Sample records for count rate performance

  1. Compton suppression gamma-counting: The effect of count rate

    USGS Publications Warehouse

    Millard, H.T.

    1984-01-01

    Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.

  2. TU-FG-209-03: Exploring the Maximum Count Rate Capabilities of Photon Counting Arrays Based On Polycrystalline Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, A K; Koniczek, M; Antonuk, L E

    Purpose: Photon counting arrays (PCAs) offer several advantages over conventional, fluence-integrating x-ray imagers, such as improved contrast by means of energy windowing. For that reason, we are exploring the feasibility and performance of PCA pixel circuitry based on polycrystalline silicon. This material, unlike the crystalline silicon commonly used in photon counting detectors, lends itself toward the economic manufacture of radiation tolerant, monolithic large area (e.g., ∼43×43 cm2) devices. In this presentation, exploration of maximum count rate, a critical performance parameter for such devices, is reported. Methods: Count rate performance for a variety of pixel circuit designs was explored through detailedmore » circuit simulations over a wide range of parameters (including pixel pitch and operating conditions) with the additional goal of preserving good energy resolution. The count rate simulations assume input events corresponding to a 72 kVp x-ray spectrum with 20 mm Al filtration interacting with a CZT detector at various input flux rates. Output count rates are determined at various photon energy threshold levels, and the percentage of counts lost (e.g., due to deadtime or pile-up) is calculated from the ratio of output to input counts. The energy resolution simulations involve thermal and flicker noise originating from each circuit element in a design. Results: Circuit designs compatible with pixel pitches ranging from 250 to 1000 µm that allow count rates over a megacount per second per pixel appear feasible. Such rates are expected to be suitable for radiographic and fluoroscopic imaging. Results for the analog front-end circuitry of the pixels show that acceptable energy resolution can also be achieved. Conclusion: PCAs created using polycrystalline silicon have the potential to offer monolithic large-area detectors with count rate performance comparable to those of crystalline silicon detectors. Further improvement through detailed

  3. Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions

    NASA Astrophysics Data System (ADS)

    Kolthammer, Jeffrey A.; Su, Kuan-Hao; Grover, Anu; Narayanan, Manoj; Jordan, David W.; Muzic, Raymond F.

    2014-07-01

    This study evaluated the positron emission tomography (PET) imaging performance of the Ingenuity TF 128 PET/computed tomography (CT) scanner which has a PET component that was designed to support a wider radioactivity range than is possible with those of Gemini TF PET/CT and Ingenuity TF PET/MR. Spatial resolution, sensitivity, count rate characteristics and image quality were evaluated according to the NEMA NU 2-2007 standard and ACR phantom accreditation procedures; these were supplemented by additional measurements intended to characterize the system under conditions that would be encountered during quantitative cardiac imaging with 82Rb. Image quality was evaluated using a hot spheres phantom, and various contrast recovery and noise measurements were made from replicated images. Timing and energy resolution, dead time, and the linearity of the image activity concentration, were all measured over a wide range of count rates. Spatial resolution (4.8-5.1 mm FWHM), sensitivity (7.3 cps kBq-1), peak noise-equivalent count rate (124 kcps), and peak trues rate (365 kcps) were similar to those of the Gemini TF PET/CT. Contrast recovery was higher with a 2 mm, body-detail reconstruction than with a 4 mm, body reconstruction, although the precision was reduced. The noise equivalent count rate peak was broad (within 10% of peak from 241-609 MBq). The activity measured in phantom images was within 10% of the true activity for count rates up to those observed in 82Rb cardiac PET studies.

  4. Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources.

    PubMed

    Klumpp, John; Brandl, Alexander

    2015-03-01

    A particle counting and detection system is proposed that searches for elevated count rates in multiple energy regions simultaneously. The system analyzes time-interval data (e.g., time between counts), as this was shown to be a more sensitive technique for detecting low count rate sources compared to analyzing counts per unit interval (Luo et al. 2013). Two distinct versions of the detection system are developed. The first is intended for situations in which the sample is fixed and can be measured for an unlimited amount of time. The second version is intended to detect sources that are physically moving relative to the detector, such as a truck moving past a fixed roadside detector or a waste storage facility under an airplane. In both cases, the detection system is expected to be active indefinitely; i.e., it is an online detection system. Both versions of the multi-energy detection systems are compared to their respective gross count rate detection systems in terms of Type I and Type II error rates and sensitivity.

