Science.gov

Sample records for coulomb yukawa potentials

  1. Dirac equation for the generalized Deng-Fan potential with coulomb and Yukawa tensor interactions

    NASA Astrophysics Data System (ADS)

    Ikot, A. N.; Hassanabadi, H.; Yazarloo, B. H.; Zarrinkamar, S.

    2013-10-01

    In this paper, we investigate the bound-state solutions of the Dirac equation with the generalized Deng-Fan potential within the framework of spin and pseudospin symmetries and with Coulomblike and Yukawa-like tensor interactions by using a supersymmetric quantum-mechanics (SUSYQM) formulation. We obtain the energy eigenvalue equations and the corresponding upper and lower spinor wave functions for both the spin and the pseudospin cases. We also report some numerical results and figures to show the effect of the tensor interaction.

  2. Analytically reduced form for the class of integrals containing multicenter products of 1s hydrogenic orbitals, Coulomb or Yukawa potentials, and plane waves

    NASA Technical Reports Server (NTRS)

    Straton, Jack C.

    1989-01-01

    The class of integrals containing the product of N 1s hydrogenic orbitals and M Coulomb or Yukawa potentials with m plane waves is investigated analytically. The results obtained by Straton (1989) are extended and generalized. It is shown that the dimensionality of the entire class can be reduced from 3m to M+N-1.

  3. Fourier transform of the multicenter product of 1s hydrogenic orbitals and Coulomb or Yukawa potentials and the analytically reduced form for subsequent integrals that include plane waves

    NASA Technical Reports Server (NTRS)

    Straton, Jack C.

    1989-01-01

    The Fourier transform of the multicenter product of N 1s hydrogenic orbitals and M Coulomb or Yukawa potentials is given as an (M+N-1)-dimensional Feynman integral with external momenta and shifted coordinates. This is accomplished through the introduction of an integral transformation, in addition to the standard Feynman transformation for the denominators of the momentum representation of the terms in the product, which moves the resulting denominator into an exponential. This allows the angular dependence of the denominator to be combined with the angular dependence in the plane waves.

  4. Approximate arbitrary κ-state solutions of Dirac equation with Schiöberg and Manning-Rosen potentials within the coulomb-like Yukawa-like and generalized tensor interactions

    NASA Astrophysics Data System (ADS)

    Ikot, Akpan N.; Hassanabadi, Hassan; Obong, Hillary Patrick; Mehraban, H.; Yazarloo, Bentol Hoda

    2015-07-01

    The effects of Coulomb-like tensor (CLT), Yukawa-like tensor (YLT) and generalized tensor (GLT) interactions are investigated in the Dirac theory with Schiöberg and Manning-Rosen potentials within the framework of spin and pseudospin symmetries using the Nikiforov-Uvarov method. The bound state energy spectra and the radial wave functions have been approximately obtained in the case of spin and pseudospin symmetries. We have also reported some numerical results and figures to show the effects these tensor interactions.

  5. Eigensolutions of the Schrödinger equation with a class of Yukawa potentials via supersymmetric approach

    NASA Astrophysics Data System (ADS)

    Onate, C. A.; Ojonubah, J. O.

    2016-03-01

    Using the basic concept of the supersymmetric shape invariance approach and formalism, we obtained an approximate solution of the Schrödinger equation with an interaction of inversely quadratic Yukawa potential, Yukawa potential and Coulomb potential which we considered as a class of Yukawa potentials. By varying the potential strengths, we obtained a solution for Hellmann potential, Yukawa potential, Coulomb potential and inversely quadratic Yukawa potential. The numerical results we obtained show that the interaction of these potentials is equivalent to each of the potential.

  6. Coupling strength in Coulomb and Yukawa one-component plasmas

    SciTech Connect

    Ott, T.; Bonitz, M.; Stanton, L. G.; Murillo, M. S.

    2014-11-15

    In a non-ideal classical Coulomb one-component plasma (OCP), all thermodynamic properties are known to depend only on a single parameterthe coupling parameter ?. In contrast, if the pair interaction is screened by background charges (Yukawa OCP) the thermodynamic state depends, in addition, on the range of the interaction via the screening parameter ?. How to determine in this case an effective coupling parameter has been a matter of intensive debate. Here we propose a consistent approach for defining and measuring the coupling strength in Coulomb and Yukawa OCPs based on a fundamental structural quantity, the radial pair distribution function (RPDF). The RPDF is often accessible in experiments by direct observation or indirectly through the static structure factor. Alternatively, it is directly computed in theoretical models or simulations. Our approach is based on the observation that the build-up of correlation from a weakly coupled system proceeds in two steps: First, a monotonically increasing volume around each particle becomes devoid of other particles (correlation hole), and second (upon further increase of the coupling), a shell structure emerges around each particle giving rise to growing peaks of the RPDF. Using molecular dynamics simulation, we present a systematic study for the dependence of these features of the RPDF on ? and ? and derive a simple expression for the effective coupling parameter.

  7. Ewald sums for Yukawa potentials in quasi-two-dimensional systems

    SciTech Connect

    Mazars, Martial

    2007-02-07

    In this article, the author derive Ewald sums for Yukawa potential for three-dimensional systems with two-dimensional periodicity. This sums are derived from the Ewald sums for Yukawa potentials with three-dimensional periodicity [G. Salin and J.-M. Caillol, J. Chem. Phys.113, 10459 (2000)] by using the method proposed by Parry for the Coulomb interactions [D. E. Parry, Surf. Sci.49, 433 (1975); 54, 195 (1976)].

  8. Yukawa particles in a confining potential

    SciTech Connect

    Girotto, Matheus Levin, Yan; Santos, Alexandre P. dos; Colla, Thiago

    2014-07-07

    We study the density distribution of repulsive Yukawa particles confined by an external potential. In the weak coupling limit, we show that the mean-field theory is able to accurately account for the particle distribution. In the strong coupling limit, the correlations between the particles become important and the mean-field theory fails. For strongly correlated systems, we construct a density functional theory which provides an excellent description of the particle distribution, without any adjustable parameters.

  9. Using the Screened Coulomb Potential to Illustrate the Variational Method

    ERIC Educational Resources Information Center

    Zuniga, Jose; Bastida, Adolfo; Requena, Alberto

    2012-01-01

    The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational…

  10. Using the Screened Coulomb Potential to Illustrate the Variational Method

    ERIC Educational Resources Information Center

    Zuniga, Jose; Bastida, Adolfo; Requena, Alberto

    2012-01-01

    The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational

  11. Phenomenological calculation of nuclear binding energy and density with Yukawa-potentials

    NASA Astrophysics Data System (ADS)

    Scheid, W.

    2016-01-01

    In this paper, we study a phenomenological collective model for the calculation of the nuclear density and ground state binding energy of nuclei. The proton density is assumed proportional to the nuclear density. The total binding energy of the nuclear matter consists of the binding energy of infinite nuclear matter, of two Yukawa-potentials, of the Coulomb-energy and of the symmetry-energy. The parameters of the Yukawa-potential are fitted with the Bethe-Weizsäcker (BW) mass formula. The resulting binding energies and nuclear densities agree quite satisfying with known nuclear values.

  12. Energies of Screened Coulomb Potentials.

    ERIC Educational Resources Information Center

    Lai, C. S.

    1979-01-01

    This article shows that, by applying the Hellman-Feynman theorem alone to screened Coulomb potentials, the first four coefficients in the energy series in powers of the perturbation parameter can be obtained from the unperturbed Coulomb system. (Author/HM)

  13. Formation of Coulomb crystal in presence of attractive overlapping Debye sphere potential

    SciTech Connect

    Baruah, Swati; Das, Nilakshi

    2011-09-15

    The role of attractive overlapping Debye sphere (ODS) potential on dust crystal formation has been investigated by using molecular dynamics code. A comparative study on plasma crystal formation has been made between Yukawa and coupled Yukawa-ODS potential by calculating pair-correlation function, for different values of Coulomb coupling parameter {Gamma} and screening parameter {kappa}. From our study, it is seen that the attractive ODS potential becomes dominant beyond a critical radius than that of the Yukawa potential. This leads to the fact that the effect due to combined Yukawa-ODS potential depends more sensitively on {kappa}. From the comparison of the results for Yukawa and ODS potential with experimental results, it is observed that a close agreement is obtained for attractive ODS potential.

  14. Formation of Coulomb crystal in presence of attractive overlapping Debye sphere potential

    NASA Astrophysics Data System (ADS)

    Baruah, Swati; Das, Nilakshi

    2011-09-01

    The role of attractive overlapping Debye sphere (ODS) potential on dust crystal formation has been investigated by using molecular dynamics code. A comparative study on plasma crystal formation has been made between Yukawa and coupled Yukawa-ODS potential by calculating pair-correlation function, for different values of Coulomb coupling parameter Γ and screening parameter κ. From our study, it is seen that the attractive ODS potential becomes dominant beyond a critical radius than that of the Yukawa potential. This leads to the fact that the effect due to combined Yukawa-ODS potential depends more sensitively on κ. From the comparison of the results for Yukawa and ODS potential with experimental results, it is observed that a close agreement is obtained for attractive ODS potential.

  15. Revision of FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai

    2010-12-01

    FMM-YUKAWA is a mathematical software package primarily for rapid evaluation of the screened Coulomb interactions of N particles in three dimensional space. Since its release, we have revised and re-organized the data structure, software architecture, and user interface, for the purpose of enabling more flexible, broader and easier use of the package. The package and its documentation are available at http://www.fastmultipole.org/, along with a few other closely related mathematical software packages. New version program summaryProgram title: FMM-Yukawa Catalogue identifier: AEEQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 2.0 No. of lines in distributed program, including test data, etc.: 78 704 No. of bytes in distributed program, including test data, etc.: 854 265 Distribution format: tar.gz Programming language: FORTRAN 77, FORTRAN 90, and C. Requires gcc and gfortran version 4.4.3 or later Computer: All Operating system: Any Classification: 4.8, 4.12 Catalogue identifier of previous version: AEEQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2331 Does the new version supersede the previous version?: Yes Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: The new version of fast multipole method (FMM) that diagonalizes the multipole-to-local translation operator is applied with the tree structure adaptive to sample particle locations. Reasons for new version: To handle much larger particle ensembles, to enable the iterative use of the subroutines in a solver, and to remove potential contention in assignments for parallelization. Summary of revisions: The software package FMM-Yukawa has been revised and re-organized in data structure, software architecture, programming methods, and user interface. The revision enables more flexible use of the package and economic use of memory resources. It consists of five stages. The initial stage (stage 1) determines, based on the accuracy requirement and FMM theory, the length of multipole expansions and the number of quadrature points for diagonalization, and loads the quadrature nodes and weights that are computed off line. Stage 2 constructs the oct-tree and interaction lists, with adaptation to the sparsity or density of particles and employing a dynamic memory allocation scheme at every tree level. Stage 3 executes the core FMM subroutine for numerical calculation of the particle interactions. The subroutine can now be used iteratively as in a solver, while the particle locations remain the same. Stage 4 releases the memory allocated in Stage 2 for the adaptive tree and interaction lists. The user can modify the iterative routine easily. When the particle locations are changed such as in a molecular dynamics simulation, stage 2 to 4 can also be used together repeatedly. The final stage releases the memory space used for the quadrature and other remaining FMM parameters. Programs at the stage level and at the user interface are re-written in the C programming language, while most of the translation and interaction operations remain in FORTRAN. As a result of the change in data structures and memory allocation, the revised package can accommodate much larger particle ensembles while maintaining the same accuracy-efficiency performance. The new version is also developed as an important precursor to its parallel counterpart on multi-core or many core processors in a shared memory programming environment. Particularly, in order to ensure mutual exclusion in concurrent updates without incurring extra latency, we have replaced all the assignment statements at a source box that put its data to multiple target boxes with assignments at every target box that gather data from source boxes. This amounts to replacing t

  16. Accurate momentum transfer cross section for the attractive Yukawa potential

    SciTech Connect

    Khrapak, S. A.

    2014-04-15

    Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within ±2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.

  17. Gauge orbits and the Coulomb potential

    SciTech Connect

    Greensite, J.

    2009-08-15

    If the color Coulomb potential is confining, then the Coulomb field energy of an isolated color charge is infinite on an infinite lattice, even if the usual UV divergence is lattice regulated. A simple criterion for Coulomb confinement is that the expectation value of timelike link variables vanishes in the Coulomb gauge, but it is unclear how this criterion is related to the spectrum of the corresponding Faddeev-Popov operator, which can be used to formulate a quite different criterion for Coulomb confinement. The purpose of this article is to connect the two seemingly different Coulomb confinement criteria, and explain the geometrical basis of the connection.

  18. Scaling behavior of the Yukawa potential in two and three dimensions: a comparative study

    NASA Astrophysics Data System (ADS)

    Abdelmonem, M. S.; Al-Marzoug, S. M.; Abdel-Hady, Afaf; Nasser, I.

    2015-05-01

    By using the Laguerre basis in two and three dimensions, we report the scaling behavior of the bound state energies associated with the Yukawa potential. The energy spectrum crossover phenomenon is shown to exist through the scaling law for bound state energies ?ft| n\\ell \\right> , at different principal quantum numbers n and the angular momentum \\ell , as we approach the continuum. It is found that the bound/resonance phase transitions in ?ft| n1 \\right> and ?ft| n2 \\right> states are of the first order, while it is higher in the case of ?ft| n0 \\right> states. Few physical phenomena, such as the dipole matrix element, the oscillator strength and the transition probabilities for the Yukawa potential are calculated in both two and three dimensions, and then compared with the analytic Coulomb potential. A comparison is made between the two- and three-dimensional cases. This method has a potential application in predicting stable and metastable nuclear, molecular, atomic and graphene states.

  19. a Semirelativistic Treatment of Spinless Particles Subject to the Yukawa Potential with Arbitrary Angular Momenta

    NASA Astrophysics Data System (ADS)

    Hamzavi, Majid; Ikhdair, Sameer M.; Solaimani, M.

    We obtain analytical solutions of the two-body spinless Salpeter (SS) equation with the Yukawa potential within the conventional approximation scheme to the centrifugal term for any l-state. The semirelativistic bound-state energy spectra and the corresponding normalized wave functions are calculated by means of the Nikiforov-Uvarov (NU) method. We also obtain the numerical energy spectrum of the SS equation without any approximation to centrifugal term for the same potential and compare them with the approximated numerical ones obtained from the analytical expressions. It is found that the exact numerical results are in good agreement with the approximated ones for the lower energy states. Special cases are treated like the nonrelativistic limit and the solution for the Coulomb problem.

  20. Melting of small clusters with Yukawa interaction potential

    NASA Astrophysics Data System (ADS)

    Koss, X. G.; Petrov, O. F.; Myasnikov, M. I.; Statsenko, K. B.; Vasiliev, M. M.

    2015-11-01

    In present work, the results of the numerical simulation of the dynamics of twodimensional clusters of 7 and 18 particles interacting via the Yukawa potential are presented. The simulation was carried out by the Langevin molecular dynamics method. We have numerically obtained the MFPT entropy functions for the systems of 7 and 18 particles for the various values of kinetic temperature, corresponding to the conditions of the laboratory experiments with gas-discharge dusty plasma. Three phase states of the considered small systems are registered: crystal, liquid and transitional. The mechanism of phase transitions in the systems under study is described. The suggested technique of the analysis of the system dynamics can be applied to the structures as small as desired.

  1. FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions

    NASA Astrophysics Data System (ADS)

    Huang, Jingfang; Jia, Jun; Zhang, Bo

    2009-11-01

    A Fortran program package is introduced for the rapid evaluation of the screened Coulomb interactions of N particles in three dimensions. The method utilizes an adaptive oct-tree structure, and is based on the new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related packages are also available at http://www.fastmultipole.org/. This paper is a brief review of the program and its performance. Catalogue identifier: AEEQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL 2.0 No. of lines in distributed program, including test data, etc.: 12 385 No. of bytes in distributed program, including test data, etc.: 79 222 Distribution format: tar.gz Programming language: Fortran77 and Fortran90 Computer: Any Operating system: Any RAM: Depends on the number of particles, their distribution, and the adaptive tree structure Classification: 4.8, 4.12 Nature of problem: To evaluate the screened Coulomb potential and force field of N charged particles, and to evaluate a convolution type integral where the Green's function is the fundamental solution of the modified Helmholtz equation. Solution method: An adaptive oct-tree is generated, and a new version of fast multipole method is applied in which the "multipole-to-local" translation operator is diagonalized. Restrictions: Only three and six significant digits accuracy options are provided in this version. Unusual features: Most of the codes are written in Fortran77. Functions for memory allocation from Fortran90 and above are used in one subroutine. Additional comments: For supplementary information see http://www.fastmultipole.org/ Running time: The running time varies depending on the number of particles (denoted by N) in the system and their distribution. The running time scales linearly as a function of N for nearly uniform particle distributions. For three digits accuracy, the solver breaks even with direct summation method at about N = 750. References: [1] L. Greengard, J. Huang, A new version of the fast multipole method for screened Coulomb interactions in three dimensions, J. Comput. Phys. 180 (2002) 642-658.

  2. Stationary solution of NLFP with coulombic potential

    SciTech Connect

    Grassi, A.

    2013-02-15

    In a previous paper, Grassi (2012) [39], a new entropy form has been proposed for which it is possible to obtain a stationary solution of the Non-Linear Fokker-Planck equation (referred as NLFP) with coulombic-like potentials. In this paper we analyze the stationary solution of NLFP obtained by using pure coulombic potentials and we will use this solution to study an 'atomic-like' system. - Highlights: Black-Right-Pointing-Pointer The entropy introduced in a previous work has been studied for a coulombic potential. Black-Right-Pointing-Pointer From this entropy form a NLFP has been derived for a pure coulombic potential. Black-Right-Pointing-Pointer The stationary solution of the NLFP for an 'atomic-like' system has been obtained. Black-Right-Pointing-Pointer A comparison with Boltzmann entropy has been proposed.

  3. The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.

    ERIC Educational Resources Information Center

    Francisco, E.; And Others

    1988-01-01

    Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)

  4. Efficient surface reconstruction using generalized coulomb potentials.

    PubMed

    Jalba, Andrei C; Roerdink, Jos B T M

    2007-01-01

    We propose a novel, geometrically adaptive method for surface reconstruction from noisy and sparse point clouds, without orientation information. The method employs a fast convection algorithm to attract the evolving surface towards the data points. The force field in which the surface is convected is based on generalized Coulomb potentials evaluated on an adaptive grid (i.e., an octree) using a fast, hierarchical algorithm. Formulating reconstruction as a convection problem in a velocity field generated by Coulomb potentials offers a number of advantages. Unlike methods which compute the distance from the data set to the implicit surface, which are sensitive to noise due to the very reliance on the distance transform, our method is highly resilient to shot noise since global, generalized Coulomb potentials can be used to disregard the presence of outliers due to noise. Coulomb potentials represent long-range interactions that consider all data points at once, and thus they convey global information which is crucial in the fitting process. Both the spatial and temporal complexities of our spatially-adaptive method are proportional to the size of the reconstructed object, which makes our method compare favorably with respect to previous approaches in terms of speed and flexibility. Experiments with sparse as well as noisy data sets show that the method is capable of delivering crisp and detailed yet smooth surfaces. PMID:17968104

  5. Cosmological model with fermion and tachyon fields interacting via Yukawa-type potential

    NASA Astrophysics Data System (ADS)

    Ribas, Marlos O.; Devecchi, Fernando P.; Kremer, Gilberto M.

    2016-02-01

    A model for the universe with tachyonic and fermionic fields interacting through a Yukawa-type potential is investigated. It is shown that the tachyonic field answers for the initial accelerated regime and for the subsequent decelerated regime so that it behaves as an inflaton at early times and as a matter field at intermediate times, while the fermionic field has the role of a dark energy constituent, since it leads to an accelerated regime at later times. The interaction between the fields via a Yukawa-type potential controls the duration of the decelerated era, since a stronger coupling makes a shorter decelerated period.

  6. Quantum gravity and the Coulomb potential

    SciTech Connect

    Husain, Viqar; Winkler, Oliver; Louko, Jorma

    2007-10-15

    We apply a singularity-resolution technique utilized in loop quantum gravity to the polymer representation of quantum mechanics on R with the singular -1/|x| potential. On an equispaced lattice, the resulting eigenvalue problem is identical to a finite-difference approximation of the Schroedinger equation. We find numerically that the antisymmetric sector has an energy spectrum that converges to the usual Coulomb spectrum as the lattice spacing is reduced. For the symmetric sector, in contrast, the effect of the lattice spacing is similar to that of a continuum self-adjointness boundary condition at x=0, and its effect on the ground state is significant even if the spacing is much below the Bohr radius. Boundary conditions at the singularity thus have a significant effect on the polymer quantization spectrum even after the singularity has been regularized.

  7. Discrete perturbation theory for the hard-core attractive and repulsive Yukawa potentials

    NASA Astrophysics Data System (ADS)

    Torres-Arenas, J.; Cervantes, L. A.; Benavides, A. L.; Chapela, G. A.; del Ro, F.

    2010-01-01

    In this work we apply the discrete perturbation theory [A. L. Benavides and A. Gil-Villegas, Mol. Phys. 97, 1225 (1999)] to obtain an equation of state for the case of two continuous potentials: the hard-core attractive Yukawa potential and the hard-core repulsive Yukawa potential. The main advantage of the presented equation of state is that it is an explicit analytical expression in the parameters that characterize the intermolecular interactions. With a suitable choice of their inverse screening length parameter one can model the behavior of different systems. This feature allows us to make a systematic study of the effect of the variation in the parameters on the thermodynamic properties of this system. We analyze single phase properties at different conditions of density and temperature, and vapor-liquid phase diagrams for several values of the reduced inverse screening length parameter within the interval ??=0.1-5.0. The theoretical predictions are compared with available and new Monte Carlo simulation data. Good agreement is found for most of the cases and better predictions are found for the long-range ones. The Yukawa potential is an example of a family of hard-core plus a tail (attractive or repulsive) function that asymptotically goes to zero as the separations between particles increase. We would expect that similar results could be found for other potentials with these characteristics.

  8. Isotropization in Bianchi type-I cosmological model with fermions and bosons interacting via Yukawa potential

    NASA Astrophysics Data System (ADS)

    Ribas, M. O.; Samojeden, L. L.; Devecchi, F. P.; Kremer, G. M.

    2015-10-01

    In this work we investigate a model for the early Universe in a Bianchi type-I metric, where the sources of the gravitational field are a fermionic and a bosonic field, interacting through a Yukawa potential, following the standard model of elementary particles. It is shown that the fermionic field has a negative pressure, while the boson has a small positive pressure. The fermionic field is the responsible for an accelerated regime at early times, but since the total pressure tends to zero for large times, a transition to a decelerated regime occurs. Here the Yukawa potential answers for the duration of the accelerated regime, since by decreasing the value of its coupling constant the transition accelerated-decelerated occurs in later times. The isotropization which occurs for late times is due to the presence of the fermionic field as one of the sources of the gravitational field.

  9. An Analysis of 178Pb to 238U Isotopes with the Universal and Yukawa Proximity Potentials

    NASA Astrophysics Data System (ADS)

    Javadimanesh, E.; Hassanabadi, H.; Zarrinkamar, S.

    2013-07-01

    The alpha particle preformation and the penetration probability by the Yukawa proximity potential in the even-even nuclei from 178Pb to 238U are studied. Using the experimental values of the alpha decay half-lives and the decay energies, we extract the preformation factors and the penetration probabilities. We also calculate the assault frequencies and the decay constants. The obtained results are motivating.

  10. Multipole polarizabilities of helium and the hydrogen negative ion with Coulomb and screened Coulomb potentials

    SciTech Connect

    Kar, Sabyasachi; Ho, Y. K.

    2009-12-15

    We have carried out calculations of multipole polarizabilities of helium and the hydrogen negative ion interacting with pure Coulomb and screened Coulomb potentials using highly accurate correlated exponential wave functions with exponent generated by a quasirandom process. The dipole, quadrupole, and octupole polarizabilities for the ground 1s{sup 2} {sup 1}S{sup e} state for different screening parameters starting from infinity (pure Coulomb case) to small values of the screening parameters, are reported. The octupole polarizability of the hydrogen negative ion is reported for the first time in the literature. The bound 4 {sup 1}F state energy of helium for different screening parameters are also reported.

  11. Positron scattering from hydrogen atom with screened Coulomb potentials

    SciTech Connect

    Ghoshal, Arijit; Nayek, Sujay; Kamali, M. Z. M.; Ratnavelu, K.

    2014-03-05

    Elastic positron-hydrogen collisions with screened Coulomb potentials have been investigated using a second-order distorted wave Born approximation in the momentum space. Two types of potentials have been considered, namely, static screened Coulomb potential and exponential cosine-screened Coulomb potential. Using a simple variationally determined hydrogenic wave function it has been possible to obtain the scattering amplitude in a closed form. A detailed study has been made on the differential and total cross sections in the energy range 20–300 eV.

  12. On the impossibility of defining adhesive hard spheres as sticky limit of a hard-sphere-Yukawa potential.

    PubMed

    Gazzillo, Domenico

    2011-03-28

    For fluids of molecules with short-ranged hard-sphere-Yukawa (HSY) interactions, it is proven that the Noro-Frenkel "extended law of corresponding states" cannot be applied down to the vanishing attraction range, since the exact HSY second virial coefficient diverges in such a limit. It is also shown that, besides Baxter's original approach, a fully correct alternative definition of "adhesive hard spheres" can be obtained by taking the vanishing-range-limit (sticky limit) not of a Yukawa tail, as is commonly done, but of a slightly different potential with a logarithmic-Yukawa attraction. PMID:21456673

  13. Triple point of Yukawa systems

    SciTech Connect

    Hamaguchi, S.; Farouki, R.T.; Dubin, D.H.

    1997-10-01

    The molecular dynamics simulations of Yukawa (i.e., screened-Coulomb) systems that were applied to the regime of weak screening in an earlier study [S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, J. Chem. Phys. {bold 105}, 7641 (1996)] are extended to the strong screening regime. Transition temperatures at the fluid-solid phase boundary and the solid-solid phase boundary are obtained as functions of the screening parameter {kappa}=a/{lambda}{sub D} (i.e., the ratio of the Wigner-Seitz radius a to the Debye length {lambda}{sub D}). The resulting phase diagram also covers the triple point{emdash}the intersection of the fluid-solid and solid-solid phase boundaries{emdash}at {kappa}=4.28 and {Gamma}=5.6{times}10{sup 3}, where {Gamma} is the ratio of the Coulomb potential energy to the kinetic energy per particle (i.e., {Gamma}=Q{sup 2}/4{pi}{epsilon}{sub 0}akT, where Q is the charge of each Yukawa particle and T is the system temperature). Yukawa systems serve as models for plasmas and colloidal suspensions of charged particulates. {copyright} {ital 1997} {ital The American Physical Society}

  14. Serber symmetry, large N{sub c}, and Yukawa-like one-boson exchange potentials

    SciTech Connect

    Calle Cordon, A.; Arriola, E. Ruiz

    2009-07-15

    The Serber force has relative orbital parity symmetry and requires vanishing NN interactions in partial waves with odd angular momentum. We illustrate how this property is well fulfilled for spin triplet states with odd angular momentum and violated for odd singlet states for realistic potentials but fails for chiral potentials. The analysis is carried out in terms of partial wave sum rules for NN phase shifts, r-space potentials at long distances, and V{sub lowk} potentials. We analyze how Serber symmetry can be accommodated within a large-N{sub c} perspective when interpreted as a long-distance symmetry. A prerequisite for this is the numerical similarity of the scalar and vector meson resonance masses. The conditions under which the resonance exchange potential can be approximated by a Yukawa form are also discussed. Although these masses arise as poles on the second Riemann in {pi}{pi} scattering, we find that within the large-N{sub c} expansion the corresponding Yukawa masses correspond instead to a well-defined large-N{sub c} approximation to the pole that cannot be distinguished from their location as Breit-Wigner resonances.

  15. Cores in dwarf galaxies from dark matter with a Yukawa potential.

    PubMed

    Loeb, Abraham; Weiner, Neal

    2011-04-29

    We show that cold dark matter particles interacting through a Yukawa potential could naturally explain the recently observed cores in dwarf galaxies without affecting the dynamics of objects with a much larger velocity dispersion, such as clusters of galaxies. The velocity dependence of the associated cross section as well as the possible exothermic nature of the interaction alleviates earlier concerns about strongly interacting dark matter. Dark matter evaporation in low-mass objects might explain the observed deficit of satellite galaxies in the Milky Way halo and have important implications for the first galaxies and reionization. PMID:21635025

  16. Spectral sum for the color-Coulomb potential in SU(3) Coulomb gauge lattice Yang-Mills theory

    SciTech Connect

    Nakagawa, Y.; Nakamura, A.; Saito, T.; Toki, H.

    2010-03-01

    We discuss the essential role of the low-lying eigenmodes of the Faddeev-Popov (FP) ghost operator on the confining color-Coulomb potential using SU(3) quenched lattice simulations in the Coulomb gauge. The color-Coulomb potential is expressed as a spectral sum of the FP ghost operator and has been explored by partially summing the FP eigenmodes. We take into account the Gribov copy effects that have a great impact on the FP eigenvalues and the color-Coulomb potential. We observe that the lowest eigenvalue vanishes in the thermodynamic limit much faster than that in the Landau gauge. The color-Coulomb potential at large distances is governed by the near-zero FP eigenmodes; in particular, the lowest one accounts for a substantial portion of the color-Coulomb string tension comparable to the Wilson string tension.

  17. Analytical Solution of Relativistic Few-Body Bound Systems with a Generalized Yukawa Potential

    NASA Astrophysics Data System (ADS)

    Aslanzadeh, M.; Rajabi, A. A.

    2016-03-01

    We have investigated in this paper the few-body bound systems in a simple semi-relativistic scheme. For this aim, we introduced a spin independent relativistic description for a few-identical body system by presenting the analytical solution of few-particle Klein-Gordon equation. Performing calculations in D-dimensional configuration on the basis of the hypercentral approach, we reduced the few-body Klein-Gordon equation to a Schrödinger-like form. This equation is solved by using the Nikiforov-Uvarov method, through which the energy equations and eigenfunctions for a few-body bound system are obtained. We used the spin- and isospin-independent generalized Yukawa potential in our calculations, and the dependence of the few-body binding energies on the potential parameters has been investigated.

  18. Coulomb scattering of Weyl fermions through a potential barrier

    NASA Astrophysics Data System (ADS)

    Khan, Mahtab; Leuenberger, Michael; Nano Science Team

    2014-03-01

    We investigate the effects of the Coulomb interaction on the two-dimensional relativistic quantum-mechanical scattering of two Weyl fermions, injected on the opposite sides of a potential barrier. We consider the Coulomb interaction in the standard two-body problem and evaluate the corresponding scattering amplitude. We apply our formalism to describe the scattering of Weyl fermions in two-dimensional materials exhibiting Dirac cones, such as graphene and the surface of 3d topological insulators. We obtain a complex shape for the scattering amplitude due to the angle-dependent Klein tunneling through a potential barrier. We show that the Coulomb interaction leads to shifts and broadenings of the transmission peaks. .

  19. Electron screening of the Coulomb potential at small internuclear distances

    NASA Astrophysics Data System (ADS)

    Zinoviev, A. N.

    2015-07-01

    Values of He+-Au potential at small internuclear distances (R = 10-4 to 10-3 nm) have been obtained from the Rutherford backscattering (RBS) data. The potential has been shown to be independent of the collision velocity and close to the potential approximation proposed in Zinoviev (2011) [1]. Experimental data on the electron screening of the Coulomb potential enabled calculation of corrections for the nuclear fusion cross-sections and improvement of the RBS data quantitative analysis.

  20. Discrete perturbation theory applied to Lennard-Jones and Yukawa potentials

    NASA Astrophysics Data System (ADS)

    Chapela, Gustavo A.; del Ro, Fernando; Benavides, Ana Laura; Alejandre, Jos

    2010-12-01

    Discrete perturbation theory (DPT) is a powerful tool to study systems interacting with potentials that are continuous but can be approximated by a piecewise continuous function composed of horizontal segments. The main goal of this work is to analyze the effect of several variables to improve the representation of continuous potentials in order to take advantage of DPT. The main DPT parameters chosen for the purpose are the starting location and size of the horizontal segments used to divide the full range of the potential and its maximum reach. We also studied the effect of having each segment aligned to the left, to the right, or centered on the continuous function. The properties selected to asses the success of this strategy are the orthobaric densities and their corresponding critical points. Critical parameters and orthobaric densities were evaluated by DPT for each of an ample set of variables and compared with their values calculated via discontinuous molecular dynamics. The best sets of DPT parameters are chosen so as to give equations of state that represent accurately the Lennard-Jones and Yukawa fluids.

  1. {alpha}-particle optical potential tests below the Coulomb barrier

    SciTech Connect

    Avrigeanu, M.; Avrigeanu, V.

    2009-02-15

    The results of two recent papers concerning ({alpha},{gamma}) and ({alpha},n) reaction cross sections close to the reaction thresholds are discussed with regard to predictions of a recent {alpha}-particle regional optical potential. It is found that the new measured cross sections are rather well described especially for the dominant reaction channels. Particular features of the {alpha}-particle optical potential at energies below the Coulomb barrier explain the failure of a former regional potential obtained by analysis of {alpha}-particle elastic scattering alone at higher energies. Additional limitations of statistical model calculations for minor reaction channels are also discussed.

  2. Spectra generated by a confined softcore Coulomb potential

    NASA Astrophysics Data System (ADS)

    Hall, Richard L.; Saad, Nasser

    2014-08-01

    Analytic and approximate solutions for the energy eigenvalues generated by a confined softcore Coulomb potentials of the form a/(r + ?) in d > 1 dimensions are constructed. The confinement is effected by linear and harmonic-oscillator potential terms, and also through "hard confinement" by means of an impenetrable spherical box. A byproduct of this work is the construction of polynomial solutions for a number of linear differential equations with polynomial coefficients, along with the necessary and sufficient conditions for the existence of such solutions. Very accurate approximate solutions for the general problem with arbitrary potential parameters are found by use of the asymptotic iteration method.

  3. Crystallization limits of the two-term Yukawa potentials based on the entropy criterion

    NASA Astrophysics Data System (ADS)

    Lee, Lloyd L.; Hara, Michael C.; Simon, Steven J.; Ramos, Franklin S.; Winkle, Andrew J.; Bomont, Jean-Marc

    2010-02-01

    We examine the fluid-solid transition for the potential with two Yukawa terms (one attractive and the other repulsive) and a hard core by exploration of the parameter space of (K1, Z1, and Z2), i.e., the parameters of interaction strength and interaction ranges, respectively. We apply the single-phase crystallization rule of Giaquinta and Giunta (1992) by searching for the conditions where the residual entropy reaches zero. To obtain accurate entropy properties, we adopt the self-consistent closure theory of the zero-separation genre. This closure gives accurate thermodynamic properties. The Ornstein-Zernike equation is solved to obtain the correlation functions. The structure factor S(q ) is examined with respect to its cluster-cluster peak, whose value is another indication of phase transition according to Hansen and Verlet (1969). We discover that the parameter Z1 (which determines the range of attractive forces) is important in crystal formation, so long as sufficient attraction (parameter K1) is present. If the range of attraction is too narrow, strength alone is not adequate to satisfy the Giaquinta rule or to solidify at given concentration and temperature. The control of the range of repulsion rests with the Z2-parameter. Its variations can bring about a high peak in S(q ) at zero wave number (i.e., at q =0). Implications for the crystallization of protein and colloidal solutions are discussed.

  4. Approximate bound-state solutions of the Dirac equation for the generalized yukawa potential plus the generalized tensor interaction

    NASA Astrophysics Data System (ADS)

    Ikot, Akpan N.; Maghsoodi, Elham; Hassanabadi, Hassan; Obu, Joseph A.

    2014-05-01

    In this paper, we obtain the approximate analytical bound-state solutions of the Dirac particle with the generalized Yukawa potential within the framework of spin and pseudospin symmetries for the arbitrary к state with a generalized tensor interaction. The generalized parametric Nikiforov-Uvarov method is used to obtain the energy eigenvalues and the corresponding wave functions in closed form. We also report some numerical results and present figures to show the effect of the tensor interaction.

  5. Effect of wake potential on Coulomb crystallization in the presence of magnetic field

    SciTech Connect

    Bhattacharjee, Saurav; Das, Nilakshi

    2012-10-15

    The formation of dust crystal in plasma under the influence of repulsive Yukawa (Debye-Hueckel) potential is a well known phenomenon. The regular structure of dust particles is affected by anisotropic ion flow near the sheath region. The bombardment of the ions over dust grains distorts their Debye sphere by overshielding the dust cloud and gives rise to an attractive oscillatory wake potential. In this paper, we have obtained an expression for wake potential along with the Yukawa type of potential in a complex plasma in the presence of magnetic field, for subsonic ion flow towards the plasma sheath. In the presence of magnetic field, interaction potential gets modified and becomes anisotropic. We have studied the combined effect of the attractive wake potential as well as repulsive Yukawa potential on a 2D dust crystal, both in the presence and absence of magnetic field, using molecular dynamic simulation.

  6. Heavy tetraquark confining potential in Coulomb gauge QCD

    NASA Astrophysics Data System (ADS)

    Popovici, Carina; Fischer, Christian S.

    2014-06-01

    We present an analytic nonperturbative solution of the Yakubovsky equation for tetraquark states in the case of equal separations and energies, and demonstrate a direct connection between the tetraquark confinement potential and the temporal gluon propagator. To this end we employ a leading-order heavy quark mass expansion of the Coulomb gauge QCD action, and use the dressed two-point functions of the Yang-Mills sector only. As a result, we find a bound state energy that rises linearly with distance and a string tension twice as large as in a qq-system.

  7. Coulomb Impurity Potential RbCl Quantum Pseudodot Qubit

    NASA Astrophysics Data System (ADS)

    Ma, Xin-Jun; Qi, Bin; Xiao, Jing-Lin

    2015-08-01

    By employing a variational method of Pekar type, we study the eigenenergies and the corresponding eigenfunctions of the ground and the first-excited states of an electron strongly coupled to electron-LO in a RbCl quantum pseudodot (QPD) with a hydrogen-like impurity at the center. This QPD system may be used as a two-level quantum qubit. The expressions of electron's probability density versus time and the coordinates, and the oscillating period versus the Coulombic impurity potential and the polaron radius have been derived. The investigated results indicate ? that the probability density of the electron oscillates in the QPD with a certain oscillating period of , ? that due to the presence of the asymmetrical potential in the z direction of the RbCl QPD, the electron probability density shows double-peak configuration, whereas there is only one peak if the confinement is a two-dimensional symmetric structure in the xy plane of the QPD, ? that the oscillation period is a decreasing function of the Coulombic impurity potential, whereas it is an increasing one of the polaron radius.

  8. Solid-liquid phase transitions in 3D systems with the inverse-power and Yukawa potentials

    NASA Astrophysics Data System (ADS)

    Vaulina, O. S.; Koss, X. G.

    2016-03-01

    The melting of face-centered cubic (fcc) and body-centered cubic (bcc) crystal lattices was studied analytically and numerically for the systems of particles interacting via the inverse-power-law and Yukawa potentials. New approach is proposed for determination of the solid-liquid phase transitions in these systems. The suggested approach takes into account a nonlinearity (anharmonicity) of pair interaction forces and allows to correctly predict the conditions of melting of the systems with various isotropic pair interaction potentials. The obtained results are compared with the existing theoretical and numerical data.

  9. Quintessence with Yukawa interaction

    NASA Astrophysics Data System (ADS)

    Costa, Andr A.; Olivari, Lucas C.; Abdalla, E.

    2015-11-01

    We consider a quintessence model for dark energy interacting with dark matter via a Yukawa interaction. To put constraints on this model we use the cosmic microwave background measurements from the Planck satellite together with baryon acoustic oscillation, type Ia supernovae and H0 data. We conclude that this is a viable model and an appropriate scalar potential can favor the interacting scenario.

  10. Effective Mass Quantum Systems with Displacement Operator: Inverse Square Plus Coulomb-Like Potential

    NASA Astrophysics Data System (ADS)

    Arda, Altu?; Sever, Ramazan

    2015-10-01

    The Schrdinger-like equation written in terms of the displacement operator is solved analytically for a inverse square plus Coulomb-like potential. Starting from the new Hamiltonian, the effects of the spatially dependent mass on the bound states and normalized wave functions of the "usual" inverse square plus Coulomb interaction are discussed.

  11. Influence of screening of the Coulomb potential on the plateau in above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Miloevi?, D. B.; Ehlotzky, F.

    1998-06-01

    We present a generalization of the Keldysh-Faisal-Reiss model that includes the second-order S-matrix element and thus the effects of rescattering. On the example of a screened Coulomb potential we show that using our model it is possible to reproduce all main features of the recent experimental results, mainly, the appearance of a plateau, the position of the cutoff, and the side lobes. We also show that the difference between the direct ionization probability and the rescattering plateau for a long-range Coulomb-like potential (with a small screening parameter) is very large, which is in discrepancy with the experimental results. This indicates that the effective potential that an electron feels during the rescattering is not a pure Coulomb potential. We show that this potential can be approximated by a screened Coulomb potential with a properly chosen screening parameter.

  12. Additional {alpha}-particle optical potential tests below the Coulomb barrier

    SciTech Connect

    Avrigeanu, M.; Avrigeanu, V.

    2010-03-15

    New results of ({alpha},{gamma}) and ({alpha},n) reaction cross section measurements close to the reaction thresholds support the setting up of recent parameters of the {alpha}-particle optical model potential (OMP) below the Coulomb barrier. Particular features of the {alpha}-particle optical potential at energies below the Coulomb barrier explain the failure of using the OMP parameters obtained by analysis of only {alpha}-particle elastic scattering at higher energies.

  13. Connection between Coulomb and harmonic oscillator potentials in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Fu, Bo; Zhang, Fu-Lin; Chen, Jing-Ling

    2010-03-01

    The Levi-Civita transformation is applied in the two-dimensional (2D) Dirac and Klein-Gordon (KG) equations with equal external scalar and vector potentials. The Coulomb and harmonic oscillator problems are connected via the Levi-Civita transformation. These connections lead to an approach to solve the Coulomb problems using the results of the harmonic oscillator potential in the relativistic systems mentioned above.

  14. Deflections of photoelectron classical trajectories in screened Coulomb potentials of H2+

    NASA Astrophysics Data System (ADS)

    Qin, Bo-Ya; Wang, Pei-Jie; He, Feng

    2015-11-01

    The photoelectron momentum distribution of in circularly polarized laser fields is studied based on classical trajectory calculations. We screen Coulomb potentials at different radii, and trace trajectories of an ensemble of electrons in such screened Coulomb potentials and circularly polarized laser fields. Simulations show that electron trajectories are bent by Coulomb fields, resulting in the laser-intensity-dependent drift of photoelectron momentum distributions in the laser polarization plane. This study intuitively explains how Coulomb potentials modify photoelectron momenta. Project supported by the National Natural Science Foundation of China (Grant Nos. 11104180, 11175120, 11121504, and 11322438) and the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 131010).

  15. Nuclear mass formula with a finite-range droplet model and a folded-Yukawa single-particle potential

    SciTech Connect

    Moeller, P.; Myers, W.D.; Swiatecki, W.J.; Treiner, J.

    1988-07-01

    We calculate ground-state masses for 4678 nuclei ranging from /sup 16/O to /sup 318/122 by use of a macroscopic-microscopic model, which incorporates several new features. For the macroscopic model we use the finite-range droplet model which we introduced in 1984. The microscopic contribution is taken from a calculation based on a folded-Yukawa single-particle potential. Some new features now incorporated are a new model for the average pairing strength and the solution of the microscopic pairing equations by use of the Lipkin-Nogami method with approximate particle number conservation. To estimate the parameters of the macroscopic model we use an approach that starts by defining the error of a mass formula in a rigorous way, which leads naturally to the use of experimental uncertainties and of the maximum-likelihood method to derive a set of equations for estimating the parameters and error of the theoretical model. By considering 1593 experimental masses from /sup 16/O to /sup 263/106 we estimate the error of the theoretical model to be 0.769 MeV. The model retains its accuracy far from stability and the values of the model parameters are very insensitive to details of the adjustment procedure. copyright 1988 Academic Press, Inc.

  16. Non-asymptotic Yukawa scattering

    NASA Astrophysics Data System (ADS)

    Stenson, J.; Stetz, A.

    2015-11-01

    A general non-asymptotic solution is given for the quantum Yukawa scattering problem in terms of Legendre functions of the second kind. It is visualized and shown to match the standard result in the asymptotic limit. We also briefly indicate how the result contributes to three problems that have heretofore been obscured by the usual approximations: it clarifies the meaning of the differential cross section by providing a generalizing case, it illustrates the breakdown of the assumption that scattering currents are only radially outward which leads to fundamental interpretive issues, and it provides a way to incrementally and rigorously investigate the Coulomb limit of scattering.

  17. Phase diagram and critical properties of Yukawa bilayers

    NASA Astrophysics Data System (ADS)

    Trav?nec, Igor; amaj, Ladislav

    2015-08-01

    We study the ground-state Wigner bilayers of pointlike particles with Yukawa pairwise interactions, confined to the surface of two parallel hard walls at dimensionless distance ? . The model involves as limiting cases the unscreened Coulomb potential and hard spheres. The phase diagram of Yukawa particles, studied numerically by Messina and Lwen [Phys. Rev. Lett. 91, 146101 (2003), 10.1103/PhysRevLett.91.146101], exhibits five different staggered phases as ? varies from 0 to intermediate values. We present a lattice summation method using the generalized Misra functions which permits us to calculate the energy per particle of the phases with a precision much higher than usual in computer simulations. This allows us to address some tiny details of the phase diagram. Going from the hexagonal phase I to phase II is shown to occur at ? =0 . All second-order phase transitions are proved to be of mean-field type. We also derive the asymptotic shape of critical lines close to the Coulomb and hard-spheres limits. In and close to the hard-spheres limit, the dependence of the internal parameters of the present phases on ? is determined exactly.

  18. Potential splitting approach to the three-body Coulomb scattering problem

    NASA Astrophysics Data System (ADS)

    Volkov, M. V.; Yarevsky, E. A.; Yakovlev, S. L.

    2015-05-01

    The potential splitting technique is developed for solving the three-body Coulomb scattering problem. The formalism is applied to e+-H and e+-He+ scattering problems. Calculated phase shifts and the annihilation rate parameter Z\\text{eff} are in fairly good agreement with the most accurate results available in the literature.

  19. The algebra of the quantum nondegenerate three-dimensional Kepler-Coulomb potential

    SciTech Connect

    Tanoudis, Y.; Daskaloyannis, C.

    2011-07-15

    The classical generalized Kepler-Coulomb potential, introduced by Verrier and Evans, corresponds to a quantum superintegrable system, with quadratic and quartic integrals of motion. In this paper we show that the algebra of the integrals is a quadratic ternary algebra, i.e a quadratic extension of a Lie triple system.

  20. Coulomb potential envelopes for a relativistic fermion in a central field

    SciTech Connect

    Hall, R.L.

    1985-07-01

    We consider a hydrogenlike system in which the Coulomb potential is replaced by the more general central potential V(r) = vf(r/b) = vg(-b/r), where g is monotone increasing and convex. The method of potential envelopes is applied to this problem and approximations are obtained for the energy trajectories based on the expression epsilon/sub n/j = min/sub u/epsilon(0,1)(D/sub n/j(u) -uD/sup prime//sub n/j(u) +vf)-1/bD/sup //sub n/j(u))), where D/sub n/j(u) is the known exact trajectory function for the hydrogenic atom. General formulas are given for linear combinations of power-law potentials and the log potential. Some graphical results are presented in the case of the Coulomb-plus-linear potential f(r) = -..cap alpha../r+..beta..r.

  1. Symmetrization of the Coulomb pairing potential by electron-phonon interaction

    SciTech Connect

    Belyavsky, V. I. Kapaev, V. V.; Kopaev, Yu. V.; Mikhailyan, D. I.

    2012-08-15

    It is shown that the Coulomb superconducting pairing in systems with the Fermi contour nesting can be described by a quasi-one-dimensional potential oscillating in real space. The supplement of this repulsive potential with an isotropic pairing attraction corresponding to the phonon superconductivity mechanism and including the effect of predominant forward scattering upon electron-phonon interaction leads to symmetrization of this potential and a considerable increase in the superconducting transition temperature.

  2. Virial theorem and Gibbs thermodynamic potential for Coulomb systems

    SciTech Connect

    Bobrov, V. B. E-mail: satron@mail.ru; Trigger, S. A. E-mail: satron@mail.ru

    2014-10-15

    Using the grand canonical ensemble and the virial theorem, we show that the Gibbs thermodynamic potential of the non-relativistic system of charged particles is uniquely defined by single-particle Green functions of electrons and nuclei. This result is valid beyond the perturbation theory with respect to the interparticle interaction.

  3. Liquid-vapor phase diagram and surface properties in oppositely charged colloids represented by a mixture of attractive and repulsive Yukawa potentials

    NASA Astrophysics Data System (ADS)

    Chapela, Gustavo A.; del Ro, Fernando; Alejandre, Jos

    2013-02-01

    The liquid-vapor phase diagrams of equal size diameter ? binary mixtures of screened potentials have been reported for several ranges of interaction using Monte Carlo simulation methods [J. B. Caballero, A. M. Puertas, A. Fer?andez-Barbero, F. J. de las Nieves, J. M. Romero-Enrique, and L. F. Rull, J. Chem. Phys. 124, 054909 (2006), 10.1063/1.2159481; A. Fortini, A.-P. Hynninen, and M. Dijkstra, J. Chem. Phys. 125, 094502 (2006), 10.1063/1.2335453]. Both works report controversial results about the stability of the phase diagram with the inverse Debye screening length ?. Caballero found stability for values of ?? up to 20 while Fortini reported stability for ?? up to 20 while Fortini reported stability for ?? ? 4. In this work a spinodal decomposition process where the liquid and vapor phases coexist through an interface in a slab geometry is used to obtain the phase equilibrium and surface properties using a discontinuous molecular dynamics simulations for mixtures of equal size particles carrying opposite charge and interacting with a mixture of attractive and repulsive Yukawa potentials at different values of ??. An crude estimation of the triple point temperatures is also reported. The isothermal-isobaric method was also used to determine the phase stability using one phase simulations. We found that liquid-vapor coexistence is stable for values of ?? > 20 and that the critical temperatures have a maximum value at around ?? = 10, in agreement with Caballero et al. calculations. There also exists a controversy about the liquid-vapor envelope stability of the pure component attractive Yukawa model which is also discussed in the text. In addition, details about the equivalence between continuous and discontinuous molecular dynamics simulations are given, in the Appendix, for Yukawa and Lennard-Jones potentials.

  4. Liquid-vapor phase diagram and surface properties in oppositely charged colloids represented by a mixture of attractive and repulsive Yukawa potentials.

    PubMed

    Chapela, Gustavo A; del Ro, Fernando; Alejandre, Jos

    2013-02-01

    The liquid-vapor phase diagrams of equal size diameter ? binary mixtures of screened potentials have been reported for several ranges of interaction using Monte Carlo simulation methods [J. B. Caballero, A. M. Puertas, A. Fern?andez-Barbero, F. J. de las Nieves, J. M. Romero-Enrique, and L. F. Rull, J. Chem. Phys. 124, 054909 (2006); A. Fortini, A.-P. Hynninen, and M. Dijkstra, J. Chem. Phys. 125, 094502 (2006)]. Both works report controversial results about the stability of the phase diagram with the inverse Debye screening length ?. Caballero found stability for values of ?? up to 20 while Fortini reported stability for ?? up to 20 while Fortini reported stability for ?? ? 4. In this work a spinodal decomposition process where the liquid and vapor phases coexist through an interface in a slab geometry is used to obtain the phase equilibrium and surface properties using a discontinuous molecular dynamics simulations for mixtures of equal size particles carrying opposite charge and interacting with a mixture of attractive and repulsive Yukawa potentials at different values of ??. An crude estimation of the triple point temperatures is also reported. The isothermal-isobaric method was also used to determine the phase stability using one phase simulations. We found that liquid-vapor coexistence is stable for values of ?? > 20 and that the critical temperatures have a maximum value at around ?? = 10, in agreement with Caballero et al. calculations. There also exists a controversy about the liquid-vapor envelope stability of the pure component attractive Yukawa model which is also discussed in the text. In addition, details about the equivalence between continuous and discontinuous molecular dynamics simulations are given, in the Appendix, for Yukawa and Lennard-Jones potentials. PMID:23406133

  5. Coulomb potential V(r)=1/r problem on the Bethe lattice.

    PubMed

    Petrova, Olga; Moessner, Roderich

    2016-01-01

    We study the problem of a particle hopping on the Bethe lattice in the presence of a Coulomb potential. We obtain an exact solution to the particle's Green's function along with the full energy spectrum. In addition, we present a mapping of a generalized radial potential problem defined on the Bethe lattice to an infinite number of one-dimensional problems that are easily accessible numerically. The latter method is particularly useful when the problem admits no analytical solution. PMID:26871032

  6. Coulomb potential V (r )=1 /r problem on the Bethe lattice

    NASA Astrophysics Data System (ADS)

    Petrova, Olga; Moessner, Roderich

    2016-01-01

    We study the problem of a particle hopping on the Bethe lattice in the presence of a Coulomb potential. We obtain an exact solution to the particle's Green's function along with the full energy spectrum. In addition, we present a mapping of a generalized radial potential problem defined on the Bethe lattice to an infinite number of one-dimensional problems that are easily accessible numerically. The latter method is particularly useful when the problem admits no analytical solution.

