crystal structure is mixed with the secondary component ZrO2 at the mol ratio of 100 : 0.1 to 5.0 and sintered to prepare a high-temperature heat sensitive element.

  12. Advanced high-temperature batteries

    NASA Technical Reports Server (NTRS)

    Nelson, P. A.

    1989-01-01

    Recent results for Li-Al/FeS2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  13. Polymeric MST - high precision at low cost

    NASA Astrophysics Data System (ADS)

    Elderstig, Håkan; Larsson, Olle

    1997-09-01

    A low-cost production process for fabrication of polymeric microstructures from micromachined silicon is demonstrated in a splice for the splicing of optical fibers and an optical motherboard. Measurements on splices showed less than 0.5 dB insertion losses. The prototype polymeric motherboard concisted of an optical receiver module. The detector that was mounted on the polymeric optical motherboard detected about 70% of the transferred light. Measurements with modulated light indicates an optical bandwidth of 5 GHz at 2 V reverse current on the pin-diode.

  14. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  15. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  16. Development of high temperature strain gages

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1973-01-01

    High temperature electric resistance wire strain gages were developed and evaluated for use at temperatures exceeding 922 K (1200 F). A special high temperature strain gage alloy (Fe-25Cr-7.5A1), designated BCL-3, was used to fabricate the gages. Pertinent gage characteristics were determined at temperatures up to 1255 K (1800 F). The results of the evaluation were reported in graphical and tabular form. It was concluded that the gages will perform satisfactorily at temperatures to at least 1089 K (1500 F) for at least one hour.

  17. Nuclear fuels for very high temperature applications

    SciTech Connect

    Lundberg, L.B.; Hobbins, R.R.

    1992-08-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  18. Nuclear fuels for very high temperature applications

    SciTech Connect

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  19. Corrosion Resistant Coatings for High Temperature Applications

    SciTech Connect

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  20. Spin Hall magnetoresistance at high temperatures

    SciTech Connect

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  1. High-Temperature Passive Power Electronics

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  2. Advanced high-temperature, high-pressure transport reactor gasification

    SciTech Connect

    Swanson, M.L.

    1999-07-01

    The mission of the U.S. Department of Energy's (DOE's) Federal Energy Technology Center Office of Power Systems Product Management is to foster the development and deployment of advanced, clean, and affordable fossil-based (coal) power systems. These advanced power systems include the development and demonstration of gasification-based advanced power systems. These systems are integral parts of the Vision 21 Program for the co-production of power and chemicals which is being developed at DOE. DOE has been developing advanced gasification systems which lower the capital and operating cost of producing syngas for electricity or chemicals production. A transport reactor gasifier has shown potential to be a low-cost syngas producer as compared to other gasification systems because of its high throughput. This work directly supports the Power Systems Development Facility (PSDF) utilizing the Kellogg, Brown and Root (KBR) transport reactor located at the Southern Company Services (SCS) Wilsonville, Alabama, site. Over 1000 hours of operation on three different fuels in the pilot-scale transport reactor development unit (TRDU) has been completed to date. The Energy and Environmental Research Center (EERC) has established an extensive database on the operation of various fuels in a transport reactor gasifier. This database will be useful in determining the effectiveness of design changes on a transport reactor gasifier. It has been demonstrated that corrected fuel gas heating values ranging between 105 to 130 Btu/scf can be achieved. Factors that affect the TRDU product gas quality appear to be circulation rate, coal type, temperature, and air:coal and steam:coal ratios. Future plans are to modify the transport reactor mixing zone and J-leg loop seal to increase backmixing, thereby increasing solids residence time and gasifier performance. Enriched air- and oxygen-blown gasification tests, especially on widely available low-cost fuels such as petroleum coke, will also be

  3. Borehole Stability in High-Temperature Formations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  4. Design criteria for high temperature filters

    SciTech Connect

    Peukert, W.

    1995-12-31

    In power generation systems, overall efficiency can be increased if the hot and eventually pressurized gases from a coal combustor or a gasifier are cleaned at high temperatures so that a gas turbine can be operated with the off-gases. Overall efficiencies might be increased from 38% to above 50%. In numerous other applications in the metal, ceramic and process industry hot gases have to be cleaned. This is often done by quenching with subsequent conventional scrubbing or filter technology. In order to use the heat content efficiently dust particles have to be separated at elevated temperature with the additional advantage of avoiding possible corrosion and plugging due to cooling. At elevated temperature, also gaseous pollutants can be collected simultaneously together with particulate matter in a high temperature dry scrubber or granular bed. The paper describes high-temperature filter media, regeneration of filter medium, testing essential for high-temperature applications, and design of the baghouse.

  5. Recrystallization of high temperature superconductors

    SciTech Connect

    Kouzoudis, D.

    1996-05-09

    Currently one of the most widely used high {Tc} superconductors is the Bi-based compounds Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub z} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub z} (known as BSCCO 2212 and 2223 compounds) with {Tc} values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  6. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  7. Industrial applications of MHD high temperature air heater technology

    NASA Astrophysics Data System (ADS)

    Saari, D. P.; Fenstermacher, J. E.; White, L. R.; Marksberry, C. L.

    1981-12-01

    The MHD high temperature air heater (HTAH) requires technology beyond the current state-of-the-art of industrial regenerative heaters. Specific aspects of HTAH technology which may find other application include refractory materials and valves resistant to the high temperature, corrosive, slag-bearing gas, materials resistant to cyclic thermal stresses, high temperature support structures for the cored brick bed, regenerative heater operating techniques for preventing accumulation of slag in the heater, and analytical tools for computing regenerative heater size, cost, and performance. Areas where HTAH technology may find application include acetylene/ethylene production processes, flash pyrolysis of coal, high temperature gas reactors, coal gasification processes, various metallurgical processes, waste incineration, and improvements to existing regenerator technology such as blast furnace stoves and glass tank regenerators.

  8. High Temperature Membrane with Humidification-Independent Cluster Structure

    SciTech Connect

    Lipp, Ludwig

    2015-07-10

    The objective of this project was to develop high temperature membranes to facilitate the wide-spread deployment of hydrogen fuel cells. High temperature membranes offer significant advantages in PEM system operation, overall capital and operating costs. State-of-the-art Nafion-based membranes are inadequate for the high temperature operation. These conventional membranes become unstable at higher temperatures (90-120°C) and lose their conductivity, particularly at low relative humidity. In this program, alternate materials were developed to enable fabrication of novel high performance composite membranes. FCE’s concept for the multi-component composite membrane, named mC2, has been used in the design of more conductive membranes.

  9. Evaluation of high temperature polymers

    NASA Technical Reports Server (NTRS)

    Jayaraj, K.; Dorogy, W.; Farrell, B.; Landrau, N.

    1995-01-01

    The purpose of this paper is to identify and develop arc-track resistant insulation materials that can operate reliably at 300 C. In the first phase, high performance polymers are evaluated based on structure, thermal stability and electrical properties. Next, the polymers are ranked according to performance and experimental characterization. Then, experimental evaluations in wire configuration are conducted. And selection is made based on performance and commerical potential.

  10. High-Temperature, Bellows Hybrid Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)

    1994-01-01

    A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.

  11. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.

  12. High temperature solar selective coatings

    DOEpatents

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  13. Finding future high-cost cases: comparing prior cost versus diagnosis-based methods.

    PubMed Central

    Ash, A S; Zhao, Y; Ellis, R P; Schlein Kramer, M

    2001-01-01

    OBJECTIVE: To examine the value of two kinds of patient-level dat a (cost and diagnoses) for identifying a very small subgroup of a general population with high future costs that may be mitigated with medical management. DATA SOURCES: The study used the MEDSTAT Market Scan (R) Research Database, consisting of inpatient and ambulatory health care encounter records for individuals covered by employee- sponsored benefit plans during 1997 and 1998. STUDY DESIGN: Prior cost and a diagnostic cost group (DCG) risk model were each used with 1997 data to identify 0.5-percent-sized "top groups" of people most likely to be expensive in 1998. We compared the distributions of people, cost, and diseases commonly targeted for disease management for people in the two top groups and, as a bench mark, in the full population. PRINCIPAL FINDINGS: the prior cost- and DCG-identified top groups overlapped by only 38 percent. Each top group consisted of people with high year-two costs and high rates of diabetes, heart failure, major lung disease, and depression. The DCG top group identified people who are both somewhat more expensive ($27,292 vs. $25,981) and more likely ( 49.4 percent vs. 43.8 percent ) th an the prior-cost top group to have at least one of the diseases commonly targeted for disease management. The overlap group average cost was $46,219. CONCLUSIONS: Diagnosis-based risk models are at least as powerful as prior cost for identifying people who will be expensive. Combined cost and diagnostic data are even more powerful and more operation ally useful, especially because the diagnostic information identifies the medical problems that may be managed to achieve better out comes and lower costs. PMID:16148969

  14. 42 CFR 412.84 - Payment for extraordinarily high-cost cases (cost outliers).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Payment for extraordinarily high-cost cases (cost outliers). 412.84 Section 412.84 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES MEDICARE PROGRAM PROSPECTIVE PAYMENT SYSTEMS FOR INPATIENT HOSPITAL SERVICES Payments for Outlier Cases, Special...

  15. Innovative coal gasification system with high temperature air

    SciTech Connect

    Yoshikawa, K.; Katsushima, H.; Kasahara, M.; Hasegawa, T.; Tanaka, R.; Ootsuka, T.

    1997-12-31

    This paper proposes innovative coal gasification power generation systems where coal is gasified with high temperature air of about 1300K produced by gasified coal fuel gas. The main features of these systems are high thermal efficiency, low NO{sub x} emission, compact desulfurization and dust removal equipment and high efficiency molten slag removal with a very compact gasifier. Recent experimental results on the pebble bed coal gasifier appropriate for high temperature air coal gasification are reported, where 97.7% of coal ash is successfully caught in the pebble bed and extracted without clogging. A new concept of high temperature air preheating system is proposed which is characterized by its high reliability and low cost.

  16. HIGH-TEMPERATURE AND HIGH-PRESSURE PARTICULATE CONTROL REQUIREMENTS

    EPA Science Inventory

    The report reviews and evaluates high-temperature and high-pressure particulate cleanup requirements of existing and proposed energy processes. The study's aims are to define specific high-temperature and high-pressure particle removal problems, to indicate potential solutions, a...

  17. Structural characterization of high temperature composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.

    1991-01-01

    Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.

  18. Polyimide Boosts High-Temperature Performance

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Maverick Corporation, of Blue Ash, Ohio, licensed DMBZ-15 polyimide technology from Glenn Research Center. This ultrahigh-temperature material provides substantial weight savings and reduced machining costs compared to the same component made with more traditional metallic materials. DMBZ-15 has a wide range of applications from aerospace (aircraft engine and airframe components, space transportation systems, and missiles) to non-aerospace (oil drilling, rolling mill), and is particularly well-suited to use as face sheets with honey cones or thermal protection systems for reusable launch vehicles, which encounter elevated temperatures during launch and re-entry.

  19. NOvel Refractory Materials for High Alkali, High Temperature Environments

    SciTech Connect

    Hemrick, J.G.; Griffin, R.

    2011-08-30

    Refractory materials can be limited in their application by many factors including chemical reactions between the service environment and the refractory material, mechanical degradation of the refractory material by the service environment, temperature limitations on the use of a particular refractory material, and the inability to install or repair the refractory material in a cost effective manner or while the vessel was in service. The objective of this project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al2O3 spinel or other similar magnesia/alumina containing unshaped refractory composition (castables, gunnables, shotcretes, etc) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, highalkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. A research team was formed to carry out the proposed work led by Oak Ridge National Laboratory (ORNL) and was comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The two goals of this project were to produce novel refractory compositions which will allow for improved energy efficiency and to develop new refractory application techniques which would improve the speed of installation. Also methods of hot installation were sought which would allow for hot repairs and on-line maintenance leading to reduced process downtimes and eliminating the need to cool and reheat process vessels.

  20. Sandia_HighTemperatureComponentEvaluation_2015.

    SciTech Connect

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  1. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  2. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  3. Low to high temperature energy conversion system

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  4. The high temperature superconductivity space experiment

    NASA Technical Reports Server (NTRS)

    Webb, Denis C.; Nisenoff, M.

    1991-01-01

    The history and the current status of the high temperature superconductivity space experiment (HTSSE) initiated in 1988 are briefly reviewed. The goal of the HTSSE program is to demonstrate the feasibility of incorporating high temperature superconductivity (HTS) technology into space systems. The anticipated payoffs include the development of high temperature superconductor devices for space systems; preparation and space qualification of a cryogenically cooled experimental package containing HTS devices and components; and acquisition of data for future space experiments using more complex HTS devices and subsystems. The principal HTSSE systems and devices are described.

  5. Dimensionality of high temperature superconductivity in oxides

    NASA Technical Reports Server (NTRS)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  6. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  7. High temperature solid state storage cell

    SciTech Connect

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  8. Symposium on high temperature and materials chemistry

    SciTech Connect

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  9. High Temperature Thermographic Phosphor Coatings Development

    NASA Technical Reports Server (NTRS)

    Goedeke, Shawn; Allison, S. W.; Beshears, D. L.; Bencic, T.; Cates, M. R.; Hollerman, W. A.; Guidry, R.

    2003-01-01

    For many years, phosphor thermometry has been used for non-contact temperature measurements. A large number of applications have been associated with high temperatures, especially for aerospace systems where blackbody radiation backgrounds are large and in challenging environments, such as vibration, rotation, flame, or noise. These environments restrict the use of more common thermocouples or infrared thermometric techniques. In particular, temperature measurements inside jet turbines, rocket engines, or similar devices are especially amenable to phosphor techniques. Often the fluorescent materials are used as powders, either suspended in binders and applied like paint or applied as high-temperature sprays. Thin coatings that are less than 50 m thick are used on the surfaces of interest. These coatings will quickly assume the same temperature as the surface to which they are applied. The temperature dependence of fluorescent materials is a function of the base matrix atoms and a small quantity of added activator or dopant ions. Often for high temperature applications, the selected materials are refractory and include rare earth ions. Phosphors like Y3Al5O12 (YAG) doped with Eu, Dy, or Tm, Y2O3 doped with Eu, or similar rare earth compounds, will survive high temperatures and can be configured to emit light that changes rapidly in lifetime and intensity. For example, researchers at Oak Ridge National Laboratory recently observed fluorescence from YAG:Dy and YAG:Tm at temperatures above 1400 C. One of the biggest challenges is to locate a binder material that can withstand tremendous variations in temperature in an adverse aerospace environment. This poster will provide an overview into our attempt to utilize phosphors for thermometry purposes. Emphasis will be placed on the use of selected binder materials that can withstand high temperatures. This research was completed for the National Aeronautics and Space Administration's Glenn Research Center in Cleveland

  10. Low-temperature solid state reaction synthesis and thermoelectric properties of high-performance and low-cost Sb-doped Mg2Si0.6Sn0.4

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tang, Xinfeng; Sharp, Jeff

    2010-03-01

    Mg2Si1-xSnx compounds are a type of low-price, environment-friendly medium temperature thermoelectric materials with very important prospects for practical application, and the exploration of high performance Mg2Si1-xSnx compounds is currently attracting worldwide interest. In this study, Sb-doped Mg2Si0.6Sn0.4 compounds were prepared through a two-step, low-temperature solid state reaction method combined with the spark plasma sintering technique for rapid densification. The influence of Sb doping amount on the thermoelectric properties of Mg2Si0.6-ySn0.4Sby (0 <= y <= 0.015) compounds was investigated. The solid solubility limit of Sb in Mg2Si0.6Sn0.4 compounds was estimated around y = 0.0125. As y increased, the electrical conductivity of Mg2Si0.6-ySn0.4Sby (0 <= y <= 0.0125) compounds increased considerably, while the absolute value of the Seebeck coefficient and the lattice thermal conductivity decreased. The sample with y = 0.0125 had the highest ZT, reaching 1.11 at 860 K, and the samples with 0.005 <= y <= 0.015 all attained ZTmax > 0.95. The adopted synthesis process also showed very good repeatability and regularity in obtaining thermoelectric properties, together with the capability of precise composition control of Mg2Si0.6-ySn0.4Sby, making it promising for the practical application of Mg2Si based thermoelectric materials.

