Coulomb excitation studies of shape coexistence in atomic nuclei
NASA Astrophysics Data System (ADS)
Görgen, Andreas; Korten, Wolfram
2016-02-01
Low-energy Coulomb excitation provides a well-understood means of exciting atomic nuclei and allows measuring electromagnetic moments that can be directly related to the nuclear shape. The availability of radioactive ion beams (RIBs) at energies near the Coulomb barrier has made it possible to study shape coexistence in a variety of short-lived exotic nuclei. This review presents a short overview of the methods related to multi-step Coulomb excitation experiments, followed by a discussion of several examples. The focus is on two mass regions where recent Coulomb excitation experiments have contributed to the quantitative understanding of shape coexistence: nuclei with mass A≈ 70 near the N = Z line and nuclei with A ≈ 100 near neutron number N = 60. Experimental results are summarized and their significance for understanding shape coexistence is discussed. Experimental observables such as quadrupole moments and electromagnetic transition strengths represent furthermore important benchmarks for advancing theoretical nuclear structure models. With several new RIB facilities planned and under construction, Coulomb excitation will remain to be an important tool to extend the studies of nuclear shapes toward more exotic systems, and to obtain a more comprehensive and quantitative understanding of shape coexistence.
Coulomb excitation of radioactive {sup 79}Pb
Lister, C.J.; Blumenthal, D.; Davids, C.N.
1995-08-01
The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.
Coulombic contribution and fat center vortex model
Rafibakhsh, Shahnoosh; Deldar, Sedigheh
2007-02-27
The fat (thick) center vortex model is one of the phenomenological models which is fairly successful to interpret the linear potential between static sources. However, the Coulombic part of the potential has not been investigated by the model yet. In an attempt to get the Coulombic contribution and to remove the concavity of the potentials, we are studying different vortex profiles and vortex sizes.
Coulomb excitation of {sup 189}Os
Seale, W.A.; Botelho, S.; Ribas, R.V.
1993-10-01
The transitional nucleus {sup 189}Os has been studied by Coulomb excitation. Measurements with a Ge(HP) detector were made at 0{degrees}, 55{degrees}, 90{degrees} with beams of {sup 28}Si at 80 and 88 Me {sup 35}Cl at 80 MeV and {sup 16}O at 58 MeV. A total of gamma-ray transitions leading to 23 levels we used in the least-squares code GOSIA to determined reduced matrix elements. A theoretic understanding of this nucleus has been attempt from the point of view of current nuclear mode as they apply to systematics of the 1/2 {sup -}[510] 3/2 -[512], 1/2 [503] levels in this ma region.
Analysis and results of the 104Sn Coulomb excitation experiment
NASA Astrophysics Data System (ADS)
Guastalla, G.; DiJulio, D. D.; Górska, M.; Cederkäll, J.; Boutachkov, P.; Golubev, P.; Pietri, S.; Grawe, H.; Nowacki, F.; Algora, A.; Ameil, F.; Arici, T.; Atac, A.; Bentley, M. A.; Blazhev, A.; Bloor, D.; Brambilla, S.; Braun, N.; Camera, F.; Domingo Pardo, C.; Estrade, A.; Farinon, F.; Gerl, J.; Goel, N.; Grȩbosz, J.; Habermann, T.; Hoischen, R.; Jansson, K.; Jolie, J.; Jungclaus, A.; Kojouharov, I.; Knoebel, R.; Kumar, R.; Kurcewicz, J.; Kurz, N.; Lalović, N.; Merchan, E.; Moschner, K.; Naqvi, F.; Nara Singh, B. S.; Nyberg, J.; Nociforo, C.; Obertelli, A.; Pfützner, M.; Pietralla, N.; Podolyák, Z.; Prochazka, A.; Ralet, D.; Reiter, P.; Rudolph, D.; Schaffner, H.; Schirru, F.; Scruton, L.; Swaleh, T.; Taprogge, J.; Wadsworth, R.; Warr, N.; Weick, H.; Wendt, A.; Wieland, O.; Winfield, J. S.; Wollersheim, H. J.
2014-09-01
The analysis of the Coulomb excitation experiment conducted on 104Sn required a strict selection of the data in order to reduce the large background present in the γ-ray energy spectra and identify the γ-ray peak corresponding to the Coulomb excitation events. As a result the B(E2; 0+ → 2+) value could be extracted, which established the downward trend towards 100Sn and therefore the robustness of the N=Z=50 core against quadrupole excitations.
Characterizing intra-exciton Coulomb scattering in terahertz excitations
Zybell, S.; Eßer, F.; Helm, M.; Bhattacharyya, J.; Winnerl, S.; Schneider, H.; Schneebeli, L.; Böttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.
2014-11-17
An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.
Coulomb excitation of C{sub 60} molecules
Esbensen, H.; Berry, H.G.; Cheng, S.
1995-08-01
The ionization and dissociation of C{sub 60} molecules in the Coulomb field from fast, highly-charged xenon ions was measured recently at ATLAS. The Coulomb excitation was modeled as a coherent excitation of the giant plasmon resonance. Guided by photo-absorption measurements, single-plasmon excitations were identified with the production of single-charged C{sub 60}{sup +} molecular ions. The calculated cross sections do indeed reproduce the beam energy-dependence of the measured C{sub 60}{sup +} yield. The calculations show that single-plasmon excitations are responsible for about half of the total reaction cross section. The other half, i.e., multiplasmon excitations, leads to multiple ionization and dissociation of the molecule.
NASA Astrophysics Data System (ADS)
Guevara, Z. E.; Torres, D. A.
2016-07-01
In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will be discussed. An example of a setup that makes use of a beam of 106Cd to study excited states of 110Sn and the beam nuclei itself will be presented.
Coulomb excitation of a {sup 78}Rb radioactive beam.
Schwartz, J.
1998-11-18
In order to test the feasibility of Coulomb excitation of radioactive projectiles with low beam energies and intensities, they have produced a secondary radioactive beam of {sup 78}Rb and Coulomb re-excited it. The beam was produced in the fusion evaporation reaction {sup 24}Mg({sup 58}Ni,3pn){sup 78}Rb at a beam energy of 260 MeV, using the Argonne National Laboratory ATLAS accelerator. The residues of interest were separated from other reaction products and non-interacting beam using the Fragment Mass Analyzer (FMA). The beam leaving the FMA was {sup 78}Kr and {sup 78}Rb{sup gs,m1,m2}, which was refocused onto a {sup 58}Ni secondary target. They have extracted a spectrum of {gamma}-rays associated with re-excitation of A = 78 isobars. The re-excitation of stable {sup 78}Kr was observed, which serves as a reference. Gamma-rays associated with excitation of {sup 78}Rb{sup gs,m1,m2} were also seen. The measured yields indicate that all the {sup 78}Rb states are highly deformed.
Coulomb excitations for a short linear chain of metallic shells
Zhemchuzhna, Liubov; Gumbs, Godfrey; Iurov, Andrii; Huang, Danhong; Gao, Bo
2015-03-15
A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantum number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.
The Coulomb excitations of Bernal bilayer graphene under external fields
Wu, Jhao-Ying; Lin, Ming-Fa
2014-03-31
We study the field effects on the Coulomb excitation spectrum of Bernal bilayer graphene by using the tight-binding model and the random-phase approximation. The electric field opens the band gap and creates the saddle points, the latter brings about a prominent interband plasmon. On the other hand, the magnetic field induces the dispersionless Landau levels (LLs) that causes the inter-LL plasmons. The two kinds of field-induced plasmon modes can be further tuned by the magnitude of momentum transfer and the field strength. The predicted results may be further validated by the inelastic light-scattering or high-resolution electron-energy-loss spectroscopy (HREELLS)
Coulomb and nuclear excitations of narrow resonances in 17Ne
NASA Astrophysics Data System (ADS)
Marganiec, J.; Wamers, F.; Aksouh, F.; Aksyutina, Yu.; Álvarez-Pol, H.; Aumann, T.; Beceiro-Novo, S.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Chartier, M.; Chatillon, A.; Chulkov, L. V.; Cortina-Gil, D.; Emling, H.; Ershova, O.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Heil, M.; Hoffmann, D. H. H.; Hoffmann, J.; Johansson, H. T.; Jonson, B.; Karagiannis, C.; Kiselev, O. A.; Kratz, J. V.; Kulessa, R.; Kurz, N.; Langer, C.; Lantz, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu. A.; Mahata, K.; Müntz, C.; Nilsson, T.; Nociforo, C.; Nyman, G.; Ott, W.; Panin, V.; Paschalis, S.; Perea, A.; Plag, R.; Reifarth, R.; Richter, A.; Rodriguez-Tajes, C.; Rossi, D.; Riisager, K.; Savran, D.; Schrieder, G.; Simon, H.; Stroth, J.; Sümmerer, K.; Tengblad, O.; Typel, S.; Weick, H.; Wiescher, M.; Wimmer, C.
2016-08-01
New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O + p + p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.
Coulomb excitation of 44Ca and 46Ar
NASA Astrophysics Data System (ADS)
Calinescu, S.; Cáceres, L.; Grévy, S.; Sorlin, O.; Dombrádi, Z.; Stanoiu, M.; Astabatyan, R.; Borcea, C.; Borcea, R.; Bowry, M.; Catford, W.; Clément, E.; Franchoo, S.; Garcia, R.; Gillibert, R.; Guerin, I. H.; Kuti, I.; Lukyanov, S.; Lepailleur, A.; Maslov, V.; Morfouace, P.; Mrazek, J.; Negoita, F.; Niikura, M.; Perrot, L.; Podolyák, Z.; Petrone, C.; Penionzhkevich, Y.; Roger, T.; Rotaru, F.; Sohler, D.; Stefan, I.; Thomas, J. C.; Vajta, Z.; Wilson, E.
2016-04-01
The reduced transition probabilities B (E 2 ;0g.s . +→21+) of the 46Ar and 44Ca nuclei were studied using the Coulomb excitation technique at intermediate energy at the LISE/GANIL facility. The in-flight γ rays, emitted after the Coulomb excitation of their first 2+ states, were detected in an array of 64 BaF2 crystals. The present B(E 2 ↑ ) value for 44Ca, 475(36) e2fm4 , agrees well with the value of 495(35) e2fm4 obtained by averaging results of previous experiments. Consistent B (E 2 ;0g.s . +→21+) values of 225(29) e2fm4 and 234(19) e2fm4 have been obtained for 46Ar from an absolute and a relative measurement, normalized to the 44Ca value. Both results agree with the ones obtained with the same experimental technique at the NSCL facility but are a factor of 2 smaller than the shell model predictions. The drop in B (E 2 ;0g.s . +→21+) in the Ar chain at N =28 , confirmed in this experiment, shows that 46Ar is sensitive to the N =28 shell closure.
Unsafe coulomb excitation of {sup 240-244}Pu.
Wiedenhoever, I.
1998-12-01
The high spin states of {sup 240}Pu and {sup 244}Pu have been investigated with GAMMASPHERE at ATLAS, using Coulomb excitation with a {sup 208}Pb beam at energies above the Coulomb barrier. Data on a transfer channel leading to {sup 242}Pu were obtained as well. In the case of {sup 244}Pu, the yrast band was extended to 34{h_bar}, revealing the completed {pi}i{sub 13/2} alignment, a ''first'' for actinide nuclei. The yrast sequence of {sup 242}Pu was also extended to higher spin and a similar backbend was delineated. In contrast, while the ground state band of {sup 240}Pu was measured up to the highest rotational frequencies ever reported in the actinide region ({approximately} 300 keV), no sign of particle alignment was observed. In this case, several observables such as the large B(E1)/B(E2) branching ratios in the negative parity band, and the vanishing energy staggering between the negative and positive parity bands suggest that the strength of octupole correlations increases with rotational frequency. These stronger correlations may well be responsible for delaying or suppressing the {pi}i{sub 13/2} particle alignment.
Cold chemistry with electronically excited Ca+ Coulomb crystals.
Gingell, Alexander D; Bell, Martin T; Oldham, James M; Softley, Timothy P; Harvey, Jeremy N
2010-11-21
Rate constants for chemical reactions of laser-cooled Ca(+) ions and neutral polar molecules (CH(3)F, CH(2)F(2), or CH(3)Cl) have been measured at low collision energies (
Cold chemistry with electronically excited Ca+ Coulomb crystals
NASA Astrophysics Data System (ADS)
Gingell, Alexander D.; Bell, Martin T.; Oldham, James M.; Softley, Timothy P.; Harvey, Jeremy N.
2010-11-01
Rate constants for chemical reactions of laser-cooled Ca+ ions and neutral polar molecules (CH3F, CH2F2, or CH3Cl) have been measured at low collision energies (⟨Ecoll⟩/kB=5-243 K). Low kinetic energy ensembles of C40a+ ions are prepared through Doppler laser cooling to form "Coulomb crystals" in which the ions form a latticelike arrangement in the trapping potential. The trapped ions react with translationally cold beams of polar molecules produced by a quadrupole guide velocity selector or with room-temperature gas admitted into the vacuum chamber. Imaging of the Ca+ ion fluorescence allows the progress of the reaction to be monitored. Product ions are sympathetically cooled into the crystal structure and are unambiguously identified through resonance-excitation mass spectrometry using just two trapped ions. Variations of the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of C40a+ involved in the laser-cooling cycle, and these are modeled by solving the optical Bloch equations for the eight-level system. Systematic variation of the steady-state populations over a series of reaction experiments allows the extraction of bimolecular rate constants for reactions of the ground state (S21/2) and the combined excited states (D23/2 and P21/2) of C40a+. These results are analyzed in the context of capture theories and ab initio electronic structure calculations of the reaction profiles. In each case, suppression of the ground state rate constant is explained by the presence of a submerged or real barrier on the ground state potential surface. Rate constants for the excited states are generally found to be in line with capture theories.
B(E1) Strengths from Coulomb excitation of 11Be
Summers, N C; Pain, S D; Orr, N A; Catford, W N; Angelique, J C; Ashwood, N I; Bouchat, V; Clarke, N M; Curtis, N; Freer, M; Fulton, B R; Hanappe, F; Labiche, M; Loucey, J L; Lemmon, R C; Mahboub, D; Ninane, A; Normand, G; Nunes, F M; Soic, N; Stuttge, L; Timis, C N; Thompson, I; Winfield, J S; Ziman, V
2007-03-06
The B(E1;1/2{sup +}{yields} 1/2{sup -}) strength for {sup 11}Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for {sup 11}Be+{sup 208}Pb at 38.6 MeV/nucleon is reported. The B(E1) strength of 0.105(12) e{sup 2}fm{sup 2} derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, in contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a combined B(E1) strength of 0.105(7) e{sup 2}fm{sup 2}. This value is in good agreement with the value deduced independently from the lifetime of the 1/2{sup -} state in {sup 11}Be, and has a comparable precision.
In-depth analysis of Coulomb Volkov approaches to ionization and excitation by laser pulses
NASA Astrophysics Data System (ADS)
R, Guichard; H, Bachau; E, Cormier; R, Gayet; D, Rodriguez V.
2007-10-01
In perturbation conditions, above-threshold ionization spectra produced in the interaction of atoms with femtosecond short-wavelength laser pulses are well predicted by a theoretical approach called CV2-, which is based on Coulomb-Volkov-type states. However, when resonant intermediate states play a significant role in a multiphoton transition, the CV2- transition amplitude does not take their influence into account. In a previous paper, this influence has been introduced separately as a series of additional sequential processes interfering with the direct process. To give more credit to this procedure, called modified CV2- (MCV2-), a perturbation expansion of the standard CV2- transition amplitude is compared here to the standard time-dependent perturbation series and the strong field approximation. It is shown that the CV2- transition amplitude consists merely in a simultaneous absorption of all photons involved in the transition, thus avoiding all intermediate resonant state influence. The present analysis supports the MCV2- procedure that consists in introducing explicitly the other quantum paths, which contribute significantly to ionization, such as passing through intermediate resonances. Further, this analysis permits to show that multiphoton excitation may be addressed by a Coulomb-Volkov approach akin to MCV2-.
Coulombic Effects on Excited States in a Small Quantum Dot
NASA Astrophysics Data System (ADS)
Goldhaber-Gordon, David; Duncan, David; Westervelt, R. M.; Maranowski, K. M.; Gossard, A. C.
2000-03-01
The excitation spectrum of a quantum dot varies with the addition of electrons, as successive single-particle eigenstates become filled in the ground state and so cannot accomodate additional electrons. Previous experiments have observed that each spatial state becomes unavailable for transport of further electrons after only one electron has occupied it. We have investigated state occupancy in the excitation spectrum of a small (200 nm X 200 nm) quantum dot laterally defined by capacitively coupled gate electrodes in a GaAs/AlGaAs heterostructure. For our dots, quantized level spacing Δ E ≈ 300 μeV and charging energy Ec ≈ 2 meV. We have studied the evolution of features in the excitation spectrum with magnetic field and equilibrium occupancy and have identified the pattern of spins for the added electrons. These results test the applicability of the spin-degenerate constant interaction picture as well as its limitations.
Testing refined shell-model interactions in the s d shell: Coulomb excitation of 26Na
NASA Astrophysics Data System (ADS)
Siebeck, B.; Seidlitz, M.; Blazhev, A.; Reiter, P.; Altenkirch, R.; Bauer, C.; Butler, P. A.; de Witte, H.; Elseviers, J.; Gaffney, L. P.; Hess, H.; Huyse, M.; Kröll, T.; Lutter, R.; Pakarinen, J.; Pietralla, N.; Radeck, F.; Scheck, M.; Schneiders, D.; Sotty, C.; van Duppen, P.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Miniball Collaboration; Rex-Isolde Collaboration
2015-01-01
Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal s d interaction (USD) describing nuclei within the s d shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus 26Na with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with 26Na (T1 /2=1 ,07 s ) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections of the beam have been obtained by normalization to the well known Coulomb excitation cross sections of the 104Pd target. Results: The observation of three γ -ray transitions in 26Na together with available spectroscopic data allows us to determine E 2 - and M 1 -transitional matrix elements. Results are compared to theoretical predictions. Conclusion: The improved theoretical description of 26Na could be validated. Remaining discrepancies between experimental data and theoretical predictions indicate the need for future experiments and possibly further theoretical improvements.
Electron-pair excitations and the molecular Coulomb continuum
Colgan, James
2009-01-01
Electron-pair excitations in the molecular hydrogen continuum are described by quantizing rotations of the momentum plane of the electron pair about by the pair's relative momentum. A helium-like description of the molecular pi.Joto double ionization is thus extended to higher angular momenta of the electron pair. A simple three-state superposition is found to account surprisingly well for recent observations of noncoplanar electron-pair, molecular-axis angular distributions.
Coulomb excitation of exotic nuclei at the R3B-LAND setup
NASA Astrophysics Data System (ADS)
Rossi, D. M.; Adrich, P.; Aksouh, F.; Alvarez-Pol, H.; Aumann, T.; Benlliure, J.; Böhmer, M.; Boretzky, K.; Casarejos, E.; Chartier, M.; Chatillon, A.; Cortina-Gil, D.; Datta Pramanik, U.; Emling, H.; Ershova, O.; Fernandez-Dominguez, B.; Geissel, H.; Gorska, M.; Heil, M.; Johansson, H.; Junghans, A.; Kiselev, O.; Klimkiewicz, A.; Kratz, J. V.; Kurz, N.; Labiche, M.; Le Bleis, T.; Lemmon, R.; Litvinov, Yu A.; Mahata, K.; Maierbeck, P.; Movsesyan, A.; Nilsson, T.; Nociforo, C.; Palit, R.; Paschalis, S.; Plag, R.; Reifarth, R.; Simon, H.; Sümmerer, K.; Wagner, A.; Walus, W.; Weick, H.; Winkler, M.
2013-03-01
Exotic Ni isotopes have been measured at the R3B-LAND setup at GSI in Darmstadt, using Coulomb excitation in inverse kinematics at beam energies around 500 MeV/u. As the experimental setup allows kinematically complete measurements, the excitation energy was reconstructed using the invariant mass method. The GDR and additional low-lying strength have been observed in 68Ni, the latter exhausting 4.1(1.9)% of the E1 energy-weighted sum rule. Also, the branching ratio for the non-statistical decay of the excited 68Ni nuclei was measured and amounts to 24(4)%.
TOPICAL REVIEW: Shapes and collectivity of exotic nuclei via low-energy Coulomb excitation
NASA Astrophysics Data System (ADS)
Görgen, Andreas
2010-10-01
The way in which an atomic nucleus responds to excitations, whether by promoting individual nucleons into higher shells or by collective rotation or vibration, reveals many details of the underlying nuclear structure. The response of the nucleus is closely related to its macroscopic shape. Low-energy Coulomb excitation provides a well-understood means of exciting atomic nuclei, allowing the measurement of static and dynamic electromagnetic moments as a probe of the nuclear wavefunctions. Owing to the availability of radioactive heavy-ion beams with energies near the Coulomb barrier, it is now possible to study the shape and collectivity of short-lived nuclei far from β stability (the so-called exotic nuclei), providing a particularly stringent test of modern theoretical nuclear structure models. This review gives an introduction to the experimental techniques related to low-energy Coulomb excitation with radioactive ion beams and summarizes the results that were obtained over the last 10 years for a wide variety of exotic nuclei at various laboratories employing the isotope separation on-line technique.
Dynamical coupling of pygmy and giant resonances in relativistic Coulomb excitation
NASA Astrophysics Data System (ADS)
Brady, N. S.; Aumann, T.; Bertulani, C. A.; Thomas, J. O.
2016-06-01
We study the Coulomb excitation of pygmy dipole resonances (PDR) in heavy ion reactions at 100 MeV/nucleon and above. The reactions 68Ni +197Au and 68Ni +208Pb are taken as practical examples. Our goal is to address the question of the influence of giant resonances on the PDR as the dynamics of the collision evolves. We show that the coupling to the giant resonances affects considerably the excitation probabilities of the PDR, a result that indicates the need of an improved theoretical treatment of the reaction dynamics at these bombarding energies.
Coulomb excitation of the proton-dripline nucleus {sup 20}Na
Schumaker, M. A.; Svensson, C. E.; Bandyopadhyay, D.; Demand, G. A.; Finlay, P.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Leach, K. G.; Phillips, A. A.; Wong, J.; Cline, D.; Hayes, A. B.; Whitbeck, A.; Hackman, G.; Pearson, C. J.; Andreyev, A.; Ball, G. C.; Buchmann, L.; Churchman, R.
2009-10-15
The low-energy structure of the proton dripline nucleus {sup 20}Na has been studied using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. A 1.7-MeV/nucleon {sup 20}Na beam of {approx}5x10{sup 6} ions/s was Coulomb excited by a 0.5-mg/cm{sup 2nat}Ti target. Scattered beam and target particles were detected by the BAMBINO segmented Si detector while {gamma} rays were detected by two TIGRESS HPGe clover detectors set perpendicular to the beam axis. Coulomb excitation from the 2{sup +} ground state to the first excited 3{sup +} and 4{sup +} states was observed, and B({lambda}L) values were determined using the 2{sup +}{yields}0{sup +} de-excitation in {sup 48}Ti as a reference. The resulting B({lambda}L){down_arrow} values are B(E2;3{sup +}{yields}2{sup +})=55{+-}6 e{sup 2} fm{sup 4} (17.0{+-}1.9 W.u.), B(E2;4{sup +}{yields}2{sup +})=35.7{+-}5.7 e{sup 2} fm{sup 4} (11.1{+-}1.8 W.u.), and B(M1;4{sup +}{yields}3{sup +})=0.154{+-}0.030 {mu}{sub N}{sup 2} (0.086{+-}0.017 W.u.). These measurements provide the first experimental determination of B({lambda}L) values for this proton dripline nucleus of astrophysical interest.
Structure of low-lying states in 140Sm studied by Coulomb excitation
NASA Astrophysics Data System (ADS)
Klintefjord, M.; Hadyńska-KlÈ©k, K.; Görgen, A.; Bauer, C.; Bello Garrote, F. L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.-P.; Fedosseev, V.; Fink, D. A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.-C.; Libert, J.; Lutter, R.; Marsh, B. A.; Molkanov, P. L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M. D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T. G.; Tveten, G. M.; Van Duppen, P.; Vermeulen, M. J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.
2016-05-01
The electromagnetic structure of 140Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The 2+ and 4+ states of the ground-state band and a second 2+ state were populated by multistep excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the 21+ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that 140Sm shows considerable γ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivity in this mass region.
Zhang Songbin; Wang Jianguo; Janev, R. K.
2010-03-15
The effects of Coulomb interaction screening on electron-hydrogen-atom elastic and excitation scattering around the n=2 threshold have been investigated by using the R-matrix method with pseudostates. The elastic and excitation collision strengths show dramatic changes when the interaction screening length D varies from {infinity} to 3.8 a.u., as a result of the convergence of {sup 1,3}S Feshbach resonances to the varying 2s threshold and of the transformation of {sup 1,3}P and {sup 1}D Feshbach resonances into shape-type resonances when they pass across the 2s and 2p threshold at certain critical value of D, respectively [S. B. Zhang et al., Phys. Rev. Lett. 104, 023203 (2010)]. The resonance parameters for a large number of D in the range D={infinity}-3.8 a.u. are presented. It is observed that the {sup 1,3}P and {sup 1}D resonance contributions to the elastic and excitation collision strengths decrease rapidly with decreasing D after the resonance passes the critical D value. The contribution of a {sup 1}S{sup e} Feshbach resonance to the elastic or excitation collision strength changes into a cusp after the resonance merges into its parent 2s state and immerses into the background with the further decrease of D.