  7. The {sup 6}He Optical Potential at energies around the Coulomb barrier

    SciTech Connect

    Fernandez-Garcia, J. P.; Alvarez, M. A. G.; Moro, A. M.

    2010-04-26

    We present an Optical Model (OM) study of {sup 6}He on {sup 208}Pb elastic scattering data, measured at laboratory energies around the Coulomb barrier (E{sub lab} = 14, 16, 18, 22, and 27 MeV)[1]. For the projectile-target bare interaction, we use the microscopic Sao Paulo Potential (SPP). This bare interaction is supplemented with a Coulomb Dipole Polarization (CDP) potential, as well as a diffuse complex Woods-Saxon potential. Four-body Continuum-Discretized-Coupled-Channels (CDCC) calculations have been performed in order to support the optical model analysis. We have also studied the alpha channel, which is the dominant reaction process. In the analysis of this channel, we compare the angular and energy distributions of the alpha particles measured at 22 MeV, with Distorted Wave Born Approximation (DWBA) calculations.

  8. Potential splitting approach to multichannel Coulomb scattering: The driven Schroedinger equation formulation

    SciTech Connect

    Volkov, M. V.; Yakovlev, S. L.; Yarevsky, E. A.; Elander, N.

    2011-03-15

    In this paper we suggest an approach for the multichannel Coulomb scattering problem. The Schroedinger equation for the problem is reformulated in the form of a set of inhomogeneous equations with a finite-range driving term. The boundary conditions at infinity for this set of equations have been proven to be purely outgoing waves. The formulation presented here is based on splitting the interaction potential into a finite-range core part and a long-range tail part. The conventional matching procedure coupled with the integral Lippmann-Schwinger equations technique is used in the formal theoretical basis of this approach. The reformulated scattering problem is suitable for application in the exterior complex scaling technique: the practical advantage is that after complex scaling, the problem is reduced to a boundary problem with zero boundary conditions. The Coulomb wave functions are used only at a single point; if this point is chosen to be at a sufficiently large distance, on using the asymptotic expansion of Coulomb functions, one may completely avoid the Coulomb functions in the calculations. The theoretical results are illustrated with numerical calculations for two models.

  9. Simple unified derivation and solution of Coulomb, Eckart and Rosen-Morse potentials in prepotential approach

    SciTech Connect

    Ho, Choon-Lin

    2009-05-15

    The four exactly solvable models related to non-sinusoidal coordinates, namely, the Coulomb, Eckart, Rosen-Morse type I and II models are normally being treated separately, despite the similarity of the functional forms of the potentials, their eigenvalues and eigenfunctions. Based on an extension of the prepotential approach to exactly and quasi-exactly solvable models proposed previously, we show how these models can be derived and solved in a simple and unified way.

  10. Coulomb potential in one dimension with minimal length: A path integral approach

    SciTech Connect

    Nouicer, Khireddine

    2007-11-15

    We solve the path integral in momentum space for a particle in the field of the Coulomb potential in one dimension in the framework of quantum mechanics with the minimal length given by ({delta}X){sub 0}=({Dirac_h}/2{pi}){radical}({beta}), where {beta} is a small positive parameter. From the spectral decomposition of the fixed energy transition amplitude, we obtain the exact energy eigenvalues and momentum space eigenfunctions.

  11. Chiral symmetry breaking in the truncated Coulomb gauge: Nonconfining power law potentials

    SciTech Connect

    Bicudo, P.

    2009-05-01

    In this paper we study the breaking of chiral symmetry with nonconfining powerlike potentials. The region of allowed exponents is identified and, after the previous study of confining (positive exponent) potentials, we now specialize in shorter range nonconfining potentials, with a negative exponent. These nonconfining potentials are close to the Coulomb potential, and they are also relevant as corrections to the linear confinement, and as models for the quark potential at the deconfinement transition. The mass-gap equation is constructed and solved, and the quark mass, the chiral angle, and the quark energy are calculated analytically with an exponent expansion in the neighborhood of the Coulomb potential. It is demonstrated that chiral symmetry breaking occurs, but only the chiral invariant false vacuum and a second nontrivial vacuum exist. Moreover chiral symmetry breaking is led by the ultraviolet part of the potential, with no infrared enhancement of the quark mass. Thus the breaking of chiral symmetry driven by nonconfining potentials differs from the one lead by confining potentials.

  12. Treatment of the two-body Coulomb problem as a short-range potential

    NASA Astrophysics Data System (ADS)

    Gasaneo, G.; Ancarani, L. U.

    2009-12-01

    The scattering wave function and the transition amplitude for the two-body Coulomb problem are written as power series of the Sommerfeld parameter. Making use of a mathematical study of the nth derivatives of Kummer function with respect to its first parameter, the series coefficients are expressed analytically in terms of multivariable hypergeometric functions. We establish the connection with the Born series based on the free particle Greens function and show its applicability to long-range potentials. We also relate our analysis to recent works on the distorted-wave theory for the Coulomb problem. For the transition amplitude, the Born series is presented and compared to the series obtained from the exact well-known Rutherford result. Since the two series differ, care must be taken when extracting the relevant information about the scattering. Finally, implications for three-body problems are discussed.

  13. Treatment of the two-body Coulomb problem as a short-range potential

    SciTech Connect

    Gasaneo, G.; Ancarani, L. U.

    2009-12-15

    The scattering wave function and the transition amplitude for the two-body Coulomb problem are written as power series of the Sommerfeld parameter. Making use of a mathematical study of the nth derivatives of Kummer function with respect to its first parameter, the series coefficients are expressed analytically in terms of multivariable hypergeometric functions. We establish the connection with the Born series based on the free particle Green's function and show its applicability to long-range potentials. We also relate our analysis to recent works on the distorted-wave theory for the Coulomb problem. For the transition amplitude, the Born series is presented and compared to the series obtained from the exact well-known Rutherford result. Since the two series differ, care must be taken when extracting the relevant information about the scattering. Finally, implications for three-body problems are discussed.

  14. Numerical study of a binary Yukawa model in regimes characteristic of globular proteins in solutions

    SciTech Connect

    Giacometti, Achille; Gazzillo, Domenico; Pastore, Giorgio; Das, Tushar Kanti

    2005-03-01

    The main goal of this paper is to assess the limits of validity, in the regime of low concentration and strong Coulomb coupling (high molecular charges), of a simple perturbative approximation to the radial distribution functions (RDF's), based upon a low-density expansion of the potential of mean force and proposed to describe protein-protein interactions in a recent small-angle-scattering (SAS) experimental study. A highly simplified Yukawa (screened Coulomb) model of monomers and dimers of a charged globular protein ({beta}-lactoglobulin) in solution is considered. We test the accuracy of the RDF approximation, as a necessary complementary part of the previous experimental investigation, by comparison with the fluid structure predicted by approximate integral equations and exact Monte Carlo (MC) simulations. In the MC calculations, an Ewald construction for Yukawa potentials has been used to take into account the long-range part of the interactions in the weakly screened cases. Our results confirm that the perturbative first-order approximation is valid for this system even at strong Coulomb coupling, provided that the screening is not too weak (i.e., for Debye length smaller than monomer radius). A comparison of the MC results with integral equation calculations shows that both the hypernetted-chain (HNC) and Percus-Yevick closures have a satisfactory behavior under these regimes, with the HNC being superior throughout. The relevance of our findings for interpreting SAS results is also discussed.

  15. General Pade Effective Potential for Coulomb Problems in Condensed and Soft Matters

    NASA Astrophysics Data System (ADS)

    Quyen, B. L.; Mai, D. N.; Hoa, N. M.; Van, T. T. T.; Hoai, N. L.; Viet, N. A.

    2014-09-01

    Effective potentials for finding the ground states and physical configurations have essential meaning in many Coulomb problems of condensed and soft matters. The ordinary n-Pade approximation potentials define as the ratio of Pi(r)/Pi+1(r), where Pi(r) are the polynomials of i-th order of charge separation r, give quite good fit and agreement of calculation results and experimental data for Coulomb problems, where screening effects are not important or exchange photons still are massless. In this work we consider a general Pade effective potential by included a factor of exponential form, which could give more accurate results also for above mentioned cases. This general Pade effective potentials with analytical expressions were useful to perform analytical calculations, estimations and to reduce the amount of computational time for future investigations in condensed and soft matter topics. For example of soft matter problems, we study the case of MS2 virus, the general Pade potential gives much more correct results comparing with ordinary Pade approximation.

  16. Algebraic Calculation of the Energy Eigenvalues for the Nondegenerate Three-Dimensional Kepler-Coulomb Potential

    NASA Astrophysics Data System (ADS)

    Tanoudis, Yannis; Daskaloyannis, Costas

    2011-06-01

    In the three-dimensional flat space, a classical Hamiltonian, which has five functionally independent integrals of motion, including the Hamiltonian, is characterized as superintegrable. Kalnins, Kress and Miller (J. Math. Phys. 48 (2007), 113518, 26 pages) have proved that, in the case of nondegenerate potentials, i.e. potentials depending linearly on four parameters, with quadratic symmetries, posses a sixth quadratic integral, which is linearly independent of the other integrals. The existence of this sixth integral imply that the integrals of motion form a ternary quadratic Poisson algebra with five generators. The superintegrability of the generalized Kepler-Coulomb potential that was investigated by Verrier and Evans (J. Math. Phys. 49 (2008), 022902, 8 pages) is a special case of superintegrable system, having two independent integrals of motion of fourth order among the remaining quadratic ones. The corresponding Poisson algebra of integrals is a quadratic one, having the same special form, characteristic to the nondegenerate case of systems with quadratic integrals. In this paper, the ternary quadratic associative algebra corresponding to the quantum Verrier-Evans system is discussed. The subalgebras structure, the Casimir operators and the the finite-dimensional representation of this algebra are studied and the energy eigenvalues of the nondegenerate Kepler-Coulomb are calculated.

  17. Numerical solution of the relativistic single-site scattering problem for the Coulomb and the Mathieu potential.

    PubMed

    Geilhufe, Matthias; Achilles, Steven; Kbis, Markus Arthur; Arnold, Martin; Mertig, Ingrid; Hergert, Wolfram; Ernst, Arthur

    2015-11-01

    For a reliable fully-relativistic Korringa-Kohn-Rostoker Green function method, an accurate solution of the underlying single-site scattering problem is necessary. We present an extensive discussion on numerical solutions of the related differential equations by means of standard methods for a direct solution and by means of integral equations. Our implementation is tested and exemplarily demonstrated for a spherically symmetric treatment of a Coulomb potential and for a Mathieu potential to cover the full-potential implementation. For the Coulomb potential we include an analytic discussion of the asymptotic behaviour of irregular scattering solutions close to the origin ([Formula: see text]). PMID:26447352

  18. Hyperpolarizability of two electron atoms under exponential cosine screened coulomb potential

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Fricke, Burkhard

    2015-12-01

    Hyperpolarizability of two electron atoms He, Li+, B e2 +, B3 + , and C4 + embedded under quantum plasma environment has been calculated for the first time using exponential cosine screened coulomb potential (ECSCP) arising out of the interaction of atomic charge cloud with such an environment. Coupled Hartree-Fock theory within variational scheme has been utilised to estimate such nonlinear optical property for systematic variation of the screening parameter arising out of the coupling strength of the plasma with atomic charge cloud. Hyperpolarizability of the ions increases systematically with increase of the screening parameter. Results have been compared with respect to those obtained from the interaction of atomic systems with a Debye plasma environment giving rise to SCP. Interesting feature is observed for the polarizability and hyperpolarizability values under increasing screening parameters of ECSCP and SCP. Hyperpolarizability values for zero screening compare well with those available for the free ions.

  19. Biography of Hideki Yukawa

    NASA Astrophysics Data System (ADS)

    Sato, Humitaka

    2008-06-01

    Life history of Hideki Yukawa is described, together with that of Sin-itiro Tomonaga. They grew upiin Kyoto city and were classmate. Their independency and collaboration had contributed to the growth of physics research in Japan after the end of WWII.

  20. Molecular dynamics simulation of electron-ion temperature relaxation in dense hydrogen: A scheme of truncated Coulomb potential

    NASA Astrophysics Data System (ADS)

    Ma, Qian; Dai, Jiayu; Kang, Dongdong; Zhao, Zengxiu; Yuan, Jianmin; Zhao, Xueqing

    2014-12-01

    Molecular dynamics (MD) simulations are performed to investigate the temperature relaxation between electrons and ions in a fully ionized, dense hydrogen plasma. We used HM (J. P. Hansen and I. R. McDonald) potential and introduced a truncated Coulomb interaction, which can avoid Coulomb catastrophe by choosing an appropriate cutting radius. The calculated results are compared with those from theoretical models (LS, GMS, BPS), whose applicability is also discussed. The effect of the interaction between ions and electrons on the temperature relaxation process is also investigated in the strong collision region. Finally, we discuss the effect of exchange interaction of electrons to the temperature relaxation.

  1. Light charged particle accompanied ternary fission of 242Cm using the Coulomb and proximity potential

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Krishnan, Sreejith; Priyanka, B.

    2014-04-01

    The cold ternary fission of 242Cm with 4He , 10Be and 14C as light charged particle has been studied by taking the interacting barrier as the sum of Coulomb and proximity potential with the fragments in equatorial configuration. The favorable fragment combinations are obtained from the cold valley plot (plot of driving potential vs. mass number of fragments) and by calculating the yield for charge minimized fragments. The maximum yield in the 4He accompanied ternary fission is obtained for the fragmentation channel 104Mo + 134Te + 4He and for the 10Be accompanied ternary fission, the maximum yield is found for the fragmentation channel 98Zr + 134Te + 10Be . It is to be noted that, in the case of 14C accompanied ternary fission, the maximum yield is obtained for the fragmentation channel 94Sr + 134Te + 14C and the next higher yield is found for the fragmentation channel 96Zr + 132Sn + 14C . Thus, the fragment combinations with maximum yields reveal the role of doubly magic and near doubly magic nuclei in cold ternary fission.

  2. Top Yukawa deviation in extra dimension

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Oda, Kin-ya; Takahashi, Ryo

    2009-11-01

    We suggest a simple one-Higgs-doublet model living in the bulk of five-dimensional spacetime compactified on S/Z, in which the top Yukawa coupling can be smaller than the naive standard-model expectation, i.e. the top quark mass divided by the Higgs vacuum expectation value. If we find only single Higgs particle at the LHC and also observe the top Yukawa deviation, our scenario becomes a realistic candidate beyond the standard model. The Yukawa deviation comes from the fact that the wave function profile of the free physical Higgs field can become different from that of the vacuum expectation value, due to the presence of the brane-localized Higgs potentials. In the Brane-Localized Fermion scenario, we find sizable top Yukawa deviation, which could be checked at the LHC experiment, with a dominant Higgs production channel being the WW fusion. We also study the Bulk Fermion scenario with brane-localized Higgs potential, which resembles the Universal Extra Dimension model with a stable dark matter candidate. We show that both scenarios are consistent with the current electroweak precision measurements.

  3. Complex-scaling of screened Coulomb potentials for resonance calculations utilizing the modified Bessel functions

    NASA Astrophysics Data System (ADS)

    Jiao, Li-Guang; Ho, Yew Kam

    2014-05-01

    The screened Coulomb potential (SCP) has been extensively used in atomic physics, nuclear physics, quantum chemistry and plasma physics. However, an accurate calculation for atomic resonances under SCP is still a challenging task for various methods. Within the complex-scaling computational scheme, we have developed a method utilizing the modified Bessel functions to calculate doubly-excited resonances in two-electron atomic systems with configuration interaction-type basis. To test the validity of our method, we have calculated S- and P-wave resonance states of the helium atom with various screening strengths, and have found good agreement with earlier calculations using different methods. Our present method can be applied to calculate high-lying resonances associated with high excitation thresholds of the He+ ion, and with high-angular-momentum states. The derivation and calculation details of our present investigation together with new results of high-angular-momentum states will be presented at the meeting. Supported by NSC of Taiwan.

  4. Analytic structure of the multichannel Jost matrix for potentials with Coulombic tails

    SciTech Connect

    Rakityansky, S. A.; Elander, N.

    2013-12-15

    A quantum system is considered that can move in N two-body channels with the potentials that may include the Coulomb interaction. For this system, the Jost matrix is constructed in such a way that all its dependencies on the channel momenta and Sommerfeld parameters are factorized in the form of explicit analytic expressions. It is shown that the two remaining unknown matrices are single-valued analytic functions of the energy and therefore can be expanded in the Taylor series near an arbitrary point within the domain of their analyticity. It is derived a system of first-order differential equations whose solutions determine the expansion coefficients of these series. Alternatively, the unknown expansion coefficients can be used as fitting parameters for parametrizing experimental data similarly to the effective-range expansion. Such a parametrization has the advantage of preserving proper analytic structure of the Jost matrix and can be done not only near the threshold energies, but around any collision or even complex energy. As soon as the parameters are obtained, the Jost matrix (and therefore the S-matrix) is known analytically on all sheets of the Riemann surface, and thus enables one to locate possible resonances.

  5. Effective Coulomb logarithm for one component plasma

    NASA Astrophysics Data System (ADS)

    Khrapak, Sergey A.

    2013-05-01

    An expression for the effective Coulomb logarithm in one-component-plasma is proposed, which allows to extend the applicability of the classical formula for the self-diffusion coefficient to the strongly coupled regime. The proposed analytical approximation demonstrates reasonable agreement with previous numerical simulation results. Relevance to weakly screened Yukawa systems (and, in particular, complex plasmas) is discussed.

  6. Effective Coulomb logarithm for one component plasma

    SciTech Connect

    Khrapak, Sergey A.

    2013-05-15

    An expression for the effective Coulomb logarithm in one-component-plasma is proposed, which allows to extend the applicability of the classical formula for the self-diffusion coefficient to the strongly coupled regime. The proposed analytical approximation demonstrates reasonable agreement with previous numerical simulation results. Relevance to weakly screened Yukawa systems (and, in particular, complex plasmas) is discussed.

  7. EFFECT OF COULOMB COLLISIONS ON THE GRAVITATIONAL SETTLING OF LOW AND HIGH FIRST IONIZATION POTENTIAL ELEMENTS

    SciTech Connect

    Bo, Iselin M. Th.; Esser, Ruth; Lie-Svendsen, Oystein E-mail: ruth.esser@uit.no

    2013-05-20

    We model the effect of gravitational settling in the upper chromosphere on O, Fe, Si, and Ne, studying whether Coulomb collisions between ionized low First Ionization Potential (FIP) elements and protons is sufficient to cause abundance enhancements relative to oxygen. We find that low-FIP abundance enhancements comparable to observed values can be obtained provided the hydrogen ionization degree lies in the approximate range 10%-30%, which agrees with chromospheric models. Lower or higher hydrogen ionization causes the FIP-effect to become smaller or absent (depletion of all heavy elements). Iron must be almost fully ionized in order to become enriched relative to high-FIP elements, and this requires a high iron photoionization rate. The time scale necessary to produce the enrichment increases rapidly with increasing H ionization. For iron in a background from a semiempirical chromospheric model, with an H ion fraction of the order of 30%-40% in the upper chromosphere, 1-2 hr of settling is required to produce enhancements comparable to observations. The absolute abundance (relative to H), which monotonically decreases with time during settling, has by that time decreased by less than 50% in the same altitude region. With the same background conditions, the silicon abundance is more strongly enhanced by the settling than the iron abundance. The high-FIP element neon is depleted, relative to O and low-FIP elements, in the same background and altitude region where iron is enhanced, typically by 50% or more relative to O after 1-2 hr of settling.

  8. Instantaneous interquark potential in generalized Landau gauge in SU(3) lattice QCD: A linkage between the Landau and the Coulomb gauges

    SciTech Connect

    Iritani, Takumi; Suganuma, Hideo

    2011-03-01

    We investigate in detail 'instantaneous interquark potentials', interesting gauge-dependent quantities defined from the spatial correlators of the temporal link-variable U{sub 4}, in generalized Landau gauge using SU(3) quenched lattice QCD. The instantaneous QQ potential has no linear part in the Landau gauge, and it is expressed by the Coulomb plus linear potential in the Coulomb gauge, where the slope is 2-3 times larger than the physical string tension. Using the generalized Landau gauge, we find that the instantaneous potential can be continuously described between the Landau and the Coulomb gauges, and its linear part rapidly grows in the neighborhood of the Coulomb gauge. We also investigate the instantaneous 3Q potential in the generalized Landau gauge, and obtain similar results to the QQ case. T-length terminated Polyakov-line correlators and their corresponding ''finite-time potentials'' are also investigated in generalized Landau gauge.

  9. Instantaneous interquark potential in generalized Landau gauge in SU(3) lattice QCD: A linkage between the Landau and the Coulomb gauges

    NASA Astrophysics Data System (ADS)

    Iritani, Takumi; Suganuma, Hideo

    2011-03-01

    We investigate in detail instantaneous interquark potentials, interesting gauge-dependent quantities defined from the spatial correlators of the temporal link-variable U4, in generalized Landau gauge using SU(3) quenched lattice QCD. The instantaneous QQ potential has no linear part in the Landau gauge, and it is expressed by the Coulomb plus linear potential in the Coulomb gauge, where the slope is 2-3 times larger than the physical string tension. Using the generalized Landau gauge, we find that the instantaneous potential can be continuously described between the Landau and the Coulomb gauges, and its linear part rapidly grows in the neighborhood of the Coulomb gauge. We also investigate the instantaneous 3Q potential in the generalized Landau gauge, and obtain similar results to the QQ case. T-length terminated Polyakov-line correlators and their corresponding finite-time potentials are also investigated in generalized Landau gauge.

  10. Mie and potential scattering by a refractive 1/r inhomogeneity: Electromagnetic scattering by an infinite Coulomb-like scatterer

    NASA Astrophysics Data System (ADS)

    Selmke, Markus

    2015-09-01

    The weak electromagnetic scattering of a special type of gradient index scatterer resembles the situation of charged particle scattering off an electrostatic Coulomb potential. Accordingly, plane-wave scattering for a radially symmetric decaying perturbation of the refractive index n(r) =n0 - ν /k0 r is studied. The experimental realization of this specific scattering is found in photothermal single particle microscopy. Vectorial scattering in Lorenz-Mie theory recovers the properties in the Born approximation of the corresponding potential scattering scenario. Shaped beams within the generalized Lorenz-Mie theory are found to resolve known pathologic properties of the problematic 1/r potential.

  11. The Coulomb interaction in Helium-3: Interplay of strong short-range and weak long-range potentials

    NASA Astrophysics Data System (ADS)

    Kirscher, J.; Gazit, D.

    2016-04-01

    Quantum chromodynamics and the electroweak theory at low energies are prominent instances of the combination of a short-range and a long-range interaction. For the description of light nuclei, the large nucleon-nucleon scattering lengths produced by the strong interaction, and the reduction of the weak interaction to the Coulomb potential, play a crucial role. Helium-3 is the first bound nucleus comprised of more than one proton in which this combination of forces can be studied. We demonstrate a proper renormalization of Helium-3 using the pionless effective field theory as the formal representation of the nuclear regime as strongly interacting fermions. The theory is found consistent at leading and next-to-leading order without isospin-symmetry-breaking 3-nucleon interactions and a non-perturbative treatment of the Coulomb interaction. The conclusion highlights the significance of the regularization method since a comparison to previous work is contradictory if the difference in those methods is not considered. With a perturbative Coulomb interaction, as suggested by dimensional analysis, we find the Helium-3 system properly renormalized, too. For both treatments, renormalization-scheme independence of the effective field theory is demonstrated by regulating the potential and a variation of the associated cutoff.

  12. Higgs-Yukawa model in curved spacetime

    SciTech Connect

    Elizalde, E.; Odintsov, S.D.

    1995-05-15

    The Higgs-Yukawa model in curved spacetime (renormalizable in the usual sense) is considered near the critical point, employing the 1/{ital N} expansion and renormalization group techniques. By making use of the equivalence of this model with the standard NJL model, the effective potential in the linear curvature approach is calculated and the dynamically generated fermionic mass is found. A numerical study of chiral symmetry breaking by curvature effects is presented.

  13. Density profile of strongly correlated spherical Yukawa plasmas

    NASA Astrophysics Data System (ADS)

    Bonitz, M.; Henning, C.; Ludwig, P.; Golubnychiy, V.; Baumgartner, H.; Piel, A.; Block, D.

    2006-10-01

    Recently the discovery of 3D-dust crystals [1] excited intensive experimental and theoretical activities [2-4]. Details of the shell structure of these crystals has been very well explained theoretically by a simple model involving an isotropic Yukawa-type pair repulsion and an external harmonic confinement potential [4]. On the other hand, it has remained an open question how the average radial density profile, looks like. We show that screening has a dramatic effect on the density profile, which we derive analytically for the ground state. Interestingly, the result applies not only to a continuous plasma distribution but also to simulation data for the Coulomb crystals exhibiting the above mentioned shell structure. Furthermore, excellent agreement between the continuum model and shell models is found [5]. [1] O. Arp, D. Block, A. Piel, and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005) [3] P. Ludwig, S. Kosse, and M. Bonitz, Phys. Rev. E 71, 046403 (2005) [4] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006) [5] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E

  14. Asymptotic approach to the Schrdinger equation in the presence of a screened Coulomb potential and a uniform field

    NASA Astrophysics Data System (ADS)

    Rosales-Vera, Marco

    2015-07-01

    In this paper, the Schrdinger equation in the presence of a screened Coulomb potential and a uniform field is analysed using matched asymptotic expansions. When the cup well potential has a very short range, approximate analytical expressions for the energy levels and the lifetime of the system are found. The results are compared with those described in the literature. This paper may be helpful for undergraduate and graduate students in physics as an introductory problem in the application of asymptotic matching applied to quantum mechanics.

  15. Anomalous abundances of solar energetic particles and coronal gas: Coulomb effects and First Ionization Potential (FIP) ordering

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1985-01-01

    The first ionization potential (FIP) ordering of elemental abundances in solar energetic particles and in the corona which can both be explained Coulomb effects is discussed. Solar energetic particles (SEP) and coronal gas have anomalous abundances relative to the photosphere. The anomalies are similar in both cases: which led to the conclusion that SEP acceleration is not selective, but merely preserves the source abundances. It is argued that SEP acceleration can be selective, because identical selectivity operates to determine the coronal abundances. The abundance anomalies are ordered by first ionization potential (FIP).

  16. Bound states for a Coulomb-type potential induced by the interaction between a moving electric quadrupole moment and a magnetic field

    SciTech Connect

    Bakke, K.

    2014-02-15

    We discuss the arising of bound states solutions of the Schrdinger equation due to the presence of a Coulomb-type potential induced by the interaction between a moving electric quadrupole moment and a magnetic field. Furthermore, we study the influence of the Coulomb-type potential on the harmonic oscillator by showing a quantum effect characterized by the dependence of the angular frequency on the quantum numbers of the system, whose meaning is that not all values of the angular frequency are allowed. -- Highlights: Interaction between a moving electric quadrupole moment and a magnetic field. Arising of bound states solutions due to the presence of a Coulomb-type potential. Influence of the Coulomb-type potential on the harmonic oscillator. Dependence of the angular frequency on the quantum numbers of the system.

  17. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  18. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures.

    PubMed

    Haxhimali, Tomorr; Rudd, Robert E; Cabot, William H; Graziani, Frank R

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 10^{25} ions/cc. The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures. PMID:26651805

  19. Magnetic dipolar and quadrupolar transitions in two-electron atoms under exponential-cosine-screened Coulomb potential

    SciTech Connect

    Modesto-Costa, Lucas; Canuto, Sylvio; Mukherjee, Prasanta K.

    2015-03-15

    A detailed investigation of the magnetic dipolar and quadrupolar excitation energies and transition probabilities of helium isoelectronic He, Be{sup 2+}, C{sup 4+}, and O{sup 6+} have been performed under exponential cosine screened Coulomb potential generated in a plasma environment. The low-lying excited states 1s{sup 2}:{sup 1}S{sup e} → 1sns:{sup 3}S{sup e}{sub 0}, and 1snp:{sup 3}P{sup o}{sub 2} (n = 2, 3, 4, and 5) are considered. The variational time-dependent coupled Hartree-Fock scheme has been used. The effect of the confinement produced by the potential on the structural properties is investigated for increasing coupling strength of the plasma. It is noted that there is a gradual destabilization of the energy of the system with the reduction of the ionization potential and the number of excited states. The effect of the screening enhancement on the excitation energies and transition probabilities has also been investigated and the results compared with those available for the free systems and under the simple screened Coulomb potential.

  20. Increase of the mean inner Coulomb potential in Au clusters induced by surface tension and its implication for electron scattering

    SciTech Connect

    Popescu, Radian; Mueller, Erich; Wanner, Matthias; Gerthsen, Dagmar; Schowalter, Marco; Rosenauer, Andreas; Boettcher, Artur; Loeffler, Daniel; Weis, Patrick

    2007-12-15

    Electron holography in a transmission electron microscope was applied to measure the phase shift {delta}{phi} induced by Au clusters as a function of the cluster size. Large {delta}{phi} observed for small Au clusters cannot be described by the well-known equation {delta}{phi}=C{sub E}V{sub 0}t (C{sub E}, interaction constant; V{sub 0}, mean inner Coulomb potential (MIP) of bulk gold; and t, cluster thickness). The rapid increase of the Au MIP with decreasing cluster size derived from {delta}{phi} can be explained by the compressive strain of surface atoms in the cluster.

  1. Stimulated two-photon free-free transitions in a Coulomb potential: Formalism

    SciTech Connect

    Gavrila, M. ); Maquet, A.; Veniard, V. )

    1990-07-01

    We present a calculation of the cross sections for two-photon free-free transitions of an electron colliding with a Coulomb center of force. The calculation is based on second-order perturbation theory, in the nonrelativistic dipole approximation. The matrix elements for absorption and emission were integrated analytically in momentum space, following a method developed earlier by one of us. This makes use of the Schwinger integral representation for the Coulomb Green's function. The result was expressed in terms of integrals over hypergeometric functions of the Gauss type. Simple limiting forms of these complicated expressions were found in the first Born approximation, and at low and high photon energies. The results derived agree with those obtained by direct calculations done for these limits. Finally, concluding remarks on the analytic part of our work are made. The numerical computation of the two-photon free-free transition cross sections for absorption and emission in various geometries is planned to be presented at a later time.

  2. Short-range screening potentials for classical Coulomb fluids: Reanalysis of Monte Carlo sampling and cluster model studies

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Yaakov

    1996-02-01

    Results for the short-range screening potentials of classical Coulomb fluids, which were significantly different from existing theory and from earlier approaches, were obtained by Ichimaru et al. by their analyses of extra long simulations. In a recent paper [Phys. Rev. E 50, 2977 (1994)], Ichimaru, Ogata, and Tsuruta (IOT) summarize these results and attempt to support them with more simulations and with cluster model studies. In this paper I present an alternative analysis of the same data, which is in contradiction with the analyses of Ichimaru et al., as portrayed by IOT. I present an analysis of general axially symmetric clusters that is different from that of IOT and provides insight into the short-range screening potentials of strongly coupled plasmas. In particular, I give an exact mathematical proof that questions the main conclusion of IOT from their cluster model studies [their Eq. (49b)].

  3. Variation of coulombic efficiency versus upper cutoff potential of Li-ion cells tested with aggressive protocols

    NASA Astrophysics Data System (ADS)

    Xia, Jian; Nie, Mengyun; Ma, Lin; Dahn, J. R.

    2016-02-01

    Three different cycling protocols including "continuous-cycling", "barn-charge" and "cycle-store" were applied with an ultra high precision charger to Li[Ni0.42Mn0.42Co0.16]O2/graphite and/or Li[Ni1/3Mn1/3Co1/3]O2/graphite pouch cells tested using different upper cutoff potentials. The barn-charge and cycle-store protocols were designed so that cells stay at high potential for a larger fraction of their testing time compared to continuous cycling. For cells tested to 4.2, 4.4 or 4.5 V, the greater the fraction of testing time spent at high potential, the lower the coulombic efficiency and the greater the charge endpoint capacity slippage rate, with the effects being more severe at higher potential. These results confirm that Li[Ni0.42Mn0.42Co0.16]O2/graphite and Li[Ni1/3Mn1/3Co1/3]O2/graphite Li-ion cells which are charged and then left at high potential (>4.4 V) for extended periods of time will have much shorter calendar and cycle life compared to those that are continuously cycled as has been recently reported in long-term test results.

  4. Yukawa alignment in the two-Higgs-doublet model

    SciTech Connect

    Pich, Antonio; Tuzon, Paula

    2009-11-01

    In multi-Higgs-doublet models the alignment in flavor space of the relevant Yukawa matrices guarantees the absence of tree-level flavor-changing couplings of the neutral scalar fields. We analyze the consequences of this condition within the two-Higgs-doublet model and show that it leads to a generic Yukawa structure which contains as particular cases all known specific implementations of the model based on Z{sub 2} symmetries. All possible freedom in the Yukawa sector gets parametrized in terms of three complex couplings {sigma}{sub f}. In spite of having flavor conservation in the neutral scalar couplings, the phases of these three parameters represent potential new sources of CP violation.

  5. On the corresponding states law of the Yukawa fluid.

    PubMed

    Orea, Pedro; Duda, Yurko

    2008-04-01

    We have analyzed the currently available simulation results as well as performed some additional Monte Carlo simulation for the hard-core attractive Yukawa fluid in order to study its corresponding state behavior. We show that the values of reduced surface tension map onto the master curve and a universal equation of state can be obtained in the wide range of the attractive Yukawa tail length after a certain rescaling of the number density. Some comparisons with other nonconformal potentials are presented and discussed. PMID:18397078

  6. Vacuum stability of asymptotically safe gauge-Yukawa theories

    NASA Astrophysics Data System (ADS)

    Litim, Daniel F.; Mojaza, Matin; Sannino, Francesco

    2016-01-01

    We study the phase diagram and the stability of the ground state for certain four-dimensional gauge-Yukawa theories whose high-energy behaviour is controlled by an interacting fixed point. We also provide analytical and numerical results for running couplings, their crossover scales, the separatrix, and the Coleman-Weinberg effective potential. Classical and quantum stability of the vacuum is established.

  7. Dielectric confinement influenced screened Coulomb potential for a semiconductor quantum wire

    NASA Astrophysics Data System (ADS)

    Aharonyan, K. H.; Margaryan, N. B.

    2016-01-01

    A formalism of the Thomas-Fermi method has been applied for studying the screening effect due to quasi-one-dimensional electron gas in a semiconductor cylindrical quantum wire embedded in the barrier environment. With taking into account of strongly low dielectric properties of the barrier material, an applicability of the quantum wire effective interaction potential of the confined charge carriers has been revealed. Both screened quasi- one-dimensional interaction potential and effective screening length analytical expressions are derived in the first time. It is shown that in the long wavelength moderate limit dielectric confinement effect enhances strength of the screening potential depending on the both radius of the wire and effective screening length, whereas in the long wavelength strong limit the screening potential solely is determined by barrier environment dielectric properties.

  8. Box diagram in Yukawa theory

    SciTech Connect

    Bakker, Bernard L. G.; Boomsma, Jorn K.; Ji, Chueng-Ryong

    2007-03-15

    We present a light-front calculation of the box diagram in Yukawa theory. The covariant box diagram is finite for the case of spin-1/2 constituents exchanging spin-0 particles. In light-front dynamics, however, individual time-ordered diagrams are divergent. We analyze the corresponding light-front singularities and show the equivalence between the light-front and covariant results by taming the singularities.

  9. Mixing parameters of neutral beauty mesons from the Coulomb plus power potential (CPPν)

    NASA Astrophysics Data System (ADS)

    Patel, Bhavin; Vinodkumar, P. C.

    2009-11-01

    The investigation of mixing parameters in neutral B meson systems provides an important testing ground for standard model flavour dynamics. The spectroscopic parameters deduced from the potential model are used to calculate the pseudoscalar decay constant and mixing parameters of the B and Bs mesons.

  10. Path Integral Solution for the Coulomb Potential in a Curved Space of Constant Positive Curvature

    NASA Astrophysics Data System (ADS)

    Aggoun, L.; Bounouioua, N.; Benamira, F.; Guechi, L.

    2016-01-01

    A new path integral treatment of a hydrogen-like atom in a uniformly curved space with a constant positive curvature is presented. By converting the radial path integral into a path integral for the modified Pschl-Teller potential with the help of the space-time transformation technique, the radial Green's function is expressed in closed form, from which the energy spectrum and the corresponding normalized wave functions of the bound states are extracted. In the limit of vanishing curvature, the Green's function, the energy spectra and the correctly normalized wave functions of bound and scattering states for a standard hydrogen-like atom are found.

  11. Improved Shell models for screened Coulomb balls

    NASA Astrophysics Data System (ADS)

    Bonitz, M.; Kaehlert, H.; Henning, C.; Baumgartner, H.; Filinov, A.

    2006-10-01

    Spherical Coulomb crystals in dusty plasmas [1] are well described by an isotropic Yukawa-type pair interaction and an external parabolic confinement as was shown by extensive molecular dynamics simulations [2]. A much simpler description is possible with analytical shell models which have been derived for Yukawas plasmas in [3,4]. Here we analyze improved Yukawa shell models which include correlations along the lines proposed for Coulomb crystals in [5]. The shell configurations are efficiently evaluated using a Monte Carlo procedure. [1] O. Arp, A. Piel and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] M. Bonitz, D. Block, O. Arp, V. Golunychiy, H. Baumgartner, P. Ludwig, A. Piel and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [3] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005). [4] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E [5] W.D. Kraeft and M. Bonitz, J. Phys. Conf. Ser. 35, 94 (2006).

  12. Coulomb Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy

  13. Coulomb Damping

    ERIC Educational Resources Information Center

    Fay, Temple H.

    2012-01-01

    Viscous damping is commonly discussed in beginning differential equations and physics texts but dry friction or Coulomb friction is not despite dry friction being encountered in many physical applications. One reason for avoiding this topic is that the equations involve a jump discontinuity in the damping term. In this article, we adopt an energy…

  14. Studies of charge neutral FCC Lattice Gas with Yukawa Interaction and Accelerated Cartesian Expansion method

    NASA Astrophysics Data System (ADS)

    Huang, He

    In this thesis, I present the results of studies of the structural properties and phase transition of a charge neutral FCC Lattice Gas with Yukawa Interaction and discuss a novel fast calculation algorithm---Accelerated Cartesian Expansion (ACE) method. In the first part of my thesis, I discuss the results of Monte Carlo simulations carried out to understand the finite temperature (phase transition) properties and the ground state structure of a Yukawa Lattice Gas (YLG) model. In this model the ions interact via the potential q iqjexp(-kappar> ij)/rij where qi,j are the charges of the ions located at the lattice sites i and j with position vectors R i and Rj; rij = Ri-Rj, kappa is a measure of the range of the interaction and is called the screening parameter. This model approximates an interesting quaternary system of great current thermoelectric interest called LAST-m, AgSbPbmTem+2. I have also developed rapid calculation methods for the potential energy calculation in a lattice gas system with periodic boundary condition bases on the Ewald summation method and coded the algorithm to compute the energies in MC simulation. Some of the interesting results of the MC simulations are: (i) how the nature and strength of the phase transition depend on the range of interaction (Yukawa screening parameter kappa) (ii) what is the degeneracy of the ground state for different values of the concentration of charges, and (iii) what is the nature of two-stage disordering transition seen for certain values of x. In addition, based on the analysis of the surface energy of different nano-clusters formed near the transition temperature, the solidification process and the rate of production of these nano-clusters have been studied. In the second part of my thesis, we have developed two methods for rapidly computing potentials of the form R-nu. Both these methods are founded on addition theorems based on Taylor expansions. Taylor's series has a couple of inherent advantages: (i) it forms a natural framework for developing addition theorem based computational schemes for a range of potentials; (ii) only Cartesian tensors (or products of Cartesian quantities) are used as opposed to special functions. This makes creating a fast scheme possible for potential of the form R-nu . Indeed, it is also possible to generalize the proposed methods to several potentials that are important in mathematical physics. An interesting consequence of the approach has been the demonstration of the equivalence of FMMs that are based on traceless Cartesian tensors to those based on spherical expansions for nu = 1. Two methods are introduced; the first relies on exact translation of the origin of the multipole whereas the second relies on cascaded Taylor's approximations. Finally, we have shown the application of this methodology to computing Coulombic, Lennard-Jones, Yukawa potentials and etc. We have also demonstrated the efficacy of this scheme for other (non-integer) potential functions.

  15. Coulomb breakup problem.

    PubMed

    Kadyrov, A S; Bray, I; Mukhamedzhanov, A M; Stelbovics, A T

    2008-12-01

    We formulate scattering theory in the framework of a surface-integral approach utilizing analytically known asymptotic forms of the three-body wave functions. This formulation is valid for both short-range and Coulombic potentials. The post and prior forms of the breakup amplitude are derived without any reference to renormalization procedures. PMID:19113531

  16. Relativistic LandauHeMcKellarWilkens quantization and relativistic bound states solutions for a Coulomb-like potential induced by the Lorentz symmetry breaking effects

    SciTech Connect

    Bakke, K.; Belich, H.

    2013-06-15

    In this work, we discuss the relativistic LandauHeMcKellarWilkens quantization and relativistic bound states solutions for a Dirac neutral particle under the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects. We present new possible scenarios of studying Lorentz symmetry breaking effects by fixing the space-like vector field background in special configurations. It is worth mentioning that the criterion for studying the violation of Lorentz symmetry is preserving the gauge symmetry. -- Highlights: Two new possible scenarios of studying Lorentz symmetry breaking effects. Coulomb-like potential induced by the Lorentz symmetry breaking effects. Relativistic LandauHeMcKellarWilkens quantization. Exact solutions of the Dirac equation.

  17. Coulomb crystallization in classical and quantum systems

    NASA Astrophysics Data System (ADS)

    Bonitz, Michael

    2007-11-01

    Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or ?-particle crystals in dense matter and of hole crystals in semiconductors. [1] O. Arp, D. Block, A. Piel, and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [3] C. Henning, H. Baumgartner, A. Piel, P. Ludwig, V. Golubnychiy, M. Bonitz, and D. Block, Phys. Rev. E 74, 056403 (2006) and Phys. Rev. E (2007). [4] A. Filinov, M. Bonitz, and Yu. Lozovik, Phys. Rev. Lett. 86, 3851 (2001). [5] M. Bonitz, V. Filinov, P. Levashov, V. Fortov, and H. Fehske, Phys. Rev. Lett. 95, 235006 (2005) and J. Phys. A: Math. Gen. 39, 4717 (2006). [6] Introduction to Computational Methods for Many-Body Systems, M. Bonitz and D. Semkat (eds.), Rinton Press, Princeton (2006)

  18. Equation of state and critical point behavior of hard-core double-Yukawa fluids.

    PubMed

    Montes, J; Robles, M; López de Haro, M

    2016-02-28

    A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out. PMID:26931708

  19. Two-dimensional Yukawa fluids

    NASA Astrophysics Data System (ADS)

    Gonzalez-Melchor, Minerva; Mendez, Arlette; Alejandre, Jose

    2015-03-01

    When the movement of particles is performed predominantly in two dimensions, the systems can be considered at a good extent as two-dimensional. For instance the lipids in a bilayer, micrometric particles in a quasi-two-dimensional colloidal suspension, colloids in a monolayer deposited on the air-water interface, and DNA complexes trapped at the water surface can be described at a first approach as bidimensional fluids. These systems are important for many applications in surface and colloidal science. In simulations where the explicit interface between liquid and vapor is present, the line tension can be directly computed. In this work we present molecular dynamics results obtained for the liquid/vapor coexistence curve of 2D Yukawa fluids and for the line tension. A comparison with the three-dimensional case is also presented.

  20. Transverse current fluctuations in the Yukawa one-component plasma.

    PubMed

    Mithen, James P

    2014-01-01

    Using numerical simulations, we investigate the wave number and frequency dependent transverse current correlation function CT(k,?) of a single-component fluid with Yukawa interaction potential, also known as the Yukawa one-component plasma. The transverse current correlation function is an important quantity because it contains the microscopic details of the viscoelastic behavior of the fluid. We show that, in the region of densities and temperatures in which shear waves do not propagate, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. As either the density is increased or the temperature decreased, the transverse current correlation function shows additional structure that the simple models fail to capture. PMID:24580340

  1. The Legacies of Yukawa and His Disciples

    NASA Astrophysics Data System (ADS)

    Nambu, Yoichiro

    2008-06-01

    I review and discuss the historical roles Hideki Yukawa and his disciples, Shoichi Sakata in particular, played in developing what we now call particle physics, including their personal and cultural aspects.

  2. Minimal SUSY SO(10) and Yukawa unification

    SciTech Connect

    Okada, Nobuchika

    2013-05-23

    The minimal supersymmetric (SUSY) SO(10) model, where only two Higgs multiplets {l_brace}10 Circled-Plus 126-bar{r_brace} are utilized for Yukawa couplings with matter fields, can nicely fit the neutrino oscillation parameters as well as charged fermion masses and mixing angles. In the fitting of the fermion mass matrix data, the largest element in the Yukawa coupling with the 126-bar -plet Higgs (Y{sup 126}) is found to be of order one, so that the right see-saw scale should be provided by Higgs vacuum expectation values (VEVs) of {beta}(10{sup 14}GeV). This fact causes a serious problem, namely, the gauge coupling unification is spoiled because of the presence of many exotic Higgs multiples emerging at the see-saw scale. In order to solve this problem, we consider a unification between bottom-quark and tau Yukawa couplings (b - {tau} Yukawa coupling unification) at the grand unified theory (GUT) scale, due to threshold corrections of superpartners to the Yukawa couplings at the 1 TeV scale. When the b - {tau} Yukawa coupling unification is very accurate, the largest element in Y{sub 126} can become {beta}(0.01), so that the right see-saw scale is realized by the GUT scale VEV and the usual gauge coupling unification is maintained. Since the b - {tau} Yukawa unification alters the Yukawa coupling data at the GUT scale, we re-analyze the fitting of the fermion mass matrix data by taking all the relevant free parameters into account. Unfortunately, we find that no parameter region shows up to give a nice fit for the current neutrino oscillation data and therefore, the usual picture of the gauge coupling unification cannot accommodate the fermion mass matrix data fitting in our procedure.

  3. SU(1,1) coherent states for Dirac-Kepler-Coulomb problem in D+1 dimensions with scalar and vector potentials

    NASA Astrophysics Data System (ADS)

    Ojeda-Guilln, D.; Mota, R. D.; Granados, V. D.

    2014-08-01

    We decouple the Dirac's radial equations in D+1 dimensions with Coulomb-type scalar and vector potentials through appropriate transformations. We study each of these uncoupled second-order equations in an algebraic way by using an su(1,1) algebra realization. Based on the theory of irreducible representations, we find the energy spectrum and the radial eigenfunctions. We construct the Perelomov coherent states for the Sturmian basis, which is the basis for the unitary irreducible representation of the su(1,1) Lie algebra. The physical radial coherent states for our problem are obtained by applying the inverse original transformations to the Sturmian coherent states.

  4. Indirect handle on the down-quark Yukawa coupling.

    PubMed

    Goertz, Florian

    2014-12-31

    To measure the Yukawa couplings of the up and down quarks, Yu,d, seems to be far beyond the capabilities of current and (near) future experiments in particle physics. By performing a general analysis of the potential misalignment between quark masses and Yukawa couplings, we derive predictions for the magnitude of induced flavor-changing neutral currents (FCNCs), depending on the shift in the physical Yukawa coupling of first-generation quarks. We find that a change of more than 50% in Yd would generically result in ds transitions in conflict with kaon physics. This could already be seen as evidence for a nonvanishing direct coupling of the down quark to the newly discovered Higgs boson. The nonobservation of certain--already well-constrained--processes is thus turned into a powerful indirect measure of otherwise basically unaccessible physical parameters of the effective standard model. Similarly, improvements in limits on FCNCs in the up-type quark sector can lead to valuable information on Yu. PMID:25615309

  5. Phase behavior of the modified-Yukawa fluid and its sticky limit

    NASA Astrophysics Data System (ADS)

    Schll-Paschinger, Elisabeth; Valadez-Prez, Nstor E.; Benavides, Ana L.; Castaeda-Priego, Ramn

    2013-11-01

    Simple model systems with short-range attractive potentials have turned out to play a crucial role in determining theoretically the phase behavior of proteins or colloids. However, as pointed out by D. Gazzillo [J. Chem. Phys. 134, 124504 (2011)], one of these widely used model potentials, namely, the attractive hard-core Yukawa potential, shows an unphysical behavior when one approaches its sticky limit, since the second virial coefficient is diverging. However, it is exactly this second virial coefficient that is typically used to depict the experimental phase diagram for a large variety of complex fluids and that, in addition, plays an important role in the Noro-Frenkel scaling law [J. Chem. Phys. 113, 2941 (2000)], which is thus not applicable to the Yukawa fluid. To overcome this deficiency of the attractive Yukawa potential, D. Gazzillo has proposed the so-called modified hard-core attractive Yukawa fluid, which allows one to correctly obtain the second and third virial coefficients of adhesive hard-spheres starting from a system with an attractive logarithmic Yukawa-like interaction. In this work we present liquid-vapor coexistence curves for this system and investigate its behavior close to the sticky limit. Results have been obtained with the self-consistent Ornstein-Zernike approximation (SCOZA) for values of the reduced inverse screening length parameter up to 18. The accuracy of SCOZA has been assessed by comparison with Monte Carlo simulations.

  6. Dielectric-dependent screened Hartree-Fock exchange potential and Slater-formula with Coulomb-hole interaction for energy band structure calculations.

    PubMed

    Shimazaki, Tomomi; Nakajima, Takahito

    2014-09-21

    We previously reported a screened Hartree-Fock (HF) exchange potential for energy band structure calculations [T. Shimazaki and Y. Asai, J. Chem. Phys. 130, 164702 (2009); T. Shimazaki and Y. Asai, J. Chem. Phys. 132, 224105 (2010)]. In this paper, we discuss the Coulomb-hole (COH) interaction and screened Slater-formula and determine the energy band diagrams of several semiconductors, such as diamond, silicon, AlAs, AlP, GaAs, GaP, and InP, based on the screened HF exchange potential and Slater-formula with COH interaction, to demonstrate the adequacy of those theoretical concepts. The screened HF exchange potential and Slater-formula are derived from a simplified dielectric function and, therefore, include the dielectric constant in their expressions. We also present a self-consistent calculation technique to automatically determine the dielectric constant, which is incorporated into each self-consistent field step. PMID:25240347

  7. Dielectric-dependent screened Hartree-Fock exchange potential and Slater-formula with Coulomb-hole interaction for energy band structure calculations

    NASA Astrophysics Data System (ADS)

    Shimazaki, Tomomi; Nakajima, Takahito

    2014-09-01

    We previously reported a screened Hartree-Fock (HF) exchange potential for energy band structure calculations [T. Shimazaki and Y. Asai, J. Chem. Phys. 130, 164702 (2009); T. Shimazaki and Y. Asai, J. Chem. Phys. 132, 224105 (2010)]. In this paper, we discuss the Coulomb-hole (COH) interaction and screened Slater-formula and determine the energy band diagrams of several semiconductors, such as diamond, silicon, AlAs, AlP, GaAs, GaP, and InP, based on the screened HF exchange potential and Slater-formula with COH interaction, to demonstrate the adequacy of those theoretical concepts. The screened HF exchange potential and Slater-formula are derived from a simplified dielectric function and, therefore, include the dielectric constant in their expressions. We also present a self-consistent calculation technique to automatically determine the dielectric constant, which is incorporated into each self-consistent field step.

  8. Introduction to SC-Potential

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin; Christianto, Victor

    2011-03-01

    A new type of potential for nucleus, which is different from Coulomb potential or Yukawa potential, is introduced. This new called Smarandache-Christianto potential may have effect for radius range within r = 5-10 fm. For experimental verification of this potential, we find possible applications in the context of Condensed Matter Nuclear reaction. According to Takahashi's research, it is more likely to get condensed matter nuclear reaction using cluster of deuterium (4D) rather than using D+D reaction (as in hot-fusion, in this process Coulomb barrier is very high). In recent work, Takahashi shows that in the TSC framework it is also possible to do CMNS reaction not only with DDDD, but also with DDDH, DDHH, DHHH, or HHHH, where the reaction can be different. In other words, TSC can be a mixture of heavy and light water (as in neutrosophic logic). More interestingly, his EQPET/TSC (tetrahedra symmetric condensate) model, Takahashi can predict a new potential called STTBA (sudden-tall thin barrier approximate) which includes negative potential (reverse potential) and differs from Coulomb potential. The SC-potential, which has sinusoidal form, can be viewed as a generalization of Takahashi's TSC/STTBA potential.

  9. Coulomb string tension, asymptotic string tension, and the gluon chain

    SciTech Connect

    Greensite, Jeff; Szczepaniak, Adam P.

    2015-02-01

    We compute, via numerical simulations, the non-perturbative Coulomb potential and position-space ghost propagator in pure SU(3) gauge theory in Coulomb gauge. We find that that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.