  11. Parents and the High Cost of Child Care: 2015 Report

    ERIC Educational Resources Information Center

    Fraga, Lynette; Dobbins, Dionne; McCready, Michelle

    2015-01-01

    Eleven million children younger than age five are in some form of child care in the United States. The "Parents and the High Cost of Child Care: 2015 Report" summarizes the cost of child care across the country, examines the importance of child care as a workforce support and as an early learning program, and explores the effect of high…

  12. Parents and the High Cost of Child Care: 2012 Report

    ERIC Educational Resources Information Center

    Child Care Aware of America, 2012

    2012-01-01

    "Parents and the High Cost of Child Care: 2012 Report" presents 2011 data reflecting what parents pay for full-time child care in America. It includes average fees for both child care centers and family child care homes. Information was collected through a survey conducted in January 2012 that asked for the average costs charged for…

  13. Parents and the High Cost of Child Care: 2014 Report

    ERIC Educational Resources Information Center

    Wood, Stephen; Fraga, Lynette; McCready, Michelle

    2014-01-01

    Eleven million children younger than age five are in some form of child care in the United States. The "Parents and the High Cost of Child Care: 2014 Report" summarizes the cost of child care across the country, examines the importance of child care as a workforce support and as an early learning program, and explores the effect of high…

  14. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  15. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  16. High temperature erosion of nickel alloys

    SciTech Connect

    Zhou, J.

    1995-12-31

    High temperature erosion behavior was studied on three commercial nickel alloys, Inconel 718, Inconel 601 and Inconel X-750, using a vertical sand-blast type of erosion test rig. Effect of temperature on erosion was investigated by varying test temperature in six steps from ambient up to 800 C. Other erosion variables investigated included impingement angle, changed from 10{degree} to 90{degree}, and impingement velocity, covered a range of 40 to 90 m/s. Extensive studies on erosion surface morphological features were done on eroded or eroded-corroded specimen surfaces using scanning electron microscopy. Thermogravimetric analysis and scratch test revealed corrosion rate, characteristics of oxide scale formed at high temperature, and some effects of corrosion on erosion. It was found that variation of erosion rate with temperature was directly related to temperature-dependent mechanical property changes of the materials. The mechanisms of the high-temperature erosion were analyzed based on test results. It was observed that erosion was dominant in temperature range up to 800 C, while corrosion played increased roles in upper portion of the temperature range tested.

  17. The high cost of accurate knowledge.

    PubMed

    Sutcliffe, Kathleen M; Weber, Klaus

    2003-05-01

    Many business thinkers believe it's the role of senior managers to scan the external environment to monitor contingencies and constraints, and to use that precise knowledge to modify the company's strategy and design. As these thinkers see it, managers need accurate and abundant information to carry out that role. According to that logic, it makes sense to invest heavily in systems for collecting and organizing competitive information. Another school of pundits contends that, since today's complex information often isn't precise anyway, it's not worth going overboard with such investments. In other words, it's not the accuracy and abundance of information that should matter most to top executives--rather, it's how that information is interpreted. After all, the role of senior managers isn't just to make decisions; it's to set direction and motivate others in the face of ambiguities and conflicting demands. Top executives must interpret information and communicate those interpretations--they must manage meaning more than they must manage information. So which of these competing views is the right one? Research conducted by academics Sutcliffe and Weber found that how accurate senior executives are about their competitive environments is indeed less important for strategy and corresponding organizational changes than the way in which they interpret information about their environments. Investments in shaping those interpretations, therefore, may create a more durable competitive advantage than investments in obtaining and organizing more information. And what kinds of interpretations are most closely linked with high performance? Their research suggests that high performers respond positively to opportunities, yet they aren't overconfident in their abilities to take advantage of those opportunities. PMID:12747164

  18. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  19. High temperature ceramic/metal joint structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  20. High temperature superconductor materials and applications

    NASA Technical Reports Server (NTRS)

    Doane, George B., III.; Banks, Curtis; Golben, John

    1990-01-01

    Research on processing methods leading to a significant enhancement in the critical current densities (Jc) and the critical temperature (Tc) of high temperature superconducting in thin bulk and thin film forms. The fabrication of important devices for NASA unique applications (sensors) is investigated.

  1. Photoelastic transducer for high-temperature applications

    NASA Technical Reports Server (NTRS)

    Redner, A. S.; Adamovsky, Grigory; Wesson, L. N.

    1990-01-01

    A design for a birefringence transducer for high-temperature applications is described. The spring element and the readout instrumentation are addressed. A pressure transducer based on the concept has been built and successfully tested at temperatures up to 600 C.

  2. Broadband, High-Temperature Ultrasonic Transducer

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  3. High temperature spectral gamma well logging

    SciTech Connect

    Normann, R.A.; Henfling, J.A.

    1997-01-01

    A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

  4. High-temperature bearing-cage materials

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Zaretsky, E. V.

    1968-01-01

    Evaluation tests conducted at temperatures of 500 and 700 degrees F reveal that S-Monel and AISI M-1 steel are suitable as high temperature cage materials for precision bearings. The area of the wear scar in the cage pocket that developed during the test was used as the measure of wear.

  5. The high cost of free lunch.

    PubMed

    Wall, L Lewis; Brown, Douglas

    2007-07-01

    Most physicians deny their professional integrity can be "bought" by something as trivial as a cup of coffee or a free lunch. In this paper, we review the social science literature arguing that "gifting" physicians in this way is, in fact, a highly successful method of boosting drug sales. Unlike ordinary consumer goods, the sale of prescription drugs does not take place directly between the producer and the consumer; rather, prescription drug sales are mediated by the physician who writes the script for the medication. Pharmaceutical sales practices are geared toward influencing physician drug recognition so that, when prescriptions are written, their drug is the first one that comes to mind. Even small gifts produce in their recipients a disproportionately powerful willingness to reciprocate in some manner. The simple act of providing food has been shown to make any message more palatable and more likely to be favorably received. We argue that physician prescribing habits should be based upon careful consideration of what medication is really in the patient's best clinical interests, not on who most recently provided the doctor with a free lunch. PMID:17601912

  6. High-temperature superconductivity: A conventional conundrum

    DOE PAGESBeta

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  7. A sharp knife for high temperatures

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.

    1978-01-01

    Electrically heated nickel-chrome-steel alloy knife may be used to cut heat resistant plastic felt and similar materials with relative ease. Blade made of commercially available alloy RA 330 retains edge at temperatures as high as 927 C.

  8. High-temperature superconductivity in perspective

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The technology of superconductivity and its potential applications are discussed; it is warned that U.S companies are investing less than their main foreign competitors in both low- and high-temperature superconductivity R and D. This is by far the most critical issue affecting the future U.S. competitive position in superconductivity, and in many other emerging technologies. The major areas covered include: Executive summary; High-temperature superconductivity - A progress report; Applications of superconductivity; The U.S. response to high-temperature superconductivity; High-temperature superconductivity programs in other countries; Comparison of industrial superconductivity R and D efforts in the United States and Japan - An OTA survey; Policy issues and options.

  9. MILLIMETER-WAVE HIGH TEMPERATURE PROCESS MONITORING

    EPA Science Inventory

    This poster illustrates the benefits of millimeter-wave high temperature monitoring. The new technique demonstrates (1)improved process efficiencies, (2) improved product quality impacts, and (3)reduced environmental impact.

  10. High-temperature glass and glass coatings

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Katvala, V. E.; Leiser, D. B.

    1977-01-01

    Reaction-cured glasses resist thermal shock and maintain properties over range of -100 degrees Centrigrade to +1,480 degrees Centigrade. Stability makes these excellent materials for high-temperature glassware and tubing or as coatings for porous materials.

  11. The Conference on High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Hamilton, D. J.; Mccormick, J. B.; Kerwin, W. J.; Narud, J. A.

    1981-01-01

    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.

  12. Specimen for high-temperature tensile tests

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1972-01-01

    Split nut with internal taper to hold specially formed specimen composed of filaments of refractory material provides means for holding at high temperature and under tension so that performance evaluations may be made.

  13. Altering high temperature subterranean formation permeability

    SciTech Connect

    Moradi-Araghi, A.

    1991-02-19

    This patent describes a delayed acrylamide containing polymer crosslinker having stability in an aqueous solution at high temperatures. It comprises: a combination of an aldehyde and a salicylic acid derivative selected from salicylamide and acetysalicylic acid.

  14. Silicon carbide, an emerging high temperature semiconductor

    NASA Astrophysics Data System (ADS)

    Matus, Lawrence G.; Powell, J. Anthony

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  15. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  16. Conductor requirements for high-temperature superconducting utility power transformers

    SciTech Connect

    Pleva, E. F.; Mehrotra, V.; Schwenterly, S W

    2010-01-01

    High-temperature superconducting (HTS) coated conductors in utility power transformers must satisfy a set of operating requirements that are driven by two major considerations-HTS transformers must be economically competitive with conventional units, and the conductor must be robust enough to be used in a commercial manufacturing environment. The transformer design and manufacturing process will be described in order to highlight the various requirements that it imposes on the HTS conductor. Spreadsheet estimates of HTS transformer costs allow estimates of the conductor cost required for an HTS transformer to be competitive with a similarly performing conventional unit.

  17. High temperature underground thermal energy storage system for solar energy

    NASA Technical Reports Server (NTRS)

    Collins, R. E.

    1980-01-01

    The activities feasibility of high temperature underground thermal storage of energy was investigated. Results indicate that salt cavern storage of hot oil is both technically and economically feasible as a method of storing huge quantities of heat at relatively low cost. One particular system identified utilizes a gravel filled cavern leached within a salt dome. Thermal losses are shown to be less than one percent of cyclically transferred heat. A system like this having a 40 MW sub t transfer rate capability and over eight hours of storage capacity is shown to cost about $13.50 per KWh sub t.

  18. High temperature Hall-effect apparatus

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, A.; Chmielewski, A.; Parker, J.; Zoltan, A.

    1984-01-01

    A high-temperature Hall-effect apparatus is described which allows measurements up to temperatures greater than 1200 K using the van der Pauw method. The apparatus was designed for measurements on refractory materials having high charge carrier concentrations and generally low mobilities. Pressure contacts are applied to the samples. Consequently, special contacting methods, peculiar to a specific sample material, are not required. The apparatus has been semiautomated to facilitate measurements. Results are presented on n- and p-type silicon.

  19. Metallic stripes in high-temperature superconductors

    SciTech Connect

    Salkola, M.I.; Emery, V.J.; Kivelson, S.A.

    1995-11-23

    A phenomenological approach is applied to explore signatures of disordered charge stripes and antiphase spin domains in single-particle properties of the high-temperature superconductors. Stripe phases are shown to explain many experimentally observed unusual features measured in angle-resolved photoemission and optical spectroscopy. It is argued that disordered and fluctuating stripe phases are a common feature of high-temperature superconductors, supported by the additional evidence from neutron scattering and NMR.

  20. Materials for high-temperature thermoelectric conversion

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Elwell, D.; Auld, B. A.

    1984-01-01

    The development of materials for high temperature thermoelectric energy conversion devices was investigated. The development of new criteria for the selection of materials which is based on understanding of the fundamental principles governing the behavior of high temperature thermoelectric materials is discussed. The synthesis and characterization of promising new materials and the growth of single crystals to eliminate possible problems associated with grain boundaries and other defects in polycrystalline materials are outlined.

  1. PLA recycling by hydrolysis at high temperature

    NASA Astrophysics Data System (ADS)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi

    2016-05-01

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  2. High temperature structural fibers: Status and needs

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.

    1991-01-01

    The key to high temperature structural composites is the selection and incorporation of continuous fiber reinforcement with optimum mechanical, physical, and chemical properties. Critical fiber property needs are high strength, high stiffness, and retention of these properties during composite fabrication and use. However, unlike polymeric composites where all three requirements are easily achieved with a variety of commercially available carbon-based fibers, structural fibers with sufficient stiffness and strength retention for high temperature metal, intermetallic, and ceramic composites are not available. The objective here is to discuss in a general manner the thermomechanical stability problem for current high performance fibers which are based on silicon and alumina compositions. This is accomplished by presenting relevant fiber property data with a brief discussion of potential underlying mechanisms. From this general overview, some possible materials engineering approaches are suggested which may lead to minimization and/or elimination of this critical stability problem for current high temperature fibers.

  3. Apparatus and method for high temperature viscosity and temperature measurements

    DOEpatents

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  4. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  5. Laser Plasma Coupling for High Temperature Hohlraums

    SciTech Connect

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  6. High temperature behavior of simulated mixed nitrides

    NASA Astrophysics Data System (ADS)

    Baranov, V. G.; Lunev, A. V.; Mikhalchik, V. V.; Tenishev, A. V.; Shornikov, D. P.

    2016-04-01

    Specimen of uranium-based mixed nitrides were synthesized by high-temperature nitriding of metal powder. To investigate thermal stability, samples were annealed at high temperature in a helium atmosphere. During these experiments, the effect of increasing the exposure temperature is studied. Raising the exposure temperature results in a multifold increase of mass loss. A comparison with data on pure uranium nitride shows that increasing the complexity of the nitride systems also results in higher mass loss. Later microscopic investigation of test samples revealed that metal precipitates may be found only on the surface of test samples. Electron probe micro-analysis indicates these precipitates to be uranium metal. Nevertheless, compared to pure uranium nitride, uranium-based mixed nitrides exhibit active evaporation at lower temperatures

  7. Ionization of NO at high temperature

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1991-01-01

    Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.

  8. Development of a high temperature microbial fermentation process for butanol

    SciTech Connect

    Jeor, Jeffery D. St.; Reed, David W.; Daubaras, Dayna L.; Thompson, Vicki S.

    2015-08-01

    Transforming renewable biomass into cost-competitive high-performance biofuels and bioproducts is key to the U.S. future energy and chemical needs. Butanol production by microbial fermentation for chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process could decrease energy costs, capital cost, give higher butanol production, and allow for continuous fermentation. In this paper, we describe our approach to genetically transform Geobacillus caldoxylosiliticus, using a pUCG18 plasmid, for potential insertion of a butanol production pathway. Transformation methods tested were electroporation of electrocompetent cells, ternary conjugation with E. coli donor and helper strains, and protoplast fusion. These methods have not been successful using the current plasmid. Growth controls show cells survive the various methods tested, suggesting the possibility of transformation inhibition from a DNA restriction modification system in G. caldoxylosiliticus, as reported in the literature.

  9. Insulation Blankets for High-Temperature Use

    NASA Technical Reports Server (NTRS)

    Goldstein, H.; Leiser, D.; Sawko, P. M.; Larson, H. K.; Estrella, C.; Smith, M.; Pitoniak, F. J.

    1986-01-01

    Insulating blanket resists temperatures up to 1,500 degrees F (815 degrees C). Useful where high-temperature resistance, flexibility, and ease of installation are important - for example, insulation for odd-shaped furnaces and high-temperature ducts, curtains for furnace openings and fire control, and conveyor belts in hot processes. Blanket is quilted composite consisting of two face sheets: outer one of silica, inner one of silica or other glass cloth with center filling of pure silica glass felt sewn together with silica glass threads.

  10. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  11. Battery-level material cost model facilitates high-power li-ion battery cost reductions.

    SciTech Connect

    Henriksen, G.; Chemical Engineering

    2003-01-01

    Under the FreedomCAR Partnership, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously enhancing the calendar life and inherent safety of high-power Li-Ion batteries. Material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in batteries designed to meet the requirements of hybrid electric vehicles (HEVs). In order to quantify the material costs, relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared to the battery cost goals to determine the probability of meeting the goals with these cell chemistries. The most recent freedomCAR cost goals for 25-kW and 40-kW power-assist HEV batteries are $500 and $800, respectively, which is $20/kW in both cases. In 2001, ANL developed a high-power cell chemistry that was incorporated into high-power 18650 cells for use in extensive accelerated aging and thermal abuse characterization studies. This cell chemistry serves as a baseline for this material cost study. It incorporates a LiNi0.8Co0.15Al0.05O2 cathode, a synthetic graphite anode, and a LiPF6 in EC:EMC electrolyte. Based on volume production cost estimates for these materials-as well as those for binders/solvents, cathode conductive additives, separator, and current collectors--the total cell winding material cost for a 25-kW power-assist HEV battery is estimated to be $399 (based on a 48- cell battery design, each cell having a capacity of 15.4 Ah). This corresponds to {approx}$16/kW. Our goal is to

  12. ALTERNATIVES FOR HIGH-TEMPERATURE/HIGH-PRESSURE PARTICULATE CONTROL

    EPA Science Inventory

    The report gives the status of the most promising high-temperature/high-pressure (HTP) particulate control devices being developed. Data are presented and anticipated performance and development problems are discussed. HTP particulate control offers efficiency and potential econo...