Do nuclei go pear-shaped? Coulomb excitation of 220Rn and 224Ra at REX-ISOLDE (CERN)
NASA Astrophysics Data System (ADS)
Scheck, M.; Gaffney, L. P.; Butler, P. A.; Hayes, A. B.; Wenander, F.; Albers, M.; Bastin, B.; Bauer, C.; Blazhev, A.; Boenig, S.; Bree, N.; Cederkall, J.; Chupp, T.; Cline, D.; Cocolios, T. E.; Davinson, T.; De Witte, H.; Diriken, J.; Grahn, T.; Herzan, A.; Huyse, M.; Jenkins, D. G.; Joss, D. T.; Kesteloot, N.; Konki, J.; Kowalczyk, M.; Kroell, Th.; Kwan, E.; Lutter, R.; Moschner, K.; Napiorkowski, P.; Pakarinen, J.; Pfeiffer, M.; Radeck, D.; Reiter, P.; Reynders, K.; Rigby, S. V.; Robledo, L. M.; Rudigier, M.; Sambi, S.; Seidlitz, M.; Siebeck, B.; Stora, T.; Thoele, P.; Van Duppen, P.; Vermeulen, M. J.; von Schmid, M.; Voulot, D.; Warr, N.; Wimmer, K.; Wrzosek-Lipska, K.; Wu, C. Y.; Zielinska, M.
2015-05-01
The IS475 collaboration conducted Coulomb-excitation experiments with post-accelerated radioactive 220Rn and 224Ra beams at the REX-ISOLDE facility. The beam particles (Ebeam: 2.83 MeV/u) were Coulomb excited using 60Ni, 114Cd, and 120Sn scattering targets. De-excitation γ-rays were detected employing the Miniball array and scattered particles were detected in a silicon detector. Exploiting the Coulomb-excitation code GOSIA for each nucleus several matrix elements could be obtained from the measured γ-ray yields. The extracted ‹3-||E3||0+› matrix element allows for the conclusion that, while 220Rn represents an octupole vibrational system, 224Ra has already substantial octupole correlations in its ground state. This finding has implications for the search of CP-violating Schiff moments in the atomic systems of the adjacent odd-mass nuclei.
Coulomb excitation of radioactive {sup 21}Na and its stable mirror {sup 21}Ne
Schumaker, M. A.; Svensson, C. E.; Demand, G. A.; Finlay, P.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Leach, K. G.; Phillips, A. A.; Wong, J.; Cline, D.; Hayes, A. B.; Whitbeck, A.; Hackman, G.; Morton, A. C.; Pearson, C. J.; Andreyev, A.; Ball, G. C.; Buchmann, L.; Churchman, R.
2008-10-15
The low-energy structures of the mirror nuclei {sup 21}Ne and radioactive {sup 21}Na have been examined by using Coulomb excitation at the TRIUMF-ISAC radioactive ion beam facility. Beams of {approx}5x10{sup 6} ions/s were accelerated to 1.7 MeV/A and Coulomb excited in a 0.5 mg/cm{sup 2} {sup nat}Ti target. Scattered beam and target particles were detected by the segmented Si detector BAMBINO, while {gamma} rays were observed by using two TIGRESS HPGe clover detectors perpendicular to the beam axis. For each isobar, Coulomb excitation from the (3/2){sup +} ground state to the first excited (5/2){sup +} state was observed and B(E2) values were determined by using the 2{sup +}{yields}0{sup +} de-excitation in {sup 48}Ti as a reference. The {phi} segmentation of BAMBINO was used to deduce tentative assignments for the signs of the mixing ratios between the E2 and M1 components of the transitions. The resulting B(E2){up_arrow} values are 131{+-}9 e{sup 2} fm{sup 4} (25.4{+-}1.7 W.u.) for {sup 21}Ne and 205{+-}14 e{sup 2} fm{sup 4} (39.7{+-}2.7 W.u.) for {sup 21}Na. The fit to the present data and the known lifetimes determined E2/M1 mixing ratios and B(M1){down_arrow} values of {delta}=(-)0.0767{+-}0.0027 and 0.1274{+-}0.0025 {mu}{sub N}{sup 2} and {delta}=(+)0.0832{+-}0.0028 and 0.1513{+-}0.0017 {mu}{sub N}{sup 2} for {sup 21}Ne and {sup 21}Na, respectively (with Krane and Steffen sign convention). By using the effective charges e{sub p}=1.5e and e{sub n}=0.5e, the B(E2) values produced by the p-sd shell model are 30.7 and 36.4 W.u. for {sup 21}Ne and {sup 21}Na, respectively. This analysis resolves a significant discrepancy between a previous experimental result for {sup 21}Na and shell-model calculations.
Relativistic Coulomb excitation within the time dependent superfluid local density approximation
Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.
2015-01-06
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus ^{238}U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.
NASA Astrophysics Data System (ADS)
Zielińska, M.; Gaffney, L. P.; Wrzosek-Lipska, K.; Clément, E.; Grahn, T.; Kesteloot, N.; Napiorkowski, P.; Pakarinen, J.; Van Duppen, P.; Warr, N.
2016-04-01
With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross-sections and a lack of complementary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, GOSIA.
Coulomb excitation of 124,126,128Sn(Z = 50)
Allmond, James M; Radford, David C; Baktash, Cyrus; Batchelder, J. C.; Galindo-Uribarri, Alfredo {nmn}; Gross, Carl J; Hausladen, Paul; Lagergren, Karin B; Larochelle, Y.; Padilla-Rodal, Elizabeth; Yu, Chang-Hong
2011-01-01
High-precision measurements of <0_1||E2||2_1> matrix elements from the Coulomb excitation of 124,126,128Sn(Z = 50) impinging on a 12C target are presented. The <0_1||E2||2_1> matrix elements and related B(E2) values decrease monotonically as the N = 82 shell closure is approached from N = 74 to 78, despite a near constancy in the first 2+ level energy, E(2_1+). Furthermore, results are presented for the Coulomb excitation of 124,126,128Sn using an enriched 50Ti target, which, combined with the results from the 12C target, provide a measure of the <2_1||E2||2_1> matrix elements and related static quadrupole moments, Q(2_1+) (expected to be ~0 for a spherical shape). These new results indicate that the Sn isotopes have a deformation consistent with zero. The present study marks the first report on measured 2_1+ static quadrupole moments for the unstable Sn isotopes.
NASA Astrophysics Data System (ADS)
Wrzosek-Lipska, K.; Gaffney, L. P.
2016-02-01
Neutron-deficient isotopes of Pt-Hg-Pb-Po-Rn are the classic region in the investigation of shape coexistence in atomic nuclei. A large programme of Coulomb-excitation experiments has been undertaken at the REX-ISOLDE facility in CERN with a number of even-even isotopes in this region. These experiments have been used to probe the electromagnetic properties of yrast and non-yrast states of even-even exotic nuclei, above and below Z = 82. Amongst a large amount of different complementary techniques used to study nuclear structure, Coulomb excitation brings substantial and unique information detailing shape coexistence. In this paper we review the Coulomb-excitation campaign at REX-ISOLDE in the light-lead region together with most recently obtained results. Furthermore, we present some new interpretations that arise from this data and show testing comparisons to state-of-the-art nuclear models.
Suppression of excited-state contributions to stellar reaction rates
NASA Astrophysics Data System (ADS)
Rauscher, T.
2013-09-01
It has been shown in previous work [Kiss , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.191101 101, 191101 (2008); Rauscher , Phys. Rev. C10.1103/PhysRevC.80.035801 80, 035801 (2009)] that a suppression of the stellar enhancement factor (SEF) occurs in some endothermic reactions at and far from stability. This effect is re-evaluated using the ground-state contributions to the stellar reaction rates, which were shown to be better suited to judging the importance of excited-state contributions than the previously applied SEFs. An update of the tables shown in the latter work is given. The new evaluation finds 2350 cases (out of a full set of 57 513 reactions) for which the ground-state contribution is larger in the reaction direction with a negative reaction Q value than in the exothermic direction, thus providing exceptions to the commonly applied Q value rule. The results confirm the Coulomb suppression effect but lead to a larger number of exceptions than previously found. This is due to the fact that often a large variation in the g.s. contribution does not lead to a sizable change in the SEF. On the other hand, several previously identified cases do not appear anymore because it is found that their g.s. contribution is smaller than inferred from the SEF.
Kar, Sabyasachi; Ho, Y. K.
2011-04-15
We have investigated the doubly excited {sup 1,3}P{sup e} resonance states of helium and the hydrogen negative ion interacting with Coulomb and screened Coulomb potentials using exponential correlated wave functions. In the pure Coulomb case, calculations have been carried out by using the complex-coordinate rotation and the stabilization method. The {sup 1}P{sup e} resonance states of He below the N= 3, 4, and 5 thresholds of He{sup +}, and the {sup 3}P{sup e} resonance states of He below the N= 3 thresholds of He{sup +}, are reported. The 5p{sup 2} {sup 3}P{sup e} state, which has attracted recent interest, is also reported and discussed. In the screened Coulomb case, we have used the stabilization method to obtain two different series (3pnp and 3dnd) of resonance states below the N= 3 He{sup +} threshold as a function of the screening parameters. Resonance widths for the 3dnd series show some interesting behaviors. The resonance parameters (position and width) for helium and the hydrogen negation ion as functions of the screening parameters are reported.
Allmond, James M
2016-01-01
The synthesis of Coulomb excitation and decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., I2 ||M(E2)||I1 matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural inter- pretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the E 5 attenuation factor. These weak decay branches can often be determined with high precision from -decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and decay. Preliminary results of new weak decay branches following decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.
Interatomic Coulombic decay following resonant core excitation of Ar in argon dimer
Miteva, T.; Chiang, Y.-C.; Kuleff, A. I.; Gokhberg, K. Cederbaum, L. S.; Kolorenč, P.
2014-08-14
A scheme utilizing excitation of core electrons followed by the resonant-Auger – interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a means of controlling the generation site and energies of slow ICD electrons. This control mechanism was verified in a series of experiments in rare gas dimers. In this article, we present fully ab initio computed ICD electron and kinetic energy release spectra produced following 2p{sub 3/2} → 4s, 2p{sub 1/2} → 4s, and 2p{sub 3/2} → 3d core excitations of Ar in Ar{sub 2}. We demonstrate that the manifold of ICD states populated in the resonant Auger process comprises two groups. One consists of lower energy ionization satellites characterized by fast interatomic decay, while the other consists of slow decaying higher energy ionization satellites. We show that accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and kinetic energy release spectra in good agreement with the experiment.
Mixing of Triaxial and Intruder Configurations in 72,76Ge Studied via Multistep Coulomb Excitation
NASA Astrophysics Data System (ADS)
Ayangeakaa, A. D.; Janssens, R. V. F.; Anl Collaboration; Llnl Collaboration; Lbnl Collaboration; U. Of Maryland Collaboration; Csnsm Collaboration
2015-10-01
The low-lying states in even-even Ge isotopes have been a subject of intense scrutiny for many years due to the inherent challenge of interpreting their low-energy structure. While several explanations such as vibrational-rotational coupling, 2p-2h intruder mixing and shape coexistence have been proposed, none have been able to satisfactorily reproduce the properties of these low-lying excitations. Recent theoretical calculations have, however, emphasized the importance of the triaxial degree of freedom and, indeed, 76Ge is proposed to exhibit static triaxiality. In this study, the electromagnetic properties of low-lying states in 72,76Ge were investigated via sub-barrier multiple Coulomb excitation with GRETINA and CHICO-2. In the case of 72Ge, the extracted matrix elements seem to agree with the shape coexistence interpretation between the 01+ and 02+ states. However, significant mixing between the wavefunctions of these two states and triaxiality are required to reproduce the overall data. These results and calculations based on a triaxial rotor model with configuration mixing will be presented, and the role of triaxiality will be discussed. Preliminary results for 76Ge will also be highlighted. This work is supported by the DOE, Office of Science, Office of Nuclear Physics under Contract Number DE-AC02-06CH11357, and Grant No. DE-FG02-94ER40834 and DE-FG02-08ER41556.
Relativistic Coulomb excitation within the time dependent superfluid local density approximation
Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.
2015-01-06
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less
Magnetic moment and lifetime measurements of Coulomb-excited states in Cd106
Benczer-Koller, N.; Kumbartzki, G. J.; Speidel, K. -H.; Torres, D. A.; Robinson, S. J. Q.; Sharon, Y. Y.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bernstein, L. A.; et al
2016-09-06
The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in 106Cd. Methods: In an inverse kinematics reaction, a 106Cd beam impinging on a 12C target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for 106Cd. As a result, the g factorsmore » of the 2+1 and 4+1 states in 106Cd were measured to be g(2+1) = +0.398(22) and g(4+1) = +0.23(5). A lineshape analysis yielded lifetimes in disagreement with published values. The new results are τ(106Cd; 2+1) = 7.0(3) ps and τ(106Cd; 4+1) = 2.5(2) ps. The mean life τ(106Cd; 2+2) = 0.28(2) ps was determined from the fully-Doppler-shifted γ line. Mean lives of τ(106Cd; 4+3) = 1.1(1) ps and τ(106Cd; 3–1) = 0.16(1) ps were determined for the first time. In conclusion, the newly measured g(4+1) of 106Cd is found to be only 59% of the g(2+1). This difference cannot be explained by either shell-model or collective-model calculations.« less
Coulomb Excitation with CARIBU Beams: Octupole Strength in 144Ba Measured with GRETINA and CHICO2
NASA Astrophysics Data System (ADS)
Bucher, Brian; Zhu, Shaofei; ANL, LBNL, LLNL, Rochester, Florida St, Liverpool, Maryland, Notre Dame, Ohio,; W. Scotland Collaboration
2014-09-01
The neutron-rich barium isotopes sit in one of the few mass regions on the nuclear chart observed to display octupole correlations. These isotopes are challenging to study since they lie far from stability and are thus difficult to produce in large quantities. In particular, this region is interesting for studying the evolution of octupole correlations since the enhancement of the E1 strength drops by an order of magnitude from 144Ba to 146Ba, where shell corrections appear to play a significant role. To provide unambiguous insight into the octupole correlations, B(E3) strengths have been measured using Coulomb excitation of 144Ba beams at 650 MeV on a 1 mg/cm2 208Pb target. This experiment represents the first successful measurement utilizing re-accelerated CARIBU beams combined with the γ-ray tracking array GRETINA and the auxiliary charged-particle detector CHICO2. Preliminary results from the experiment will be presented. The neutron-rich barium isotopes sit in one of the few mass regions on the nuclear chart observed to display octupole correlations. These isotopes are challenging to study since they lie far from stability and are thus difficult to produce in large quantities. In particular, this region is interesting for studying the evolution of octupole correlations since the enhancement of the E1 strength drops by an order of magnitude from 144Ba to 146Ba, where shell corrections appear to play a significant role. To provide unambiguous insight into the octupole correlations, B(E3) strengths have been measured using Coulomb excitation of 144Ba beams at 650 MeV on a 1 mg/cm2 208Pb target. This experiment represents the first successful measurement utilizing re-accelerated CARIBU beams combined with the γ-ray tracking array GRETINA and the auxiliary charged-particle detector CHICO2. Preliminary results from the experiment will be presented. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH
Octupole deformation in 144,146Ba measured by Coulomb excitation of radioactive beams
NASA Astrophysics Data System (ADS)
Bucher, Brian; Zhu, Shaofei; ANL, LBNL, LLNL, Rochester, Florida State, Liverpool, Maryland, Notre Dame, Ohio, W. Scotland Collaboration
2015-10-01
The exotic, neutron-rich 144Ba (t1 / 2 = 11.5 s) and 146Ba (t1 / 2 = 2.2 s) nuclei are expected to exhibit some of the strongest octupole correlations in A < 200 systems. Up to now, evidence for such strong octupole correlations has been inferred from observations of low-lying negative-parity states and from the interleaving of positive- and negative-parity levels in the ground-state band. However, the E1 transition strengths are very different in these two nuclei, with two orders of magnitude reduction in 146Ba. In this experiment, we measure the octupole strength directly by Coulomb excitation of post-accelerated 144,146Ba beams produced at CARIBU using CHICO2 and GRETINA. In 144Ba, we found B(E3;3 -->0) = 48(-34+ 25) W.u., a value considerably larger than theoretical predictions, while preliminary results for 146Ba are also indicative of strong octupole collectivity. The experimental conditions, the analysis, and the results from these challenging new measurements will be presented. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 (ANL), DE-AC02-05CH11231 (LBNL, GRETINA), DOE DE-AC52-07NA27344 (LLNL), and NSF.
Coulomb Excitation and One-Neutron Transfer Studies of Stable and Radioactive Nuclei at HRIBF-ORNL
Allmond, James M
2015-01-01
Several stable and radioactive nuclei ranging from $A=58$ to 208 were recently studied in inverse kinematics by Coulomb excitation and heavy-ion induced one-neutron transfer at the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory. These studies used a CsI-HPGe detector array to detect scattered charged particles and emitted $\\gamma$ rays from the in-beam reactions. A Bragg-curve detector was used to measure the energy loss of the various beams through the targets and to measure the radioactive beam compositions. Stable nickel, strontium, zirconium, molybdenum, tin, tellurium, and lead isotopes and neutron-rich radioactive tin and tellurium isotopes were among the nuclei recently studied. Coulomb excitation was used to measure the electromagnetic moments of the first excited states and heavy-ion induced one-neutron transfer was used to measure the absolute cross sections and lifetimes of the excited single-particle states. A sample of these results are presented here with an emphasis on the tin isotopes. In particular, a survey of the Bragg-curve measurements, Doppler corrections, and inconclusive $i_{13/2}$ candidate in $^{133}$\\textrm{Sn} are presented.
An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy
Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.
2015-06-20
We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.
An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy
Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.
2015-06-20
We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using themore » method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. Lastly, the corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.« less
An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy
NASA Astrophysics Data System (ADS)
Kilcrease, D. P.; Colgan, J.; Hakel, P.; Fontes, C. J.; Sherrill, M. E.
2015-09-01
We have previously developed an equation of state (EOS) model called ChemEOS (Hakel and Kilcrease, Atomic Processes in Plasmas, Eds., J. Cohen et al., AIP, 2004) for a plasma of interacting ions, atoms and electrons. It is based on a chemical picture of the plasma and is derived from an expression for the Helmholtz free energy of the interacting species. All other equilibrium thermodynamic quantities are then obtained by minimizing this free energy subject to constraints, thus leading to a thermodynamically consistent EOS. The contribution to this free energy from the Coulomb interactions among the particles is treated using the method of Chabrier and Potekhin (Phys. Rev. E 58, 4941 (1998)) which we have adapted for partially ionized plasmas. This treatment is further examined and is found to give rise to unphysical behavior for various elements at certain values of the density and temperature where the Coulomb coupling begins to become significant and the atoms are partially ionized. We examine the source of this unphysical behavior and suggest corrections that produce acceptable results. The sensitivity of the thermodynamic properties and frequency-dependent opacity of iron is examined with and without these corrections. The corrected EOS is used to determine the fractional ion populations and level populations for a new generation of OPLIB low-Z opacity tables currently being prepared at Los Alamos National Laboratory with the ATOMIC code.
NASA Astrophysics Data System (ADS)
Huang, Cheng; Guo, Wenliang; Zhou, Yueming; Wu, Zhengmao
2016-01-01
With the classical ensemble model, we investigate nonsequential double ionization of aligned molecules by few-cycle laser pulses at low intensity, where the two electrons finally are ionized through a transition doubly excited state induced by recollision. The correlated electron momentum distribution of parallel molecules exhibits the line-shaped structure parallel to the diagonal. Our analysis indicates that besides the ionization time difference of two electrons from the doubly excited state, the final-state e-e Coulomb repulsion plays a vital role in the formation of the line-shaped structural momentum distribution. For perpendicular molecules, due to the prominent near half-cycle ionization time difference between the two electrons from the doubly excited state, the momentum distribution shows clear anticorrelation behavior.
NASA Astrophysics Data System (ADS)
Ho, Y. K.; Kar, S.
2012-10-01
The doubly-excited inter-shell resonance states of the hydrogen negative ion with screened Coulomb potentials are investigated in the framework of complex-scaling method. Highly correlated wave functions with terms up to 1078 in Hylleraas coordinates are used. The resonance parameters for the 2 s3 s 1 S e associated with the H ( N = 2) threshold and the 3 s4 s 1 S e state associated with the H ( N = 3) threshold for various screening strengths are reported. Comparisons are made with other available data in the literature.
Hayes, A. B.; Cline, D.; Moody, K. J.; Ragnarsson, I.; Wu, C. Y.; Becker, J. A.; Carpenter, M. P.; Carroll, J. J.; Gohlke, D.; Greene, J. P.; Hecht, A. A.; Janssens, R. V. F.; Karamian, S. A.; Lauritsen, T.; Lister, C. J.; Macri, R. A.; Propri, R.; Seweryniak, D.; Wang, X.; Wheeler, R.; Zhu, S.
2010-10-29
A 98% pure {sup 242m}Am (K=5{sup -}, t{sub 1/2} = 141 years) isomeric target was Coulomb excited with a 170.5-MeV {sup 40}Ar beam. The selectivity of Coulomb excitation, coupled with the sensitivity of Gammasphere plus CHICO, was sufficient to identify 46 new states up to spin 18 {h_bar} in at least four rotational bands; 11 of these new states lie in the isomer band, 13 in a previously unknown yrast K{sup {pi}} = 6{sup -} rotational band, and 13 in a band tentatively identified as the predicted yrast K{sup {pi}} = 5{sup +} band. The rotational bands based on the K{sup {pi}} = 5{sup -} isomer and the 6{sup -} bandhead were populated by Coulomb excitation with unexpectedly equal cross sections. The {gamma}-ray yields are reproduced by Coulomb excitation calculations using a two-particle plus rotor model (PRM), implying nearly complete {Delta}K = 1 mixing of the two almost-degenerate rotational bands, but recovering the Alaga rule for the unperturbed states. The degeneracy of the 5{sup -} and 6{sup -} bands allows for precise determination of the mixing interaction strength V, which approaches the strong-mixing limit; this agrees with the 50% attenuation of the Coriolis matrix element assumed in the model calculations. The fractional admixture of the I{sub K}{sup {pi}} = 6{sub 6{sup -}} state in the nominal 6{sub 5{sup -}} isomer band state is measured within the PRM as 45.6{sub -1.1}{sup +0.3}%. The E2 and M1 strengths coupling the 5{sup -} and 6{sup -} bands are enhanced significantly by the mixing, while E1 and E2 couplings to other low-K bands are not measurably enhanced. The yields of the 5{sup +} band are reproduced by an E3 strength of {approx}15 W.u., competitive with the interband E2 strength. Alignments of the identified two-particle Nilsson states in {sup 242}Am are compared with the single-particle alignments in {sup 241}Am.
NASA Astrophysics Data System (ADS)
Arakawa, Naoya
2016-06-01
Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here, we resolve the first issue and provide the first step about the second issue by developing a general formalism in the linear response theory with appropriate approximations and using analytic arguments. The most striking result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal conductivities arise from the difference in the dominant multiband excitations. This not only explains why the Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for interband transports, but also provides the useful principles on treating the electron-electron interaction in an interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between our results and experiments are finally discussed.
High-precision B (E2) measurements of semi-magic Ni58,60,62,64 by Coulomb excitation
NASA Astrophysics Data System (ADS)
Allmond, J. M.; Brown, B. A.; Stuchbery, A. E.; Galindo-Uribarri, A.; Padilla-Rodal, E.; Radford, D. C.; Batchelder, J. C.; Howard, M. E.; Liang, J. F.; Manning, B.; Varner, R. L.; Yu, C.-H.
2014-09-01
High-precision reduced electric-quadrupole transition probabilities B (E2;01+→21+) have been measured from single-step Coulomb excitation of semi-magic Ni58,60,62,64 (Z=28) beams at 1.8 MeV per nucleon on a natural carbon target. The energy loss of the nickel beams through the carbon target were directly measured with a zero-degree Bragg detector and the absolute B (E2) values were normalized by Rutherford scattering. The B (E2) values disagree with recent lifetime studies that employed the Doppler-shift attenuation method. The present high-precision B (E2) values reveal an asymmetry about Ni62, midshell between N =28 and 40, with larger values towards Ni56 (Z =N=28). The experimental B (E2) values are compared with shell-model calculations in the full pf model space and the results indicate a soft Ni56 core.
Culham, Doreen E; Shkel, Irina A; Record, M Thomas; Wood, Janet M
2016-03-01
Osmosensing transporters mediate osmolyte accumulation to forestall cellular dehydration as the extracellular osmolality increases. ProP is a bacterial osmolyte-H(+) symporter, a major facilitator superfamily member, and a paradigm for osmosensing. ProP activity is a sigmoid function of the osmolality. It is determined by the osmolality, not the magnitude or direction of the osmotic shift, in cells and salt-loaded proteoliposomes. The activation threshold varies directly with the proportion of anionic phospholipid in cells and proteoliposomes. The osmosensory mechanism was probed by varying the salt composition and concentration outside and inside proteoliposomes. Data analysis was based on the hypothesis that the fraction of maximal transporter activity at a particular luminal salt concentration reflects the proportion of ProP molecules in an active conformation. ProP attained the same activity at the same osmolality when diverse, membrane-impermeant salts were added to the external medium. Contributions of Coulombic and/or Hofmeister salt effects to ProP activation were examined by varying the luminal salt cation (K(+) and Na(+)) and anion (chloride, phosphate, and sulfate) composition and then systematically increasing the luminal salt concentration by increasing the external osmolality. ProP activity increased with the sixth power of the univalent cation concentration, independent of the type of anion. This indicates that salt activation of ProP is a Coulombic, cation effect resulting from salt cation accumulation and not site-specific cation binding. Possible origins of this Coulombic effect include folding or assembly of anionic cytoplasmic ProP domains, an increase in local membrane surface charge density, and/or the juxtaposition of anionic protein and membrane surfaces during activation. PMID:26871755
NASA Astrophysics Data System (ADS)
Bree, N.; Wrzosek-Lipska, K.; Butler, P. A.; Gaffney, L. P.; Grahn, T.; Huyse, M.; Kesteloot, N.; Pakarinen, J.; Petts, A.; Van Duppen, P.; Warr, N.