  10. Constraining the range of Yukawa gravity interaction from S2 star orbits

    SciTech Connect

    Borka, D.; Jovanović, V. Borka; Jovanović, P.; Zakharov, A.F. E-mail: pjovanovic@aob.rs E-mail: zakharov@itep.ru

    2013-11-01

    We consider possible signatures for Yukawa gravity within the Galactic Central Parsec, based on our analysis of the S2 star orbital precession around the massive compact dark object at the Galactic Centre, and on the comparisons between the simulated orbits in Yukawa gravity and two independent sets of observations. Our simulations resulted in strong constraints on the range of Yukawa interaction Λ and showed that its most probable value in the case of S2 star is around 5000 - 7000 AU. At the same time, we were not able to obtain reliable constrains on the universal constant δ of Yukawa gravity, because the current observations of S2 star indicated that it may be highly correlated with parameter Λ in the range (0 < δ < 1). For δ > 2 they are not correlated. However, the same universal constant which was successfully applied to clusters of galaxies and rotation curves of spiral galaxies (δ = 1/3) also gives a satisfactory agreement with the observed orbital precession of the S2 star, and in that case the most probable value for the scale parameter is Λ ≈ 3000±1500 AU. Also, the Yukawa gravity potential induces precession of S2 star orbit in the same direction as General Relativity for δ > 0 and for δ < −1, and in the opposite direction for −1 < δ < 0. The future observations with advanced facilities, such as GRAVITY or/and European Extremely Large Telescope, are needed in order to verify these claims.

  11. Invariants in the Yukawa system's thermodynamic phase diagram

    NASA Astrophysics Data System (ADS)

    Veldhorst, Arno A.; Schrder, Thomas B.; Dyre, Jeppe C.

    2015-07-01

    This paper shows that several known properties of the Yukawa system can be derived from the isomorph theory, which applies to any system that has strong correlations between its virial and potential-energy equilibrium fluctuations. Such "Roskilde-simple" systems have a simplified thermodynamic phase diagram deriving from the fact that they have curves (isomorphs) along which structure and dynamics in reduced units are invariant to a good approximation. We show that the Yukawa system has strong virial potential-energy correlations and identify its isomorphs by two different methods. One method, the so-called direct isomorph check, identifies isomorphs numerically from jumps of relatively small density changes (here 10%). The second method identifies isomorphs analytically from the pair potential. The curves obtained by the two methods are close to each other; these curves are confirmed to be isomorphs by demonstrating the invariance of the radial distribution function, the static structure factor, the mean-square displacement as a function of time, and the incoherent intermediate scattering function. Since the melting line is predicted to be an isomorph, the theory provides a derivation of a known approximate analytical expression for this line in the temperature-density phase diagram. The paper's results give the first demonstration that the isomorph theory can be applied to systems like dense colloidal suspensions and strongly coupled dusty plasmas.

  12. Direct Numerical Simulation of Yukawa Systems by Particle-in-cell Methods

    NASA Astrophysics Data System (ADS)

    Mller, Wolf-Christian; Zeiler, Andreas; Morfill, Gregor E.

    2002-12-01

    Aiming at a fully self-consistent numerical model for the simulation of complex plasmas in rf-driven discharges, a highly efficient parallel particle-in-cell code has been developed, allowing for realizations of up to one billion interacting particles. As a first test case, we consider a Yukawa system which represents the simplest approximation of a complex plasma. The Yukawa approach where the dust particles are dressed with an isotropic Debye potential can be regarded as a low-order description of the dust-plasma interaction in the bulk a rf-driven complex plasma, away from the electrode sheaths. The simulation code is tested by examining a liquid-solid phase transition, i.e., the formation of a face-centered-cubic Yukawa crystal. This is done in a periodic-cube sub-volume, containing 13,824 dust particles, which corresponds to a total system size of ? 884,000 particles.

  13. Coulomb problem in momentum space without screening

    NASA Astrophysics Data System (ADS)

    Upadhyay, N. J.; Eremenko, V.; Hlophe, L.; Nunes, F. M.; Elster, Ch.; Arbanas, G.; Escher, J. E.; Thompson, I. J.; Torus Collaboration

    2014-07-01

    Background: The repulsive Coulomb force poses severe challenges when solving the three-body problem for (d ,p) reactions on intermediate mass and heavy nuclei. Recently, a new approach based on the Coulomb-distorted basis in momentum space was proposed. Purpose: In this work, we demonstrate the feasibility of using the Coulomb-distorted basis in momentum space for calculating matrix elements expected in a wide range of nuclear reactions. Method: We discuss the analytic forms of the Coulomb wave function in momentum space. We analyze the singularities in the Coulomb-distorted form factors and the required regularization techniques. Employing a separable interaction derived from a realistic nucleon-nucleus optical potential, we compute and study the Coulomb-distorted form factors for a wide range of cases, including charge, angular momentum, and energy dependence. We also investigate in detail the precision of our calculations. Results: The Coulomb-distorted form factors differ significantly from the nuclear form factors except for the very highest momenta. Typically, the structure of the form factor is shifted away from zero momentum due to the Coulomb interaction. Unlike the Yamaguchi forms typically used in three-body methods, our realistic form factors have a short high-momentum tail, which allows for a safe and efficient truncation of the momentum grid. Conclusions: Our results show that the Coulomb-distorted basis can be effectively implemented.

  14. Energy dependence of the optical potential for the /sup 16/O+/sup 144/Sm system near the Coulomb barrier

    SciTech Connect

    Abriola, D.; DiGregorio, D.; Testoni, J.E.; Etchegoyen, A.; Etchegoyen, M.C.; Fernandez Niello, J.O.; Ferrero, A.M.J.; Gil, S.; Macchiavelli, A.O.; Pacheco, A.J.; and others

    1989-02-01

    Angular distributions for elastic and inelastic scattering of /sup 16/O+/sup 144/Sm have been measured at bombarding energies E = 69.2 and 72.3 MeV. Excitation functions were measured between E = 61 and 76.3 MeV at backward angles. The present elastic scattering data plus existing fusion data were adjusted with both energy-independent and energy-dependent optical-model potentials. The energy dependence appears to be consistent with the dispersion relations which correlate the real and imaginary components of the potentials. The potentials behave similarly when coupling to inelastic channels is considered.

  15. Off-shell Jost solutions for Coulomb and Coulomb-like interactions in all partial waves

    SciTech Connect

    Laha, U.; Bhoi, J.

    2013-01-15

    By exploiting the theory of ordinary differential equations, with judicious use of boundary conditions, interacting Green's functions and their integral transforms together with certain properties of higher transcendental functions, useful analytical expressions for the off-shell Jost solutions for motion in Coulomb and Coulomb-nuclear potentials are derived in maximal reduced form through different approaches to the problem in the representation space. The exact analytical expressions for the off-shell Jost solutions for Coulomb and Coulomb-like potentials are believed to be useful for the description of the charged particle scattering/reaction processes.

  16. Yukawa unification predictions with effective "mirage" mediation.

    PubMed

    Anandakrishnan, Archana; Raby, Stuart

    2013-11-22

    In this Letter we analyze the consequences, for the LHC, of gauge and third family Yukawa coupling unification with a particular set of boundary conditions defined at the grand unified theory (GUT) scale, which we characterize as effective "mirage" mediation. We perform a global χ2 analysis including the observables M(W), M(Z), G(F), α(em)(-1), α(s)(M(Z)), M(t), m(b)(m(b)), M(τ), BR(B→X(s)γ), BR(B(s)→μ(+)μ(-)), and M(h). The fit is performed in the minimal supersymmetric standard model in terms of 10 GUT scale parameters, while tanβ and μ are fixed at the weak scale. We find good fits to the low energy data and a supersymmetry spectrum which is dramatically different than previously studied in the context of Yukawa unification. PMID:24313477

  17. Yukawa Unification Predictions with Effective ``Mirage'' Mediation

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, Archana; Raby, Stuart

    2013-11-01

    In this Letter we analyze the consequences, for the LHC, of gauge and third family Yukawa coupling unification with a particular set of boundary conditions defined at the grand unified theory (GUT) scale, which we characterize as effective “mirage” mediation. We perform a global χ2 analysis including the observables MW, MZ, GF, αem-1, αs(MZ), Mt, mb(mb), Mτ, BR(B→Xsγ), BR(Bs→μ+μ-), and Mh. The fit is performed in the minimal supersymmetric standard model in terms of 10 GUT scale parameters, while tan⁡β and μ are fixed at the weak scale. We find good fits to the low energy data and a supersymmetry spectrum which is dramatically different than previously studied in the context of Yukawa unification.

  18. A mean spherical model for soft potentials: The hard core revealed as a perturbation

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Y.; Ashcroft, N. W.

    1978-01-01

    The mean spherical approximation for fluids is extended to treat the case of dense systems interacting via soft-potentials. The extension takes the form of a generalized statement concerning the behavior of the direct correlation function c(r) and radial distribution g(r). From a detailed analysis that views the hard core portion of a potential as a perturbation on the whole, a specific model is proposed which possesses analytic solutions for both Coulomb and Yukawa potentials, in addition to certain other remarkable properties. A variational principle for the model leads to a relatively simple method for obtaining numerical solutions.

  19. Entropic Corrections to Coulomb's Law

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Sheykhi, A.

    2012-04-01

    Two well-known quantum corrections to the area law have been introduced in the literatures, namely, logarithmic and power-law corrections. Logarithmic corrections, arises from loop quantum gravity due to thermal equilibrium fluctuations and quantum fluctuations, while, power-law correction appears in dealing with the entanglement of quantum fields in and out the horizon. Inspired by Verlinde's argument on the entropic force, and assuming the quantum corrected relation for the entropy, we propose the entropic origin for the Coulomb's law in this note. Also we investigate the Uehling potential as a radiative correction to Coulomb potential in 1-loop order and show that for some value of distance the entropic corrections of the Coulomb's law is compatible with the vacuum-polarization correction in QED. So, we derive modified Coulomb's law as well as the entropy corrected Poisson's equation which governing the evolution of the scalar potential ?. Our study further supports the unification of gravity and electromagnetic interactions based on the holographic principle.

  20. Yukawa sector in minimal D-brane models

    NASA Astrophysics Data System (ADS)

    Ennadifi, Salah Eddine

    2015-07-01

    We investigate the Yukawa couplings sector in the minimal gauge theory U(3) U(2) U(1) with the Standard Model chiral and Higgs spectrum based on three stacks of intersecting D-branes. In this model, stringy corrections are required to induce the missing Yukawa couplings and generate hierarchical pattern. Under the known data, we assign the realistic Yukawa texture and then bound their strengths.

  1. Dynamical DMRG study of non-linear optical response in one-dimensional dimerized Hubbard model with nearest neighbor Coulomb interaction and alternating on-site potential

    NASA Astrophysics Data System (ADS)

    Sota, Shigetoshi; Tohyama, Takami; Brazovskii, Serguei

    2012-02-01

    The optical response of organic compounds has been attracting much attention. The one of the reasons is the huge non-linear and ultrafast optical response [K. Yamamoto et. al., J. Phys. Soc. Jpn. 77, 074709(2008)]. In order to investigate such optical properties, we carry out dynamical DMRG calculations to obtain optical responses in the 1/4-filled one-dimensional Hubbard model including the nearest neighbor Coulomb interaction and the alternating electron hopping. The charge gap [S. Nishimoto, M. Takahashi, and Y. Ohta, J. Phys. Soc. Jpn. 69, 1594(2000)] and the bound state [H. Benthien and E. Jeckelmann, Eur. Phys. J. B 44, 287(2005)] in this model have been discussed based on DMRG calculations. In the present study, we introduce an alternating on-site potential giving the polarization in the system into the dimerized Hubbard model, which breaks the reflection symmetry of the system. In this talk, we discuss the obtained linear and the 2nd order non-linear optical susceptibility in order to make a prediction for non-linear optical experiments in the future.

  2. Stringy instantons and Yukawa couplings in MSSM-like orientifold models

    NASA Astrophysics Data System (ADS)

    Ibez, L. E.; Richter, R.

    2009-03-01

    Type IIA orientifold constructions with intersecting D6-branes and their IIB duals in terms of magnetized D9/D7-branes constitute one of the most promising avenues for the construction of semirealistic MSSM-like compactifications. One generic problem with these constructions is that there are many Yukawa couplings, which vanish due to additional U(1) symmetries in the theory. In this paper, we consider a number of such settings and study under what conditions stringy instanton effects can give rise to non-perturbative contributions to the Yukawa couplings, so that all perturbatively forbidden terms are induced. We find specific settings in which Yukawa couplings for all fermions are indeed obtained. For some cases we provide specific local examples of rigid O(1) instantons within the T6/Bbb Z2 Bbb Z2' toroidal orientifold with torsion that gives rise to the required amplitudes. A potential problem in these settings is that the same instantons, providing for Yukawa coupling contributions, may give rise to too large ?-terms for the Higgs multiplets. We show how this problem may be overcome in explicit models with a doubled Higgs system.

  3. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. II. Molecular beam scattering and bulk gas phenomena in Ne-CO mixtures

    NASA Astrophysics Data System (ADS)

    Dham, Ashok K.; McBane, George C.; McCourt, Frederick R. W.; Meath, William J.

    2010-01-01

    Four potential energy surfaces are of current interest for the Ne-CO interaction. Two are high-level fully ab initio surfaces obtained a decade ago using symmetry-adapted perturbation theory and supermolecule coupled-cluster methods. The other two are very recent exchange-Coulomb (XC) model potential energy surfaces constructed by using ab initio Heitler-London interaction energies and literature long range dispersion and induction energies, followed by the determination of a small number of adjustable parameters to reproduce a selected subset of pure rotational transition frequencies for the N20e-C12O16 van der Waals cluster. Testing of the four potential energy surfaces against a wide range of available experimental microwave, millimeter-wave, and mid-infrared Ne-CO transition frequencies indicated that the XC potential energy surfaces gave results that were generally far superior to the earlier fully ab initio surfaces. In this paper, two XC model surfaces and the two fully ab initio surfaces are tested for their abilities to reproduce experiment for a wide range of nonspectroscopic Ne-CO gas mixture properties. The properties considered here are relative integral cross sections and the angle dependence of rotational state-to-state differential cross sections, rotational relaxation rate constants for CO(v =2) in Ne-CO mixtures at T =296 K, pressure broadening of two pure rotational lines and of the rovibrational lines in the CO fundamental and first overtone transitions at 300 K, and the temperature and, where appropriate, mole fraction dependencies of the interaction second virial coefficient, the binary diffusion coefficient, the interaction viscosity, the mixture shear viscosity and thermal conductivity coefficients, and the thermal diffusion factor. The XC model potential energy surfaces give results that lie within or very nearly within the experimental uncertainties for all properties considered, while the coupled-cluster ab initio surface gives results that agree similarly well for all but one of the properties considered. When the present comparisons are combined with the ability to give accurate spectroscopic transition frequencies for the Ne-CO van der Waals complex, only the XC potential energy surfaces give results that agree well with all extant experimental data for the Ne-CO interaction.

  4. Investigating Coulomb's Law.

    ERIC Educational Resources Information Center

    Noll, Ellis; Koehlinger, Mervin; Kowalski, Ludwik; Swackhamer, Gregg

    1998-01-01

    Describes the use of a computer-linked camera to demonstrate Coulomb's law. Suggests a way of reducing the difficulties in presenting Coulomb's law by teaching the inverse square law of gravity and the inverse square law of electricity in the same unit. (AIM)

  5. Lepton masses and mixing without Yukawa hierarchies

    SciTech Connect

    Ponce, William A.; Zapata, Oscar

    2006-11-01

    We investigate the neutrino masses and mixing pattern in a version of the SU(3){sub c}(multiply-in-circle sign)SU(3){sub L}(multiply-in-circle sign)U(1){sub X} model with one extra exotic charged lepton per family as introduced by Ozer. It is shown that an extended scalar sector, together with a discrete Z{sub 2} symmetry, is able to reproduce a consistent lepton mass spectrum without a hierarchy in the Yukawa coupling constants, the former as a consequence of a carefull balance between one universal see-saw and two radiative mechanisms.

  6. Exclusive window onto Higgs Yukawa couplings.

    PubMed

    Kagan, Alexander L; Perez, Gilad; Petriello, Frank; Soreq, Yotam; Stoynev, Stoyan; Zupan, Jure

    2015-03-13

    We show that both flavor-conserving and flavor-violating Yukawa couplings of the Higgs boson to first- and second-generation quarks can be probed by measuring rare decays of the form h?MV, where M denotes a vector meson and V indicates either ?, W or Z. We calculate the branching ratios for these processes in both the standard model and its possible extensions. We discuss the experimental prospects for their observation. The possibility of accessing these Higgs couplings appears to be unique to the high-luminosity LHC and future hadron colliders, providing further motivation for those machines. PMID:25815924

  7. Exclusive Window onto Higgs Yukawa Couplings

    NASA Astrophysics Data System (ADS)

    Kagan, Alexander L.; Perez, Gilad; Petriello, Frank; Soreq, Yotam; Stoynev, Stoyan; Zupan, Jure

    2015-03-01

    We show that both flavor-conserving and flavor-violating Yukawa couplings of the Higgs boson to first- and second-generation quarks can be probed by measuring rare decays of the form h ?M V , where M denotes a vector meson and V indicates either ? , W or Z . We calculate the branching ratios for these processes in both the standard model and its possible extensions. We discuss the experimental prospects for their observation. The possibility of accessing these Higgs couplings appears to be unique to the high-luminosity LHC and future hadron colliders, providing further motivation for those machines.

  8. Diffusion in Coulomb crystals

    SciTech Connect

    Hughto, J.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2011-07-15

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions ''hop'' in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter {Gamma}=175 to Coulomb parameters up to {Gamma}=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.

  9. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous. PMID:21867316

  10. Nonlinear compressional waves in a two-dimensional Yukawa lattice.

    PubMed

    Avinash, K; Zhu, P; Nosenko, V; Goree, J

    2003-10-01

    A modified Korteweg-de Vries (KdV) equation is obtained for studying the propagation of nonlinear compressional waves and pulses in a chain of particles including the effect of damping. Suitably altering the linear phase velocity makes this equation useful also for the problem of phonon propagation in a two-dimensional (2D) lattice. Assuming a Yukawa potential, we use this method to model compressional wave propagation in a 2D plasma crystal, as in a recent experiment. By integrating the modified KdV equation the pulse is allowed to evolve, and good agreement with the experiment is found. It is shown that the speed of a compressional pulse increases with its amplitude, while the speed of a rarefactive pulse decreases. It is further discussed how the drag due to the background gas has a crucial role in weakening nonlinear effects and preventing the emergence of a soliton. PMID:14683049

  11. Numerical approach to Coulomb gauge QCD

    SciTech Connect

    Matevosyan, Hrayr H.; Szczepaniak, Adam P.; Bowman, Patrick O.

    2008-07-01

    We calculate the ghost two-point function in Coulomb gauge QCD with a simple model vacuum gluon wave function using Monte Carlo integration. This approach extends the previous analytic studies of the ghost propagator with this ansatz, where a ladder-rainbow expansion was unavoidable for calculating the path integral over gluon field configurations. The new approach allows us to study the possible critical behavior of the coupling constant, as well as the Coulomb potential derived from the ghost dressing function. We demonstrate that IR enhancement of the ghost correlator or Coulomb form factor fails to quantitatively reproduce confinement using Gaussian vacuum wave functional.

  12. Phase diagram of the hard-core Yukawa fluid within the integral equation method.

    PubMed

    El Mendoub, E B; Wax, J-F; Jakse, N

    2006-11-01

    In this study, the integral equation method proposed recently by Sarkisov [J. Chem. Phys. 114, 9496 (2001).], which has proved accurate for continuous potentials, is extended successfully to the hard sphere potential plus an attractive Yukawa tail. By comparing the results of thermodynamic properties, including the liquid-vapor phase diagram, with available simulation data, it is found that this method remains reliable for this class of models of interaction often used in colloid science. PMID:17279956

  13. Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals

    NASA Astrophysics Data System (ADS)

    Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko

    2007-04-01

    The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine α-helix chains and three-dimensional diamond pieces.

  14. Resolutions of the Coulomb Operator

    NASA Astrophysics Data System (ADS)

    Gill, Peter

    2007-03-01

    The ``Resolution of the Identity Operator'' I ?| ?n>= through the introduction of an infinite complete expansion basis ?n. In practical implementations, where the basis set is finite and incomplete, (2) yields systematic approximations to difficult overlap integrals and is widely used in quantum physics and chemistry. We will present an analogous ``Resolution of the Coulomb Operator'' r12-1 ?| ?n>Coulomb matrix elements eq:RC = and we will discuss the potential utility of (4) in the efficient treatment of the matrix elements that arise in quantum chemistry and elsewhere.

  15. Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit"

    NASA Astrophysics Data System (ADS)

    Carrillo-Bernal, M. A.; Nez-Ypez, H. N.; Salas-Brito, A. L.; Solis, Didier A.

    2015-02-01

    In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1 /?{x2+?2 } to study the one-dimensional Coulomb problem by approaching the parameter ? to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (? =0 ). Their claims regarding the possible existence of an even ground state with energy -? with a Dirac-? eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.

  16. Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".

    PubMed

    Carrillo-Bernal, M A; Nez-Ypez, H N; Salas-Brito, A L; Solis, Didier A

    2015-02-01

    In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/?[x(2)+?(2)] to study the one-dimensional Coulomb problem by approaching the parameter ? to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (?=0). Their claims regarding the possible existence of an even ground state with energy -? with a Dirac-? eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned. PMID:25768644

  17. Renormalization group invariant of lepton Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Tsuyuki, Takanao

    2015-04-01

    By using quark Yukawa matrices only, we can construct renormalization invariants that are exact at the one-loop level in the standard model. One of them, Iq, is accidentally consistent with unity, even though quark masses are strongly hierarchical. We calculate a lepton version of the invariant Il for Dirac and Majorana neutrino cases and find that Il can also be close to unity. For the Dirac neutrino and inverted hierarchy case, if the lightest neutrino mass is 3.0 meV to 8.8 meV, an equality Iq=Il can be satisfied. These invariants are not changed even if new particles couple to the standard model particles, as long as those couplings are generation independent.

  18. Towards a precise measurement of the top quark Yukawa coupling at the ILC

    SciTech Connect

    Juste, A.

    2005-12-01

    A precise measurement of the top quark Yukawa coupling is of great importance, since it may shed light on the mechanism of EWSB. We study the prospects of such measurement during the first phase of the ILC at {radical}s = 500 GeV, focusing in particular on recent theoretical developments as well as the potential benefits of beam polarization. It is shown that both yield improvements that could possibly lead to a measurement competitive with the LHC.

  19. Ion sphere model for Yukawa systems (dusty plasmas)

    SciTech Connect

    Khrapak, S. A.; Khrapak, A. G.; Ivlev, A. V.; Thomas, H. M.

    2014-12-15

    Application of the ion sphere model (ISM), well known in the context of the one-component-plasma, to estimate thermodynamic properties of model Yukawa systems is discussed. It is shown that the ISM approximation provides fairly good estimate of the internal energy of the strongly coupled Yukawa systems, in both fluid and solid phases. Simple expressions for the excess pressure and isothermal compressibility are derived, which can be particularly useful in connection to wave phenomena in strongly coupled dusty plasmas. It is also shown that in the regime of strong screening a simple consideration of neighboring particles interactions can be sufficient to obtain quite accurate estimates of thermodynamic properties of Yukawa systems.

  20. Simple estimation of thermodynamic properties of Yukawa systems.

    PubMed

    Khrapak, S A; Khrapak, A G; Ivlev, A V; Morfill, G E

    2014-02-01

    A simple analytical approach to estimate thermodynamic properties of model Yukawa systems is presented. The approach extends the traditional Debye-Hückel theory into the regime of moderate coupling and is able to qualitatively reproduce thermodynamics of Yukawa systems up to the fluid-solid phase transition. The simplistic equation of state (pressure equation) is derived and applied to the hydrodynamic description of the longitudinal waves in Yukawa fluids. The relevance of this study to the topic of complex (dusty) plasmas is discussed. PMID:25353581

  1. Interplay between Yukawa and Tomonaga in the Birth of Mesons

    NASA Astrophysics Data System (ADS)

    Yamazaki, Toshimitsu

    2008-06-01

    Light is shed on the early stage in the birth of Yukawa's meson theory, particularly on the interplay between Yukawa and Tomonaga in 1933. The discovery of the muon by Nishina' group in 1937 is also reviewed. It is pointed out that Heisenberg's attempt to explain the nuclear force in terms of the Heitler-London scheme, overcome by Yukawa and abandoned since then, is now being revived as a mechanism for a super strong nuclear force caused by a migrating real K OverBar meson.

  2. Two body scattering length of Yukawa model on a lattice

    NASA Astrophysics Data System (ADS)

    de Soto, F.; Carbonell, J.; Roiesnel, C.; Boucaud, Ph.; Leroy, J. P.; Pne, O.

    2007-06-01

    The extraction of scattering parameters from Euclidean simulations of a Yukawa model in a finite volume with periodic boundary conditions is analyzed both in non relativistic quantum mechanics and in quantum field theory.

  3. Kelvin Helmholtz Instability in Strongly Coupled Yukawa Liquids

    SciTech Connect

    Ashwin, J.; Ganesh, R.

    2010-05-28

    Using 'first principles' molecular dynamics simulations Kelvin Helmholtz instability has been observed for the first time at the particle level in two-dimensional strongly coupled Yukawa liquids. At a given coupling strength {Gamma} a subsonic shear profile is superposed on an equilibrated Yukawa liquid and instability is observed. Linear growth rates computed directly from MD simulations are seen to increase with strong coupling. Vortex-roll formation in the nonlinear regime is reported.

  4. Thermodynamics of Yukawa systems and sound velocity in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Khrapak, S. A.

    2016-01-01

    The simple practical approaches to estimate thermodynamic properties of three-dimensional Yukawa systems across coupling regimes (in fluid and solid phases) are summarized. These approaches demonstrate very good accuracy when compared with the results of direct numerical simulations. To demonstrate possible applications, the sound velocity in a strongly coupled dusty plasma is evaluated by combining the conventional fluid description of multi-component plasma with the appropriate equation of state of Yukawa fluids. Limitations of the proposed approaches are briefly discussed.

  5. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method

    NASA Astrophysics Data System (ADS)

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-01

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  6. Cholesteric order in systems of helical Yukawa rods

    NASA Astrophysics Data System (ADS)

    Wensink, H. H.; Jackson, G.

    2011-05-01

    We consider the interaction potential between two chiral rod-like colloids which consist of a thin cylindrical backbone decorated with a helical charge distribution on the cylinder surface. For sufficiently slender helical rods a simple scaling expression is derived which relates the chiral 'twisting' potential to the microscopic properties of the particles, such as the internal helical pitch, charge density and electrostatic screening parameter. To predict the behaviour of the macroscopic cholesteric pitch of the fluid bulk phase we invoke a simple second-virial theory generalized to treat anisotropic states with weakly twisted director fields. It is shown that, while particles with weakly coiled helices always form a cholesteric phase whose helical sense is commensurate with that of the internal helix, more strongly coiled rods lead to the formation of a cholesteric state of opposite sense. The correlation between the helical symmetry at the microscopic and macroscopic scale is found to be very sensitive to the pitch of the Yukawa helix. Mixing helical particles of sufficiently disparate length and internal pitch may give rise to a demixing of the uniform cholesteric phase into two fractions with a different macroscopic pitch. Our findings could be relevant to the interpretation of experimental observations in systems of cellulose and chitin microfibres, DNA and fd virus rods.

  7. Coulomb Friction Damper

    NASA Technical Reports Server (NTRS)

    Appleberry, W. T.

    1983-01-01

    Standard hydraulic shock absorber modified to form coulomb (linear friction) damper. Device damps very small velocities and is well suited for use with large masses mounted on soft springs. Damping force is easily adjusted for different loads. Dampers are more reliable than fluid dampers and also more economical to build and to maintain.

  8. Stable Coulomb Bubbles?

    SciTech Connect

    Moretto, L.; Tso, K.; Wozniak, G.

    1997-02-01

    Coulomb bubbles, though stable against monopole displacement, are unstable at least with respect to quadrupole and octupole distortions. We show that there exists a temperature at which the pressure of the vapor filling the bubble stabilizes all the radial modes. In extremely thin bubbles, the crispation modes become unstable due to the surface-surface interaction. {copyright} {ital 1997} {ital The American Physical Society}

  9. New approach to folding with the Coulomb wave function

    NASA Astrophysics Data System (ADS)

    Blokhintsev, L. D.; Kadyrov, A. S.; Mukhamedzhanov, A. M.; Savin, D. A.

    2015-05-01

    Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.

  10. New approach to folding with the Coulomb wave function

    SciTech Connect

    Blokhintsev, L. D.; Savin, D. A.; Kadyrov, A. S.; Mukhamedzhanov, A. M.

    2015-05-15

    Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.

  11. Coulomb problem for vector bosons

    SciTech Connect

    Kuchiev, M.Yu.; Flambaum, V.V.

    2006-05-01

    The Coulomb problem for vector bosons W{sup {+-}} incorporates a well-known difficulty; the charge of the boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the Coulomb problem for vector bosons properly.

  12. Yukawa and the Birth of Meson Theory: Fiftieth Anniversary for Nuclear Forces.

    ERIC Educational Resources Information Center

    Spradley, Joseph L.

    1985-01-01

    In 1935 physicist Hideki Yukawa proposed the meson theory of nuclear forces. Background, influences, and chronology of Yukawa's work are presented and discussed. Yukawa was supported in his meson idea by Japan's strong emphasis on intuitive and creative approaches which are also evident in subsequent developments in that country. (DH)

  13. Thermodynamics of Thomas-Fermi screened Coulomb systems

    NASA Technical Reports Server (NTRS)

    Firey, B.; Ashcroft, N. W.

    1977-01-01

    We obtain in closed analytic form, estimates for the thermodynamic properties of classical fluids with pair potentials of Yukawa type, with special reference to dense fully ionized plasmas with Thomas-Fermi or Debye-Hueckel screening. We further generalize the hard-sphere perturbative approach used for similarly screened two-component mixtures, and demonstrate phase separation in this simple model of a liquid mixture of metallic helium and hydrogen.

  14. Relations between the longitudinal and transverse sound velocities in strongly coupled Yukawa fluids

    NASA Astrophysics Data System (ADS)

    Khrapak, Sergey A.

    2016-02-01

    Two useful relations between the longitudinal and transverse sound velocities of the strongly coupled single component Yukawa fluids are derived. The first relates the sound velocities given by the quasilocalized charge approximation (QLCA) to the excess pressure of the system. This is shown to be a mathematical identity within QLCA, applicable to any soft isotropic interaction potential. The second relates the same quantities to the fluid sound velocity obtained via the thermodynamic route. Both three-dimensional and two-dimensional cases are considered. The accuracy of the relations is verified using the available results based on direct numerical simulations.

  15. Numerical studies of the melting transition in 2D Yukawa systems

    SciTech Connect

    Hartmann, P.; Donko, Z.; Kalman, G. J.

    2008-09-07

    We present the latest results of our systematic studies of the solid--liquid phase transition in 2D classical many-particle systems interacting with the Yukawa potential. Our previous work is extended by applying the molecular dynamic simulations to systems with up to 1.6 million particles in the computational box (for {kappa} = 2 case). Equilibrium simulations are performed for different coupling parameters in the vicinity of the expected melting transition ({gamma}{sub m}{sup {kappa}}{sup ={sup 2}}{approx_equal}415) and a wide range of observables are averaged over uncorrelated samples of the micro-canonical ensemble generated by the simulations.

  16. Contribution of plasminos to the shear viscosity of a hot and dense Yukawa-Fermi gas

    NASA Astrophysics Data System (ADS)

    Sadooghi, N.; Taghinavaz, F.

    2016-01-01

    Using the standard Green-Kubo formalism, we determine the shear viscosity η of a hot and dense Yukawa-Fermi gas. In particular, we study the effect of particle and plasmino excitations on thermal properties of the fermionic part of the shear viscosity, and explore the effects of thermal corrections to particle masses on bosonic and fermionic shear viscosities, ηb and ηf. It turns out that the effects of plasminos on ηf become negligible with increasing (decreasing) temperature (chemical potential).

  17. Vapor-liquid surface tension of strong short-range Yukawa fluid.

    PubMed

    Odriozola, G; Brcenas, M; Orea, P

    2011-04-21

    The thermodynamic properties of strong short-range attractive Yukawa fluids, ? = 10, 9, 8, and 7, are determined by combining the slab technique with the standard and the replica exchange Monte Carlo (REMC) methods. A good agreement was found among the coexistence curves of these systems calculated by REMC and those previously reported in the literature. However, REMC allows exploring the coexistence at lower temperatures, where dynamics turns glassy. To obtain the surface tension we employed, for both methods, a procedure that yields the pressure tensor components for discontinuous potentials. The surface tension results obtained by the standard MC and REMC techniques are in good agreement. PMID:21513403

  18. Semiclassical Coulomb field

    SciTech Connect

    Polonyi, J.

    2008-06-15

    The contribution of different modes of the Coulomb field to decoherence and to the dynamical breakdown of the time reversal invariance is calculated in the one-loop approximation for nonrelativistic electron gas. The dominant contribution was found to come from the usual collective modes in the plasma, namely, the zero-sound and the plasmon oscillations. The length scale of the quantum-classical transition is found to be close to the Thomas-Fermi screening length. It is argued that the extension of these modes to the whole Fock space yields optimal pointer states.

  19. Eikonal representation of N-body Coulomb scattering amplitudes

    SciTech Connect

    Fried, H.M.; Kang, K.; McKellar, B.H.J.

    1983-08-01

    A new technique for the construction of N-body Coulomb scattering amplitudes is proposed, suggested by the simplest case of N = 2: Calculate the scattering amplitude in eikonal approximation, discard the infinite phase factors which appear upon taking the limit of a Coulomb potential, and treat the remainder as an amplitude whose absolute value squared produces the exact, Coulomb differential cross section. The method easily generalizes to the N-body Coulomb problem for elastic scattering, and for inelastic rearrangement scattering of Coulomb bound states. We give explicit results for N = 3 and 4; in the N = 3 case we extract amplitudes for the processes (12)+3->1+2+3 (breakup), (12)+3->1+(23) (rearrangement), and (12)+3..-->..(12)'+3 (inelastic scattering) as residues at the appropriate poles in the free-free amplitude. The method produces scattering amplitudes f/sub N/ given in terms of explicit quadratures over (N-2)/sup 2/ distinct integrands.

  20. Four-fermion limit of gauge-Yukawa theories

    NASA Astrophysics Data System (ADS)

    Krog, Jens; Mojaza, Matin; Sannino, Francesco

    2015-10-01

    We elucidate and extend the conditions that map gauge-Yukawa theories at low energies into time-honored gauged four-fermion interactions at high energies. These compositeness conditions permit us to investigate theories of composite dynamics through gauge-Yukawa theories. Here we investigate whether perturbative gauge-Yukawa theories can have a strongly coupled limit at high energy that can be mapped into a four-fermion theory. Interestingly, we are able to precisely carve out a region of the perturbative parameter space supporting such a composite limit. This has interesting implications on our current view on models of particle physics. As a template model we use an S U (NC) gauge theory with NF Dirac fermions transforming according to the fundamental representation of the gauge group. The fermions further interact with a gauge singlet complex NFNF Higgs boson that ceases to be a physical degree of freedom at the ultraviolet composite scale, where it gives away to the four-fermion interactions. We compute the hierarchy between the ultraviolet and infrared composite scales of the theory and show that they are naturally large and well separated. Our results show that some weakly coupled gauge-Yukawa theories can be viewed, in fact, as composite theories. It is therefore tantalizing to speculate that the standard model, with its phenomenological perturbative Higgs sector, could hide, in plain sight, a composite theory.

  1. On the shear viscosity of 3D Yukawa liquids

    SciTech Connect

    Donko, Z.; Hartmann, P.

    2008-09-07

    We report calculations of the shear viscosity of three-dimensional strongly-coupled Yukawa liquids, based on two different non-equilibrium molecular dynamics methods. The present simulations intend to improve the accuracy of shear viscosity data, compared to those obtained in earlier studies.

  2. Practical thermodynamics of Yukawa systems at strong coupling

    SciTech Connect

    Khrapak, Sergey A.; Kryuchkov, Nikita P.; Yurchenko, Stanislav O.; Thomas, Hubertus M.

    2015-05-21

    Simple practical approach to estimate thermodynamic properties of strongly coupled Yukawa systems, in both fluid and solid phases, is presented. The accuracy of the approach is tested by extensive comparison with direct computer simulation results (for fluids and solids) and the recently proposed shortest-graph method (for solids). Possible applications to other systems of softly repulsive particles are briefly discussed.

  3. Scalar decay constant and Yukawa coupling in walking gauge theories

    SciTech Connect

    Hashimoto, Michio

    2011-05-01

    We propose an approach for the calculation of the Yukawa coupling through the scalar decay constant and the chiral condensate in the context of the extended technicolor . We perform the nonperturbative computation of the Yukawa coupling based on the improved ladder Schwinger-Dyson equation. It turns out that the Yukawa coupling can be larger or smaller than the standard model value, depending on the number N{sub D} of the weak doublets for each technicolor (TC) index. It is thus nontrivial whether or not the huge enhancement of the production of the scalar via the gluon fusion takes place even for a walking TC model with a colored techni-fermion. For the typical one-family TC model near conformality, it is found that the Yukawa coupling is slightly larger than the standard model one, where the expected mass of the scalar bound state is around 500 GeV. In this case, the production cross section via the gluon fusion is considerably enhanced, as naively expected, and hence such a scalar can be discovered/excluded at the early stage of the LHC.

  4. Remote Spacecraft Attitude Control by Coulomb Charging

    NASA Astrophysics Data System (ADS)

    Stevenson, Daan

    The possibility of inter-spacecraft collisions is a serious concern at Geosynchronous altitudes, where many high-value assets operate in proximity to countless debris objects whose orbits experience no natural means of decay. The ability to rendezvous with these derelict satellites would enable active debris removal by servicing or repositioning missions, but docking procedures are generally inhibited by the large rotational momenta of uncontrolled satellites. Therefore, a contactless means of reducing the rotation rate of objects in the space environment is desired. This dissertation investigates the viability of Coulomb charging to achieve such remote spacecraft attitude control. If a servicing craft imposes absolute electric potentials on a nearby nonspherical debris object, it will impart electrostatic torques that can be used to gradually arrest the object's rotation. In order to simulate the relative motion of charged spacecraft with complex geometries, accurate but rapid knowledge of the Coulomb interactions is required. To this end, a new electrostatic force model called the Multi-Sphere Method (MSM) is developed. All aspects of the Coulomb de-spin concept are extensively analyzed and simulated using a system with simplified geometries and one dimensional rotation. First, appropriate control algorithms are developed to ensure that the nonlinear Coulomb torques arrest the rotation with guaranteed stability. Moreover, the complex interaction of the spacecraft with the plasma environment and charge control beams is modeled to determine what hardware requirements are necessary to achieve the desired electric potential levels. Lastly, the attitude dynamics and feedback control development is validated experimentally using a scaled down terrestrial testbed. High voltage power supplies control the potential on two nearby conductors, a stationary sphere and a freely rotating cylinder. The nonlinear feedback control algorithms developed above are implemented to achieve rotation rate and absolute attitude control. Collectively, these studies decisively validate the feasibility of Coulomb charging for remote spacecraft attitude control.

  5. Coulomb explosion of nitrogen and oxygen molecules through non-Coulombic states.

    PubMed

    Wu, Chengyin; Yang, Yudong; Wu, Zhifeng; Chen, Bozhen; Dong, Hua; Liu, Xianrong; Deng, Yongkai; Liu, Hong; Liu, Yunquan; Gong, Qihuang

    2011-11-01

    We have systematically studied Coulomb explosion of nitrogen and oxygen molecules in intense 8 and 24 fs laser pulses. In the experiment, we explicitly separated all explosion pathways through coincident measurements. The high resolution kinetic energy releases (KERs) and the exotic angular distributions of atomic ions provide direct evidence that Coulomb explosion occurs through non-Coulombic states. In the theory, we calculated dissociation potential energy curves (PECs) of nitrogen and oxygen molecules and their multicharged molecular ions using multiconfiguration second-order perturbation theory. The results indicate that Coulomb potentials are close to the accurate PECs of multicharged molecular ions only when the internuclear distance is larger than 3 . In comparison with the experimental observations and the theoretical calculations, we determined the internuclear distance when Coulombic explosion occurs. It is near the equilibrium distance of the neutral molecules in the case of 8 fs laser pulses and expands gradually with the increase of the charge state of the molecular ions in the case of 24 fs laser pulses. PMID:21881654

  6. Yukawa Meson, Sakata Model and Baryon-Lepton Symmetry Revisited

    NASA Astrophysics Data System (ADS)

    Marshak, R. E.

    It is difficult for me to grasp that this symposium is celebrating the jubilee of meson theory since I was a junior at Columbia College in 1935. I recall hearing a colloquium by Paul Dirac that year telling an enraptured audience about the infinite sea of negative energy states but I do not recall any special note being taken of the birth of an equally revolutionary concept, the Yukawa meson. Perhaps the reason was the publication of Hideki Yukawa's paper in an inaccessible Japanese journal, perhaps Dirac's electron theory was dealing with the well-known electromagnetic force whereas Yukawa' meson theory was put forth to understand the nature of two new forces - the nuclear and the weak. Whatever the reason, the situation changed drastically when I migrated to Cornell (to do my thesis under Hans Bethe during the years 1937sim39) and found a deep interest in meson theory. Thus, my own scientific career has almost spanned the period since the birth of meson theory but, what is more to the point, it has been strongly influenced by the work of Yukawa and his collaborators. It therefore gives me great pleasure to be able to talk at this MESON 50 symposium. As one of the oldest speakers, I shall respond in a loose way to Professor Maki's invitation to cover ``topics concerning the historical developments of hadron physics''. I shall select several major themes from the Japanese work that have had special interest for me. My remarks will fall under the four headings: (A) Yukawa Meson; (B) Sakata Model; (C) Baryon-Lepton Symmetry; and (D) Extensions of Baryon-Lepton Symmetry.

  7. Energy dependence of the optical potentials for the 9Be +208Pb and 9Be +209Bi systems at near-Coulomb-barrier energies

    NASA Astrophysics Data System (ADS)

    Gmez Camacho, A.; Yu, N.; Zhang, H. Q.; Gomes, P. R. S.; Jia, H. M.; Lubian, J.; Lin, C. J.

    2015-04-01

    We analyze the energy dependence of the interacting optical potential, at near barrier energies, for two systems involving the weakly bound projectile 9Be and the heavy 208Pb and 209Bi targets, by the simultaneous fit of elastic scattering angular distributions and fusion excitation functions. The approach used consists of dividing the optical potential into two parts. A short-range potential VF+i WF that is responsible for fusion, and a superficial potential VDR+i WDR for direct reactions. It is found, for both systems studied, that the fusion imaginary potential WF presents the usual threshold anomaly (TA) observed in tightly bound systems, whereas the direct reaction imaginary potential WDR shows a breakup threshold anomaly (BTA) behavior. Both potentials satisfy the dispersion relation. The direct reaction polarization potential predominates over the fusion potential and so a net overall behavior is found to follow the BTA phenomenon.

  8. Coulomb Bound States of Strongly Interacting Photons

    NASA Astrophysics Data System (ADS)

    Maghrebi, M. F.; Gullans, M. J.; Bienias, P.; Choi, S.; Martin, I.; Firstenberg, O.; Lukin, M. D.; Bchler, H. P.; Gorshkov, A. V.

    2015-09-01

    We show that two photons coupled to Rydberg states via electromagnetically induced transparency can interact via an effective Coulomb potential. This interaction gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasibound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb potential, thus obtaining a photonic analogue of the hydrogen atom. Under certain conditions, the wave function resembles that of a diatomic molecule in which the two polaritons are separated by a finite "bond length." These states propagate with a negative group velocity in the medium, allowing for a simple preparation and detection scheme, before they slowly decay to pairs of bound Rydberg atoms.

  9. S2 like Star Orbits near the Galactic Center in Rn and Yukawa Gravity

    NASA Astrophysics Data System (ADS)

    Borka, Dusko; Jovanović, Predrag; Jovanović Vesna Borka; Zakharov, Alexander F.

    2015-01-01

    In this chapter we investigate the possibility to provide theoretical explanation for the observed deviations of S2 star orbit around the Galactic Center using gravitational potentials derived from extended gravity models, but in absence of dark matter. Extended Theories of Gravity are alternative theories of gravitational interaction developed from the exact starting points investigated first by Einstein and Hilbert and aimed from one side to extend the positive results of General Relativity and, on the other hand, to cure its shortcomings. One of the aims of these theories is to explain galactic and extragalactic dynamics without introduction of dark matter. They are based on straightforward generalizations of the Einstein theory where the gravitational action (the Hilbert-Einstein action) is assumed to be linear in the Ricci curvature scalar R. The f(R) gravity is a type of modified gravity which generalizes Einstein's General Relativity, i.e. the simplest case is just the General Relativity. It is actually a family of models, each one defined by a different function of the Ricci scalar. Here, we consider Rn (power-law fourth-order theories of gravity) and Yukawa-like modified gravities in the weak field limit and discuss the constrains on these theories. For that purpose we simulate the orbit of S2 star around the Galactic Center in Rn and Yukawa-like gravity potentials and compare it with New Technology Telescope/Very Large Telescope (NTT/VLT) as well as by Keck telescope observations. Our simulations result in strong constraints on the range of gravity interaction and showed that both Rn and Yukawa gravity could satisfactorily explain the observed orbits of S2 star. However, we concluded that parameters of Rn and Yukawa gravity theories must be very close to those corresponding to the Newtonian limit of the theory. Besides, in contrast to Newtonian gravity, these two modified theories induce orbital precession, even in the case of point-like central mass. The approach we are proposing seems to be sufficiently reliable to constrain the modified gravity models from stellar orbits around Galactic Center.

  10. Reply to "Comment on `Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' "

    NASA Astrophysics Data System (ADS)

    Gebremedhin, Daniel H.; Weatherford, Charles A.

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrdinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a ? (x ) , and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein.

  11. Reply to "Comment on 'Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit' ".

    PubMed

    Gebremedhin, Daniel H; Weatherford, Charles A

    2015-02-01

    This is a response to the comment we received on our recent paper "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit." In that paper, we introduced a computational algorithm that is appropriate for solving stiff initial value problems, and which we applied to the one-dimensional time-independent Schrdinger equation with a soft Coulomb potential. We solved for the eigenpairs using a shooting method and hence turned it into an initial value problem. In particular, we examined the behavior of the eigenpairs as the softening parameter approached zero (hard Coulomb limit). The commenters question the existence of the ground state of the hard Coulomb potential, which we inferred by extrapolation of the softening parameter to zero. A key distinction between the commenters' approach and ours is that they consider only the half-line while we considered the entire x axis. Based on mathematical considerations, the commenters consider only a vanishing solution function at the origin, and they question our conclusion that the ground state of the hard Coulomb potential exists. The ground state we inferred resembles a ?(x), and hence it cannot even be addressed based on their argument. For the excited states, there is agreement with the fact that the particle is always excluded from the origin. Our discussion with regard to the symmetry of the excited states is an extrapolation of the soft Coulomb case and is further explained herein. PMID:25768645

  12. Classical and quantum Coulomb crystals

    SciTech Connect

    Bonitz, M.; Ludwig, P.; Baumgartner, H.; Henning, C.; Filinov, A.; Block, D.; Arp, O.; Piel, A.; Kaeding, S.; Ivanov, Y.; Melzer, A.; Fehske, H.; Filinov, V.

    2008-05-15

    Strong correlation effects in classical and quantum plasmas are discussed. In particular, Coulomb (Wigner) crystallization phenomena are reviewed focusing on one-component non-neutral plasmas in traps and on macroscopic two-component neutral plasmas. The conditions for crystal formation in terms of critical values of the coupling parameters and the distance fluctuations and the phase diagram of Coulomb crystals are discussed.

  13. Coulomb Breakup of Deformed Halo Nuclei

    NASA Astrophysics Data System (ADS)

    Shubhchintak; Chatterjee, Rajdeep

    We present a fully quantum mechanical theory to study the effects of deformation on various reaction observables in the Coulomb breakup of neutron rich exotic medium mass nuclei on heavy targets within the framework of post-form finite range distorted wave Born approximation by using a deformed Woods-Saxon potential. We study the cases of 31Ne and 37Mg, possible halo candidates in the medium mass region, of the nuclear chart.

  14. Why should we care about the top quark Yukawa coupling?

    DOE PAGESBeta

    Shapshnikov, Mikhail; Bezrukov, Fedor

    2015-04-15

    In the cosmological context, for the Standard Model to be valid up to the scale of inflation, the top quark Yukawa coupling yt should not exceed the critical value ytcrit , coinciding with good precision (about 0.2‰) with the requirement of the stability of the electroweak vacuum. So, the exact measurements of yt may give an insight on the possible existence and the energy scale of new physics above 100 GeV, which is extremely sensitive to yt. In this study, we overview the most recent theoretical computations of and the experimental measurements of ytcrit and the experimental measurements ofmore » yt. Within the theoretical and experimental uncertainties in yt, the required scale of new physics varies from 10⁷ GeV to the Planck scale, urging for precise determination of the top quark Yukawa coupling.« less

  15. Renormalization-group flows and fixed points in Yukawa theories

    NASA Astrophysics Data System (ADS)

    Mlgaard, Esben; Shrock, Robert

    2014-05-01

    We study renormalization-group flows in Yukawa theories with massless fermions, including determination of fixed points and curves that separate regions of different flow behavior. We assess the reliability of perturbative calculations for various values of Yukawa coupling y and quartic scalar coupling ? by comparing the properties of flows obtained with the beta functions of these couplings calculated to different orders in the loop expansion. The results provide a determination of the region in y and ? where calculations up to two loops can yield reasonably reliable results. In the regime of weak couplings where the perturbative calculations are most reliable, we find that the theories have no nontrivial fixed points, and the flow is toward a free theory in the infrared.

  16. Effective Hamiltonian for bound states in Yukawa theory

    SciTech Connect

    Weber, Axel

    2013-07-15

    A generalization of the Gell-MannLow theorem is applied to lowest nontrivial order to determine an effective Hamiltonian for two-fermion states in relativistic Yukawa theory. The consistency of the corresponding effective Schrdinger equation is thoroughly investigated in various aspects, among others the nonrelativistic and one-body limits, and the small-distance or large-momentum regime of the bound state solutions is discussed in detail. -- Highlights: A generalization of the Gell-MannLow theorem is applied to Yukawa theory. The effective Hamiltonian for two-fermion states is derived to lowest order. The nonrelativistic and one-body limits are consistent. The large-momentum behavior of the bound-state solutions is analyzed. A critical value for the coupling constant is determined.

  17. Exponential approximation for one-component Yukawa plasma

    SciTech Connect

    Hlushak, Stepan

    2014-11-28

    A theory based on the exponential approximation of the liquid-state theory is applied to study properties of several models of one-component Yukawa plasma characterized by different values of the screening parameter z. The results of the new theory are compared to the results of a conventional theory, which is based on the first-order mean spherical approximation, and to the results of a Monte Carlo simulation. The new theory shows improvements in the predictions for the thermodynamic and structural properties of Yukawa plasmas with high and intermediate values of the screening parameter, z, and coupling parameter, ?. For low values of z and ?, the new theory is comparable in accuracy to the conventional theory, which in turn agrees well with the results of the Monte Carlo simulation.

  18. On the long-waves dispersion in Yukawa systems

    NASA Astrophysics Data System (ADS)

    Khrapak, Sergey A.; Klumov, Boris; Couëdel, Lénaïc; Thomas, Hubertus M.

    2016-02-01

    A useful simplification of the quasilocalized charge approximations (QLCA) method to calculate the dispersion relations in strongly coupled Yukawa fluids is discussed. In this simplified version, a simplest possible model radial distribution function, properly related to the thermodynamic properties of the system, is used. The approach demonstrates good agreement with the dispersion relations obtained using the molecular dynamics simulations and the original QLCA in the long-wavelength regime.

  19. Nonstandard Yukawa couplings and Higgs portal dark matter

    DOE PAGESBeta

    Bishara, Fady; Brod, Joachim; Uttayarat, Patipan; Zupan, Jure

    2016-01-04

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model,more » the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. In conclusion, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.« less

  20. Nonstandard Yukawa couplings and Higgs portal dark matter

    NASA Astrophysics Data System (ADS)

    Bishara, Fady; Brod, Joachim; Uttarayat, Patipan; Zupan, Jure

    2016-01-01

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model, the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. Finally, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.

  1. Yukawa unification: The good, the bad, and the ugly

    SciTech Connect

    Rattazzi, R.; Sarid, U.; Hall, L.J.

    1993-05-01

    We analyze some consequences of grand unification of the third-generation Yukawa couplings, in the context of the minimal supersymmetric standard model. We address two issues: the prediction of the top quark mass, and the generation of the top-bottom mass hierarchy through a hierarchy of Higgs vacuum expectation values. The top mass is strongly dependent on a certain ratio of superpartner masses. And the VEV hierarchy always entails some tuning of the GUT-scale parameters. We study the RG equations and their semi-analytic solutions, which exhibit several interesting features, such as a focusing effect for a large Yukawa coupling in the limit of certain symmetries and a correlation between the A terms (which contribute to b {yields} s{gamma}) and the gaugino masses. This study shows that non-universal soft-SUSY-breaking masses are favored (in particular for splitting the Higgs-doublets via D-terms and for allowing more natural scenarios of symmetry breaking), and hints at features desired in Yukawa-unified models. Several phenomenological implications are also revealed.

  2. NLSP gluino and NLSP stop scenarios from b -? Yukawa unification

    NASA Astrophysics Data System (ADS)

    Raza, Shabbar; Shafi, Qaisar; n, Cem Salih

    2015-09-01

    We present a study of the b -? Yukawa unified supersymmetric S U (4 )cS U (2 )LS U (2 )R model (with ? >0 ), which predicts the existence of gluinoneutralino and stopneutralino coannihilation scenarios compatible with the desired relic lightest supersymmetric particle neutralino dark matter abundance and other collider constraints. The next to lightest supersymmetric particle (NLSP) gluino or NLSP stop masses vary between 400 GeV and 1 TeV . The NLSP gluinos will be accessible at the 14 TeV LHC, while we hope that the NSLP stop solutions will be probed in future LHC searches. We also identify regions of the parameter space in which the gluino and the lighter stop are closely degenerate in mass, interchangeably playing the role of NLSP and next to next to lightest supersymmetric particle (NNLSP). We also update a previous study of t -b -? Yukawa unification and show that NLSP gluino of mass 1 TeV , with a mass difference between the gluino and neutralino of less than 80 GeV, can be realized, consistent with the current collider and astrophysical constraints. We present benchmark points for b -? and t -b -? Yukawa unification that can be accessible at the LHC.