  13. High cost pool or high cost groups-How to handle high(est) cost cases in a risk adjustment mechanism?

    PubMed

    Schillo, Sonja; Lux, Gerald; Wasem, Juergen; Buchner, Florian

    2016-02-01

    Competitive social health insurance systems (at least) in Western Europe have implemented systems of morbidity based risk adjustment to set a level playing field for insurers. However, many high cost insured still are heavily underfunded despite risk adjustment, leaving incentives for risk selection. In most of these health care systems, there is an ongoing debate about how to deal with such underpaid high cost cases. This study develops four distinct concepts by adding variables to risk adjustment or by setting up a high cost pool for underpaid insured besides the risk adjustment system. Their features, incentives and distributional effects are discussed. With a data set of 6 million insured, performance is demonstrated for Germany. All models achieve a substantial improvement in model fit, measured in terms of R(2) as well as CPM. As the results of the various models are different in different dimensions, the trade-offs that have to be dealt with and should be addressed, when implementing a model to reduce underfunding of high cost cases. PMID:26806676

  14. Phase Change Material Systems for High Temperature Heat Storage.

    PubMed

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance. PMID:26842330

  15. Laser Brazing of High Temperature Braze Alloy

    NASA Technical Reports Server (NTRS)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    the braze materials and tube substrate. Metallography of the laser braze joint was compared to the furnace braze. SEM Energy Disperse X-Ray Spectra (EDX) and back scattered imaging were used to analyze braze alloy segregation. Although all of the laser systems, CO2, ND:YAG, and direct diode laser produced good braze joint, the direct diode laser was selected for its system simplicity, compactness and portability. Excellent laser and braze alloy coupling is observed with powder alloy compared to braze alloy wire. Good wetting is found with different gold based braze alloys. The laser brazing process can be optimized so that the adverse affect on the parent materials can be eliminated. Metallography of the laser braze joint has shown that quality braze joint was produced with laser brazing process. Penetration of the laser braze to the substrate is at neglectable level. Zero penetration is observed. Microstructure examinations shown that no observable changes of the microstructure (grain structure and precipitation) in the HAZ area between laser braze and furnace braze. Wide gaps can be laser brazed with single pass for up to 0.024 inches. Finer dendritic structure is observed in laser brazing compared with equiaxial and coarser grain of the furnace brazing microstructure. Greater segregation is also found in the furnace braze. Higher hardness of the laser braze joint comparing to furnace braze is observed due to the fast cooling rate and Finer microstructure in the laser brazing. Laser braze joint properties meet or exceed the furnace joint properties. Direct diode laser for thin section tube brazing with high temperature braze alloys have been successfully demonstrated. The laser's high energy density and precise control has shown significant advantages in reducing process heat input to the substrates and provide high quality braze joints comparing to other localized braze process such as torch, TIG, and MPTA processes. Significant cost savings can be realized

  16. PARTICLE COLLECTION IN CYCLONES AT HIGH TEMPERATURE AND HIGH PRESSURE

    EPA Science Inventory

    The paper gives results of an experimental study of cyclone efficiency and pressure drop at temperatures up to 700C and pressures up to 25 atm. The cyclone efficiency was found to decrease at high temperature and increase at high pressure for a constant inlet velocity. Available ...

  17. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  18. High-entropy alloys as high-temperature thermoelectric materials

    SciTech Connect

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  19. High-entropy alloys as high-temperature thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-01

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  20. HALLIBURTON SPERRY-SUN DOE HIGH TEMPERATURE LWD PROJECT

    SciTech Connect

    Ronald L. Spross

    2005-03-15

    The objective of this project was to build a high temperature, cost-effective, logging while drilling (HT-LWD) system with the ability to operate at 175 C with more than 100 hours mean time between failures (MTBF). Such a commercial real-time formation evaluation (FE) system would help operators to drill and produce hydrocarbon resources from moderately deep, hot reservoirs which otherwise might be uneconomic to drill. The project plan was to combine the existing Sperry-Sun high temperature directional and gamma logging system with lower temperature FE sensors which were upgraded to higher temperature operation as part of the project. The project was to be completed in two phases. Phase I included the development of the HT system, building two complete systems, demonstrating operational capability at 175 C and survivability at 200 C in the laboratory, and successfully testing the system in two low temperature field tests. Phase II was to test the system in a well with a bottom hole temperature of 175 C. The high temperature FE sensors developed as part of this project include gamma ray (DGR), resistivity (EWR-Phase 4), neutron (CTN), and density (SLD). The existing high temperature pulser and telemetry system was upgraded to accommodate the data and bandwidth requirements of the additional sensors. Environmental and lifetime testing of system components and modules indicates that system life and reliability goals will be substantially exceeded. The system has performed well in domestic and international high temperature wells (to 175 C). In addition to the sensor modules specified in the project contract, Sperry has now upgraded other system components to higher temperature as well. These include a LWD sonic sensor (BAT), pressure while drilling sensor (PWD), and a more powerful central system controller (CIM).

  1. Fast vortex core switching at high temperatures

    NASA Astrophysics Data System (ADS)

    Lebecki, Kristof M.; Legut, Dominik

    2016-08-01

    Fast ferromagnetic vortex core switching is investigated employing micromagnetic simulations. Short pulse (in the range of a few hundreds of picoseconds) of an in-plane oscillating magnetic field is applied to a thin disk (diameter 200 nm and thickness 20 nm) with material parameters resembling permalloy. Fundamental frequency of this excitation field is close to the resonance with the material spin waves. Thermal effects are introduced by replacing the Landau-Lifshitz-Gilbert equation by the Landau-Lifshitz-Bloch equation. Temperature from 300 K to 850 K is considered, just below the Curie temperature TC = 870 K. Calculations are done within the OOMMF simulation framework. We find that: (i) Period of the field necessary to switch the vortex increases approximately from 141 ps at 300 K to 572 ps for the high-temperature limit. (ii) Amplitude of the field necessary to switch the vortex core decreases roughly from 60 mT to 15 mT - even at high temperatures this amplitude is nonzero, contrary to the case of quasi-static switching. (iii) Time span between the excitation and switching (switching time) seems not to depend on the temperature. (iv) Duration of the switching itself (movement of the Bloch point in the sample) increases from a few picoseconds at low temperatures to tens of picoseconds at high temperatures.

  2. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2008-03-31

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher

  3. High-temperature testing of high performance fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek

    2016-06-01

    The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.

  4. Ultra-Low-Cost Room Temperature SiC Thin Films

    NASA Technical Reports Server (NTRS)

    Faur, Maria

    1997-01-01

    The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.

  5. A Low-Cost, In Situ Resistivity and Temperature Monitoring System

    EPA Science Inventory

    We present a low-cost, reliable method for long-term in situ autonomous monitoring of subsurface resistivity and temperature in a shallow, moderately heterogeneous subsurface. Probes, to be left in situ, were constructed at relatively low cost with close electrode spacing. Once i...

  6. High Temperature Calibration Furnace System user's guide

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The High Temperature Calibration Furnace System (HTCFS) was developed by Summitec Corporation. It is a high precision instrument providing a constant temperature which can be used to calibrate high temperature thermocouples. Incorporating the many recent technological advances from the fields of optical fiber thermometry, material science, computer systems interfacing, and process control, the engineers at Summitec Corporation have been able to create a system that can reach a steady operating temperature of 1700 C. The precision for the system requires the measurement of temperature to be within 1 C in two hours and within 2 C in 24 hours. As documented, the experimental result shows that this system has been able to stay within .5 C in 5 hours. No other systems commercially available have been able to achieve such high temperature precision. This manual provides an overview of the system design, instructions for instrument setup, and operation procedures. Also included are a vendor list and the source codes for the custom-designed software.

  7. High temperature resonant ultrasound spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Li, Guangyan; Lamberton, Gary; Gladden, Josh

    2008-03-01

    Resonant ultrasound spectroscopy (RUS) is a technique to obtain the full elastic tensor of single crystal materials by measuring the mechanical resonances of a polished sample. Any direct resonance measurement at high temperatures is limited by the fact that most ultrasound transducers have an upper operational limit of 200-300C. High temperature RUS measurements are made possible by separating the sample, placed in a tube furnace, and the transducers with buffer rods made of low acoustic attenuation materials with good thermal stability such as ceramic alumina or fused quartz. Tests on stainless steel demonstrated that the system has the ability of acquiring resonance signals at temperatures up to 800C. Experimental issues such as additional resonance peaks introduced by the buffer rods and sample loading will be addressed. The apparatus has been used to study high temperature elastic properties of p-zintl thermoelectrics, single crystal quartz, a novel piezoelectric material kepertite, and the glass transition around 400C in bulk metallic glass compounds. Good results from these studies and high temperature test runs of aluminum and stainless steel demonstrate the potential for RUS measurements at elevated temperatures.

  8. High Temperature VARTM of Phenylethynyl Terminated Imides

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.

    2009-01-01

    LaRC phenylethynyl terminated imide (PETI) resins were processed into composites using high temperature vacuum assisted resin transfer molding (VARTM). Although initial runs yielded composites with high void content, process modifications reduced voids to <3%. Photomicrographs were taken and void contents and T(sub g)s of the panels were determined.

  9. Overview of NASA Studies on High-Temperature Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann

    2001-01-01

    NASA, DOD, and DOE are currently looking to the NASA UEET Program to develop ceramic matrix composites (CMC) for hot-section components in advanced power and propulsion systems - Success will depend strongly on developing ceramic fibers with a variety of key thermostructural properties, in particular, high as-produced tensile strength and retention of a large fraction of this strength for long times under the anticipated CMC service conditions. - Current UEET approach centers on selecting the optimum fiber type from commercially available fibers since the costs for development of advanced fibers are high and the markets for high-temperature CMC have yet to be established.

  10. NDE standards for high temperature materials

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1991-01-01

    High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.

  11. Effects of High Temperature on Collector Coatings

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1982-01-01

    Report reveals electroplated black chrome is good coating for concentrating collectors in which temperatures are in the 650 degrees-800 degrees F (340 degrees - 430 degrees C) range. Black chrome thermal emittance is low and solar-absorption properties are not seriously degraded at high temperatures. Black coatings are used to increase absorption of solar energy by base metal while decreasing emission of infrared energy. Coatings are intended to improve efficiency of solar collectors.

  12. Recent developments in high temperature polyimide systems

    SciTech Connect

    Spiegelman, P.P.; Aldrich, D.C.; Waughtal, R.F.

    1987-01-01

    Vespel, a novel, supertough polyimide molding resin that can be fabricated into small, complex structures on the basis of P/M techniques, has been recently developed, together with two polyimide matrix resins for use in high performance composite fabrication. These two resins, designated AVIMID N and AVIMID KIII, cover a range of processing features and service temperature performance characteristics. Extensive molecular characterizations of these polymers are presented, along with test data for the effect of temperature on tensile strength and elongation, notched impact strength, hydrolytic stability, comparative wear, effects of graphite concentration, relationship of flexural modulus to temperature, and thermomechanical analyses. 7 references.

  13. Low-Cost, Rugged High-Vacuum System

    NASA Technical Reports Server (NTRS)

    Sorensen, Paul; Kline-Schoder, Robert

    2012-01-01

    A need exists for miniaturized, rugged, low-cost high-vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other analytical instruments such as scanning electron microscopes. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was developed based on a very small, rugged, and inexpensive-to-manufacture molecular drag pump (MDP). The MDP is enabled by a miniature, very-high-speed (200,000 rpm), rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. The key advantages of the pump are reduced cost and improved ruggedness compared to other mechanical hig-hvacuum pumps. The machining of the rotor and stators is very simple compared to that necessary to fabricate rotor and stator blades for other pump designs. Also, the symmetry of the rotor is such that dynamic balancing of the rotor will likely not be necessary. Finally, the number of parts in the unit is cut by nearly a factor of three over competing designs. The new pump forms the heart of a complete vacuum system optimized to support analytical instruments in terrestrial applications and on spacecraft and planetary landers. The MDP achieves high vacuum coupled to a ruggedized diaphragm rough pump. Instead of the relatively complicated rotor and stator blades used in turbomolecular pumps, the rotor in the MDP consists of a simple, smooth cylinder of aluminum. This will turn at approximately 200,000 rpm inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the

  14. MWIR mercury cadmium telluride detectors for high operating temperatures

    NASA Astrophysics Data System (ADS)

    Pillans, L.; Ash, R. M.; Hipwood, L.; Knowles, P.

    2012-06-01

    Raising the operating temperature of infrared detectors has benefits in terms of reduced cooler power and increased life and enables an overall reduction in size and weight for handheld applications. With MCT the composition can be tuned to achieve the required wavelength range at a given temperature. Work on detectors operating in the 3-5μm atmospheric transmission window at operating temperatures up to 210K will be described. The influence of limiting factors such as excess noise, radiation shield emission, dark current and injection efficiency will be presented. Packaging aspects will be discussed emphasizing the importance of achieving low cost, weight and power for handheld applications. The impact of the detector design on overall system size and performance is considered with specific attention to time to image, passband and f-number. Finally images will be presented showing performance from a high operating temperature (HOT) camera.

  15. Thin film thermocouples for high temperature measurement

    NASA Astrophysics Data System (ADS)

    Kreider, Kenneth G.

    1989-05-01

    Thin film thermocouples have unique capabilities for measuring surface temperatures at high temperatures (above 800 K) under harsh conditions. Their low mass, approximately 2 x 10(-5) g/mm permits very rapid response and very little disturbance of heat transfer to the surface being measured. This has led to applications inside gas turbine engines and diesel engines measuring the surface temperature of first stage turbine blades and vanes and ceramic liners in diesel cylinders. The most successful high temperature (up to 1300 K) thin film thermocouples are sputter deposited from platinum and platinum-10 percent rhodium targets although results using base metal alloys, gold, and platinel will also be presented. The fabrication techniques used to form the thermocouples, approaches used to solve the high temperature insulation and adherence problems, current applications, and test results using the thin film thermocouples are reviewed. In addition a discussion will be presented on the current problems and future trends related to applications of thin film thermocouples at higher temperatures up to 1900 K.

  16. Solar Selective Coatings for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.

    2003-01-01

    Solar selective coatings are envisioned for use on minisatellites, for applications where solar energy is to be used to power heat engines or to provide thermal energy for remote regions in the interior of the spacecraft. These coatings are designed to have the combined properties of high solar absorptance and low infrared emittance. The coatings must be durable at elevated temperatures. For thermal bus applications, the temperature during operation is likely to be near 100 C. For heat engine applications. the temperature is expected to be much greater. The objective of this work was to screen candidate solar selective coatings for their high temperature durability. Candidate solar selective coatings were composed of molecular mixtures of metal and dielectric, including: nickel and aluminum oxide, titanium and aluminum oxide, and platinum and aluminum oxide. To identify high temperature durability, the solar absorptance and infrared emittance of the candidate coatings were evaluated initially, and after heating to temperatures in the range of 400 C to 700 C. The titanium and aluminum oxide molecular mixture was found to be the most durable.

  17. High-Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

  18. On the flexibility of high temperature reactor cores for high-and low-enriched fuel

    SciTech Connect

    Bzandes, S.; Lonhert, G.

    1982-07-01

    The operational flexibility of a high temperature reactor (HTR) is not restricted to either a low- or a high-enriched fuel cycle. Both fuel cycles are possible for the same core design. The fuel cycle cost is, however, penalized for low-enriched fuel; in addition, higher uranium consumption is required. Hence, an HTR is most economical to operate in the high-enriched thorium-uranium fuel cycle.