2015-10-01
Characteristic K X-rays have been observed in Coulomb-excitation experiments with heavy radioactive-ion beams in the lead region (Z = 82), produced at the REX-ISOLDE facility, and were used to identify the decay of strongly converted transitions as well as monopole 02+ → 01+ transitions. Different targets were used, and the X-rays were detected by the Miniball γ-ray spectrometer surrounding the target position. A stable mercury isotope, as well as neutron-deficient mercury, lead, polonium, and radon isotopes were studied, and a detailed description of the analysis using the radioactive 182,184,186,188Hg isotopes is presented. Apart from strongly converted transitions originating from the decay of excited states, the heavy-ion induced K-vacancy creation process has been identified as an extra source for K X-ray production. Isolating the atomic component of the observed K X-rays is essential for a correct analysis of the Coulomb-excitation experiment. Cross sections for the atomic reaction have been estimated and are compared to a theoretical approach.
An analysis of cochlear response harmonics: Contribution of neural excitation.
Chertoff, M E; Kamerer, A M; Peppi, M; Lichtenhan, J T
2015-11-01
In this report an analysis of cochlear response harmonics is developed to derive a mathematical function to estimate the gross mechanics involved in the in vivo transfer of acoustic sound into neural excitation (f(Tr)). In a simulation it is shown that the harmonic distortion from a nonlinear system can be used to estimate the nonlinearity, supporting the next phase of the experiment: Applying the harmonic analysis to physiologic measurements to derive estimates of the unknown, in vivo f(Tr). From gerbil ears, estimates of f(Tr) were derived from cochlear response measurements made with an electrode at the round window niche from 85 Hz tone bursts. Estimates of f(Tr) before and after inducing auditory neuropathy-loss of auditory nerve responses with preserved hair cell responses from neurotoxic treatment with ouabain-showed that the neural excitation from low-frequency tones contributes to the magnitude of f(Tr) but not the sigmoidal, saturating, nonlinear morphology. PMID:26627769
Gieseking, Rebecca L; Ratner, Mark A; Schatz, George C
2016-07-01
Quantum mechanical studies of Ag nanoclusters have shown that plasmonic behavior can be modeled in terms of excited states where collectivity among single excitations leads to strong absorption. However, new computational approaches are needed to provide understanding of plasmonic excitations beyond the single-excitation level. We show that semiempirical INDO/CI approaches with appropriately selected parameters reproduce the TD-DFT optical spectra of various closed-shell Ag clusters. The plasmon-like states with strong optical absorption comprise linear combinations of many singly excited configurations that contribute additively to the transition dipole moment, whereas all other excited states show significant cancellation among the contributions to the transition dipole moment. The computational efficiency of this approach allows us to investigate the role of double excitations at the INDO/SDCI level. The Ag cluster ground states are stabilized by slight mixing with doubly excited configurations, but the plasmonic states generally retain largely singly excited character. The consideration of double excitations in all cases improves the agreement of the INDO/CI absorption spectra with TD-DFT, suggesting that the SDCI calculation effectively captures some of the ground-state correlation implicit in DFT. These results provide the first evidence to support the commonly used assumption that single excitations are in many cases sufficient to describe the optical spectra of plasmonic excitations quantum mechanically. PMID:27259004
Mueller, Ronald O.; Hughes, Vernon W.
1974-01-01
The atomic regime in which the interaction of the electron with an external magnetic field dominates the Coulomb interaction with the nucleus, relevant to pulsars, can be realized at laboratory magnetic fields for discrete autoionized states of hydrogen, at energies above the ionization limit. Approximate wave functions, energy levels, and electric dipole transition probabilities are presented for hydrogen, and an atomic beam absorption spectroscopy experiment at 50 kG is proposed to study this new regime. PMID:16578723
High-precision B(E2) measurements of semi-magic 58,60,62,64Ni by Coulomb excitation
Allmond, James M; Brown, Alex; Stuchbery, Andrew E; Galindo-Uribarri, Alfredo {nmn}; Padilla-Rodal, Elizabeth; Radford, David C; Batchelder, J. C.; Howard, Meredith E; Liang, J Felix; Manning, Brett M; Varner Jr, Robert L; Yu, Chang-Hong
2014-01-01
High-precision reduced electric-quadrupole transition probabilities B(E2) have been measured from single-step Coulomb excitation of semi-magic 58,60,62,64 Ni (Z = 28) beams at 1.8 MeV per nucleon on a natural carbon target. The energy loss of the nickel beams through the carbon target were directly measured with a zero-degree Bragg detector and the absolute B(E2) values were normalized by Rutherford scattering. The B(E2) values disagree with recent lifetime studies that employed the Doppler-shift attenuation method. The present high-precision B(E2) values reveal an asymmetry about 62 Ni, midshell between N = 28 and 40, with larger values towards 56 Ni (Z = N = 28). The experimental B(E2) values are compared with shell-model calculations in the full pf model space and the results indicate a soft 56 Ni core.
Debnarova, Andrea; Techert, Simone; Schmatz, Stefan
2014-01-14
The Coulomb explosion of the octamer water cluster has been studied employing time-dependent density functional theory explicitly accounting for the laser field and thus not imposing any constraint on the interaction between the laser pulse and the cluster. We focus on the effects of electron density changes in the system under high-intensity (10(16) and 10(15) W cm(-2)) soft X-ray laser pulses and their fingerprint in the reciprocal space, namely the ultrafast changes in X-ray diffuse scattering signals in k-space (in the investigated k-space range from 10(-3) up to 10 Å(-1)). The present simulations indicate that diffusional components in X-ray intensity changes propagate from low reciprocal resolution (resembling the small-angle X-ray scattering regime) to very high resolution (the wide-angle X-ray scattering regime) during the Coulomb explosion process. PMID:24276436
Cortical GABAergic excitation contributes to epileptic activities around human glioma
Pallud, Johan; Varlet, Pascale; Cresto, Noemie; Baulac, Michel; Duyckaerts, Charles; Kourdougli, Nazim; Chazal, Geneviève; Devaux, Bertrand; Rivera, Claudio; Miles, Richard; Capelle, Laurent; Huberfeld, Gilles
2015-01-01
Rationale Diffuse brain gliomas induce seizures in a majority of patients. As in most epileptic disorders, excitatory glutamatergic mechanisms are involved in the generation of epileptic activities in the neocortex surrounding gliomas. However, chloride homeostasis is known to be perturbed in glial tumor cells. Thus the contribution of GABAergic mechanisms which depend on intracellular chloride and which are defective or pro-epileptic in other structural epilepsies merits closer study. Objective We studied in neocortical slices from the peritumoral security margin resected around human brain gliomas, the occurrence, networks, cells and signaling basis of epileptic activities. Results Postoperative glioma tissue from 69% of patients spontaneously generated interictal-like discharges. These events were synchronized, with a high frequency oscillation signature, in superficial layers of neocortex around glioma areas with tumor infiltration. Interictal-like events depended on both glutamatergic transmission and on depolarizing GABAergic signaling. About 65% of pyramidal cells were depolarized by GABA released by interneurons. This effect was related to perturbations in Chloride homeostasis, due to changes in expression of chloride co-transporters: KCC2 was reduced and expression of NKCC1 increased. Ictal-like activities were initiated by convulsant stimuli exclusively in these epileptogenic areas. Conclusions Epileptic activities are sustained by excitatory effects of GABA in the peritumoral human neocortex, as in temporal lobe epilepsies. Glutamate and GABA signaling are involved in oncogenesis and chloride homeostasis is perturbed. These same factors, induce an imbalance between synaptic excitatory and inhibition underly epileptic discharges in tumor patients. PMID:25009229
Continuum Spectrum and Radiation Pattern Contributions to T-Wave Excitation
NASA Astrophysics Data System (ADS)
Soukup, D. J.; Odom, R. I.
2001-12-01
Modal scattering along the seafloor bottom provides us with important insight into the excitation of T-waves, linking seafloor scattering with sloping seafloors. A modal representation of the seismic source field reveals how energy can transfer from seismic source modes to T-wave contributing acoustic modes. The key to the T-wave excitation is found in any boundary roughness or non-planar bathymetry which promotes energy conversion from crustal and ocean crustal/acoustic modes into low order T-wave acoustic modes. We compute seismic, acoustic and ocean crustal/acoustic hybrid modes for oceanic models with sediment covered bottoms. Various source depths are considered to determine the impact on the resulting T-wave excitation. We use the locked mode approach to determine the continuum modes as source depth increases. We also consider radiation pattern effects on T-wave excitation from a seismic source. Included in our investigation are the effects of sediment cover on T-wave excitation. At shallow source depths, the discrete modes contribute to the majority of the T-wave excitation. The continuum spectrum becomes more important with increasing source depth. While the lower order modes still contribute significantly to the T-wave excitation, the continuum spectrum cannot be neglected at large source depths. Preliminary results reveal radiation pattern effects and source type effects may be distinguishable in T-wave data.
NASA Astrophysics Data System (ADS)
Narozhny, B. N.; Levchenko, A.
2016-04-01
Coulomb drag is a transport phenomenon whereby long-range Coulomb interaction between charge carriers in two closely spaced but electrically isolated conductors induces a voltage (or, in a closed circuit, a current) in one of the conductors when an electrical current is passed through the other. The magnitude of the effect depends on the exact nature of the charge carriers and the microscopic, many-body structure of the electronic systems in the two conductors. Drag measurements have become part of the standard toolbox in condensed matter physics that can be used to study fundamental properties of diverse physical systems including semiconductor heterostructures, graphene, quantum wires, quantum dots, and optical cavities.
NASA Technical Reports Server (NTRS)
Watts, John D.; Cernusak, Ivan; Noga, Jozef; Bartlett, Rodney J.; Bauschlicher, Charles W., Jr.; Lee, Timothy J.; Rendell, Alistair P.
1990-01-01
The contribution of connected triple and quadruple excitations to the binding in Be3 is investigated by comparing various coupled-cluster (CC) and truncated configuration-interaction (CI) treatments with multireference CI (MRCI) and full CI (FCI) calculations. The CC method with single and double excitations (CCSD) produces results that differ substantially from more elaborate treatments, but most extensions to CCSD that account approximately for connected triple excitations perform very well. In contrast, good agreement with CFI for Be2 can be achieved only with the highest level CC and MRCI methods.
NASA Technical Reports Server (NTRS)
Watts, John D.; Cernusak, Ivan; Noga, Jozef; Bartlett, Rodney J.; Bauschlicher, Charles W., Jr.; Lee, Timothy J.; Rendell, Alistair P.; Taylor, Peter R.
1991-01-01
The contribution of connected triple and quadruple excitations to the binding in Be3 is investigated by comparing various coupled-cluster (CC) and truncated configuration interaction (CI) treatments with multireference CI (MRCI) and full CI(FCI) calculations. The CC method with single and double excitations (CCSD) produces results that differ substantially from more elaborate treatments, but most extensions to CCSD that account approximately for connected triple excitations perform very well. In constrast, good agreement with FCI for Be2 can be achieved only with the highest level CC and MRCI methods.
ERIC Educational Resources Information Center
Fay, Temple H.
2012-01-01
Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…
Arp, O.; Block, D.; Klindworth, M.; Piel, A.
2005-12-15
A model for the confinement of the recently discovered Coulomb balls is proposed. These spherical three-dimensional plasma crystals are trapped inside a rf discharge under gravity conditions and show an unusual structural order in complex plasmas. Measurements of the thermophoretic force acting on the trapped dust particles and simulations of the plasma properties of the discharge are presented. The proposed model of confinement considers thermophoretic, ion-drag, and electric field forces, and shows excellent agreement with the observations. The findings suggest that self-confinement does not significantly contribute to the structural properties of Coulomb balls.
Polonyi, J.
2008-06-15
The contribution of different modes of the Coulomb field to decoherence and to the dynamical breakdown of the time reversal invariance is calculated in the one-loop approximation for nonrelativistic electron gas. The dominant contribution was found to come from the usual collective modes in the plasma, namely, the zero-sound and the plasmon oscillations. The length scale of the quantum-classical transition is found to be close to the Thomas-Fermi screening length. It is argued that the extension of these modes to the whole Fock space yields optimal pointer states.
Adam P. Szczepaniak; Eric S. Swanson
2000-12-12
Here we will discuss how the nonabelian Coulomb kernel exhibits confinement already at the mean field level. In the heavy quark limit residual interactions between heavy quarks and transverse gluons are spin dependent i.e., relativistic and can be calculated using the Foldy-Wouthuysen transformation. This makes the Coulomb gauge suitable for studying the nonrelativistic limit. Finally it is possible to use standard mean field techniques to define quasiparticle excitations, which, as we discuss below, have similar properties to what is usually assumed about constituent quarks in the light quark sector.
Ye, ChuanXiang; Zhao, Yi E-mail: liangwz@xmu.edu.cn; Liang, WanZhen E-mail: liangwz@xmu.edu.cn
2015-10-21
The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT.
Contribution of excited states to stellar weak-interaction rates in odd-A nuclei
NASA Astrophysics Data System (ADS)
Sarriguren, P.
2016-05-01
Weak-interaction rates, including β decay and electron capture, are studied in several odd-A nuclei in the p f -shell region at various densities and temperatures of astrophysical interest. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus. The nuclear structure involved in the weak processes is studied within a quasiparticle random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. In the range of densities and temperatures considered, it is found that the total rates do not differ much from the rates of the ground state fully populated. In any case, the changes are not larger than the uncertainties due to the nuclear-model dependence of the rates.
TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury
2011-01-01
Background Neuronal hyperexcitability is a crucial phenomenon underlying spontaneous and evoked pain. In invertebrate nociceptors, the S-type leak K+ channel (analogous to TREK-1 in mammals) plays a critical role of in determining neuronal excitability following nerve injury. Few data are available on the role of leak K2P channels after peripheral axotomy in mammals. Results Here we describe that rat sciatic nerve axotomy induces hyperexcitability of L4-L5 DRG sensory neurons and decreases TRESK (K2P18.1) expression, a channel with a major contribution to total leak current in DRGs. While the expression of other channels from the same family did not significantly change, injury markers ATF3 and Cacna2d1 were highly upregulated. Similarly, acute sensory neuron dissociation (in vitro axotomy) produced marked hyperexcitability and similar total background currents compared with neurons injured in vivo. In addition, the sanshool derivative IBA, which blocked TRESK currents in transfected HEK293 cells and DRGs, increased intracellular calcium in 49% of DRG neurons in culture. Most IBA-responding neurons (71%) also responded to the TRPV1 agonist capsaicin, indicating that they were nociceptors. Additional evidence of a biological role of TRESK channels was provided by behavioral evidence of pain (flinching and licking), in vivo electrophysiological evidence of C-nociceptor activation following IBA injection in the rat hindpaw, and increased sensitivity to painful pressure after TRESK knockdown in vivo. Conclusions In summary, our results clearly support an important role of TRESK channels in determining neuronal excitability in specific DRG neurons subpopulations, and show that axonal injury down-regulates TRESK channels, therefore contributing to neuronal hyperexcitability. PMID:21527011
On the modelling of Coulomb friction
NASA Astrophysics Data System (ADS)
Cull, S. J.; Tucker, R. W.
1999-03-01
This paper analyses two different representations of Coulomb friction in the context of a dynamic simulation of the torsional vibrations of a driven drill-string. A simple model is used to compare the relative merits of a piecewise analytic approach using a discontinuous friction profile to a numerical integration using a smooth nonlinear representation of the Coulomb friction. In both cases the effects of viscous damping on the excitation of torsional relaxation oscillations are exhibited.
NASA Astrophysics Data System (ADS)
Yonker, Justin D.
The chemical reaction of the first excited electronic state of molecular nitrogen, N2(A3 S+u ) or N2(A), with ground state atomic oxygen, O(3 P), is an important contributor to thermospheric nitric oxide (NO). The importance is assessed by including this reaction in a one-dimensional photochemical model. The method is to scale the photoelectron impact ionization rate of N2 by a Gaussian centered near 100 km. Large uncertainties remain in the temperature dependence and branching ratios of many reactions important to NO production and loss. Similarly large uncertainties are present in the solar soft x-ray irradiance, known to be the fundamental driver of the low-latitude NO. To illustrate, it is shown that the equatorial, midday NO density measured by the Student Nitric Oxide Explorer (SNOE) satellite near the Solar Cycle 23 maximum can be recovered by the model to within the 20% measurement uncertainties using two rather different but equally reasonable chemical schemes, each with their own solar soft-xray irradiance parameterizations. Including the N2(A) changes the NO production rate by an average of 11%, but the NO density changes by a much larger 44%. This is explained by tracing the direct, indirect, and catalytic contributions of N2(A) to NO, finding them to contribute 40%, 33%, and 27 % respectively. The contribution of N2(A) relative to the total NO production and loss is assessed by tracing both back to their origins in the primary photoabsorption and photoelectron impact processes. The photoelectron impact ionization of N2 (PEI N2) is shown to be the main driver of the midday NO production while the photoelectron impact dissociation of N2 (PED N2) is the main NO destroyer. The net photoelectron impact excitation rate of N2 (PEE N2), which is responsible for the N2(A) production, is larger than either PEI N2 or PED N2 and thus potentially very important. Although the conservative assumptions regarding the level-specific NO yield from the N2(A)+O reaction
Livermore experience: contributions of J. H. Eberly to laser excitation theory
Shore, B W; Kulander, K; Davis, J I
2000-10-12
This article summarizes the developing understanding of coherent atomic excitation, as gained through a collaboration of J. H. Eberly with the Laser Isotope Separation Program of the Lawrence Livermore National Laboratory, particularly aspects of coherence, population trapping, multilevel multiphoton excitation sequences, analytic solutions to multistate excitation chains, the quasicontinuum, pulse propagation, and noise. In addition to the discovery of several curious and unexpected properties of coherent excitation, mentioned here, the collaboration provided an excellent example of unexpected benefits from investment into basic research.
Increased GABA contributes to enhanced control over motor excitability in Tourette syndrome.
Draper, Amelia; Stephenson, Mary C; Jackson, Georgina M; Pépés, Sophia; Morgan, Paul S; Morris, Peter G; Jackson, Stephen R
2014-10-01
Tourette syndrome (TS) is a developmental neurological disorder characterized by vocal and motor tics and associated with cortical-striatal-thalamic-cortical circuit dysfunction, hyperexcitability within cortical motor areas, and altered intracortical inhibition. TS often follows a developmental time course in which tics become increasingly more controlled during adolescence in many individuals, who exhibit enhanced control over their volitional movements. Importantly, control over motor outputs appears to be brought about by a reduction in the gain of motor excitability. Here we present a neurochemical basis for a localized gain control mechanism. We used ultra-high-field (7 T) magnetic resonance spectroscopy to investigate in vivo concentrations of γ-aminobutyric acid (GABA) within primary and secondary motor areas of individuals with TS. We demonstrate that GABA concentrations within the supplementary motor area (SMA)--a region strongly associated with the genesis of motor tics in TS--are paradoxically elevated in individuals with TS and inversely related to fMRI blood oxygen level-dependent activation. By contrast, GABA concentrations in control sites do not differ from those of a matched control group. Importantly, we also show that GABA concentrations within the SMA are inversely correlated with cortical excitability in primary motor cortex and are predicted by motor tic severity and white-matter microstructure (FA) within a region of the corpus callosum that projects to the SMA within each hemisphere. Based upon these findings, we propose that extrasynaptic GABA contributes to a form of control, based upon localized tonic inhibition within the SMA, that may lead to the suppression of tics. PMID:25264251
Increased GABA Contributes to Enhanced Control over Motor Excitability in Tourette Syndrome
Draper, Amelia; Stephenson, Mary C.; Jackson, Georgina M.; Pépés, Sophia; Morgan, Paul S.; Morris, Peter G.; Jackson, Stephen R.
2014-01-01
Summary Tourette syndrome (TS) is a developmental neurological disorder characterized by vocal and motor tics [1] and associated with cortical-striatal-thalamic-cortical circuit dysfunction [2, 3], hyperexcitability within cortical motor areas [4], and altered intracortical inhibition [4–7]. TS often follows a developmental time course in which tics become increasingly more controlled during adolescence in many individuals [1], who exhibit enhanced control over their volitional movements [8–11]. Importantly, control over motor outputs appears to be brought about by a reduction in the gain of motor excitability [6, 7, 12, 13]. Here we present a neurochemical basis for a localized gain control mechanism. We used ultra-high-field (7 T) magnetic resonance spectroscopy to investigate in vivo concentrations of γ-aminobutyric acid (GABA) within primary and secondary motor areas of individuals with TS. We demonstrate that GABA concentrations within the supplementary motor area (SMA)—a region strongly associated with the genesis of motor tics in TS [14]—are paradoxically elevated in individuals with TS and inversely related to fMRI blood oxygen level-dependent activation. By contrast, GABA concentrations in control sites do not differ from those of a matched control group. Importantly, we also show that GABA concentrations within the SMA are inversely correlated with cortical excitability in primary motor cortex and are predicted by motor tic severity and white-matter microstructure (FA) within a region of the corpus callosum that projects to the SMA within each hemisphere. Based upon these findings, we propose that extrasynaptic GABA contributes to a form of control, based upon localized tonic inhibition within the SMA, that may lead to the suppression of tics. PMID:25264251
Coulomb dissociation of N,2120
NASA Astrophysics Data System (ADS)
Röder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamaño, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkäll, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Datta Pramanik, Ushasi; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhäuser, Roman; Göbel, Kathrin; Golubev, Pavel; Gonzalez Diaz, D.; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hâkan; Jonson, Björn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knöbel, Ronja; Kröll, Thorsten; Krücken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; Sanchez del Rio Saez, Jose; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai; R3B Collaboration
2016-06-01
Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N,2120 are reported. Relativistic N,2120 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the 19N (n ,γ )20N and 20N (n ,γ ) 21N excitation functions and thermonuclear reaction rates have been determined. The 19 (n ,γ )20N rate is up to a factor of 5 higher at T <1 GK with respect to previous theoretical calculations, leading to a 10% decrease in the predicted fluorine abundance.
NASA Astrophysics Data System (ADS)
Beiersdorfer, Peter; Safronova, U. I.; Safronova, A. S.
2014-05-01
The atomic properties of Pm-like ions were comprehensively studied using relativistic atomic codes with the main emphasis on W ion. Excitation energies of the 4f14 nl (with nl = 5 s , 6 s , 5 p , 6 p , 5 d , 6 d , and 5 f) states in Pm-like ions with nuclear charge Z ranging from 74 to 100 are evaluated within the framework of relativistic many-body theory (RMBPT). First- and second-order Coulomb energies and first- and second-order Breit corrections to the energies are calculated. The important question of what is the ground state in Pm-like ions was answered. Properties of the 4 f -core-excited states are evaluated using the multiconfiguration relativistic Hebrew University Lawrence Livermore Atomic Code (HULLAC code) and the Hartree-Fock-Relativistic method (COWAN code). Our large scale calculations includes the following set of configurations: 4f14 5 s , 4f14 5 p , 4f13 5s2 , 4f13 5p2 , 4f13 5 s 5 p , 4f12 5s2 5 p , 4f12 5 s 5p2 , and 4f12 5p3 . Excitation energies, transition rates, and lifetimes in Pm-like tungsten are evaluated with additional inclusion of the 4f11 5s2 5p2 , 4f11 5 s 5p3 , 4f10 5s2 5p3 , and 4f10 5 s 5p4 configurations. Wavelengths of the 5 s - 5 p transitions are obtained by the COWAN, HULLAC, and RMBPT codes. This research was sponsored by DOE under the OFES grant DE-FG02-08ER54951 and in part by NNSA Cooperative Agreement DE-NA0001984. Work at Lawrence Livermore National Lab. was performed under the auspices of DOE under Contract DE-AC52-07NA27344.
ERIC Educational Resources Information Center
Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg
1998-01-01
Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous. PMID:21867316
NASA Astrophysics Data System (ADS)
Murphy, Samuel T.; Giret, Yvelin; Daraszewicz, Szymon L.; Lim, Anthony C.; Shluger, Alexander L.; Tanimura, Katsumi; Duffy, Dorothy M.
2016-03-01
The redistribution of the electron density in a material during laser irradiation can have a significant impact on its structural dynamics. This electronic excitation can be incorporated into two temperature molecular dynamics (2T-MD) simulations through the use of electronic temperature dependent potentials. Here, we study the structural dynamics of laser irradiated tungsten nanofilms using 2T-MD simulations with an electronic temperature dependent potential and compare the results to equivalent simulations that employ a ground-state interatomic potential. Electronic excitation leads to an expansion of the crystal and a decrease in the melting point of tungsten. During laser irradiation these factors ensure that the threshold fluences to the different melting regimes are reduced. Furthermore, both heterogenous and homogeneous melting are predicted to occur more rapidly due to excitation and oscillations in the film thickness will be accentuated.
Contributions to the acoustic excitation of bubbles released from a nozzle.