  3. Hideki Yukawa ---January 23, 1907 - September 8, 1981---

    NASA Astrophysics Data System (ADS)

    Tanikawa, Y.

    1981-10-01

    Hideki Yukawa took the first step in his research in 1929 as an associate at Kyoto Imperial University (nowadays called Kyoto University). Most Japanese physicists of those days were isolated far from Western centers of physical science, where the `Sturm und Drang' of astonighing developments in the twentieth century physics had been roaring. There were only a handful of physicists in Japan who had already set to work in quantum physics, but never any one working on the quantum field theory and theoretical nuclear physics. Yukawa had to initiate his study of these frontiers of physical science by himself, without any teacher or senior scholar in this field. In 1935, Yukawa published his first paper with the title ``On the Interaction of Elementary Particles. I'', in which he developed the revolutionary idea of the meson theory. Although even the term `elementary particle' was not so popular in those days, the meson theory was proposed as a unified theory of interactions of elementary particles. His theory opened up a new fundamental view of Nature. This event might be regarded as a miracle in the history of Japanese physics. Through all of his works and thoughts, we are impressed by the simplicity of approach, the unfailing intuition and the creativity of a great master, which are deep-rooted in his culture. A sketch of his life, mainly based on his autobiographical material and partly based on the present writer's personal recollection, is presented to show his thought and activity.

  4. Inflation, leptogenesis, and Yukawa quasiunification within a supersymmetric left-right model

    NASA Astrophysics Data System (ADS)

    Armillis, R.; Lazarides, G.; Pallis, C.

    2014-03-01

    A simple extension of the minimal left-right symmetric supersymmetric grand unified theory model is constructed by adding two pairs of superfields. This naturally violates the partial Yukawa unification predicted by the minimal model. After including supergravity corrections, we find that this extended model naturally supports hilltop F-term hybrid inflation along its trivial inflationary path with only a very mild tuning of the initial conditions. With a convenient choice of signs of the terms in the Khler potential, we can reconcile the inflationary scale with the supersymmetric grand unified theory scale. All the current data on the inflationary observables are readily reproduced. Inflation is followed by nonthermal leptogenesis via the decay of the right-handed neutrinos emerging from the decay of the inflaton, and any possible washout of the lepton asymmetry is avoided thanks to the violation of partial Yukawa unification. The extra superfields also assist us in reducing the reheat temperature so as to satisfy the gravitino constraint. The observed baryon asymmetry of the universe is naturally reproduced consistently with the neutrino oscillation parameters.

  5. Beam-Plasma Interaction and Instabilities in a 2D Yukawa Plasma

    NASA Astrophysics Data System (ADS)

    Kyrkos, S.; Kalman, G.; Rosenberg, M.

    2008-11-01

    In a complex plasma, penetrating charged particle beams may lead to beam-plasma instabilities. When either the plasma, the beam, or both, are strongly interacting [1], the features of the instability are different from those in a weakly coupled plasma. We consider the case when a 2D dusty plasma forms a lattice, and the beam is moving in the lattice plane. Both the grains and the beam particles interact through a Yukawa potential; the beam particles are weakly coupled to each other and to the lattice. The system develops both a longitudinal and a transverse instability. Based on the phonon spectrum of a 2D hexagonal Yukawa lattice [2], we determine and compare the transverse and longitudinal growth rates. As a function of the wavenumber, the growth rates exhibit remarkable gaps, where no instability is excited. The gap locations are governed by the ratio of the lattice and the beam plasma frequencies. The behavior of the growth rates also depends on the direction of the beam and on the relationship between the beam speed and the longitudinal and transverse sound speeds. [1] GJ Kalman, M Rosenberg, JPA 36, 5963 (2003). [2] T Sullivan, GJ Kalman, S Kyrkos, P Bakshi, M Rosenberg, Z Donko, JPA 39, 4607 (2006).

  6. Kolmogorov flow in two dimensional strongly coupled Yukawa liquid: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Gupta, Akanksha; Ganesh, Rajaraman; Joy, Ashwin

    2015-10-01

    The transition from laminar to turbulent flows in liquids remains a problem of great interest despite decades of intensive research. Here, we report an atomistic study of this transition in a model Yukawa liquid using molecular dynamics simulations. Starting from an thermally equilibrated Yukawa liquid, for a given value of coupling parameter ? (defined as ratio of potential energy to kinetic energy per particle) and screening length ?, a subsonic flow of magnitude U0 is superposed and transition to an unstable regime is observed eventually leading to turbulent flow at sufficiently high Reynolds numbers. We have performed a parametric study for a range of Reynolds number R and found that the flow is neutrally stable for R Rc(?) , where Rc is the critical value of Reynolds number. Strong molecular shear heating is observed in all cases studied here. It is found that the coupling parameter ? decreases because of molecular shear heating on a time scale comparable to the instability time scale. Irrespective of the initial value of coupling parameter ?, the average heating rate is found to be sensitive to the ratio of equilibrium flow speed to the thermal speed, say, ?=U/0 vt h , where vt h=?{2/? } . Our results reported here are expected to be generic and should apply to a wide variety of strongly coupled systems such as laboratory dusty plasma, molten salts, and charged colloidal systems.

  7. Solutions of D-dimensional Schrodinger equation for Woods-Saxon potential with spin-orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov-Uvarov method

    NASA Astrophysics Data System (ADS)

    Niknam, A.; Rajabi, A. A.; Solaimani, M.

    2015-12-01

    Solution of the radial Schrodinger equation for the Woods-Saxon potential together with spin-orbit interaction, coulomb and centrifugal terms by using usual Nikiforov-Uvarov (NU) method is not possible. Here, we have presented a new NU procedure with which we are able to solve this Schrodinger equation and any other one-dimensional ones with any shape of the potential profile. For this purpose, we have combined the NU method with numerical fitting schema. The energy eigenvalues and corresponding eigenfunctions for various values of n, l, and j quantum numbers have been obtained. Good agreement with experimental values is also achieved. We have calculated the 1/2+ state energy with more accuracy (our absolute error = 0.023 MeV and Hagen et al. absolute error = 0.0918 MeV), while Hagen et al. have calculated the 5/2+ state energy with higher accuracy (our absolute error = 0.71 MeV and Hagen et al. absolute error = 0.0337 MeV). Our wave functions are in agreement with Kim et al.'s work, too.

  8. Solutions of D-dimensional Schrodinger equation for Woods-Saxon potential with spin-orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov-Uvarov method

    NASA Astrophysics Data System (ADS)

    Niknam, A.; Rajabi, A. A.; Solaimani, M.

    2016-03-01

    Solution of the radial Schrodinger equation for the Woods-Saxon potential together with spin-orbit interaction, coulomb and centrifugal terms by using usual Nikiforov-Uvarov (NU) method is not possible. Here, we have presented a new NU procedure with which we are able to solve this Schrodinger equation and any other one-dimensional ones with any shape of the potential profile. For this purpose, we have combined the NU method with numerical fitting schema. The energy eigenvalues and corresponding eigenfunctions for various values of n, l, and j quantum numbers have been obtained. Good agreement with experimental values is also achieved. We have calculated the 1/2+ state energy with more accuracy (our absolute error = 0.023 MeV and Hagen et al. absolute error = 0.0918 MeV), while Hagen et al. have calculated the 5/2+ state energy with higher accuracy (our absolute error = 0.71 MeV and Hagen et al. absolute error = 0.0337 MeV). Our wave functions are in agreement with Kim et al.'s work, too.

  9. Interatomic Coulombic electron capture

    SciTech Connect

    Gokhberg, K.; Cederbaum, L. S.

    2010-11-15

    In a previous publication [K. Gokhberg and L. S. Cederbaum, J. Phys. B 42, 231001 (2009)] we presented the interatomic Coulombic electron capture process--an efficient electron capture mechanism by atoms and ions in the presence of an environment. In the present work we derive and discuss the mechanism in detail. We demonstrate thereby that this mechanism belongs to a family of interatomic electron capture processes driven by electron correlation. In these processes the excess energy released in the capture event is transferred to the environment and used to ionize (or to excite) it. This family includes the processes where the capture is into the lowest or into an excited unoccupied orbital of an atom or ion and proceeds in step with the ionization (or excitation) of the environment, as well as the process where an intermediate autoionizing excited resonance state is formed in the capturing center which subsequently deexcites to a stable state transferring its excess energy to the environment. Detailed derivation of the asymptotic cross sections of these processes is presented. The derived expressions make clear that the environment assisted capture processes can be important for many systems. Illustrative examples are presented for a number of model systems for which the data needed to construct the various capture cross sections are available in the literature.

  10. Anomalous Coulomb oscillation in crossed carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Baek, Seung Jae; Lee, Dongsu; Park, Seung Joo; Park, Yung Woo; Svensson, Johannes; Jonson, Mats; Campbell, Eleanor E. B.

    2008-03-01

    Single-walled carbon nanotube (SWCNT) crossed junctions separated by an insulating layer were fabricated to investigate the double quantum dot modulated by a single gate (DQD-sG). Anomalous Coulomb oscillations were observed on the lower CNT at low temperature, where the behavior was interpreted by the concept of a double quantum dot (DQD) system http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id =APPLAB000089000023233107000001&idtype=cvips&gifs=yes [1]. To understand it more clearly, we have intentionally fabricated crossed CNTs without oxide layer in between. The observed anomalous Coulomb oscillations indicate that the contact resistance between the two tubes becomes a potential barrier splitting the initial single QD into the DQD, and the back-gate modulates the energy levels of the DQD.

  11. Coulomb crystallization of highly charged ions.

    PubMed

    Schmger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; Lpez-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy. PMID:25766230

  12. Aspect of Fermion Mass Hierarchy within Flavor Democracy for Yukawa Couplings

    NASA Astrophysics Data System (ADS)

    Higuchi, Katsuichi; Yamamoto, Katsuji

    We discuss the fermion mass hierarchy by including vector-like fermions which are accommodated in E6 GUTs within flavor democracy for Yukawa couplings. In this framework, all Yukawa couplings for the standard Higgs doublet have the same strength, and all Yukawa couplings for the singlet Higgs have the same strength (New ansatz). In addition, singlet Higgs and right-handed neutrinos exist. Under this condition, the mass hierarchy mt ? mb m? as well as mt ? mc, mu can be naturally explained.

  13. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    SciTech Connect

    Zhang, Yubo; Zhang, Jiawei; Wang, Youwei; Gao, Weiwei; Abtew, Tesfaye A.; Zhang, Peihong E-mail: wqzhang@mail.sic.ac.cn; Beijing Computational Science Research Center, Beijing 100084 ; Zhang, Wenqing E-mail: wqzhang@mail.sic.ac.cn; School of Chemistry and Chemical Engineering and Sate Key Laboratory of Coordination Chemistry, Nanjing University, Jiangsu 210093

    2013-11-14

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of the mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within 0.2 eV.

  14. Memorial Archival Libraries of Yukawa, Tomonaga, and Sakata

    NASA Astrophysics Data System (ADS)

    Takaiwa, Yoshinobu; Bando, Masako; Gotoh, Haruyoshi; Hayakawa, Hisao; Hirata, Kohji; Ito, Kazuyuki; Ito, Kenji; Kanaya, Kazuyuki; Konagaya, Daisuke; Konuma, Michiji; Kugo, Taichiro; Namba, Chusei; Nishitani, Tadashi; Tanabashi, Masaharu; Tanaka, Kio; Tanaka, Sho; Ukegawa, Fumihiko; Yoshikawa, Tadashi

    Brief history of the memorial archival libraries of Hideki Yukawa, Sin-itiro Tomonaga, and Shoichi Sakata, the great pioneers of nuclear and particle physics in Japan, is described. A recent project of maintaining the archival libraries is going on and the catalog databases of their documents are now almost ready for public access using Internet. In the project it is tried to make use of recent knowledge and technologies of archival science and the databases, and thus the documents themselves, willbe made accessible easier than before and may attract the interest of much broader range of audiences. Some interesting documents are picked up for demonstration.

  15. Beam-Plasma Instabilities in a 2D Yukawa Lattice

    SciTech Connect

    Kyrkos, S.; Kalman, G. J.; Rosenberg, M.

    2009-06-05

    We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.

  16. Poisson's equation solution of Coulomb integrals in atoms and molecules

    NASA Astrophysics Data System (ADS)

    Weatherford, Charles A.; Red, Eddie; Joseph, Dwayne; Hoggan, Philip

    The integral bottleneck in evaluating molecular energies arises from the two-electron contributions. These are difficult and time-consuming to evaluate, especially over exponential type orbitals, used here to ensure the correct behaviour of atomic orbitals. In this work, it is shown that the two-centre Coulomb integrals involved can be expressed as one-electron kinetic-energy-like integrals. This is accomplished using the fact that the Coulomb operator is a Green's function of the Laplacian. The ensuing integrals may be further simplified by defining Coulomb forms for the one-electron potential satisfying Poisson's equation therein. A sum of overlap integrals with the atomic orbital energy eigenvalue as a factor is then obtained to give the Coulomb energy. The remaining questions of translating orbitals involved in three and four centre integrals and the evaluation of exchange energy are also briefly discussed. The summation coefficients in Coulomb forms are evaluated using the LU decomposition. This algorithm is highly parallel. The Poisson method may be used to calculate Coulomb energy integrals efficiently. For a single processor, gains of CPU time for a given chemical accuracy exceed a factor of 40. This method lends itself to evaluation on a parallel computer.

  17. Solving the eigenvalue problem of the nuclear Yukawa-folded mean-field Hamiltonian

    NASA Astrophysics Data System (ADS)

    Dobrowolski, A.; Pomorski, K.; Bartel, J.

    2016-02-01

    The nuclear Hamiltonian with a Yukawa-folded mean-field potential is diagonalized within the basis of a deformed harmonic-oscillator in Cartesian coordinates. The nuclear shape is characterized by the equivalent sharp surface described either by the well known Funny-Hills or the Trentalange-Koonin-Sierk parametrizations. They are both able to describe a very vast variety of nuclear deformations, including necked-in shapes, left-right asymmetry and non-axiality. The only imposed limitation on the nuclear shape is the z-signature symmetry, which corresponds to a symmetry of the shape with respect to a rotation by an angle π around the z-axis. On output, the computer code produces for a given nucleus with mass number A and charge number Z the energy eigenvalues and eigenfunctions of the mean-field Hamiltonian at chosen deformation.

  18. Thermodynamic properties of short-range attractive Yukawa fluid: simulation and theory.

    PubMed

    Orea, Pedro; Tapia-Medina, Carlos; Pini, Davide; Reiner, Albert

    2010-03-21

    Coexistence properties of the hard-core attractive Yukawa potential with inverse-range parameter kappa=9, 10, 12, and 15 are calculated by applying canonical Monte Carlo simulation. As previously shown for longer ranges, we show that also for the ranges considered here the coexistence curves scaled by the critical density and temperature obey the law of corresponding states, and that a linear relationship between the critical density and the reciprocal of the critical temperature holds. The simulation results are compared to the predictions of the self-consistent Ornstein-Zernike approximation, and a good agreement is found for both the critical points and the coexistence curves, although some slight discrepancies are present. PMID:20331282

  19. DNA bubble dynamics as a quantum Coulomb problem.

    PubMed

    Fogedby, Hans C; Metzler, Ralf

    2007-02-16

    We study the dynamics of denaturation bubbles in double-stranded DNA. Demonstrating that the associated Fokker-Planck equation is equivalent to a Coulomb problem, we derive expressions for the bubble survival distribution W(t). Below Tm, W(t) is associated with the continuum of scattering states of the repulsive Coulomb potential. At Tm, the Coulomb potential vanishes and W(t) assumes a power-law tail with nontrivial dynamic exponents: the critical exponent of the entropy loss factor may cause a finite mean lifetime. Above Tm (attractive potential), the long-time dynamics is controlled by the lowest bound state. Correlations and finite size effects are discussed. PMID:17359005

  20. Renormalization in Coulomb gauge QCD

    SciTech Connect

    Andrasi, A.; Taylor, John C.

    2011-04-15

    Research Highlights: > The Hamiltonian in the Coulomb gauge of QCD contains a non-linear Christ-Lee term. > We investigate the UV divergences from higher order graphs. > We find that they cannot be absorbed by renormalization of the Christ-Lee term. - Abstract: In the Coulomb gauge of QCD, the Hamiltonian contains a non-linear Christ-Lee term, which may alternatively be derived from a careful treatment of ambiguous Feynman integrals at 2-loop order. We investigate how and if UV divergences from higher order graphs can be consistently absorbed by renormalization of the Christ-Lee term. We find that they cannot.

  1. Studies of Coulomb Gauge QCD

    SciTech Connect

    Adam P. Szczepaniak; Eric S. Swanson

    2000-12-12

    Here we will discuss how the nonabelian Coulomb kernel exhibits confinement already at the mean field level. In the heavy quark limit residual interactions between heavy quarks and transverse gluons are spin dependent i.e., relativistic and can be calculated using the Foldy-Wouthuysen transformation. This makes the Coulomb gauge suitable for studying the nonrelativistic limit. Finally it is possible to use standard mean field techniques to define quasiparticle excitations, which, as we discuss below, have similar properties to what is usually assumed about constituent quarks in the light quark sector.

  2. Why should we care about the top quark Yukawa coupling?

    SciTech Connect

    Shapshnikov, Mikhail; Bezrukov, Fedor

    2015-04-15

    In the cosmological context, for the Standard Model to be valid up to the scale of inflation, the top quark Yukawa coupling yt should not exceed the critical value ytcrit , coinciding with good precision (about 0.2‰) with the requirement of the stability of the electroweak vacuum. So, the exact measurements of yt may give an insight on the possible existence and the energy scale of new physics above 100 GeV, which is extremely sensitive to yt. In this study, we overview the most recent theoretical computations of and the experimental measurements of ytcrit and the experimental measurements of yt. Within the theoretical and experimental uncertainties in yt, the required scale of new physics varies from 10⁷ GeV to the Planck scale, urging for precise determination of the top quark Yukawa coupling.

  3. SO(10) grand unified theories with dynamical Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Aulakh, Charanjit S.; Khosa, Charanjit K.

    2014-08-01

    Renormalizable SO(10) grand unified theories (GUTs), extended by O(Ng)F family gauge symmetry, generate minimal supersymmetric Standard Model flavor structure dynamically via vacuum expectation values of "Yukawon" Higgs multiplets. For concrete illustration and calculability, we work with the fully realistic minimal supersymmetric GUTs based on the 210?126 ?126 GUT Higgs systemwhich were already parameter counting minimal relative to other realistic models. SO(10) fermion Higgs channels 126 ,10(120) extend to symmetric (antisymmetric) representations of O(Ng)F, while 210,126 are symmetric. Ng=3 dynamical Yukawa generation reduces the matter fermion Yukawas from 15 to 3 (21 to 5) without (with) the 120 Higgs. Yukawon GUTs are thus ultraminimal in parameter counting terms. Consistent symmetry breaking is ensured by a hidden sector Bajc-Melfo superpotential with a pair of symmetric O(Ng) multiplets ?,S, of which the latter's singlet part Ss breaks supersymmetry and the traceless part S ^ furnishes flat directions to cancel the O(Ng) D-term contributions of the visible sector. Novel dark matter candidates linked to flavor symmetry arise from both the Bajc-Melfo sector and GUT sector minimal supersymmetric Standard Model singlet pseudo-Goldstones. These relics may be viable light (<50 GeV) cold dark matter as reported by DAMA/LIBRA. In contrast to the new minimal supersymmetric SO(10) grand unified theory (NMSGUT) even sterile neutrinos can appear in certain branches of the flavor symmetry breaking without the tuning of couplings.

  4. LHC phenomenology of SO(10) models with Yukawa unification. II.

    NASA Astrophysics Data System (ADS)

    Anandakrishnan, Archana; Bryant, B. Charles; Raby, Stuart

    2014-07-01

    In this paper we study Yukawa-unified SO(10) supersymmetric (SUSY) grand unified theories (GUTs) with two types of SO(10) boundary conditions: (i) universal gaugino masses and (ii) nonuniversal gaugino masses with effective "mirage" mediation. With these boundary conditions, we perform a global χ2 analysis to obtain the parameters consistent with 11 low energy observables, including the top, bottom, and tau masses. Both boundary conditions have universal scalar masses and "just so" splitting for the up- and down-type Higgs masses. In these models, the third family scalars are lighter than the first two families and the gauginos are lighter than all the scalars. We therefore focus on the gluino phenomenology in these models. In particular, we estimate the lowest allowed gluino mass in our models coming from the most recent LHC data and compare this to limits obtained using simplified models. We find that the lower bound on Mg ˜ in Yukawa-unified SO(10) SUSY GUTs is generically ˜1.2 TEV at the 1σ level unless there is considerable degeneracy between the gluino and the lightest supersymmetric particle, in which case the bounds are much weaker. Hence many of our benchmark points are not ruled out by the present LHC data and are still viable models which can be tested at LHC 14.

  5. LHC constraints on Yukawa unification in SO(10)

    NASA Astrophysics Data System (ADS)

    Badziak, Marcin; Sakurai, Kazuki

    2012-02-01

    LHC constraints on the recently proposed SUSY SO(10) GUT model with top-bottom-tau Yukawa unification are investigated. In this model, various phenomenological constraints are in concord with the Yukawa unification thanks to the negative sign of ?, D-term splitting in the soft scalar masses and non-universal gaugino masses generated by a non-zero F -term in a 24-dimensional representation of SU(5) ? SO(10). After discussing the impact of the CP-odd Higgs boson mass bound on this model, we provide a detailed analysis of the recent direct SUSY searches performed by ATLAS and investigate the constraints on this SO(10) model. At 95% confidence level, the lower limit on the gluino mass is found to be 675 GeV. Assuming an integrated luminosity of 10 fb-1, this bound may be extended to 1.1 TeV if the right-handed down squark is lighter than about 1 TeV.

  6. Is Hideki Yukawa's explanation of the strong force correct?

    NASA Astrophysics Data System (ADS)

    Vasiliev, Victor; Moon, Russell

    2006-11-01

    Reexamining Hideki Yukawa's explanation of the strong force using the principles of the Quark Theory and the Vortex Theory, it was discovered that it is possible for a virtual particle to be passed back and forth between the proton and the neutron. This discovery creates a new and revolutionary explanation of the strong force of nature. The creation of the strong force appears to be the combination of four processes at work in the nucleus: virtual particles, intrinsic magnetism, ``nuclear gravity'', and gluons. 1. V.V. Vasiliev, R.G. Moon, The bases of the vortex theory, Book of abstracts The 53 International Meeting on Nuclear Spectroscopy and Nuclear structure St. Petersburg, Russia, 2003, p.251. 2. H. Yukawa, Tabibito, (World Scientific, Singapore, 1982), p. 190-202. 3. K. Gridnev, V.V. Vasiliev, R.G. Moon, The Photon Acceleration Effect, Book of abstracts, OMEGA 5 -- Symposium on Origin of Matter and Evolution of Galaxies, Nov 8-11, University of Tokyo, Tokyo Japan. 4. R.G. Moon, V.V. Vasiliev. Explanation of the Conservation of Lepton Number, Book of abstracts LV. National Conference on Nuclear Physics, Frontiers in the Physics of Nucleus, June 28-July 1, 2005, Saint-Petersburg, Russia, 2005, p. 347.5. .

  7. Is Hideki Yukawa's explanation of the strong force correct?

    NASA Astrophysics Data System (ADS)

    Vasiliev, Victor; Moon, Russell

    2006-10-01

    Reexamining Hideki Yukawa's explanation of the strong force using the principles of the Quark Theory and the Vortex Theory, it was discovered that it is possible for a virtual particle to be passed back and forth between the proton and the neutron. This discovery creates a new and revolutionary explanation of the strong force of nature. The creation of the strong force appears to be the combination of four processes at work in the nucleus: virtual particles, intrinsic magnetism, ``nuclear gravity'', and gluons. 1. V.V. Vasiliev, R.G. Moon, The bases of the vortex theory, Book of abstracts The 53 International Meeting on Nuclear Spectroscopy and Nuclear structure St. Petersburg, Russia, 2003, p.251. 2. H. Yukawa, Tabibito, (World Scientific, Singapore, 1982), p. 190-202. 3. K. Gridnev, V.V. Vasiliev, R.G. Moon, The Photon Acceleration Effect, Book of abstracts, OMEGA 5 -- Symposium on Origin of Matter and Evolution of Galaxies, Nov 8-11, University of Tokyo, Tokyo Japan. 4. R.G. Moon, V.V. Vasiliev. Explanation of the Conservation of Lepton Number, Book of abstracts LV. National Conference on Nuclear Physics, Frontiers in the Physics of Nucleus, June 28-July 1, 2005, Saint-Petersburg, Russia, 2005, p. 347.5. .

  8. Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit

    NASA Astrophysics Data System (ADS)

    Gebremedhin, Daniel H.; Weatherford, Charles A.

    2014-05-01

    An efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step-size choice for each element that is based on a Taylor series expansion. This algorithm is used to solve for the eigenpairs corresponding to the one-dimensional soft Coulomb potential, 1/?x2+?2 , which becomes numerically intractable (because of extreme stiffness) as the softening parameter (?) approaches zero. We are able to maintain near machine accuracy for ? as low as ? =10-8 using 16-digit precision calculations. Our numerical results provide insight into the controversial one-dimensional hydrogen atom, which is a limiting case of the soft Coulomb problem as ? ?0.

  9. Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit.

    PubMed

    Gebremedhin, Daniel H; Weatherford, Charles A

    2014-05-01

    An efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundaries of each element. We also implement an adaptive step-size choice for each element that is based on a Taylor series expansion. This algorithm is used to solve for the eigenpairs corresponding to the one-dimensional soft Coulomb potential, 1/sqrt[x(2)+?(2)], which becomes numerically intractable (because of extreme stiffness) as the softening parameter (?) approaches zero. We are able to maintain near machine accuracy for ? as low as ? = 10(-8) using 16-digit precision calculations. Our numerical results provide insight into the controversial one-dimensional hydrogen atom, which is a limiting case of the soft Coulomb problem as ? ? 0. PMID:25353926

  10. Coulomb problem for vector particles : Energy spectrum.

    SciTech Connect

    Kuchiev, M. Yu.; Flambaum, V. V.; Physics; Univ. of South Wales

    2006-05-31

    The Coulomb problem for vector bosons W{+-} incorporates a well-known difficulty; the charge of the boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the Coulomb problem for vector bosons properly.

  11. Coulomb confinement from the Yang-Mills vacuum state in 2+1 dimensions

    SciTech Connect

    Greensite, Jeff; Olejnik, Stefan

    2010-04-01

    The Coulomb-gauge ghost propagator and the color-Coulomb potential are computed in an ensemble of configurations derived from our recently proposed Yang-Mills vacuum wave functional in 2+1 dimensions. The results are compared to the corresponding values obtained by standard Monte Carlo simulations in three Euclidean dimensions. The agreement is quite striking for the Coulomb-gauge ghost propagator. The color-Coulomb potential rises linearly at large distances, but its determination suffers from rather large statistical fluctuations, due to configurations with very low values of {mu}{sub 0}, the lowest eigenvalue of the Coulomb-gauge Faddeev-Popov operator. However, if one imposes cuts on the data, effectively leaving out configurations with very low {mu}{sub 0}, the agreement of the potential in both sets of configurations is again satisfactory, although the error bars grow systematically as the cutoff is eliminated.

  12. Three-body Coulomb systems using generalized angular-momentum S states

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Sims, J. S.

    1974-01-01

    An expansion of the three-body Coulomb potential in generalized angular-momentum eigenfunctions developed earlier by one of the authors is used to compute energy eigenvalues and eigenfunctions of bound S states of three-body Coulomb systems. The results for He, H(-), e(-)e(+)e(-), and pmu(-)p are compared with the results of other computational approaches.

  13. Dynamical fermion mass generation by a strong Yukawa interaction

    SciTech Connect

    Brauner, Tomas; Hosek, Jiri

    2005-08-15

    We consider a model with global Abelian chiral symmetry of two massless fermion fields interacting with a complex massive scalar field. We argue that the Schwinger-Dyson equations for the fermion and boson propagators admit ultraviolet-finite chiral-symmetry-breaking solutions provided the Yukawa couplings are large enough. The fermions acquire masses and the elementary excitations of the complex scalar field are the two real spin-zero particles with different masses. As a necessary consequence of the dynamical chiral symmetry breakdown both in the fermion and scalar sectors, one massless pseudoscalar Nambu-Goldstone boson appears in the spectrum as a collective excitation of both the fermion and the boson fields. Its effective couplings to the fermion and boson fields are calculable.

  14. Collective excitations of a spherically confined Yukawa plasma

    SciTech Connect

    Kaehlert, H.; Bonitz, M.

    2011-05-15

    The complete spectrum of eigenmodes of a spherically confined Yukawa plasma is presented, based on first-principle molecular dynamics simulations. These results are compared with a recent fluid theory for the multipole modes of this system [H. Kaehlert and M. Bonitz, Phys. Rev. E 82, 036407 (2010)] and with the exact N-particle eigenmodes in the crystalline phase. Simulations confirm the existence of high-order modes found in cold fluid theory. We investigate the influence of screening, coupling, and friction on the mode spectra in detail. Good agreement between theory and simulation is found for weak to moderate screening and low-order modes. In addition, a number of new modes are observed which are missing in the fluid theory. The relations between the breathing mode in the fluid theory, simulation, and the crystal eigenmode are investigated in further detail.

  15. Early LHC phenomenology of Yukawa-bound heavy QQ mesons

    SciTech Connect

    Enkhbat, Tsedenbaljir; Hou, Wei-Shu; Yokoya, Hiroshi

    2011-11-01

    Current limits from the LHC on fourth generation quarks are already at the unitarity bound of 500 GeV or so. If they exist, the strong Yukawa couplings are turning nonperturbative, and may form bound states. We study the domain of m{sub b'} and m{sub t'} in the range of 500 to 700 GeV, where we expect binding energies are mainly of Yukawa origin, with QCD subdominant. To be consistent with electroweak precision tests, the t' and b' quarks have to be nearly degenerate, exhibiting a new 'isospin'. Comparing relativistic expansion with a relativistic bound state approach, we find the most interesting is the production of a color octet, isosinglet vector meson (a 'gluon-prime') via qq-bar{yields}{omega}{sub 8}. Leading decay modes are {pi}{sub 8}{sup {+-}}W{sup {+-}}, {pi}{sub 8}{sup 0}Z{sup 0}, and constituent quark decay, with qq and tt-bar' and bb' subdominant. The color octet, isovector pseudoscalar {pi}{sub 8} meson decays via constituent quark decay, or to Wg. These decay rates are parameterized by the decay constant, the binding energy and mass differences, and V{sub tb'}. For small V{sub t'b}, one could have a spectacular signal of WWg, where a soft W accompanies a very massive Wg pair. In general, however, one has high multiplicity signals with b, W, and t jet substructures that are not so different from the t't-bar' and b'b-bar' search.

  16. Coulomb versus physical string tension on the lattice

    NASA Astrophysics Data System (ADS)

    Burgio, Giuseppe; Quandt, Markus; Reinhardt, Hugo; Vogt, Hannes

    2015-08-01

    From continuum studies it is known that the Coulomb string tension ?C gives an upper bound for the physical (Wilson) string tension ?W [D. Zwanziger, Phys. Rev. Lett. 90, 102001 (2003)]. How does such a relationship translate to the lattice, however? In this paper we give evidence that on the lattice, while the two string tensions are related at zero temperature, they decouple at finite temperature. More precisely, we show that on the lattice the Coulomb gauge confinement scenario is always tied to the spatial string tension, which is known to survive the deconfinement phase transition and to cause screening effects in the quark-gluon plasma. Our analysis is based on the identification and elimination of center vortices, which allows us to control the physical string tension and study its effect on the Coulomb gauge observables. We also show how alternative definitions of the Coulomb potential may sense the deconfinement transition; however, a true static Coulomb gauge order parameter for the phase transition is still elusive on the lattice.

  17. Strong Coulomb effects in hole-doped Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Schnack, J.

    2005-06-01

    Substances such as the telephone number compound Sr14Cu24O41 are intrinsically hole-doped. The involved interplay of spin and charge dynamics is a challenge for theory. In this article we propose to describe hole-doped Heisenberg spin rings by means of complete numerical diagonalization of a Heisenberg Hamiltonian that depends parametrically on hole positions and includes the screened Coulomb interaction among the holes. It is demonstrated that key observables like magnetic susceptibility, specific heat, and inelastic neutron scattering cross section depend sensitively on the dielectric constant of the screened Coulomb potential.

  18. One-dimensional Coulomb problem in Dirac materials

    NASA Astrophysics Data System (ADS)

    Downing, C. A.; Portnoi, M. E.

    2014-11-01

    We investigate the one-dimensional Coulomb potential with application to a class of quasirelativistic systems, so-called Dirac-Weyl materials, described by matrix Hamiltonians. We obtain the exact solution of the shifted and truncated Coulomb problems, with the wave functions expressed in terms of special functions (namely, Whittaker functions), while the energy spectrum must be determined via solutions to transcendental equations. Most notably, there are critical band gaps below which certain low-lying quantum states are missing in a manifestation of atomic collapse.

  19. Relativistic effects in the photoionization of hydrogen-like ions with screened Coulomb interaction

    SciTech Connect

    Xie, L. Y.; Wang, J. G.; Janev, R. K.

    2014-06-15

    The relativistic effects in the photoionization of hydrogen-like ion with screened Coulomb interaction of Yukawa type are studied for a broad range of screening lengths and photoelectron energies. The bound and continuum wave functions have been determined by solving the Dirac equation. The study is focused on the relativistic effects manifested in the characteristic features of photoionization cross section for electric dipole nl??,l1 transitions: shape resonances, Cooper minima and cross section enhancements due to near-zero-energy states. It is shown that the main source of relativistic effects in these cross section features is the fine-structure splitting of bound state energy levels. The relativistic effects are studied in the photoionization of Fe{sup 25+} ion, as an example.

  20. Nonasymptotic analysis of relativistic electron scattering in the Coulomb field

    NASA Astrophysics Data System (ADS)

    Feranchuk, I. D.; Skoromnik, O. D.

    2010-11-01

    It is shown that the conventional Born series for relativistic electron scattering in the Coulomb field cannot be used for calculating the scattering characteristics. The differential cross section at small scattering angles is found on the basis of the Furry-Sommerfeld-Maue solution of the Dirac equation. Propagation of the electron wave packet is considered in order to separate the incident and scattered fluxes. It is shown that the total scattering cross section proves to be finite but depends on the distance r between the scattering center and the observation point. It is also shown that the polarization characteristics of the scattered beam are changed due to the long-range character of the Coulomb potential. The results can be important because Coulomb scattering is often used for normalization of experimental data in high-energy physics.

  1. On the numerical treatment of Coulomb forces in scattering problems

    NASA Astrophysics Data System (ADS)

    Randazzo, J. M.; Ancarani, L. U.; Colavecchia, F. D.; Gasaneo, G.; Frapiccini, A. L.

    2012-11-01

    We investigate the limiting procedures to obtain Coulomb interactions from short-range potentials. The application of standard techniques used for the two-body case (exponential and sharp cutoff) to the three-body break-up problem is illustrated numerically by considering the Temkin-Poet (TP) model of e-H processes.

  2. Coulomb gauge approach for charmonium meson and hybrid radiative transitions

    DOE PAGESBeta

    Gou, Peng; Yepez-Martínez, Tochtli; Szczepaniak, Adam P.

    2015-01-22

    We consider the lowest order interaction of the Foldy-Wouthuysen QED and QCD Hamiltonian in the Coulomb gauge approach, to describe radiative transitions between conventional and hybrids charmonium mesons. The results are compared to potential quark models and lattices calculations.

  3. Confronting four zero neutrino Yukawa textures with N2 -dominated leptogenesis

    NASA Astrophysics Data System (ADS)

    Zhang, Jue

    2015-04-01

    We consider a restricted type-I seesaw scenario with four texture zeros in the neutrino Yukawa matrix, in the weak basis where both the charged-lepton Yukawa matrix and the Majorana mass matrix for right-handed neutrinos are diagonal and real. Inspired by grand unified theories, we further require the neutrino Yukawa matrix to exhibit a hierarchical pattern similar to that in the up-type quark Yukawa matrix. With such a hierarchy requirement, we find that leptogenesis, which would operate in an N2-dominated scenario with the asymmetry generated by the next-to-lightest right-handed neutrino N2, can greatly reduce the number of allowed textures and that it disfavors the scenario that three light neutrinos are quasidegenerate. Such a quasidegenerate scenario of light neutrinos may soon be tested in upcoming neutrino experiments.

  4. Instanton induced Yukawa couplings from distant E3 and E(-1) instantons

    NASA Astrophysics Data System (ADS)

    Goodsell, Mark D.; Witkowski, Lukas T.

    2016-01-01

    We calculate non-perturbative contributions to Yukawa couplings on D3-branes at orbifold singularities due to E3 and fractional E(-1) instantons which do not intersect the visible sector branes. While distant E3 instantons on bulk cycles typically contribute to Yukawa couplings, we find that distant fractional E(-1) can also give rise to new Yukawa couplings. However, fractional E(-1) instantons only induce Yukawa couplings if they are located at a singularity which shares a collapsed homologous two-cycle with the singularity supporting the visible sector. The non-perturbative contributions to Yukawa couplings exhibit a different flavour structure than the tree-level Yukawa couplings and, as a result, they can be sources of flavour violation. This is particularly relevant for schemes of moduli stabilisation which rely on superpotential contributions from E3 instantons, such as KKLT or the Large Volume Scenario. As a byproduct of our analysis, we shed some new light on the properties of annulus diagrams with matter field insertions in stringy instanton calculus.

  5. Entropic gravity resulting from a Yukawa type of correction to the metric for a solar mass black hole

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Gkigkitzis, Ioannis

    2013-09-01

    There has been a renewed interest in the recent years in the possibility of deviations from the predictions of Newton's "inverse-square law" of universal gravitation. One of the reasons for renewing this interest lies in various theoretical attempts to construct a unified elementary particle theory, in which there is a natural prediction of new forces over macroscopic distances. In this paper we study the entropic gravity correction to the gravitational force on the horizon of a black hole whose metric has been modified by a Yukawa term. We find that the gravitational radius of such a black hole is given in-terms of the Lambert function, and the entropic force introduces a extra term that depends on the square of the coupling constant ? of the Yukawa potential. In the case alpha equals zero we recover the Newtonian gravitational force on the horizon. In a first effort to obtain a relation between geometry and information, we calculate the Ricci scalar and through entropy we establish a relation to the number of information N where this is given in nats. Finally, we calculate a critical entropy value as well as a critical information number N c for which the curvature becomes identically zero which implies that the space becomes flat.

  6. Coulomb branch localization in quiver quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ohta, Kazutoshi; Sasai, Yuya

    2016-02-01

    We show how to exactly calculate the refined indices of {N}=4U(1)× U(N) supersymmetric quiver quantum mechanics in the Coulomb branch by using the localization technique. The Coulomb branch localization is discussed from the viewpoint of both non-linear and gauged linear sigma models. A classification of fixed points in the Coulomb branch differs from one in the Higgs branch, but the derived indices completely agree with the results which were obtained by the localization in the Higgs branch. In the Coulomb branch localization, the refined indices can be written as a summation over different sets of the Coulomb branch fixed points. We also discuss a space-time picture of the fixed points in the Coulomb branch.

  7. PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Neilson, David; Senatore, Gaetano

    2009-05-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas, condensed matter and ultra-cold plasmas. One hundred and thirty participants came from twenty countries and four continents to participate in the conference. Those giving presentations were asked to contribute to this special issue to make a representative record of an interesting conference. We thank the International Advisory Board and the Programme Committee for their support and suggestions. We thank the Local Organizing Committee (Stefania De Palo, Vittorio Pellegrini, Andrea Perali and Pierbiagio Pieri) for all their efforts. We highlight for special mention the dedication displayed by Andrea Perali, by Rocco di Marco for computer support, and by our tireless conference secretary Fiorella Paino. The knowledgeable guided tour of the historic centre of Camerino given by Fiorella Paino was appreciated by many participants. It is no exaggeration to say that without the extraordinary efforts put in by these three, the conference could not have been the success that it was. For their sustained interest and support we thank Fulvio Esposito, Rector of the University of Camerino, Fabio Beltram, Director of NEST, Scuola Normale Superiore, Pisa, and Daniel Cox, Co-Director of ICAM, University of California at Davis. We thank the Institute of Complex and Adaptive Matter ICAM-I2CAM, USA for providing a video record of the conference on the web (found at http://sccs2008.df.unicam.it/). Finally we thank the conference sponsors for their very generous support: the University of Camerino, the Institute of Complex and Adaptive Matter ICAM-I2CAM, USA, the International Centre for Theoretical Physics ICTP Trieste, and CNR-INFM DEMOCRITOS Modeling Center for Research in Atomistic Simulation, Trieste. Participants at the International Conference on Strongly Coupled Coulomb Systems (SCCS) (University of Camerino, Italy, 29 July-2 August 2008).

  8. A Cartesian treecode for screened coulomb interactions

    NASA Astrophysics Data System (ADS)

    Li, Peijun; Johnston, Hans; Krasny, Robert

    2009-06-01

    A treecode algorithm is presented for evaluating electrostatic potentials in a charged particle system undergoing screened Coulomb interactions in 3D. The method uses a far-field Taylor expansion in Cartesian coordinates to compute particle-cluster interactions. The Taylor coefficients are evaluated using new recurrence relations which permit efficient computation of high order approximations. Two types of clusters are considered, uniform cubes and adapted rectangular boxes. The treecode error, CPU time and memory usage are reported and compared with direct summation for randomly distributed particles inside a cube, on the surface of a sphere and on an 8-sphere configuration. For a given order of Taylor approximation, the treecode CPU time scales as O (NlogN) and the memory usage scales as O (N) , where N is the number of particles. Results show that the treecode is well suited for non-homogeneous particle distributions as in the sphere and 8-sphere test cases.

  9. Controlling the electrostatic Coulomb interaction using metamaterials

    NASA Astrophysics Data System (ADS)

    Karakasoglu, Ilker; Fan, Shanhui

    2016-02-01

    We study electrostatic screening in two classes of metamaterials. The first class consists of a cubic array of metal cubes, which is known to give rise to a positive local dielectric function. We show that such a local positive dielectric function also correctly describes its electrostatic behavior. The second class consists of a variety of wire media that have a strong nonlocal response in their dielectric function. We show that in these wire media, the electrostatic potential generated by a point charge decays exponentially as a function of distance from the charge, and such an exponential screening is intrinsically related to the nonlocal behavior of the dielectric function. We also show, surprisingly, that the electrostatic behavior in some of these wire media is isotropic in spite of the strong anisotropy in the dielectric tensor. Our work here provides an understanding of how to geometrically control electrostatic screening and Coulomb interaction in metamaterials.

  10. Integral transform of the Coulomb Green's function by the Hankel function and off-shell scattering

    NASA Astrophysics Data System (ADS)

    Laha, U.; Bhoi, J.

    2013-12-01

    In the representation space approach a useful analytical expression for the integral transform of the Coulomb Green's function by the Hankel function is constructed via Sturmian representation of the bound-state Coulomb Green's function. This integral transform is exploited to construct off-shell Jost solutions for motion in Coulomb and Coulomb plus separable interactions in the maximal reduced form. The expressions for the corresponding off-shell T matrices are also constructed by using a modified relation between the off-shell physical solution and the T matrix that does not involve the potential explicitly. Finally, off-shell T matrices are computed to examine the role of the Coulomb interaction in proton-proton scattering in the 1S0 channel.

  11. Fermionic dark matter with pseudo-scalar Yukawa interaction

    SciTech Connect

    Ghorbani, Karim

    2015-01-01

    We consider a renormalizable extension of the standard model whose fermionic dark matter (DM) candidate interacts with a real singlet pseudo-scalar via a pseudo-scalar Yukawa term while we assume that the full Lagrangian is CP-conserved in the classical level. When the pseudo-scalar boson develops a non-zero vacuum expectation value, spontaneous CP-violation occurs and this provides a CP-violated interaction of the dark sector with the SM particles through mixing between the Higgs-like boson and the SM-like Higgs boson. This scenario suggests a minimal number of free parameters. Focusing mainly on the indirect detection observables, we calculate the dark matter annihilation cross section and then compute the DM relic density in the range up to m{sub DM} = 300 GeV.We then find viable regions in the parameter space constrained by the observed DM relic abundance as well as invisible Higgs decay width in the light of 125 GeV Higgs discovery at the LHC. We find that within the constrained region of the parameter space, there exists a model with dark matter mass m{sub DM} ∼ 38 GeV annihilating predominantly into b quarks, which can explain the Fermi-LAT galactic gamma-ray excess.

  12. Fermionic dark matter with pseudo-scalar Yukawa interaction

    NASA Astrophysics Data System (ADS)

    Ghorbani, Karim

    2015-01-01

    We consider a renormalizable extension of the standard model whose fermionic dark matter (DM) candidate interacts with a real singlet pseudo-scalar via a pseudo-scalar Yukawa term while we assume that the full Lagrangian is CP-conserved in the classical level. When the pseudo-scalar boson develops a non-zero vacuum expectation value, spontaneous CP-violation occurs and this provides a CP-violated interaction of the dark sector with the SM particles through mixing between the Higgs-like boson and the SM-like Higgs boson. This scenario suggests a minimal number of free parameters. Focusing mainly on the indirect detection observables, we calculate the dark matter annihilation cross section and then compute the DM relic density in the range up to mDM = 300 GeV.We then find viable regions in the parameter space constrained by the observed DM relic abundance as well as invisible Higgs decay width in the light of 125 GeV Higgs discovery at the LHC. We find that within the constrained region of the parameter space, there exists a model with dark matter mass mDM ~ 38 GeV annihilating predominantly into b quarks, which can explain the Fermi-LAT galactic gamma-ray excess.

  13. The Coulomb Barrier Transmission Coefficient in Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Hee

    This thesis mainly deals with the Coulomb wavefunctions and their applications in a nuclear fusion theory. When two charged particles come close they interact through a Coulomb potential. As solutions of a Schrodinger equation with the Coulomb potential, we construct the regular and irregular Coulomb wavefunctions. These are used to construct the exterior wavefunctions outside a nucleus that satisfy the boundary conditions at the nuclear surface. We also derive their recurrence relations and asymptotic forms. Some forms of the Coulomb wavefunctions are useful in analytic calculations but are cumbersome in most numerical calculations. A computer code is developed to calculate the values of the Coulomb wavefunctions using power series expansions. The Coulomb wavefunctions are used to calculate the transmission coefficient which plays a crucial role in the calculation of cross sections. Several methods are used to calculate the transmission coefficient in an attempt to fit experimental data both including and excluding a resonance peak. The conventional formula for the transmission coefficient, which is widely used, will be compared with our new formulae which include a realistic nuclear potential inside a nucleus. They provide information both at the nuclear surface and in the inside of the nucleus. Our new methods may be applied to the low energy nuclear fusion reactions involved in the magnetic confinement and inertial fusions and also in astrophysical problems. The results for the nuclear reactions, D(D, p)^3 He, D(D, n)T,^3 He(D, p)^4 He,T(D, n)^4 He, and ^7 Be(p, gamma)^8 B are presented. All the results are consistent with the conventional results within 10%. However, our newly formulated coefficient improve the nuclear reaction data analyses by producing good fits with less physical assumptions without an arbitrary fitting parameter. In this work we confine ourselves to S-waves assuming that the energies interested are low enough to insure our confinement. Finally, it is recommended to include several more angular momentum waves. By including higher angular momentum terms, more plausible fits for the experimental data are expected.

  14. Higgs-Yukawa model with higher dimension operators via extended mean field theory

    NASA Astrophysics Data System (ADS)

    Akerlund, Oscar; de Forcrand, Philippe

    2016-02-01

    Using extended mean field theory (EMFT) on the lattice, we study properties of the Higgs-Yukawa model as an approximation of the standard model Higgs sector, and the effect of higher dimension operators. We remark, as has been noted before, that the discussion of vacuum stability is completely modified in the presence of a ϕ6 term, and that the Higgs mass no longer appears fine tuned. We also study the finite temperature transition. Without higher dimension operators the transition is found to be second order (crossover with gauge fields) for the experimental value of the Higgs mass Mh=125 GeV . By taking a ϕ6 interaction in the Higgs potential as a proxy for a UV completion of the standard model, the transition becomes stronger and turns first order if the scale of new physics, i.e., the mass of the lightest mediator particle, is around 1.5 TeV. This implies that electroweak baryogenesis may be viable in models which introduce new particles around that scale.

  15. Critical fluctuations and anomalous transport in soft Yukawa-Langevin systems

    SciTech Connect

    Ratynskaia, S.; Regnoli, G.; Rypdal, K.; Klumov, B.; Morfill, G.

    2009-10-15

    Simulation of a Langevin-dynamics model demonstrates emergence of critical fluctuations and anomalous grain transport which have been observed in experiments on ''soft'' quasi-two-dimensional dusty plasma clusters. Our model does not contain external drive or plasma interactions that serve to drive the system away from thermodynamic equilibrium. The grains are confined by an external potential, interact via static Yukawa forces, and are subject to stochastic heating and dissipation from neutrals. One remarkable feature is emergence of leptokurtic probability distributions of grain displacements {xi}({tau}) on time scales {tau}<{tau}{sub {delta}}, where {tau}{sub {delta}} is the time at which the standard deviation {sigma}({tau}){identical_to}<{xi}{sup 2}({tau})>{sup 1/2} approaches the mean intergrain distance {delta}. Others are development of humps in the distributions on multiples of {delta}, anomalous Hurst exponents, and transitions from leptokurtic toward Gaussian displacement distributions on time scales {tau}>{tau}{sub {delta}}. The latter is a signature of intermittency, here interpreted as a transition from bursty transport associated with hopping on intermediate time scales to vortical flows on longer time scales. These intermittency features are quantitatively modeled by a single-particle Ito-Langevin stochastic equation with a nonlinear drift term.

  16. Coulomb gauge approach to scalar hadrons

    SciTech Connect

    Cotanch, Steve; General, Ignacio; Wang, Ping; Llanes-Estrada, Felipe

    2008-08-31

    The Coulomb gauge model, involving an effective QCD Hamiltonian in the Coulomb gauge, is applied to scalar hadrons. Mass predictions are presented for both conventional qq-bar meson and qq-barqq-bar tetra-quark states. Mixing matrix elements between these states were also computed and diagonalized to provide a reasonable description of the scalar spectrum below 2 GeV.

  17. Solution of two-body relativistic bound state equations with confining plus Coulomb interactions

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    Studies of meson spectroscopy have often employed a nonrelativistic Coulomb plus Linear Confining potential in position space. However, because the quarks in mesons move at an appreciable fraction of the speed of light, it is necessary to use a relativistic treatment of the bound state problem. Such a treatment is most easily carried out in momentum space. However, the position space Linear and Coulomb potentials lead to singular kernels in momentum space. Using a subtraction procedure we show how to remove these singularities exactly and thereby solve the Schroedinger equation in momentum space for all partial waves. Furthermore, we generalize the Linear and Coulomb potentials to relativistic kernels in four dimensional momentum space. Again we use a subtraction procedure to remove the relativistic singularities exactly for all partial waves. This enables us to solve three dimensional reductions of the Bethe-Salpeter equation. We solve six such equations for Coulomb plus Confining interactions for all partial waves.

  18. Structure of multi-component/multi-Yukawa mixtures

    NASA Astrophysics Data System (ADS)

    Blum, L.; Arias, M.