  19. Low toxicity high temperature PMR polyimide

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.

  20. High Temperature Membrane & Advanced Cathode Catalyst Development

    SciTech Connect

    Protsailo, Lesia

    2006-04-20

    Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

  1. Controlled thermonuclear fusion, high temperature plasma physics

    NASA Astrophysics Data System (ADS)

    1985-05-01

    The primary source of nuclear energy comes from the fission process of heavy nuclei. To utilize the energy released by a thermonuclear fusion process, methods of controlling the fusion reaction were studied. This is controlled thermonuclear fusion technology. The fuel used in a thermonuclear fusion process are isotopes of hydrogen: deuterium and tritium. They can be extracted from the almost unlimited seawater. Nuclear fusion also produces very little radioactive waste. Thermonuclear fusion is a promising energy source with an almost unlimited supply; it is economical, safe, and relatively clean. Ways to raise plasma temperature to a very high level and to maintain it to allow fusion reactions to take place are studied. The physical laws of high temperature plasma was studied to reach this goal which resulted in the development of high temperature plasma physics.

  2. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The current status of knowledge and ability to predict high-temperature environmental attack of metals is reviewed with particular reference to the gas turbine engine. Environmental attack is caused by high temperatures, combustion products, and impurities. A schematic representation of life-limiting factors of turbine components shows that environmental attack can lead to very early failures. Attention is given to high-temperature oxidation with prevailing modes of oxidation attack, and to hot corrosion and other impurity effects. Erosion attack results from the direct mechanical removal of component material by impact of hard substances like ash, sand, or dirt. Solutions to hot-corrosion problems can be found semiempirically by using improved alloys or ceramics, protective surface coatings, additives to the engine environment, and air/fuel cleanup to eliminate detrimental impurities.

  3. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  4. Containerless measurements on liquids at high temperatures

    NASA Technical Reports Server (NTRS)

    Weber, Richard

    1993-01-01

    The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.

  5. Nernst effect in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Yayu

    This thesis presents a study of the Nernst effect in high temperature superconductors. The vortex Nernst measurements have been carried out on various high Tc cuprates to high magnetic fields. These results provide vital information about the properties and relations of the pseudogap phase and superconducting phase in high Tc superconductors. Our first finding is the existence of vortex-like excitations at temperatures much higher than Tc0, the zero filed transition temperature, in the underdoped cuprates. This result suggests that in the putative normal state of cuprates, although bulk Meissner effect is absent and resistivity looks normal, the amplitude of the Cooper pairing is still sizable. The transition at Tc0 is driven by the loss of long range phase coherence rather than the disappearance of superconducting condensate. The high field Nernst effect offers a reliable way to determine the upper critical field Hc2 of high Tc cuprates and many unusual properties are uncovered. For cuprates with relatively large hole density (x > 0.15), we found that H c2 is almost temperature independent for T < Tc0. This is in strong contrast to the Hc2 - T relation of conventional superconductors. Moreover, using a scaling analysis, we have demonstrated that H c2 increases with decreasing hole density x in this doping range, implying a stronger pairing potential at lower doping. In the severely underdoped regime (x < 0.12), some new features become apparent and they imply that the vortex Nernst signal is comprised of two distinct contributions. The first is from coherent regions with long range phase coherence and relatively low upper critical field, more like the superconducting phase; the second is from phase incoherent regions with much larger field scales, indicative of the pseudogap phase. As temperature rises, the superconducting phase gives weight to the pseudogap phase. Moreover, the upper critical field Hc2 of the superconducting phase scales with the onset

  6. Micromechanics of high temperature deformation and failure

    NASA Technical Reports Server (NTRS)

    Nasser, S. N.; Weertman, J. R.

    1985-01-01

    The micromechanics of the constitutive behavior of elastoplastic materials at high temperatures was examined. The experimental work focused on the development of microscopic defects in superalloys (Waspaloy), especially the formation of voids at grain boundary carbides, and slip induced surface cracks within grains upon cyclic loading at high temperatures. The influence of these defects on the life expectancy of the material was examined. The theoretical work consists of two parts: (1) analytical description of the mechanisms that lead to defects observed experimentally; and (2) development of macroscopic elastoplastic nonlinear constitutive relations based on mechanical modeling.

  7. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The gas turbine engine was used as an example to predict high temperature environmental attack on metals. Environmental attack in a gas turbine engine derives from high temperature, combustion products of the air and fuel burned, and impurities. Of all the modes of attack associated with impurity effects, hot corrosion was the most complicated mechanistically. Solutions to the hot corrosion problem were sought semi-empirically in: (1) improved alloys or ceramics; (2) protective surface coating; (3) use of additives to the engine environment; and (4) air/fuel cleanup to eliminate harmful impurities.

  8. High-temperature superconducting vector switch

    SciTech Connect

    Chelluri, B.; Barber, J.; Clements, N.; Johnson, D. ); Spyker, R.; Sarkar, A.K.; Kozlowoski, G. )

    1991-04-15

    The feasibility of a high-temperature superconducting switch based on the principle of the superconducting vector switch (SVS) is discussed. This switch exploits the anisotropy in electrical conductivities of the high-temperature superconductors. Underlying the SVS mechanism is the ability to turn on/off large superconducting currents confined to the CuO{sub 2} planes that characterize these materials using lower currents flowing normal to the planes. The required conditions to optimize the switch and increase the gain are presented.

  9. Joining of ceramics for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vilpas, Martti

    1987-01-01

    Summarized is a literature survey of the methods for joining ceramics to ceramics or ceramics to metals for high temperature applications. Also mechanical properties and potential applications of the joints are considered. The joining of ceramics is usually carried out by brazing or diffusion bonding. Especially the latter has been found useful, increasing the application of bonded ceramics. The possibility of using electron beam and laser beam welding for joining ceramics has also recently been investigated. The bonding of ceramics has found numerous applications typical for high operating temperatures, i.e., sensors and thermocouples.

  10. Novel Low Cost, High Reliability Wind Turbine Drivetrain

    SciTech Connect

    Chobot, Anthony; Das, Debarshi; Mayer, Tyler; Markey, Zach; Martinson, Tim; Reeve, Hayden; Attridge, Paul; El-Wardany, Tahany

    2012-09-13

    Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of

  11. Fiber Bragg Grating Filter High Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)

    2001-01-01

    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  12. The High Cost of Leaving: An Analysis of the Cost of Teacher Turnover

    ERIC Educational Resources Information Center

    Watlington, Eliah; Shockley, Robert; Guglielmino, Paul; Felsher, Rivka

    2010-01-01

    The cost of teacher turnover to schools and school districts has only recently been studied. This research reveals that when high-quality teachers leave the classroom, the effect on both student performance and school and district fiscal operations is significant and deleterious. The implications for study in this area include the planning of…

  13. High Temperature Mechanisms for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  14. High-Temperature Capacitor Polymer Films

    NASA Astrophysics Data System (ADS)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  15. High-Temperature Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  16. A high temperature high pressure cell for quasielastic neutron scattering

    SciTech Connect

    Yang, F.; Meyer, A.; Kaplonski, J.; Unruh, T.; Mamontov, E.

    2011-08-15

    We present our recent development of a high temperature high pressure cell for neutron scattering. Combining a water cooled Nb1Zr pressure cell body with an internal heating furnace, the sample environment can reach temperatures of up to 1500 K at a pressure of up to 200 MPa at the sample position, with an available sample volume of about 700 mm{sup 3}. The cell material Nb1Zr is specifically chosen due to its reasonable mechanical strength at elevated temperatures and fairly small neutron absorption and incoherent scattering cross sections. With this design, an acceptable signal-to-noise ratio of about 10:1 can be achieved. This opens new possibilities for quasielastic neutron scattering studies on different types of neutron spectrometers under high temperature high pressure conditions, which is particularly interesting for geological research on, e.g., water dynamics in silicate melts.

  17. Research at Very High Pressures and High Temperatures

    ERIC Educational Resources Information Center

    Bundy, Francis P.

    1977-01-01

    Reviews research and apparatus utilized in the study of the states and characteristics of materials at very high temperatures and pressures. Includes three examples of the research being conducted. (SL)

  18. A high temperature high pressure cell for quasielastic neutron scattering.

    PubMed

    Yang, F; Kaplonski, J; Unruh, T; Mamontov, E; Meyer, A

    2011-08-01

    We present our recent development of a high temperature high pressure cell for neutron scattering. Combining a water cooled Nb1Zr pressure cell body with an internal heating furnace, the sample environment can reach temperatures of up to 1500 K at a pressure of up to 200 MPa at the sample position, with an available sample volume of about 700 mm(3). The cell material Nb1Zr is specifically chosen due to its reasonable mechanical strength at elevated temperatures and fairly small neutron absorption and incoherent scattering cross sections. With this design, an acceptable signal-to-noise ratio of about 10:1 can be achieved. This opens new possibilities for quasielastic neutron scattering studies on different types of neutron spectrometers under high temperature high pressure conditions, which is particularly interesting for geological research on, e.g., water dynamics in silicate melts. PMID:21895254

  19. Bimodular high temperature planar oxygen gas sensor.

    PubMed

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Pu-Xian; Lei, Yu

    2014-01-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO NPs film was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500, 600, and 800°C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors. PMID:25191652

  20. Bimodular high temperature planar oxygen gas sensor

    PubMed Central

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Pu-Xian; Lei, Yu

    2014-01-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO NPs film was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500, 600, and 800°C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors. PMID:25191652

  1. Evolution of sputtered tungsten coatings at high temperature

    SciTech Connect

    Stelmakh, Veronika; Rinnerbauer, Veronika; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan; Senkevich, Jay J.; Tucker, Charles; Ives, Thomas; Shrader, Ronney

    2013-11-15

    Sputtered tungsten (W) coatings were investigated as potential high temperature nanophotonic material to replace bulk refractory metal substrates. Of particular interest are materials and coatings for thermophotovoltaic high-temperature energy conversion applications. For such applications, high reflectance of the substrate in the infrared wavelength range is critical in order to reduce losses due to waste heat. Therefore, the reflectance of the sputtered W coatings was characterized and compared at different temperatures. In addition, the microstructural evolution of sputtered W coatings (1 and 5 μm thick) was investigated as a function of anneal temperature from room temperature to 1000 °C. Using in situ x-ray diffraction analysis, the microstrain in the two samples was quantified, ranging from 0.33% to 0.18% for the 1 μm sample and 0.26% to 0.20% for the 5 μm sample, decreasing as the temperature increased. The grain growth could not be as clearly quantified due to the dominating presence of microstrain in both samples but was in the order of 20 to 80 nm for the 1 μm sample and 50 to 100 nm for the 5 μm sample, as deposited. Finally, the 5 μm thick layer was found to be rougher than the 1 μm thick layer, with a lower reflectance at all wavelengths. However, after annealing the 5 μm sample at 900 °C for 1 h, its reflectance exceeded that of the 1 μm sample and approached that of bulk W found in literature. Overall, the results of this study suggest that thick coatings are a promising alternative to bulk substrates as a low cost, easily integrated platform for nanostructured devices for high-temperature applications, if the problem of delamination at high temperature can be overcome.

  2. High Summer Temperatures and Mortality in Estonia

    PubMed Central

    Oudin Åström, Daniel; Åström, Christofer; Rekker, Kaidi; Indermitte, Ene; Orru, Hans

    2016-01-01

    Background On-going climate change is predicted to result in a growing number of extreme weather events—such as heat waves—throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia. Methods We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia. Results We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement. Discussion We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed. PMID:27167851

  3. High temperature electrochemical scanning tunneling microscope instrument

    NASA Astrophysics Data System (ADS)

    Shkurankov, Andrei; Endres, Frank; Freyland, Werner

    2002-01-01

    We present a novel construction of a scanning tunneling microscope (STM) for investigations of fluid/solid interfaces and, in particular, for in situ electrochemical measurements at elevated temperatures. A special feature of this instrument is a vacuum tight connection of the electrochemical cell with the STM scanner via a flexible metal bellow. This enables measurements with highly reactive and volatile fluids at high temperatures. Details of the mechanical and electronic parts of this setup are described. Test measurements on the electrodeposition of metals from molten salt electrolytes have been performed. The Ag deposition has been studied in an acidic room temperature molten salt composed of 1-butyl-3-methyl-imidazoliumchloride and AlCl3 up to 355 K. As a second example the Al deposition from molten AlCl3-NaCl has been tested up to 500 K. First results of these experiments are briefly presented.

  4. Gravimeter using high-temperature superconductor bearing.

    SciTech Connect

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  5. Two High-Temperature Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  6. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  7. High Temperature Materials Interim Data Qualification Report

    SciTech Connect

    Nancy Lybeck

    2010-08-01

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing – 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram – 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  8. High Temperature Concentrated Solar Power Using Liquid Metal

    NASA Astrophysics Data System (ADS)

    Henry, Asegun

    One of the most attractive ways to try and reduce the cost of concentrated solar power (CSP) is to increase the system efficiency and the biggest loss in the system occurs in the conversion of heat to electricity via heat engine. Heat engines that utilize turbomachinery currently operate near their thermodynamic limitations and thus one of the only ways to improve heat engine efficiency is to increase the turbine inlet temperature. Significant effort is being devoted to the development of supercritical CO2 heat engines, but the most efficient heat engines are combined cycles, which reach efficiencies as high as 60%. However, such heat engines require turbine inlet temperatures ~1300-1500C, which is far beyond what is currently feasible with the state of the art molten salt infrastructure. In working towards the development of a system that can operate in the 1300-1500C temperature range, the most significant challenges lie in the materials and forming functional and reliable components out of new materials. One of the most attractive options from a cost and heat transfer perspective is to use liquid metals, such as tin and aluminum-silicon alloys along with a ceramic based infrastructure. This talk will overview ongoing efforts in the Atomistic Simulation and Energy (ASE) research group at Georgia Tech to develop prototype components such as an efficient high temperature cavity receiver, pumps and valves that can make a liquid metal based CSP infrastructure realizable.

  9. High Temperature Irradiation-Resistant Thermocouple Performance Improvements

    SciTech Connect

    Joshua Daw; Joy Rempe; Darrell Knudson; John Crepeau; S. Curtis Wilkins

    2009-04-01

    Traditional methods for measuring temperature in-pile degrade at temperatures above 1100 ºC. To address this instrumentation need, the Idaho National Laboratory (INL) developed and evaluated the performance of a high temperature irradiation-resistant thermocouple (HTIR-TC) that contains alloys of molybdenum and niobium. Data from high temperature (up to 1500 ºC) long duration (up to 4000 hours) tests and on-going irradiations at INL’s Advanced Test Reactor demonstrate the superiority of these sensors to commercially-available thermocouples. However, several options have been identified that could further enhance their reliability, reduce their production costs, and allow their use in a wider range of operating conditions. This paper presents results from on-going Idaho National Laboratory (INL)/University of Idaho (UI) efforts to investigate options to improve HTIR-TC ductility, reliability, and resolution by investigating specially-formulated alloys of molybdenum and niobium and alternate diameter thermoelements (wires). In addition, on-going efforts to evaluate alternate fabrication approaches, such as drawn and loose assembly techniques will be discussed. Efforts to reduce HTIR-TC fabrication costs, such as the use of less expensive extension cable will also be presented. Finally, customized HTIR-TC designs developed for specific customer needs will be summarized to emphasize the varied conditions under which these sensors may be used.

  10. High pressure and high temperature behaviour of ZnO

    SciTech Connect

    Thakar, Nilesh A.; Bhatt, Apoorva D.; Pandya, Tushar C.

    2014-04-24

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  11. 10.3 High-temperature Instrumentation

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony

    2008-01-01

    This viewgraph presentation describes high temperature instrumentation development from 1960-1970, 1980-1990 and 2000-present. The contents include: 1) Background; 2) Objective; 3) Application and Sensor; 4) Attachment Techniques; 5) Evaluation/Characterization Testing; and 6) Future testing.

  12. Space applications of high temperature superconductivity technology

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Aron, P. R.; Leonard, R. F.; Wintucky, E. G.