Czerski, Helen; Deane, Grant B
2010-11-01
It has recently been demonstrated that air bubbles released from a nozzle are excited into volume mode oscillations by the collapse of the neck of air formed at the moment of bubble detachment. A pulse of sound is caused by these breathing mode oscillations, and the sound of air-entraining flows is made up of many such pulses emitted as bubbles are created. This paper is an elaboration on a JASA-EL paper, which examined the acoustical excitation of bubbles released from a nozzle. Here, further details of the collapse of a neck of air formed at the moment of bubble formation and its implications for the emission of sound by newly formed bubbles are presented. The role of fluid surface tension was studied using high-speed photography and found to be consistent with a simple model for neck collapse. A re-entrant fluid jet forms inside the bubble just after detachment, and its role in acoustic excitation is assessed. It is found that for slowly-grown bubbles the jet does make a noticeable difference to the total volume decrease during neck collapse, but that it is not a dominant effect in the overall acoustic excitation. PMID:21110560
Raman, R N; Pivetti, C D; Rubenchik, A M; Matthews, D L; Troppmann, C; Demos, S G
2008-12-12
The use of reduced nicotinamide adenine dinucleotide (NADH) fluorescence to gain metabolic information on kidneys in response to an alteration in oxygen availability has previously been experimentally demonstrated, but signal quantification has not to date been addressed. In this work the relative contribution to rat kidney autofluorescence of the capsule vs. cortex under ultraviolet excitation is determined from experimental results obtained using autofluorescence microscopy and a suitable mathematical model. The results allow for a quantitative assessment of the relative contribution of the signal originating in the metabolically active cortex as a function of capsule thickness for different wavelengths.
The contribution of electron collisions to rotational excitations of cometary water
NASA Technical Reports Server (NTRS)
Xie, Xingfa; Mumma, Michael J.
1992-01-01
The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in comet Halley during the Giotto spacecraft encounter. In the case of the O(sub 00) yields 1(sub 11) rotational transition, the e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus. Thus, the rotational temperature of the water molecule in the intermediate coma may be controlled by collisions with electrons rather than with neutral collisions, and the rotational temperature retrieved from high resolution infrared spectra of water in comet Halley may reflect electron temperatures rather than neutral gas temperature in the intermediate coma.
Rau, Andrew R.; Chappell, Ann M.; Butler, Tracy R.; Ariwodola, Olusegun J.
2015-01-01
Adolescence represents a particularly vulnerable period during which exposure to stressors can precipitate the onset of psychiatric disorders and addiction. The basolateral amygdala (BLA) plays an integral role in the pathophysiology of anxiety and addiction. Acute and chronic stress promote increases in BLA pyramidal cell firing, and decreasing BLA excitability alleviates anxiety measures in humans and rodents. Notably, the impact of early-life stress on the mechanisms that govern BLA excitability is unknown. To address this gap in our knowledge, we used a rodent model of chronic early-life stress that engenders robust and enduring increases in anxiety-like behaviors and ethanol intake and examined the impact of this model on the intrinsic excitability of BLA pyramidal cells. Adolescent social isolation was associated with a significant increase in the intrinsic excitability of BLA pyramidal cells and a blunting of the medium component of the afterhyperpolarization potential, a voltage signature of calcium-activated potassium (Kca) channel activity. Western blot analysis revealed reduced expression of small-conductance Kca (SK) channel protein in the BLA of socially isolated (SI) rats. Bath application of a positive SK channel modulator (1-EBIO) normalized firing in ex vivo recordings from SI rats, and in vivo intra-BLA 1-EBIO infusion reduced anxiety-like behaviors. These findings reveal that chronic adolescent stress impairs SK channel function, which contributes to an increase in BLA pyramidal cell excitability and highlights BLA SK channels as promising targets for the treatment of anxiety disorders and comorbid addiction. SIGNIFICANCE STATEMENT Although anxiety disorders and alcohol addiction frequently co-occur, the mechanisms that contribute to this comorbidity are poorly understood. Here, we used a rodent early-life stress model that leads to robust and longlasting increases in behaviors associated with elevated risk of anxiety disorders and addiction to
Romei, Vincenzo; Murray, Micah M; Cappe, Céline; Thut, Gregor
2013-07-01
Approaching or looming sounds (L-sounds) have been shown to selectively increase visual cortex excitability [Romei, V., Murray, M. M., Cappe, C., & Thut, G. Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds. Current Biology, 19, 1799-1805, 2009]. These cross-modal effects start at an early, preperceptual stage of sound processing and persist with increasing sound duration. Here, we identified individual factors contributing to cross-modal effects on visual cortex excitability and studied the persistence of effects after sound offset. To this end, we probed the impact of different L-sound velocities on phosphene perception postsound as a function of individual auditory versus visual preference/dominance using single-pulse TMS over the occipital pole. We found that the boosting of phosphene perception by L-sounds continued for several tens of milliseconds after the end of the L-sound and was temporally sensitive to different L-sound profiles (velocities). In addition, we found that this depended on an individual's preferred sensory modality (auditory vs. visual) as determined through a divided attention task (attentional preference), but not on their simple threshold detection level per sensory modality. Whereas individuals with "visual preference" showed enhanced phosphene perception irrespective of L-sound velocity, those with "auditory preference" showed differential peaks in phosphene perception whose delays after sound-offset followed the different L-sound velocity profiles. These novel findings suggest that looming signals modulate visual cortex excitability beyond sound duration possibly to support prompt identification and reaction to potentially dangerous approaching objects. The observed interindividual differences favor the idea that unlike early effects this late L-sound impact on visual cortex excitability is influenced by cross-modal attentional mechanisms rather than low-level sensory processes
NASA Astrophysics Data System (ADS)
Granroth, G. E.; Aczel, A. A.; Fernandez-Baca, J. A.; Nagler, S. E.
2013-03-01
Many experimental features in magnetic superconductors are also present when these complex materials are in the normal state. Therefore studies of simpler itinerant magnets may help provide understanding of these phenomena. We chose to study Gd as it is has an ~ 0 . 6μB itinerant moment in addition to a ~ 7 . 0μB localized moment. The SEQUOIA spectrometer, at the Spallation Neutron Source at Oak Ridge National Laboratory, was used in fine resolution mode with Ei=50 meV neutrons, to measure the magnetic excitations in a 12 gm 160Gd single crystal. The crystal was mounted with the h 0 l plane horizontal and rotated around the vertical axis to map out the excitations. The measured magnetic structure factor for the acoustic modes in the hh 0 direction has an intensity step at h ~ 0 . 3 . Electronic band structure calculations (W. M. Temmerman and P. A. Sterne, J. Phys: Condes. Matter,2, 5529 (1990)) show this Q position to be near several band crossings of the Fermi surface. A detailed analysis, including instrumental resolution, is presented to clarify any relationship between the magnetic structure factor and the electronic band structure. This work was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.
Molecular Dynamics Simulations of Coulomb Explosion
Bringa, E M
2002-05-17
A swift ion creates a track of electronic excitations in the target material. A net repulsion inside the track can cause a ''Coulomb Explosion'', which can lead to damage and sputtering of the material. Here we report results from molecular-dynamics (MD) simulations of Coulomb explosion for a cylindrical track as a function of charge density and neutralization/quenching time, {tau}. Screening by the free electrons is accounted for using a screened Coulomb potential for the interaction among charges. The yield exhibits a prompt component from the track core and a component, which dominates at higher excitation density, from the heated region produced. For the cases studied, the number of atoms ejected per incident ion, i.e. the sputtering yield Y, is quadratic with charge density along the track as suggested by simple models. Y({tau} = 0.2 Debye periods) is nearly 20% of the yield when there is no neutralization ({tau} {yields} {infinity}). The connections between ''Coulomb explosions'', thermal spikes and measurements of electronic sputtering are discussed.
Bruno, D.; Colonna, G.; Laricchiuta, A.; Capitelli, M.
2012-12-15
Internal and reactive contributions to the thermal conductivity of a local thermodynamic equilibrium nitrogen plasma have been calculated using the Chapman-Enskog method. Low-lying (LL) electronically excited states (i.e., states with the same principal quantum number of the ground state) and high-lying (HL) ones (i.e., states with principal quantum number n> 2) have been considered. Several models have been developed, the most accurate being a model that treats the LL states as separate species while disregarding the presence of HL states, on account of their enormous transport cross sections.
NASA Astrophysics Data System (ADS)
Bruno, D.; Colonna, G.; Laricchiuta, A.; Capitelli, M.
2012-12-01
Internal and reactive contributions to the thermal conductivity of a local thermodynamic equilibrium nitrogen plasma have been calculated using the Chapman-Enskog method. Low-lying (LL) electronically excited states (i.e., states with the same principal quantum number of the ground state) and high-lying (HL) ones (i.e., states with principal quantum number n > 2) have been considered. Several models have been developed, the most accurate being a model that treats the LL states as separate species while disregarding the presence of HL states, on account of their enormous transport cross sections.
Rovibrational excitation of H2 and HD due to H: the contribution of reactive scattering
NASA Astrophysics Data System (ADS)
Watson Cook, Alexander; Yang, Benhui H.; Stancil, Phillip C.; Forrey, Robert C.; Naduvalath, Balakrishnan
2016-06-01
Utilizing the hyperspherical method as implemented in the ABC computational suite of codes (Skouteris et al. 2000), the time-independent Schroedinger equation is solved for the reactive and inelastic scattering probabilities for interactions between hydrogen and its isotopes, particularly H, H2, and HD. A high quality potential energy surface (Miekle et all 2002) was adopted in the scattering Hamiltonian construction. Additionally, we aim to explore uses of GPU-centric computing to increase the efficiency of this method (Baraglia et al.) in order to obtain collisional rate coefficients for the full range of rovibrationally excited H2 and HD, extending the recent study of Lique (2015).Baraglia, R. et al. 2011, in Computational Science and Its ApplicationsLique, F. 2015, MNRAS, 453, 810Mielke, S. L. et al., 2002, J. Chem. Phys., 116, 4142Skouteris, D. et al., 2000, Comp. Phys. Comm., 133, 128The work at UGA is partially support by grant HST-AR-13899.
NASA Astrophysics Data System (ADS)
Wang, Luxia; Willig, Frank; May, Volkhard
2007-04-01
Absorption spectra related to heterogeneous electron transfer are analyzed with the focus on direct charge transfer transition from the surface attached molecule into the semiconductor band states. The computations are based on a model of reduced dimensionality with a single intramolecular vibrational coordinate but a complete account for the continuum of conduction band states. The applicability of this model to perylene on TiO2 has been demonstrated in a series of earlier papers. Here, based on a time-dependent formulation, the absorbance is calculated with the inclusion of charge transfer excitations. A broad parameter set inspired by the perylene TiO2 systems is considered. In particular, the description generalizes the Fano effect to heterogeneous electron transfer reactions. Preliminary simulations of measured spectra are presented for perylene-catechol attached to TiO2.
Fan, Jing; Stemkowski, Patrick L.; Gandini, Maria A.; Black, Stefanie A.; Zhang, Zizhen; Souza, Ivana A.; Chen, Lina; Zamponi, Gerald W.
2016-01-01
Genetic ablation of cellular prion protein (PrPC) has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR) function. Here, we focused on the effect of PRNP gene knock-out (KO) on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrPC profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288 (100 μM). HCN channel activity appeared to be functionally regulated by PrPC. The amplitude of voltage sag, a characteristic of activating HCN channel current (Ih), was decreased in null mice. Moreover, Ih peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrPC. These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability. PMID:27047338
Coulomb-interaction effects on the electronic structure of radially polarized excitons in nanorings
NASA Astrophysics Data System (ADS)
Barticevic, Z.; Pacheco, M.; Simonin, J.; Proetto, C. R.
2006-04-01
The electronic structure of radially polarized excitons in structured nanorings is analyzed, with emphasis in the ground-state properties and their dependence under applied magnetic fields perpendicular to the ring plane. The electron-hole Coulomb attraction has been treated rigorously, through numerical diagonalization of the full exciton Hamiltonian in the noninteracting electron-hole pairs basis. Depending on the relative weight of the kinetic energy and Coulomb contributions, the ground-state of polarized excitons has “extended” or “localized” features. In the first case, corresponding to small rings dominated by the kinetic energy, the ground-state shows Aharonov-Bohm (AB) oscillations due to the individual orbits of the building particles of the exciton. In the localized regime, corresponding to large rings dominated by the Coulomb interaction, the only remaining AB oscillations are due to the magnetic flux trapped between the electron and hole orbits. This dependence of the exciton, a neutral excitation, on the flux difference confirms this feature as a signature of Coulomb dominated polarized excitons. Analytical approximations are provided in both regimes, which accurately reproduce the numerical results.
Giant Coulomb blockade magnetoresistance
Zhang, Xiaoguang; Wen, Z. C.; Wei, H. X.; Han, Prof. X. F.
2010-01-01
We show that the Coulomb blockade voltage can be made to depend strongly on the electron spin in a thin magnetic granular layer inserted in the middle of an insulating layer of a tunnel junction. This strong spin dependence is predicted from the spin-dependent inter-granular conductance through any of the following effects within the granular layer, giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), colossal magnetoresistance (CMR), or GMR through a polymer spacer. The resulting Coulomb blockade magnetoresistance (CBMR) ratio can exceed the magnetoresistance ratio of the granular layer itself by orders of magnitude. Unlike other magenetoresistance effects, the CBMR effect does not require magnetic electrodes.
Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis.
Mahapatra, S; Calorio, C; Vandael, D H F; Marcantoni, A; Carabelli, V; Carbone, E
2012-01-01
Voltage gated Ca(2+) channels are effective voltage sensors of plasma membrane which convert cell depolarizations into Ca(2+) signaling. The chromaffin cells of the adrenal medulla utilize a large number of Ca(2+) channel types to drive the Ca(2+)-dependent release of catecholamines into blood circulation, during normal or stress-induced conditions. Some of the Ca(2+) channels expressed in chromaffin cells (L, N, P/Q, R and T), however, do not control only vesicle fusion and catecholamine release. They also subserve a variety of key activities which are vital for the physiological and pathological functioning of the cell, like: (i) shaping the action potentials of electrical oscillations driven either spontaneously or by ACh stimulation, (ii) controlling the action potential frequency of tonic or bursts firing, (iii) regulating the compensatory and excess endocytosis following robust exocytosis and (iv) driving the remodeling of Ca(2+) signaling which occurs during stressors stimulation. Here, we will briefly review the well-established properties of voltage-gated Ca(2+) channels accumulated over the past three decades focusing on the most recent discoveries on the role that L- (Cav1.2, Cav1.3) and T-type (Cav3.2) channels play in the control of excitability, exocytosis and endocytosis of chromaffin cells in normal and stress-mimicking conditions. PMID:22317919
NASA Astrophysics Data System (ADS)
Satoh, Kozue; Wagatsuma, Kazuaki
2015-06-01
This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d64p (3d54s4p) excited levels of iron ion broadly over an energy range of 7.6-9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels.
Kadyrov, A. S.; Bray, I.; Stelbovics, A. T.; Mukhamedzhanov, A. M.
2008-12-05
We formulate scattering theory in the framework of a surface-integral approach utilizing analytically known asymptotic forms of the three-body wave functions. This formulation is valid for both short-range and Coulombic potentials. The post and prior forms of the breakup amplitude are derived without any reference to renormalization procedures.
Coulomb balls in Experiment and Simulation
Block, D.; Arp, O.; Piel, A.; Melzer, A.
2005-10-31
Recently, it was shown that it is possible to confine spherical dust clouds in a plasma. It was found that these dust clouds have a crystalline structure which differs notably from the well known fcc, bcc and hcp order in extended crystalline systems. The experiments show that the particles arrange in nested shells with hexagonal order on individual shells. The high transparency and the rather slow time scales of Coulomb balls allow to observe individual particles with video microscopy techniques and therefore to determine the structural properties of Coulomb balls with high accuracy. This contribution presents a comparison of experimental results and MD-Simulations.
NASA Astrophysics Data System (ADS)
Gebremedhin, Daniel H.; Weatherford, Charles A.
2015-02-01
This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrödinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a δ (x ) , and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.
Coulomb problem for vector bosons
Kuchiev, M.Yu.; Flambaum, V.V.
2006-05-01
The Coulomb problem for vector bosons W{sup {+-}} incorporates a well-known difficulty; the charge of the boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the Coulomb problem for vector bosons properly.
PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Neilson, David; Senatore, Gaetano
2009-05-01
, condensed matter and ultra-cold plasmas. One hundred and thirty participants came from twenty countries and four continents to participate in the conference. Those giving presentations were asked to contribute to this special issue to make a representative record of an interesting conference. We thank the International Advisory Board and the Programme Committee for their support and suggestions. We thank the Local Organizing Committee (Stefania De Palo, Vittorio Pellegrini, Andrea Perali and Pierbiagio Pieri) for all their efforts. We highlight for special mention the dedication displayed by Andrea Perali, by Rocco di Marco for computer support, and by our tireless conference secretary Fiorella Paino. The knowledgeable guided tour of the historic centre of Camerino given by Fiorella Paino was appreciated by many participants. It is no exaggeration to say that without the extraordinary efforts put in by these three, the conference could not have been the success that it was. For their sustained interest and support we thank Fulvio Esposito, Rector of the University of Camerino, Fabio Beltram, Director of NEST, Scuola Normale Superiore, Pisa, and Daniel Cox, Co-Director of ICAM, University of California at Davis. We thank the Institute of Complex and Adaptive Matter ICAM-I2CAM, USA for providing a video record of the conference on the web (found at http://sccs2008.df.unicam.it/). Finally we thank the conference sponsors for their very generous support: the University of Camerino, the Institute of Complex and Adaptive Matter ICAM-I2CAM, USA, the International Centre for Theoretical Physics ICTP Trieste, and CNR-INFM DEMOCRITOS Modeling Center for Research in Atomistic Simulation, Trieste. Participants at the International Conference on Strongly Coupled Coulomb Systems (SCCS) (University of Camerino, Italy, 29 July-2 August 2008).
Valente, Pierluigi; Lignani, Gabriele; Medrihan, Lucian; Bosco, Federica; Contestabile, Andrea; Lippiello, Pellegrino; Ferrea, Enrico; Schachner, Melitta; Benfenati, Fabio; Giovedì, Silvia; Baldelli, Pietro
2016-05-01
L1 (also known as L1CAM) is a trans-membrane glycoprotein mediating neuron-neuron adhesion through homophilic and heterophilic interactions. Although experimental evidence has implicated L1 in axonal outgrowth, fasciculation and pathfinding, its contribution to voltage-gated Na(+) channel function and membrane excitability has remained unknown. Here, we show that firing rate, single cell spiking frequency and Na(+) current density are all reduced in hippocampal excitatory neurons from L1-deficient mice both in culture and in slices owing to an overall reduced membrane expression of Na(+) channels. Remarkably, normal firing activity was restored when L1 was reintroduced into L1-deficient excitatory neurons, indicating that abnormal firing patterns are not related to developmental abnormalities, but are a direct consequence of L1 deletion. Moreover, L1 deficiency leads to impairment of action potential initiation, most likely due to the loss of the interaction of L1 with ankyrin G that produces the delocalization of Na(+) channels at the axonal initial segment. We conclude that L1 contributes to functional expression and localization of Na(+) channels to the neuronal plasma membrane, ensuring correct initiation of action potential and normal firing activity. PMID:26985064
Ultrafast dynamics of Coulomb correlated excitons in GaAs quantum wells
Mycek, M.A. |
1995-12-01
The author measures the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. She characterizes this ultrafast coherent emission in both amplitude and phase, using time- and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. She contributes three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, she temporally resolves the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, she also investigates the fifth-order six-wave mixing response. Third, she characterizes the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. The author finds that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below 3 {times} 10{sup 11} cm{sup {minus}2}, the saturation density. These signatures of Coulomb correlation are investigated for increasing excitation density to gradually screen the interactions and test the validity of the model for dense media. The results are found to be qualitatively consistent with both the predictions of the model and with numerical solutions to the semiconductor Bloch equations. Importantly, the results also indicate current experimental and theoretical limitations, which should be addressed in future research.
NASA Astrophysics Data System (ADS)
Drewsen, Michael
2015-03-01
The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged the past two decades. While this document lacks figures, it includes a substantial number of references in which more detailed information can be found. It is the hope that the text will stimulate the reader to dig deeper into one or more of the discussed subjects and inspire her/him to think about new potential applications.
PREFACE: Strongly Coupled Coulomb Systems
NASA Astrophysics Data System (ADS)
Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.
2006-04-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within
Nagata, Keitaro; Kao, C. W.; Zhou Haiqing; Yang Shinnan
2009-06-15
We study the leading electroweak corrections in the precision measurement of the strange form factors. Specifically, we calculate the two-boson exchange (TBE), two-photon exchange (TPE) plus {gamma}Z exchange ({gamma}ZE), and corrections with {delta}(1232) excitation to the parity-violating asymmetry of the elastic electron-proton scattering. The interplay between nucleon and {delta} contributions is found to depend strongly on the kinematics, as {delta}{sub {delta}} begins as negligible at backward angles but becomes very large and negative and dominant at forward angles, while {delta}{sub N} always stays positive and decreases monotonically with increasing {epsilon}. The total TBE corrections to the extracted values of G{sub E}{sup s}+{beta}G{sub M}{sup s} in recent experiments of HAPPEX and G0 are, depending on kinematics, found to be large and range between 13% and -75%, but are found to be small in the case of A4 experiments.
Coulombic Effects in Ion Mobility Spectrometry
Tolmachev, Aleksey V.; Clowers, Brian H.; Belov, Mikhail E.; Smith, Richard D.
2009-01-01
Ion mobility spectrometry (IMS) has been increasingly employed in a number of applications. When coupled to mass spectrometry (MS), IMS becomes a powerful analytical tool for separating complex samples and investigating molecular structure. Therefore, improvements in IMS-MS instrumentation, e.g. IMS resolving power and sensitivity, are highly desirable. Implementation of an ion trap for accumulation and pulsed ion injection to IMS based on the ion funnel has provided considerably increased ion currents, and thus a basis for improved sensitivity and measurement throughput. However, large ion populations may manifest Coulombic effects contributing to the spatial dispersion of ions traveling in the IMS drift tube, and reduction in the IMS resolving power. In this study, we present an analysis of Coulombic effects on IMS resolution. Basic relationships have been obtained for the spatial evolution of ion packets due to Coulombic repulsion. The analytical relationships were compared with results of a computer model that simulates IMS operation based on a first principles approach. Initial experimental results reported here are consistent with the computer modeling. A noticeable decrease in the IMS resolving power was observed for ion populations of >10,000 elementary charges. The optimum IMS operation conditions which would minimize the Coulombic effects are discussed. PMID:19438247
NASA Astrophysics Data System (ADS)
Wright, J. S.; Dilabio, G. A.; Matusek, D. R.; Corkum, P. B.; Ivanov, M. Yu.; Ellert, Ch.; Buenker, R. J.; Alekseyev, A. B.; Hirsch, G.
1999-06-01
Highly charged molecular ions are generated in Coulomb explosion experiments involving multielectron dissociative ionization, but little is known about the precise mechanisms involved in their formation. To help improve the understanding of such experiments, potential energy curves are calculated in this paper for diatomic chlorine (Cl2) and its ions Cln+2, where n=1,2,3,4,6,8,10. Bound vibrational states are obtained in three low-lying electronic states for Cl2+2 and one state for Cl3+2. Vertical excitation energies are given for stepwise excitations up to Cl10+2. For all the ions examined there is a significant energy defect (Δ) from the corresponding Coulomb potential, in one case reaching magnitudes of over 20 eV. We analyze the origin of these energy defects in terms of residual chemical bonding, and discuss the contribution of strongly bonding configurations at short internuclear distance. Finally, we present a simple physical model which describes the qualitative behavior of Δ(R,Q).
NASA Astrophysics Data System (ADS)
Bryk, Taras; Ruocco, G.; Scopigno, T.; Seitsonen, Ari P.
2015-09-01
Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations in liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.
Bryk, Taras; Ruocco, G.; Scopigno, T.
2015-09-14
Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations in liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.
Microwave ac Conductivity Spectrum of a Coulomb Glass
Lee, Mark; Stutzmann, M. L.
2001-07-30
We report the first observation of the transition between interacting and noninteracting behavior in the ac conductivity spectrum {sigma}({omega}) of a doped semiconductor in its Coulomb glass state near T=0 K . The transition manifests itself as a crossover from approximately linear frequency dependence below {approx}10 GHz , to quadratic dependence above {approx}15 GHz . The sharpness of the transition and the magnitude of the crossover frequency strongly suggest that the transition is driven by photon-induced excitations across the Coulomb gap, in contrast to existing theoretical descriptions.
Coulomb interactions and fermion condensation
Capstick, S.; Cutkosky, R.E.; Joensen, M.A. ); Wang, K.C. )
1990-08-15
The influence of the Coulomb interaction in states containing massless and flavorless fermion-antifermion pairs is studied, using a continuum formulation within the finite volume {ital S}{sup 3}. Several different forms for the Coulomb interaction are examined, including confining potentials as well as nonconfining potentials. The calculations show that if the interaction is strong enough, the Coulomb interaction leads to condensation of pairs, and that this condensation has a chiral character. The condensation does not depend on whether the interaction is confining. It is found that simplified variational approximations are not accurate enough for an adequate description of the states.
Schulz, T.; Markurt, T.; Albrecht, M.; Nirschl, A.; Drechsel, P.; Nippert, F.; Hoffmann, A.
2014-11-03
The recombination dynamics of In{sub x}Ga{sub 1−x}N single quantum wells are investigated. By comparing the photoluminescence (PL) decay spectra with simulated emission spectra obtained by a Schrödinger-Poisson approach, we give evidence that recombination from higher subbands contributes the emission of the quantum well at high excitation densities. This recombination path appears as a shoulder on the high energy side of the spectrum at high charge carrier densities and exhibits decay in the range of ps. Due to the lower confinement of the excited subband states, a distinct proportion of the probability density function lies outside the quantum well, thus contributing to charge carrier loss. By estimating the current density in our time resolved PL experiments, we show that the onset of this loss mechanism occurs in the droop relevant regime above 20 A/cm{sup 2}.