    2006-09-01

    Recent small angle scattering experiments reveal new peaks in the structure function S(k) of colloidal systems (Liu et al 2005 J. Chem. Phys. 122 044507), in a region that was inaccessible with older instruments. It has been increasingly evident that a single (or double) Yukawa MSA-closure cannot account for these observations, and three or more terms are needed. On the other hand the MSA is not sufficiently accurate (Broccio et al 2005 Preprint); more accurate theories such as the HNC have been tried. But while the MSA is asymptotically exact at high densities (Rosenfield and Blum 1986 J. Chem. Phys. 85 1556), it does not satisfy the low density asymptotics. This has been corrected in the soft MSA (Blum et al 1972 J. Chem. Phys. 56 5197, Narten et al 1974 J. Chem. Phys. 60 3378) by adding exponential type terms. The results compared to experiment and simulation for liquid sodium by Rahman and Paskin (as shown in Blum et al 1972 J. Chem. Phys. 56 5197) are remarkably good. We use here a general closure of the Ornstein-Zernike equation, which is not necessarily the MSA closure (Blum and Hernando 2001 Condensed Matter Theories vol 16 ed Hernandez and Clark (New York: Nova) p 411). \\begin{equation} \\fl c_{ij}(r)=\\sum_{n=1}^{M}{\\cal{K}}_{ij}^{(n)}\\rme^{-z_{n}r}/r\\tqs {\\cal{K}}_{ij}^{(n)}=K^{(n)}\\delta_{i}^{(n)}\\delta_{j}^{(n)}\\tqs r\\geq \\sigma_{ij} \\label{eq1} \\end{equation} with the boundary condition for gij(r) = 0 for r<=?ij. This general closure of the Ornstein-Zernike equation will go well beyond the MSA since it has been tested by Monte Carlo simulation for tetrahedral water (Blum et al 1999 Physica A 265 396), toroidal ion channels (Enriquez and Blum 2005 Mol. Phys. 103 3201) and polyelectrolytes (Blum and Bernard 2004 Proc. Int. School of Physics Enrico Fermi, Course CLV vol 155, ed Mallamace and Stanley (Amsterdam: IOS Press) p 335). For this closure we get for the Laplace transform of the pair correlation function an explicitly symmetric result \\begin{equation} \\fl 2 \\pi \\tilde{g}_{ij}(s)=-\\frac{\\rme^{-s \\sigma_{ij}}}{D_{\\tau}(s)} \\left\\{{1\\over s^2}+{1\\over s}Q^{\\prime}_{ij}(\\sigma_{ij})+\\sum_{m=1}^{M}{{ z_m \\tilde{\\cal{X}}}_i^{(m)}{f}_j^{(m)}\\over{s+z_m}}\\right\\}. \\label{eq2} \\end{equation} This function is also easily transformed into S(k) by replacing s\\Rightarrow \\rmi k . For low density situations (dilute colloids) D_{\\tau } (s)\\sim 1+{\\cal {O}(\\rho)} and S(k) is a sum of M Lorentzians. For hard sphere PY mixtures we get the simple (compare Lebowitz 1964 Phys. Rev. 133 A895 and Blum and Stell 1979 J. Chem. Phys. 71 42) \\[ 2 \\pi \\tilde{g}_{ij}(s)=-\\frac{\\rme^{-s \\sigma_{ij}}}{s^2 D_{\\tau}(s)} \\left\\{1+s\\left[(Q^{HS})^{\\prime}_{ij}(\\sigma_{ij})\\right]\\right\\} \\] where D?(s) is a scalar function. For polydisperse electrolytes in the MSA a simpler expression is also obtained (compare Blum and Hoye 1977 J. Phys. Chem. 81 1311). An explicit continued fraction solution of the one component multi-Yukawa case is also given.

  19. PREFACE: Strongly Coupled Coulomb Systems

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Golden, Kenneth I.; Norman, Genri E.

    2006-04-01

    This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS) which was held during the week of 20 24 June 2005 in Moscow, Russia. The Moscow conference was the tenth in a series of conferences. The previous conferences were organized as follows. 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (organized by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (organized by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, NY, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) After 1995 the name of the series was changed from `Strongly Coupled Plasmas' to the present name in order to extend the topics of the conferences. The planned frequency for the future is once every three years. The purpose of these conferences is to provide an international forum for the presentation and discussion of research accomplishments and ideas relating to a variety of plasma liquid and condensed matter systems, dominated by strong Coulomb interactions between their constituents. Strongly coupled Coulomb systems encompass diverse many-body systems and physical conditions. Each meeting has seen an evolution of topics and emphasis as new discoveries and new methods appear. This year, sessions were organized for invited presentations and posters on dense plasmas and warm matter, astrophysics and dense hydrogen, non-neutral and ultracold plasmas, dusty plasmas, condensed matter 2D and layered charged-particle systems, Coulomb liquids, and statistical theory of SCCS. Within each area new results from theory, simulations and experiments were presented. In addition, a special symposium was held one evening to explore the questions on high-energy-density matter generated by intense heavy ion beams and to discuss the outlook for applications to industry. As this special issue illustrates, the field remains vibrant and challenging, being driven to a great extent by new experimental tools and access to new strongly coupled conditions. This is illustrated by the inclusion of developments in the areas of warm matter, dusty plasmas, condensed matter and ultra-cold plasmas. In total, 200 participants from 17 countries attended the conference, including 42 invited speakers. The individuals giving presentations at the conference, including invited plenary and topical talks and posters, were asked to contribute to this special issue and most have done so. We trust that this special issue will accurately record the contents of the conference, and provide a valuable resource for researchers in this rapidly evolving field. We would like to thank the members of the International Advisory Board and all members of the Programme Committee for their contributions to the conference. Of course, nothing would have been possible without the dedicated efforts of the Local Organizing Committee, in particular Igor Morozov and Valery Sultanov. We wish to thank the Russian Academy of Sciences, the Institute for High Energy Densities, the Institute of Problems of Chemical Physics, the Moscow Institute of Physics and Technology, the Ministry of Education and Science of the Russian Federation, the Russian Foundation for Basic Research, the Moscow Committee of Science and Technologies, the Russian Joint Stock Company `Unified Energy System of Russia', and The International Association for the Promotion of Co-operation with Scientists from the New Independent States (NIS) of the Former Soviet Union for sponsoring this conference.

  20. Plane Wave and Coulomb Asymptotics

    NASA Astrophysics Data System (ADS)

    Mulligan, P. G.; Crothers, D. S. F.

    2004-01-01

    A simple plane wave solution of the Schrdinger Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f obeys unitarity and the optical theorem. By closely considering the standard asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J Leech et al, Phys. Rev. Lett. 88 257901 (2002)). The problem is resolved via non-uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.

  1. Quasi-localized wavefunctions on magnetized tori and tiny neutrino Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Sumita, Keigo

    2016-01-01

    This paper shows that, a quasi-localization of wavefunctions in toroidal compactifications with magnetic fluxes can lead to a strong suppression for relevant Yukawa couplings, and it is applicable to obtain tiny neutrino masses. Although it is known that magnetic fluxes lead to a Gaussian profile of zero-modes on a torus and that can yield a suppressed coupling in higher-dimensional supersymmetric Yang-Mills (SYM) theories, the largest (diagonal) entry of Yukawa matrices is always of O(1) . In this paper, we propose a way to induce an absolutely tiny global factor of Yukawa matrices. In two SYM theories defined in different dimensional spacetime, their bifundamental representations must be localized as a point in some directions. Overlaps of such point-like localized wavefunctions and Gaussian zero-modes give a global factor of Yukawa matrices, and it can be a strong suppression factor or a usual O(1) factor, corresponding to their distance. Our numerical analysis shows that it is possible to obtain a suppression strong enough to realize the tiny neutrino masses without a fine-tuning. Furthermore, we propose a concrete model in a magnetized SYM system and demonstrate the mechanism to generate the tiny neutrino Yukawa couplings.

  2. Quantum solution for the one-dimensional Coulomb problem

    SciTech Connect

    Nunez-Yepez, H. N.; Salas-Brito, A. L.; Solis, Didier A.

    2011-06-15

    The one-dimensional hydrogen atom has been a much studied system with a wide range of applications. Since the pioneering work of Loudon [R. Loudon, Am. J. Phys. 27, 649 (1959).], a number of different features related to the nature of the eigenfunctions have been found. However, many of the claims made throughout the years in this regard are not correct--such as the existence of only odd eigenstates or of an infinite binding-energy ground state. We explicitly show that the one-dimensional hydrogen atom does not admit a ground state of infinite binding energy and that the one-dimensional Coulomb potential is not its own supersymmetric partner. Furthermore, we argue that at the root of many such false claims lies the omission of a superselection rule that effectively separates the right side from the left side of the singularity of the Coulomb potential.

  3. Quantum solution for the one-dimensional Coulomb problem

    NASA Astrophysics Data System (ADS)

    Nez-Ypez, H. N.; Salas-Brito, A. L.; Solis, Didier A.

    2011-06-01

    The one-dimensional hydrogen atom has been a much studied system with a wide range of applications. Since the pioneering work of Loudon [R. Loudon, Am. J. Phys.AJPIAS0002-950510.1119/1.1934950 27, 649 (1959).], a number of different features related to the nature of the eigenfunctions have been found. However, many of the claims made throughout the years in this regard are not correctsuch as the existence of only odd eigenstates or of an infinite binding-energy ground state. We explicitly show that the one-dimensional hydrogen atom does not admit a ground state of infinite binding energy and that the one-dimensional Coulomb potential is not its own supersymmetric partner. Furthermore, we argue that at the root of many such false claims lies the omission of a superselection rule that effectively separates the right side from the left side of the singularity of the Coulomb potential.

  4. Optical spectra and intensities of graphene magnetic dot bound to a negatively charged Coulomb impurity

    SciTech Connect

    Lee, C. M. E-mail: apkschan@cityu.edu.hk; Chan, K. S. E-mail: apkschan@cityu.edu.hk

    2014-07-28

    Employing numerical diagonalization, we study the optical properties of an electron in a monolayer-graphene magnetic dot bound to an off-center negatively charged Coulomb impurity based on the massless Dirac-Weyl model. Numerical results show that, since the electron-hole symmetry is broken by the Coulomb potential, the optical absorption spectra of the magnetic dot in the presence of a Coulomb impurity are different between the electron states and the hole states. Effects of both the magnetic field and the dot size on the absorption coefficient are presented as functions of the incident photon energies.

  5. Unified analysis of multipole and finite-mass corrections in long-range Coulombic interactions

    NASA Technical Reports Server (NTRS)

    Au, C. K.

    1988-01-01

    Simple expressions are derived for all multipole nonadiabatic and finite-nuclear-mass corrections to the long-range effective potential due to two-Coulomb-photon exchange at threshold energy, and also for first-order energy corrections for the scattering between a spinles point charged particle and a spinless Coulombic complex and between two spinless Coulombic complexes. All these corrections are treated on equal footing, and the results are expressed, respectively, in terms of single-center and London-analog two-center atomic-multipole spectral sums.

  6. The One-Dimensional Soft-Coulomb Problem and the Hard-Coulomb Limit

    NASA Astrophysics Data System (ADS)

    Weatherford, Charles; Gebremedhin, Daniel

    2014-05-01

    A new and efficient way of evolving a solution to an ordinary differential equation is presented. A finite element method is used where we expand in a convenient local basis set of functions that enforce both function and first derivative continuity across the boundary. We also, for the first time, implement an adaptive step size choice for each element that is based on a Taylor series expansion. This algorithm is used to solve for the eigenpairs corresponding to the one-dimensional soft Coulomb potential, 1 /?{x2 +?2 } , which becomes numerically intractable as the softening parameter (?) approaches zero. We are able to maintain near machine accuracy for ? as low as ? =10-8 using 16 digit precision calculations. Our numerical results provide a new insight into the controversial one dimensional Hydrogen atom which is a limiting case of the soft Coulomb problem as ? --> 0 . CAW was supported by the Defense Threat Reduction Agency, and CAW and DG were both supported by the National Nuclear Security Agency.

  7. Magneto-Coulomb Oscillation in Ferromagnetic Single Electron Transistors

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroshi; Ono, Keiji; Ootuka, Youiti

    1998-04-01

    The mechanism of the magneto-Coulomb oscillation in ferromagnetic single electron transistors (SET's) is theoretically considered. Variations in the chemical potentials of the conduction electrons in the ferromagnetic island electrode and the ferromagnetic lead electrodes in magnetic fields cause changes in the free energy of the island electrode of the SET. This is a plausible origin of the conductance oscillation of the SET in sweeping an applied magnetic field.

  8. Poisson Green's function method for increased computational efficiency in numerical calculations of Coulomb coupling elements

    NASA Astrophysics Data System (ADS)

    Zimmermann, Anke; Kuhn, Sandra; Richter, Marten

    2016-01-01

    Often, the calculation of Coulomb coupling elements for quantum dynamical treatments, e.g., in cluster or correlation expansion schemes, requires the evaluation of a six dimensional spatial integral. Therefore, it represents a significant limiting factor in quantum mechanical calculations. If the size or the complexity of the investigated system increases, many coupling elements need to be determined. The resulting computational constraints require an efficient method for a fast numerical calculation of the Coulomb coupling. We present a computational method to reduce the numerical complexity by decreasing the number of spatial integrals for arbitrary geometries. We use a Green's function formulation of the Coulomb coupling and introduce a generalized scalar potential as solution of a generalized Poisson equation with a generalized charge density as the inhomogeneity. That enables a fast calculation of Coulomb coupling elements and, additionally, a straightforward inclusion of boundary conditions and arbitrarily spatially dependent dielectrics through the Coulomb Green's function. Particularly, if many coupling elements are included, the presented method, which is not restricted to specific symmetries of the model, presents a promising approach for increasing the efficiency of numerical calculations of the Coulomb interaction. To demonstrate the wide range of applications, we calculate internanostructure couplings, such as the Förster coupling, and illustrate the inclusion of symmetry considerations in the method for the Coulomb coupling between bound quantum dot states and unbound continuum states.

  9. Relativistic Coulomb scattering of spinless bosons

    NASA Astrophysics Data System (ADS)

    Garcia, M. G.; de Castro, A. S.

    2015-03-01

    The relativistic scattering of spin-0 bosons by spherically symmetric Coulomb fields is analyzed in detail with an arbitrary mixing of vector and scalar couplings. It is shown that the partial wave series reduces the scattering amplitude to the closed Rutherford formula exactly when the vector and scalar potentials have the same magnitude, and as an approximation for weak fields. The behavior of the scattering amplitude near the conditions that furnish its closed form is also discussed. Strong suppressions of the scattering amplitude when the vector and scalar potentials have the same magnitude are observed either for particles or antiparticles with low incident momentum. We point out that such strong suppressions might be relevant in the analysis of the scattering of fermions near the conditions for the spin and pseudospin symmetries. From the complex poles of the partial scattering amplitude the exact closed forms of bound-state solutions for both particles and antiparticles with different scenarios for the coupling constants are obtained. Perturbative breaking of the accidental degeneracy appearing in a pair of special cases is related to the nonconservation of the Runge-Lenz vector.

  10. Comparison of COULOMB-2, NASCAP-2k and SPIS codes for geostationary spacecrafts charging

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Makletsov, Andrei; Sinolits, Vadim

    In developing of international standards for spacecraft charging, it is necessary to compare results of spacecraft charging modeling obtained with various models. In the paper, electrical potentials for spacecraft 3D models were calculated with COULOMB-2, NASCAP-2k [1] and SPIS [2] software, and the comparison of obtained values was performed. To compare COULOMB-2 and NASCAP-2k codes we used a 3D geometrical model of a spacecraft given in [1]. Parameters of spacecraft surface materials were taken from [1], too. For COULOMB-2 and SPIS cross validation, we carried out calculations with SPIS code through SPENVIS web-interface and with COULOMB-2 software for a spacecraft geometrical model given in SPIS test examples [2]. In both cases, we calculated distributions of electric potentials on the spacecraft surface and visualized the obtained distributions with color code. Pictures of the surface potentials distribution calculated with COULOMB-2 and SPIS software are in good qualitative agreement. Absolute values of surface potentials calculated with these codes for different plasma conditions, are close enough. Pictures of the surface potentials distribution calculated for the spacecraft model [1] with COULOMB-2 software completely correspond to actual understanding of physical mechanisms of differential spacecraft surface charging. In this case, we compared only calculated values of the surface potential for the same space plasma conditions because the potential distributions on the spacecraft surface are absent in [1]. For all the plasma conditions considered, COULOMB-2 model gives higher absolute values of negative potential, than NASCAP-2k model. Differences in these values reach 2-3 kV. The possible explanations of the divergences indicated above are distinctions in calculation procedures of primary plasma currents and secondary emission currents. References 1. Ferguson D.?., Wimberly S.C. 51st AIAA Aerospace Science Meeting 2013 (AIAA 2013-0810). 2. http://dev.spis.org/projects/spine/home/spis

  11. Coulomb Excitation of 93Nb

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Yasukazu; Herskind, Bent; Hoshi, Masaharu

    1981-07-01

    Low-lying states of 93Nb have been studied by the Coulomb excitation with oxygen ions. Cross sections were measured for six levels at 774 keV (7/2+), 809 keV (5/2+), 950 keV (13/2+), 979 keV (11/2+), 1083 keV (9/2'+) and 1297 keV. The B(E2) values obtained from the gamma-ray singles spectra are 188 10 (9/2+?7/2+), 153 8 (9/2+?5/2+{'}), 236 13 (9/2+?13/2+), 186 10 (9/2+?11/2+), 30.6 2.1 (9/2+?9/2+{'}) and 40.1 4.0 (9/2+?the 1297 keV level) in the unit of e2\\cdotfm4, where 9/2+ denotes the ground state. Gamma-ray angular correlations were also measured and the spin and parity has been assigned as 9/2+ for the 1297 keV level. In addition, the excitation cross section of the first 2+ state for 92Zr was measured for comparison with the excited states of 93Nb. The deduced B(E2) value is 796 60 (0+?2+). Level properties are discussed and compared with the unified model and the quasi-particle shell model.

  12. Coulomb path'' interference in low energy He sup + + He collisions

    SciTech Connect

    Swenson, J.K. ); Burgdoerfer, J. ); Meyer, F.W.; Havener, C.C.; Gregory, D.C.; Stolterfoht, N. )

    1990-01-01

    A new interference mechanism, analogous to classic'' double-slit electron scattering, has been identified in low energy ion-atom collisions. This Coulomb path'' interference results from the existence of two trajectories, indistinguishable with respect to laboratory energy and emission angle, along which ejected autoionizing electrons may be scattered by the attractive Coulomb potential of the slowly receding spectator ion. We present a simple semi-classical model for this effect in which we account for the path dependence of the amplitude of the ejected electron following decay of the autoionizing state. Calculated model lineshapes are found to be in excellent agreement with strong angular dependence of the interference structure observed in the He target 2s{sup 2} {sup 1}S autoionizing lineshape measured near 0{degree} following 10 keV He{sup +} + He collisions.

  13. New summation rules for coulomb wave functions

    PubMed

    Chibisov; Ermolaev; Brouillard; Cherkani

    2000-01-17

    Sums of products of the Coulomb wave functions over degenerate manifolds have been obtained in a closed form. These sums appear in many atomic and molecular problems. The sums have been obtained making use of the properties of the Coulomb Green's function G(r, r('),E), in the limit E-->E(n), where E(n) is the eigenenergy of the hydrogenlike atomic ion. The closed Hostler-Pratt form of G in the coordinate representation has been used. The sums calculated are a consequence of the n degeneracy of the Coulomb atomic energy levels. This itself, as is well known, follows from the four-dimensional symmetry of the Coulomb problem for the hydrogen atom. PMID:11015936

  14. Quarks in Coulomb gauge perturbation theory

    SciTech Connect

    Popovici, C.; Watson, P.; Reinhardt, H.

    2009-02-15

    Coulomb gauge quantum chromodynamics within the first order functional formalism is considered. The quark contributions to the Dyson-Schwinger equations are derived and one-loop perturbative results for the two-point functions are presented.

  15. Crystallization in two-component Coulomb systems.

    PubMed

    Bonitz, M; Filinov, V S; Fortov, V E; Levashov, P R; Fehske, H

    2005-12-01

    The analysis of Coulomb crystallization is extended from one-component to two-component plasmas. Critical parameters for the existence of Coulomb crystals are derived for both classical and quantum crystals. In the latter case, a critical mass ratio of the two charged components is found, which is of the order of 80. Thus, holes in semiconductors with sufficiently flat valence bands are predicted to spontaneously order into a regular lattice. Such hole crystals are intimately related to ion Coulomb crystals in white dwarf and neutron stars as well as to ion crystals produced in the laboratory. A unified phase diagram of two-component Coulomb crystals is presented and is verified by first-principles computer simulations. PMID:16384315

  16. Coulomb crystallization of sympathetically cooled highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo Lpez-Urrutia, Jos R.

    2015-05-01

    Wave functions of inner-shell electrons significantly overlap with the nucleus, whereby enormously magnified relativistic, quantum electrodynamic (QED) and nuclear size effects emerge. In highly charged ions (HCI), the relative reduction of electronic correlations contributions improves the visibility of these effects. This well known facts have driven research efforts with HCI, yet the typically high temperatures at which these can be prepared in the laboratory constitutes a serious hindrance for application of laser spectroscopic methods. The solution for this, cooling HCI down to crystallization has remained an elusive target for more than two decades. By applying laser cooling to an ensemble of Be+ ions, we build Coulomb crystals that we use for stopping the motion of HCI and for cooling them. HCI, in this case Ar13+ ions are extracted from an electron beam ion trap with an energy spread of a few 100's of eV, due to the ion temperature within the trap. Carefully timed electric pulses in a potential-gradient decelerate and bunch the HCI. We achieve Coulomb crystallization of these HCI by re-trapping them in a cryogenic linear radiofrequency trap where they are sympathetically cooled through Coulomb interaction with the directly laser-cooled ensemble. Furthermore, we also demonstrate cooling of a single Ar13+ ion by a single Be+ ion, prerequisite for quantum logic spectroscopy with potentially 10-19 relative accuracy. The strongly suppressed thermal motion of the embedded HCI offers novel possibilities for investigation of questions related to the time variation of fundamental constants, parity non-conservation effects, Lorentz invariance and quantum electrodynamics. Achieving a seven orders-of-magnitude decrease in HCI temperature, from the starting point at MK values in the ion source down to the mK range within the Coulomb crystal eliminates the major obstacle for HCI investigation with high precision laser spectroscopy and quantum computation schemes.

  17. Recent developments in Coulomb breakup calculations

    SciTech Connect

    Capel, P.

    2008-05-12

    The theory of reactions applied to Coulomb breakup of loosely-bound projectiles is reviewed. Both the Continuum Discretized Coupled Channel (CDCC) and time-dependent models are described. Recent results about sensitivity of breakup calculations to the projectile wave function are reviewed. Analyses of the extraction of radiative-capture cross section from Coulomb breakup measurements are presented. Current developments in breakup theory are also mentioned.

  18. Laser Coulomb explosion imaging of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bocharova, Irina A.

    2009-11-01

    The goal of this dissertation project was to study the dynamics of nuclear motion in diatomic (H2, N2, O2, CO) and triatomic (CO2) molecules initiated by the ionization and/or excitation of these molecules with near-IR few-cycle laser pulses. This dynamics includes vibrational and rotational motion on the electronic potential surfaces of the molecules and their molecular ions. The experimental techniques used included the pump-probe approach, laser Coulomb explosion imaging and the COLTRIMS technique. The results are presented in four chapters. A study of rotational and vibrational nuclear dynamics in H2 and D2 molecules and ions initiated by 8 fs near-IR pulses is presented in Chapter 4. Transient alignment of the neutral molecules was observed and simulated; rotational frequency components contributing to the rotational wavepacket dynamics were recovered. Chapter 5 is dedicated to revealing the contribution of excited dissociative states of D2+ ions to the process of fragmentation by electron recollision. It was shown that it is possible to isolate the process of resonant excitation and estimate the individual contributions of the 2Sigmau+ and 2? u states. In Chapter 6 the subject of investigation is the nuclear dynamics of N2, O2 and CO molecules initiated by ionization of a neutral molecule by a short intense laser pulse. It was shown that the kinetic energy release of the Coulomb explosion fragments, measured as a function of the delay time between pump and probe pulses, reveals the behavior of nuclear wave packet evolution on electronic states of the molecular ions. It was shown that information on the dissociation and excitation pathways can be extracted from the experimental spectra and the relative contributions of particular electronic states can be estimated. Chapter 7 is focused on studying the fragmentation of CO2 following the interaction of this molecule with the laser field. The most important result of this study was that it presented direct experimental evidence of charge-resonant enhanced ionization (CREI), a phenomenon well-studied for diatomic molecules and predicted theoretically for triatomic molecules. The critical internuclear distance, the relevant ionic charge state and a pair of charge-resonant states responsible for the CREI were also found.

  19. Beyond the Rayleigh instability limit for multicharged finite systems: From fission to Coulomb explosion

    NASA Astrophysics Data System (ADS)

    Last, Isidore; Levy, Yaakov; Jortner, Joshua

    2002-07-01

    We address the stability of multicharged finite systems driven by Coulomb forces beyond the Rayleigh instability limit. Our exploration of the nuclear dynamics of heavily charged Morse clusters enabled us to vary the range of the pair potential and of the fissibility parameter, which results in distinct fragmentation patterns and in the angular distributions of the fragments. The Rayleigh instability limit separates between nearly binary (or tertiary) spatially unisotropic fission and spatially isotropic Coulomb explosion into a large number of small, ionic fragments. Implications are addressed for a broad spectrum of dynamics in chemical physics, radiation physics of ultracold gases, and biophysics, involving the fission of clusters and droplets, the realization of Coulomb explosion of molecular clusters, the isotropic expansion of optical molasses, and the Coulomb instability of "isolated" proteins.

  20. Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot

    PubMed Central

    Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2015-01-01

    Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs. PMID:26538164

  1. Yukawa hierarchies at the point of E 8 in F-theory

    NASA Astrophysics Data System (ADS)

    Marchesano, Fernando; Regalado, Diego; Zoccarato, Gianluca

    2015-04-01

    We analyse the structure of Yukawa couplings in local SU(5) F-theory models with E 8 enhancement. In this setting the E 8 symmetry is broken down to SU(5) by a 7-brane configuration described by T-branes, all the Yukawa couplings are generated in the vicinity of a point and only one family of quarks and leptons is massive at tree-level. The other two families obtain their masses when non-perturbative effects are taken into account, being hierarchically lighter than the third family. However, and contrary to previous results, we find that this hierarchy of fermion masses is not always appropriate to reproduce measured data. We find instead that different T-brane configurations breaking E 8 to SU(5) give rise to distinct hierarchical patterns for the holomorphic Yukawa couplings. Only some of these patterns allow to fit the observed fermion masses with reasonable local model parameter values, adding further constraints to the construction of F-theory GUTs. We consider an E 8 model where such appropriate hierarchy is realised and compute its physical Yukawas, showing that realistic charged fermions masses can indeed be obtained in this case.

  2. Yukawa coupling and anomalous magnetic moment of the muon: An update for the LHC era

    SciTech Connect

    Crivellin, Andreas; Girrbach, Jennifer; Nierste, Ulrich

    2011-03-01

    We study the interplay between a soft muon Yukawa coupling generated radiatively with the trilinear A-terms of the minimal supersymmetric standard model (MSSM) and the anomalous magnetic moment of the muon. In the absence of a tree-level muon Yukawa coupling the lightest smuon mass is predicted to be in the range between 600 GeV and 2200 GeV at 2{sigma}, if the bino mass M{sub 1} is below 1 TeV. Therefore, a detection of a smuon (in conjunction with a sub-TeV bino) at the LHC would directly imply a nonzero muon Yukawa coupling in the MSSM superpotential. Inclusion of slepton flavor mixing could in principle lower the mass of one smuonlike slepton below 600 GeV. However, the experimental bounds on radiative lepton decays instead strengthen the lower mass bound, with larger effects for smaller M{sub 1}, We also extend the analysis to the electron case and find that a light selectron close to the current experimental search limit may prove the MSSM electron Yukawa coupling to be nonzero.

  3. Coulomb-stable triply charged diatomic: HeY3+

    NASA Astrophysics Data System (ADS)

    Wesendrup, Ralf; Pernpointner, Markus; Schwerdtfeger, Peter

    1999-11-01

    Accurate relativistic coupled-cluster calculations show that the triply charged species HeY3+ is a stable molecule and represents the lightest diatomic trication that does not undergo a Coulomb fragmentation into charged fragments. The diatomic potential-energy curve is approximated by an extended Morse potential, and vibrational-rotational constants for HeY3+ are predicted (Re=224.3 pm, D0=0.394 eV, ?e=437 cm-1, ?exe=15.8 cm-1, Be=0.877 cm-1). It is further shown that the He-Y3+ bond can basically be described as a charge-induced dipole interaction.

  4. Coulomb problem with short-range interaction: exactly solvable model

    SciTech Connect

    Mur, V.D.; Popov, V.S.

    1986-05-01

    This paper considers the nonrelativistic Coulomb problem with short-range interaction. The strong potential is modeled by a delta-function interaction on a sphere r = r/sub 0/. Exact solutions to the Schroedinger equation are obtained for states with arbitrary angular momentum together with explicit analytic expressions for the scattering lengths, effective ranges, etc. The comparison of the exact solutions with the approximate formulas established earlier for arbitrary short-range potential makes it possible to determine the limits of applicability of these approximations.

  5. Exact SU(5) Yukawa matrix unification in the general flavour violating MSSM

    NASA Astrophysics Data System (ADS)

    Iskrzyński, Mateusz; Kowalska, Kamila

    2015-04-01

    We investigate the possibility of satisfying the SU(5) boundary condition Y d = Y eT at the GUT scale within the renormalizable R-parity conserving Minimal Supersymmetric Standard Model (MSSM). Working in the super-CKM basis, we consider non-zero flavour off-diagonal entries in the soft SUSY-breaking mass matrices and the A-terms. At the same time, the diagonal A-terms are assumed to be suppressed by the respective Yukawa couplings. We show that a non-trivial flavour structure of the soft SUSY-breaking sector can contribute to achieving precise Yukawa coupling unification for all three families, and that the relevant flavour-violating parameters are , , and A {12/21/ d }. We indicate the parameter space regions where the Yukawa unification condition can be satisfied, and we demonstrate that it is consistent with a wide set of experimental constraints, including flavour and electroweak observables, Higgs physics and the LHC bounds. However, as a consequence of the down-electron Yukawa unification requirement, the MSSM vacuum in our scenario is metastable, though long-lived. We also point out that the lightest neutralino needs to be almost purely bino-like and relatively light, with the mass in the ballpark of 250 GeV. Since the proper value of the dark matter relic density is in this case obtained through co-annihilation with a sneutrino, at least one generation of sleptons must be light. Such a clear experimental prediction makes the flavour-violating SU(5) Yukawa unification scenario fully testable at the LHC TeV with the 3-lepton searches for electroweakino production.

  6. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428

  7. Quantum magnetotransport in two-dimensional Coulomb liquids

    NASA Astrophysics Data System (ADS)

    Monarkha, Yu. P.; Teske, E.; Wyder, P.

    2002-11-01

    In this article we review recent progress in understanding of many-electron effects on the quantum magnetotransport in two-dimensional (2D) Coulomb liquids in which the interaction potential energy per electron can be approximately a hundred times larger than the mean kinetic energy. The conventional Fermi-liquid approach based on the introduction of weakly interacting excitations being not applicable, it is remarkable that a quantitative theoretical description of the equilibrium and transport properties of the 2D Coulomb liquid appears to be possible. An account of basic properties of the strongly interacting 2D electron system under magnetic field realized on a free surface of liquid helium is given. Due to the high magnetic field applied perpendicular to the system, the electron liquid constituted of strongly interacting electrons can be described as a collection of statistically independent electrons, each of them having the discrete Landau spectrum in a local reference frame moving ultra-fast with regard to the center-of-mass frame of the entire electron liquid. We found it surprising that the narrowing of Landau levels induced by Coulomb forces in local frames is accompanied by a strong Coulomb broadening of the electron dynamical structure factor (DSF) in the laboratory reference frame. We discuss in detail the magnetotransport theories in two-dimensions, especially the force-balance equation method and the memory function formalism which allow to reduce the electron transport problem to the description of the equilibrium electron DSF. We show that the whole body of the DC magnetoconductivity and cyclotron resonance absorption data measured and reported within the last two decades (even previously conflicting with theory) can be very well described by means of a simple model for the electron DSF entering the imaginary part of the memory function or the effective collision frequency of the electrons.

  8. Impact of a four-zero Yukawa texture on h ? ?? and ?Z in the framework of the Two Higgs Doublet Model Type III

    NASA Astrophysics Data System (ADS)

    Cordero-Cid, A.; Hernndez-Snchez, J.; Honorato, C. G.; Moretti, S.; Prez, M. A.; Rosado, A.

    2014-07-01

    We study the substantial enhancement, with respect to the corresponding Standard Model rates, that can be obtained for the branching ratios of the decay channels h ? ?? and h ? ?Z within the framework of the Two Higgs Doublet Model Type III, assuming a four-zero Yukawa texture and a general Higgs potential. We show that these processes are very sensitive to the flavor pattern entering the Yukawa texture and to the triple coupling structure of the Higgs potential, both of which impact onto the aforementioned decays. We can accommodate the parameters of the model in such a way to obtain the h ? ?? rates reported by the Large Hadron Collider and at the same time we get a h ? ?Z fraction much larger than in the Standard Model, indeed within experimental reach. We present some scenarios where this phenomenology is realized for spectrum configurations that are consistent with current constraints. We also discuss the possibility of obtaining a light charged Higgs boson compatible with all such measurements, thereby serving the purpose of providing a hallmark signal of the scenario considered.

  9. Coulombic effect and renormalization in nuclear pairing

    SciTech Connect

    Nakada, H.; Yamagami, M.

    2011-03-15

    We investigate the effects of the Coulomb force on the nuclear pairing properties by performing the Gogny Hartree-Fock-Bogolyubov calculations for the N=20, 28, 50, 82, and 126 nuclei. The Coulomb force reduces the proton pair energy and the even-odd mass difference by about 25%, except for nuclei at and around the proton shell or subshell closure. We then propose a renormalization scheme via a reduction factor {gamma}{sub p} for the proton pairing channel. It is found that a single value {gamma}{sub p}=0.90 accounts well for the Coulombic effect for nuclei covering a wide range of the mass number and the neutron excess, including the nuclei around the shell or subshell closure.

  10. Coulomb interaction effects on the Majorana states in quantum wires.

    PubMed

    Manolescu, A; Marinescu, D C; Stanescu, T D

    2014-04-30

    The stability of the Majorana modes in the presence of a repulsive interaction is studied in the standard semiconductor wire-metallic superconductor configuration. The effects of short-range Coulomb interaction, which is incorporated using a purely repulsive ?-function to model the strong screening effect due to the presence of the superconductor, are determined within a Hartree-Fock approximation of the effective Bogoliubov-De Gennes Hamiltonian that describes the low-energy physics of the wire. Through a numerical diagonalization procedure we obtain interaction corrections to the single particle eigenstates and calculate the extended topological phase diagram in terms of the chemical potential and the Zeeman energy. We find that, for a fixed Zeeman energy, the interaction shifts the phase boundaries to a higher chemical potential, whereas for a fixed chemical potential this shift can occur either at lower or higher Zeeman energies. These effects can be interpreted as a renormalization of the g-factor due to the interaction. The minimum Zeeman energy needed to realize Majorana fermions decreases with the increasing strength of the Coulomb repulsion. Furthermore, we find that in wires with multi-band occupancy this effect can be enhanced by increasing the chemical potential, i.e. by occupying higher energy bands. PMID:24722427

  11. The Aharonov-Bohm-Coulomb problem in a graphene ring

    NASA Astrophysics Data System (ADS)

    Jung, Eylee; Hwang, Mi-Ra; Park, Chang-Soo; Park, DaeKil

    2012-02-01

    We study the Aharonov-Bohm-Coulomb problem in a graphene ring. We investigate, in particular, the effects of a Coulomb-type potential of the form ?/r on the energy spectrum of Dirac electrons in the graphene ring in two different ways: one for the scalar coupling and the other for the vector coupling. It is found that, since the potential in the scalar coupling breaks the time-reversal symmetry (TRS) between the two valleys as well as the effective TRS in a single valley, the energy spectrum of one valley is separated from that of the other valley, demonstrating a valley polarization. In the vector coupling, however, the potential does not break either of the two symmetries and its effect appears only as an additive constant to the spectrum of the Aharonov-Bohm potential. The corresponding persistent currents, the observable quantities of the symmetry-breaking energy spectra, are shown to be asymmetric about zero magnetic flux in the scalar coupling, while symmetric in the vector coupling.

  12. Small Yukawa couplings from type-I string theory and the inflationary solution to the strong CP and ? problems

    NASA Astrophysics Data System (ADS)

    Eyton-Williams, Oliver J.; King, Steve F.

    2005-06-01

    We investigate the origin of phenomenologically interesting small Yukawa couplings in type-I string theory. Utilising the framework of intersecting sets of D9 and orthogonal D5 branes we demonstrate the connection between extra dimensional volumes and Yukawa couplings. For example, we show that extra dimensions with inverse lengths of 108 GeV can lead to 10-10 Yukawa couplings. String selection rules, arising from the D-Brane setup, impose non-trivial constraints on the set of allowed superpotentials. As a phenomenological application of these results we construct a type-I string model of inflationary particle physics which involves small Yukawa couplings of order 10-10, and simultaneously solves the strong CP and ? problem of the MSSM, via the vacuum expectation value of the inflaton field.

  13. Rectifying behavior in Coulomb blockades: charging rectifiers.

    PubMed

    Stopa, M

    2002-04-01

    We introduce examples of tunneling and diffusive, Coulomb-regulated rectifiers based on the Coulomb blockade formalism in discrete and continuum systems, respectively. Nonlinearity of the interacting dynamics profoundly enhances the inherent asymmetry of the devices by reducing the Hilbert space of accessible states. The discrete charging rectifier is structurally similar to hybrid molecular electronic rectifiers, while the continuum-charging rectifier is based on a model of ionic flow through a pore (ion channel) with an artificial branch. The devices are formally related to ratchet systems with spatial periodicity replaced by a winding number: the current. PMID:11955166

  14. Coulomb force as an entropic force

    SciTech Connect

    Wang Tower

    2010-05-15

    Motivated by Verlinde's theory of entropic gravity, we give a tentative explanation to the Coulomb's law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb's law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.

  15. Coulomb explosion of a heated cluster

    NASA Astrophysics Data System (ADS)

    Novikov, V. N.; Brantov, A. V.; Bychenkov, V. Yu.; Kovalev, V. F.

    2008-11-01

    Coulomb explosion of a charged, nonuniform, and spherically symmetric cluster with a finite ion temperature is investigated. The spatial distributions of the density and mean velocity of accelerated ions, as well as their energy spectra, are obtained and analyzed as functions of the initial temperature. It is shown that taking into account the finite ion temperature eliminates singularities emerging during a Coulomb explosion of a spatially nonuniform cold cluster due to multistream ion motion that arises after breaking the velocity profile of the cluster ions. The characteristic temperature is found above which the spatial distribution and energy spectrum of the expanding ions become regular.

  16. Reactions of halo states: Coulomb excitations

    SciTech Connect

    Esbensen, H.

    1997-09-01

    Coulomb dissociation is a relatively clean probe of the structures of one- and two-nucleon halo nuclei. This is illustrated by the breakup of {sup 11}Be, {sup 8}B and {sup 11}Li and is discussed in terms of first order perturbation theory. First-order dipole transitions usually dominate the Coulomb dissociation but quadrupole transitions are not insignificant for a proton halo (e.g. {sup 8}B). Higher-order processes can also distort the observables, such as the momentum distributions of the fragments and the excitation energy spectrum.

  17. Coulomb collisions in the solar wind

    NASA Technical Reports Server (NTRS)

    Klein, L. W.; Ogilvie, K. W.; Burlaga, L. F.

    1985-01-01

    A major improvement of the present investigation over previous studies of the subject is related to the use of helium temperatures obtained from helium ion measurements uncontaminated by the high-velocity tail of the proton distribution. More observations, covering a large parameter range, were employed, and the effects of interspecies drift were taken into account. It is shown in a more definite way than has been done previously, that Coulomb collisions provide the most important mechanism bringing about equilibrium between helium and protons in the solar wind. Other mechanisms may play some part in restricted regions, but Coulomb collisions are dominant on the macroscale.

  18. The Legacy of Hideki Yukawa, Sin-itiro Tomonaga, and Shoichi Sakata: Some Aspects from their Archives

    NASA Astrophysics Data System (ADS)

    Konuma, Michiji; Bando, Masako; Gotoh, Haruyoshi; Hayakawa, Hisao; Hirata, Kohji; Ito, Kazuyuki; Ito, Kenji; Kanaya, Kazuyuki; Konagaya, Daisuke; Kugo, Taichiro; Namba, Chusei; Nishitani, Tadashi; Takaiwa, Yoshinobu; Tanabashi, Masaharu; Tanaka, Kio; Tanaka, Sho; Ukegawa, Fumihiko; Yoshikawa, Tadashi

    Hideki Yukawa, Sin-itiro Tomonaga and Shoichi Sakata pioneered nuclear and particle physics and left enduring legacies. Their friendly collaboration and severe competition laid the foundation to bring up the active postwar generation of nuclear and particle physicists in Japan. In this presentation we illustrate milestones of nuclear and particle physics in Japan from 1930's to mid-1940's which have been clarified in Yukawa Hall Archival Library, Tomonaga Memorial Room and Sakata Memorial Archival Library.

  19. A Practical Method of Solving Cutoff Coulomb Problems in Momentum Space --- Application to the Lippmann-Schwinger Resonating-Group Method and the pd Elastic Scattering ---

    NASA Astrophysics Data System (ADS)

    Fujiwara, Y.; Fukukawa, K.

    2012-08-01

    A practical method of solving cutoff Coulomb problems of two-cluster systems in momentum space is given. When a sharply cut-off Coulomb force with a cutoff radius ? is introduced at the level of constituent particles, the two-cluster direct potential of the Coulomb force becomes in general a local screened Coulomb potential. The asymptotic Hamiltonian yields two types of asymptotic waves; one is an approximate Coulomb wave with ? in the middle-range region, and the other a free (no-Coulomb) wave in the longest-range region. The constant Wronskians of this Hamiltonian can be calculated in either region. We can evaluate the Coulomb-modified nuclear phase shifts for the screened Coulomb problem using the matching condition proposed by Vincent and Phatak for the sharply cut-off Coulomb problem. We apply this method first to an exactly solvable model of the ? ? scattering with the Ali-Bodmer potential and confirm that a complete solution is obtained with a finite ?. The stability of nuclear phase shifts with respect to the change in ? within some appropriate range is demonstrated in the ? ? resonating-group method (RGM) calculation using the Minnesota three-range force. An application to the pd elastic scattering is also discussed.

  20. Yukawa couplings in string theory: the case for F-theory GUT's

    NASA Astrophysics Data System (ADS)

    Font, Anamaría

    2015-11-01

    We study the pattern of Yukawa couplings in local F-theory SU(5) GUT's. Couplings for the third family of quarks and leptons appear at the perturbative level, but to reproduce the observed couplings for the lighter families requires non-perturbative dynamics. We show that corrections due to instanton effects do lead to a Yukawa matrix with a hierarchical structure. Our results apply to both down-like and up- like 10 × 10 × 5 couplings. The models include magnetic fluxes needed for a chiral spectrum and for symmetry breaking down to the Standard Model. We compute the holomorphic couplings via residues and then obtain the physical couplings taking into account the normalization of wavefunction profiles. Combining non-perturbative corrections and magnetic fluxes allows to fit the measured masses and hierarchies of the third and second generations in the Standard Model.

  1. On the estimation of sound speed in two-dimensional Yukawa fluids

    NASA Astrophysics Data System (ADS)

    Semenov, I. L.; Khrapak, S. A.; Thomas, H. M.

    2015-11-01

    The longitudinal sound speed in two-dimensional Yukawa fluids is estimated using the conventional hydrodynamic expression supplemented by appropriate thermodynamic functions proposed recently by Khrapak et al. [Phys. Plasmas 22, 083706 (2015)]. In contrast to the existing approaches, such as quasi-localized charge approximation (QLCA) and molecular dynamics simulations, our model provides a relatively simple estimate for the sound speed over a wide range of parameters of interest. At strong coupling, our results are shown to be in good agreement with the results obtained using the QLCA approach and those derived from the phonon spectrum for the triangular lattice. On the other hand, our model is also expected to remain accurate at moderate values of the coupling strength. In addition, the obtained results are used to discuss the influence of the strong coupling effects on the adiabatic index of two-dimensional Yukawa fluids.

  2. Coevolution of inverse cascade and nonlinear heat front in shear flows of strongly coupled Yukawa liquids

    SciTech Connect

    Ashwin, J.; Ganesh, R.

    2011-08-15

    Using classical molecular dynamics (MD) simulations, we report on the development and propagation of a nonlinear heat front in parallel shear flows of a strongly coupled Yukawa liquid. At a given coupling strength, a subsonic shear profile is superposed on an equilibrated Yukawa liquid and Kelvin Helmholtz (KH) instability is observed. Coherent vortices are seen to emerge towards the nonlinear regime of the instability. It is seen that while inverse cascade leads to a continuous transfer of flow energy towards the largest scales, there is also a simultaneous transfer of flow energy into the thermal velocities of grains at the smallest scale. The latter is an effect of velocity shear and thus leads to the generation of a nonlinear heat front. In the linear regime, the heat front is seen to propagate at speed much lesser than the adiabatic sound speed of the liquid. Spatio-temporal growth of this heat front occurs concurrently with the inverse cascade of KH modes.

  3. Two-loop electroweak threshold corrections to the bottom and top Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Kniehl, Bernd A.; Veretin, Oleg L.

    2014-08-01

    We study the relationship between the MSbar Yukawa coupling and the pole mass for the bottom and top quarks at the two-loop electroweak order O(?2) in the gaugeless limit of the standard model. We also consider the MSbar to pole mass relationships at this order, which include tadpole contributions to ensure the gauge independence of the MSbar masses. In order to suppress numerically large tadpole contributions, we propose a redefinition of the running heavy-quark mass in terms of the MSbar Yukawa coupling. We also present ?r in the MSbar scheme at O(?2) in the gaugeless limit. As an aside, we also list the exact two-loop expression for the mass counterterms of the bottom and top quarks.

  4. Remarkable coincidence for the top Yukawa coupling and an approximately massless bound state

    SciTech Connect

    Froggatt, C. D.; Nielsen, H. B.

    2009-08-01

    We calculate, with several corrections, the nonrelativistic binding by Higgs exchange and gluon exchange between six top and six antitop quarks (actually replaced by left-handed b quarks from time to time). The remarkable result is that, within our calculational accuracy of the order of 14% in the top-quark Yukawa coupling g{sub t}, the experimental running top-quark Yukawa coupling g{sub t}=0.935 happens to have just that value which gives a perfect cancellation of the unbound mass=12 top-quark masses by this binding energy. In other words the bound state is massless to the accuracy of our calculation. Our calculation is in disagreement with a similar calculation by Kuchiev et al., but this deviation may be explained by a phase transition. We and Kuchiev et al. compute on different sides of this phase transition.

  5. Yukawa effects on the clock onboard a drag-free satellite

    NASA Astrophysics Data System (ADS)

    Deng, Xue-Mei; Xie, Yi

    2013-06-01

    The Yukawa correction to the Newtonian gravitational force is accepted as a parametrization of deviations from the inverse-square law of gravity which might be caused by new physics beyond the standard model of particles and the general theory of relativity. We investigate these effects on the clock onboard a drag-free satellite: dynamics of the satellite and influence on the time transfer link. We find that the Yukawa signal in the time transfer is much more difficult to detect with the current state of clocks than those effects on the dynamics, especially the secular change of periastron, by laser ranging in the case of an artificial Earth satellite carrying a frequency standard with an orbit of a = 107 m and e = 0.01.

  6. Evolution of Yukawa couplings and quark flavor mixings in two universal extra dimension models

    NASA Astrophysics Data System (ADS)

    Abdalgabar, Ammar; Cornell, A. S.; Deandrea, Aldo; Tarhini, Ahmad

    2013-09-01

    The evolution equations of the Yukawa couplings and quark mixings are derived for the one-loop renormalization group equations in six-dimensional models, compactified in different possible ways to yield standard four space-time dimensions. Different possibilities for the matter fields are also discussed, such as the case of bulk propagating or brane localized fields. We discuss in both cases the evolution of the Yukawa couplings, the Jarlskog parameter and the Cabibbo-Kobayashi-Maskawa matrix element, and find that for both scenarios, as we run up to the unification scale, significant renormalization group corrections are present. We also discuss the results of different observables of the five-dimensional universal extra dimension model in comparison with these six-dimensional models and the model dependence of the results.

  7. Dynamics of DNA breathing: Weak noise analysis, finite time singularity, and mapping onto the quantum Coulomb problem

    NASA Astrophysics Data System (ADS)

    Fogedby, Hans C.; Metzler, Ralf

    2007-12-01

    We study the dynamics of denaturation bubbles in double-stranded DNA on the basis of the Poland-Scheraga model. We show that long time distributions for the survival of DNA bubbles and the size autocorrelation function can be derived from an asymptotic weak noise approach. In particular, below the melting temperature the bubble closure corresponds to a noisy finite time singularity. We demonstrate that the associated Fokker-Planck equation is equivalent to a quantum Coulomb problem. Below the melting temperature, the bubble lifetime is associated with the continuum of scattering states of the repulsive Coulomb potential; at the melting temperature, the Coulomb potential vanishes and the underlying first exit dynamics exhibits a long time power law tail; above the melting temperature, corresponding to an attractive Coulomb potential, the long time dynamics is controlled by the lowest bound state. Correlations and finite size effects are discussed.

  8. Dynamics of DNA breathing: weak noise analysis, finite time singularity, and mapping onto the quantum Coulomb problem.

    PubMed

    Fogedby, Hans C; Metzler, Ralf

    2007-12-01

    We study the dynamics of denaturation bubbles in double-stranded DNA on the basis of the Poland-Scheraga model. We show that long time distributions for the survival of DNA bubbles and the size autocorrelation function can be derived from an asymptotic weak noise approach. In particular, below the melting temperature the bubble closure corresponds to a noisy finite time singularity. We demonstrate that the associated Fokker-Planck equation is equivalent to a quantum Coulomb problem. Below the melting temperature, the bubble lifetime is associated with the continuum of scattering states of the repulsive Coulomb potential; at the melting temperature, the Coulomb potential vanishes and the underlying first exit dynamics exhibits a long time power law tail; above the melting temperature, corresponding to an attractive Coulomb potential, the long time dynamics is controlled by the lowest bound state. Correlations and finite size effects are discussed. PMID:18233877

  9. Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Knig, Matthias; Neubert, Matthias

    2015-08-01

    We present a detailed analysis of the rare exclusive Higgs boson decays into a single vector meson and a photon and investigate the possibility of using these processes to probe the light-quark Yukawa couplings. We work with an effective Lagrangian with modified Higgs couplings to account for possible new-physics effects in a model-independent way. The h ? V? decay rate is governed by the destructive interference of two amplitudes, one of which involves the Higgs coupling to the quark anti-quark pair inside the vector meson. We derive this amplitude at next-to-leading order in ? s using QCD factorization, including the resummation of large logarithmic corrections and accounting for the effects of flavor mixing. The high factorization scale ? m h ensures that our results are rather insensitive to the hadronic parameters characterizing the light-cone distribution amplitude of the vector meson. The second amplitude arises from the loop-induced effective h?? * and h?Z * couplings, where the off-shell gauge boson converts into the vector meson. We devise a strategy to eliminate theoretical uncertainties related to this amplitude to almost arbitrary precision. This opens up the possibility to probe for modifications of the c- and b-quark Yukawa couplings and modifications of the s-quark Yukawa coupling in the high-luminosity LHC run. In particular, we show that measurements of the ratios Br( h ? ?( nS) ?)/Br( h ? ??) and can provide complementary information on the real and imaginary parts of the b-quark Yukawa coupling. More accurate measurements would be possible at a future 100 TeV proton-proton collider.

  10. Evolution of Yukawa Couplings and Quark Flavour Mixings in the 5D MSSM

    NASA Astrophysics Data System (ADS)

    Abdalgabar, Ammar; Cornell, A. S.

    2013-08-01

    The evolution equations of the Yukawa couplings and quark mixings are derived for the one-loop renormalization group equations in the 5D Minimal Supersymmetric Standard Model on an S1/Z2 orbifold. Different possibilities for the matter fields are discussed such as the cases of bulk propagating or brane localised fields. We discuss in both cases the evolution of the mass ratios and the implications for the mixing angles.

  11. Coulombic Effects on Ion Mobility Spectrometry

    SciTech Connect

    Tolmachev, Aleksey V.; Clowers, Brian H.; Belov, Mikhail E.; Smith, Richard D.

    2009-06-15

    The ion mobility spectrometry (IMS) is now taking its place among widely applied analytical methods. When coupled with mass spectrometers (MS), IMS becomes a powerful analytical tool for separating complex samples and investigating molecular structure, and improvements of IMS-MS instrumentation, e.g. to IMS resolving power and sensitivity, are highly desirable. Implementation of an ion trap for accumulation and pulsed ion injection to IMS based on the ion funnel has provided considerably increased ion currents, and thus a basis for improved sensitivity and (indirectly) measurement throughput. However, large ion populations may manifest Coulombic effects contributing to the spatial dispersion of ions traveling in the IMS drift tube, and thus affect IMS resolving power. In this study we present an analysis of Coulombic effects on IMS resolution. Basic relationships have been obtained for the spatial evolution of ion packets due to Coulombic repulsion. The theoretical relationships were compared with results of a computer model that simulates IMS operation based on a first principles approach. Initial experimental results reported here are consistent with the computer modeling and these relationships. A noticeable decrease of the IMS resolving power was observed for specific ion populations of >10,000 elementary charges. IMS operation conditions to minimize Coulombic effects, while minimizing sacrifices to performance, are discussed.

  12. Boltzmann-Langevin theory of Coulomb drag

    NASA Astrophysics Data System (ADS)

    Chen, W.; Andreev, A. V.; Levchenko, A.

    2015-06-01

    We develop a Boltzmann-Langevin description of the Coulomb drag effect in clean double-layer systems with large interlayer separation d as compared to the average interelectron distance ?F. Coulomb drag arises from density fluctuations with spatial scales of order d . At low temperatures, their characteristic frequencies exceed the intralayer equilibration rate of the electron liquid, and Coulomb drag may be treated in the collisionless approximation. As temperature is raised, the electron mean free path becomes short due to electron-electron scattering. This leads to local equilibration of electron liquid, and consequently drag is determined by hydrodynamic density modes. Our theory applies to both the collisionless and the hydrodynamic regimes, and it enables us to describe the crossover between them. We find that drag resistivity exhibits a nonmonotonic temperature dependence with multiple crossovers at distinct energy scales. At the lowest temperatures, Coulomb drag is dominated by the particle-hole continuum, whereas at higher temperatures of the collision-dominated regime it is governed by the plasmon modes. We observe that fast intralayer equilibration mediated by electron-electron collisions ultimately renders a stronger drag effect.