    1991-01-01

    A review is presented of the present status of high temperature superconductivity (HTS) technology and related areas of potential space application. Attention is given to areas of application that include microwave communications, cryogenic systems, remote sensing, and space propulsion and power. Consideration is given to HTS phase shifters, miniaturization of microwave filters, far-IR bolometers, and magnetic refrigeration using flux compression.

  13. High temperature pressure coupled ultrasonic waveguide

    SciTech Connect

    Caines, M.J.

    1983-07-12

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  14. High Temperature Langasite SAW Oxygen Sensor

    SciTech Connect

    Zheng, Peng; Chin, Tao-Lun; Greve, David; Oppenheim, Irving; Malone, Vanessa; Cao, Limin

    2011-08-01

    High-temperature langasite SAW oxygen sensors using sputtered ZnO as a resistive gas-sensing layer were fabricated and tested. Sensitivity to oxygen gas was observed between 500°C to 700°C, with a sensitivity peak at about 625°C, consistent with the theoretical predictions of the acoustoelectric effect.

  15. Improved high-temperature silicide coatings

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Stephens, J. R.; Stetson, A. R.; Wimber, R. T.

    1969-01-01

    Special technique for applying silicide coatings to refractory metal alloys improves their high-temperature protective capability. Refractory metal powders mixed with a baked-out organic binder and sintered in a vacuum produces a porous alloy layer on the surface. Exposing the layer to hot silicon converts it to a silicide.

  16. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  17. Progress in advanced high temperature materials technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ceramics. Each of these material categories is reviewed and the current state-of-the-art identified, including some assessment, when appropriate, of progress, problems, and future directions.

  18. High temperature oxidation resistant cermet compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  19. Mechanism of high temperature adaptation in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperature (HT) stress severely limits plant productivity and causes extensive economic loss to US agriculture. Understanding HT adaptation mechanisms in crop plants is crucial to the success of developing HT tolerant varieties to alleviate the negative impact of HT stress on plant growth and...

  20. Oxidation-Strengthened High-Temperature Rivets

    NASA Technical Reports Server (NTRS)

    Mclemore, R. L.

    1982-01-01

    Shear strength of titanium-niobium rivets improves with oxidation. Ti-Nb rivets developed for fastening parts of Space Shuttle thrustors may be suitable also for other high-temperature applications in oxidizing environments--for example, in burner cans of commercial jet engines and boilers and retorts for coal gasification systems.

  1. Helium-cooled high temperature reactors

    SciTech Connect

    Trauger, D.B.

    1985-01-01

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  2. Braze alloys for high temperature service

    NASA Technical Reports Server (NTRS)

    Lindberg, R. A.; Mckisson, R. L.; Erwin, G., Jr.

    1973-01-01

    Two groups of refractory metal compositions have been developed that are very useful as high temperature brazing alloys for sealing between ceramic and metal parts. Each group consists of various compositions of three selected refractory metals which, when combined, have characteristics required of good braze alloys.

  3. HIGH TEMPERATURE PARTICULATE CONTROL WITH CERAMIC FILTERS

    EPA Science Inventory

    The report gives results of an assessment of using ceramic materials as filters for fine particulate removal at high temperatures. The program was in two phases. Phase I, directed toward the development of a porous alumina membrane filter, had limited success because of the fragi...

  4. HYFIRE: fusion-high temperature electrolysis system

    SciTech Connect

    Fillo, J A; Powell, J R; Steinberg, M; Benenati, R; Dang, V D; Horn, F; Isaacs, H; Lazareth, O; Makowitz, H; Usher, J

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400/sup 0/C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800/sup 0/C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H/sub 2/ and O/sub 2/, electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%.

  5. Life assessment of high temperature headers

    SciTech Connect

    Nakoneczny, G.J.; Schultz, C.C.

    1995-08-01

    High temperature superheater and reheater headers have been a necessary focus of any boiler life extension project done by the electric utilities. These headers operate at high temperatures in excess of 900 F and are subject to thermal stresses and pressure stresses that can lead to cracking and failure. Babcock and Wilcox Company`s investigation of these problems began in 1982 focusing on P11 materials (1{1/4}Cr-{1/2}Mo). Early assessment was limited to dimensional analysis methods which were aimed at quantifying swell due to creep. Condition assessment and remaining useful life analysis methods have evolved since these initial studies. Experience coupled with improved inspection methods and analytical techniques has advanced the life assessment of these high temperature headers. In the discussion that follows the authors provide an overview of B and W`s approach to header life assessment including the location and causes for header failures, inspection techniques and analysis methods which are all directed at determining the remaining useful life of these high temperature headers.

  6. Enamel for high-temperature superalloys

    NASA Technical Reports Server (NTRS)

    Levin, H.; Lent, W. E.

    1977-01-01

    Desired optical and high temperature enamel properties are obtained with glasses prepared from the system Li2O-ZrO2-nSiO2. Molar compositions range from n=4 to n=1.3, to which are added minor amounts in varying combinations of alumina, alkali fluorides, boric oxide, alkali oxides, and akaline earth oxides.

  7. Low-Cost High-Pressure Hydrogen Generator

    SciTech Connect

    Cropley, Cecelia C.; Norman, Timothy J.

    2008-04-02

    Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES) developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count. Economic

  8. Dynamic, High-Temperature, Flexible Seals

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1992-01-01

    Dynamic, flexible ceramic seals developed for use at high temperatures in high-performance, variable-geometry, hypersonic airplane engines. Stacked ceramic wafers pressed against stationary sidewall by pressure in one or more metal bellows. Seals also used in hypersonic engines, two-dimensional convergent/divergent and vectored-thrust exhaust nozzles, airframes of reentry vehicles, casings of rocket motors furnaces, and other applications.

  9. High temperature well bore cement slurry

    SciTech Connect

    Nahm, J.J.W.; Vinegar, H.J.; Karanikas, J.M.; Wyant, R.E.

    1993-07-13

    A low density well bore cement slurry composition is described suitable for cementing well bores with high reservoir temperatures comprising: (a) a high alumina cement in an amount of about 40 pounds per barrel of slurry or greater: (b) graphite in an amount greater than about one quarter, by volume, of the solids in the cement slurry; and (c) and a carrier fluid comprising drilling mud.

  10. Structure and properties of a high-temperature austenitic steel at high temperatures

    NASA Astrophysics Data System (ADS)

    Kostina, M. V.; Skorobogatykh, V. N.; Tykochinskaya, T. V.; Nakhabina, M. S.; Nemov, V. V.; Bannykh, I. O.; Korneev, A. E.

    2010-11-01

    The structure of a high-temperature austenitic 12Kh15N16M2TR steel, which is promising for manufacturing steam superheater tubes, is studied after long-term thermal holding under stress. The type, morphology, and matrix arrangement of excess-phase particles that form during thermal holding are found. The structure of the alloy correlates with its high-temperature strength, and the mechanical properties obtained during short-time tensile tests in the temperature range 20-730°C are compared to the results of high-temperature strength tests.

  11. Advanced Materials and Manufacturing for Low-Cost, High-Performance Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; Arrieta, Victor M.

    2013-01-01

    A document describes the low-cost manufacturing of C103 niobium alloy combustion chambers, and the use of a high-temperature, oxidation-resistant coating that is superior to the standard silicide coating. The manufacturing process involved low-temperature spray deposition of C103 on removable plastic mandrels produced by rapid prototyping. Thin, vapor-deposited platinum-indium coatings were shown to substantially improve oxidation resistance relative to the standard silicide coating. Development of different low-cost plastic thrust chamber mandrel materials and prototyping processes (selective laser sintering and stereolithography) yielded mandrels with good dimensional accuracy (within a couple of mils) for this stage of development. The feasibility of using the kinetic metallization cold-spray process for fabrication of free-standing C1O3 thrusters on removable plastic mandrels was also demonstrated. The ambient and elevated temperature mechanical properties of the material were shown to be reasonably good relative to conventionally processed C103, but the greatest potential benefit is that coldsprayed chambers require minimal post-process machining, resulting in substantially lower machining and material costs. The platinum-iridium coating was shown to provide greatly increased oxidation resistance over the silicide when evaluated through oxyacetylene torch testing to as high as 300 F (= 150 C). The iridium component minimizes reaction with the niobium alloy chamber at high temperatures, and provides the high-temperature oxidation resistance needed at the throat.

  12. High temperature superconductors applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Kumar, A. Anil; Li, Jiang; Zhang, Ming Fang

    1995-01-01

    The purpose of this paper is twofold: (1) to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and (2) to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices - obvious advantages versus practical difficulties - needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models - a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B) - shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance - conductivity, surface resistance and attenuation constant - will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T

  13. High temperature superconductors applications in telecommunications

    SciTech Connect

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  14. High temperature intermetallic binders for HVOF carbides

    SciTech Connect

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  15. Advanced high temperature thermoelectrics for space power

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Ewell, R.; Wood, C.

    1981-01-01

    Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.

  16. Dynamic high-temperature-phosphor thermometry

    SciTech Connect

    Tobin, K.W.; Capps, G.J.; Muhs, J.D.; Smith, D.B.; Cates, M.R.

    1990-08-01

    Dynamic surface phosphor thermometry is being investigated as part of a continuing effort by the Applied Technology Division (ATD) at Oak Ridge National Laboratory (ORNL) to develop and apply thermographic phosphor technology to an ever expanding thermometry field. The purpose of this program is to develop dynamic surface phosphor thermometry to a stage where funding proposals can be strengthened by establishing a strong information base and demonstrating a sound capability. As a new technology development in an area well established by ATD/ORNL, dynamic thermometry is extremely important for high-temperature materials, superconducting materials, advanced turbomachinery, space vehicles, industrial process equipment, and other development areas. This laboratory project illustrated the technique of continuously monitoring dynamic temperature excursions using phosphor thermography. Temperature-increase rates on the order of 100 or more degrees centigrade per millisecond were measured, which illustrated a temporal response of >0.001 s. This exceeded by a factor of ten the goal or the project and gave strong encouragement for further development of the technology. Important to the project, too, was the establishment of a clear analytical base for fluorescent-ratio data. Using the results of this study, specific solutions to dynamic-temperature-measurement problems in many application areas can be developed. In addition, the dynamic-thermographic technology can be coupled with strain measurement, two-dimensional analysis, and thermometry at very high temperatures to add interrelating remote measurement tools for systems that currently cannot be effectively studied. 13 refs., 11 figs.

  17. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  18. New Waste Calciner High Temperature Operation

    SciTech Connect

    Swenson, M.C.

    2000-09-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

  19. High temperature annealing of ion irradiated tungsten

    DOE PAGESBeta

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  20. High temperature annealing of ion irradiated tungsten

    SciTech Connect

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  1. Urania vapor composition at very high temperatures

    SciTech Connect

    Pflieger, Rachel; Colle, Jean-Yves; Iosilevskiy, Igor; Sheindlin, Michael

    2011-02-01

    Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

  2. Development and Testing of High-Temperature Solar Selective Coatings

    SciTech Connect

    Kennedy, C.; Price, H.

    2005-01-01

    The Solar Energy Technologies Program is working to reduce the cost of parabolic trough solar power technology. System studies show that increasing the operating temperature of the solar field from 390 to >450 C will result in improved performance and cost reductions. This requires the development of new more-efficient selective coatings that have both high solar absorptance (>0.96) and low thermal emittance (<0.07) and are thermally stable above 450 C, ideally in air. Potential selective coatings were modeled, identified for laboratory prototyping, and manufactured at NREL. Optimization of the samples and high-temperature durability testing will be performed. Development of spectrally selective materials depends on reliable characterization of their optical properties. Protocols for testing the thermal/optical properties of selective coatings were developed and a round-robin experiment was conducted to verify and document the reflectance and high-temperature emittance measurements. The development, performance, and durability of these materials and future work will be described.

  3. Improved high temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Chang, G. E.; Powell, S. H.; Jones, R. J.

    1983-01-01

    The objective was to develop organic matrix resins suitable for service at temperatures up to 644 K (700 F) and at air pressures up to 0.4 MPa (60 psia) for time durations of a minimum of 100 hours. Matrix resins capable of withstanding these extreme oxidative environmental conditions would lead to increased use of polymer matrix composites in aircraft engines and provide significant weight and cost savings. Six linear condensation, aromatic/heterocyclic polymers containing fluorinated and/or diphenyl linkages were synthesized. The thermo-oxidative stability of the resins was determined at 644 K and compressed air pressures up to 0.4 MPa. Two formulations, both containing perfluoroisopropylidene linkages in the polymer backbone structure, exhibited potential for 644 K service to meet the program objectives. Two other formulations could not be fabricated into compression molded zero defect specimens.

  4. Center for High Temperature Plasma Physics certified

    NASA Astrophysics Data System (ADS)

    Hu, Maolian

    1985-05-01

    The construction and functions of a research center for high temperature plasma physics and controlled thermonuclear fusion are discussed. It has four of China's largest d.c. pulse generators capable of producing 80 megawatts of power, an induction coil capable of storing 200 million joules of electric energy, and a capacitor bank that can store 8 million joules of energy. It has equipment for producing deionized water, low temperature equipment, a cooling system using refrigerated circulating water, and a heat supply system. The center is one of China's important bases for thermonuclear fusion research.

  5. Operator manual: High temperature heat pump

    NASA Astrophysics Data System (ADS)

    Dyer, D. F.; Maples, G.; Burch, T. E.; Chancellor, P. D.

    1980-03-01

    Experimental data were obtained from operating a high temperature heat pump system. The use of methanol as a working fluid necessitated careful monitoring of refrigerant temperatures and pressures with chemical analysis performed on the working fluid during scheduled down time. Materials sent to vendors and quotes received concerning equipment (compressor, evaporator, condensor, air heater, dryer, two accumulator tanks, and three expansion valves) are discussed. The detailed design and pricing estimates are included. Additional information on layout and construction; start-up; testing; shut down; scheduled maintenance and inspection; safety precautions; control system; and trouble shooting is presented.

  6. High-temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1990-01-01

    Polymers research at the NASA Lewis Research Center has produced high-temperature, easily processable resin systems, such as PMR-15. In addition, the Polymers Branch has investigated ways to improve the mechanical properties of polymers and the microcracking resistance of polymer matrix composites in response to industry need for new and improved aeropropulsion materials. Current and future research in the Polymers Branch is aimed at advancing the upper use temperature of polymer matrix composites to 700 F and beyond by developing new resins, by examining the use of fiber reinforcements other than graphite, and by developing coatings for polymer matrix composites to increase their oxidation resistance.

  7. Fiber specklegram sensors sensitivities at high temperatures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, L.; Lomer, M.; Lopez-Higuera, J. M.

    2015-09-01

    In this work, the sensitivity of Fiber Specklegram Sensors to high temperatures (up to 800ºC) have been studied. Two multimode silica fibers have been introduced into a tubular furnace while a HeNe laser source was launched into a fiber edge, projecting speckle patterns to a commercial webcam. A computer generated different heating and cooling sweeps while the specklegram evolution was recorded. The achieved results exhibit a remarkably linearity in FSS's sensitivity for temperatures under 800ºC, following the thermal expansion of fused silica.

  8. A review of high-temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  9. Coal transformation under high-temperature catagenesis

    SciTech Connect

    Melenevsky, V.N.; Sokol, E.V.; Fomin, A.N.

    2006-07-01

    In this paper we consider products of natural pyrolysis of lignite, which resulted from the high-temperature spontaneous combustion of spoil heaps of the Chelyabinsk coal basin. These products were studied by pyrolysis, element and petrographic analyses, chromatomass spectrometry, and X-ray diffraction method. We have established that under reducing conditions, the degree of pyrogenic coal transformation and the composition of pyrolysis products vary greatly, from graphite-like phases to bitumens, and depend on the temperature and degree of the system openness.

  10. The moon as a high temperature condensate

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1972-01-01

    The accretion during condensation mechanism is used to explain the differences in composition of the terrestrial planets and the moon. Many of the properties of the moon, including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the depletion in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The high temperature mineralogy is gehlenite, spinel perovskite, Ca-Al-rich pyroxenes and anorthite. The model is consistent with extensive early melting, shallow melting at 3 A.E. and with presently high speed internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior in this model raises the interior temperatures estimated from electrical conductivity by some 800 C. The lunar crust is 80 percent gabbroic anorthosite, 20 percent basalt and is about 250-270 km thick. The lunar mantle is probably composed of spinel, merwinite and diopside with a density of 3.4 g/cu cm.