Long-range Coulomb interaction in nodal-ring semimetals
NASA Astrophysics Data System (ADS)
Huh, Yejin; Moon, Eun-Gook; Kim, Yong Baek
2016-01-01
Recently there have been several proposals of materials predicted to be nodal-ring semimetals, where zero energy excitations are characterized by a nodal ring in the momentum space. This class of materials falls between the Dirac-like semimetals and the more conventional Fermi-surface systems. As a step towards understanding this unconventional system, we explore the effects of the long-range Coulomb interaction. Due to the vanishing density of states at the Fermi level, Coulomb interaction is only partially screened and remains long-ranged. Through renormalization group and large-Nf computations, we have identified a nontrivial interacting fixed point. The screened Coulomb interaction at the interacting fixed point is an irrelevant perturbation, allowing controlled perturbative evaluations of physical properties of quasiparticles. We discuss unique experimental consequences of such quasiparticles: acoustic wave propagation, anisotropic dc conductivity, and renormalized phonon dispersion as well as energy dependence of quasiparticle lifetime.
Poisson's equation solution of Coulomb integrals in atoms and molecules
NASA Astrophysics Data System (ADS)
Weatherford, Charles A.; Red, Eddie; Joseph, Dwayne; Hoggan, Philip
The integral bottleneck in evaluating molecular energies arises from the two-electron contributions. These are difficult and time-consuming to evaluate, especially over exponential type orbitals, used here to ensure the correct behaviour of atomic orbitals. In this work, it is shown that the two-centre Coulomb integrals involved can be expressed as one-electron kinetic-energy-like integrals. This is accomplished using the fact that the Coulomb operator is a Green's function of the Laplacian. The ensuing integrals may be further simplified by defining Coulomb forms for the one-electron potential satisfying Poisson's equation therein. A sum of overlap integrals with the atomic orbital energy eigenvalue as a factor is then obtained to give the Coulomb energy. The remaining questions of translating orbitals involved in three and four centre integrals and the evaluation of exchange energy are also briefly discussed. The summation coefficients in Coulomb forms are evaluated using the LU decomposition. This algorithm is highly parallel. The Poisson method may be used to calculate Coulomb energy integrals efficiently. For a single processor, gains of CPU time for a given chemical accuracy exceed a factor of 40. This method lends itself to evaluation on a parallel computer.
Investigation of Coulomb dipole polarization effects on reactions involving exotic nuclei
NASA Astrophysics Data System (ADS)
Fernández-García, J. P.; Alvarez, M. A. G.; Chamon, L. C.
2015-07-01
We have analyzed elastic scattering angular distributions and total reaction cross sections of the exotic nuclei 11,9Li on 208Pb, at energies below and above the Coulomb barrier. For this purpose, we have used an optical potential with no adjustable parameters, composed by the nuclear São Paulo potential, derived from the nonlocal nature of the interaction, and the Coulomb dipole polarization potential, derived from the semiclassical theory of Coulomb excitation. Within this formalism, we identified an unusual long-range absorption for the +208Pb 11Li system, which is dominated by the Coulomb interaction. We compare it to the absorption mechanisms observed for +208Pb6He which, unlike those of +208Pb11Li, take place at small interacting distances, where both Coulomb and nuclear interactions are important. The proposed approach shows to be a fundamental basis to study reactions involving exotic nuclei.
11Li Breakup on 208 at energies around the Coulomb barrier.
Fernández-García, J P; Cubero, M; Rodríguez-Gallardo, M; Acosta, L; Alcorta, M; Alvarez, M A G; Borge, M J G; Buchmann, L; Diget, C A; Falou, H A; Fulton, B R; Fynbo, H O U; Galaviz, D; Gómez-Camacho, J; Kanungo, R; Lay, J A; Madurga, M; Martel, I; Moro, A M; Mukha, I; Nilsson, T; Sánchez-Benítez, A M; Shotter, A; Tengblad, O; Walden, P
2013-04-01
The inclusive breakup for the (11)Li + (208)Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of (9)Li following the (11)Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the (11)Li continuum at low excitation energy. PMID:25166983
Finiteness of the Coulomb gauge QCD perturbative effective action
NASA Astrophysics Data System (ADS)
Andraši, A.; Taylor, J. C.
2015-05-01
At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ-Lee term which was inserted into the Hamiltonian.
Finiteness of the Coulomb gauge QCD perturbative effective action
Andraši, A.; Taylor, J.C.
2015-05-15
At 2-loop order in the Coulomb gauge, individual Feynman graphs contributing to the effective action have energy divergences. It is proved that these cancel in suitable combinations of graphs. This has previously been shown only for transverse external fields. The calculation results in a generalization of the Christ–Lee term which was inserted into the Hamiltonian.
Briant, Linford J B; Stalbovskiy, Alexey O; Nolan, Matthew F; Champneys, Alan R; Pickering, Anthony E
2014-12-01
Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVClike) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVClike SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (IA). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of IA by 15-30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that IA acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension. PMID:25122704
Briant, Linford J. B.; Stalbovskiy, Alexey O.; Nolan, Matthew F.; Champneys, Alan R.
2014-01-01
Hypertension is associated with pathologically increased sympathetic drive to the vasculature. This has been attributed to increased excitatory drive to sympathetic preganglionic neurons (SPN) from brainstem cardiovascular control centers. However, there is also evidence supporting increased intrinsic excitability of SPN. To test this hypothesis, we made whole cell recordings of muscle vasoconstrictor-like (MVClike) SPN in the working-heart brainstem preparation of spontaneously hypertensive (SH) and normotensive Wistar-Kyoto (WKY) rats. The MVClike SPN have a higher spontaneous firing frequency in the SH rat (3.85 ± 0.4 vs. 2.44 ± 0.4 Hz in WKY; P = 0.011) with greater respiratory modulation of their activity. The action potentials of SH SPN had smaller, shorter afterhyperpolarizations (AHPs) and showed diminished transient rectification indicating suppression of an A-type potassium conductance (IA). We developed mathematical models of the SPN to establish if changes in their intrinsic properties in SH rats could account for their altered firing. Reduction of the maximal conductance density of IA by 15–30% changed the excitability and output of the model from the WKY to a SH profile, with increased firing frequency, amplified respiratory modulation, and smaller AHPs. This change in output is predominantly a consequence of altered synaptic integration. Consistent with these in silico predictions, we found that intrathecal 4-aminopyridine (4-AP) increased sympathetic nerve activity, elevated perfusion pressure, and augmented Traube-Hering waves. Our findings indicate that IA acts as a powerful filter on incoming synaptic drive to SPN and that its diminution in the SH rat is potentially sufficient to account for the increased sympathetic output underlying hypertension. PMID:25122704
Deltuva, A; Fonseca, A C; Sauer, P U
2005-08-26
The Coulomb interaction between the two protons is fully included in the calculation of proton-deuteron breakup with realistic interactions for the first time. The hadron dynamics is based on the purely nucleonic charge-dependent (CD) Bonn potential and its realistic extension CD Bonn +Delta to a coupled-channel two-baryon potential, allowing for single virtual Delta-isobar excitation. Calculations are done using integral equations in momentum space. The screening and renormalization approach is employed for including the Coulomb interaction. The Coulomb effect on breakup observables is seen at all energies in particular kinematic regimes. PMID:16197210
Renormalization in Coulomb gauge QCD
NASA Astrophysics Data System (ADS)
Andraši, A.; Taylor, John C.
2011-04-01
In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ-Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ-Lee term. We find that they cannot.
Entropic Corrections to Coulomb's Law
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Sheykhi, A.
2012-04-01
Two well-known quantum corrections to the area law have been introduced in the literatures, namely, logarithmic and power-law corrections. Logarithmic corrections, arises from loop quantum gravity due to thermal equilibrium fluctuations and quantum fluctuations, while, power-law correction appears in dealing with the entanglement of quantum fields in and out the horizon. Inspired by Verlinde's argument on the entropic force, and assuming the quantum corrected relation for the entropy, we propose the entropic origin for the Coulomb's law in this note. Also we investigate the Uehling potential as a radiative correction to Coulomb potential in 1-loop order and show that for some value of distance the entropic corrections of the Coulomb's law is compatible with the vacuum-polarization correction in QED. So, we derive modified Coulomb's law as well as the entropy corrected Poisson's equation which governing the evolution of the scalar potential ϕ. Our study further supports the unification of gravity and electromagnetic interactions based on the holographic principle.
Hydrodynamic Coulomb drag of strongly correlated electron liquids
NASA Astrophysics Data System (ADS)
Apostolov, S. S.; Levchenko, A.; Andreev, A. V.
2014-03-01
We develop a theory of Coulomb drag in ultraclean double layers with strongly correlated carriers. In the regime where the equilibration length of the electron liquid is shorter than the interlayer spacing the main contribution to the Coulomb drag arises from hydrodynamic density fluctuations. The latter consist of plasmons driven by fluctuating longitudinal stresses, and diffusive modes caused by temperature fluctuations and thermal expansion of the electron liquid. We express the drag resistivity in terms of the kinetic coefficients of the electron fluid. Our results are nonperturbative in interaction strength and do not assume Fermi-liquid behavior of the electron liquid.
Jankus, Vygintas; Aydemir, Murat; Dias, Fernando B.
2016-01-01
The mechanisms by which light is generated in an organic light emitting diode have slowly been elucidated over the last ten years. The role of triplet annihilation has demonstrated how the “spin statistical limit” can be surpassed, but it cannot account for all light produced in the most efficient devices. Here, a further mechanism is demonstrated by which upper excited triplet states can also contribute to indirect singlet production and delayed fluorescence. Since in a device the population of these TN states is large, this indirect radiative decay channel can contribute a sizeable fraction of the total emission measured from a device. The role of intra‐ and interchain charge transfer states is critical in underpinning this mechanism. PMID:27610333
Coulomb problem for vector particles : Energy spectrum.
Kuchiev, M. Yu.; Flambaum, V. V.; Physics; Univ. of South Wales
2006-05-31
The Coulomb problem for vector bosons W{+-} incorporates a well-known difficulty; the charge of the boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the Coulomb problem for vector bosons properly.
Weak interaction rate Coulomb corrections in big bang nucleosynthesis
Smith, Christel J.; Fuller, George M.
2010-03-15
We have applied a fully relativistic Coulomb wave correction to the weak reactions in the full Kawano/Wagoner big bang nucleosynthesis (BBN) code. We have also added the zero-temperature radiative correction. We find that using this higher accuracy Coulomb correction results in good agreement with previous work, giving only a modest {approx}0.04% increase in helium mass fraction over correction prescriptions applied previously in BBN calculations. We have calculated the effect of these corrections on other light element abundance yields in BBN, and we have studied these yields as functions of electron neutrino lepton number. This has allowed insights into the role of the weak neutron-proton interconversion processes in the setting of the neutron-to-proton ratio during the BBN epoch. We find that the lepton capture processes' contributions to this ratio are only second order in the Coulomb correction.
Ma, Q. L.; Wang, Shouguo; Wei, H. X.; Liu, H. F.; Zhang, Xiaoguang; Han, Prof. X. F.
2011-01-01
For sputteredCoFeB/MgO/CoFeB magnetic tunnel junctions, it is well known that the tunnelmagnetoresistance (TMR) ratio increases with increasing annealing temperature (Ta) up to a critical value (Tp), and then decreases with further increasing Ta , resulting in a peak around Tp. The improved crystallinity of the MgO barrier and CoFeB electrodes due to annealing has been considered as the main reason for the enhancement of the TMR ratio, especially for Ta < Tp. In this work, the evidence is provided that the magnon excitation plays a great contribution to the magnetoresistance (MR) behavior in annealed samples based on the measurement of dynamic conductance and inelastic electron tunneling (IET) spectra. The magnon activation energy (Ec) obtained from the fits for IET spectra exhibits a similar temperature dependence with that of the TMR ratio. A detailed analysis shows that the magnon excitation, together with improved crystallinity of the MgO barrier and CoFeB layers, is the main contribution to the annealing-temperature-dependent MR behavior.
NASA Astrophysics Data System (ADS)
Sherr, R.; Fortune, H. T.
1998-10-01
Coulomb energies of the ^18Ne mirrors of the levels of ^18O vary considerably from state to state, an effect understood as arising from their different configurations. All the low-lying positive-parity states in these nuclei can be described in terms of two nucleons coupled to an ^16O core plus a collective component (most probably four-particle two-hole (4p-2h)). We have computed Coulomb energies using one such formulation(Lawson, Serduke and Fortune, Phys. Rev. C 14), 1245 (1976).. Two-particle energies arise from coupling a neutron to single-particle states of ^17O, and a proton to the mirror states of ^17F. For the 4p-2h component, we use the ^14O-^14C mass difference, plus a ph Coulomb term(Sherr and Bertsch, Phys. Rev. C 12), 1671 (1975).. Agreement is perhaps slightly better than another such attempt(Nero, Adelberger and Dietrich, Phys. Rev. C 24), 1864 (1981). using wave functions from Benson and Flowers.
Computational Analysis of Intermolecular Coulombic Decay Effects in DNA nucleotide Photoionization
NASA Astrophysics Data System (ADS)
Vargas, E. L.; Robertson, J.; Andrianarijaona, V. M.
2016-03-01
Intermolecular Coulombic Decay (ICD) is the process of how electrons return to their original state after excitation and how this affects their immediate environment. In a previous research presentationwe had considered the hypothetical applications of Intermolecular Coulombic Decay on the adhesiveness of coding proteins within DNA molecules. This presentation is a continuation of the previous in that the results of our DFT-based computational calculations of the ionization potentials of nucleotides and their excitation energies will be presented, as well as how they influence their surroundings. Author would like to acknowledge the PUC Student Senate for financial assistance.
Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup
NASA Astrophysics Data System (ADS)
Chakraborty, S.; Datta Pramanik, U.; Aumann, T.; Beceiro, S.; Boretzky, K.; Caesar, C.; Carlson, B. V.; Catford, W. N.; Chatterjee, S.; Chartier, M.; Cortina-Gil, D.; De Angelis, G.; Gonzalez-Diaz, D.; Emling, H.; Diaz Fernandez, P.; Fraile, L. M.; Ershova, O.; Geissel, H.; Heil, M.; Jonson, B.; Kelic, A.; Johansson, H.; Kruecken, R.; Kroll, T.; Kurcewicz, J.; Langer, C.; Le Bleis, T.; Leifels, Y.; Munzenberg, G.; Marganiec, J.; Nociforo, C.; Najafi, A.; Panin, V.; Paschalis, S.; Pietri, S.; Plag, R.; Rahaman, A.; Reifarth, R.; Ricciardi, V.; Rossi, D.; Ray, J.; Simon, H.; Scheidenberger, C.; Typel, S.; Taylor, J.; Togano, Y.; Volkov, V.; Weick, H.; Wagner, A.; Wamers, F.; Weigand, M.; Winfield, J. S.; Yakorev, D.; Zoric, M.
2014-03-01
Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s)⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.
Swadlow, H A; Hicks, T P
1997-07-01
The contribution of NMDA and non-NMDA receptors to excitatory subthreshold receptive fields was examined in callosal efferent neurons (CC neurons) in primary somatosensory cortex of the fully awake rabbit. Only neurons showing no traditional (suprathreshold) receptive fields were examined. Subthreshold responses were examined by monitoring the thresholds of efferent neurons to juxtasomal current pulses (JSCPs) delivered through the recording microelectrode. Changes in threshold following a peripheral conditioning stimulus signify a subthreshold response. Using this method, excitatory postsynaptic potentials and inhibitory postsynaptic potentials are manifested as decreases and increases in JSCP threshold, respectively. NMDA and non-NMDA agonists and antagonists were administered iontophoretically via a multibarrel micropipette assembly attached to the recording/stimulating microelectrode. Receptor-selective doses of both AMPA/kainate and NMDA antagonists decreased the excitability of CC neurons in the absence of any peripheral stimulation. Threshold to JSCPs rose by a mean of 20% for both classes of antagonist. Despite the similar effects of NMDA and non-NMDA antagonists on baseline excitability, these antagonists had dramatically different effects on the subthreshold excitatory response to activation of the receptive field. Whereas receptor-selective doses of AMPA/kainate antagonists either eliminated or severely attenuated the subthreshold excitatory responses to peripheral stimulation, NMDA antagonists had little or no effect on the subthreshold evoked response. PMID:9262195
Coulomb chronometry to probe the decay mechanism of hot nuclei
NASA Astrophysics Data System (ADS)
Gruyer, D.; Frankland, J. D.; Bonnet, E.; Chbihi, A.; Ademard, G.; Boisjoli, M.; Borderie, B.; Bougault, R.; Galichet, E.; Gauthier, J.; Guinet, D.; Lautesse, P.; Le Neindre, N.; Legouée, E.; Lombardo, I.; Lopez, O.; Manduci, L.; Marini, P.; Mazurek, K.; Nadtochy, P. N.; Pârlog, M.; Rivet, M. F.; Roy, R.; Rosato, E.; Spadaccini, G.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration
2015-12-01
In 129Xe+natSn central collisions from 8 to 25 MeV/nucleon, the three-fragment exit channel occurs with a significant cross section. We show that these fragments arise from two successive binary splittings of a heavy composite system. The sequence of fragment production is determined. Strong Coulomb proximity effects are observed in the three-fragment final state. A comparison with Coulomb trajectory calculations shows that the time scale between the consecutive breakups decreases with increasing bombarding energy, becoming quasisimultaneous above excitation energy E*=4.0 ±0.5 MeV /nucleon . This transition from sequential to simultaneous breakup was interpreted as the signature of the onset of multifragmentation for the three-fragment exit channel in this system.
Attractive Coulomb interaction of two-dimensional Rydberg excitons
NASA Astrophysics Data System (ADS)
Shahnazaryan, V.; Shelykh, I. A.; Kyriienko, O.
2016-06-01
We analyze theoretically the Coulomb scattering processes of highly excited excitons in the direct-band-gap semiconductor quantum wells. We find that contrary to the interaction of ground-state excitons, the electron and hole exchange interaction between excited excitons has an attractive character both for s - and p -type two-dimensional (2D) excitons. Moreover, we show that similar to the three-dimensional highly excited excitons, the direct interaction of 2D Rydberg excitons exhibits van der Waals-type long-range interaction. The results predict the linear growth of the absolute value of exchange interaction strength with an exciton principal quantum number and point the way towards enhancement of optical nonlinearity in 2D excitonic systems.
NASA Astrophysics Data System (ADS)
Brandt, Sven; Pernpointner, Markus
2015-07-01
In this work we use the recently implemented four-component polarization propagator for accurate single excitation calculations of alkaline earth metals and compare our results to experimental data. Various approximations to the Dirac-Coulomb Hamiltonian are additionally tested. In Ca spin-orbit coupling already leads to noticeable zero field splitting, which gradually increases for the heavier homologs finally invalidating the singlet and triplet state characterizations. For all systems we observe a very good agreement with experimental transition energies in the considered energy range. For Sr, Ba and Ra non-relativistic approaches already exhibit unacceptable deviations in the reproduction of transition energies and spectral structure. The obtained excited final states are analyzed in terms of atomic donor and acceptor orbital contributions. Our results stress the necessity to use relativistic implementations of the polarization propagator for an accurate description of both electron correlation and relativistic effects contributing to excitation spectra of heavy systems.
Elastic Coulomb breakup of 34Na
NASA Astrophysics Data System (ADS)
Singh, G.; Shubhchintak, Chatterjee, R.
2016-08-01
Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our
An entropic understanding of Coulomb force
NASA Astrophysics Data System (ADS)
Cho, Jin-Ho; Kim, Hyosung
2012-02-01
Exploiting Verlinde's proposal on the entropic understanding of Newton's law, we show that Coulomb force could also be understood as an entropically emergent force (rather than as a fundamental force). We apply Kaluza-Klein idea to Verlinde's formalism to obtain Coulomb interaction in the lower dimensions. The kinematics concerning the Kaluza-Klein momenta separates the interaction due to the momentum flow from the gravitational interaction. The momentum-charge conversion relation results in the precise form of Coulomb interaction.
Coulomb Crystals in Cylindrical Dusty Plasmas under Gravity/Microgravity
NASA Astrophysics Data System (ADS)
Takahashi, Kazuo; Totsuji, Hiroo; Adachi, Satoshi
2014-10-01
Coulomb crystals of dusty plasmas have been studied under microgravity with utilities boarding on the International Space Station in a joint Russian/German research project. Dynamics of the Coulomb crystals in cylindrical plasmas is investigated with the apparatus of PK-4 being launched till the end of 2014. A science team in Japan studied the cylindrical dusty plasmas to contribute to the project with the PK-4J modified original for microgravity experiments of parabolic flights in Japan. In the experiments, the dust particles distributed at the off-centered position close to the bottom in balancing of gravity. Under microgravity, they changed the distribution and formed a Coulomb crystal around the center axis in the plasmas. Several particles arranged in a line parallel to the axis, and the lines piled up to a bundle. Spatial distribution of the dust particles affects on plasma parameters of ion density and electron temperature. Structures of the Coulomb crystals connected to the parameters are discussed. The present study were supported by JAXA and Diamond Air Service.
Elastic scattering of Beryllium isotopes near the Coulomb barrier
Di Pietro, A.; Figuera, P.; Amorini, F.; Fisichella, M.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Randisi, G.; Rizzo, F.; Santonocito, D.; Scalia, G.; Scuderi, V.; Strano, E.; Torresi, D.; Papa, M.; Acosta, L.; Martel, I.; Perez-Bernal, F.; Borge, M. J. G.; Tengblad, O.
2011-10-28
In this contribution, results of experiments performed with the three Beryllium isotopes {sup 9,10,11}Be on a medium mass {sup 64}Zn target, at a center of mass energy of {approx_equal}1.4 the Coulomb barrier, will be discussed. Elastic scattering angular distributions have been measured for the {sup 9,10}Be reactions. In the {sup 11}Be case the quasielastic scattering angular distribution was obtained. In the halo nucleus case, the angular distribution exhibit a non-Fresnel-type pattern with a strong damping of the Coulomb-nuclear interference peak. Moreover, it is found that the total reaction cross-section for the halo nucleus induced collision is more than double the ones extracted in the collisions induced by the non-halo Beryllium isotopes. A large contribution to the total-reaction cross-section in the {sup 11}Be case could be attributed to transfer and/or break-up events.
NASA Astrophysics Data System (ADS)
Beceiro Novo, S.; Sümmerer, K.; Cortina-Gil, D.; Wimmer, C.; Plag, R.; Alvarez-Pol, H.; Aumann, T.; Behr, K.; Boretzky, K.; Casarejos, E.; Chatillon, A.; Datta-Pramanik, U.; Elekes, Z.; Fulop, Z.; Galaviz, D.; Geissel, H.; Giron, S.; Greife, U.; Hammache, F.; Heil, M.; Hoffman, J.; Johansson, H.; Karagiannis, C.; Kiselev, O.; Kurz, N.; Larsson, K.; Le Bleis, T.; Litvinov, Y.; Mahata, K.; Muentz, C.; Nociforo, C.; Ott, W.; Paschalis, S.; Prokopowicz, W.; Rodriguez-Tajes, C.; Rossi, D.; Simon, H.; Stanoiu, M.; Stroth, J.; Typel, S.; Wagner, A.; Wamers, F.; Weick, H.
2012-09-01
In this work the astrophysical 26Si(p,γ)27P reaction is studied using the Coulomb dissociation technique. We performed a 27P Coulomb Dissociation experiment at GSI, Darmstadt (28 May-5 June 2007) using the ALADIN-LAND setup which allows complete-kinematic studies. A secondary 27P beam at 498 AMeV impinging a 515mg/cm2 Pb target was used. The relative energy of the outgoing system (26Si+p) is measured obtaining the resonant states of the 27P. Preliminary results show four resonant states measured at 0.36±0.07, 0.88±0.09, 1.5±0.2, 2.3±0.3 MeV and evidence of a higher state at around 3.1 MeV. The preliminary total cross section obtained for relative energies between 0 and 3 MeV has been measured and yields 55±7 mb.
Implosive Interatomic Coulombic decay in the simplest molecular anion
NASA Astrophysics Data System (ADS)
Greene, Chris H.; Perez-Rios, Jesus; Slipchenko, Lyudmila
2016-05-01
Interatomic Coulombic decay (ICD) has been extensively studied in different systems: from diatomic systems such as He2 up to more complex chemical systems with interest in biochemistry. Independently of the size and complexity of the system, the ICD process proposed involves the emission of an electron through exchange of a virtual photon. The present theoretical study investigates the ICD process in the helium hydride anion, which involves two final product states that can be produced through a Coulomb implosion following high energy ejection of a He 1s electron accompanied by excitation to He+(n = 2) . One of the subsequent decay channels is associated with the usual emission of a single electron, to produce a stable molecule: HeH+, which can compete with the usual dissociated final state of the system. The second channel involves the emission of two electrons, leading to the usual Coulomb explosion of the final product ions He+(1 s) + H + . In addition, the process of formation of the helium hydride anion is analyzed in terms of the existing technology of ionic molecular beams and buffer gas cooling techniques. This work is supported by the National Science Foundation under Grant PHY-1306905.
Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages
NASA Astrophysics Data System (ADS)
Grabert, Hermann
2015-12-01
The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.
Triplet excitations in graphene-based systems
NASA Astrophysics Data System (ADS)
Posvyanskiy, V.; Arnarson, L.; Hedegård, P.
2015-02-01
In this paper we investigate the excitations in a single graphene layer and in a single-walled carbon nanotube, i.e. the spectrum of magnetic excitations is calculated. In the absence of interactions in these systems there is a unique gap in the electron-hole continuum. We show that in the presence of Coulomb correlations bound states, magnons, appear in this forbidden region. The Coulomb interaction is examined in the context of the Pariser-Parr-Pople (PPP) model which takes into account the long-range nature of the interaction. The energy of the new bound states depends on the strength of the Coulomb forces. The calculations are performed for arbitrary electron-hole (e\\text-h) momentum q . In the end, this work finally settles the discussion sabout the existence of triplet excitations in graphene which has been lasting for a decade in the literature.