  13. Coulomb's Electrical Measurements. Experiment No. 14.

    ERIC Educational Resources Information Center

    Devons, Samuel

    Presented is information related to the life and work of Charles Coulomb as well as detailed notes of his measurements of the distribution of electricity on conductors. The two methods that he used (the large torsion balance, and the timing of "force" oscillations) are described. (SA)

  14. Thermodynamic Theory of Spherically Trapped Coulomb Clusters

    NASA Astrophysics Data System (ADS)

    Wrighton, Jeffrey; Dufty, James; Bonitz, Michael; K"{A}Hlert, Hanno

    2009-11-01

    The radial density profile of a finite number of identical charged particles confined in a harmonic trap is computed over a wide ranges of temperatures (Coulomb coupling) and particle numbers. At low temperatures these systems form a Coulomb crystal with spherical shell structure which has been observed in ultracold trapped ions and in dusty plasmas. The shell structure is readily reproduced in simulations. However, analytical theories which used a mean field approachfootnotetext[1]C. Henning et al., Phys. Rev. E 74, 056403 (2006) or a local density approximationfootnotetext[2]C. Henning et al., Phys. Rev. E 76, 036404 (2007) have, so far, only been able to reproduce the average density profile. Here we present an approach to Coulomb correlations based on the hypernetted chain approximation with additional bridge diagrams. It is demonstrated that this model reproduces the correct shell structure within a few percent and provides the basis for a thermodynamic theory of Coulomb clusters in the strongly coupled fluid state.footnotetext[3]J. Wrighton, J.W. Dufty, H. K"ahlert and M. Bonitz, J. Phys. A 42, 214052 (2009) and Phys. Rev. E (2009) (to be submitted)

  15. Numerical experiment of thermal conductivity in two-dimensional Yukawa liquids

    NASA Astrophysics Data System (ADS)

    Shahzad, Aamir; He, Mao-Gang

    2015-12-01

    A newly improved homogenous nonequilibrium molecular dynamics simulation (HNEMDS) method, proposed by the Evans, has been used to compute the thermal conductivity of two-dimensional (2D) strongly coupled complex (dusty) plasma liquids (SCCDPLs), for the first time. The effects of equilibrium external field strength along with different system sizes and plasma states (?, ?) on the thermal conductivity of SCCDPLs have been calculated using an enhanced HNEMDS method. A simple analytical temperature representation of Yukawa 2D thermal conductivity with appropriate normalized frequencies (plasma and Einstein) has also been calculated. The new HNEMDS algorithm shows that the present method provides more accurate results with fast convergence and small size effects over a wide range of plasma states. The presented thermal conductivity obtained from HNEMDS method is found to be in very good agreement with that obtained through the previously known numerical simulations and experimental results for 2D Yukawa liquids (SCCDPLs) and with the three-dimensional nonequilibrium molecular dynamics simulation (MDS) and equilibrium MDS calculations. It is shown that the HNEMDS algorithm is a powerful tool, making the calculations very efficient and can be used to predict the thermal conductivity in 2D Yukawa liquid systems.

  16. Neutralino dark matter and other LHC predictions from quasi Yukawa unification

    NASA Astrophysics Data System (ADS)

    Shafi, Qaisar; Tany?ld?z?, ?kr Hanif; n, Cem Salih

    2015-11-01

    We explore the dark matter and LHC implications of t - b - ? quasi Yukawa unification in the framework of supersymmetric models based on the gauge symmetry G = SU (4)c SU (2)L SU (2)R. The deviation from exact Yukawa unification is quantified by a dimensionless parameter C (| C | ? 0.2), such that the Yukawa couplings at MGUT are related by yt :yb :y? = | 1 + C | : | 1 - C | : | 1 + 3 C |. In contrast to earlier studies which focused on universal gaugino masses, we consider non-universal gaugino masses at MGUT that are compatible with the gauge symmetry G. Our results reveal a variety of neutralino dark matter scenarios consistent with the observations. These include stau and chargino coannihilation scenarios, the A-resonance scenario, as well as Higgsino dark matter solutions which are more readily probed by direct detection searches. The gluino mass is found to be ? 4TeV, the stop mass is ? 2TeV, while the first two family squarks and sleptons are of order 4-5 TeV and 3 TeV respectively.

  17. Molecular dynamics of Yukawa liquids in gravitation: Equilibrium, Instability and Transport

    NASA Astrophysics Data System (ADS)

    Charan, Harish; Ganesh, Rajaraman; Joy, Ashwin; Joy

    2014-12-01

    Using 2D molecular dynamics (MD) simulation, the equilibrium and dynamical properties of a gravitationally equilibrated Yukawa liquid are investigated. We observe that due to asymmetry introduced in one direction by gravity, several interesting features arise. For example, for a given value of coupling parameter ?, screening parameter ? and according to a chosen value of gravitational force g (say in y-direction), the system is seen to exhibit super-, sub- or normal diffusion. Interestingly, x-averaged density profiles, unlike a barotropic fluid, acquire sharp, free surface with scale free linear y-dependence. As can be expected for a system with macroscopic gradients, self-diffusion calculated from Green-Kubo's (GK) formalism does not agree with that obtained from Einstein-Smoluchowski (ES) diffusion. A 2D-angular radial pair correlation function g(r, ?) clearly indicates asymmetric features induced by gravity. We observe that due to compression in y-direction, though in liquid state for all values of gravity considered, the transverse mode is found to be predominant as compared to the longitudinal mode, leading to a novel Anisotropic Solid-like Yukawa liquid (ASYL). In in-homogenous Yukawa liquids studied here, Mach cones are found to be asymmetric. When density gradient direction is set in the direction opposite to gravity, the equilibrium is shown to be unstable to Rayleigh-Taylor (RT) instabilities resulting in transport.

  18. Charge and color breaking constraints in the Minimal Supersymmetric Standard Model associated with the bottom Yukawa coupling

    NASA Astrophysics Data System (ADS)

    Hollik, Wolfgang Gregor

    2016-01-01

    Testing the stability of the electroweak vacuum in any extension of the Standard Model Higgs sector is of great importance to verify the consistency of the theory. Multi-scalar extensions as the Minimal Supersymmetric Standard Model generically lead to unstable configurations in certain regions of parameter space. An exact minimization of the scalar potential is rather an impossible analytic task. To give handy analytic constraints, a specific direction in field space has to be considered which is a simplification that tends to miss excluded regions, however good to quickly check parameter points. We describe a yet undescribed class of charge and color breaking minima as they appear in the Minimal Supersymmetric Standard Model, exemplarily for the case of non-vanishing bottom squark vacuum expectation values constraining the combination μYb in a non-trivial way. Contrary to famous A-parameter bounds, we relate the bottom Yukawa coupling with the supersymmetry breaking masses. Another bound can be found relating soft breaking masses and μ only. The exclusions follow from the tree-level minimization and can change dramatically using the one-loop potential. Estimates of the lifetime of unstable configurations show that they are either extremely short- or long-lived.

  19. Tunable Coulomb blockade and giant Coulomb blockade magnetoresistance in a double quantum dot array

    SciTech Connect

    Zhang, Xiaoguang; Xiang, T.

    2011-01-01

    We propose a Hubbard model to illuminate the tunneling effect of electrons in a double quantum dot array connected in the parallel circuit configuration to electrodes. The change in the interdot coupling is shown to dramatically influence the Coulomb blockade properties, consistent with earlier experimental observations. For magnetic double dots, the interdot coupling can be tuned by the external magnetic field, leading to a giant Coulomb blockade magnetoresistance.

  20. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.

    PubMed

    Przybytek, Michal; Helgaker, Trygve

    2013-08-01

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (?(H) = 2) and eight (?(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (?min (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions. PMID:23927250

  1. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals

    NASA Astrophysics Data System (ADS)

    Przybytek, Michal; Helgaker, Trygve

    2013-08-01

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γH = 2) and eight (γ1st = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (α _min^G=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d4 with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step—namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions.

  2. Poisson equation in the Kohn-Sham Coulomb problem.

    PubMed

    Manby, F R; Knowles, P J

    2001-10-15

    We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle systems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps. This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-Sham theory. PMID:11690203

  3. Integrability and separation of variables in Calogero-Coulomb-Stark and two-center Calogero-Coulomb systems

    NASA Astrophysics Data System (ADS)

    Hakobyan, Tigran; Nersessian, Armen

    2016-02-01

    We propose the integrable N -dimensional Calogero-Coulomb-Stark and two-center Calogero-Coulomb systems and construct their constants of motion via the Dunkl operators. Their Schrödinger equations decouple in parabolic and elliptic coordinates into the set of three differential equations like for the Coulomb-Stark and two-center Coulomb problems. The Calogero term preserves the energy levels, but changes their degrees of degeneracy.

  4. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.

    1999-01-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion. It is predicted that this will lead to an increase with time of both the aerodynamic and bed-dilatancy thresholds (3). Because of Paschen discharge effects in the martian atmosphere, the electrostatic charging in a saltation cloud may be partially abated, but this will lead to greater grain mobility, more charging, and thus to a charge-discharge steady state mediated by mechanical interactions. II. Dry colluvial systems: Sand avalanches on dunes, dry debris flows, talus flows, avalanches, and pyroclastic surges are examples of gravity-driven, dense granular flows where rock/grain fragmentation and grain-to-grain interactions cause triboelectrification (sometimes augmented by other electrical charging processes), and where the grain densities of the systems are such that strong dipole-dipole interactions between grains might be expected to be present. Because it is expected that the Coulombic forces between grains will cause a sluggishness or enhanced granular-flow viscosity, the motion of a grain mass will be retarded or damped so that this will assist, ultimately, in terminating the flow. The greatest Coulombic viscosity will be created in the most highly charged systems, which will also be the most energetic. Thus, grain flows have some tendency to be self-limiting by internal energy partitioning; gravitational potential is converted to Coulombic potential, which manifests itself as a drag force between the grains. III. Volcanic eruption plumes and impact ejecta curtains: The violence of these systems leads to powerful electrical charging of particulates. Lightning storms emanating from volcanic plumes are a testimony to the levels of charging. As pyroclastic grains interact forcefully and frequently within eruption plumes, it is reasonable to predict that the internal turbulent motions of the plume will be significantly damped by the Coulombic viscosity exerted by grain charges. Additional information is contained in the original.

  5. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    NASA Astrophysics Data System (ADS)

    Marshall, J. R.

    1999-09-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion. It is predicted that this will lead to an increase with time of both the aerodynamic and bed-dilatancy thresholds (3). Because of Paschen discharge effects in the martian atmosphere, the electrostatic charging in a saltation cloud may be partially abated, but this will lead to greater grain mobility, more charging, and thus to a charge-discharge steady state mediated by mechanical interactions. II. Dry colluvial systems: Sand avalanches on dunes, dry debris flows, talus flows, avalanches, and pyroclastic surges are examples of gravity-driven, dense granular flows where rock/grain fragmentation and grain-to-grain interactions cause triboelectrification (sometimes augmented by other electrical charging processes), and where the grain densities of the systems are such that strong dipole-dipole interactions between grains might be expected to be present. Because it is expected that the Coulombic forces between grains will cause a sluggishness or enhanced granular-flow viscosity, the motion of a grain mass will be retarded or damped so that this will assist, ultimately, in terminating the flow. The greatest Coulombic viscosity will be created in the most highly charged systems, which will also be the most energetic. Thus, grain flows have some tendency to be self-limiting by internal energy partitioning; gravitational potential is converted to Coulombic potential, which manifests itself as a drag force between the grains. III. Volcanic eruption plumes and impact ejecta curtains: The violence of these systems leads to powerful electrical charging of particulates. Lightning storms emanating from volcanic plumes are a testimony to the levels of charging. As pyroclastic grains interact forcefully and frequently within eruption plumes, it is reasonable to predict that the internal turbulent motions of the plume will be significantly damped by the Coulombic viscosity exerted by grain charges. Additional information is contained in the original.

  6. Quantum partner-dance in the 12C + 12C system yields sub-Coulomb fusion resonances

    NASA Astrophysics Data System (ADS)

    Diaz-Torres, Alexis; Wiescher, Michael

    2014-03-01

    A preliminary study of the 12C + 12C sub-Coulomb fusion reaction using the time-dependent wave-packet method is presented. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.

  7. Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge

    SciTech Connect

    Reinhardt, H. Schleifenbaum, W.

    2009-04-15

    We study the Hamiltonian approach to 1 + 1 dimensional Yang-Mills theory in Coulomb gauge, considering both the pure Coulomb gauge and the gauge where in addition the remaining constant gauge field is restricted to the Cartan algebra. We evaluate the corresponding Faddeev-Popov determinants, resolve Gauss' law and derive the Hamiltonians, which differ in both gauges due to additional zero modes of the Faddeev-Popov kernel in the pure Coulomb gauge. By Gauss' law the zero modes of the Faddeev-Popov kernel constrain the physical wave functionals to zero colour charge states. We solve the Schroedinger equation in the pure Coulomb gauge and determine the vacuum wave functional. The gluon and ghost propagators and the static colour Coulomb potential are calculated in the first Gribov region as well as in the fundamental modular region, and Gribov copy effects are studied. We explicitly demonstrate that the Dyson-Schwinger equations do not specify the Gribov region while the propagators and vertices do depend on the Gribov region chosen. In this sense, the Dyson-Schwinger equations alone do not provide the full non-abelian quantum gauge theory, but subsidiary conditions must be required. Implications of Gribov copy effects for lattice calculations of the infrared behaviour of gauge-fixed propagators are discussed. We compute the ghost-gluon vertex and provide a sensible truncation of Dyson-Schwinger equations. Approximations of the variational approach to the 3 + 1 dimensional theory are checked by comparison to the 1 + 1 dimensional case.

  8. Gate-induced gap in bilayer graphene suppressed by Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Xu, Jin-Rong; Song, Ze-Yi; Lin, Hai-Qing; Zhang, Yu-Zhong

    2016-01-01

    We investigate the effect of on-site Coulomb repulsion U on the band gap of the electrically gated bilayer graphene by employing coherent potential approximation in the paramagnetic state, based on an ionic two-layer Hubbard model. We find that, while either the on-site Coulomb repulsion U or the external perpendicular electric field E alone will favor a gapped state in the bilayer graphene, competition between them will surprisingly lead to a suppression of the gap amplitude. Our results can be applied to understand the discrepancies of gap size reported from optical and transport measurements, as well as the puzzling features observed in angular resolved photoemission spectroscopic study.

  9. Femtosecond ionization and Coulomb explosion of small transition metal carbide clusters

    NASA Astrophysics Data System (ADS)

    Ross, Matt W.; Castleman, A. W.

    2012-09-01

    Strong-field ionization and subsequent Coulomb explosion of small group 5 metal carbide clusters are explored using ultrashort pulses centered at 624 nm. More efficient Coulomb explosion was observed according to: Ta > Nb > V due to the larger mass of tantalum, the slower cluster expansion times, and lower ionization potentials of large atoms. Minimum laser intensities required for the onset of each atomic charge state of V, Nb, and Ta were found to be nearly identical between metal carbides and previously observed group 5 metal oxide clusters indicating electron delocalization within the cluster. Ionization enhancement is explored by comparison to semi-classical tunneling theory.

  10. Elastic scattering of {sup 9}Li on {sup 208}Pb at energies around the Coulomb barrier

    SciTech Connect

    Cubero, M.; Fernandez-Garcia, J. P.; Alvarez, M. A. G.; Lay, J. A.; Moro, A. M.; Acosta, L.; Martel, I.; Sanchez-Benitez, A. M.; Alcorta, M.; Borge, M. J. G.; Tengblad, O.; Buchmann, L.; Shotter, A.; Walden, P.; Diget, D. G.; Fulton, B.; Fynbo, H. O. U.; Galaviz, D.; Gomez-Camacho, J.; Mukha, I.

    2011-10-28

    We have studied the dynamical effects of the halo structure of {sup 11}Li on the scattering on heavy targets at energies around the Coulomb barrier. This experiment was performed at ISAC-II at TRIUMF with a world record in production of the post-accelerated {sup 11}Li beam. As part of this study we report here on the first measurement of the elastic cross section of the core nucleus, i.e. {sup 9}Li on {sup 208}Pb, at energies around the Coulomb barrier. A preliminary optical model analysis has been performed in order to extract a global optical potential to describe the measured angular distributions.

  11. If Coulomb's law were not inverse square: The charge distribution inside a solid conducting sphere

    NASA Astrophysics Data System (ADS)

    Spencer, Ross L.

    1990-04-01

    The distribution of charge between concentric conducting shells has been at the heart of the most sensitive tests of the exponent in Coulomb's law since the days of Henry Cavendish. But it appears that no one has ever answered the question of how an excess of charge would distribute itself throughout the interior of a solid conductor if Coulomb's law were other than inverse square. Spherically symmetric solutions to this problem have been found under the assumption that the potential of a point charge varies either as e-kr/r or as 1/rn.

  12. Coulomb drag from spinon-holon coupling

    NASA Astrophysics Data System (ADS)

    Pereira, Rodrigo; Sela, Eran

    2010-03-01

    We discuss the density and temperature dependence of the Coulomb drag resistivity due to long-wavelength scattering between quantum wires, based on an approximation for the dynamic charge response of nonlinear spin-1/2 Luttinger liquids. Besides accounting for the broadening of the charge peak in the dynamic charge response due to two-holon excitations, the nonlinearity of the dispersion gives rise to a two-spinon peak, which at zero temperature has an asymmetric line shape. When the charge velocity of one wire matches the spin velocity of the other wire, the drag resistivity is enhanced by holon-spinon scattering, and its temperature dependence has signatures of spin diffusion. This effect opens the possibility of observing spin-charge separation in Coulomb drag experiments.

  13. Thermodynamics and excitations of Coulomb glass

    NASA Astrophysics Data System (ADS)

    Malik, Vikas; Kumar, Deepak

    2007-09-01

    We have calculated the phase diagram and density of states of single-particle excitations of a lattice model of the Coulomb glass. We employ the replica method to average over disorder and then use linked-cluster expansion to obtain the free energy in the random phase approximation. We find that the system has a transition to an antiferromagnetic phase below a critical disorder. Above the critical disorder, the system has a glassy independent spin phase at zero temperature which crosses over to paramagnetic phase as the temperature is increased. In the antiferromagnetic phase, the single-particle excitation density [density of states (DOS)] has a feature including the gap at the Fermi level due to long-range order. To obtain DOS in the glassy phase, we analyze cavity-field equations for local magnetization (occupation). We obtain DOS at nonzero temperatures and find that with temperature the DOS at the Fermi level increases quadratically and the Coulomb gap decreases linearly.

  14. Feynman rules for Coulomb gauge QCD

    SciTech Connect

    Andrasi, A.; Taylor, J.C.

    2012-10-15

    The Coulomb gauge in nonabelian gauge theories is attractive in principle, but beset with technical difficulties in perturbation theory. In addition to ordinary Feynman integrals, there are, at 2-loop order, Christ-Lee (CL) terms, derived either by correctly ordering the operators in the Hamiltonian, or by resolving ambiguous Feynman integrals. Renormalization theory depends on the sub-graph structure of ordinary Feynman graphs. The CL terms do not have a sub-graph structure. We show how to carry out renormalization in the presence of CL terms, by re-expressing these as 'pseudo-Feynman' integrals. We also explain how energy divergences cancel. - Highlights: Black-Right-Pointing-Pointer In Coulomb gauge QCD, we re-express Christ-Lee terms in the Hamiltonian as pseudo-Feynman integrals. Black-Right-Pointing-Pointer This gives a subgraph structure, and allows the ordinary renormalization process. Black-Right-Pointing-Pointer It also leads to cancellation of energy-divergences.

  15. Coulomb scattering and transport in graphene

    NASA Astrophysics Data System (ADS)

    Novikov, Dmitry

    2008-03-01

    The exact transport cross-section off a Coulomb impurity in graphene [1] is proportional to the carrier wavelength. Unexpectedly, the relativistic Coulomb scattering also exhibits a pronounced attraction-repulsion asymmetry [1,2]: Massless carriers are scattered more strongly when they are attracted to a charged impurity than when they are repelled from it. This finding, confirmed recently [3], can be used to separately determine the surface density of donors and acceptors in a graphene monolayer [2]. I will outline quantitative and qualitative differences between the exact result [1] and the commonly used Born approximation for charged impurity scattering. [1] D. S. Novikov, arXiv:0706.1391, Phys. Rev. B (in press); [2] D. S. Novikov, Appl. Phys. Lett. 91, 102102 (2007); [3] J. H. Chen, C. Jang, M. S. Fuhrer, E. D. Williams, M. Ishigami, arXiv:0708.2408v2.

  16. Higgs boson, sparticle masses and neutralino Dark Matter in Yukawa unified models

    NASA Astrophysics Data System (ADS)

    Un, Cem Salih

    This dissertation collects our results that we obtain for a class of Yukawa unified SO(10) grand unified theories with non-universal soft supersymmetry breaking (SSB) gaugino mass parameters. As known for a long time, in contrast to its non-supersymmetrical version, SO(10) grand unified theories predict Yukawa coupling unification as well as gauge coupling and matter field unifications. The models considered in this thesis are assumed to be in the framework of gravity mediated supersymmetry breaking, and boundary conditions among the SSB terms are set by the group theoretical structure and breaking patterns of SO(10) at the grand unification scale (MGUT). In addition, we assume universality in the SSB mass terms assigned to the sfermion generations. Since Yukawa coupling unification implies contradictory mass relations for the first two generations, we consider a model with a larger Higgs sector. In this case, we assume that the MSSM Higgs doublets solely reside in 10 dimensional representation (10 H) of SO(10) and extra Higgs fields negligibly couple to the third generation sfermions in order to maintain Yukawa coupling unification for the third generation (when we mention Yukawa unification throughout this thesis, we mean Yukawa unification for the third family, a.k.a. t -b-tau Yukawa unification). First we consider a supersymmetric grand unified model in which SO(10) breaks into the MSSM via non-renormalizable dimension-5 operators involving non-singlet F--terms. In our case, we consider an F--term belonging to 54 dimensional representation of SO(10) and it develops a non-zero vacuum expectation value that non-trivially generates the SSB gaugino masses such that M 1 : M2 : M3 = --1 : --3 : 2. We consider the case with mu, M 1, M2 > 0 and M3 < 0 such that muM2 >0 and muM 3 < 0 always hold. This model with non-universal and relative-sign gaugino masses has one less parameter by setting the masses of Higgs doublets to be equivalent to each other at MGUT than those in the standard approach to Yukawa coupling unification. We briefly show also that Yukawa unification is possible even with one less parameter, if one considers a case in which all scalars of the MSSM including the Higgs doublets are assigned with the same SSB mass term. In the case of relative-sign SSB mass terms, the gaugino mass relation forms a subspace of SU(4)c x SU(2)L x SU(2) R (4-2-2). Even though 4-2-2 does not require gauge coupling unification, if one assumes that 4-2-2 breaks into the MSSM at an energy scale ˜ MGUT, then it can hold gauge coupling unification as well as Yukawa unification. As a generalization of the previous model, 4-2-2 results in a heavy spectrum for the color particles (˜ 3 TeV ) as well. We conclude this thesis by considering the anomalous magnetic moment of muon (muon g -- 2). First, we examine the conditions that are necessary in order to be consistent with the experimental measurements. Since the supersymmetric contribution to muon g -- 2 evolves as 1/M, where M is mass of the sparticle running in the loop, the MSSM needs to have light smuons and gauginos (bino and wino), while the 125 GeV Higgs boson requires heavier spectra. In order to resolve this conflict, we consider a case in which the first two generations of sfermions are split from the third generation in their SSB mass. Similarly the MSSM Higgs doublets have different masses from each other, while universality in gaugino masses is held. We show that our results can simultaneously be consistent with 125 GeV Higgs boson and muon g -- 2 within 1sigma deviation from its theoretical value. (Abstract shortened by UMI.)

  17. Fermi-Edge Transmission Resonance in Graphene Driven by a Single Coulomb Impurity

    NASA Astrophysics Data System (ADS)

    Karnatak, Paritosh; Goswami, Srijit; Kochat, Vidya; Nath Pal, Atindra; Ghosh, Arindam

    2014-07-01

    The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude ?e2/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.

  18. Semiclassical wave functions and semiclassical dynamics for the Kepler/Coulomb problem

    NASA Astrophysics Data System (ADS)

    Neate, Andrew; Truman, Aubrey

    2014-06-01

    We investigate the semiclassical Kepler/Coulomb problem using the classical constants of the motion in the framework of Nelsons stochastic mechanics. This is done by considering the eigenvalue relations for a family of coherent states (known as the atomic elliptic states) whose wave functions are concentrated on the elliptical orbit corresponding to the associated classical problem. We show that these eigenvalue relations lead to identities for the semiclassical energy, angular momentum and Hamilton-Lenz-Runge vectors in the elliptical case. These identities are then extended to include the cases of circular, parabolic and hyperbolic motions. We show that in all cases the semiclassical wave function is determined by our identities and so our identities can be seen as defining a semiclassical Kepler/Coulomb problem. The results are interpreted in terms of two dynamical systems: one a complex valued solution to the classical mechanics for a Coulomb potential and the other the drift field for a semiclassical Nelson diffusion.

  19. Fermi-edge transmission resonance in graphene driven by a single Coulomb impurity.

    PubMed

    Karnatak, Paritosh; Goswami, Srijit; Kochat, Vidya; Pal, Atindra Nath; Ghosh, Arindam

    2014-07-11

    The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude ≈e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime. PMID:25062215

  20. Coulomb dissociation of {sup 27} P

    SciTech Connect

    Beceiro, S.; Cortina-Gil, D.; Suemmerer, K.

    2010-04-26

    The {sup 26}Al nucleus has a shorter life-time than the Universe showing that the nucleosynthesis of this element might be an ongoing process in stars. The reaction {sup 26}Si(p,gamma){sup 27} P competes with the production of {sup 26}Al. Coulomb dissociation of {sup 27} P is an indirect method to measure that reaction. An experiment was performed at GSI with a {sup 36}Ar primary beam at 500 MeV to measure this reaction.

  1. Coulomb collision effects on linear Landau damping

    SciTech Connect

    Callen, J. D.

    2014-05-15

    Coulomb collisions at rate ? produce slightly probabilistic rather than fully deterministic charged particle trajectories in weakly collisional plasmas. Their diffusive velocity scattering effects on the response to a wave yield an effective collision rate ?{sub eff} ? ? and a narrow dissipative boundary layer for particles with velocities near the wave phase velocity. These dissipative effects produce temporal irreversibility for times t???1/?{sub eff} during Landau damping of a small amplitude Langmuir wave.

  2. On the one-dimensional Coulomb problem

    NASA Astrophysics Data System (ADS)

    Jaramillo, Benjamn; Martnez-y-Romero, R. P.; Nez-Ypez, H. N.; Salas-Brito, A. L.

    2009-12-01

    We analyse the one-dimensional Coulomb problem (1DCP) pointing out some mistaken beliefs on it. We show that no eigenstates of even or odd parity can represent states of the system. The 1DCP exhibits a sort of spontaneous breaking of parity. We also show that a superselection rule operates in the system. Such rule explains some of its peculiarities. We build the superpotential associated to the 1DCP.

  3. Quantum one-dimensional Coulomb atom

    NASA Astrophysics Data System (ADS)

    Dziubak, Tomasz; Matulewski, Jacek

    2013-03-01

    Basing on an ab initio numerical simulation we address one of the questions vividly discussed by the community studying the one-dimensional Coulomb problem, that is whether even states of the one-dimensional hydrogen atom have any physical meaning and should be taken into account while studying this atomic system. This is not a pure academic question, the problem of even states is important for example in studies of the hydrogen atom in intense magnetic fields.

  4. Path integral treatment for a Coulomb system constrained on D-dimensional sphere and hyperboloid

    SciTech Connect

    Lecheheb, A. . E-mail: lecheheb@caramail.com; Merad, M.; Boudjedaa, T.

    2007-05-15

    The propagator relating to the evolution of a particle on the D-sphere and the D-pseudosphere, subjected to the Coulomb potential, was reconsidered in the Faddeev-Senjanovic formalism. The mid-point is privileged. The space-time transformations used make it possible to regularize the singularity and to bring back the problem to its dynamical symmetry SU (1, 1)

  5. A Quasi-Analytical Study of the Nonrelativistic Two-Center Coulomb Problem

    NASA Astrophysics Data System (ADS)

    Hassanabadi, H.; Maghsoodi, E.; Zarrinkamar, S.

    2012-10-01

    The Schrdinger equation with a pertaining two-center mean field potential scheme is solved by the quasi-analytical ansatz methodology. The ground-state wave function and the corresponding energy of a nonrelativistic nucleon moving in the fields of two fixed Coulomb centers are reported and the behavior of the energy vs. engaged parameters is depicted via illustrative figures.

  6. Bound state of solution of Dirac-Coulomb problem with spatially dependent mass

    NASA Astrophysics Data System (ADS)

    Ol?ar, Eser; Dhahir, Hayder; Mutaf, Haydar

    2014-04-01

    The bound state solution of Coulomb Potential in the Dirac equation is calculated for a position dependent mass function M(r) within the framework of the asymptotic iteration method (AIM). The eigenfunctions are derived in terms of hypergeometric function and function generator equations of AIM.

  7. The Coulomb problem in superstrong B: Atomic levels and critical nuclei charges

    NASA Astrophysics Data System (ADS)

    Vysotsky, M. I.

    2013-05-01

    The spectrum of atomic levels of hydrogen-like ions originating from the lowest Landau level in an external homogeneous superstrong magnetic field is obtained. The influence of the screening of the Coulomb potential on the values of critical nuclear charges is studied.

  8. Group-theoretical approach to a non-central extension of the Kepler-Coulomb problem

    NASA Astrophysics Data System (ADS)

    Kerimov, G. A.; Ventura, A.

    2010-06-01

    Bound and scattering states of a non-central extension of the three-dimensional Kepler-Coulomb Hamiltonian are worked out analytically within the framework of the potential groups of the problem, SO(7) for bound states and SO(6, 1) for scattering states. In the latter case, the S-matrix is calculated by the method of intertwining operators.

  9. Bound state of solution of Dirac-Coulomb problem with spatially dependent mass

    NASA Astrophysics Data System (ADS)

    Ol?ar, Eser; Dhahir, Hayder M.; Mutaf, Haydar

    2014-04-01

    The bound state solution of Coulomb Potential in the Dirac equation is calculated for a position dependent mass function M( r) within the framework of the asymptotic iteration method (AIM). The eigenfunctions are derived in terms of hypergeometric function and function generator equations of AIM.

  10. Exciton condensation and perfect Coulomb drag.

    PubMed

    Nandi, D; Finck, A D K; Eisenstein, J P; Pfeiffer, L N; West, K W

    2012-08-23

    Coulomb drag is a process whereby the repulsive interactions between electrons in spatially separated conductors enable a current flowing in one of the conductors to induce a voltage drop in the other. If the second conductor is part of a closed circuit, a net current will flow in that circuit. The drag current is typically much smaller than the drive current owing to the heavy screening of the Coulomb interaction. There are, however, rare situations in which strong electronic correlations exist between the two conductors. For example, double quantum well systems can support exciton condensates, which consist of electrons in one well tightly bound to holes in the other. 'Perfect' drag is therefore expected; a steady transport current of electrons driven through one quantum well should be accompanied by an equal current of holes in the other. Here we demonstrate this effect, taking care to ensure that the electron-hole pairs dominate the transport and that tunnelling of charge between the quantum wells, which can readily compromise drag measurements, is negligible. We note that, from an electrical engineering perspective, perfect Coulomb drag is analogous to an electrical transformer that functions at zero frequency. PMID:22914164

  11. Pore fluid pressure, apparent friction, and Coulomb failure

    USGS Publications Warehouse

    Beeler, N.M.; Simpson, R.W.; Hickman, S.H.; Lockner, D.A.

    2000-01-01

    Many recent studies of stress-triggered seismicity rely on a fault failure model with a single free parameter, the apparent coefficient of friction, presumed to be a material constant with possible values 0 ? ?? ? 1. These studies may present a misleading view of fault strength and the role of pore fluid pressure in earthquake failure. The parameter ?? is intended to incorporate the effects of both friction and pore pressure, but is a material constant only if changes in pore fluid pressure induced by changes in stress are proportional to the normal stress change across the potential failure plane. Although specific models of fault zones permit such a relation, neither is it known that fault zones within the Earth behave this way, nor is this behavior expected in all cases. In contrast, for an isotropic homogeneous poroelastic model the pore pressure changes are proportional to changes in mean stress, ?? is not a material constant, and ?? ? ?? ? +?. Analysis of the change in Coulomb failure stress for tectonically loaded reverse and strike-slip faults shows considerable differences between these two pore pressure models, suggesting that such models might be distinguished from one another using observations of triggered seismicity (e.g., aftershocks). We conclude that using the constant apparent friction model exclusively in studies of Coulomb failure stress is unwise and could lead to significant errors in estimated stress change and seismic hazard.

  12. Coulomb impurity scattering in topological insulator thin films

    SciTech Connect

    Yin, Gen; Wickramaratne, Darshana; Lake, Roger K.; Zhao, Yuanyuan

    2014-07-21

    Inter-surface coupling in thin-film topological insulators can reduce the surface state mobility by an order of magnitude in low-temperature transport measurements. The reduction is caused by a reduction in the group velocity and an increased s{sub z} component of the surface-state spin which weakens the selection rule against large-angle scattering. An intersurface potential splits the degenerate bands into a Rashba-like bandstructure. This reduces the intersurface coupling, it largely restores the selection rule against large angle scattering, and the ring-shaped valence band further reduces backscattering by requiring, on average, larger momentum transfer for backscattering events. The effects of temperature, Fermi level, and intersurface potential on the Coulomb impurity scattering limited mobility are analyzed and discussed.

  13. Examining the identity of Yukawa with gauge couplings in supersymmetric QCD at LHC

    SciTech Connect

    Freitas, Ayres; Skands, Peter Z.; Spira, M.; Zerwas, P.M.; /DESY

    2007-03-01

    The identity of the quark-squark-gluino Yukawa coupling with the corresponding quark-quark-gluon QCD coupling in supersymmetric theories can be examined experimentally at the Large Hadron Collider (LHC). Extending earlier investigations of like-sign di-lepton final states, we include jets in the analysis of the minimal supersymmetric standard model, adding squark-gluino and gluino-pair production to squark-pair production. Moreover we expand the method towards model-independent analyses which cover more general scenarios. In all cases, squark decays to light charginos and neutralinos persist to play a dominant role.

  14. Numerical simulations of thermal conductivity in dissipative two-dimensional Yukawa systems.

    PubMed

    Khrustalyov, Yu V; Vaulina, O S

    2012-04-01

    Numerical data on the heat transfer constants in two-dimensional Yukawa systems were obtained. Numerical study of the thermal conductivity and diffusivity was carried out for the equilibrium systems with parameters close to conditions of laboratory experiments with dusty plasma. For calculations of heat transfer constants the Green-Kubo formulas were used. The influence of dissipation (friction) on the heat transfer processes in nonideal systems was investigated. The approximation of the coefficient of thermal conductivity is proposed. Comparison of the obtained results to the existing experimental and numerical data is discussed. PMID:22680584

  15. Melting in three-dimensional and two-dimensional Yukawa systems

    NASA Astrophysics Data System (ADS)

    Vaulina, O. S.; Koss, X. G.

    2015-10-01

    Solid-liquid phase transitions in three-dimensional (3D) and two-dimensional (2D) Yukawa systems were studied numerically and analytically, including the melting of the fcc and bcc 3D lattices, and of a hexagonal primitive (hp) 2D lattice. An approach is proposed for the determination of the melting lines in these systems. The suggested approach takes into account the nonlinearity (anharmonicity) of pair interaction forces and allows one to correctly predict the conditions of melting for 3D and 2D crystal systems. The obtained results are compared with the existing theoretical and numerical data.

  16. Decay of a Yukawa fermion at finite temperature and applications to leptogenesis

    SciTech Connect

    Kiessig, Clemens P.; Pluemacher, Michael; Thoma, Markus H.

    2010-08-01

    We calculate the decay rate of a Yukawa fermion in a thermal bath using finite-temperature cutting rules and effective Green's functions according to the hard thermal loop resummation technique. We apply this result to the decay of a heavy Majorana neutrino in leptogenesis. Compared to the usual approach where thermal masses are inserted into the kinematics of final states, we find that deviations arise through two different leptonic dispersion relations. The decay rate differs from the usual approach by more than 1 order of magnitude in the temperature range which is interesting for the weak washout regime. We discuss how to arrive at consistent finite-temperature treatments of leptogenesis.

  17. Heat transfer coefficients in two-dimensional Yukawa systems (numerical simulations)

    SciTech Connect

    Khrustalyov, Yu. V. Vaulina, O. S.

    2013-05-15

    New data on heat transfer in two-dimensional Yukawa systems have been obtained. The results of a numerical study of the thermal conductivity for equilibrium systems with parameters close to the conditions of laboratory experiments in dusty plasma are presented. The Green-Kubo relations are used to calculate the heat transfer coefficients. The influence of dissipation (internal friction) on the heat transfer processes in nonideal systems is studied. New approximations are proposed for the thermal conductivity and diffusivity for nonideal dissipative systems. The results obtained are compared with the existing experimental and numerical data.

  18. Schwinger-Dyson approach for a Lifshitz-type Yukawa model

    SciTech Connect

    Alexandre, J.; Farakos, K.; Pasipoularides, P.; Tsapalis, A.

    2010-02-15

    We consider a 3+1 dimensional field theory at a Lifshitz point for a dynamical critical exponent z=3, with a scalar and a fermion field coupled via a Yukawa interaction. Using the nonperturbative Schwinger-Dyson approach we calculate quantum corrections to the effective action. We demonstrate that a first order derivative kinetic term as well as a mass term for the fermion arise dynamically. This signals the restoration of Lorentz symmetry in the IR regime of the single fermion model, although for theories with more than one fermionic species such a conclusion will require fine-tuning of couplings. The limitations of the model and our approach are discussed.

  19. The influence of the mean charge state on the Coulomb heating of fast diclusters through the Si<1 1 1> direction

    NASA Astrophysics Data System (ADS)

    Nascimento, C. D.; Fadanelli, R. C.; Behar, M.

    2016-04-01

    In the present work, we report a theoretical and experimental study of the Coulomb heating of H2+ and C2+ in Si<1 1 1> channel, covering an energy range from 200 keV/ion to 2200 keV/ion. The experimental values for Coulomb heating were obtained by combining the Rutherford backscattering spectrometry (RBS) and the particle induced X-ray emission (PIXE) techniques under channeling conditions. Theoretical values were obtained by performing classical trajectory Monte-Carlo (CTMC) simulations of the ion paths inside the <1 1 1> Si channel, using Dirac-Hartree-Fock-Slater (DHFS) results for the interionic potential. As seen for the <1 1 0> case, it is shown that the use of a DHFS potential based on the ion mean charge states in amorphous targets leads to a disagreement between the Coulomb heating values and the expected potential energies stored in the dicluster prior to the Coulomb explosion. Therefore, a numerical procedure was used in order to calculate the mean charge state values for ions traveling in Si<1 1 1>. The use of the resulting charge states led to a linear relationship between the Coulomb heating values and the stored potential energy per ion of the diclusters. Finally, the Coulomb heating/stored potential energy ratio amounts to about 2/3, as expected from an isotropic Coulomb explosion.

  20. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.

    1999-01-01

    The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this very brief (30-60 sec) damping period, motion of the grains was observed to be retarded by the electrostatic interactions. The fact that the grains almost instantly formed aggregates was evidence that their ballistic motions had been constrained and redirected by the dipole-dipole interactions that led to filamentary aggregate development. Undoubtedly, the "Coulombic viscosity" of the cloud assisted in damping grain motion so rapidly. The electrostatically-induced grain-cloud viscosity or drag exerted on grain motion, is a complex function of three major parameters: charge magnitude, charge sign, and mean intergranular distance. The above experiments illustrate one particular type of granular behavior. The discussion here will therefore be restricted to drag relationships: (a) between grains that are naturally charged triboelectrically and thus exhibit dipole-dipole attractions between one another even if there are slight net charges present (which can be overwhelmed by dipole coupling at short distances), and (b) between grains that are densely spaced where the intergranular distance varies between zero and some value (usually tens or hundreds of grain diameters) that permits each grain to detect the dipole moment of another grain -- the distance is not so great that other grains appears as neutral electrical "singularities. I. Aeolian transport: During motion of grains in a saltation cloud (on Earth, Mars, or Venus), triboelectric charging must occur as a result of multiple grain contacts, and by friction with the entraining air. A situation might develop that is similar to the one described above in the attrition device: grain motion becoming significantly retarded (reduced flux) as grains find it increasingly difficult to either separate from the surface, or to pass one another without Coulombic retarding forces. A "Coulombic drag" will exist at flux initiation and increase with time to work in direct opposition to the aerodynamic drag that drives the grain motion. It is predicted that this will lead to an increase

  1. Non-commutative relativistic equation with a Coulomb potential

    SciTech Connect

    Zaim, Slimane; Khodja, Lamine; Delenda, Yazid

    2012-06-27

    We improve the previous study of the Klein-Gordon equation in a non-commutative space-time as applied to the Hydrogen atom to extract the energy levels, by considering the secondorder corrections in the non-commutativity parameter. Phenomenologically we show that noncommutativity plays the role of spin.

  2. Quenching molecular photodissociation by intermolecular Coulombic decay

    NASA Astrophysics Data System (ADS)

    Kopelke, S.; Chiang, Y.-C.; Gokhberg, K.; Cederbaum, L. S.

    2012-07-01

    In this paper we study the impact of interatomic Coulombic decay (ICD) on molecular photodissociation. The investigation reveals the hitherto unrecognized ability of ICD to quench processes involving nuclear rearrangements. Numerical computations of the nuclear dynamics, initiated by photoexciting the B1Σ+ Rydberg state of CO in CO.Mg complexes, are carried out. The efficiencies of ICD and photoinduced predissociation are compared for the four lowest vibrational levels of the corresponding electronic state. We also show the impact of CO vibrations on the ICD electron spectrum. Finally, we discuss the growing efficiency of ICD to quench the dissociation as the number of neighboring Mg atoms is increased.

  3. Multiple Coulomb scattering in thin silicon

    NASA Astrophysics Data System (ADS)

    Berger, N.; Buniatyan, A.; Eckert, P.; Frster, F.; Gredig, R.; Kovalenko, O.; Kiehn, M.; Philipp, R.; Schning, A.; Wiedner, D.

    2014-07-01

    We present a measurement of multiple Coulomb scattering of 1 to 6 GeV/c electrons in thin (50-140 ?m) silicon targets. The data were obtained with the EUDET telescope Aconite at DESY and are compared to parametrisations as used in the Geant4 software package. We find good agreement between data and simulation in the scattering distribution width but large deviations in the shape of the distribution. In order to achieve a better description of the shape, a new scattering model based on a Student's t distribution is developed and compared to the data.

  4. Coulomb Interactions of Colloidal Particles in Oil

    NASA Astrophysics Data System (ADS)

    Sainis, Sunil; Dufresne, Eric

    2007-03-01

    We study the electrostatic interactions of microspheres (PMMA-PHSA) in solutions of surfactant (NaAOT) in oil (hexadecane). We directly measure the forces between isolated pairs of particles to extract the particle charge and solvent ionic strength. Over a wide range of surfactant concentrations, the interparticle forces are indistinguishable from unscreened Coulomb interactions. Far above the critical micelle concentration, however, the interactions assume the familiar screened Debye-Huckel form. Long-ranged interactions between micron-sized particles provide a window to study the structure and dynamics of strongly-correlated systems.

  5. Two-body Coulomb problems with sources

    NASA Astrophysics Data System (ADS)

    Gasaneo, G.; Ancarani, L. U.

    2010-10-01

    The two-body Coulomb Schrdinger equation with different types of nonhomogeneities are studied. The particular solution of these nonhomogeneous equations is expressed in closed form in terms of a two-variable hypergeometric function. A particular representation of the latter allows one to study efficiently the solution in the asymptotic limit of large values of the coordinate and hence the associated physics. Simple sources are first considered, and a complete analysis of scattering and bound states is performed. The solutions corresponding to more general (arbitrary) sources are then provided and written in terms of more general hypergeometric functions.

  6. Mathematical structure of relativistic Coulomb integrals

    NASA Astrophysics Data System (ADS)

    Suslov, Sergei K.

    2010-03-01

    We show that the diagonal matrix elements , where O={1,?,i?n?} are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem, may be considered as difference analogs of the radial wave functions. Such structure provides an independent way of obtaining closed forms of these matrix elements by elementary methods of the theory of difference equations without explicit evaluation of the integrals. Three-term recurrence relations for each of these expectation values are derived as a by-product. Transformation formulas for the corresponding generalized hypergeometric series are discussed.

  7. Expectation values in relativistic Coulomb problems

    NASA Astrophysics Data System (ADS)

    Suslov, Sergei K.

    2009-09-01

    We evaluate the matrix elements langOrprang, where O =\\left\\{1,\\beta,i{\\bm \\alpha \\bf n}\\beta \\right\\} are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem, in terms of generalized hypergeometric functions 3F2(1) for all suitable powers. Their connections with the Chebyshev and Hahn polynomials of a discrete variable are emphasized. As a result, we derive two sets of Pasternack-type matrix identities for these integrals, when p ? -p - 1 and p ? -p - 3, respectively. Some applications to the theory of hydrogenlike relativistic systems are reviewed.

  8. Mathematical structure of relativistic Coulomb integrals

    SciTech Connect

    Suslov, Sergei K.

    2010-03-15

    We show that the diagonal matrix elements , where O=(1,{beta},i{alpha}n{beta}) are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem, may be considered as difference analogs of the radial wave functions. Such structure provides an independent way of obtaining closed forms of these matrix elements by elementary methods of the theory of difference equations without explicit evaluation of the integrals. Three-term recurrence relations for each of these expectation values are derived as a by-product. Transformation formulas for the corresponding generalized hypergeometric series are discussed.

  9. Coulomb Repulsion in Miniature Ion Mobility Spectrometry

    SciTech Connect

    Xu, J.; Whitten, W.B.; Ramsey, J.M.

    1999-08-08

    We have undertaken a study of ion mobility resolution in a miniature ion mobility spectrometer with a drift channel 1.7 mm in diameter and 35 mm in length. The device attained a maximum resolution of 14 in separating ions of NO, O{sub 2}, and methyl iodine. The ions were generated by pulses from a frequency-quadrupled Nd:YAG laser. Broadening due to Coulomb repulsion was modeled theoretically and shown experimentally to have a major effect on the resolution of the miniature device.

  10. Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology

    SciTech Connect

    Aoki, Mayumi; Kanemura, Shinya; Yagyu, Kei; Tsumura, Koji

    2009-07-01

    Possible models of Yukawa interaction are discussed in the two Higgs doublet model (THDM) under the discrete symmetry imposed to avoid the flavor changing neutral current at the leading order. It is known that there are four types of such models corresponding to the possible different assignment of charges for the discrete symmetry on quarks and leptons. We first examine the decay properties of Higgs bosons in each type model, and summarize constraints on the models from current experimental data. We then shed light on the differences among these models in collider phenomenology. In particular, we mainly discuss the so-called type-II THDM and type-X THDM. The type-II THDM corresponds to the model with the same Yukawa interaction as the minimal supersymmetric standard model. On the other hand, in the type-X THDM, additional Higgs bosons can predominantly decay into leptons. This scenario may be interesting because of the motivation for a light charged Higgs boson scenario such as in the TeV-scale model of neutrinos, dark matter, and baryogenesis. We study how we can distinguish the type-X THDM from the minimal supersymmetric standard model at the Large Hadron Collider and the International Linear Collider.

  11. Dynamical breakdown of Abelian gauge chiral symmetry by strong Yukawa interactions

    SciTech Connect

    Benes, Petr; Brauner, Tomas; Hosek, Jiri

    2007-03-01

    We consider a model with anomaly-free Abelian gauge axial-vector symmetry, which is intended to mimic the standard electroweak gauge chiral SU(2){sub L}xU(1){sub Y} theory. Within this model we demonstrate: (1) Strong Yukawa interactions between massless fermion fields and a massive scalar field carrying the axial charge generate dynamically the fermion and boson proper self-energies, which are ultraviolet-finite and chirally noninvariant. (2) Solutions of the underlying Schwinger-Dyson equations found numerically exhibit a huge amplification of the fermion mass ratios as a response to mild changes of the ratios of the Yukawa couplings. (3) The 'would-be' Nambu-Goldstone boson is a composite of both the fermion and scalar fields, and it gives rise to the mass of the axial-vector gauge boson. (4) Spontaneous breakdown of the gauge symmetry further manifests by mass splitting of the complex scalar and by new symmetry-breaking vertices, generated at one loop. In particular, we work out in detail the cubic vertex of the Abelian gauge boson.

  12. Perturbativity limits for scalar minimal dark matter with Yukawa interactions: Septuplet

    NASA Astrophysics Data System (ADS)

    Cai, Chengfeng; Huang, Ze-Min; Kang, Zhaofeng; Yu, Zhao-Huan; Zhang, Hong-Hao

    2015-12-01

    The candidate of minimal dark matter (MDM) is limited if one demands perturbativity up to a very high scale, and it was believed that the MDM model with a real scalar septuplet could keep perturbative up to the Planck or grand unified theory scale. In this work we point out that it is not true after taking into account the running of the quartic self-couplings of the scalar septuplet. For the septuplet mass around 10 TeV, which is suggested by the observed dark matter relic abundance, these couplings would hit the Landau pole at a scale 108- 109 GeV , much lower than the Planck scale. We attempt to push up the Landau pole scale as high as possible by proposing an extension with extra Yukawa interactions of the septuplet. We find that in principle the Landau pole could be deferred to a scale of 1014 GeV if one could tolerate a serious fine-tuning of the initial condition of the Yukawa coupling. Moreover, if the MDM particle mass could be relaxed to 108 GeV , which would need some nonthermal production mechanisms to give a correct relic abundance, the Landau pole scale could be pushed up above the Planck scale.

  13. Properties of gravitationally equilibrated Yukawa systems—A molecular dynamics study

    SciTech Connect

    Charan, Harish; Ganesh, Rajaraman Joy, Ashwin

    2014-04-15

    Using 2D Molecular Dynamics simulation, the equilibrium and dynamical properties of a gravitationally equilibrated Yukawa liquid are investigated. We observe that due to asymmetry introduced in one direction by gravity, several interesting features arise. For example, for a given value of coupling parameter Γ, screening parameter κ, and according to a chosen value of gravitational force g (say in y-direction), the system is seen to exhibit super-, sub- or normal diffusion. Interestingly, x-averaged density profiles, unlike a barotropic fluid, acquires sharp, free surface with scale free linear y-dependence. As can be expected for a system with macroscopic gradients, self-diffusion calculated from Green-Kubo’s formalism does not agree with that obtained from Einstein-Smoluchowski diffusion. A 2D angular-radial pair correlation function g(r, θ) clearly indicates asymmetric features induced by gravity. We observe that due to compression in y-direction, though in liquid state for all values of gravity considered, the transverse mode is found to predominant as compared to the longitudinal mode, leading to a novel Anisotropic Solid-like Yukawa liquid.

  14. Finsler-type modification of the Coulomb law

    NASA Astrophysics Data System (ADS)

    Itin, Yakov; Lmmerzahl, Claus; Perlick, Volker

    2014-12-01

    Finsler geometry is a natural generalization of pseudo-Riemannian geometry. It can be motivated e.g. by a modified version of the Ehlers-Pirani-Schild axiomatic approach to space-time theory. Also, some scenarios of quantum gravity suggest a modified dispersion relation which could be phrased in terms of Finsler geometry. On a Finslerian space-time, the universality of free fall is still satisfied but local Lorentz invariance is violated in a way not covered by standard Lorentz invariance violation schemes. In this paper we consider a Finslerian modification of Maxwell's equations. The corrections to the Coulomb potential and to the hydrogen energy levels are computed. We find that the Finsler metric corrections yield a splitting of the energy levels. Experimental data provide bounds for the Finsler parameters.

  15. Strong nuclear couplings as a source of Coulomb rainbow suppression

    SciTech Connect

    Keeley, N.; Alamanos, N.; Rusek, K.

    2010-09-15

    A recent measurement of the {sup 11}Be+{sup 64}Zn quasielastic scattering angular distribution exhibits a non-Fresnel-type pattern, in contrast to {sup 6}He+{sup 64}Zn elastic scattering but similar to that for the elastic scattering of {sup 6}He from heavy targets. We show by means of continuum discretized coupled-channels (CDCC) calculations that this unusual behavior of {sup 11}Be is caused by the much greater importance of nuclear coupling to the continuum in {sup 11}Be compared to {sup 6}He, where Coulomb dipole coupling is mainly responsible for the non-Fresnel-like shape, when present. We also show that the dynamic polarization potentials derived from the CDCC calculations seem to follow a universal form as a function of radius.

  16. Coulomb problem for graphene with the gapped electron spectrum

    NASA Astrophysics Data System (ADS)

    Kuleshov, V. M.; Mur, V. D.; Narozhny, N. B.; Fedotov, A. M.; Lozovik, Yu. E.

    2015-02-01

    The characteristics of charge carriers in graphene with dopants having charge Z and deposited onto a SiC substrate are analyzed. The closed set of explicit equations determining the spectrum of charge carriers are obtained for the case of the Coulomb potential modified at small distances. The critical values Z cr of the dopant charge at which the energy level with the given quantum numbers crosses the valence band boundary are determined. At Z < Z cr, for the lowest values of the orbital angular momentum, the position of the energy level corresponding to the bound state is obtained as a function of charge Z. For Z > Z cr, the position and width of the quasistationary state are calculated. The problem concerning the screening of the impurity charge is also considered.