  11. Innovations in high-temperature particulate filtration

    SciTech Connect

    Lippert, T.

    1997-05-01

    Fluidized-bed combustion and coal gasification expose sensitive equipment, such as high-speed turbines, to hot combustion offgases. In order to prevent erosion, corrosion, and other damage to sensitive equipment, such systems now incorporate high-temperature particulate filters. One device often considered for such applications uses a design similar to a baghouse (i.e., multiple banks of porous filter bags that remove particulate from gas streams). In this case, however, instead of polyester or teflon fabric, the filter elements are made of rigid ceramic or similar materials. These devices are sometimes called `candle filters,` and the individual ceramic filter elements are frequently called `candles.` Three high-temperature applications of candle filters are described here. 2 refs., 3 figs.

  12. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  13. The metallurgy of high temperature alloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  14. High temperature strategy for oxide nanoparticle synthesis.

    PubMed

    Mialon, Geneviève; Gohin, Morgan; Gacoin, Thierry; Boilot, Jean-Pierre

    2008-12-23

    Compared with noble metals and quantum dots, dielectric complex oxide nanoparticles are significantly less popular due to their high crystallization temperature, making difficult their synthesis in the 10-100 nm range for which surface effects are reduced. We report here an original process permitting thermal annealing of complex oxide nanoparticles at high temperature without aggregation and growth. Thus, after thermal treatment, these annealed particles can be dispersed in water, leading to concentrated aqueous colloidal dispersions containing isolated highly crystalline particles. This contrasts with usual colloidal techniques for which the production of particles in the 10-100 nm range generally leads to poorly crystallized particles, especially for multicomponent oxides. From two examples, we show some possibilities offered by this type of process. This concerns the synthesis of lanthanide-doped oxide nanoparticles exhibiting a bulk behavior for their luminescence properties and the control of the composition in nitrogen-doped titanium oxide particles without sintering and size change. PMID:19206285

  15. Thermal Protective Coating for High Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  16. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  17. Compliant high temperature seals for dissimilar materials

    DOEpatents

    Rynders, Steven Walton; Minford, Eric; Tressler, Richard Ernest; Taylor, Dale M.

    2001-01-01

    A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

  18. Opacification of high temperature fibrous insulation

    NASA Technical Reports Server (NTRS)

    Miller, W. C.; Collins, J. O.

    1984-01-01

    A study was conducted to determine the merits of adding particulate materials to silica fiber felts to increase their resistance to the passage of thermal radiation. Laboratory samples containing 5, 10, and 15 percent of chromium oxide, silicon carbide, and titanium dioxide were prepared and evaluated in accordance with ASTM C-518 thermal conductivity test method at 425 C (800 F) mean temperature. The titania particles averaging 3-4 micrometers in diameter were found to be the most effective. This was followed by a short plant run, in order to confirm the initial results on the laboratory samples. These samples were tested according to ASTM C-201 High Temperature Calorimeter from 93 C to 760 C (200 F to 1400 F) mean temperature. The ten percent by weight of titania resulted in an optimum effectiveness, and reduced the conductivity over 20% at 760 C (1400 F).

  19. High-temperature creep of polycrystalline chromium

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Klopp, W. D.

    1972-01-01

    The creep properties of high-purity, polycrystalline chromium were determined over the temperature range 0.51 to 0.78 T sub m, where T sub m is the melting temperature. Creep rates determined from step-load creep tests can be represented by the general creep equation; epsilon/D = k((sigma/E) to the nth power) where epsilon is the minimum creep rate, D is the diffusivity, k is the creep rate constant, sigma is the applied stress, E is the modulus, and n is the stress exponent, equal to 4.3 for chromium. This correlation and metallographic observations suggest a dislocation climb mechanism is operative in the creep of chromium over the temperature range investigated.

  20. Toroidal microinstability studies of high temperature tokamaks

    SciTech Connect

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter /eta//sub i/ /equivalent to/ (dlnT/sub i//dr)/(dlnn/sub i//dr), the characteristic features of the dominant mode are those of the /eta//sub i/-type instability when /eta//sub i/ > /eta//sub ic/ /approximately/1.2 to 1.4 and of the trapped-electron mode when /eta//sub i/ < /eta//sub ic/. 16 refs., 7 figs.

  1. Improved high-temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Chang, G. E.; Wright, W. F.; Ueda, K.; Orell, M. K.

    1989-01-01

    A study was performed with the objective of developing matrix resins that exhibit improved thermo-oxidative stability over state-of-the-art high temperature resins for use at temperatures up to 644 K (700 F) and air pressures up to 0.7 MPa (100 psia). The work was based upon a TRW discovered family of polyimides currently licensed to and marketed by Ethyl Corporation as EYMYD(R) resins. The approach investigated to provide improved thermo-oxidative properties was to use halogenated derivatives of the diamine, 2, 2-bis (4-(4-aminophenoxy)phenyl) hexafluoropropane (4-BDAF). Polyimide neat resins and Celion(R) 12,000 composites prepared from fluorine substituted 4-BDAF demonstrated unexpectedly lower glass transition temperatures (Tg) and thermo-oxidative stabilities than the baseline 4-BDAF/PMDA polymer.

  2. Simulated Data for High Temperature Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2006-01-01

    The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.

  3. Thermoelectric properties by high temperature annealing

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  4. An Alternative to Costly High Tech Contingency Plans.

    ERIC Educational Resources Information Center

    Bates, John E.; And Others

    1992-01-01

    At McGill University (Canada), rather than implement a costly, high-tech contingency and disaster recovery plan for information services, planners focused on risk assessment and avoidance for central and departmental information systems. Actions included better backups, less dependence on key individuals, and an institutional awareness campaign.…

  5. Reducing High Absenteeism through Low-Cost Incentives.

    ERIC Educational Resources Information Center

    North Chaplik, Barbara D.; Engel, Ross A.

    1984-01-01

    Describes a study of the effects of a low-cost incentive program--including daily, weekly, and monthly reinforcements such as attention, approval, and inexpensive awards--on the absenteeism of high-absence employees in an urban school district's transportation department. A 20-percent reduction in absenteeism was achieved. (TE)

  6. Mission Matters: The Cost of Small High Schools Revisited

    ERIC Educational Resources Information Center

    Stiefel, Leanna; Schwartz, Amy Ellen; Iatarola, Patrice; Chellman, Colin C.

    2009-01-01

    With the financial support of several large foundations and the federal government, creating small schools has become a prominent high school reform strategy in many large American cities. While some research supports this strategy, little research assesses the relative costs of these smaller schools. We use data on over 200 New York City high…

  7. Low Cost Lithography Tool for High Brightness LED Manufacturing

    SciTech Connect

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  8. The high temperature structural evolution of hafnia

    NASA Astrophysics Data System (ADS)

    Haggerty, Ryan Paul

    The transformations of HfO2 are often described as analogous with the transformations in ZrO2 because of the similar crystal structures; however the phase transformations in HfO2 occur at higher temperatures. Even though this phase transformation has been extensively studied in ZrO2, the respective transformation in HfO2 is relatively unstudied and the properties that are reported are inconsistent. Much of the difficulty associated with studying HfO2 is related to the high temperatures needed and the sensitivity of the crystal to the environmental partial pressure of O2. HfO2 is expected to be capable of producing the same level of transformation toughening as ZrO2 at temperatures beyond 1000°C, the thermodynamic limit for toughened ZrO2. Despite significant effort the toughening acquired has not met with expectation. By providing information on the structure of HfO2 as it undergoes transformation, this study makes a significant step towards solving this problem. Significant advancements in experimentation have enabled a systematic study of the structure of HfO2 in its monoclinic and tetragonal phases in air. Using a quadrupole lamp furnace and a novel curved image plate detector the structure of HfO2 and ZrO 2 have been characterized by high temperature x-ray diffraction. The structural information provided by these experiments allows the properties of the transformation to be further investigated. Using phenomenological theory of martensite crystallography, the strain associated with the transformation from the tetragonal to the monoclinic phase has been described and provides insight into the lack of transformation toughening found in HfO2. Further characterization includes determination of the transformation temperature in air, the change in volume associated with the transformation and the temperature hysteresis of the transformation. In addition to transformation properties, the thermal expansion of HfO2 and ZrO2 has been thoroughly described as a function

  9. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  10. High-Temperature Insulating Gap Filler

    NASA Technical Reports Server (NTRS)

    Toombs, Gordon R.; Oyoung, Kevin K.; Stevens, Everett G.

    1991-01-01

    New inorganic, ceramic filler for gaps between refractory ceramic tiles offers high resistance to heat and erosion. Consists of ceramic-fiber fabric precoated with silica and further coated with silica containing small amount of silicon carbide powder to increase thermal emittance. Developed as replacement for organic filler used on thermal-protection system of Space Shuttle. Promises to serve for many missions and to reduce cost and delay of refurbishing aerospace craft. Used as sealing material in furnaces or as heat shield for sensitive components in automobiles, aircraft, and home appliances.

  11. Electrochemical high-temperature gas sensors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  12. Thermometry of a high temperature high speed micro heater.

    PubMed

    Xu, M; Slovin, G; Paramesh, J; Schlesinger, T E; Bain, J A

    2016-02-01

    A high temperature high-speed tungsten micro heater was fabricated and tested for application in phase change switches to indirectly heat and transform phase change material. Time domain transmissometry was used to measure heater temperature transients for given electrical inputs. Finite element modeling results on heater temperature transients show a good consistency between experiments and simulations with 0.2% mismatch in the best case and 13.1% in the worst case. The heater described in this work can reliably reach 1664 K at a rate of 1.67 × 10(10) K/s and quench to room temperature with a thermal RC time constant (time for T to fall by a factor of e) of less than 40 ns. PMID:26931881

  13. High-Temperature Piezoelectric Ceramic Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Farmer, Serene C.; Dynys, Frederick W.

    2005-01-01

    Active combustion control of spatial and temporal variations in the local fuel-to-air ratio is of considerable interest for suppressing combustion instabilities in lean gas turbine combustors and, thereby, achieving lower NOx levels. The actuator for fuel modulation in gas turbine combustors must meet several requirements: (1) bandwidth capability of 1000 Hz, (2) operating temperature compatible with the fuel temperature, which is in the vicinity of 400 F, (3) stroke of approximately 4 mils (100 m), and (4) force of 300 lb-force. Piezoelectric actuators offer the fastest response time (microsecond time constants) and can generate forces in excess of 2000 lb-force. The state-of-the-art piezoceramic material in industry today is Pb(Zr,Ti)O3, called PZT. This class of piezoelectric ceramic is currently used in diesel fuel injectors and in the development of high-response fuel modulation valves. PZT materials are generally limited to operating temperatures of 250 F, which is 150 F lower than the desired operating temperature for gas turbine combustor fuel-modulation injection valves. Thus, there is a clear need to increase the operating temperature range of piezoceramic devices for active combustion control in gas turbine engines.

  14. MCT FPAs at high operating temperatures

    NASA Astrophysics Data System (ADS)

    Knowles, P.; Hipwood, L.; Pillans, L.; Ash, R.; Abbott, P.

    2011-11-01

    This paper summarises measurements and calculations of HOT performance in Selex Galileo's MW detectors and demonstrates that high quality imagery can be achieved up to 175K. The benefits of HOT operation for cooler performance and power dissipation are also quantified. The variable band gap of MCT provides the ability to optimise the cut-off wavelength for a wide range of operating temperatures. In particular, it provides the means to produce a MW detector that is well matched to the 3-5μm atmospheric transmission window at any temperature in the range from 80K up to room temperature. Competing InSb technology is disadvantaged at higher operating temperatures by a narrowing band gap, increasing cut-off wavelength, and inadequate EO performance. The practical upper limit of operating temperature for near-background limited performance is influenced by several factors, which fall into two categories: the fundamental physics of thermal dark current generation and black body emission from the cooled radiation shield, and the technology limitations of MCT diode leakage currents, excess noise, dark current due to defects, and injection efficiency into the ROIC.

  15. High temperature fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.; Kalluri, Sreeramesh

    1988-01-01

    The high temperature, creep-fatigue behavior of Haynes 188 was investigated as an element in a broader thermomechanical fatigue life prediction model development program at the NASA-Lewis. The models are still in the development stage, but the data that were generated possess intrinsic value on their own. Results generated to date is reported. Data were generated to characterize isothermal low cycle fatigue resistance at temperatures of 316, 704, and 927 C with cyclic failure lives ranging from 10 to more than 20,000. These results follow trends that would be predicted from a knowledge of tensile properties, i.e., as the tensile ductility varies with temperature, so varies the cyclic inelastic straining capacity. Likewise, as the tensile strength decreases, so does the high cyclic fatigue resistance. A few two-minute hold-time cycles at peak compressive strain were included in tests at 760 C. These results were obtained in support of a redesign effort for the Orbital Maneuverable System engine. No detrimental effects on cyclic life were noted despite the added exposure time for creep and oxidation. Finally, a series of simulated thermal fatigue tests, referred to as bithermal fatigue tests, were conducted using 316 C as the minimum and 760 C as the maximum temperature. Only out-of-phase bithermal tests were conducted to date. These test results are intended for use as input to a more general thermomechanical fatigue life prediction model based on the concepts of the total strain version of Strainrange Partitioning.

  16. Noise temperature in graphene at high frequencies

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  17. Evaluation of high temperature capacitor dielectrics

    NASA Astrophysics Data System (ADS)

    Hammoud, Ahmad N.; Myers, Ira T.

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  18. Medium Deep High Temperature Heat Storage

    NASA Astrophysics Data System (ADS)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  19. Nontrivial center dominance in high temperature QCD

    NASA Astrophysics Data System (ADS)

    Ishikawa, K.-I.; Iwasaki, Y.; Nakayama, Yu; Yoshie, T.

    2016-07-01

    We investigate the properties of quarks and gluons above the chiral phase transition temperature Tc, using the renormalization group (RG) improved gauge action and the Wilson quark action with two degenerate quarks mainly on a 323 × 16 lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively Z(3) center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a nontrivial Z(3) center. This is in agreement with our lattice simulation of high temperature quantum chromodynamics (QCD). We further observe that the temporal propagator of massless quarks at extremely high temperature β = 100.0(T ≃ 1058T c) remarkably agrees with the temporal propagator of free quarks with the Z(3) twisted boundary condition for t/Lt ≥ 0.2, but differs from that with the Z(3) trivial boundary condition. As we increase the mass of quarks mq, we find that the thermal ensemble continues to be dominated by the Z(3) twisted gauge field configurations as long as mq ≤ 3.0T and above that the Z(3) trivial configurations come in. The transition is similar to what we found in the departure from the conformal region in the zero-temperature many-flavor conformal QCD on a finite lattice by increasing the mass of quarks.

  20. Evaluation of high temperature capacitor dielectrics

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  1. A low cost alternative to high performance PCM bit synchronizers

    NASA Technical Reports Server (NTRS)

    Deshong, Bruce

    1993-01-01

    The Code Converter/Clock Regenerator (CCCR) provides a low-cost alternative to high-performance Pulse Code Modulation (PCM) bit synchronizers in environments with a large Signal-to-Noise Ratio (SNR). In many applications, the CCCR can be used in place of PCM bit synchronizers at about one fifth the cost. The CCCR operates at rates from 10 bps to 2.5 Mbps and performs PCM code conversion and clock regeneration. The CCCR has been integrated into a stand-alone system configurable from one to six channels and has also been designed for use in VMEbus compatible systems.

  2. Hughes integrated synthetic aperture radar: High performance at low cost

    SciTech Connect

    Bayma, R.W.

    1996-11-01

    This paper describes the background and development of the low cost high-performance Hughes Integrated Synthetic Aperture Radar (HISAR{trademark}) which has a full range of capabilities for real-time reconnaissance, surveillance and earth resource mapping. HISAR uses advanced Synthetic Aperture Radar (SAR) technology to make operationally effective images of near photo quality, day or night and in all weather conditions. This is achieved at low cost by maximizing the use of commercially available radar and signal-processing equipment in the fabrication. Furthermore, HISAR is designed to fit into an executive-class aircraft making it available for a wide range of users. 4 refs., 8 figs.