Jahnke, T; Czasch, A; Schöffler, M; Schössler, S; Käsz, M; Titze, J; Kreidi, K; Grisenti, R E; Staudte, A; Jagutzki, O; Schmidt, L Ph H; Weber, Th; Schmidt-Böcking, H; Ueda, K; Dörner, R
2007-10-12
We investigate the interatomic Coulombic decay (ICD) of neon dimers following photoionization with simultaneous excitation of the ionized atom (shakeup) in a multiparticle coincidence experiment. We find that, depending on the parity of the excited state, which determines whether ICD takes place via virtual dipole photon emission or overlap of the wave functions, the decay happens at different internuclear distances, illustrating that nuclear dynamics heavily influence the electronic decay in the neon dimer. PMID:17995162
Stereoscopic Investigations of 3D Coulomb Balls
Kaeding, Sebastian; Melzer, Andre; Arp, Oliver; Block, Dietmar; Piel, Alexander
2005-10-31
In dusty plasmas particles are arranged due to the influence of external forces and the Coulomb interaction. Recently Arp et al. were able to generate 3D spherical dust clouds, so-called Coulomb balls. Here, we present measurements that reveal the full 3D particle trajectories from stereoscopic imaging.
Coulomb blockade with neutral modes.
Kamenev, Alex; Gefen, Yuval
2015-04-17
We study transport through a quantum dot in the fractional quantum Hall regime with filling factors ν=2/3 and ν=5/2, weakly coupled to the leads. We account for both injection of electrons to or from the leads, and quasiparticle rearrangement processes between the edge and the bulk of the quantum dot. The presence of neutral modes introduces topological constraints that modify qualitatively the features of the Coulomb blockade (CB). The periodicity of CB peak spacings doubles and the ratio of spacing between adjacent peaks approaches (in the low temperature and large dot limit) a universal value: 2∶1 for ν=2/3 and 3∶1 for ν=5/2. The corresponding CB diamonds alternate their width in the direction of the bias voltage and allow for the determination of the neutral mode velocity, and of the topological numbers associated with it. PMID:25933323
Plane Wave and Coulomb Asymptotics
NASA Astrophysics Data System (ADS)
Mulligan, P. G.; Crothers, D. S. F.
2004-01-01
A simple plane wave solution of the Schrödinger Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f obeys unitarity and the optical theorem. By closely considering the standard asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J Leech et al, Phys. Rev. Lett. 88 257901 (2002)). The problem is resolved via non-uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.
The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.
ERIC Educational Resources Information Center
Francisco, E.; And Others
1988-01-01
Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)
Coulomb Screening and Coherent Phonon in Methylammonium Lead Iodide Perovskites.
Wang, He; Valkunas, Leonas; Cao, Thu; Whittaker-Brooks, Luisa; Fleming, Graham R
2016-08-18
Methylammonium lead iodide (CH3NH3PbI3) hybrid perovskite in the tetragonal and orthorhombic phases have different exciton binding energies and demonstrate different excitation kinetics. Here, we explore the role that crystal structure plays in the kinetics via fluence dependent transient absorption spectroscopy. We observe stronger saturation of the free carrier concentration under high pump energy density in the orthorhombic phase relative to the tetragonal phase. We attribute this phenomenon to small dielectric constant, large exciton binding energy, and weak Coulomb screening, which results in difficult exciton dissociation under high light intensity in the orthorhombic phase. At higher excitation intensities, we observe a coherent phonon with an oscillation frequency of 23.4 cm(-1) at 77 K, whose amplitude tracks the increase of the first-order lifetime. PMID:27485190
Measurement of proton capture cross sections relevant to rp process with Coulomb dissociation
Togano, Y.
2010-08-12
We have studied proton capture reactions on unstable proton-rich nuclei relevant to rapid proton-capture (rp) process using a Coulomb dissociation method. Using this method, three stellar reactions, {sup 22}Mg(p, {gamma}){sup 23}Al, {sup 26}Si(p, {gamma}){sup 27}P, and {sup 30}S(p, {gamma}){sup 31}Cl were studied at RIKEN Nishina Center. The radiative widths of the first excited state in {sup 23}Al and {sup 27}P, which are relevant to the stellar reactions, were obtained. We discuss the details of the Coulomb dissociation the astrophysical implications obtained from our studies.
Lee, Choong-Ku; Park, Kwang-Hwa; Baik, Soon-Koo; Jeong, Seong-Woo
2016-06-01
Cardiovascular autonomic dysfunction, which is manifested by an impairment of the arterial baroreflex, is prevalent irrespective of etiology and contributes to the increased morbidity and mortality in cirrhotic patients. However, the cellular mechanisms that underlie the cirrhosis-impaired arterial baroreflex remain unknown. In the present study, we examined whether the cirrhosis-impaired arterial baroreflex is attributable to the dysfunction of aortic baroreceptor (AB) neurons. Biliary and nonbiliary cirrhotic rats were generated via common bile duct ligation (CBDL) and intraperitoneal injections of thioacetamide (TAA), respectively. Histological and molecular biological examinations confirmed the development of fibrosis in the livers of both cirrhotic rat models. The heart rate changes during phenylephrine-induced baroreceptor activation indicated that baroreflex sensitivity was blunted in the CBDL and TAA rats. Under the current-clamp mode of the patch-clamp technique, cell excitability was recorded in DiI-labeled AB neurons. The number of action potential discharges in the A- and C-type AB neurons was significantly decreased because of the increased rheobase and threshold potential in the CBDL and TAA rats compared with sham-operated rats. Real-time PCR and Western blotting indicated that the NaV1.7, NaV1.8, and NaV1.9 transcripts and proteins were significantly downregulated in the nodose ganglion neurons from the CBDL and TAA rats compared with the sham-operated rats. Consistent with these molecular data, the tetrodotoxin-sensitive NaV currents and the tetrodotoxin-resistant NaV currents were significantly decreased in A- and C-type AB neurons, respectively, from the CBDL and TAA rats compared with the sham-operated rats. Taken together, these findings implicate a key cellular mechanism in the cirrhosis-impaired arterial baroreflex. PMID:26984890
Seo, Seung-Jun; Han, Sung-Mi; Cho, Jae-Hoon; Hyodo, Kazuyuki; Zaboronok, Alexander; You, He; Peach, Ken; Hill, Mark A; Kim, Jong-Ki
2015-11-01
Core-inner-valence ionization of high-Z nanoparticle atomic clusters can de-excite electrons through various interatomic de-excitation processes, thereby leading to the ionization of both directly exposed atoms and adjacent neutral atoms within the nanoparticles, and to an enhancement in photon-electron emission, which is termed the nanoradiator effect. To investigate the nanoradiator-mediated dose enhancement in the radio-sensitizing of high-Z nanoparticles, the production of reactive oxygen species (ROS) was measured in a gadolinium oxide nanoparticle (Gd-oxide NP) solution under core-inner-valence excitation of Gd with either 50 keV monochromatic synchrotron X-rays or 45 MeV protons. This measurement was compared with either a radiation-only control or a gadolinium-chelate magnetic resonance imaging contrast agent solution containing equal amounts of gadolinium as the separate atomic species in which Gd-Gd interatomic de-excitations are absent. Ionization excitations followed by ROS measurements were performed on nanoparticle-loaded cells or aqueous solutions. Both photoexcitation and proton impact produced a dose-dependent enhancement in the production of ROS by a range of factors from 1.6 to 1.94 compared with the radiation-only control. Enhanced production of ROS, by a factor of 1.83, was observed from Gd-oxide NP atomic clusters compared with the Gd-chelate molecule, with a Gd concentration of 48 μg/mL in the core-level photon excitation, or by a factor of 1.82 under a Gd concentration of 12 μg/mL for the proton impact at 10 Gy (p < 0.02). The enhanced production of ROS in the irradiated nanoparticles suggests the potential for additional therapeutic dose enhancements in radiation treatment via the potent Gd-Gd interatomic de-excitation-driven nanoradiator effect. PMID:26242374
Royes, Luiz Fernando Freire; Gabbi, Patrícia; Ribeiro, Leandro Rodrigo; Della-Pace, Iuri Domingues; Rodrigues, Fernanda Silva; de Oliveira Ferreira, Ana Paula; da Silveira Junior, Mauro Eduardo Porto; da Silva, Luís Roberto Hart; Grisólia, Alan Barroso Araújo; Braga, Danielle Valente; Dobrachinski, Fernando; da Silva, Anderson Manoel Herculano Oliveira; Soares, Félix Alexandre Antunes; Marchesan, Sara; Furian, Ana Flavia; Oliveira, Mauro Schneider; Fighera, Michele Rechia
2016-06-01
/glutamate (GABA) cycle and contribute to MMA-induced excitability. PMID:26940724
Numerical approach to Coulomb gauge QCD
Matevosyan, Hrayr H.; Szczepaniak, Adam P.; Bowman, Patrick O.
2008-07-01
We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wave function using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wave functional.
Coulomb Glass: a Mean Field Study
NASA Astrophysics Data System (ADS)
Mandra, Salvatore; Palassini, Matteo
2012-02-01
We study the Coulomb glass model of disordered localized electrons with long-range Coulomb interaction, which describes systems such as disordered insulators, granular metals, amorphous semiconductors, or doped crystalline semiconductors. Long ago Efros and Shklovskii showed that the long-range repulsion induces a soft Coulomb gap in the single particle density of states at low temperatures. Recent works suggested that this gap is associated to a transition to a glass phase, similar to the Almeida-Thouless transition in spin glasses. In this work, we use a mean field approach to characterize several physical properties of the Coulomb glass. In particular, following a seminal work of Bray and Moore, we show that the Edward-Anderson parameter qEA and the spin glass susceptibility χSG are directly related to spectrum distribution of the Hessian matrix around free energy minima. Using this result, we show that no glass transition is associated to the gap formation.
Crystallization in two-component Coulomb systems.
Bonitz, M; Filinov, V S; Fortov, V E; Levashov, P R; Fehske, H
2005-12-01
The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principles computer simulations. PMID:16384315
Coulomb Distortion in the Inelastic Regime
Patricia Solvignon, Dave Gaskell, John Arrington
2009-09-01
The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.
Modelling Coulomb Collisions in Anisotropic Plasmas
NASA Astrophysics Data System (ADS)
Hellinger, P.; Travnicek, P. M.
2009-12-01
Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.
Off-shell Jost solutions for Coulomb and Coulomb-like interactions in all partial waves
Laha, U.; Bhoi, J.
2013-01-15
By exploiting the theory of ordinary differential equations, with judicious use of boundary conditions, interacting Green's functions and their integral transforms together with certain properties of higher transcendental functions, useful analytical expressions for the off-shell Jost solutions for motion in Coulomb and Coulomb-nuclear potentials are derived in maximal reduced form through different approaches to the problem in the representation space. The exact analytical expressions for the off-shell Jost solutions for Coulomb and Coulomb-like potentials are believed to be useful for the description of the charged particle scattering/reaction processes.
Interatomic and intermolecular Coulombic decay: the coming of age story
NASA Astrophysics Data System (ADS)
Jahnke, T.
2015-04-01
In pioneering work by Cederbaum et al an excitation mechanism was proposed that occurs only in loosely bound matter (Cederbaum et al 1997 Phys. Rev. Lett. 79 4778): it turned out, that (in particular) in cases where a local Auger decay is energetically forbidden, an excited atom or molecule is able to decay in a scheme which was termed ‘interatomic Coulombic decay’ (or ‘intermolecular Coulombic decay’) (ICD). As ICD occurs, the excitation energy is released by transferring it to an atomic or molecular neighbor of the initially excited particle. As a consequence the neighboring atom or molecule is ionized as it receives the energy. A few years later the existence of ICD was confirmed experimentally (Marburger et al 2003 Phys. Rev. Lett. 90 203401; Jahnke et al 2004 Phys. Rev. Lett. 93 163401; Öhrwall et al 2004 Phys. Rev. Lett. 93 173401) by different techniques. Since this time it has been found that ICD is not (as initially suspected) an exotic feature of van der Waals or hydrogen bonded systems, but that ICD is a very general and common feature occurring after a manifold of excitation schemes and in numerous weakly bound systems, as revealed by more than 200 publications. It was even demonstrated, that ICD can become more efficient than a local Auger decay in some system. This review will concentrate on recent experimental investigations on ICD. It will briefly introduce the phenomenon and give a short summary of the ‘early years’ of ICD (a detailed view on this episode of investigations can be found in the review article by U Hergenhahn with the same title (Hergenhahn 2011 J. Electron Spectrosc. Relat. Phenom. 184 78)). More recent articles will be presented that investigate the relevance of ICD in biological systems and possible radiation damage of such systems due to ICD. The occurrence of ICD and ICD-like processes after different excitation schemes and in different systems is covered in the middle section: in that context the helium dimer (He2
Collisional excitation of electron Landau levels in strong magnetic fields
NASA Technical Reports Server (NTRS)
Langer, S. H.
1981-01-01
The cross sections for the excitation and deexcitation of the quantized transverse energy levels of an electron in a magnetic field are calculated for electron-proton and electron-electron collisions in light of the importance of the cross sections for studies of X-ray pulsar emission. First-order matrix elements are calculated using the Dirac theory of the electron, thus taking into account relativistic effects, which are believed to be important in accreting neutron stars. Results for the collisional excitation of ground state electrons by protons are presented which demonstrate the importance of proton recoil and relativistic effects, and it is shown that electron-electron excitations may contribute 10 to 20% of the excitation rate from electron-proton scattering in a Maxwellian plasma. Finally, calculations of the cross section for electron-proton small-angle scattering are presented which lead to relaxation rates for the electron velocity distribution which are modified by the magnetic field, and to a possible increase in the value of the Coulomb logarithm.
Excited state mass spectra of Λc+ baryon
NASA Astrophysics Data System (ADS)
Shah, Zalak; Thakkar, Kaushal; Rai, Ajay Kumar; Vinodkumar, P. C.
2016-05-01
The radial and orbital excited state masses of singly charmed Λc+ baryon is calculated using the Hypercentral Constituent Quark Model (hCQM). The first order correction is applied to the confinement coulomb plus power potential. The ground and excited state masses for JP=3/2+ are calculated. Our results are in good agreement with experimental and other theoretical predictions.
Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals
NASA Astrophysics Data System (ADS)
Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko
2007-04-01
The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine α-helix chains and three-dimensional diamond pieces.
Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals.
Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko
2007-04-14
The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine alpha-helix chains and three-dimensional diamond pieces. PMID:17444700
NASA Astrophysics Data System (ADS)
Thiess, S.; Lee, T.-L.; Aruta, C.; Lin, C. T.; Venturini, F.; Brookes, N. B.; Cowie, B. C. C.; Zegenhagen, J.
2015-08-01
We analyzed the valence band (VB) of the 90 K high-temperature superconductor YBa2Cu3O7 -δ by photoelectron spectroscopy under standing-wave excitation employing hard x rays. Precisely positioning the standing-wave intensity in the unit cell allows selectively probing the VB yield from the CuO chains and CuO2 planes, respectively. Both contribute strongly over the whole VB but the spectral weight of the planes is significantly higher than the chains within about 2 eV from the Fermi level. In the x-ray regime, the major contribution to the VB emission is coming from Cu 3 d .
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations
Kolorenč, Přemysl; Sisourat, Nicolas
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green’s function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states.
Interatomic Coulombic decay widths of helium trimer: Ab initio calculations.
Kolorenč, Přemysl; Sisourat, Nicolas
2015-12-14
We report on an extensive study of interatomic Coulombic decay (ICD) widths in helium trimer computed using a fully ab initio method based on the Fano theory of resonances. Algebraic diagrammatic construction for one-particle Green's function is utilized for the solution of the many-electron problem. An advanced and universal approach to partitioning of the configuration space into discrete states and continuum subspaces is described and employed. Total decay widths are presented for all ICD-active states of the trimer characterized by one-site ionization and additional excitation of an electron into the second shell. Selected partial decay widths are analyzed in detail, showing how three-body effects can qualitatively change the character of certain relaxation transitions. Previously unreported type of three-electron decay processes is identified in one class of the metastable states. PMID:26671378
Influence of Coulomb screening on lateral lasing in VECSELs.
Wang, Chengao; Malloy, Kevin; Sheik-Bahae, Mansoor
2015-12-14
Parasitic lateral lasing in certain optically pumped semiconductor disc lasers drains the gain of the vertical mode and thus causes power scaling degradation and premature rollover in surface emitting operation. We have observed this effect in both multiple quantum wells (MQW) (GaInAs/GaAs) and double heterostructures (DHS) (GaInP/GaAs/GaInP) under pulsed excitation even when the gain chip lateral dimensions are much larger than the diameter of the pump laser. Lateral lasing occurs persistently between cleaved facets at a band-tail wavelength much longer than the peak of the gain. We show that the effect of bandgap renormalization due to Coulomb screening explains this phenomena. Exploiting the simple analytical plasma theory of bulk semiconductors (Banyai & Koch, 1986), we can account for such an effect in double heterostructures. PMID:26699044
NASA Astrophysics Data System (ADS)
Yu, Clare C.; Shtengel, Kirill
2002-03-01
Low frequency 1/f noise is found in Coulomb glasses, among other systems with slow relaxation. It has been recently studied in detail in Si:B in the experimental work of Massey and Lee [1]. They concluded that their findings were inconsistent with the single-particle mechanisms proposed earlier. We show that the observed noise can be produced by charge fluctuations due to electrons hopping between isolated sites and a percolating network at low temperatures [2]. Coulomb interactions are included through the Coulomb gap in the density of states. The low frequency noise spectrum goes as ω^-α with α slightly larger than 1. This result, together with the temperature dependence of α and the noise amplitude are in good agreement with the experiments of Massey and Lee. [1] J. G. Massey and Mark Lee, Phys. Rev. Lett. 79, 3986 (1997). [2] Kirill Shtengel and Clare C. Yu (2001), cond-mat/0111302.
Coulomb force as an entropic force
Wang Tower
2010-05-15
Motivated by Verlinde's theory of entropic gravity, we give a tentative explanation to the Coulomb's law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb's law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.
Nonlocal formulation of spin Coulomb drag
NASA Astrophysics Data System (ADS)
D'Amico, I.; Ullrich, C. A.
2013-10-01
The spin Coulomb drag (SCD) effect occurs in materials and devices where charged carriers with different spins exchange momentum via Coulomb scattering. This causes frictional forces between spin-dependent currents that lead to intrinsic dissipation, which may limit spintronics applications. A nonlocal formulation of SCD is developed which is valid for strongly inhomogeneous systems such as nanoscale spintronics devices. This nonlocal formulation of SCD is successfully applied to linewidths of intersubband spin plasmons in semiconductor quantum wells, where experiments have shown that the local approximation fails.
Observation of ionic Coulomb blockade in nanopores
NASA Astrophysics Data System (ADS)
Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra
2016-08-01
Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.
NASA Astrophysics Data System (ADS)
Schütte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Gokhberg, Kirill; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouzée, Arnaud
2015-05-01
Interatomic Coulombic decay (ICD) describes a process, where an excited atom relaxes by transferring its energy to an atom in the environment that gets ionized. So far, ICD has been observed following XUV ionization or excitation of clusters. Here we present novel results of an intracluster Coulombic decay mechanism induced by intense NIR pulses and following Rydberg atom formation in the generated nanoplasma. When a highly-excited Rydberg atom relaxes to its ground state by transferring its excess energy to a weakly bound electron in the environment, electrons with kinetic energies close to the atomic ionization potential are emitted. We show evidence for such an intracluster Coulombic decay process that leaves clear signatures in the electron kinetic energy spectra. ICD is time-resolved in a pump-probe experiment, where a weak probe pulse depopulates the excited states, leading to a quenching of the ICD signal. We find a decay time of 87 ps, which is siginificantly longer than for previous ICD observations, where inner-shell holes were created by XUV pulses. Intracluster Coulombic decay is found to be a generic process that takes places in atomic and molecular clusters and at different wavelengths. It may play an important role in biological systems and in astronomical plasmas. Previous affiliation: Max-Born-Institut, Berlin, Germany.
Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method
NASA Astrophysics Data System (ADS)
Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko
2010-06-01
We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2015-02-01
We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Bray, James William; Garces, Luis Jose
2012-03-13
The disclosed technology is a cryogenic static exciter. The cryogenic static exciter is connected to a synchronous electric machine that has a field winding. The synchronous electric machine is cooled via a refrigerator or cryogen like liquid nitrogen. The static exciter is in communication with the field winding and is operating at ambient temperature. The static exciter receives cooling from a refrigerator or cryogen source, which may also service the synchronous machine, to selected areas of the static exciter and the cooling selectively reduces the operating temperature of the selected areas of the static exciter.
Kataria, D.O.; Sinha, A.K.; Das, J.J.; Madhavan, N.; Sugathan, P.; Baby, L.T.; Mazumdar, I.; Singh, R.; Baba, C.V.; Agarwal, Y.K.; Vinodkumar, A.M.; Varier, K.M.
1997-10-01
Excitation functions for one- and two-nucleon transfer in {sup 28}Si + {sup 68}Zn system have been measured at energies below the Coulomb barrier. The experiment was carried out by detecting the forward recoiling targetlike nuclei using the recoil mass separator, HIRA. With a pulsed beam, the time-of-flight of the recoils was measured and used to resolve the M/q ambiguity. This enabled the determination of the two-nucleon transfer yields. The role of one- and two-nucleon transfer in the sub-barrier fusion cross-section enhancement has been investigated. It turns out that the coupling of the positive Q-value two-neutron transfer channel results in a significant contribution to the enhancement. Coupling to both the transfer and the inelastic channels is able to explain the observed enhancement. {copyright} {ital 1997} {ital The American Physical Society}
Boltzmann-Langevin theory of Coulomb drag
NASA Astrophysics Data System (ADS)
Chen, W.; Andreev, A. V.; Levchenko, A.
2015-06-01
We develop a Boltzmann-Langevin description of the Coulomb drag effect in clean double-layer systems with large interlayer separation d as compared to the average interelectron distance λF. Coulomb drag arises from density fluctuations with spatial scales of order d . At low temperatures, their characteristic frequencies exceed the intralayer equilibration rate of the electron liquid, and Coulomb drag may be treated in the collisionless approximation. As temperature is raised, the electron mean free path becomes short due to electron-electron scattering. This leads to local equilibration of electron liquid, and consequently drag is determined by hydrodynamic density modes. Our theory applies to both the collisionless and the hydrodynamic regimes, and it enables us to describe the crossover between them. We find that drag resistivity exhibits a nonmonotonic temperature dependence with multiple crossovers at distinct energy scales. At the lowest temperatures, Coulomb drag is dominated by the particle-hole continuum, whereas at higher temperatures of the collision-dominated regime it is governed by the plasmon modes. We observe that fast intralayer equilibration mediated by electron-electron collisions ultimately renders a stronger drag effect.
BRST invariance in Coulomb gauge QCD
NASA Astrophysics Data System (ADS)
Andraši, A.; Taylor, J. C.
2015-12-01
In the Coulomb gauge, the Hamiltonian of QCD contains terms of order ħ2, identified by Christ and Lee, which are non-local but instantaneous. The question is addressed how do these terms fit in with BRST invariance. Our discussion is confined to the simplest, O(g4) , example.
The Pioneer Anomaly as a Coulomb Attraction
NASA Astrophysics Data System (ADS)
Morris, Steven
2016-06-01
The anomalous acceleration of the Pioneer 10 and Pioneer 11 spacecraft can be explained as a Coulomb attraction between the positively-charged Solar System (due to cosmic rays) and the negatively-charged spacecraft (due to alpha-particle emission from the radioisotope thermoelectric generators).
Thermodynamic Theory of Spherically Trapped Coulomb Clusters
NASA Astrophysics Data System (ADS)
Wrighton, Jeffrey; Dufty, James; Bonitz, Michael; K"{A}Hlert, Hanno
2009-11-01
The radial density profile of a finite number of identical charged particles confined in a harmonic trap is computed over a wide ranges of temperatures (Coulomb coupling) and particle numbers. At low temperatures these systems form a Coulomb crystal with spherical shell structure which has been observed in ultracold trapped ions and in dusty plasmas. The shell structure is readily reproduced in simulations. However, analytical theories which used a mean field approachfootnotetext[1]C. Henning et al., Phys. Rev. E 74, 056403 (2006) or a local density approximationfootnotetext[2]C. Henning et al., Phys. Rev. E 76, 036404 (2007) have, so far, only been able to reproduce the average density profile. Here we present an approach to Coulomb correlations based on the hypernetted chain approximation with additional bridge diagrams. It is demonstrated that this model reproduces the correct shell structure within a few percent and provides the basis for a thermodynamic theory of Coulomb clusters in the strongly coupled fluid state.footnotetext[3]J. Wrighton, J.W. Dufty, H. K"ahlert and M. Bonitz, J. Phys. A 42, 214052 (2009) and Phys. Rev. E (2009) (to be submitted)
High-energy electronic excitations in Sr2IrO4 observed by Raman scattering
NASA Astrophysics Data System (ADS)
Yang, Jhih-An; Huang, Yi-Ping; Hermele, Michael; Qi, Tongfei; Cao, Gang; Reznik, Dmitry
2015-03-01
The interplay between spin-orbit interaction, on-site coulomb correlation, crystal field splitting, and inter-site hopping leads to a novel insulating behavior in Sr2IrO4 as the realization of the Jeff = 1 / 2 state. We report results of a large-shift Raman scattering investigation of electronic excitations in Sr2IrO4. We found two high-energy excitations at 690 meV and 680 meV with A1 g and B1 g symmetry respectively. The two peaks have different temperature and Rh-doping dependences. Symmetry analysis of the dd transitions that contribute to Raman signals will also be presented. The observed peaks are consistent with the scenario of excitons associated with inter-site dd transitions without pseudospin-flip. NSF, DOE, and BES.