  17. Strong nuclear couplings as a source of Coulomb rainbow suppression

    NASA Astrophysics Data System (ADS)

    Keeley, N.; Alamanos, N.; Kemper, K. W.; Rusek, K.

    2010-09-01

    A recent measurement of the Be11+Zn64 quasielastic scattering angular distribution exhibits a non-Fresnel-type pattern, in contrast to He6+Zn64 elastic scattering but similar to that for the elastic scattering of He6 from heavy targets. We show by means of continuum discretized coupled-channels (CDCC) calculations that this unusual behavior of Be11 is caused by the much greater importance of nuclear coupling to the continuum in Be11 compared to He6, where Coulomb dipole coupling is mainly responsible for the non-Fresnel-like shape, when present. We also show that the dynamic polarization potentials derived from the CDCC calculations seem to follow a universal form as a function of radius.

  18. Relativistic Aharonov{endash}Bohm{endash}Coulomb problem

    SciTech Connect

    Hagen, C.R.; Park, D.K.

    1996-10-01

    The ((2+1)-dimensional) Aharonov{endash}Bohm effect is analyzed for a spin-1/2 particle in the case that a 1/{ital r} potential is present. Scalar and vector couplings are each considered. It is found that the approach in which the flux tube is given a finite radius that is taken to zero only after a matching of boundary conditions does not give physically meaningful results. Specifically, the operations of taking the limit of zero flux tube radius and the Galilean limit do not commute. Thus there appears to be no satisfactory solution of the relativistic Aharonov{endash}Bohm{endash}Coulomb problem using the finite radius flux tube method. Copyright {copyright} 1996 Academic Press, Inc.

  19. On the temperature dependence of ballistic Coulomb drag in nanowires.

    PubMed

    Muradov, M I; Gurevich, V L

    2012-04-01

    We have investigated within Fermi liquid theory the dependence of Coulomb drag current in a passive quantum wire on the applied voltage V across an active wire and on the temperature T for any values of eV/k(B)T. We assume that the bottoms of the 1D minibands in both wires almost coincide with the Fermi level. We conclude that: (1) within a certain temperature interval the drag current can be a descending function of the temperature T; (2) the experimentally observed temperature dependence T(-0.77) of the drag current can be interpreted within the framework of Fermi liquid theory; (3) at relatively high applied voltages the drag current saturates as a function of the applied voltage; and (4) the screening of the electron potential by metallic gate electrodes can be of importance. PMID:22406816

  20. Deformation effects in the Coulomb breakup of 31Ne

    NASA Astrophysics Data System (ADS)

    Shubhchintak; Chatterjee, R.

    2014-02-01

    We present a fully quantum mechanical theory to study the effects of deformation on various reaction observables in the Coulomb breakup of neutron rich exotic medium mass nuclei on heavy targets within the framework of finite range distorted wave Born approximation by using a deformed Woods-Saxon potential. As an application of this theory, we calculate the one-neutron removal cross section, relative energy spectra, parallel momentum distributions and angular distributions in the breakup of 31Ne on Pb and Au targets at 234 MeV/u. We suggest ways to put constraints on the large uncertainty in the one-neutron separation energy of 31Ne and also argue that if 31Ne is indeed a halo nucleus then it should be a deformed one.

  1. Runge-Lenz vector in the Calogero-Coulomb problem

    NASA Astrophysics Data System (ADS)

    Hakobyan, Tigran; Nersessian, Armen

    2015-08-01

    We construct the Runge-Lenz vector and the symmetry algebra of the rational Calogero-Coulomb problem using the Dunkl operators. We reveal that they are proper deformations of their Coulomb counterpart. Together with similar correspondence between the Calogero oscillator and oscillator models, this observation permits the claim that most of the properties of the Coulomb and oscillator systems can be lifted to their Calogero-extended analogs by the proper replacement of the momenta by the Dunkl momenta operators.

  2. Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem

    NASA Astrophysics Data System (ADS)

    Abramov, D. I.

    2013-02-01

    A hyperspherical Coulomb spheroidal (HSCS) representation is proposed for the Coulomb three-body problem. This is a new expansion in the set of well-known Coulomb spheroidal functions. The orthogonality of Coulomb spheroidal functions on a constant-hyperradius surface ? = const rather than on a constant-internuclear-distance surface R = const, as in the traditional Born-Oppenheimer approach, is a distinguishing feature of the proposed approach. Owing to this, the HSCS representation proves to be consistent with the asymptotic conditions for the scattering problem at energies below the threshold for three-body breakup: only a finite number of radial functions do not vanish in the limit of ???, with the result that the formulation of the scattering problem becomes substantially simpler. In the proposed approach, the HSCS basis functions are considerably simpler than those in the well-known adiabatic hyperspherical representation, which is also consistent with the asymptotic conditions. Specifically, the HSCS basis functions are completely factorized. Therefore, there arise no problems associated with avoided crossings of adiabatic hyperspherical terms.

  3. Hyperspherical Coulomb spheroidal representation in the Coulomb three-body problem

    NASA Astrophysics Data System (ADS)

    Abramov, D. I.

    2008-09-01

    A new representation of the Coulomb three-body wavefunction via the well-known solutions of the separable Coulomb two-centre problem phij(?, ?) = Xj(?)Yj(?) is obtained, where Xj(?) and Yj(?) are the Coulomb spheroidal functions. Its distinguishing characteristic is the coordination with the asymptotic conditions of the scattering problem below the three-particle breakup. That is, the wavefunction of two colliding clusters in any open channel is the asymptotics of the single, corresponding to that channel, term of the suggested expansion. The effect is achieved due to a new relation between three internal coordinates of a three-body system and the parameters of phij(?, ?). It ensures the orthogonality of phij(?, ?) on a sphere of constant hyperradius, ? = const, in place of the surface R = |x2 - x1| = const appearing in the traditional Born-Oppenheimer approach. The independent variables ? and ? are the orthogonal coordinates on this sphere with three poles in the coalescence points. They are connected with the elliptic coordinates on the plane by means of a stereographic projection. For the total angular momentum J >= 0 the products of phij and the Wigner D-functions form a hyperspherical Coulomb spheroidal (HSCS) basis on a five-dimensional hypersphere, ? being a parameter. The system of the differential equations and the boundary conditions for the radial functions fJi(?), the coefficients of the HSCS decomposition of the three-body wavefunction, are presented.

  4. Hyperspherical Coulomb spheroidal basis in the Coulomb three-body problem

    SciTech Connect

    Abramov, D. I.

    2013-02-15

    A hyperspherical Coulomb spheroidal (HSCS) representation is proposed for the Coulomb three-body problem. This is a new expansion in the set of well-known Coulomb spheroidal functions. The orthogonality of Coulomb spheroidal functions on a constant-hyperradius surface {rho} = const rather than on a constant-internuclear-distance surface R = const, as in the traditional Born-Oppenheimer approach, is a distinguishing feature of the proposed approach. Owing to this, the HSCS representation proves to be consistent with the asymptotic conditions for the scattering problem at energies below the threshold for three-body breakup: only a finite number of radial functions do not vanish in the limit of {rho}{yields}{infinity}, with the result that the formulation of the scattering problem becomes substantially simpler. In the proposed approach, the HSCS basis functions are considerably simpler than those in the well-known adiabatic hyperspherical representation, which is also consistent with the asymptotic conditions. Specifically, the HSCS basis functions are completely factorized. Therefore, there arise no problems associated with avoided crossings of adiabatic hyperspherical terms.

  5. Perturbation theory in the Hamiltonian approach to Yang-Mills theory in Coulomb gauge

    SciTech Connect

    Campagnari, Davide R.; Reinhardt, Hugo; Weber, Axel

    2009-07-15

    We study the Hamiltonian approach to Yang-Mills theory in Coulomb gauge in Rayleigh-Schroedinger perturbation theory. The static gluon and ghost propagator as well as the potential between static color sources are calculated to one-loop order. Furthermore, the one-loop {beta} function is calculated from both the ghost-gluon vertex and the static potential and found to agree with the result of covariant perturbation theory.

  6. Confining solution of the Dyson-Schwinger equations in Coulomb gauge

    SciTech Connect

    Epple, D.; Reinhardt, H.; Schleifenbaum, W.

    2007-02-15

    The Dyson-Schwinger equations arising from minimizing the vacuum energy density in the Hamiltonian approach to Yang-Mills theory in Coulomb gauge are solved numerically. A new solution is presented which gives rise to a strictly linearly rising static quark potential and whose existence was previously observed in the infrared analysis of the Dyson-Schwinger equations. For the new solution we also present the static quark potential and calculate the running coupling constant from the ghost-gluon vertex.

  7. Dynamic stresses, coulomb failure, and remote triggering: corrected

    USGS Publications Warehouse

    Hill, David P.

    2012-01-01

    Dynamic stresses associated with crustal surface waves with 1530 s periods and peak amplitudes <1??MPa are capable of triggering seismicity at sites remote from the generating mainshock under appropriate conditions. Coulomb failure models based on a frictional strength threshold offer one explanation for instances of rapid?onset triggered seismicity that develop during the surface?wave peak dynamic stressing. Evaluation of the triggering potential of surface?wave dynamic stresses acting on critically stressed faults using a Mohrs circle representation together with the Coulomb failure criteria indicates that Love waves should have a higher triggering potential than Rayleigh waves for most fault orientations and wave incidence angles. That (1) the onset of triggered seismicity often appears to begin during the Rayleigh wave rather than the earlier arriving Love wave, and (2) Love?wave amplitudes typically exceed those for Rayleigh waves suggests that the explanation for rapid?onset dynamic triggering may not reside solely with a simple static?threshold friction mode. The results also indicate that normal faults should be more susceptible to dynamic triggering by 20?s Rayleigh?wave stresses than thrust faults in the shallow seismogenic crust (<10??km) while the advantage tips in favor of reverse faults greater depths. This transition depth scales with wavelength and coincides roughly with the transition from retrograde?to?prograde particle motion. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems. The result is consistent with the apparent elevated susceptibility of extensional or transtensional tectonic regimes to remote triggering by Rayleigh?wave dynamic stresses than compressional or transpressional regimes.

  8. Effect of Coulomb interaction on multi-electronwave packet dynamics

    SciTech Connect

    Shiokawa, T.; Takada, Y.; Konabe, S.; Hatsugai, Y.; Muraguchi, M.; Endoh, T.; Shiraishi, K.

    2013-12-04

    We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.

  9. Approximate 3-body Coulomb corrections for HBT interferometry

    SciTech Connect

    Cramer, J.G.; Efimov, V.; Sacksteder, V.E. IV

    1993-10-01

    We have used solutions to the quantum continuum 3-body Coulomb problem in the limits of high and low relative momentum to examine {open_quotes}candidate{close_quotes} corrections for Coulomb interactions in three pion Hanbury-Brown-Twiss interferometry. We suggest this new form of 3-body Coulomb where G({eta}{sub ij}) is a Gamow penetrability, {eta}{sub ij} is the Sommerfeld parameter, and C is an arbitrary constant assigned a value of 1.0. We compare this form with Monte Carlo calculations of 3-particle correlation functions using approximate symmetrized 3-particle Coulomb wave functions.

  10. Monotonicity of Coulomb dipole matrix elements

    NASA Astrophysics Data System (ADS)

    Oh, Sung Dahm; Pratt, R. H.

    1988-03-01

    We present a proof that nonrelativistic Coulomb dipole matrix elements are monotonically decreasing functions of transition energy, for transitions from any given bound state to states of greater energy, including bounded and unbounded negative-energy states and positive-energy continuum states. (By an unbounded negative-energy state we mean a solution of the Schrdinger equation, regular at the origin, which is unbounded and therefore is not an eigenstate.) The proof applies both to reduced matrix elements (normalization constants factored out so that for small distances wave functions behave as Cr2 with C~=1) and to full analytic matrix elements (including bound-state normalizations and their analytic continuations). It also applies to the full bound-free matrix element (including the complete continuum normalization) and to the bound-free cross section. The method of proof is related to our recent demonstration that there are no zeros in nonrelativistic Coulomb dipole matrix elements. Our result follows from a new recursion relation, simply related to the Infeld-Hull recursion relation utilized in our previous demonstration.

  11. Phase diagram of a quantum Coulomb wire

    NASA Astrophysics Data System (ADS)

    Ferr, G.; Astrakharchik, G. E.; Boronat, J.

    2015-12-01

    We report the quantum phase diagram of a one-dimensional Coulomb wire obtained using the path-integral Monte Carlo method. The exact knowledge of the nodal points of this system permits us to find the energy in an exact way, solving the sign problem which spoils fermionic calculations in higher dimensions. The results obtained allow for the determination of the stability domain, in terms of density and temperature, of the one-dimensional Wigner crystal. At low temperatures, the quantum wire reaches the quantum-degenerate regime, which is also described by the diffusion Monte Carlo method. Increasing the temperature, the system transforms to a classical Boltzmann gas, which we simulate using classical Monte Carlo. At large enough density, we identify a one-dimensional ideal Fermi gas which remains quantum up to higher temperatures than in two- and three-dimensional electron gases. The obtained phase diagram and the energetic and structural properties of this system are relevant to experiments with electrons in quantum wires and to Coulomb ions in one-dimensional confinement.

  12. Oscillator-Morse-Coulomb mappings and algebras for constant or position-dependent mass

    SciTech Connect

    Quesne, C.

    2008-02-15

    The bound-state solutions and the su(1,1) description of the d-dimensional radial harmonic oscillator, the Morse, and the D-dimensional radial Coulomb Schroedinger equations are reviewed in a unified way using the point canonical transformation method. It is established that the spectrum generating su(1,1) algebra for the first problem is converted into a potential algebra for the remaining two. This analysis is then extended to Schroedinger equations containing some position-dependent mass. The deformed su(1,1) construction recently achieved for a d-dimensional radial harmonic oscillator is easily extended to the Morse and Coulomb potentials. In the last two cases, the equivalence between the resulting deformed su(1,1) potential algebra approach and a previous deformed shape invariance one generalizes to a position-dependent mass background a well-known relationship in the context of constant mass.

  13. Simulation of the formation of two-dimensional Coulomb liquids and solids in dusty plasmas

    SciTech Connect

    Hwang, H.H.; Kushner, M.J.

    1997-09-01

    Dust particle transport in low-temperature plasmas has recently received considerable attention due to the desire to minimize contamination of wafers during plasma processing of microelectronics devices. Laser light scattering observations of dust particles near wafers in reactive-ion-etching (RIE) radio frequency (rf) discharges have revealed clouds which display collective behavior. These observations have motivated experimental studies of the Coulomb liquid and solid properties of these systems. In this paper, we present results from a two-dimensional model for dust particle transport in RIE rf discharges in which we include particle-particle Coulomb interactions. We predict the formation of Coulomb liquids and solids. These predictions are based both on values of {Gamma}{gt}2 (liquid) and {Gamma}{gt}170 (solid), where {Gamma} is the ratio of electrostatic potential energy to thermal energy, and on crystal-like structure in the pair correlation function. We find that Coulomb liquids and solids composed of trapped dust particles in RIE discharges are preferentially formed with increasing gas pressure, decreasing particle size, and decreasing rf power. We also observe the ejection of particles from dust crystals which completely fill trapping sites, as well as lattice disordering followed by annealing and refreezing. {copyright} {ital 1997 American Institute of Physics.}

  14. Evaluation of negative energy Coulomb (Whittaker) functions

    NASA Astrophysics Data System (ADS)

    Noble, C. J.

    2004-05-01

    This paper describes a code for evaluating exponentially decaying negative energy Coulomb functions and their first derivatives with respect to the radial variable. The functions, which correspond to Whittaker functions of the second kind, are obtained to high accuracy for a wide range of parameters using recurrence techniques. Program summaryTitle of program: whittaker_w Catalog identifier: ADSZ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSZ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: Cray T3E, Sun Ultra-5_10 sparc, Origin2000, Compaq EV67, IBM SP3, Toshiba 460CDT Operating systems under which the program has been tested: Windows NT4, Redhat Linux, SunOS 5.8 Programming language used: Fortran 95 Memory required to run with typical data: 500 KB Number of bytes in distributed program, including test data, etc.: 39728 Number of lines in distributed program, including test data, etc.: 2900 Distribution format: tar gzip file Nature of physical problem: The closed-channel components of the asymptotic radial wave function corresponding to electron or positron scattering by atomic or molecular ions may be expressed in terms of negative energy Coulomb functions. The scattering observables are obtained from S or T matrices which in turn are obtained by matching the radial and asymptotic wavefunctions at a finite radial point. Recent large scale scattering calculations have required accurate values of the Coulomb functions at smaller ρ values and larger negative η values than previous work. The present program is designed to extend the range of parameters for which the function may be calculated. Method of solution: Recurrence relations, power series expansion, numerical quadrature. Restrictions on the complexity of the problem: The program has been tested for the parameter ranges: 0< ρ⩽1000, | η|⩽120 and 0⩽ l⩽100. These ranges may, with appropriate scaling to avoid underflow and overflow, be extended. References: A. Sunderland, C.J. Noble, P.G. Burke, V.M. Burke, Comp. Phys. Commun. 145 (2002) 311.

  15. Dynamical effects in the Coulomb expansion following nuclear fragmentation

    SciTech Connect

    Chung, K.C.; Donangelo, R.; Schechter, H.

    1987-09-01

    The effects of the Coulomb expansion on the fragment kinetic energy spectrum for a fragmentating hot nuclear system is investigated. In particular, /sup 12/C-fragment spectra are calculated and compared with those predicted by the uniform expansion approximation. The results indicate that the energy spectra of fragments are quite sensitive to the details of the Coulomb expansion treatment.

  16. Known-to-Unknown Approach to Teach about Coulomb's Law

    ERIC Educational Resources Information Center

    Thamburaj, P. K.

    2007-01-01

    Analogies from life experiences help students understand various relationships presented in an introductory chemistry course. Coulomb's law is a complex relationship encountered in introductory general chemistry. A proper understanding of the relationships between the quantities involved in Coulomb's law is necessary in order for students to

  17. Experimental realization of a Coulomb blockade refrigerator

    NASA Astrophysics Data System (ADS)

    Feshchenko, A. V.; Koski, J. V.; Pekola, J. P.

    2014-11-01

    We present an experimental realization of a Coulomb blockade refrigerator (CBR) based on a single-electron transistor (SET). In the present structure, the SET island is interrupted by a superconducting inclusion to permit charge transport while preventing heat flow. At certain values of the bias and gate voltages, the current through the SET cools one of the junctions. The measurements follow the theoretical model down to 80 mK, which was the base temperature of the current measurements. The observed cooling increases rapidly with decreasing temperature, in agreement with the theory, reaching about a 15 mK drop at the base temperature. The CBR appears as a promising electronic cooler at temperatures well below 100 mK.

  18. The ghost propagator in Coulomb gauge

    NASA Astrophysics Data System (ADS)

    Watson, P.; Reinhardt, H.

    2011-05-01

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until `forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  19. The ghost propagator in Coulomb gauge

    SciTech Connect

    Watson, P.; Reinhardt, H.

    2011-05-23

    We present results for a numerical study of the ghost propagator in Coulomb gauge whereby lattice results for the spatial gluon propagator are used as input to solving the ghost Dyson-Schwinger equation. We show that in order to solve completely, the ghost equation must be supplemented by a boundary condition (the value of the inverse ghost propagator dressing function at zero momentum) which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until 'forced' to freeze out in the infrared to the value of the boundary condition. The boundary condition can be interpreted in terms of the Gribov gauge-fixing ambiguity; we also demonstrate that this is not connected to the renormalization. Further, the connection to the temporal gluon propagator and the infrared slavery picture of confinement is discussed.

  20. Simulating Coulomb collisions in a magnetized plasma

    SciTech Connect

    Hinton, Fred L.

    2008-04-15

    The problem of simulating ion-ion Coulomb collisions in a plasma in a strong magnetic field is considered. No assumption is made about the ion distribution function except that it is independent of the gyrophase angle, consistent with the assumption that the ion gyrofrequency is much larger than the ion-ion collision frequency. A Langevin method is presented which time-advances the components of a particle's velocity parallel and perpendicular to the magnetic field, without following the rapidly changing gyrophase. Although the standard Monte Carlo procedure, which uses random sampling, can be used, it is also possible to use a deterministic sampling procedure, where the samples are determined by the points which would be used in a numerical quadrature formula for moments of the Fokker-Planck Green's function. This should reduce the sampling noise compared with the Monte Carlo collision method.

  1. Tabletop nucleosynthesis driven by cluster Coulomb explosion.

    PubMed

    Last, Isidore; Jortner, Joshua

    2006-10-27

    Coulomb explosion of completely ionized (CH4)n, (NH3)n, and (H2O)n clusters will drive tabletop nuclear reactions of protons with 12C6+, 14N7+, and 16O8+ nuclei, extending the realm of nuclear reactions driven by ultraintense laser-heterocluster interaction. The realization for nucleosynthesis in exploding cluster beams requires complete electron stripping from the clusters (at laser intensities I(M) > or = 10(19) W cm(-2)), the utilization of nanodroplets of radius 300-700 A for vertical ionization, and the attainment of the highest energies for the nuclei (i.e., approximately 30 MeV for heavy nuclei and approximately 3 MeV for protons). PMID:17155473

  2. Mixed Axion/Axino Dark Matter in mSUGRA and Yukawa-unified SUSY

    NASA Astrophysics Data System (ADS)

    Summy, Heaya Ann

    2010-02-01

    Axion/axino dark matter (DM) is explored in the minimal supergravity (mSUGRA) and Yukawa-unified supersymmetric grand-unified theory (SUSY GUT) models with surprising results. For this type of scenario, relic DM abundance has three components: i.) cold axions, ii.) warm axinos from neutralino decay, and iii.) cold or warm thermally produced axinos. Reheat temperatures TR exceeding 106 GeV are required in order to solve the gravitino/Big Bang Nucleosynthesis (BBN) problem while also allowing for baryogensis via non-thermal leptogenesis. In order to attain high enough reheat temperatures, we also need high values of the Peccei-Quinn (PQ) breaking scale fa on the order 1011-1012 GeV.

  3. Hexatic phase in two-dimensional Yukawa systems: Existence and properties

    NASA Astrophysics Data System (ADS)

    Koss, X. G.; Vaulina, O. S.

    2015-11-01

    In present work, phase transitions in strongly-coupled two-dimensional dissipative Yukawa systems are studied. The thermodynamic characteristics of these systems are calculated, namely the internal energy, the specific heat and the entropy. The considered characteristics have two singular points; one of these points corresponds to the first-order phase transition from crystal to the hexatic phase, and another point corresponds to the second-order phase transition from the hexatic phase to the isotropic liquid. The dependence of the position of the melting lines and the range of existence of the hexatic phase on the concentration of the grains in the considered system is studied. The special attention is paid to the comparison of our results to the existing numerical and analytical data.

  4. Probing the Charm Quark Yukawa Coupling in Higgs+Charm Production.

    PubMed

    Brivio, Ilaria; Goertz, Florian; Isidori, Gino

    2015-11-20

    We propose a new method for determining the coupling of the Higgs boson to charm quarks, via Higgs production in association with a charm-tagged jet: pp→hc. As a first estimate, we find that at the LHC with 3000  fb^{-1}, it should be possible to derive a constraint of order one, relative to the standard model (SM) value of the charm Yukawa coupling. As a by-product of this analysis, we present an estimate of the exclusive pp→hD^{(*)} electroweak cross section. Within the SM, the latter turns out to be not accessible at the LHC even in the high-luminosity phase. PMID:26636844

  5. Mixed Axion/Axino Dark Matter in mSUGRA and Yukawa-unified SUSY

    SciTech Connect

    Ann Summy, Heaya

    2010-02-10

    Axion/axino dark matter (DM) is explored in the minimal supergravity (mSUGRA) and Yukawa-unified supersymmetric grand-unified theory (SUSY GUT) models with surprising results. For this type of scenario, relic DM abundance has three components: i.) cold axions, ii.) warm axinos from neutralino decay, and iii.) cold or warm thermally produced axinos. Reheat temperatures T{sub R} exceeding 10{sup 6} GeV are required in order to solve the gravitino/Big Bang Nucleosynthesis (BBN) problem while also allowing for baryogensis via non-thermal leptogenesis. In order to attain high enough reheat temperatures, we also need high values of the Peccei-Quinn (PQ) breaking scale f{sub a} on the order 10{sup 11}-10{sup 12} GeV.

  6. Probing the Charm Quark Yukawa Coupling in Higgs+Charm Production

    NASA Astrophysics Data System (ADS)

    Brivio, Ilaria; Goertz, Florian; Isidori, Gino

    2015-11-01

    We propose a new method for determining the coupling of the Higgs boson to charm quarks, via Higgs production in association with a charm-tagged jet: p p →h c . As a first estimate, we find that at the LHC with 3000 fb-1 , it should be possible to derive a constraint of order one, relative to the standard model (SM) value of the charm Yukawa coupling. As a by-product of this analysis, we present an estimate of the exclusive p p →h D(*) electroweak cross section. Within the SM, the latter turns out to be not accessible at the LHC even in the high-luminosity phase.

  7. A Dream of Yukawa Non-Local Fields out of Non-Commutative Spacetime

    NASA Astrophysics Data System (ADS)

    Naka, Shigefumi; Toyoda, Haruki; Takanashi, Takahiro; Umezawa, Eizo

    The coordinates of ?-Minkowski spacetime form Lie algebraic elements, in which time and space coordinates do not commute in spite of that space coordinates commute each other. The non-commutativity is realized by a Planck-length-scale constant ? - 1( ne 0), which is a universal constant other than the light velocity under the ?-Poincare transformation. Such a non-commutative structure can be realized by SO(1,4) generators in dS4 spacetime. In this work, we try to construct a ?-Minkowski like spacetime with commutative 4-dimensional spacetime based on Adsn+1 spacetime. Another aim of this work is to study invariant wave equations in this spacetime from the viewpoint of non-local field theory by H. Yukawa, who expected to realize elementary particle theories without divergence according to this viewpoint.

  8. Two-Yukawa fluid at a hard wall: Field theory treatment

    SciTech Connect

    Kravtsiv, I.; Patsahan, T.; Holovko, M.; Caprio, D. di

    2015-05-21

    We apply a field-theoretical approach to study the structure and thermodynamics of a two-Yukawa fluid confined by a hard wall. We derive mean field equations allowing for numerical evaluation of the density profile which is compared to analytical estimations. Beyond the mean field approximation, analytical expressions for the free energy, the pressure, and the correlation function are derived. Subsequently, contributions to the density profile and the adsorption coefficient due to Gaussian fluctuations are found. Both the mean field and the fluctuation terms of the density profile are shown to satisfy the contact theorem. We further use the contact theorem to improve the Gaussian approximation for the density profile based on a better approximation for the bulk pressure. The results obtained are compared to computer simulation data.

  9. Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; kesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; lvarez Piqueras, D.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; sman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimares da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.

    2015-04-01

    Results of a search for H ? ?? decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb-1 and 20.3 fb-1 at centre-of-mass energies of TeV and TeV respectively. All combinations of leptonic ( with ? = e, ?) and hadronic ( ? ? hadrons ?) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of ? = 1. 43{-/0.37 + 0.43} is consistent with the predicted Yukawa coupling strength in the Standard Model. [Figure not available: see fulltext.

  10. Self-Consistent Monte Carlo Study of the Coulomb Interaction under Nano-Scale Device Structures

    NASA Astrophysics Data System (ADS)

    Sano, Nobuyuki

    2011-03-01

    It has been pointed that the Coulomb interaction between the electrons is expected to be of crucial importance to predict reliable device characteristics. In particular, the device performance is greatly degraded due to the plasmon excitation represented by dynamical potential fluctuations in high-doped source and drain regions by the channel electrons. We employ the self-consistent 3D Monte Carlo (MC) simulations, which could reproduce both the correct mobility under various electron concentrations and the collective plasma waves, to study the physical impact of dynamical potential fluctuations on device performance under the Double-gate MOSFETs. The average force experienced by an electron due to the Coulomb interaction inside the device is evaluated by performing the self-consistent MC simulations and the fixed-potential MC simulations without the Coulomb interaction. Also, the band-tailing associated with the local potential fluctuations in high-doped source region is quantitatively evaluated and it is found that the band-tailing becomes strongly dependent of position in real space even inside the uniform source region. This work was partially supported by Grants-in-Aid for Scientific Research B (No. 2160160) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  11. Parabolic sturmians approach to the three-body continuum Coulomb problem

    NASA Astrophysics Data System (ADS)

    Zaytsev, S. A.; Popov, Yu. V.; Piraux, B.

    2013-03-01

    The three-body continuum Coulomb problem is treated in terms of the generalized parabolic coordinates. Approximate solutions are expressed in the form of a Lippmann-Schwinger-type equation, where the Green's function includes the leading term of the kinetic energy and the total potential energy, whereas the potential contains the non-orthogonal part of the kinetic energy operator. As a test of this approach, the integral equation for the ( e -, e -, He++) system has been solved numerically by using the parabolic Sturmian basis representation of the (approximate) potential. Convergence of the expansion coefficients of the solution has been obtained as the basis set used to describe the potential is enlarged.

  12. Systematic approach for discrete excitation of helium in the Coulomb-Born model

    SciTech Connect

    Kumar, M.; Srivastava, R.; Tripathi, A.N.

    1985-02-01

    We have studied the electron-impact excitation of the 2 /sup 1/S and 2 /sup 1/P states of helium in the Coulomb-Born approximation. Closed-form expressions for scattering amplitudes have been obtained with Fourier decomposition of the interaction potential and then the use of accurate correlated wave functions. The results of the present calculations have been compared with other available theoretical calculations and experimental measurements.

  13. Non-homogeneous solutions of a Coulomb Schrdinger equation as basis set for scattering problems

    SciTech Connect

    Del Punta, J. A.; Ambrosio, M. J.; Gasaneo, G.; Zaytsev, S. A.; Ancarani, L. U.

    2014-05-15

    We introduce and study two-body Quasi Sturmian functions which are proposed as basis functions for applications in three-body scattering problems. They are solutions of a two-body non-homogeneous Schrdinger equation. We present different analytic expressions, including asymptotic behaviors, for the pure Coulomb potential with a driven term involving either Slater-type or Laguerre-type orbitals. The efficiency of Quasi Sturmian functions as basis set is numerically illustrated through a two-body scattering problem.

  14. Algebraic approach to quasi-exact solutions of the Dirac-Coulomb problem

    NASA Astrophysics Data System (ADS)

    Panahi, H.; Baradaran, M.

    2013-04-01

    The Dirac equation in the presence of Coulomb electrostatic potential is solved and the quasi-exact solutions are obtained via osp(2, 2) algebraization. The Lie-algebraic approach of quasi-exact solvability is applied to the problem and by constructing the matrix representation of the problem, the energy spectrum and thereby the corresponding spinor wave functions are obtained in terms of the polynomial components of osp(2, 2) superalgebra.

  15. Unified derivation of exact solutions to the relativistic Coulomb problem: Lie algebraic approach

    NASA Astrophysics Data System (ADS)

    Panahi, H.; Baradaran, M.; Savadi, A.

    2015-10-01

    Exact algebraic solutions of the D-dimensional Dirac and Klein-Gordon equations for the Coulomb potential are obtained in a unified treatment. It is shown that two cases are reducible to the same basic equation, which can be solved exactly. Using the Lie algebraic approach, the general exact solutions of the problem are obtained within the framework of representation theory of the sl(2) Lie algebra.

  16. Full Current Statistics in the Regime of Weak Coulomb Interaction

    NASA Astrophysics Data System (ADS)

    Bagrets, D. A.; Nazarov, Yu. V.

    2005-02-01

    We evaluate the full statistics of the current via a Coulomb island that is strongly coupled to the leads. This strong coupling weakens Coulomb interaction. We show that in this case the effects of the interaction can be incorporated into the renormalization of transmission eigenvalues of the scatterers that connect the island and the leads. We evaluate the Coulomb blockade gap in the current-voltage characteristics, the value of the gap being exponentially suppressed as compared to the classical charging energy of the island.

  17. Characterizing intra-exciton Coulomb scattering in terahertz excitations

    NASA Astrophysics Data System (ADS)

    Zybell, S.; Bhattacharyya, J.; Winnerl, S.; Eer, F.; Helm, M.; Schneider, H.; Schneebeli, L.; Bttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.

    2014-11-01

    An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.

  18. Relativistic Coulomb Problem for Z Larger than 137

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.

    We propose a relativistic one-parameter Hermitian theory for the Coulomb problem with an electric charge greater than 137. In the nonrelativistic limit, the theory becomes identical to the Schrdinger-Coulomb problem for all Z. Moreover, it agrees with the Dirac-Coulomb problem to order (?Z)2, where ? is the fine structure constant. The vacuum in the theory is stable and does not suffer from the "charged vacuum" problem for all Z. Moreover, transition between positive and negative energy states could be eliminated. The relativistic bound states energy spectrum and corresponding spinor wave functions are obtained.

  19. Characterizing intra-exciton Coulomb scattering in terahertz excitations

    SciTech Connect

    Zybell, S.; Eer, F.; Helm, M.; Bhattacharyya, J.; Winnerl, S.; Schneider, H.; Schneebeli, L.; Bttge, C. N.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.

    2014-11-17

    An intense terahertz field is applied to excite semiconductor quantum wells yielding strong non-equilibrium exciton distributions. Even though the relaxation channels involve a complicated quantum kinetics of Coulomb and phonon effects, distinct relaxation signatures of Coulomb scattering are identified within time-resolved photoluminescence by comparing the experiment with a reduced model that contains all relevant microscopic processes. The analysis uncovers a unique time scale for the Coulomb scattering directly from experiments and reveals the influence of phonon relaxation as well as radiative decay.

  20. Structure Theory for Extended Kepler-Coulomb 3D Classical Superintegrable Systems

    NASA Astrophysics Data System (ADS)

    Kalnins, Ernie G.; Miller, Willard, Jr.

    2012-06-01

    The classical Kepler-Coulomb system in 3 dimensions is well known to be 2nd order superintegrable, with a symmetry algebra that closes polynomially under Poisson brackets. This polynomial closure is typical for 2nd order superintegrable systems in 2D and for 2nd order systems in 3D with nondegenerate (4-parameter) potentials. However the degenerate 3-parameter potential for the 3D extended Kepler-Coulomb system (also 2nd order superintegrable) is an exception, as its quadratic symmetry algebra doesn't close polynomially. The 3D 4-parameter potential for the extended Kepler-Coulomb system is not even 2nd order superintegrable. However, Verrier and Evans (2008) showed it was 4th order superintegrable, and Tanoudis and Daskaloyannis (2011) showed that in the quantum case, if a second 4th order symmetry is added to the generators, the double commutators in the symmetry algebra close polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider a! n infinite class of classical extended Kepler-Coulomb 3- and 4-parameter systems indexed by a pair of rational numbers (k1,k2) and reducing to the usual systems when k1=k2=1. We show these systems to be superintegrable of arbitrarily high order and work out explicitly the structure of the symmetry algebras determined by the 5 basis generators we have constructed. We demonstrate that the symmetry algebras close rationally; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering constants of the motion, not themselves polynomials in the momenta, that can be employed to construct the polynomial symmetries and their structure relations.

  1. Quantifying the {sup 12}C+{sup 12}C sub-Coulomb fusion with the time-dependent wave-packet method

    SciTech Connect

    Diaz-Torres, Alexis; Wiescher, Michael

    2012-10-20

    This contribution provides a preliminary study of the {sup 12}C+{sup 12}C sub-Coulomb fusion reaction using the time-dependent wave-packet method within a nuclear molecular picture. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.

  2. Coulomb gauge ghost Dyson-Schwinger equation

    NASA Astrophysics Data System (ADS)

    Watson, P.; Reinhardt, H.

    2010-12-01

    A numerical study of the ghost Dyson-Schwinger equation in Coulomb gauge is performed and solutions for the ghost propagator found. As input, lattice results for the spatial gluon propagator are used. It is shown that in order to solve completely, the equation must be supplemented by a nonperturbative boundary condition (the value of the inverse ghost propagator dressing function at zero momentum), which determines if the solution is critical (zero value for the boundary condition) or subcritical (finite value). The various solutions exhibit a characteristic behavior where all curves follow the same (critical) solution when going from high to low momenta until forced to freeze out in the infrared to the value of the boundary condition. The renormalization is shown to be largely independent of the boundary condition. The boundary condition and the pattern of the solutions can be interpreted in terms of the Gribov gauge-fixing ambiguity. The connection to the temporal gluon propagator and the infrared slavery picture of confinement is explored.

  3. Multilevel Monte Carlo simulation of Coulomb collisions

    SciTech Connect

    Rosin, M.S.; Ricketson, L.F.; Dimits, A.M.; Caflisch, R.E.; Cohen, B.I.

    2014-10-01

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the LandauFokkerPlanck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ?, the computational cost of the method is O(?{sup ?2}) or O(?{sup ?2}(ln?){sup 2}), depending on the underlying discretization, Milstein or EulerMaruyama respectively. This is to be contrasted with a cost of O(?{sup ?3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lvy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ?=10{sup ?5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.

  4. Multilevel Monte Carlo simulation of Coulomb collisions

    NASA Astrophysics Data System (ADS)

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; Caflisch, R. E.; Cohen, B. I.

    2014-10-01

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau-Fokker-Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ?, the computational cost of the method is O(?-2) or O(?-2(), depending on the underlying discretization, Milstein or Euler-Maruyama respectively. This is to be contrasted with a cost of O(?-3) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lvy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ?=10-5. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.

  5. Accelerated Monte Carlo Methods for Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Rosin, Mark; Ricketson, Lee; Dimits, Andris; Caflisch, Russel; Cohen, Bruce

    2014-03-01

    We present a new highly efficient multi-level Monte Carlo (MLMC) simulation algorithm for Coulomb collisions in a plasma. The scheme, initially developed and used successfully for applications in financial mathematics, is applied here to kinetic plasmas for the first time. The method is based on a Langevin treatment of the Landau-Fokker-Planck equation and has a rich history derived from the works of Einstein and Chandrasekhar. The MLMC scheme successfully reduces the computational cost of achieving an RMS error ɛ in the numerical solution to collisional plasma problems from (ɛ-3) - for the standard state-of-the-art Langevin and binary collision algorithms - to a theoretically optimal (ɛ-2) scaling, when used in conjunction with an underlying Milstein discretization to the Langevin equation. In the test case presented here, the method accelerates simulations by factors of up to 100. We summarize the scheme, present some tricks for improving its efficiency yet further, and discuss the method's range of applicability. Work performed for US DOE by LLNL under contract DE-AC52- 07NA27344 and by UCLA under grant DE-FG02-05ER25710.

  6. Coulomb excitation of {sup 73}Ga

    SciTech Connect

    Diriken, J.; Bree, N.; Cocolios, T. E.; Huyse, M.; Ivanov, O. V.; Patronis, N.; Pauwels, D.; Van Duppen, P.; Stefanescu, I.; Balabanski, D.; Blasi, N.; Lo Bianco, G.; Blazhev, A.; Eberth, J.; Jolie, J.; Reiter, P.; Warr, N.; Cederkaell, J.; Davinson, T.; Ekstroem, A.

    2010-12-15

    The B(E2;I{sub i}{yields}I{sub f}) values for transitions in {sub 31}{sup 71}Ga{sub 40} and {sub 31}{sup 73}Ga{sub 42} were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of {sup 71,73}Ga at the REX-ISOLDE on-line isotope mass separator facility. The emitted {gamma} rays were detected by the MINIBALL {gamma}-detector array, and B(E2;I{sub i}{yields}I{sub f}) values were obtained from the yields normalized to the known strength of the 2{sup +}{yields}0{sup +} transition in the {sup 120}Sn target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity toward lower excitation energy when adding neutrons beyond N=40. This supports conclusions from previous studies of the gallium isotopes, which indicated a structural change in this isotopic chain between N=40 and 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2{sup -} spin and parity for the ground state, the extracted results revealed evidence for a 1/2{sup -},3/2{sup -} doublet near the ground state in {sub 31}{sup 73}Ga{sub 42} differing by at most 0.8 keV in energy.

  7. Inelastic Scattering Form Factors

    Energy Science and Technology Software Center (ESTSC)

    1992-01-01

    ATHENA-IV computes form factors for inelastic scattering calculations, using single-particle wave functions that are eigenstates of motion in either a Woods-Saxon potential well or a harmonic oscillator well. Two-body forces of Gauss, Coulomb, Yukawa, and a sum of cut-off Yukawa radial dependences are available.

  8. Fast elliptic solvers in cylindrical coordinates and the Coulomb collision operator

    SciTech Connect

    Pataki, Andras; Greengard, Leslie

    2011-09-01

    Highlights: {yields} We describe new fast solvers for elliptic partial differential equations in free space. {yields} We combine integral equation methods with Fourier methods to achieve high order accuracy. {yields} We apply these solvers to the evaluation of the Coulomb collision operator in plasma physics. - Abstract: In this paper, we describe a new class of fast solvers for separable elliptic partial differential equations in cylindrical coordinates (r, {theta}, z) with free-space radiation conditions. By combining integral equation methods in the radial variable r with Fourier methods in {theta} and z, we show that high-order accuracy can be achieved in both the governing potential and its derivatives. A weak singularity arises in the Fourier transform with respect to z that is handled with special purpose quadratures. We show how these solvers can be applied to the evaluation of the Coulomb collision operator in kinetic models of ionized gases.

  9. Influence of Coulomb effects on the resolving power of multireflection mass-spectrometer systems

    NASA Astrophysics Data System (ADS)

    Skoblin, M. G.; Kopaev, I. A.; Greenfield, D. E.; Makarov, A. A.; Monastyrskiy, M. A.; Alimpiev, S. S.

    2015-12-01

    General theoretical approaches to the modelling of Coulomb effects in short ion bunches, developed previously by the authors, are applied in this paper to the calculation of multireflection mass-spectrometer systems. A separate module of the MASIM 3D applied software package is designed. An adaptive computational procedure for calculating the 'mirror potential' induced by an ion bunch on the surface of field-forming electrodes is proposed. The dynamics of ion bunches in a time-of-flight reflectron-type mass analyser is calculated and the limitations on the resolving power, caused by resonant Coulomb effects of self-bunching and coalescence in the groups of particles with close masses, are revealed on the basis of numerical experiments.

  10. High energy ions generated by laser driven Coulomb explosion of cluster

    NASA Astrophysics Data System (ADS)

    Nishihara, K.; Amitani, H.; Murakami, M.; Bulanov, S. V.; Esirkepov, T. Zh.

    2001-05-01

    We present an analytical model and three dimensional particle simulations of intense laser interaction with a cluster of overdense plasma. When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non-neutral ion cloud. During the Coulomb explosion of the ion cloud, ions acquire their energy. Ion energy spectra are discussed in detail for different densities and sizes of clusters with various laser intensities. It is shown that ultra-fast ions are produced for relatively large clusters, and that the ion energy becomes three times greater than the maximum electrostatic potential energy of the ion cloud. The laser driven Coulomb explosion of a cluster may provide a new high energy ion source.

  11. Linear-scaling multipole-accelerated Gaussian and finite-element Coulomb method

    NASA Astrophysics Data System (ADS)

    Watson, Mark A.; Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko

    2008-02-01

    A linear-scaling implementation of the Gaussian and finite-element Coulomb (GFC) method is presented for the rapid computation of the electronic Coulomb potential. The current work utilizes the fast multipole method (FMM) for the evaluation of the Poisson equation boundary condition. The FMM affords significant savings for small- and medium-sized systems and overcomes the bottleneck in the GFC method for very large systems. Compared to an exact analytical treatment of the boundary, more than 100-fold speedups are observed for systems with more than 1000 basis functions without any significant loss of accuracy. We present CPU times to demonstrate the effectiveness of the linear-scaling GFC method for both one-dimensional polyalanine chains and the challenging case of three-dimensional diamond fragments.

  12. The effects of Coulomb interactions on the superconducting gaps in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Leong, Zhidong; Phillips, Philip

    2015-03-01

    Recent ARPES measurements on Co-doped LiFeAs report a large and robust superconducting gap on a band below the chemical potential. We will show that, unlike a conventional BCS theory, a multiband system with strong interband Coulomb interactions can explain the observations. We use a two-band model consisting of a superconducting electron band and a hole band that is below the chemical potential. The two bands are coupled via interband Coulomb interactions. Using Eliashberg theory, we found that superconductivity in the electron band induces a large superconducting gap in the hole band. Furthermore, the repulsive nature of the Coulomb interactions gives the induced gap an opposite sign, corresponding to an s+/- gap symmetry. Unlike other families of iron pnictides, the gap symmetry of LiFeAs has not been ascertained experimentally. The implications for the superconducting mechanism in iron pnictides will be discussed. Z. Leong is supported by a scholarship from the Agency of Science, Technology and Research. P. Phillips is supported by the Center for Emergent Superconductivity, a DOE Energy Frontier Research Center, Grant No. DE-AC0298CH1088.

  13. Localizing gauge fields on a topological Abelian string and the Coulomb law

    SciTech Connect

    Torrealba S, Rafael S.

    2010-07-15

    The confinement of electromagnetic field is studied in axial symmetrical, warped, six-dimensional brane world, using a recently proposed topological Abelian string-vortex solution as background. It was found, that the massless gauge field fluctuations follow four-dimensional Maxwell equations in the Lorenz gauge. The massless zero mode is localized when the thickness of the string vortex is less than 5{beta}/4{pi}e{sup 2}v{sup 2} and there are no other localized massless modes. There is also an infinite of nonlocalized massive Fourier modes, that follow four-dimensional Proca equations with a continuous spectrum. To compute the corrections to the Coulomb potential, a radial cutoff was introduced, in order to achieve a discrete mass spectrum. As a main result, a (R{sub o}/{beta}R{sup 2}) correction was found for the four-dimensional effective Coulomb law; the result is in correspondence with the observed behavior of the Coulomb potential at today's measurable distances.

  14. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ardelt, P.-L.; Gawarecki, K.; Müller, K.; Waeber, A. M.; Bechtold, A.; Oberhofer, K.; Daniels, J. M.; Klotz, F.; Bichler, M.; Kuhn, T.; Krenner, H. J.; Machnikowski, P.; Finley, J. J.

    2016-02-01

    We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k .p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.

  15. Indirect Coulomb energy for two-dimensional atoms

    SciTech Connect

    Benguria, Rafael D.; Tusek, Matej

    2012-09-15

    In this paper we provide a family of lower bounds on the indirect Coulomb energy for atomic and molecular systems in two dimensions in terms of a functional of the single particle density with gradient correction terms.

  16. Variational approach to the spinless relativistic Coulomb problem

    SciTech Connect

    Lucha, W. ); Schoeberl, F.F. )

    1994-10-15

    By application of a straightforward variational procedure, we derive a simple, analytic upper bound on the ground-state energy eigenvalue of a semirelativistic Hamiltonian for (one or two) spinless particles which experience some Coulomb-type interaction.

  17. Multifragmentation: Surface and Coulomb instabilities of sheets, bubbles, and donuts

    SciTech Connect

    Moretto, L.G.; Tso, Kin; Wozniak, G.J.

    1993-08-01

    Disks, bubbles, and donuts have been observed in dynamical calculations of heavy ion collisions. These shapes are subject to a variety of surface and Coulomb instabilities. These instabilities are identified and analyzed in terms of their relevance to multifragmentation.

  18. Coulomb excitation of radioactive nuclear beams in inverse kinematics

    SciTech Connect

    Zamfir, N.V. |||; Barton, C.J.; Brenner, D.S.; Casten, R.F. |; Gill, R.L.; Zilges, A. |

    1996-12-31

    Techniques for the measurement of B (E2:0{sub 1}{sup +} {r_arrow} 2{sub 1}{sup +}) values by Coulomb excitation of Radioactive Nuclear Beams in inverse kinematics are described. Using a thin, low Z target, the Coulomb excited beam nuclei will decay in flight downstream of the target. For long lifetimes (nanosecond range) these nuclei decay centimeters downstream of the target and for shorter lifetimes (picoseconds or less) they decay near the target. Corresponding to these two lifetime regimes two methods have been developed to measure {gamma} rays from the Coulomb excited nuclei: the lifetime method in which the lifetime of the excited state is deduced from the decay curve and the integral method in which the B(E2) value is extracted from the measured total Coulomb excitation cross section.

  19. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.

    PubMed

    Ardelt, P-L; Gawarecki, K; Mller, K; Waeber, A M; Bechtold, A; Oberhofer, K; Daniels, J M; Klotz, F; Bichler, M; Kuhn, T; Krenner, H J; Machnikowski, P; Finley, J J

    2016-02-19

    We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band kp calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule. PMID:26943557

  20. The Examination of the {sup 12}C + {sup 24}Mg Elastic Scattering around the Coulomb Barrier

    SciTech Connect

    Boztosun, I.; Dagdemir, Y.; Bayrak, O.

    2005-07-01

    The investigation of nuclear reactions near the Coulomb barrier poses a number of problematic issues which have remained unsolved for a long time: The out-of-phase problem between theoretical predictions and experimental data, the reproduction of the oscillatory structure near the Coulomb barrier, and the consistent description of angular distributions together with the excitation functions data are just some of these issues. To address and overcome them, we examine the elastic scattering of the {sup 12}C + {sup 24}Mg system within the framework of the optical model with two small potentials in addition to the nuclear potential. The experimental data have been analyzed in the laboratory system from 16.0 to 24.0 MeV and excellent agreement between theoretical results and the measured experimental data has been obtained by using this modified optical potential. We show that the presence of the two small additional potentials creates a deepening in the surface region of the nuclear potential, which is very effective for the interference of the internal and barrier waves. This work is important in showing the sensitivity of the cross section to the fine details of the optical potential. It is also argued that the two small additional potentials take into account the coupling effect like that of the coupled channels and as a result reduce the strength of the imaginary potential. In this context, the results of the optical model are compared with that of the coupled channels.

  1. Advance and prospects in constraining the Yukawa-type corrections to Newtonian gravity from the Casimir effect

    SciTech Connect

    Bezerra, V. B.; Romero, C.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2010-03-01

    We report stronger constraints on the parameters of Yukawa-type corrections to Newtonian gravity from measurements of the lateral Casimir force between sinusoidally corrugated surfaces of a sphere and a plate. In the interaction range from 1.6 to 14 nm the strengthening of previously known high confidence constraints up to a factor of 2.4x10{sup 7} is achieved using these measurements. It is shown that the replacement of a plane plate with a corrugated one in the measurements of the normal Casimir force by means of an atomic force microscope would result in the strengthening of respective high confidence constraints on the Yukawa-type interaction by a factor of 1.1x10{sup 12}. The use of a corrugated plate instead of a plane plate in the experiment by means of a micromachined oscillator also leads to strengthening of the obtained constraints. We further obtain constraints on the parameters of Yukawa-type interaction from the data of experiments measuring the gradient of the Casimir pressure between two parallel plates and the gradient of the Casimir-Polder force between an atom and a plate. The obtained results are compared with the previously known constraints. The possibilities of how to further strengthen the constraints on non-Newtonian gravity are discussed.

  2. Diffusion and Coulomb separation of ions in dense matter.

    PubMed

    Beznogov, M V; Yakovlev, D G

    2013-10-18

    We analyze diffusion equations in strongly coupled Coulomb mixtures of ions in dense stellar matter. Strong coupling of ions in the presence of gravitational forces and electric fields (induced by plasma polarization in the presence of gravity) produces a specific diffusion current which can separate ions with the same A/Z (mass to charge number) ratios but different Z. This Coulomb separation of ions can be important for the evolution of white dwarfs and neutron stars. PMID:24182248

  3. Behavior of Coulomb-Hydrodynamic Explosion of Deuterium Clusters

    NASA Astrophysics Data System (ADS)

    An, Wei-Ke; Qiu, Xi-Jun; Jiang, Yi; Zhu, Zhi-Yuan

    Considering the Coulomb-hydrodynamic explosion induced by the interaction of a deuterium cluster target with ultra-intensity femtosecond laser, the mechanism which generates energetic deuterium nuclei for the fusion has been analyzed. The formulas for expansions of the deuterium ion cluster, which are driven by the Coulomb-hydrodynamic explosion, are proposed. Hence the kinetic energies of deuterium nuclei and the expansion time of deuterium ion cluster have been estimated.

  4. A New Hybrid STEP/Coulomb model for Aftershock Forecasting

    NASA Astrophysics Data System (ADS)

    Steacy, S.; Jimenez, A.; Gerstenberger, M.

    2014-12-01

    Aftershock forecasting models tend to fall into two classes - purely statistical approaches based on clustering, b-value, and the Omori-Utsu law; and Coulomb rate-state models which relate the forecast increase in rate to the magnitude of the Coulomb stress change. Recently, hybrid models combining physical and statistical forecasts have begun to be developed, for example by Bach and Hainzl (2012) and Steacy et al. (2013). The latter approach combined Coulomb stress patterns with the STEP (short-term earthquake probability) model by redistributing expected rate from areas with decreased stress to regions where the stress had increased. The chosen 'Coulomb Redistribution Parameter' (CRP) was 0.93, based on California earthquakes, which meant that 93% of the total rate was expected to occur where the stress had increased. The model was tested against the Canterbury sequence and the main result was that the new model performed at least as well as, and often better than, STEP when tested against retrospective data but that STEP was generally better in pseudo-prospective tests that involved data actually available within the first 10 days of each event of interest. The authors suggested that the major reason for this discrepancy was uncertainty in the slip models and, particularly, in the geometries of the faults involved in each complex major event. Here we develop a variant of the STEP/Coulomb model in which the CRP varies based on the percentage of aftershocks that occur in the positively stressed areas during the forecast learning period. We find that this variant significantly outperforms both STEP and the previous hybrid model in almost all cases, even when the input Coulomb model is quite poor. Our results suggest that this approach might be more useful than Coulomb rate-state when the underlying slip model is not well constrained due to the dependence of that method on the magnitude of the Coulomb stress change.