  3. High efficiency low cost monolithic module for SARSAT distress beacons

    NASA Technical Reports Server (NTRS)

    Petersen, Wendell C.; Siu, Daniel P.

    1992-01-01

    The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.

  4. Measurements of surface air temperatures in Lombok with low cost miniature data loggers

    NASA Astrophysics Data System (ADS)

    Sudiarta, I. W.; Yadnya, M. S.; Mardiana, L.; Kuripan, I. N.

    2014-09-01

    The global warming and climate change are two of our major problems in this decade. Local impacts of global warming need to be investigated since it depends on local conditions. Understanding variability of local weather especially surface air temperature requires many observations, not only periodic but also covers large area. In this paper, we report our progress in developing low cost miniature data loggers for temperature measurements. The data loggers are based on microcontrollers ATMega8L and 10 kΩ thermistors. Calibration results in laboratory and in field have indicated that the temperature obtained by data loggers shows good agreement with thermometer readings. It is found that errors of temperature measurements are less than 0.3 °C. We have performed preliminary temperature measurements in Lombok Island using twenty data loggers for about one week duration. Temperature variation in Lombok shows localized temperature distribution that is affected by position and topography.

  5. Innovative, High-Pressure, Cryogenic Control Valve: Short Face-to-Face, Reduced Cost

    NASA Technical Reports Server (NTRS)

    Wilkes, Karlin; Larsen, Ed; McCourt, Jackson

    2003-01-01

    A control valve that can throttle high-pressure cryogenic fluid embodies several design features that distinguish it over conventional valves designed for similar applications. Field and design engineers worked together to create a valve that would simplify installation, trim changes, and maintenance, thus reducing overall cost. The seals and plug stem packing were designed to perform optimally in cryogenic temperature ranges. Unlike conventional high-pressure cryogenic valves, the trim size can be changed independent of the body.

  6. Insulation system for high temperature superconductor cables

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Haight, A. E.; Bromberg, L.; Kano, K.

    2015-12-01

    Large-scale superconductor applications, like fusion magnets, require high-current capacity conductors to limit system inductance and peak operating voltage. Several cabling methods using high temperature superconductor (HTS) tapes are presently under development so that the unique high-field, high-current-density, high operating temperature characteristics of 2nd generation REBCO coated conductors can be utilized in next generation fusion devices. Large-scale magnets are generally epoxy impregnated to support and distribute electromagnetic stresses through the magnet volume. However, the present generation of REBCO coated conductors are prone to delamination when tensile stresses are applied to the broad surface of REBCO tapes; this can occur during epoxy cure, cooldown, or magnet energization. We present the development of an insulation system which effectively insulates HTS cabled conductors at high withstand voltage while simultaneously preventing the intrusion of the epoxy impregnant into the cable, eliminating degradation due to conductor delamination. We also describe a small-scale coil test program to demonstrate the cable insulation scheme and present preliminary test results.

  7. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1988-01-01

    Analytical, numerical and experimental studies were performed on two classes of high temperature materials processing furnaces. The research concentrates on a commercially available high temperature furnace using zirconia as the heating element and an arc furnace based on a ST International tube welder. The zirconia furnace was delivered and work is progressing on schedule. The work on the arc furnace was initially stalled due to the unavailability of the NASA prototype, which is actively being tested aboard the KC-135 experimental aircraft. A proposal was written and funded to purchase an additional arc welder to alleviate this problem. The ST International weld head and power supply were received and testing will begin in early November. The first 6 months of the grant are covered.

  8. High temperature superconductor materials and applications

    NASA Technical Reports Server (NTRS)

    Doane, George B., III. (Editor); Banks, Curtis; Golben, John

    1991-01-01

    One of the areas concerned itself with the investigation of the phenomena involved in formulating and making in the laboratory new and better superconductor material with enhanced values of critical current and temperature. Of special interest were the chemistry, physical processes, and environment required to attain these enhanced desirable characteristics. The other area concerned itself with producing high temperature superconducting thin films by pulsed laser deposition techniques. Such films are potentially very useful in the detection of very low power signals. To perform this research high vacuum is required. In the course of this effort, older vacuum chambers were maintained and used. In addition, a new facility is being brought on line. This latter activity has been replete with the usual problems of bringing a new facility into service. Some of the problems are covered in the main body of this report.

  9. High temperature superconductors for magnetic suspension applications

    NASA Technical Reports Server (NTRS)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.

    1994-01-01

    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  10. High temperature, bonded titanium diboride sputter target

    SciTech Connect

    Hale, G.J.; Gates, W.G.

    1981-10-01

    A high-temperature bonding technique has been employed in the development of an improved sputter deposition target for hard, crack-prone materials such as titanium diboride (TiB/sub 2/). Titanium diboride was bonded to a thin metal backing plate, both materials having a similar linear coefficient of thermal expansion (LCTE) using a high-temperature braze alloy. The thin metal backing plate helps stabilize the movement of the target material during the sputter deposition operation. The bonded sputter target has a useable life of 50 to 75 times that of a unbonded target. This bonding technique may be used on a variety of hard, brittle, crack-prone, sputterable materials (including metal oxides, carbides borides, and nitrides). US Patent 4,209,375 has been issued as a result of this endeavor.

  11. High temperature seal for large structural movements

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Dunlap, Jr., Patrick H. (Inventor)

    2004-01-01

    A high temperature sealing system is operative to seal an interface between adjacent hot structures and to minimize parasitic flow between such structures that move relative to one another in-plane or out-of-plane. The sealing system may be used to seal thrust-directing ramp structures of a reusable launch vehicle and includes a channel and a plurality of movable segmented sealing elements. Adjacent ramp structures include edge walls which extend within the channel. The sealing elements are positioned along the sides of the channel and are biased to engage with the inner surfaces of the ramp structures. The segmented sealing elements are movable to correspond to the contour of the thrust-directing ramp structures. The sealing system is operative to prevent high temperature thrust gases that flow along the ramp structures from infiltrating into the interior of the vehicle.

  12. Magnetic suspension using high temperature superconducting cores

    NASA Technical Reports Server (NTRS)

    Scurlock, R. G.

    1992-01-01

    The development of YBCO high temperature superconductors, in wire and tape forms, is rapidly approaching the point where the bulk transport current density j vs magnetic field H characteristics with liquid nitrogen cooling will enable its use in model cores. On the other hand, BSCCO high temperature superconductor in wire form has poor j-H characteristics at 77 K today, although with liquid helium or hydrogen cooling, it appears to be superior to NbTi superconductor. Since liquid nitrogen cooling is approx. 100 times cheaper than liquid helium cooling, the use of YBCO is very attractive for use in magnetic suspension. The design is discussed of a model core to accommodate lift and drag loads up to 6000 and 3000 N respectively. A comparison is made between the design performance of a liquid helium cooled NbTi (or BSCCO) superconducting core and a liquid nitrogen cooled YBCO superconducting core.

  13. Precision control of high temperature furnaces

    SciTech Connect

    Pollock, G.G.

    1994-12-31

    It is an object of the present invention to provide precision control of high temperature furnaces. It is another object of the present invention to combine the power of two power supplies of greatly differing output capacities in a single furnace. This invention combines two power supplies to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. Further, this invention comprises a means for high speed measurement of temperature of the process by the method of measuring the amount of current flow in a deliberately induced charged particle current.

  14. Hole-doped cuprate high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Chu, C. W.; Deng, L. Z.; Lv, B.

    2015-07-01

    Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.

  15. Advanced High Temperature Reactor Systems and Economic Analysis

    SciTech Connect

    Holcomb, David Eugene; Peretz, Fred J; Qualls, A L

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience with

  16. Safety philosophy of gas turbine high temperature reactor (GTHTR300)

    SciTech Connect

    Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa

    2002-07-01

    Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Major features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)

  17. A high temperature superconductivity communications flight experiment

    NASA Technical Reports Server (NTRS)

    Ngo, P.; Krishen, K.; Arndt, D.; Raffoul, G.; Karasack, V.; Bhasin, K.; Leonard, R.

    1992-01-01

    The proposed high temperature superconductivity (HTSC) millimeter-wave communications flight experiment from the payload bay of the Space Shuttle Orbiter to the Advanced Communications Technology Satellite (ACTS) in geosynchronous orbit is described. The experiment will use a Ka-band HTSC phased array antenna and front-end electronics to receive a downlink communications signal from the ACTS. The discussion covers the system configuration, a description of the ground equipment, the spacecraft receiver, link performance, thermal loading, and the superconducting antenna array.

  18. High temperature, flexible, fiber-preform seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Strocky, Paul J. (Inventor)

    1992-01-01

    A seal is mounted in a rectangular groove in a movable structural panel. The seal comprises a fiber preform constructed of multiple layers of fiber having a uniaxial core. Helical fibers are wound over the core. The fibers are of materials capable of withstanding high temperatures and are both left-hand and right-hand wound. An outer layer wrapped over said helical fibers prevents abrasion damage.

  19. Intermetallic-Based High-Temperature Materials

    SciTech Connect

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  20. Thermal fuse for high-temperature batteries

    DOEpatents

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.

    2000-01-01

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  1. High Temperature Strain Gage Calibration Fixture

    NASA Technical Reports Server (NTRS)

    Vranas, T. (Inventor)

    1976-01-01

    An apparatus and method are described for calibrating high temperature strain gases which serve for both dead weight and constant deflection measurements. A cantilever support arm allows the test unit to slide into a furnace while one end is subjected to bending strain either by hanging weights upon it or by deflecting it with a push rod. The dual nature of the fixture permits both tests to be run without change of the test specimen or removal from the furnace.

  2. Caldron For High-Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Geringer, Henry J.

    1989-01-01

    Induction-heated caldron melts high-temperature alloys. Prevents sort of contamination of melts occurring during arc melting in ceramic crucibles. Liquefies 200 grams of solid metal components of alloy like niobium aluminum and makes alloy homogeneous in less than 3 minutes. Plugged sleeve constitutes main body of caldron. Coolant flows through sleeve to prevent it from melting. Mandrel-wound induction coils adjusted to tune source of power. Also serves as mold for casting alloys into such shapes as bars.

  3. Establishment of Harrop, High-Temperature Viscometer

    SciTech Connect

    Schumacher, R.F.

    1999-11-05

    This report explains how the Harrop, High-Temperature Viscometer was installed, calibrated, and operated. This report includes assembly and alignment of the furnace, viscometer, and spindle, and explains the operation of the Brookfield Viscometer, the Harrop furnace, and the UDC furnace controller. Calibration data and the development of the spindle constant from NIST standard reference glasses is presented. A simple operational procedure is included.

  4. High Temperature Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  5. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2005-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  6. Trends in Surface Temperature at High Latitudes

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record

  7. Self Healing in Coatings at High Temperatures

    NASA Astrophysics Data System (ADS)

    Sloof, Wim G.

    Alloys for high temperature applications in an oxidizing environment depend on the formation of a protective and slow growing oxide scale. The composition of these alloys is such that a continuous layer of a thermodynamically stable oxide is formed through selective oxidation of one of the constituting elements. Then, the oxide layer forms a barrier between the environment and the underlying alloy. The alloys for high temperature applications can be divided into alumina (Al2O3), silica (SiO2), or chromia (Cr2O3) formers, such as stainless steels, superalloys (Reed 2006), and intermetallics (MX, where M is Ti, Fe, Co or Ni, and X denotes Al, Si, or Cr). These materials are successfully applied in for example gas turbine engines (aero, marine, and industrial), heating equipment and automotive converters etc. In this chapter, the focus will be on alumina forming alloys encountered as coating material for blades and vanes in gas turbine engines. However, the principles addressed also apply to the other mentioned classes of high temperature alloys.

  8. High temperature hot water distribution system study

    SciTech Connect

    1996-12-01

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  9. High Temperature VARTM of Phenylethynyl Terminated Imides

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.

    2009-01-01

    Depending on the part type and quantity, fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) can be more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 C or 280 C and cured at temperature up to 371 C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. This finding was unexpected as high quality composite laminates have been fabricated under higher pressures using these resin systems. The amount of weight loss experienced during the thermal cycle was only about 1% by weight, but this leads to a significant amount of volatiles in a closed system. By modifying the thermal cycle used in laminate fabrication, the void content was significantly reduced (typically 3% or less). The results of this work are presented herein.

  10. Precipitation Hardenable High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)

    2010-01-01

    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.

  11. High temperature superconducting digital circuits and subsystems

    SciTech Connect

    Martens, J.S.; Pance, A.; Whiteley, S.R.; Char, K.; Johansson, M.F.; Lee, L.; Hietala, V.M.; Wendt, J.R.; Hou, S.Y.; Phillips, J.

    1993-10-01

    The advances in the fabrication of high temperature superconducting devices have enabled the demonstration of high performance and useful digital circuits and subsystems. The yield and uniformity of the devices is sufficient for circuit fabrication at the medium scale integration (MSI) level with performance not seen before at 77 K. The circuits demonstrated to date include simple gates, counters, analog to digital converters, and shift registers. All of these are mid-sized building blocks for potential applications in commercial and military systems. The processes used for these circuits and blocks will be discussed along with observed performance data.

  12. Structural relationships in high temperature superconductors

    SciTech Connect

    Schuller, I.K.; Segre, C.U.; Hinks, D.G.; Jorgensen, J.D.; Soderholm, L.; Beno, M.; Zhang, K.

    1987-09-01

    The recent discovery of two types of metallic copper oxide compounds which are superconducting to above 90/sup 0/K has renewed interest in the search for new high temperature superconducting materials. It is significant that both classes of compounds, La/sub 2-x/Sr/sub x/CuO/sub 4-y/ and YBa/sub 2/Cu/sub 3/O/sub 7-delta/ are intimately related to the extensively studied perovskite family. Both compounds contain highly oxidized, covalently bonded Cu-O sublattices, however, they differ in geometry. In this paper we discuss the relationship of these features to the superconducting properties. 30 refs., 6 figs.

  13. High temperature aqueous stress corrosion testing device

    DOEpatents

    Bornstein, A.N.; Indig, M.E.

    1975-12-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston.

  14. High-temperature fatigue in metals

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    The presentation focuses primarily on the progress we at NASA Lewis Research Center have made. The understanding of the phenomenological processes of high temperature fatigue of metals for the purpose of calculating lives of turbine engine hot section components is discussed. Improved understanding resulted in the development of accurate and physically correct life prediction methods such as Strain-Range Partitioning for calculating creep fatigue interactions and the Double Linear Damage Rule for predicting potentially severe interactions between high and low cycle fatigue. Examples of other life prediction methods are also discussed.

  15. High temperature superconducting current leads for fusion magnet systems

    NASA Astrophysics Data System (ADS)

    Wu, J. L.; Dederer, J. T.; Singh, S. K.; Hull, J. R.

    Superconducting magnets for fusion applications typically have very high operating currents. These currents are transmitted from the room temperature power supplies to the low temperature superconducting coils by way of helium-vapor-cooled current leads. Because of the high current magnitude and the resistive characteristics associated with the normal metallic lead conductors, a substantial amount of power is dissipated in the lead. To maintain a stable operation, a high rate of helium vapor flow, generated by the boil-off of liquid helium, is required to cool the lead conductors. This helium boil-off substantially increases both the installation capacity and the operating cost of the helium refrigerator/liquefier. The boil-off of liquid helium can be significantly reduced by employing ceramic high temperature superconductors, such as Y-Ba-Cu-O, in the low temperature part of the lead conductor structure. This concept utilizes the superconducting, as well as the low thermal conductivity properties of the superconductor materials in eliminating power dissipation in part of the current lead and in inhibiting heat conduction into the liquid helium pool, resulting in reduced helium boil-off. This design concept has been conclusively demonstrated by a 2-kA current lead test model using Y-Ba-Cu-O (123) material which, although not optimized in design, has significantly reduced the rate of helium boil-off in comparison to optimized conventional leads. There appear to be no major technological barriers for scaling up this design to higher current levels for applications in fusion magnet systems or in fusion related testing activities. The theoretical basis of the current lead concept, as well as the important design and technology issues are addressed. The potential cost saving derived from employing these leads in fusion magnets is also discussed. In addition, a design concept for a 10-kA lead is presented.