Multiple nucleon knockout by Coulomb dissociation in relativistic heavy-ion collisions
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Norbury, John W.; Townsend, Lawrence W.
1988-01-01
The Coulomb dissociation contributions to fragmentation cross sections in relativistic heavy ion collisions, where more than one nucleon is removed, are estimated using the Weizsacker-Williams method of virtual quanta. Photonuclear cross sections taken from experimental results were used to fold into target photon number spectra calculated with the Weizsacker-Williams method. Calculations for several projectile target combinations over a wide range of charge numbers, and a wide range of incident projectile energies, are reported. These results suggest that multiple nucleon knockout by the Coulomb field may be of negligible importance in galactic heavy ion studies for projectiles lighter than Fe-56.
18Ne Excited States Two-Proton Decay
NASA Astrophysics Data System (ADS)
de Napoli, M.; Rapisarda, E.; Raciti, G.; Cardella, G.; Amorini, F.; Giacoppo, F.; Sfienti, C.
2008-04-01
Two-proton radioactivity studies have been performed on excited states of 18Ne produced by 20Ne fragmentation at the FRS of the Laboratori Nazionali del Sud and excited via Coulomb excitation on a 209Pb target. The 18Ne levels decay has been studied by complete kinematical reconstruction. In spite of the low statistic, the energy and angular correlations of the emitted proton pairs indicate the presence of 2He emission toghether with the democratic decay.
Excitation of Er{sup 3+} ions in SiO{sub 2} with Si nanocrystals
Prokofiev, A. A. Moskalenko, A. S.; Yassievich, I. N.
2008-08-15
Probabilities of excitation of erbium ions via Coulomb interaction with carriers localized in silicon nanocrystals embedded in SiO{sub 2}, in recombination and intraband relaxation of these carriers, have been calculated.
NASA Astrophysics Data System (ADS)
Chaudhuri, Supriya K.; Modesto-Costa, Lucas; Mukherjee, Prasanta K.
2016-05-01
Detailed investigations on the frequency dependent polarizabilities, transition energies, oscillator strengths, and transition probabilities of two electron systems He, B e2 +, C4 + , and O6 + under electric dipolar (E1) and quadrupolar (E2) excitations have been performed using exponential cosine screened coulomb potential with a view to understand the structural behaviour of such systems due to external confinement produced by plasma environment. Time dependent coupled Hartree-Fock theory within a variational framework has been adopted for studying the first three low lying excited states 1 s2:1Se→1 s n p :1Po (n = 2, 3, 4) and 1 s n d :1De (n = 3, 4, 5) under such excitations. Quantitatively, the effect of confinement produced by the external plasma has been taken care of by considering the change in atomic potential through plasma screening, directly related to the coupling strength of the plasma with the atomic charge cloud. With increased plasma screening, a gradual destabilisation of the energy levels with subsequent reduction of the ionization potential and number of excited states has been observed. Behavioral pattern of the frequency dependent polarizabilities, excitation energies, oscillator strengths, and transition probabilities under systematic increase of the screening has been investigated. Results have been compared thoroughly with those available for free systems and under confinement by exponential cosine screened and screened Coulomb potential.
Remote Spacecraft Attitude Control by Coulomb Charging
NASA Astrophysics Data System (ADS)
Stevenson, Daan
The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to
NASA Astrophysics Data System (ADS)
Mercurio, K. M.; Charity, R. J.; Shane, R.; Sobotka, L. G.; Elson, J.; Famiano, M.; Wuosmaa, A.; Banu, A.; Fu, C.; Trache, L.; Tribble, R. E.
2008-04-01
The decay of ^10C excited states to the 2p +2α exit channel has been studied using an E/A = 10.7 MeV ^10C beam inelastically scattered from a ^9Be target. Levels associated with the two-proton decay to the ground state of ^8Be have been observed. These include states at 5.18 and 6.54 MeV which decay by sequential two-proton emission through the long-lived intermediate state of ^9B. In addition, these two states have branches, or there exist other states at almost the same energies, for which there is no long-lived intermediate state between the two proton emissions. For the 6.57 MeV state, the two protons are preferably emitted on the same side of the decaying ^10C fragment. Evidence is found for a state at E^*= 8.4 MeV in ^10C which decays through the 2.35 MeV second excited state of ^9B. A large data set of kinematically complete ^6Be->2p + α events was also collected.
Effect of electron excitation on radiation damage in fce metals
NASA Astrophysics Data System (ADS)
Iwase, A.; Iwata, T.
1994-05-01
Defect production, radiation annealing and defect recovery are studied in several fcc metals (Al, Cu, Ni, Ag and Pt) irradiated with low-energy (˜ 1 MeV) and high-energy (˜ 100 MeV) ions. Irradiation of the metals with strong electron-lattice interaction (Al, Ni and Pt) by ˜ 100 MeV ions causes an anomalous reduction, or even a complete disappearance of stage-I recovery. This experimental result shows that the energy transferred from excited electrons to lattice atoms through the electron-lattice interaction contributes to the annihilation of single interstitials. This effect is also observed in Ni as a large cross section for radiation annealing, and a decrease of the damage efficiency. On the other hand, in Cu and Ag thin foils, we find that lattice defects are produced not only through elastic interactions, but also through a process strongly associated with electron excitation. In the latter process, the defect production cross section is proportional to Se1.7 in Cu and Se1.5 in Ag. The nearly quadratic dependence of the cross section on Se suggests that the mutual Coulomb repulsion of ions positively charged by electron excitation causes the defect production.
Theory for magnetic excitations in quantum spin ice
NASA Astrophysics Data System (ADS)
Onoda, Shigeki; Datta, Trinanjan
Magnetic excitations in magnetic rare-earth pyrochlore oxides called quantum spin ice (QSI) systems such as Yb2Ti2O7, Pr2Zr2O7, and Tb2Ti2O7 have attracted great interest for possible observations of the quantum dynamics of spin ice monopoles and emergent photon excitations. However, their spectral properties remain open especially for cases relevant to experimental systems. Here, we develop a theoretical framework that incorporates gauge fluctuations into a modified gauge mean-field approach, so that it reproduces key features of recent quantum Monte-Carlo results on the double broad specific heat in the simplest QSI model and can describe a continuous growth of a coherence in gauge-field correlations on cooling down to Coulomb-phase ground states. Using this new approach, we provide a theory for magnetic neutron-scattering spectra. It is found that spin-flip exchange interactions produce dispersive QSI monopole excitations which create a particle-hole continuum neutron-scattering spectrum. Gauge fluctuations give multi-particle contributions to the spectrum, which will be possibly detected in Higgs phases.
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots
NASA Astrophysics Data System (ADS)
Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.
Initial-state Coulomb interaction in the dd{yields}{alpha}{pi}{sup 0} reaction
Laehde, Timo A.; Miller, Gerald A.
2007-05-15
The effects of initial-state Coulomb interactions in the charge-symmetry-breaking reaction dd{yields}{alpha}{pi}{sup 0} are investigated within a previously published formalism. This is a leading order effect in which the Coulomb interaction between the two initial state protons leads to the breakup of the two deuterons into a continuum state that is well connected to the final {alpha}{pi}{sup 0} state by the strong emission of a pion. As a first step, we use a simplified set of d and {alpha} wave functions and a plane-wave approximation for the initial dd state. This Coulomb mechanism, by itself, yields cross sections that are much larger than the experimental ones, and which are comparable in size to the contributions from other mechanisms. Inclusion of this mechanism is therefore necessary in a realistic calculation.
Smijesh, N.; Chandrasekharan, K.; Joshi, Jagdish C.; Philip, Reji
2014-07-07
We report the experimental investigation and comparison of the temporal features of short-pulse (7 ns) and ultrafast (100 fs) laser produced plasmas generated from a solid nickel target, expanding into a nitrogen background. When the ambient pressure is varied in a large range of 10⁻⁶Torr to 10²Torr, the plume intensity is found to increase rapidly as the pressure crosses 1 Torr. Time of flight (TOF) spectroscopy of emission from neutral nickel (Ni I) at 361.9 nm (3d⁹(²D) 4p → 3d⁹(²D) 4s transition) reveals two peaks (fast and slow species) in short-pulse excitation and a single peak in ultrafast excitation. The fast and slow peaks represent recombined neutrals and un-ionized neutrals, respectively. TOF emission from singly ionized nickel (Ni II) studied using the 428.5 nm (3p⁶3d⁸(³P) 4s→ 3p⁶3d⁹ 4s) transition shows only a single peak for either excitation. Velocities of the neutral and ionic species are determined from TOF measurements carried out at different positions (i.e., at distances of 2 mm and 4 mm, respectively, from the target surface) on the plume axis. Measured velocities indicate acceleration of neutrals and ions, which is caused by the Coulomb pull of the electrons enveloping the plume front in the case of ultrafast excitation. Both Coulomb pull and laser-plasma interaction contribute to the acceleration in the case of short-pulse excitation. These investigations provide new information on the pressure dependent temporal behavior of nickel plasmas produced by short-pulse and ultrafast laser pulses, which have potential uses in applications such as pulsed laser deposition and laser-induced nanoparticle generation.
Short-time dynamics of correlated quantum Coulomb systems
NASA Astrophysics Data System (ADS)
Bonitz, Michael
2007-03-01
Strong correlations in dense Coulomb systems are attracting increasing interest in many fields ranging from dense astrophysical plasmas, dusty plasmas and semiconductors to metal clusters and ultracold trapped ions [1]. Examples are bound states in dense plasmas (atoms, molecules, clusters) and semiconductors (excitons, trions, biexcitons) and many-particle correlations such as Coulomb and Yukawa liquids and crystals. Of particular current interest is the response of these systems to short excitations generated e.g. by femtosecond laser pulses and giving rise to ultrafast relaxation processes and build up of binary correlations. The proper theoretical tool are non-Markovian quantum kinetic equations [1,2] which can be derived from Nonequilibrium Green's Functions (NEGF) and are now successfully solved numerically for dense plasmas and semiconductors [3], correlated electrons [4] and other many-body systems with moderate correlations [5]. This method is well suited to compute the nonlinear response to strong fields selfconsistently including many-body effects [6]. Finally, we discuss recent extensions of the NEGF-computations to the dynamics of strongly correlated Coulomb systems, such as single atoms and molecules [7] and electron and exciton Wigner crystals in quantum dots [8,9]. [1] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer 1996; M. Bonitz Quantum Kinetic Theory, Teubner, Stuttgart/Leipzig 1998; [2] Progress in Nonequilibrium Green's Functions III, M. Bonitz and A. Filinov (Eds.), J. Phys. Conf. Ser. vol. 35 (2006); [3] M. Bonitz et al. Journal of Physics: Condensed Matter 8, 6057 (1996); R. Binder, H.S. K"ohler, and M. Bonitz, Phys. Rev. B 55, 5110 (1997); [4] N.H. Kwong, and M. Bonitz, Phys. Rev. Lett. 84, 1768 (2000); [5] Introduction to Computational Methods for Many-Body Systems, M. Bonitz and D. Semkat (eds.), Rinton Press, Princeton (2006); [6] H. Haberland, M. Bonitz, and D. Kremp, Phys. Rev. E 64
Feynman rules for Coulomb gauge QCD
Andrasi, A.; Taylor, J.C.
2012-10-15
The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as 'pseudo-Feynman' integrals. We also explain how energy divergences cancel. - Highlights: Black-Right-Pointing-Pointer In Coulomb gauge QCD, we re-express Christ-Lee terms in the Hamiltonian as pseudo-Feynman integrals. Black-Right-Pointing-Pointer This gives a subgraph structure, and allows the ordinary renormalization process. Black-Right-Pointing-Pointer It also leads to cancellation of energy-divergences.
Coulomb crystallization of highly charged ions
NASA Astrophysics Data System (ADS)
Schmöger, L.; Versolato, O. O.; Schwarz, M.; Kohnen, M.; Windberger, A.; Piest, B.; Feuchtenbeiner, S.; Pedregosa-Gutierrez, J.; Leopold, T.; Micke, P.; Hansen, A. K.; Baumann, T. M.; Drewsen, M.; Ullrich, J.; Schmidt, P. O.; López-Urrutia, J. R. Crespo
2015-03-01
Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically 40Ar13+) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be+ ions. We also demonstrate cooling of a single Ar13+ ion by a single Be+ ion—the prerequisite for quantum logic spectroscopy with a potential 10-19 accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.
Coulomb drag in topological insulator films
NASA Astrophysics Data System (ADS)
Liu, Hong; Liu, Weizhe Edward; Culcer, Dimitrie
2016-05-01
We study Coulomb drag between the top and bottom surfaces of topological insulator films. We derive a kinetic equation for the thin-film spin density matrix containing the full spin structure of the two-layer system, and analyze the electron-electron interaction in detail in order to recover all terms responsible for Coulomb drag. Focusing on typical topological insulator systems, with a film thicknesses d up to 6 nm, we obtain numerical and approximate analytical results for the drag resistivity ρD and find that ρD is proportional to T2d-4 na-3/2 np-3/2 at low temperature T and low electron density na,p, with a denoting the active layer and p the passive layer. In addition, we compare ρD with graphene, identifying qualitative and quantitative differences, and we discuss the multi-valley case, ultra thin films and electron-hole layers.
Coulomb wave functions in momentum space
Eremenko, V; Upadhyay, N. J.; Thompson, I J; Elster, Charlotte; Nunes, F. M.; Arbanas, Goran; Escher, J.E.; Hlophe, L.
2015-01-01
An algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space is presented. The arguments are the Sommerfeld parameter eta, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p -> q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical barmore » in the range of 10(-1) to 10, and thus is particularly suited for momentum space calculations of nuclear reactions. Program Summary Program title: libcwfn Catalogue identifier: AEUQ_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 864503 No. of bytes in distributed program, including test data, etc.: 7178021 Distribution format: tar.gz Programming language: Fortran 90, Fortran 77, Python, make (GNU Make dialect), GNU Bash shell interpreter (available as /bin/bash). Computer: Apple Powermac (Intel Xeon), ASUS K53U (AMD E-350 (Dual Core)), DELL Precision T3500 (Intel Xeon), NERSC Carver (Intel Nehalem Quad Core). Operating system: Linux, Windows (using Cygwin). RAM: less than 512 Mbytes Classification: 17.8, 17.13, 17.16. Nature of problem: The calculation of partial wave Coulomb functions with integer land all other arguments real. Solution method: Computing the value of the function using explicit formulae and algorithms. Running time: Less than 10(-3) s. (C) 2014 Elsevier B.V. All rights reserved.« less
Coulomb wave functions in momentum space
Eremenko, V; Upadhyay, N. J.; Thompson, I J; Elster, Charlotte; Nunes, F. M.; Arbanas, Goran; Escher, J.E.; Hlophe, L.
2015-01-01
An algorithm to calculate non-relativistic partial-wave Coulomb functions in momentum space is presented. The arguments are the Sommerfeld parameter eta, the angular momentum l, the asymptotic momentum q and the 'running' momentum p, where both momenta are real. Since the partial-wave Coulomb functions exhibit singular behavior when p -> q, different representations of the Legendre functions of the 2nd kind need to be implemented in computing the functions for the values of p close to the singularity and far away from it. The code for the momentum-space Coulomb wave functions is applicable for values of vertical bar eta vertical bar in the range of 10(-1) to 10, and thus is particularly suited for momentum space calculations of nuclear reactions. Program Summary Program title: libcwfn Catalogue identifier: AEUQ_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEUQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 864503 No. of bytes in distributed program, including test data, etc.: 7178021 Distribution format: tar.gz Programming language: Fortran 90, Fortran 77, Python, make (GNU Make dialect), GNU Bash shell interpreter (available as /bin/bash). Computer: Apple Powermac (Intel Xeon), ASUS K53U (AMD E-350 (Dual Core)), DELL Precision T3500 (Intel Xeon), NERSC Carver (Intel Nehalem Quad Core). Operating system: Linux, Windows (using Cygwin). RAM: less than 512 Mbytes Classification: 17.8, 17.13, 17.16. Nature of problem: The calculation of partial wave Coulomb functions with integer land all other arguments real. Solution method: Computing the value of the function using explicit formulae and algorithms. Running time: Less than 10(-3) s. (C) 2014 Elsevier B.V. All rights reserved.
Ultrashort pulses in graphene with Coulomb impurities
NASA Astrophysics Data System (ADS)
Konobeeva, N. N.; Belonenko, M. B.
2016-06-01
We have investigated the propagation of an electromagnetic field in graphene with impurities, including the two-dimensional case. The spectrum of electrons for the graphene subsystem is taken from a model that takes into account Coulomb impurities. Based on Maxwell's equations, we have obtained an effective equation for the vector potential of the electromagnetic field. It has been revealed that the pulse shape depends on free parameters.
The scattering of the screened Coulomb potential
NASA Astrophysics Data System (ADS)
Cao, Xin-Wei; Chen, Wen-Li; Li, Yuan-Yuan; Wei, Gao-Feng
2014-08-01
We study the scattering states of the screened Coulomb potential in the nonrelativistic frame. The explicitly calculation formula of phase shift is derived and the normalized radial wave functions of scattering states on the ^{\\prime} k/2\\pi scale^{\\prime} are presented. By studying analytical properties of scattering amplitude the screening effects on bound states are discussed numerically. It is shown that the screening effects increase with increasing screened parameter, especially for large quantum states.
Megow, Jörg
2016-09-01
The gas-to-crystal-shift denotes the shift of electronic excitation energies, i.e., the difference between ground and excited state energies, for a molecule transferred from the gas to the bulk phase. The contributions to the gas-to-crystal-shift comprise electrostatic as well as inductive polarization and dispersive energy shifts of the molecular excitation energies due to interaction with environmental molecules. For the example of 3,4,9,10-perylene-tetracarboxylic-diimide (PTCDI) bulk, the contributions to the gas-to-crystal shift are investigated. In the present work, electrostatic interaction is calculated via Coulomb interaction of partial charges while inductive and dispersive interactions are obtained using respective sum over states expressions. The coupling of higher transition densities for the first 4500 excited states of PTCDI was computed using transition partial charges based on an atomistic model of PTCDI bulk obtained from molecular dynamics simulations. As a result it is concluded that for the investigated model system of a PTCDI crystal, the gas to crystal shift is dominated by dispersive interaction. PMID:27608991
Dynamics of Coulombic and gravitational periodic systems.
Kumar, Pankaj; Miller, Bruce N
2016-04-01
We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology. PMID:27176238
Dynamics of Coulombic and gravitational periodic systems
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Miller, Bruce N.
2016-04-01
We study the dynamics and the phase-space structures of Coulombic and self-gravitating versions of the classical one-dimensional three-body system with periodic boundary conditions. We demonstrate that such a three-body system may be reduced isomorphically to a spatially periodic system of a single particle experiencing a two-dimensional potential on a rhombic plane. For the case of both Coulombic and gravitational versions, exact expressions of the Hamiltonian have been derived in rhombic coordinates. We simulate the phase-space evolution through an event-driven algorithm that utilizes analytic solutions to the equations of motion. The simulation results show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. While there is no evidence of global chaos in either the Coulombic or the gravitational system, the former exhibits a transition from a completely nonchaotic phase space at low energies to a mixed behavior. Gradual yet striking transitions from mild to intense chaos are indicated with changing energy, a behavior that differentiates the spatially periodic systems studied in this Rapid Communication from the well-understood free-boundary versions of the three-body problem. Our treatment of the three-body systems opens avenues for analysis of the dynamical properties exhibited by spatially periodic versions of various classes of systems studied in plasma and gravitational physics as well as in cosmology.
Havermeier, T; Jahnke, T; Kreidi, K; Wallauer, R; Voss, S; Schöffler, M; Schössler, S; Foucar, L; Neumann, N; Titze, J; Sann, H; Kühnel, M; Voigtsberger, J; Morilla, J H; Schöllkopf, W; Schmidt-Böcking, H; Grisenti, R E; Dörner, R
2010-04-01
Using synchrotron radiation we simultaneously ionize and excite one helium atom of a helium dimer (He2) in a shakeup process. The populated states of the dimer ion [i.e., He(*+)(n = 2, 3) - He] are found to deexcite via interatomic Coulombic decay. This leads to the emission of a second electron from the neutral site and a subsequent Coulomb explosion. In this Letter we present a measurement of the momenta of fragments that are created during this reaction. The electron energy distribution and the kinetic energy release of the two He+ ions show pronounced oscillations which we attribute to the structure of the vibrational wave function of the dimer ion. PMID:20481883
Relationship between orbital energy gaps and excitation energies for long-chain systems.
Tsuneda, Takao; Singh, Raman K; Nakata, Ayako
2016-06-15
The difference between the excitation energies and corresponding orbital energy gaps, the exciton binding energy, is investigated based on time-dependent (TD) density functional theory (DFT) for long-chain systems: all-trans polyacetylenes and linear oligoacenes. The optimized geometries of these systems indicate that bond length alternations significantly depend on long-range exchange interactions. In TDDFT formalism, the exciton binding energy comes from the two-electron interactions between occupied and unoccupied orbitals through the Coulomb-exchange-correlation integral kernels. TDDFT calculations show that the exciton binding energy is significant when long-range exchange interactions are involved. Spin-flip (SF) TDDFT calculations are then carried out to clarify double-excitation effects in these excitation energies. The calculated SF-TDDFT results indicate that double-excitation effects significantly contribute to the excitations of long-chain systems. The discrepancies between the vertical ionization potential minus electron affinity (IP-EA) values and the HOMO-LUMO excitation energies are also evaluated for the infinitely long polyacetylene and oligoacene using the least-square fits to estimate the exciton binding energy of infinitely long systems. It is found that long-range exchange interactions are required to give the exciton binding energy of the infinitely long systems. Consequently, it is concluded that long-range exchange interactions neglected in many DFT calculations play a crucial role in the exciton binding energies of long-chain systems, while double-excitation correlation effects are also significant to hold the energy balance of the excitations. © 2016 Wiley Periodicals, Inc. PMID:27010365
Elastic and inelastic scattering of 16O and 18O ions from 64Zn at energies near the Coulomb barrier
NASA Astrophysics Data System (ADS)
Salém-Vasconcelos, S.; Takagui, E. M.; Bechara, M. J.; Koide, K.; Dietzsch, O.; Bairrio Nuevo, A., Jr.; Takai, H.
1994-08-01
Coulomb-nuclear interference effects were investigated in the inelastic scattering of 16O and 18O by 64Zn. Measurements of elastic and inelastic angular distributions of 18O were performed at a laboratory energy of 49 MeV, over the angular range from θlab~30° to 85°. The excitation functions of 16O and 18O ions were measured at incident energies between 29 and 46 MeV at θlab=174°. The experimental angular distributions show structures which are more pronounced for projectile excitation than for target excitation. The interference minimum for the excitation of the 18O first 2+ state was found to be shifted towards forward angles by approximately 5° (c.m.) with respect to the distorted-wave Born approximation calculations and by approximately 3.5° (c.m.) with respect to the coupled-channels calculations. A pronounced Coulomb-nuclear interference minimum was seen in the excitation of 64Zn(2+) state by inelastic scattering of 16O projectiles, whereas no pronounced minimum was observed in target excitation by 18O projectiles. The elastic scattering data were analyzed with the optical model. The inelastic differential cross sections for the excitation of the first 2+ states in the target and in the 18O projectile were analyzed using the distorted-wave Born approximation and also the coupled-channels approach with collective form factors.
Gu, Ning; Vervaeke, Koen; Hu, Hua; Storm, Johan F
2005-01-01
In hippocampal pyramidal cells, a single action potential (AP) or a burst of APs is followed by a medium afterhyperpolarization (mAHP, lasting ∼0.1 s). The currents underlying the mAHP are considered to regulate excitability and cause early spike frequency adaptation, thus dampening the response to sustained excitatory input relative to responses to abrupt excitation. The mAHP was originally suggested to be primarily caused by M-channels (at depolarized potentials) and h-channels (at more negative potentials), but not SK channels. In recent reports, however, the mAHP was suggested to be generated mainly by SK channels or only by h-channels. We have now re-examined the mechanisms underlying the mAHP and early spike frequency adaptation in CA1 pyramidal cells by using sharp electrode and whole-cell recording in rat hippocampal slices. The specific M-channel blocker XE991 (10 μm) suppressed the mAHP following 1–5 APs evoked by current injection at −60 mV. XE991 also enhanced the excitability of the cell, i.e. increased the number of APs evoked by a constant depolarizing current pulse, reduced their rate of adaptation, enhanced the afterdepolarization and promoted bursting. Conversely, the M-channel opener retigabine reduced excitability. The h-channel blocker ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride; 10 μm) fully suppressed the mAHP at −80 mV, but had little effect at −60 mV, whereas XE991 did not measurably affect the mAHP at −80 mV. Likewise, ZD7288 had little or no effect on excitability or adaptation during current pulses injected from −60 mV, but changed the initial discharge during depolarizing pulses injected from −80 mV. In contrast to previous reports, we found that blockade of Ca2+-activated K+ channels of the SK/KCa type by apamin (100–400 nm) failed to affect the mAHP or adaptation. A computational model of a CA1 pyramidal cell predicted that M- and h-channels will generate mAHPs in a voltage
Dynamics of Coulomb correlations in semiconductors in high magnetic fields
Fromer, Neil Alan
2002-05-01
Current theories have been successful in explaining many nonlinear optical experiments in undoped semiconductors. However, these theories require a ground state which is assumed to be uncorrelated. Strongly correlated systems of current interest, such as a two dimensional electron gas in a high magnetic field, cannot be explained in this manner because the correlations in the ground state and the low energy collective excitations cause a breakdown of the conventional techniques. We perform ultrafast time-resolved four-wave mixing on $n$-modulation doped quantum wells, which contain a quasi-two dimensional electron gas, in a large magnetic field, when only a single Landau level is excited and also when two levels are excited together. We find evidence for memory effects and as strong coupling between the Landau levels induced by the electron gas. We compare our results with simulations based on a new microscopic approach capable of treating the collective effects and correlations of the doped electrons, and find a good qualitative agreement. By looking at the individual contributions to the model, we determine that the unusual correlation effects seen in the experiments are caused by the scattering of photo-excited electron-hole pairs with the electron gas, leading to new excited states which are not present in undoped semiconductors, and also by exciton-exciton interactions mediated by the long-lived collective excitations of the electron gas, inter-Landau level magnetoplasmons.