  5. Coulomb interaction of acceptors in Cd{sub 1?x}Mn{sub x}Te/CdTe quantum dot

    SciTech Connect

    Kalpana, P.; Nithiananthi, P. Jayakumar, K.; Reuben, A. Merwyn Jasper D.

    2014-04-24

    The investigation on the effect of confining potential like isotropic harmonic oscillator type potential on the binding and the Coulomb interaction energy of the double acceptors in the presence of magnetic field in a Cd{sub 1?x}Mn{sub x}Te/CdTe Spherical Quantum Dot has been made for the Mn ion composition x=0.3 and compared with the results obtained from the square well type potential using variational procedure in the effective mass approximation.

  6. Quantum dots: Coulomb blockade, mesoscopic fluctuations, and qubit decoherence

    NASA Astrophysics Data System (ADS)

    Vorojtsov, Serguei

    The continuous minituarization of the integrated circuits is going to affect the underlying physics of the future computers. This new physics first came into play as the effect of Coulomb blockade in the electron transport through the small conducting island. Then, as the size of the island L continued to shrink further, quantum phase coherence length became larger than L leading to the mesoscopic fluctuations---fluctuations of the island's quantum mechanical properties upon small external perturbations. Quantum coherence of the mesoscopic systems is essential for building reliable quantum computer. Unfortunately, one can not completely isolate the system from the environment and its coupling to the environment inevitably leads to the loss of coherence or decoherence. All these effects are to be thoroughly investigated as the potential of the future applications is enormous. In this thesis I find an analytic expression for the conductance of a single electron transistor in the regime when temperature, level spacing, and charging energy of an island are all of the same order. I also study the correction to the spacing between Coulomb blockade peaks due to finite dot-lead tunnel couplings. I find analytic expressions for both correction to the spacing averaged over mesoscopic fluctuations and rms of the correction fluctuations. In the second part of the thesis I discuss the feasibility of the quantum dot based spin- and charge-qubits. Firstly, I study the effect of mesoscopic fluctuations on the magnitude of errors that can occur in exchange operations on quantum dot spin-qubits. Mid-size double quantum dots, with an odd number of electrons in the range of a few tens in each dot, are investigated through the constant interaction model using realistic parameters. It is found that the number of independent parameters per dot that one should tune depends on the configuration and ranges from one to four. Then, I study decoherence of a quantum dot charge qubit due to coupling to piezoelectric acoustic phonons in the Born-Markov approximation. After including appropriate form factors, I find that phonon decoherence rates are one to two orders of magnitude weaker than was previously predicted. My results suggest that mechanisms other than phonon decoherence play a more significant role in current experimental setups.

  7. Aftershock triggering by complete Coulomb stress changes

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.; Bodin, P.

    2002-01-01

    We examine the correlation between seismicity rate change following the 1992, M7.3, Landers, California, earthquake and characteristics of the complete Coulomb failure stress (CFS) changes (??CFS(t)) that this earthquake generated. At close distances the time-varying "dynamic" portion of the stress change depends on how the rupture develops temporally and spatially and arises from radiated seismic waves and from permanent coseismic fault displacement. The permanent "static" portion (??CFS) depends only on the final coseismic displacement. ??CFS diminishes much more rapidly with distance than the transient, dynamic stress changes. A common interpretation of the strong correlation between ??CFS and aftershocks is that load changes can advance or delay failure. Stress changes may also promote failure by physically altering properties of the fault or its environs. Because it is transient, ??CFS(t) can alter the failure rate only by the latter means. We calculate both ??CFS and the maximum positive value of ??CFS(t) (peak ??CFS(t)) using a reflectivity program. Input parameters are constrained by modeling Landers displacement seismograms. We quantify the correlation between maps of seismicity rate changes and maps of modeled ??CFS and peak ??CFS(t) and find agreement for both models. However, rupture directivity, which does not affect ??CFS, creates larger peak ??CFS(t) values northwest of the main shock. This asymmetry is also observed in seismicity rate changes but not in ??CFS. This result implies that dynamic stress changes are as effective as static stress changes in triggering aftershocks and may trigger earthquakes long after the waves have passed.

  8. Coulomb problem for a Z>Z_cr nucleus

    NASA Astrophysics Data System (ADS)

    Kuleshov, V. M.; Mur, V. D.; Narozhny, N. B.; Fedotov, A. M.; Lozovik, Yu E.; Popov, V. S.

    2015-08-01

    A closed-form equation is derived for the critical nucleus charge Z=Z_cr at which a discrete level with the Dirac quantum number touches the lower continuum of the Dirac equation solutions. For the Coulomb potential cut off rectangularly at the short distance r0 = R{\\hbar}/(mc), R \\ll {1}, the critical nucleus charge values are obtained for several values of ? and R. It is shown that the partial scattering matrix of elastic positron-nucleus scattering, S? = \\exp(2i??(\\varepsilon_p)), is also unitary for Z>Z_cr. For this range, the scattering phase ? ? (\\varepsilon _p) is calculated as a function of the positron energy E_p = \\varepsilonp mc2, as are the positions and widths of quasidiscrete levels corresponding to the scattering matrix poles. The implication is that the single-particle approximation for the Dirac equation is valid not only for Z but also for Z>Z_cr and that there is no spontaneous creation of e^+e^- pairs from the vacuum.

  9. Dark Coulomb binding of heavy neutrinos of fourth family

    NASA Astrophysics Data System (ADS)

    Belotsky, K. M.; Esipova, E. A.; Khlopov, M. Yu.; Laletin, M. N.

    2015-11-01

    Direct dark matter searches put severe constraints on the weakly interacting massive particles (WIMPs). These constraints cause serious troubles for the model of stable neutrino of fourth generation with mass around 50GeV. Though the calculations of primordial abundance of these particles make them in the charge symmetric case a sparse subdominant component of the modern dark matter, their presence in the universe would exceed the current upper limits by several orders of the magnitude. However, if quarks and leptons of fourth generation possess their own Coulomb-like y-interaction, recombination of pairs of heavy neutrinos and antineutrinos and their annihilation in the neutrinium atoms can play important role in their cosmological evolution, reducing their modern abundance far below the experimental upper limits. The model of stable fourth generation assumes that the dominant part of dark matter is explained by excessive ? antiquarks, forming (???)?? charged clusters, bound with primordial helium in nuclear-interacting O-helium (OHe) dark atoms. The y charge conservation implies generation of the same excess of fourth generation neutrinos, potentially dangerous WIMP component of this scenario. We show that due to y-interaction recombination of fourth neutrinos with OHe hides these WIMPs from direct WIMP searches, leaving the negligible fraction of free neutrinos, what makes their existence compatible with the experimental constraints.

  10. Le probleme quantique bicomplexe du potentiel de Coulomb

    NASA Astrophysics Data System (ADS)

    Mathieu, Jeremie

    In this master's thesis, is gathered a great part of my work on bicomplex quantum mechanics. Bicomplex numbers are the second order multicomplex generalization of complex numbers. Equipped with the standard addition and multiplication, they form an algebraic structure called a commutative ring with unity and are one of many known generalizations of the real number system. It has been almost eighty years since it's been proposed to use an algebra of a superior dimension than the one of complex numbers to construct the mathematical formalism of quantum mechanics. However it's only been since less than a decade ago that the idea of using the bicomplex numbers to do so has been seriously considered. In that sense, the complete resolution of the quantum harmonic oscillator in a bicomplex Hilbert space was the first major achievement of this ambitious project. This thesis, by article style, is a continuation of this work of generalization. It presents, by an axiomatic approach, the complete differential solution of the bicomplex quantum Coulomb potential problem and half of its algebraic solution.

  11. Two-Boson Truncation of Pauli-Villars-RegulatedYukawa Theory

    SciTech Connect

    Brodsky, Stanley J.; Hiller, John R.; McCartor, Gary; ,

    2005-09-01

    We apply light-front quantization, Pauli-Villars regularization, and numerical techniques to the nonperturbative solution of the dressed-fermion problem in Yukawa theory in 3 + 1 dimensions. The solution is developed as a Fock-state expansion truncated to include at most one fermion and two bosons. The basis includes a negative-metric heavy boson and a negative-metric heavy fermion in order to provide the necessary cancellations of ultraviolet divergences. The integral equations for the Fock-state wave functions are solved by reducing them to effective one-boson--one-fermion equations for eigenstates with J{sub z} = 1/2. The equations are converted to a matrix equation with a specially tuned quadrature scheme, and the lowest mass state is obtained by diagonalization. Various properties of the dressed-fermion state are then computed from the nonperturbative light-front wave functions. This work is a major step in our development of Pauli-Villars regularization for the nonperturbative solution of four-dimensional field theories and represents a significant advance in the numerical accuracy of such solutions.

  12. Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-04-21

    Results of a search for H → ττ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb–1 and 20.3 fb–1 at centre-of-mass energies of √s=7 TeV and √s=8 TeV respectively. All combinations of leptonic (τ → ℓνν¯ with ℓ = e, μ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalized to the Standard Model expectation, of μ = 1.43–0.37+0.43 is consistent with the predicted Yukawa coupling strength in the Standard Model.

  13. Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-04-21

    Results of a search for H → ττ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb–1 and 20.3 fb–1 at centre-of-mass energies of √s=7 TeV and √s=8 TeV respectively. All combinations of leptonic (τ → ℓνν¯ with ℓ = e, μ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standardmore » deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalized to the Standard Model expectation, of μ = 1.43–0.37+0.43 is consistent with the predicted Yukawa coupling strength in the Standard Model.« less

  14. Yukawa unification in an SO(10) SUSY GUT: SUSY on the edge

    NASA Astrophysics Data System (ADS)

    Poh, Zijie; Raby, Stuart

    2015-07-01

    In this paper we analyze Yukawa unification in a three family SO(10) SUSY GUT. We perform a global ?2 analysis and show that supersymmetry (SUSY) effects do not decouple even though the universal scalar mass parameter at the grand unified theory (GUT) scale, m16, is found to lie between 15 and 30 TeV with the best fit given for m16?25 TeV . Note, SUSY effects do not decouple since stops and bottoms have mass of order 5 TeV, due to renormalization group running from MGUT. The model has many testable predictions. Gauginos are the lightest sparticles and the light Higgs boson is very much standard model-like. The model is consistent with flavor and C P observables with the BR (? ?e ? ) close to the experimental upper bound. With such a large value of m16 we clearly cannot be considered "natural" SUSY nor are we "split" SUSY. We are thus in the region in between or "SUSY on the edge."

  15. Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths

    NASA Astrophysics Data System (ADS)

    Gapinski, Jacek; Ngele, Gerhard; Patkowski, Adam

    2014-09-01

    Using the Rogers-Young (RY) integral equation scheme for the static pair correlation functions combined with the liquid-phase Hansen-Verlet freezing rule, we study the generic behavior of the radial distribution function and static structure factor of monodisperse charge-stabilized suspensions with Yukawa-type repulsive particle interactions at freezing. In a related article, labeled Paper I [J. Gapinski, G. Ngele, and A. Patkowski, J. Chem. Phys. 136, 024507 (2012)], this hybrid method was used to determine two-parameter freezing lines for experimentally controllable parameters, characteristic of suspensions of charged silica spheres in dimethylformamide. A universal scaling of the RY radial distribution function maximum is shown to apply to the liquid-bcc and liquid-fcc segments of the universal freezing line. A thorough analysis is made of the behavior of characteristic distances and wavenumbers, next-neighbor particle coordination numbers, osmotic compressibility factor, and the Ravach-Mountain-Streett minimum-maximum radial distribution function ratio.

  16. Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths

    SciTech Connect

    Gapinski, Jacek Patkowski, Adam; Nägele, Gerhard

    2014-09-28

    Using the Rogers-Young (RY) integral equation scheme for the static pair correlation functions combined with the liquid-phase Hansen-Verlet freezing rule, we study the generic behavior of the radial distribution function and static structure factor of monodisperse charge-stabilized suspensions with Yukawa-type repulsive particle interactions at freezing. In a related article, labeled Paper I [J. Gapinski, G. Nägele, and A. Patkowski, J. Chem. Phys. 136, 024507 (2012)], this hybrid method was used to determine two-parameter freezing lines for experimentally controllable parameters, characteristic of suspensions of charged silica spheres in dimethylformamide. A universal scaling of the RY radial distribution function maximum is shown to apply to the liquid-bcc and liquid-fcc segments of the universal freezing line. A thorough analysis is made of the behavior of characteristic distances and wavenumbers, next-neighbor particle coordination numbers, osmotic compressibility factor, and the Ravaché-Mountain-Streett minimum-maximum radial distribution function ratio.

  17. Probing wrong-sign Yukawa couplings at the LHC and a future linear collider

    NASA Astrophysics Data System (ADS)

    Ferreira, P. M.; Santos, Rui; Gunion, John F.; Haber, Howard E.

    2014-06-01

    We consider the two-Higgs-doublet model as a framework in which to evaluate the viability of scenarios in which the sign of the coupling of the observed Higgs boson to down-type fermions (in particular, b-quark pairs) is opposite to that of the Standard Model (SM), while at the same time all other tree-level couplings are close to the SM values. We show that, whereas such a scenario is consistent with current LHC observations, both future running at the LHC and a future e+e- linear collider could determine the sign of the Higgs coupling to b-quark pairs. Discrimination is possible for two reasons. First, the interference between the b-quark and the t-quark loop contributions to the ggh coupling changes sign. Second, the charged-Higgs loop contribution to the γγh coupling is large and fairly constant up to the largest charged-Higgs mass allowed by tree-level unitarity bounds when the b-quark Yukawa coupling has the opposite sign from that of the SM (the change in sign of the interference terms between the b-quark loop and the W and t loops having negligible impact).

  18. Analysis of {alpha}-induced reactions on {sup 151}Eu below the Coulomb barrier

    SciTech Connect

    Avrigeanu, V.; Avrigeanu, M.

    2011-01-15

    Novel measurements of ({alpha},{gamma}) and ({alpha},n) reaction cross sections on the target nucleus {sup 151}Eu, close to the reaction thresholds, support the choice of recently proposed parameters of the {alpha}-particle optical model potential below the Coulomb barrier. A better understanding of the {alpha}-particle optical potential at these energies leads to a statistical model analysis of additional partial cross sections that were measured but not considered within a former model analysis. On this basis we have tentatively assigned a modified J{sup {pi}}=9{sup -} spin and parity to the 22.7-h isomer in {sup 154}Tb.

  19. Random Coulomb antiferromagnets: From diluted spin liquids to Euclidean random matrices

    NASA Astrophysics Data System (ADS)

    Rehn, J.; Sen, Arnab; Andreanov, A.; Damle, Kedar; Moessner, R.; Scardicchio, A.

    2015-08-01

    We study a disordered classical Heisenberg magnet with uniformly antiferromagnetic interactions which are frustrated on account of their long-range Coulomb form, i.e., J (r )-A lnr in d =2 and J (r )A /r in d =3 . This arises naturally as the T ?0 limit of the emergent interactions between vacancy-induced degrees of freedom in a class of diluted Coulomb spin liquids (including the classical Heisenberg antiferromagnets in checkerboard, SCGO, and pyrochlore lattices) and presents a novel variant of a disordered long-range spin Hamiltonian. Using detailed analytical and numerical studies we establish that this model exhibits a very broad paramagnetic regime that extends to very large values of A in both d =2 and d =3 . In d =2 , using the lattice-Green-function-based finite-size regularization of the Coulomb potential (which corresponds naturally to the underlying low-temperature limit of the emergent interactions between orphans), we find evidence that freezing into a glassy state occurs only in the limit of strong coupling, A =? , while no such transition seems to exist in d =3 . We also demonstrate the presence and importance of screening for such a magnet. We analyze the spectrum of the Euclidean random matrices describing a Gaussian version of this problem and identify a corresponding quantum mechanical scattering problem.

  20. Simple interpretation of nuclear orientation for Coulomb barrier distributions derived from a realistic effective interaction

    SciTech Connect

    Ismail, M.; Seif, W. M.

    2010-03-15

    A simple straightforward method has been presented to predict the dependence of barrier distributions at arbitrary orientations on different deformations. The proposed interpretation is developed independently of the complicated numerical calculations. It is related to the change of half-density radius of the deformed nucleus, in the direction of the separation vector. The microscopic calculations of Coulomb barrier are carried out by using a realistic density dependent nucleon-nucleon (NN) interaction, BDM3Y, for the interaction between spherical, {sup 48}Ca, and deformed, {sup 244}Pu, nuclei, as an example. To do so, the double-folding model for the interaction of spherical-deformed nuclei is put in a suitable computational form for the calculation of the potential at several separation distances and orientation angles using the density dependent NN force without consuming computational time. We found that the orientation distributions of the Coulomb barrier parameters show similar patterns to those of the interacting deformed nucleus radius. It is found that the orientation distribution of the Coulomb barrier radius follows the same variation of the deformed nucleus radius while the barrier height distribution follows it inversely. This correlation (anticorrelation) allows a simple evaluation of the orientation barrier distribution which would be very helpful to estimate when the barrier parameters will increase or decrease and at which orientations they will be independent of the deformation. This also allows us to estimate the compact and elongated configurations of the interacting nuclei which lead to hot and cold fusion, respectively.

  1. Simple interpretation of nuclear orientation for Coulomb barrier distributions derived from a realistic effective interaction

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Seif, W. M.

    2010-03-01

    A simple straightforward method has been presented to predict the dependence of barrier distributions at arbitrary orientations on different deformations. The proposed interpretation is developed independently of the complicated numerical calculations. It is related to the change of half-density radius of the deformed nucleus, in the direction of the separation vector. The microscopic calculations of Coulomb barrier are carried out by using a realistic density dependent nucleon-nucleon (NN) interaction, BDM3Y, for the interaction between spherical, Ca48, and deformed, Pu244, nuclei, as an example. To do so, the double-folding model for the interaction of spherical-deformed nuclei is put in a suitable computational form for the calculation of the potential at several separation distances and orientation angles using the density dependent NN force without consuming computational time. We found that the orientation distributions of the Coulomb barrier parameters show similar patterns to those of the interacting deformed nucleus radius. It is found that the orientation distribution of the Coulomb barrier radius follows the same variation of the deformed nucleus radius while the barrier height distribution follows it inversely. This correlation (anticorrelation) allows a simple evaluation of the orientation barrier distribution which would be very helpful to estimate when the barrier parameters will increase or decrease and at which orientations they will be independent of the deformation. This also allows us to estimate the compact and elongated configurations of the interacting nuclei which lead to hot and cold fusion, respectively.

  2. Cold chemistry with electronically excited Ca{sup +} Coulomb crystals

    SciTech Connect

    Gingell, Alexander D.; Bell, Martin T.; Oldham, James M.; Softley, Timothy P.; Harvey, Jeremy N.

    2010-11-21

    Rate constants for chemical reactions of laser-cooled Ca{sup +} ions and neutral polar molecules (CH{sub 3}F, CH{sub 2}F{sub 2}, or CH{sub 3}Cl) have been measured at low collision energies (/k{sub B}=5-243 K). Low kinetic energy ensembles of {sup 40}Ca{sup +} ions are prepared through Doppler laser cooling to form ''Coulomb crystals'' in which the ions form a latticelike arrangement in the trapping potential. The trapped ions react with translationally cold beams of polar molecules produced by a quadrupole guide velocity selector or with room-temperature gas admitted into the vacuum chamber. Imaging of the Ca{sup +} ion fluorescence allows the progress of the reaction to be monitored. Product ions are sympathetically cooled into the crystal structure and are unambiguously identified through resonance-excitation mass spectrometry using just two trapped ions. Variations of the laser-cooling parameters are shown to result in different steady-state populations of the electronic states of {sup 40}Ca{sup +} involved in the laser-cooling cycle, and these are modeled by solving the optical Bloch equations for the eight-level system. Systematic variation of the steady-state populations over a series of reaction experiments allows the extraction of bimolecular rate constants for reactions of the ground state ({sup 2}S{sub 1/2}) and the combined excited states ({sup 2}D{sub 3/2} and {sup 2}P{sub 1/2}) of {sup 40}Ca{sup +}. These results are analyzed in the context of capture theories and ab initio electronic structure calculations of the reaction profiles. In each case, suppression of the ground state rate constant is explained by the presence of a submerged or real barrier on the ground state potential surface. Rate constants for the excited states are generally found to be in line with capture theories.

  3. Marine ice sheet profiles and stability under Coulomb basal conditions

    NASA Astrophysics Data System (ADS)

    Tsai, Victor; Stewart, Andrew; Thompson, Andrew

    2015-04-01

    The behavior of marine-terminating ice sheets, like the West Antarctic Ice Sheet, is of interest due to the possibility of rapid grounding line retreat and consequent catastrophic loss of ice. Critical to modeling this behavior is a choice of basal rheology, where the most popular approach is to relate the ice sheet velocity to a power-law function of basal stress. Recent experiments, however, suggest that near-grounding line tills exhibit Coulomb friction behavior. Here we address how Coulomb conditions modify ice sheet profiles and stability criteria. The basal rheology necessarily transitions to Coulomb friction near the grounding line due to low effective stresses, leading to changes in ice sheet properties within a narrow boundary layer. Ice sheet profiles 'taper off' towards a flatter upper surface, compared to the power-law case, and basal stresses vanish at the grounding line, consistent with observations. In the Coulomb case, the grounding line ice flux also depends more strongly on flotation ice thickness, which implies that ice sheets are more sensitive to climate perturbations. Furthermore, with Coulomb friction, the ice sheet grounds stably in shallower water than with a power-law rheology. This implies that smaller perturbations are required to push the grounding line into regions of negative bed slope, where it would become unstable. These results have important implications for ice sheet stability in a warming climate.

  4. Coulomb excitation studies of shape coexistence in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Görgen, Andreas; Korten, Wolfram

    2016-02-01

    Low-energy Coulomb excitation provides a well-understood means of exciting atomic nuclei and allows measuring electromagnetic moments that can be directly related to the nuclear shape. The availability of radioactive ion beams (RIBs) at energies near the Coulomb barrier has made it possible to study shape coexistence in a variety of short-lived exotic nuclei. This review presents a short overview of the methods related to multi-step Coulomb excitation experiments, followed by a discussion of several examples. The focus is on two mass regions where recent Coulomb excitation experiments have contributed to the quantitative understanding of shape coexistence: nuclei with mass A≈ 70 near the N = Z line and nuclei with A ≈ 100 near neutron number N = 60. Experimental results are summarized and their significance for understanding shape coexistence is discussed. Experimental observables such as quadrupole moments and electromagnetic transition strengths represent furthermore important benchmarks for advancing theoretical nuclear structure models. With several new RIB facilities planned and under construction, Coulomb excitation will remain to be an important tool to extend the studies of nuclear shapes toward more exotic systems, and to obtain a more comprehensive and quantitative understanding of shape coexistence.

  5. Pseudospin Symmetry in Position-Dependent Mass Dirac-Coulomb Problem by Using Laplace Transform and Convolution Integral

    NASA Astrophysics Data System (ADS)

    Ortakaya, Sami

    2013-11-01

    The exact pseudospin symmetry solutions of Dirac equation with position-dependent mass (PDM) Coulomb potential in the presence of Colulomb-like tensor potential are obtained by using Laplace transform (LT) approach. The energy eigenvalue equation of the Dirac particles is found and some numerical results are given. By using Laplace convolution integral, the corresponding radial wave functions are presented in terms of confluent hypergeometric functions.

  6. Flavor constraints on two-Higgs-doublet models with general diagonal Yukawa couplings

    SciTech Connect

    Mahmoudi, F.

    2010-02-01

    We consider constraints from flavor physics on two-Higgs-doublet models (2HDM) with general, flavor-diagonal, Yukawa couplings. Analyzing the charged Higgs contribution to different observables, we find that b{yields}s{gamma} transitions and {Delta}M{sub B{sub d}} restrict the coupling {lambda}{sub tt} of the top quark (corresponding to cot{beta} in models with a Z{sub 2} symmetry) to |{lambda}{sub tt}|<1 for m{sub H}{sup +} < or approx. 500 GeV. Stringent constraints from B meson decays are obtained also on the other third generation couplings {lambda}{sub bb} and {lambda}{sub {tau}{tau},} but with stronger dependence on m{sub H}{sup +}. For the second generation, we obtain constraints on combinations of {lambda}{sub ss}, {lambda}{sub cc}, and {lambda}{sub {mu}{mu}}from leptonic K and D{sub s} decays. The limits on the general couplings are translated to the common 2HDM types I-IV with a Z{sub 2} symmetry, and presented on the (m{sub H}{sup +},tan{beta}) plane. The flavor constraints are most excluding in the type II model which lacks a decoupling limit in tan{beta}. We obtain a lower limit m{sub H}{sup +} > or approx. 300 GeV in models of type II and III, while no lower bound on m{sub H}{sup +} is found for types I and IV.

  7. Weak interaction rate Coulomb corrections in big bang nucleosynthesis

    SciTech Connect

    Smith, Christel J.; Fuller, George M.

    2010-03-15

    We have applied a fully relativistic Coulomb wave correction to the weak reactions in the full Kawano/Wagoner big bang nucleosynthesis (BBN) code. We have also added the zero-temperature radiative correction. We find that using this higher accuracy Coulomb correction results in good agreement with previous work, giving only a modest {approx}0.04% increase in helium mass fraction over correction prescriptions applied previously in BBN calculations. We have calculated the effect of these corrections on other light element abundance yields in BBN, and we have studied these yields as functions of electron neutrino lepton number. This has allowed insights into the role of the weak neutron-proton interconversion processes in the setting of the neutron-to-proton ratio during the BBN epoch. We find that the lepton capture processes' contributions to this ratio are only second order in the Coulomb correction.

  8. Long-range Coulomb interaction in nodal-ring semimetals

    NASA Astrophysics Data System (ADS)

    Huh, Yejin; Moon, Eun-Gook; Kim, Yong Baek

    2016-01-01

    Recently there have been several proposals of materials predicted to be nodal-ring semimetals, where zero energy excitations are characterized by a nodal ring in the momentum space. This class of materials falls between the Dirac-like semimetals and the more conventional Fermi-surface systems. As a step towards understanding this unconventional system, we explore the effects of the long-range Coulomb interaction. Due to the vanishing density of states at the Fermi level, Coulomb interaction is only partially screened and remains long-ranged. Through renormalization group and large-Nf computations, we have identified a nontrivial interacting fixed point. The screened Coulomb interaction at the interacting fixed point is an irrelevant perturbation, allowing controlled perturbative evaluations of physical properties of quasiparticles. We discuss unique experimental consequences of such quasiparticles: acoustic wave propagation, anisotropic dc conductivity, and renormalized phonon dispersion as well as energy dependence of quasiparticle lifetime.

  9. Semiconducting nanowire electromechanics in the Coulomb blockade regime

    NASA Astrophysics Data System (ADS)

    Solanki, Hari; Dhara, Sajal; Bhattacharya, Arnab; Deshmukh, Mandar

    2011-03-01

    We fabricate and study Indium Arsenide (InAs) nanowire electromechanical resonators, in field effect transistor (FET) geometry, which allows us to tune the carrier density and tension in the wire at electromechanical resonance by tuning the dc gate voltage. At temperatures below 5K, quality factor (Q) of these resonators is ~ 10000 , two orders of magnitude larger than at room temperature, and the dynamic range reduces by an order of magnitude at low temperatures. Further in Coulomb blockade regime (charging energy ~ 10 meV), using rectification technique, we have observed the modification in Coulomb diamond structure at the resonance frequency of the wire. Near the electromechanical resonance frequency, Coulomb peaks become broader symmetrically (independent of dc gate voltage and frequency sweep direction) and right at the resonance frequency their intensity is significantly reduced. This indicates a strong coupling between electron transport and mechanical vibration of the nanowire.

  10. Thermodynamic functions of the hcp Coulomb crystal lattice

    NASA Astrophysics Data System (ADS)

    Kozhberov, A. A.; Baiko, D. A.

    2015-10-01

    One-component Coulomb crystals of ions with hexagonal close-packed (hcp) lattice likely form in the crust of strongly-magnetized neutron stars (magnetars). In this work we present a detailed study of vibration modes and thermodynamic properties of such crystals in a wide range of temperatures at zero magnetic field. In contrast to typically considered lattices, the phonon spectrum of the system exhibits a peculiar crossing of the acoustic modes near the Brillouin zone center in certain directions of the wavevector. It is demonstrated that in the field-free regime the Helmholtz free energy of the hcp Coulomb crystal is always higher than those of the Coulomb crystals with body-centered cubic and face-centered cubic lattices. The results of our numerical calculations are fitted by simple analytic expressions.

  11. Modified Coulomb-Dipole Theory for 2e Photoionization

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the light of recent experiment on 2e photoionization of Li near threshold, we have considered a modification of the Coulomb-dipole theory, retaining the basic assumption that the threshold is dominated by asymmetric events in phase space [implies r(sub 1), k(sub 1)) greater than or equal to 2(r(sub 2), k(sub )]. In this region [in a collinear model, 2/r(sub 12) approached + 2/(r(sub 1)+r(sub 2)] the interaction reduces to V(rIsub 1) is greater than or equal to 2r(sub 2) is identically equal to [(-Z/r(sub 2)-(A-1)/r(sub 1)] + [(-2r(sub 2)/r(sub 1 exp 2)] is identically equal to V(sub c)+[V(sub d)]. For two electron emission Z = 2, thus both electrons see a Coulomb potential (V(sub c)) asymptotically, albeit each seeing a different charge. The residual potential (V(sub d)) is dipole in character. Writing the total psi = psi (sub c) + psi(sub d) = delta psi, and noting that. (T+V(sub c)-E)psy(sub c) = 0 and (T+V(sub c))psi(sub d) = 0 can be solved exactly, we find, substituting psi into the complete Schrod. Eq., that delta psi = -(H-E)(exp -1)(V(sub d) psi(sub 0)+V(sub c psi (sub 1). Using the fact that the absolute value of V(sub c) is much more than the absolute value of V(sub d) in almost all of configuration space, we can replace H by H(sub 0) in 9H-E)(exp -1) to obtain an improved approximation psi (improved) = psi(sub c) + psi(sub d) -(H(sub 0)-E)(exp -1) (V(sub c) psi (sub 0) + V(sub c) psi(sub 1). Here's the Green's function (H(sub 0)-E)(exp -1), can be exhibited explicitly, but the last term in psi (improved) is small, compared to the first two terms. Inserting them into the transition matrix element, which one handles in the usual way, we obtain in the limit E approaches 0, the threshold law: Q(E) alpha E + M(E)E(exp 5/4) + higher order (Eq. 1a). The modulation function, M(E), is a well-defined (but very non-trivial integral, but it is expected to be well approximated by a sinusoidal function containing a dipole phase term (M(E) = c sin[alpha log (E) + micron] (Eq. 1b). Experimental results show definite modulations, and are well fitted by Eqs (1).

  12. Predicting Freezing for Some Repulsive Potentials

    SciTech Connect

    Khrapak, S. A.; Morfill, G. E.

    2009-12-18

    We propose a simple method to approximately predict the freezing (fluid-solid) phase transition in systems of particles interacting via purely repulsive potentials. The method is based on the striking universality of the freezing curve for the model Yukawa and inverse-power-law interactions. This method is applied to draw an exemplary phase diagram of complex plasmas. We suggest that it can also be used to locate freezing transition in other substances with similar properties of interaction.

  13. Cosmological consequences of Yukawa-unified SUSY with mixed axion/axino cold and warm dark matter

    SciTech Connect

    Baer, Howard; Summy, Heaya; Haider, Markus; Kraml, Sabine

    2009-02-15

    Supersymmetric models with t-b-{tau} Yukawa unification at M{sub GUT} qualitatively predict a sparticle mass spectrum including first and second generation scalars at the 3-15 TeV scale, third generation scalars at the (few) TeV scale and gluinos in the sub-TeV range. The neutralino relic density in these models typically turns out to lie far above the measured dark matter abundance, prompting the suggestion that instead dark matter is composed of an axion/axino mixture. We explore the axion and thermal and non-thermal axino dark matter abundance in Yukawa-unified SUSY models. We find in this scenario that (i) rather large values of Peccei-Quinn symmetry breaking scale f{sub a} {approx} 10{sup 12} GeV are favored and (ii) rather large values of GUT scale scalar masses {approx} 10-15 TeV allow for the re-heat temperature T{sub R} of the universe to be T{sub R} {approx}> 10{sup 6} GeV. This allows in turn a solution to the gravitino/Big Bang Nucleosynthesis problem while also allowing for baryogenesis via non-thermal leptogenesis. The large scalar masses for Yukawa-unified models are also favored by data on b {yields} s{gamma} and B{sub s} {yields} {mu}{sup +}{mu}{sup -} decay. Testable consequences from this scenario include a possible axion detection at axion search experiments, but null results from direct and indirect WIMP search experiments.

  14. Femtosecond studies of Coulomb explosion utilizing covariance mapping

    NASA Astrophysics Data System (ADS)

    Card, Dennis Alan

    2000-10-01

    The studies presented herein elucidate details of the Coulomb explosion event initiated through the interaction of molecular clusters with an intense femtosecond laser beam (>=1 PW/cm2). Clusters studied include ammonia, titanium-hydrocarbon, pyridine, and 7-azaindole. Covariance analysis is presented as a general technique to study the dynamical processes in clusters and to discern whether the fragmentation channels are competitive. Positive covariance determinations identify concerted processes such as the concomitant explosion of protonated cluster ions of asymmetrical size. Anti- covariance mapping is exploited to distinguish competitive reaction channels such as the production of highly charged nitrogen atoms formed at the expense of the protonated members of a cluster ion ensemble. This technique is exemplified in each cluster system studied. Kinetic energy analyses, from experiment and simulation, are presented to fully understand the Coulomb explosion event. A cutoff study strongly suggests that a Coulomb explosion create ions with two different energies, a direct result of an incomplete Coulomb explosion. A peak analysis implies a strong mass-to-charge dependence on the KER. Taken together, the two studies suggest a duality in the elastic and inelastic contributions to the energy released in a Coulomb explosion. Finally, backward-ejected ions were found capable of arriving before the ion expelled without energy from a Coulomb explosion. Gradient, clustering, and microchannel plate studies confirm the chaotic nature of the Coulomb explosion and the effect clusters have on the event. Backward-ejected protons are found to impact the repeller and eject adsorbed protons from the surface. Moreover, delayed fragmentation is suggested by proton time-of-flights. A cluster study demonstrates the need for clusters at low intensities. Conceptually, the dynamic charge resonance enhanced ionization (CREI) model explains these results of heterocyclic Coulomb explosion. The nonvertical ionization model and the ionization ignition model cannot explain the results herein. The kinetic energy studies suggest that the ground state atomic distance is essential to achieve the amount of kinetic energy released, contrary to the nonvertical ionization model. The cluster study demonstrates that clusters are needed to gain multiply charged atoms at relatively low intensities; this conflicts directly with the supposition of the ionization ignition model.

  15. Coulomb effects in multiphoton above-threshold ionization

    NASA Astrophysics Data System (ADS)

    Kami?ski, J. Z.; Jaro?, A.; Ehlotzky, F.

    1996-03-01

    Multiphoton above-threshold ionization (ATI) is considered for hydrogen in the framework of the Keldysh-Faisal-Reiss (KFR) models but treating the Coulomb effects of the residual ions on the ionized electrons more completely than in previous work. The spectrum of the ATI peaks is evaluated for linearly polarized laser light, and it is shown that with the appropriate inclusion of the Coulomb interaction more hot electrons are predicted than by the original KFR theories. Moreover, the angular distributions of the ATI electrons are evaluated and are shown to have sidelobes.

  16. Coulomb effects in multiphoton above-threshold ionization

    SciTech Connect

    Kaminski, J.Z.; Jaron, A.; Ehlotzky, F.

    1996-03-01

    Multiphoton above-threshold ionization (ATI) is considered for hydrogen in the framework of the Keldysh-Faisal-Reiss (KFR) models but treating the Coulomb effects of the residual ions on the ionized electrons more completely than in previous work. The spectrum of the ATI peaks is evaluated for linearly polarized laser light, and it is shown that with the appropriate inclusion of the Coulomb interaction more hot electrons are predicted than by the original KFR theories. Moreover, the angular distributions of the ATI electrons are evaluated and are shown to have sidelobes. {copyright} {ital 1996 The American Physical Society.}

  17. Primary Thermometry in the Intermediate Coulomb Blockade Regime

    NASA Astrophysics Data System (ADS)

    Feshchenko, A. V.; Meschke, M.; Gunnarsson, D.; Prunnila, M.; Roschier, L.; Penttil, J. S.; Pekola, J. P.

    2013-10-01

    We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show that corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.

  18. On rate-state and Coulomb failure models

    USGS Publications Warehouse

    Gomberg, J.; Beeler, N.; Blanpied, M.

    2000-01-01

    We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) ?t due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of ?t implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that ?t is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state ?t has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified Coulomb failure model in which the failure stress threshold is lowered due to weakening, increasing the clock advance. The deviation from a non-Coulomb response also depends on the loading rate, elastic stiffness, initial conditions, and assumptions about how state evolves.

  19. Convergence of Feynman integrals in Coulomb gauge QCD

    SciTech Connect

    Andrai, A.; Taylor, J.C.

    2014-12-15

    At 2-loop order, Feynman integrals in the Coulomb gauge are divergent over the internal energy variables. Nevertheless, it is known how to calculate the effective action, provided that the external gluon fields are all transverse. We show that, for the two-gluon Greens function as an example, the method can be extended to include longitudinal external fields. The longitudinal Greens functions appear in the BRST identities. As an intermediate step, we use a flow gauge, which interpolates between the Feynman and Coulomb gauges.

  20. Coulomb instability of hot nuclei with derivative scalar coupling

    NASA Astrophysics Data System (ADS)

    Song, H. Q.; Qian, Z. X.; Su, R. K.

    1994-06-01

    The relativistic nuclear mean field model with derivative scalar coupling suggested by Zimanyi and Moszkowski is extended to asymmetric nuclear matter by including the ? meson degree of freedom in the Lagrangian. The extended model is then used to studying the Coulomb instability of asymmetric nuclear matter at finite temperature. The critical temperature for the liquid-gas phase transition in nuclear matter and its dependence on the asymmetry parameter are calculated. The limiting temperature Tlim, which reflects Coulomb instability of hot nuclei is studied. The calculated results are compared with those given by quantum hadrodynamics (QHD) models.

  1. Coulomb instability of hot nuclei with derivative scalar coupling

    SciTech Connect

    Song, H.Q.; Qian, Z.X.; Su, R.K. , P.O. Box 8730, Beijing Institute of Nuclear Research, Academia Sinica, P.O. Box 800204, Shanghai 201800 Department of Physics, Fudan University, Shanghai 200433 T. D. Lee Physics Laboratory, Fudan University, Shanghai 200433 )

    1994-06-01

    The relativistic nuclear mean field model with derivative scalar coupling suggested by Zimanyi and Moszkowski is extended to asymmetric nuclear matter by including the [rho] meson degree of freedom in the Lagrangian. The extended model is then used to studying the Coulomb instability of asymmetric nuclear matter at finite temperature. The critical temperature for the liquid-gas phase transition in nuclear matter and its dependence on the asymmetry parameter are calculated. The limiting temperature [ital T][sub lim], which reflects Coulomb instability of hot nuclei is studied. The calculated results are compared with those given by quantum hadrodynamics (QHD) models.

  2. Lifetime Measurements and Coulomb Excitation of Light Hg Nuclei

    SciTech Connect

    Petts, A.; Butler, P. A.; Grahn, T.; Herzberg, R.-D.; Page, R. D.; Pakarinen, J.; Scheck, M.; Blazhev, A.; Bruyneel, B.; Dewald, A.; Eberth, J.; Fransen, C.; Jolie, J.; Melon, B.; Pascovici, G.; Pissulla, Th.; Reiter, P.; Warr, N.; Weisshaar, D.; Bree, N.

    2009-01-28

    Two complementary experimental programs have taken place to investigate the origin and evolution of shape coexistence in the light mercury region. Recoil Distance Doppler-shift measurements were performed at the University of Jyvaeskylae utilizing the Koeln plunger device in conjunction with the JUROGAM+RITU+GREAT setup. In addition, Coulomb excitation measurements of {sup 184,186,188}Hg were performed at REX-ISOLDE using the MINIBALL Ge-detector array. The results of the lifetime measurements of the yrast states up to I{sup {pi}} = 10{sup +} in {sup 182}Hg are reported. Preliminary analysis of the Coulomb excitation data is also discussed.

  3. Perturbative Yukawa theory at finite density: The role of masses and renormalization group flow at two loops

    SciTech Connect

    Palhares, Leticia F.; Fraga, Eduardo S.

    2008-07-15

    Yukawa theory at vanishing temperature provides (one of the ingredients for) an effective description of the thermodynamics of a variety of cold and dense fermionic systems. We study the role of masses and the renormalization group flow in the calculation of the equation of state up to two loops within the MS scheme. Two-loop integrals are computed analytically for arbitrary fermion and scalar masses, and expressed in terms of well-known special functions. The dependence of the renormalization group flow on the number of fermion flavors is also discussed.

  4. Computationally efficient method to calculate the Coulomb interactions in three-dimensional systems with two-dimensional periodicity

    NASA Astrophysics Data System (ADS)

    Kawata, Masaaki; Mikami, Masuhiro; Nagashima, Umpei

    2002-02-01

    A computationally efficient method was developed for calculating Coulomb interactions in three-dimensional (3D) systems with two-dimensional (2D) periodicity; the 2D particle-mesh Ewald (2D-PME) method we previously developed was extended. The formulation and numerical algorithms are described in detail for calculating the Coulomb potential energy, the Coulomb force, and the Coulomb component of the pressure tensor. Computational efficiency and accuracy of the 2D-PME method were evaluated for two water systems with 2D periodicity in the x and y directions and with non-periodicity in the z direction. Compared with exact results calculated by using the original 2D Ewald summations, the 2D-PME method yielded significantly accurate calculations, similar to the computationally efficient method we previously developed for calculating 2D Ewald summations (2D-EW method). For a given accuracy, the 2D-PME method was faster than the 2D-EW method for the water systems we examined. The computational effort of the 2D-PME method decreases as the computationally efficiency of the Fourier transforms used in the 2D-PME method increases. The 2D-PME method is therefore promising for accelerating molecular dynamics and Monte Carlo simulations for 3D systems with 2D periodicity.

  5. The R-matrix Calculations of Orientation and Coulomb Phase Effects in Electron-Molecule (Re-)Collisions

    NASA Astrophysics Data System (ADS)

    Harvey, Alex G.; Tennyson, Jonathan

    Electron recollision in strong laser fields is usually studied with oriented molecules. This introduces orientation effects into the recollision problem which are generally not present in usual treatments of electron-molecule collisions. In addition this collision occurs with a molecular ion which means that the dominant electron- molecule interaction is the long-range Coulomb potential, which competes asymptotically with the strong laser field. Different workers have performed treatments varying between the complete inclusion of all asymptotic Coulomb effects to their complete neglect. Three possible treatments of the Coulomb problem are explored using H2 and CO2 as prototypical systems. Calculations based on R-matrix studies of the (re-)collision, which neglect the effects of the laser field, show that inclusion of the complete Coulomb interaction leads not only to the well-known singularity problems for forward scattering but also leads to the washing out of much of the detailed, angular structure in the differential cross section of the oriented molecules.

  6. Observation of intracluster Coulombic decay of Rydberg-like states triggered by intense near-infrared pulses

    NASA Astrophysics Data System (ADS)

    Schtte, Bernd; Arbeiter, Mathias; Fennel, Thomas; Jabbari, Ghazal; Gokhberg, Kirill; Kuleff, Alexander I.; Vrakking, Marc J. J.; Rouze, Arnaud

    2015-05-01

    Interatomic Coulombic decay (ICD) describes a process, where an excited atom relaxes by transferring its energy to an atom in the environment that gets ionized. So far, ICD has been observed following XUV ionization or excitation of clusters. Here we present novel results of an intracluster Coulombic decay mechanism induced by intense NIR pulses and following Rydberg atom formation in the generated nanoplasma. When a highly-excited Rydberg atom relaxes to its ground state by transferring its excess energy to a weakly bound electron in the environment, electrons with kinetic energies close to the atomic ionization potential are emitted. We show evidence for such an intracluster Coulombic decay process that leaves clear signatures in the electron kinetic energy spectra. ICD is time-resolved in a pump-probe experiment, where a weak probe pulse depopulates the excited states, leading to a quenching of the ICD signal. We find a decay time of 87 ps, which is siginificantly longer than for previous ICD observations, where inner-shell holes were created by XUV pulses. Intracluster Coulombic decay is found to be a generic process that takes places in atomic and molecular clusters and at different wavelengths. It may play an important role in biological systems and in astronomical plasmas. Previous affiliation: Max-Born-Institut, Berlin, Germany.

  7. Stochastic Coulomb blockade and scaling of charging energy in a double quantum dot system

    NASA Astrophysics Data System (ADS)

    Molenkamp, L. W.; Kemerink, M.

    We have studied the transport properties of a device consisting of two quantum dots, defined electrostatically in a (Al.Ga)As heterostructure. In the series conductance of the two dots, we observe irregularly spaced conductance peaks of fluctuating amplitude. This behaviour results from transport in the stochastic Coulomb blockade regime. In a second experiment, we measure the charging energy of one dot through the effect of its potential (which varies in a saw-tooth fashion with gate voltage) on the conductance of the other dot. We find that the charging energy scales quadrat-ically with the reflection probability of the tunnel barriers, in agreement with a recent theory.

  8. Transition from Coulomb Blockade to Resonant Transmission in a MoS2 Nanoribbon

    NASA Astrophysics Data System (ADS)

    Li, Yanjing; Mason, Nadya

    2014-03-01

    We have measured a side-gated nanoribbon of MoS2 at low temperature, and observed the transition from Coulomb blockade to resonant transmission when the Fermi level is tuned with a gate. We show that near the crossover between these regimes, the entire nanoribbon acts as a single quantum dot. Our findings may shed light on quasi-ballistic transport in the material. We also discuss the quantum dot formation in terms of a substrate-induced disorder potential, and consider other possible origins of disorder.

  9. A Laguerre expansion method for the field particle portion in the linearized Coulomb collision operator

    NASA Astrophysics Data System (ADS)

    Nishimura, Shin

    2015-12-01

    The spherical coordinates expressions of the Rosenbluth potentials are applied to the field particle portion in the linearized Coulomb collision operator. The Sonine (generalized Laguerre) polynomial expansion formulas for this operator allowing general field particles' velocity distributions are derived. An important application area of these formulas is the study of flows of thermalized particles in NBI-heated or burning plasmas since the energy space structure of the fast ions' slowing down velocity distribution cannot be expressed by usual orthogonal polynomial expansions, and since the Galilean invariant property and the momentum conservation of the collision must be distinguished there.

  10. Parabolic sturmians approach to the three-body continuum Coulomb problem

    SciTech Connect

    Zaytsev, S. A.; Popov, Yu. V.; Piraux, B.

    2013-03-15

    The three-body continuum Coulomb problem is treated in terms of the generalized parabolic coordinates. Approximate solutions are expressed in the form of a Lippmann-Schwinger-type equation, where the Green's function includes the leading term of the kinetic energy and the total potential energy, whereas the potential contains the non-orthogonal part of the kinetic energy operator. As a test of this approach, the integral equation for the (e{sup -}, e{sup -}, He{sup ++}) system has been solved numerically by using the parabolic Sturmian basis representation of the (approximate) potential. Convergence of the expansion coefficients of the solution has been obtained as the basis set used to describe the potential is enlarged.

  11. Coulomb interactions between dust particles in plasma etching reactors

    SciTech Connect

    Hwang, H.H.; Kushner, M.J.

    1996-12-31

    Wafer contamination by particles, or dust, in plasma processing reactors remains a continuing concern in the microelectronics industry. Particles charge negatively in low temperature plasmas and resemble electrically floating bodies. The transport of these particles in plasma processing reactors is dominated by electrostatic, ion-drag, fluid-drag, and thermophoretic forces. Under conditions where the particle density is large, Debye shielding may be insufficient to isolate the particles, leading to particle-particle Coulomb interactions. Such interactions are likely to occur in trapping locations, which are typically near the plasma-sheath boundaries in Reactive Ion Etching (RIE) discharges. Particles that experience Coulomb interactions may display collective behavior, an extreme example being a Coulomb liquid or solid. Particle transport in plasma processing reactors has been studied extensively to predict rates of wafer contamination thought to date particle-particle interactions have not been addressed. In this paper, the authors discuss results from a computer model for dust particle transport in RIE discharges where particle-particle Coulomb interactions are included.

  12. Hamiltonian flow in Coulomb gauge Yang-Mills theory

    SciTech Connect

    Leder, Markus; Reinhardt, Hugo; Pawlowski, Jan M.; Weber, Axel

    2011-01-15

    We derive a new functional renormalization group equation for Hamiltonian Yang-Mills theory in Coulomb gauge. The flow equations for the static gluon and ghost propagators are solved under the assumption of ghost dominance within different diagrammatic approximations. The results are compared to those obtained in the variational approach and the reliability of the approximations is discussed.

  13. Interpolating the Coulomb phase of little string theory

    DOE PAGESBeta

    Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi

    2015-12-03

    We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity onmore » the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.« less

  14. Interpolating the Coulomb phase of little string theory

    SciTech Connect

    Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi

    2015-12-03

    We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.

  15. Magnetic control of Coulomb scattering and terahertz transitions among excitons

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, J.; Zybell, S.; Eer, F.; Helm, M.; Schneider, H.; Schneebeli, L.; Bttge, C. N.; Breddermann, B.; Kira, M.; Koch, S. W.; Andrews, A. M.; Strasser, G.

    2014-03-01

    Time-resolved terahertz quenching studies of the magnetoexcitonic photoluminescence from GaAs/AlGaAs quantum wells are performed. A microscopic theory is developed to analyze the experiments. Detailed experiment-theory comparisons reveal a remarkable magnetic-field controllability of the Coulomb and terahertz interactions in the excitonic system.

  16. Coulomb effects on edge scattering in elastic nuclear collisions

    SciTech Connect

    Silveira, R. da; Leclercq-Willain, Ch.

    2011-04-15

    We present a qualitative analysis of the effects of the Coulomb force on the edge scattering produced in elastic nuclear collisions occurring under strong absorption conditions. This analysis is illustrated with several examples of nucleus-nucleus and antiproton-nucleus elastic scattering.

  17. Accurate Coulomb blockade thermometry up to 60 kelvin.

    PubMed

    Meschke, M; Kemppinen, A; Pekola, J P

    2016-03-28

    We demonstrate experimentally a precise realization of Coulomb blockade thermometry working at temperatures up to 60 K. Advances in nano-fabrication methods using electron beam lithography allow us to fabricate uniform arrays of sufficiently small tunnel junctions to guarantee an overall temperature reading precision of about 1%. PMID:26903107

  18. Interpolating the Coulomb phase of little string theory

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Hsuan; Shao, Shu-Heng; Wang, Yifan; Yin, Xi

    2015-12-01

    We study up to 8-derivative terms in the Coulomb branch effective action of (1, 1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU( k) SYM and DSLST respectively, for k = 2 , 3 , 4 , 5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. We also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2 , 0) little string theory.

  19. Coulomb gas transitions in three-dimensional classical dimer models

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Gukelberger, Jan; Trebst, Simon; Alet, Fabien; Balents, Leon

    2009-07-01

    Close-packed, classical dimer models on three-dimensional, bipartite lattices harbor a Coulomb phase with power-law correlations at infinite temperature. Here, we discuss the nature of the thermal phase transition out of this Coulomb phase for a variety of dimer models which energetically favor crystalline dimer states with columnar ordering. For a family of these models, we find a direct thermal transition from the Coulomb phase to the dimer crystal. While some systems exhibit (strong) first-order transitions in correspondence with the Landau-Ginzburg-Wilson paradigm, we also find clear numerical evidence for continuous transitions. A second family of models undergoes two consecutive thermal transitions with an intermediate paramagnetic phase separating the Coulomb phase from the dimer crystal. We can describe all of these phase transitions in one unifying framework of candidate field theories with two complex Ginzburg-Landau fields coupled to a U(1) gauge field. We derive the symmetry-mandated Ginzburg-Landau actions in these field variables for the various dimer models and discuss implications for their respective phase transitions.

  20. Coulomb Crystals in Cylindrical Dusty Plasmas under Gravity/Microgravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuo; Totsuji, Hiroo; Adachi, Satoshi

    2014-10-01

    Coulomb crystals of dusty plasmas have been studied under microgravity with utilities boarding on the International Space Station in a joint Russian/German research project. Dynamics of the Coulomb crystals in cylindrical plasmas is investigated with the apparatus of PK-4 being launched till the end of 2014. A science team in Japan studied the cylindrical dusty plasmas to contribute to the project with the PK-4J modified original for microgravity experiments of parabolic flights in Japan. In the experiments, the dust particles distributed at the off-centered position close to the bottom in balancing of gravity. Under microgravity, they changed the distribution and formed a Coulomb crystal around the center axis in the plasmas. Several particles arranged in a line parallel to the axis, and the lines piled up to a bundle. Spatial distribution of the dust particles affects on plasma parameters of ion density and electron temperature. Structures of the Coulomb crystals connected to the parameters are discussed. The present study were supported by JAXA and Diamond Air Service.