  16. High temperature inorganic membranes for separating hydrogen

    SciTech Connect

    Fain, D.E.; Roettger, G.E.

    1995-08-01

    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  17. High Temperature Wear of Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.

    2005-01-01

    It was initially hypothesized that advanced ceramics would exhibit favorable high te- friction and wear properties because of their high hot hardness and low achievable surface roughness welding observed in metals does not occur in ceramics. More recent tribological studies of many nitride, carbide, oxide and composite ceramics, however, have revealed that ceramics often exhibit high friction and wear in non-lubricated, high temperature sliding contacts. A summary is given to measure friction and wear factor coefficients for a variety of ceramics from self mated ceramic pin-on-disk tests at temperatures from 25 to up to 1200 C. Observed steady state friction coefficients range from about 0.5 to 1.0 or above. Wear factor coefficients are also very high and range from about to 10(exp -5) to 10(exp -2) cubic millimeters per N-m. By comparison, oil lubricated steel sliding results in friction coefficients of 0.1 or less and wear factors less than 10(exp -9) cubic millimeters per N-m.

  18. High-temperature alloys for high-power thermionic systems

    SciTech Connect

    Shin, Kwang S.; Jacobson, D.L.; D'cruz, L.; Luo, Anhua; Chen, Bor-Ling.

    1990-08-01

    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  19. Polymer concrete pipe for high-temperature corrosive environments

    SciTech Connect

    Kukacka, L.E.; Schroeder, J.E.

    1981-01-01

    Polymer concrete is a composite material which has strength and durability characteristics greatly superior to those of Portland cement concrete and better durability than steel. Polymer concrete has been successfully tested in brine, flashing brine and steam at temperatures up to 260/sup 0/C. Exposures were as long as 960 days. Glass filament wound polymer concrete pipe was developed with excellent strength, low weight, and a cost comparable to or less than schedule 40 steel. Connections can be made with slip joints for low pressure applications and flanged joints for high pressure applications.

  20. Coatings for high-temperature structural materials: Trends and opportunities

    SciTech Connect

    1996-12-31

    This book assesses the state of the art of coatings materials and processes for gas-turbine blades and vanes, determines potential applications of coatings in high-temperature environments, identifies needs for improved coatings in terms of performance enhancements, design considerations, and fabrication processes, assesses durability of advanced coating systems in expected service environments, and discusses the required inspection, repair, and maintenance methods. The promising areas for research and development of materials and processes for improved coating systems and the approaches to increased coating standardization are identified, with an emphasis on materials and processes with the potential for improved performance, quality, reproducibility, or manufacturing cost reduction.

  1. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) at the NASA Lewis Research Center is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites - PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites - MMC's and IMC's), and turbine materials (ceramic-matrix composites - CMC's). These advanced materials are being developed in-house by Lewis researchers and on grants and contracts.

  2. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    NASA Astrophysics Data System (ADS)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  3. High Temperature VARTM of Phenylethynyl Terminated Imides

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.; Ghose, Sayata; Watson, Kent A.

    2009-01-01

    Fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 C or 280 C and cured at 371 C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. By modifying the thermal cycle used in laminate fabrication, the void content was reduced significantly (typically approximately 3%). Densities of the composites were determined using a density gradient column and the glass transition temperatures of the cured composites were measured by dynamic mechanical analysis. Photomicrographs of the panels were taken and void contents were determined by acid digestion. The results of this work are presented herein.

  4. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  5. Improved Seals for High Temperature Airframe Applications

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H.; Steinetz, Bruce M.

    2006-01-01

    Current thermal barrier seals, such as those used on the Space Shuttle, are insufficient to fully meet the demands of future hypersonic vehicles and reentry spacecraft. Previous investigations have demonstrated limited usage temperatures, as evidenced by a decreased ability to maintain sealing effectiveness at high temperatures (i.e., inadequate resiliency). In order to improve resiliency at elevated temperatures, Rene 41 (Allvac) was substituted for Inconel X-750 (Special Metals Corp.) as the spring tube material in the existing seal design. A seal construction incorporating the Rene 41 spring tube was fabricated and tested against the baseline Inconel X-750 spring tube seal. Although resiliency improvements were not as dramatic as in previous tests with the spring tubes alone, seals incorporating the Rene 41 spring tube exhibited an average 20 percent resiliency enhancement up to 1750 F when compared to seals containing the Inconel spring tube. In addition, the seals with the Rene 41 spring tubes showed less reduction in resiliency as temperatures increased above 1200 F. Results also indicated the Saffil (Saffil Ltd.) insulation in the core of the seal contributed more to resiliency than previously thought. Leakage data did not demonstrate an improvement with the seal containing the Rene 41 spring tube. However, based upon resiliency results, one could reasonably expect the Rene 41 version of the seal to track gap openings over a wider range. Therefore it would exhibit lower leakage than the Inconel X-750 version as the seal gap opens during a typical mission.

  6. Costs of most frequent nursing activities in highly dependent hospitalized patients.

    PubMed

    Lima, Antônio Fernandes Costa; Castilho, Valéria; Fugulin, Fernanda Maria Togeiro; Silva, Belisa; Ramin, Natália Siqueira; Melo, Talita de Oliveira

    2012-01-01

    This quantitative study aimed to identify the costs of the most frequent nursing activities in highly dependent hospitalized patients at a medical clinic. The non-probabilistic convenience sample corresponded to 607 observations regarding oral feeding activities (OF), blood pressure verification (BP) / heart rate (HR), body temperature checking (BTC), performance of intimate hygiene and management of feeding probe. The costs identified corresponded to R$2.40 (SD±2.64) for OF feeding; R$1.26 (SD±0.48) to verify the BP/HR; R$1.17 (SD±0.46) for BTC; R$15.59 (SD±8.62) to perform intimate hygiene and R$5.95 (SD±2.13) for management of feeding probe. This study will facilitate cost management, with a view to avoiding waste related to unnecessary resource consumption and establish a correlation between costs and care delivery results. PMID:23174832

  7. High temperature behavior of zirconium germanates

    SciTech Connect

    Utkin, A.V.; Baklanova, N.I.; Vasilyeva, I.G.

    2013-05-01

    The high temperature behavior of zirconium germanates ZrGeO₄ and Zr₃GeO₈ up to 2300 °C has been studied using the original photoemission thermal analysis technique with the comprehensive physicochemical study of solid and gaseous intermediate and final products. The two-stage process of incongruent sublimation of GeO₂ was established and the phase boundary of the homogeneity range for ZrGeO₄ and Zr₃GeO₈ were deduced from the thermal analysis, X-ray diffraction and Raman spectroscopy studies. A high tendency to sintering of the final ZrO₂ product is discussed. - Graphical abstract: The decomposition of zirconium germanates leads to the formation of gaseous GeO₂ and solid sintered ZrO₂ and occurs via two stages with the formation of intermediate ZrO₂-rich solid solution. Highlights: •Thermal behavior of ZrGeO₄ and Zr₃GeO₈ was studied using the original thermal analysis technique in wide temperature range. •The decomposition occurs via two stages with the formation of intermediate ZrO₂-rich solid solution. •The decomposition of zirconium germanates leads to the formation of gaseous GeO₂ and solid sintered ZrO₂. •The temperature of decomposition is strongly depended on the total gas pressure.

  8. Yttrium NMR of YBCO at High Temperature

    NASA Astrophysics Data System (ADS)

    Nandor, V. A.; Pennington, C. H.; Martindale, J. A.; Hults, W. L.; Smith, J. L.

    1997-03-01

    It is well known that in the normal state of YBa_2Cu_3O_7, the ^89Y and planar ^17O spin-lattice relaxation rates (1/T_1) have a Korringa temperature dependence. However, the planar ^63Cu 1/T1 has a very different, sub-Korringa behavior(T. Imai et. al), Phys. Rev. Lett. 70, 1002 (1993).. In the Millis, Monien, and Pines (MMP) model(A.J. Millis, H. Monien and D. Pines, Phys Rev. B. 42), 167 (1990)., these contrasting behaviors are explained in terms of hyperfine "form factor" effects: antiferromagnetic fluctuations, which play a dominant role in ^63Cu relaxation, do not hyperfine couple to ^89Y or ^17O which are situated equidistant from the antiferromagnetically aligned spins. One expects, however, that at high temperatures, spin correlations will be diminished, and that the 1/T1 behaviors of (^17O,^89Y) and that of ^63Cu may converge. We report measurements of ^89Y 1/T1 at high temperatures, on unaligned powder YBa_2Cu_3O7 samples, and compare the results with these expectations.

  9. Non contact mechanical testing at high temperature using electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Gangireddy, Sindhura

    Ultra high temperature ceramics (UHTCs) recently captured interest as potential materials for reusable thermal protection systems and other components in future generation supersonic and hypersonic vehicles where temperatures can reach > 2000 °C. A novel method for mechanical testing of UHTCs at such ultra high temperatures is developed utilizing electromagnetic force. Resistively heated and self-supported specimens in thin ribbon geometry under application of a transverse magnetic field undergo flexural stress from the electromagnetic Lorentz forces, which act as a distributed mechanical load and deform the specimen. This non-contact technique, termed Electro-Magnetic Mechanical Apparatus (EMMA), allows performing rapid tests in a low cost table-top apparatus at temperatures, as high as 2200 °C, otherwise impossible to achieve. The flexibility of this method offers ample opportunity to explore a wide range of mechanical properties. For example utilizing a DC current for resistive heating with a DC magnetic field creates constant loads for Creep testing; replacing with a AC current generates cyclic loads for Fatigue testing; larger magnetic fields can be used for Fast -- Fracture experiments; and impulse excitation of the magnetic field vibrates the specimens and enables the determination of the material's Elastic and Loss Modulus. Zirconium Diboride and Silicon Carbide (ZrB2-SiC) is a prominent member of UHTCs. The creep properties of this composite are explored using this technique in the temperature range 1600 -- 2200 °C under stress ranging from 20 -- 50 MPa in ambient air as well as non-reactive Nitrogen atmosphere. The kinetic parameters of creep, activation energy and stress exponent are established in the testing range. The creep response from the two environments is compared to understand the effect of the concomitant oxidation during high temperature testing in air. Comparison of creep data from conventional 3-pt, 4-pt flexure tests corroborate the

  10. High-Energy-Density Cost-Effective Graphene Supercapacitors

    NASA Astrophysics Data System (ADS)

    Samuilov, Vladimir; Ying Mu, Ying; Hedayat, Nader; Solovyov, Vyacheslav; Sensor CAT at Stony Brook Team

    We introduce a cost-effective graphene platelet composite material as a replacement of an expensive reduced graphene oxide for electrodes in high energy density supercapacitors. We have tested a low size supercapacitor prototypes with the graphene platelets electrodes and newly developed polymer-gel Li + ion electrolyte. We discuss the ways how to increase the capacitance and the energy densities of the supercapacitor significantly. A working prototype for testing the concept of the high voltage supercapacitor has been developed as well. The first test done up to 10 V showed excellent performance of the multy-cell multi-layer high voltage test assembly.

  11. Aerospace Applications Of High Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Anderson, W. W.

    1988-05-01

    The existence of superconductors with TcOOK (which implies device operating temper-atures the order of Top ≍45K) opens up a variety of potential applications within the aerospace/defense industry. This is partly due to the existence of well developed cooler technologies to reach this temperature regime and partly due to the present operation of some specialized components at cryogenic temperatures. In particular, LWIR focal planes may operate at 10K with some of the signal processing electronics at an intermediate temperature of 40K. Addition of high Tc superconducting components in the latter system may be "free" in the sense of additional system complexity required. The established techniques for cooling in the 20K to 50K temperature regime are either open cycle, expendable material (stored gas with Joule-Thomson expansion, liquid cryogen or solid cryogen) or mechanical refrigerators (Stirling cycle, Brayton cycle or closed cycle Joule-Thomson). The high Tc materials may also contribute to the development of coolers through magnetically levitated bearings or providing the field for a stage of magnetic refrigeration. The discovery of materials with Tc, 90K has generated a veritable shopping list of applications. The superconductor properties which are of interest for applications are (1) zero resistance, (2) Meissner effect, (3) phase coherence and (4) existence of an energy gap. The zero resistance property is significant in the development of high field magnets requiring neglible power to maintain the field. In addition to the publicized applications to rail guns and electromagnetic launcher, we can think of space born magnets for charged particle shielding or whistler mode propagation through a plasma sheath. Conductor losses dominate attenuation and dispersion in microstrip transmission lines. While the surface impedance of a superconductor is non vanishing, significant improvements in signal transmission may be obtained. The Meissner effect may be utilized

  12. The NASA high temperature superconductivity program

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-01-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  13. High-Temperature Strain-And-Temperature Gauge

    NASA Technical Reports Server (NTRS)

    Wnuk, S. P.; Lanius, S. J.

    1989-01-01

    Two-element gauge used alternately in two different bridge circuits to measure both temperature and strain. Three-lead strain-and-temperature gauge developed for use at temperatures up to 750 degree F (390 degree C) on fiber-reinforced carbon/carbon composite material having coefficient of thermal expansion of 0.8 ppm/degree F. Unlike most temperature-compensated gauges, gauge gives accurate results even during rapid heating and cooling cycles. Similar gauges produced for materials with different coefficients of thermal expansion.

  14. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    SciTech Connect

    Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy; Salas, Ken; Samudrala, Omprakash; Shah, Manoj; Van Dam, Jeremy; Yin, Weijun; Zia, Jalal

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  15. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  16. Structural application of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    The operation of rocket engine turbine pumps is limited by the temperature restrictions of metallic components used in the systems. Mechanical strength and stability of these metallic components decrease drastically at elevated temperatures. Ceramic materials that retain high strength at high temperatures appear to be a feasible alternate material for use in the hot end of the turbopumps. This project identified and defined the processing parameters that affected the properties of Si3N4, one of candidate ceramic materials. Apparatus was assembled and put into operation to hot press Si3N4 powders into bulk material for in house evaluation. A work statement was completed to seek outside contract services to design, manufacture, and evaluate Si3N4 components in the service environments that exists in SSME turbopumps.

  17. Creep resistant high temperature martensitic steel

    SciTech Connect

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  18. High Temperature Geothermal Elastomer Compund Development

    SciTech Connect

    Hirasuna, A. R.

    1981-01-01

    Reliable casting packer seal elastomers for the unusually severe geothermal environment at 260 C (500 F) did not exist in 1976. L'Garde, Inc., was awarded a contract to fulfill this need by the US Department of Energy. Successful development was completed in 1979. Compounds based on four different polymer systems were developed, all of which exceed the contract requirements. Successful laboratory tests above 300 C (575 F) have been performed with packer seals. Field tests to temperatures as high as 317 C (603 F) have been performed on static O-rings in a cablehead. Successful, dynamic, drill bit seal tests were run with a presoak temperature of 288 C (550 F). The successful compounds are based on the following polymer systems: EPDM; FKM; EPDM/FKM blend, and propylene-TFE.

  19. Operator manual: high temperature heat pump

    SciTech Connect

    Dyer, D.F.; Maples, G.; Burch, T.E.; Chancellor, P.D.

    1980-03-04

    Experimental data is being obtained from operating a high temperature heat pump system. The use of methanol as a working fluid will necessitate careful monitoring of refrigerant temperatures and pressures with chemical analysis performed on the working fluid during scheduled down time. Materials sent to vendors by Auburn University and quotes received by Auburn concerning equipment (compressor, evaporator, condensor, air heater, dryer, two accumulator tanks, and three expansion valves) are discussed. The simulated dryer and two accumulator tanks were designed by Auburn. The detailed design and pricing estimates are included. Additional information is presented on layout and construction; start-up; testing; shut down; scheduled maintenance and inspection; safety precautions; control system; and trouble shooting.

  20. Diamond switches for high temperature electronics

    SciTech Connect

    Prasad, R.R.; Rondeau, G.; Qi, Niansheng

    1996-04-25

    Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.