Equation of state for magnetized Coulomb plasmas
NASA Astrophysics Data System (ADS)
Potekhin, A. Y.; Chabrier, G.
2013-02-01
We have developed an analytical equation of state (EOS) for magnetized fully-ionized plasmas that cover a wide range of temperatures and densities, from low-density classical plasmas to relativistic, quantum plasma conditions. This EOS directly applies to calculations of structure and evolution of strongly magnetized white dwarfs and neutron stars. We review available analytical and numerical results for thermodynamic functions of the nonmagnetized and magnetized Coulomb gases, liquids, and solids. We propose a new analytical expression for the free energy of solid Coulomb mixtures. Based on recent numerical results, we have constructed analytical approximations for the thermodynamic functions of harmonic Coulomb crystals in quantizing magnetic fields. The analytical description ensures a consistent evaluation of all astrophysically important thermodynamic functions based on the first, second, and mixed derivatives of the free energy. Our numerical code for calculation of thermodynamic functions based on these approximations has been made publicly available. Using this code, we calculate and discuss the effects of electron screening and magnetic quantization on the position of the melting point in a range of densities and magnetic fields relevant to white dwarfs and outer envelopes of neutron stars. We consider also the thermal and mechanical structure of a magnetar envelope and argue that it can have a frozen surface which covers the liquid ocean above the solid crust. The Fortran code that realizes the analytical approximations described in this paper is available at http://www.ioffe.ru/astro/EIP/ and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A43
Coulomb field in a constant electromagnetic background
NASA Astrophysics Data System (ADS)
Adorno, T. C.; Gitman, D. M.; Shabad, A. E.
2016-06-01
Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with a Euler-Heisenberg (EH) effective Lagrangian. The linear electric response to an imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field and corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants. These are specialized for the EH Lagrangian.
Spatio-temporal correlations in Coulomb clusters
NASA Astrophysics Data System (ADS)
Ash, Biswarup; Chakrabarti, J.; Ghosal, Amit
2016-05-01
The dynamical responses of Coulomb-interacting particles in two-dimensional nanoclusters are analyzed at different temperatures characterizing their solid- and liquid-like behavior. Depending on the trap symmetry, spatial correlations undergo slow, stretched exponential relaxations at long times, arising from spatially correlated motion in string-like paths. Such results stem from the combined effects of confinement and long-range repulsion, making the systems inherently heterogeneous. While particles in a “solid” flow produce dynamic heterogeneities, motion in “liquid” yields an unusually long tail in the distribution of particle displacements. A phenomenological model captures much of the subtleties of our numerical simulations.
Feynman rules for Coulomb gauge QCD
NASA Astrophysics Data System (ADS)
Andraši, A.; Taylor, J. C.
2012-10-01
The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as 'pseudo-Feynman' integrals. We also explain how energy divergences cancel.
Coulomb Repulsion in Miniature Ion Mobility Spectrometry
Xu, J.; Whitten, W.B.; Ramsey, J.M.
1999-08-08
We have undertaken a study of ion mobility resolution in a miniature ion mobility spectrometer with a drift channel 1.7 mm in diameter and 35 mm in length. The device attained a maximum resolution of 14 in separating ions of NO, O{sub 2}, and methyl iodine. The ions were generated by pulses from a frequency-quadrupled Nd:YAG laser. Broadening due to Coulomb repulsion was modeled theoretically and shown experimentally to have a major effect on the resolution of the miniature device.
Coulomb sum rule for {sup 4}He
J. Carlson; J. Jourdan; R. Schiavilla; I. Sick
2002-10-01
We determine the Coulomb sum for {sup 4}He using world data on {sup 4}He(e, e') and compare the results to calculations based on realistic interactions and including two-body components in the nuclear charge operator. We find good agreement between theory and experiment using free-nucleon form factors. The apparent reduction of the in-medium G{sub ep} implied by IA-interpretation of the L/T-ratios measured in {sup 4}He(e,e'p) and {sup 4}He([vec]e, e'p) is not confirmed.
Negative Coulomb Drag in Double Bilayer Graphene.
Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R
2016-07-22
We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found. PMID:27494491
New approach to folding with the Coulomb wave function
Blokhintsev, L. D.; Savin, D. A.; Kadyrov, A. S.; Mukhamedzhanov, A. M.
2015-05-15
Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.
Experiments on Structure and Trapping of Coulomb balls
Block, D.; Arp, O.; Piel, A.; Melzer, A.
2006-10-18
This paper gives a survey of recent experiments on Coulomb balls. Starting with typical observations to introduce the Coulomb ball experiment and its diagnostic potential, their structural properties are discussed. Further, the trapping mechanism for the dust is quantified to allow for a systematic comparison of experiment and simulations. Finally, the presented results focus on the question how screening influences the structural properties and how Coulomb balls and other strongly coupled systems are related.
Three-body quantum Coulomb problem: Analytic continuation
NASA Astrophysics Data System (ADS)
Turbiner, A. V.; Lopez Vieyra, J. C.; Olivares Pilón, H.
2016-08-01
The second (unphysical) critical charge in the three-body quantum Coulomb system of a nucleus of positive charge Z and mass mp, and two electrons, predicted by Stillinger has been calculated to be equal to ZB∞ = 0.904854 and ZBmp = 0.905138 for infinite and finite (proton) mass mp, respectively. It is shown that in both cases, the ground state energy E(Z) (analytically continued beyond the first critical charge Zc, for which the ionization energy vanishes, to ReZ
Mean excitation energy for the stopping power of light elements
NASA Astrophysics Data System (ADS)
Smith, D. Y.; Inokuti, M.; Karstens, W.; Shiles, E.
2006-09-01
We have evaluated the mean excitation energy or I value for Coulomb excitations by swift charged particles passing through carbon, aluminum and silicon. A self-consistent Kramers-Kronig analysis was used to treat X-ray optical spectra now available from synchrotron light sources allowing us to carry out Bethe's original program of evaluating I from the observed dielectric response. We find that the K and L shell are the dominant contributors to I in these light elements and that the contribution of valence electrons is relatively small, primarily because of their low binding energy. The optical data indicate that Si and Al have nearly equal I values, in contrast to Bloch's Thomas-Fermi result, I ∝ Z. The optically based I values for C and Al are in excellent agreement with experiment. However, the dielectric-response I value for Si is 164 ± 2 eV, at variance with the commonly quoted value of 173 ± 3 eV derived from stopping-power measurements.
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots.
Keller, A J; Lim, J S; Sánchez, David; López, Rosa; Amasha, S; Katine, J A; Shtrikman, Hadas; Goldhaber-Gordon, D
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior. PMID:27541473
Coulomb problem in non-commutative quantum mechanics
Galikova, Veronika; Presnajder, Peter
2013-05-15
The aim of this paper is to find out how it would be possible for space non-commutativity (NC) to alter the quantum mechanics (QM) solution of the Coulomb problem. The NC parameter {lambda} is to be regarded as a measure of the non-commutativity - setting {lambda}= 0 which means a return to the standard quantum mechanics. As the very first step a rotationally invariant NC space R{sub {lambda}}{sup 3}, an analog of the Coulomb problem configuration space (R{sup 3} with the origin excluded) is introduced. R{sub {lambda}}{sup 3} is generated by NC coordinates realized as operators acting in an auxiliary (Fock) space F. The properly weighted Hilbert-Schmidt operators in F form H{sub {lambda}}, a NC analog of the Hilbert space of the wave functions. We will refer to them as 'wave functions' also in the NC case. The definition of a NC analog of the hamiltonian as a hermitian operator in H{sub {lambda}} is one of the key parts of this paper. The resulting problem is exactly solvable. The full solution is provided, including formulas for the bound states for E < 0 and low-energy scattering for E > 0 (both containing NC corrections analytic in {lambda}) and also formulas for high-energy scattering and unexpected bound states at ultra-high energy (both containing NC corrections singular in {lambda}). All the NC contributions to the known QM solutions either vanish or disappear in the limit {lambda}{yields} 0.
Improved Shell models for screened Coulomb balls
NASA Astrophysics Data System (ADS)
Bonitz, M.; Kaehlert, H.; Henning, C.; Baumgartner, H.; Filinov, A.
2006-10-01
Spherical Coulomb crystals in dusty plasmas [1] are well described by an isotropic Yukawa-type pair interaction and an external parabolic confinement as was shown by extensive molecular dynamics simulations [2]. A much simpler description is possible with analytical shell models which have been derived for Yukawas plasmas in [3,4]. Here we analyze improved Yukawa shell models which include correlations along the lines proposed for Coulomb crystals in [5]. The shell configurations are efficiently evaluated using a Monte Carlo procedure. [1] O. Arp, A. Piel and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] M. Bonitz, D. Block, O. Arp, V. Golunychiy, H. Baumgartner, P. Ludwig, A. Piel and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [3] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005). [4] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E [5] W.D. Kraeft and M. Bonitz, J. Phys. Conf. Ser. 35, 94 (2006).
Turbine blade cooling using Coulomb repulsion
NASA Astrophysics Data System (ADS)
Breidenthal, Robert; Colannino, Joseph; Dees, John; Goodson, David; Krichtafovitch, Igor; Prevo, Tracy
2012-11-01
Video photography and thermocouples reveal the effect of an electric field on the flow around a stationary, idealized turbine blade downstream of a combustor. The hot products of combustion naturally include positive ions. When the blade is an electrode and elevated to a positive potential, it tends to attract the free electrons and repel the positive ions. Due to their lower mass, the light electrons are rapidly swept toward the blade, while the positive ions are repelled. As they collide with the neutrals in the hot gas, the positive ions transfer their momentum so that a Coulomb body force is exerted on the hot gas. Cool, compressed air is injected out of the stationary blade near its leading edge to form a layer of film cooling. In contrast to the hot combustion products, the cool air is not ionized. At the interface between the hot gas and the cool air, the Coulomb repulsion force acts on the former but not the latter, analogous to gravity at a stratified interface. An effective Richardson number representing the ratio of potential to kinetic energy characterizes the topography of the interface. When the electric field is turned on, the repulsion of the hot gas from the idealized blade is evident in video recordings and thermocouple measurements.
Search for Monoenergetic Positron Emission from Heavy-Ion Collisions at Coulomb-Barrier Energies
Ahmad, I.; Back, B.B.; Betts, R.R.; Dunford, R.W.; Freer, M.; Happ, T.; Henderson, D.; Kutschera, W.; Last, J.; Lister, C.J.; Rhein, M.D.; Schiffer, J.P.; Wilt, P.; Wuosmaa, A.H.; Austin, S.M.; Kashy, E.; Maier, M.R.; Mercer, D.J.; Mikolas, D.; Winfield, J.S.; Yurkon, J.E.; Betts, R.R.; Conner, C.; Calaprice, F.P.; Young, A.; Chan, K.C.; Chishti, A.; Kaloskamis, N.I.; Xu, G.; Fox, J.D.; Roa, D.E.; Freedman, S.J.; Freer, M.; Gazes, S.B.; Schiffer, J.P.; Wolanski, M.R.; Hallin, A.L.; Liu, M.; Happ, T.; Rhein, M.D.; Perera, P.A.; Wolfs, F.L.; Trainor, T.A.
1997-01-01
Positron production in {sup 238}U+{sup 232}Th and {sup 238}U+{sup 181}Ta collisions near the Coulomb barrier has been studied. Earlier experiments reported narrow lines in the spectra of positrons, accumulated without the requirement of electrons detected in coincidence. No evidence of such structure is observed in the present data. The positron energy spectra are compared with estimates from dynamic atomic processes, and from internal pair conversion of electromagnetic transitions from the excited nuclei. {copyright} {ital 1997} {ital The American Physical Society}
Experimental Investigation of the Stellar Reaction 30S(p,γ)31Cl via Coulomb Dissociation
NASA Astrophysics Data System (ADS)
Togano, Y.; Motobayashi, T.; Aoi, N.; Baba, H.; Bishop, S.; Cai, X.; Doornenbal, P.; Fang, D.; Furukawa, T.; Ieki, K.; Iwasa, N.; Kawabata, T.; Kanno, S.; Kobayashi, N.; Kondo, Y.; Kuboki, T.; Kume, N.; Kurita, K.; Kurokawa, M.; Ma, Y. G.; Matsuo, Y.; Murakami, H.; Matsushita, M.; Nakamura, T.; Okada, K.; Ota, S.; Satou, Y.; Shimoura, S.; Shioda, R.; Tanaka, K. N.; Takeuchi, S.; Tian, W.; Wang, H.; Wang, J.; Yamada, K.; Yamada, Y.; Yoneda, K.
2011-09-01
Coulomb dissociation of the proton-rich nucleus 31Cl was studied experimentally using a 31Cl beam at 58 MeV/nucleon with a lead target. The relative energy spectrum of 30S+p system was obtained from the measured momentum vectors of the reaction products detected in coincidence by the invariant mass method. The first excited state in 31Cl was observed which is relevant to the resonant capture in the stellar 30S(p,γ)31Cl reaction. Discussion for another observed state is also given.
Self-Consistent Monte Carlo Study of the Coulomb Interaction under Nano-Scale Device Structures
NASA Astrophysics Data System (ADS)
Sano, Nobuyuki
2011-03-01
It has been pointed that the Coulomb interaction between the electrons is expected to be of crucial importance to predict reliable device characteristics. In particular, the device performance is greatly degraded due to the plasmon excitation represented by dynamical potential fluctuations in high-doped source and drain regions by the channel electrons. We employ the self-consistent 3D Monte Carlo (MC) simulations, which could reproduce both the correct mobility under various electron concentrations and the collective plasma waves, to study the physical impact of dynamical potential fluctuations on device performance under the Double-gate MOSFETs. The average force experienced by an electron due to the Coulomb interaction inside the device is evaluated by performing the self-consistent MC simulations and the fixed-potential MC simulations without the Coulomb interaction. Also, the band-tailing associated with the local potential fluctuations in high-doped source region is quantitatively evaluated and it is found that the band-tailing becomes strongly dependent of position in real space even inside the uniform source region. This work was partially supported by Grants-in-Aid for Scientific Research B (No. 2160160) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.
Coulomb crystallization in classical and quantum systems
NASA Astrophysics Data System (ADS)
Bonitz, Michael
2007-11-01
Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter
Spherical Calogero model with oscillator/Coulomb potential: Quantum case
NASA Astrophysics Data System (ADS)
Correa, Francisco; Hakobyan, Tigran; Lechtenfeld, Olaf; Nersessian, Armen
2016-06-01
We consider the quantum mechanics of Calogero models in an oscillator or Coulomb potential on the N -dimensional sphere. Their Hamiltonians are obtained by an appropriate Dunkl deformation of the oscillator/Coulomb system on the sphere and its restriction to (Coxeter reflection) symmetric wave functions. By the same method we also find the symmetry generators and compute their algebras.
Spherical Calogero model with oscillator/Coulomb potential: Classical case
NASA Astrophysics Data System (ADS)
Correa, Francisco; Hakobyan, Tigran; Lechtenfeld, Olaf; Nersessian, Armen
2016-06-01
We construct the Hamiltonians and symmetry generators of Calogero-oscillator and Calogero-Coulomb models on the N -dimensional sphere within the matrix-model reduction approach. Our method also produces the integrable Calogero-Coulomb-Stark model on the sphere and proves the integrability of the spin extensions of all these systems.
Known-to-Unknown Approach to Teach about Coulomb's Law
ERIC Educational Resources Information Center
Thamburaj, P. K.
2007-01-01
Analogies from life experiences help students understand various relationships presented in an introductory chemistry course. Coulomb's law is a complex relationship encountered in introductory general chemistry. A proper understanding of the relationships between the quantities involved in Coulomb's law is necessary in order for students to…
Dynamical effects in the Coulomb expansion following nuclear fragmentation
Chung, K.C.; Donangelo, R.; Schechter, H.
1987-09-01
The effects of the Coulomb expansion on the fragment kinetic energy spectrum for a fragmentating hot nuclear system is investigated. In particular, /sup 12/C-fragment spectra are calculated and compared with those predicted by the uniform expansion approximation. The results indicate that the energy spectra of fragments are quite sensitive to the details of the Coulomb expansion treatment.
Supercurrent Drag via the Coulomb Interaction
NASA Astrophysics Data System (ADS)
Duan, Ji-Min; Yip, Sungkit
1996-03-01
We predict a supercurrent drag effect due to the Coulomb interaction between two parallel superconducting wires/layers. In contrast to previously explored frictional drag effect between two semiconducting quantum wells, our nondissipative drag mechanism ( J.-M. Duan and S. K. Yip, Phys. Rev. Lett.70), 3647 (1993). is based on considerations of the free energy of collective charge fluctuations. Our prediction has been confirmed experimentally ( X. Huang et al.), Phys. Rev. Lett.74, 4051 (1995). This mechanism generally exists in other nondissipative systems, such as double-layer quantum Hall syatems ( J.-M. Duan, Europhys. Lett.29), 489 (1995)., or between the two edge channels of a Hall bar, and between one-dimensional Luttinger Liquids.
Coulomb blockade of spin-dependent shuttling
NASA Astrophysics Data System (ADS)
Park, Hee Chul; Kadigrobov, Anatoli M.; Shekhter, Robert I.; Jonson, M.
2013-12-01
We show that nanomechanical shuttling of single electrons may enable qualitatively new functionality if spin-polarized electrons are injected into a nanoelectromechanical single-electron tunneling (NEM-SET) device. This is due to the combined effects of spin-dependent electron tunneling and Coulomb blockade of tunneling, which are phenomena that occur in certain magnetic NEM-SET devices. Two effects are predicted to occur in such structures. The first is a reentrant shuttle instability, by which we mean the sequential appearance, disappearance and again the appearance of a shuttle instability as the driving voltage is increased (or the mechanical dissipation is diminished). The second effect is an enhanced spin polarization of the nanomechanically assisted current flow.
Ion Coulomb Crystals and Their Applications
NASA Astrophysics Data System (ADS)
Drewsen, Michael
The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged in the past two decades. While this document lacks figures and many specific references, it is the hope, not the text will stimulate the reader to dig deeper into one or more of the discussed subjects, and inspire her/him to think about new potential applications. A fully referenced journal article of essentially the same text can be found in Physica B 460, 105 (2015) [1].
The ghost propagator in Coulomb gauge
Watson, P.; Reinhardt, H.
2011-05-23
We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.
Theoretical description of Coulomb balls: Fluid phase
Wrighton, J.; Dufty, J. W.; Kaehlert, H.; Bonitz, M.
2009-12-15
A theoretical description for the radial density profile of a finite number of identical charged particles confined in a harmonic trap is developed for application over a wide range of Coulomb coupling (or, equivalently, temperatures) and particle numbers. A simple mean-field approximation neglecting correlations yields a density profile which is monotonically decreasing with radius for all temperatures, in contrast to molecular dynamics simulations and experiments showing shell structure at lower temperatures. A more complete theoretical description including charge correlations is developed here by an extension of the hypernetted chain approximation, developed for bulk fluids, to the confined charges. The results reproduce all of the qualitative features observed in molecular dynamics simulations and experiments. These predictions are then tested quantitatively by comparison with benchmark Monte Carlo simulations. Quantitative accuracy of the theory is obtained by correcting the hypernetted chain approximation with a representation for the associated bridge functions.
NASA Astrophysics Data System (ADS)
De, Ruma; Magrakvelidze, Maia; Madjet, Mohamed E.; Manson, Steven T.; Chakraborty, Himadri S.
2016-06-01
Considering the photoionization of Ar@{{{C}}}60 and Kr@{{{C}}}60 endofullerenes, the decay of {{{C}}}60 innershell excitations through the outershell continuum of the confined atom via the inter-Coulombic decay (ICD) pathway is detailed. Excitations to atom-{{{C}}}60 hybrid states, when these states exist, can induce coherence between ICD and electron-transfer mediated decay (ETMD). This should be the dominant above-threshold decay process for a variety of confined systems, and the strength of these resonances is such that they should be amenable for study by photoelectron spectroscopy.
Analysis of 8Li(α,n)11B below the Coulomb barrier in the potential model
NASA Astrophysics Data System (ADS)
Rauscher, T.; Grün, K.; Krauss, H.; Oberhummer, H.; Kwasniewicz, E.
1992-04-01
The reaction 8Li(α,n)11B is of interest in inhomogeneous big bang nucleosynthesis. A distorted wave Born approximation calculation employing folding potentials is presented for energies below the Coulomb barrier. The recently observed resonance at about 540 keV center-of-mass energy can be reproduced. The astrophysical S factor is calculated for the ground-state transition as well as for the transitions to the first four excited states of 11B. The reaction rate is derived and compared to literature data. The inclusion of the excited states increases the rate by a factor of 1.5 compared to the ground-state transition.
Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit
NASA Astrophysics Data System (ADS)
Gebremedhin, Daniel H.; Weatherford, Charles A.
2014-05-01
An efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step-size choice for each element that is based on a Taylor series expansion. This algorithm is used to solve for the eigenpairs corresponding to the one-dimensional soft Coulomb potential, 1/√x2+β2 , which becomes numerically intractable (because of extreme stiffness) as the softening parameter (β) approaches zero. We are able to maintain near machine accuracy for β as low as β =10-8 using 16-digit precision calculations. Our numerical results provide insight into the controversial one-dimensional hydrogen atom, which is a limiting case of the soft Coulomb problem as β →0.
Impact of nuclear dynamics on interatomic Coulombic decay in a He dimer
Sisourat, Nicolas; Kryzhevoi, Nikolai V.; Cederbaum, Lorenz S.; Kolorenc, Premysl; Scheit, Simona
2010-11-15
After simultaneous ionization and excitation of one helium atom within the giant weakly bound helium dimer, the excited ion can relax via interatomic Coulombic decay (ICD) and the excess energy is transferred to ionize the neighboring helium atom. We showed [Sisourat et al. Nature Phys. 6, 508 (2010)] that the distributions of the kinetic energy released by the two ions reflect the nodal structures of the ICD-involved vibrational wave functions. We also demonstrated that energy transfer via ICD between the two helium atoms can take place over more than 14 A. We report here a more detailed analysis of the ICD process and of the impact of the nuclear dynamics on the electronic decay. Nonadiabatic effects during the ICD process and the accuracy of the potential energy curve of helium dimer and of the computed decay rates are also investigated.
Self-energy operator for an electron in an external Coulomb potential
Hostler, L.C.
1987-03-01
The self-energy operator for an electron in an external Coulomb potential is investigated analytically using a mass eigenfunction expansion concept reported earlier. Contour integration techniques in the complex m/sup 2/ plane are used to combine bound state and continuum contributions into a single integral. The result is a relatively simple integral representation for the mass operator. Only terms ignoring the ''shift correction'' are considered in this preliminary study. A transformation to a basis of relativistic Coulomb Sturmian functions exhibits the Z..cap alpha.. dependence of the integrand in a strikingly simple way. The entire investigation is set in the framework of the ''scalar formalism'' for quantum electrodynamics investigated earlier by a number of authors and based on the ''second-order'' Dirac equation, )Pix(1+isigma)xPi+m/sup 2/)Phi = 0, where Phi is a 2 x 1 Pauli spinor.
Takeuchi, Asia; Ahern, Terence L.; Henderson, Sean O.
2011-01-01
Excited (or agitated) delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium. PMID:21691475
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
Positron scattering from hydrogen atom with screened Coulomb potentials
Ghoshal, Arijit; Nayek, Sujay; Kamali, M. Z. M.; Ratnavelu, K.
2014-03-05
Elastic positron-hydrogen collisions with screened Coulomb potentials have been investigated using a second-order distorted wave Born approximation in the momentum space. Two types of potentials have been considered, namely, static screened Coulomb potential and exponential cosine-screened Coulomb potential. Using a simple variationally determined hydrogenic wave function it has been possible to obtain the scattering amplitude in a closed form. A detailed study has been made on the differential and total cross sections in the energy range 20–300 eV.
Search for intrinsic collective excitations in {sup 152}Sm
Kulp, W. D.; Wood, J. L.; Allmond, J. M.; Garrett, P. E.; Wu, C. Y.; Cline, D.; Hayes, A. B.; Hua, H.; Teng, R.; Bandyopadhyay, D.; Choudry, S. N.; McEllistrem, M. T.; McKay, C. J.; Orce, J. N.; Dashdorj, D.; Mynk, M. G.; Yates, S. W.
2008-06-15
The 685 keV excitation energy of the first excited 0{sup +} state in {sup 152}Sm makes it an attractive candidate to explore expected two-phonon excitations at low energy. Multiple-step Coulomb excitation and inelastic neutron scattering studies of {sup 152}Sm are used to probe the E2 collectivity of excited 0{sup +} states in this 'soft' nucleus and the results are compared with model predictions. No candidates for two-phonon K{sup {pi}}=0{sup +}quadrupole vibrational states are found. A 2{sup +},K=2 state with strong E2 decay to the first excited K{sup {pi}}=0{sup +} band and a probable 3{sup +} band member are established.
Electron attraction mediated by Coulomb repulsion
NASA Astrophysics Data System (ADS)
Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.
2016-07-01
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.
Deep inelastic scattering near the Coulomb barrier
Gehring, J.; Back, B.; Chan, K.
1995-08-01
Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.
Electron attraction mediated by Coulomb repulsion.
Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S
2016-07-21
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter. PMID:27443742