  5. LINEAR COUNT-RATE METER

    DOEpatents

    Henry, J.J.

    1961-09-01

    A linear count-rate meter is designed to provide a highly linear output while receiving counting rates from one cycle per second to 100,000 cycles per second. Input pulses enter a linear discriminator and then are fed to a trigger circuit which produces positive pulses of uniform width and amplitude. The trigger circuit is connected to a one-shot multivibrator. The multivibrator output pulses have a selected width. Feedback means are provided for preventing transistor saturation in the multivibrator which improves the rise and decay times of the output pulses. The multivibrator is connected to a diode-switched, constant current metering circuit. A selected constant current is switched to an averaging circuit for each pulse received, and for a time determined by the received pulse width. The average output meter current is proportional to the product of the counting rate, the constant current, and the multivibrator output pulse width.

  6. Compensated count-rate circuit for radiation survey meter

    DOEpatents

    Todd, Richard A.

    1981-01-01

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  7. Compensated count-rate circuit for radiation survey meter

    DOEpatents

    Todd, R.A.

    1980-05-12

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  8. Bayesian analysis of energy and count rate data for detection of low count rate radioactive sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klumpp, John

    We propose a radiation detection system which generates its own discrete sampling distribution based on past measurements of background. The advantage to this approach is that it can take into account variations in background with respect to time, location, energy spectra, detector-specific characteristics (i.e. different efficiencies at different count rates and energies), etc. This would therefore be a 'machine learning' approach, in which the algorithm updates and improves its characterization of background over time. The system would have a 'learning mode,' in which it measures and analyzes background count rates, and a 'detection mode,' in which it compares measurements frommore » an unknown source against its unique background distribution. By characterizing and accounting for variations in the background, general purpose radiation detectors can be improved with little or no increase in cost. The statistical and computational techniques to perform this kind of analysis have already been developed. The necessary signal analysis can be accomplished using existing Bayesian algorithms which account for multiple channels, multiple detectors, and multiple time intervals. Furthermore, Bayesian machine-learning techniques have already been developed which, with trivial modifications, can generate appropriate decision thresholds based on the comparison of new measurements against a nonparametric sampling distribution. (authors)« less

  9. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a ‘hybrid’ detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102 ). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (‘bowtie’) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors.

  10. Relationship between salivary flow rates and Candida albicans counts.

    PubMed

    Navazesh, M; Wood, G J; Brightman, V J

    1995-09-01

    Seventy-one persons (48 women, 23 men; mean age, 51.76 years) were evaluated for salivary flow rates and Candida albicans counts. Each person was seen on three different occasions. Samples of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid saliva were collected under standardized conditions. An oral rinse was also obtained and evaluated for Candida albicans counts. Unstimulated and chewing-stimulated whole flow rates were negatively and significantly (p < 0.001) related to the Candida counts. Unstimulated whole saliva significantly (p < 0.05) differed in persons with Candida counts of 0 versus <500 versus < or = 500. Chewing-stimulated saliva was significantly (p < 0.05) different in persons with 0 counts compared with those with a > or = 500 count. Differences in stimulated parotid flow rates were not significant among different levels of Candida counts. The results of this study reveal that whole saliva is a better predictor than parotid saliva in identification of persons with high Candida albicans counts.

  11. Exploration of maximum count rate capabilities for large-area photon counting arrays based on polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua

    2016-03-01

    Pixelated photon counting detectors with energy discrimination capabilities are of increasing clinical interest for x-ray imaging. Such detectors, presently in clinical use for mammography and under development for breast tomosynthesis and spectral CT, usually employ in-pixel circuits based on crystalline silicon - a semiconductor material that is generally not well-suited for economic manufacture of large-area devices. One interesting alternative semiconductor is polycrystalline silicon (poly-Si), a thin-film technology capable of creating very large-area, monolithic devices. Similar to crystalline silicon, poly-Si allows implementation of the type of fast, complex, in-pixel circuitry required for photon counting - operating at processing speeds that are not possible with amorphous silicon (the material currently used for large-area, active matrix, flat-panel imagers). The pixel circuits of two-dimensional photon counting arrays are generally comprised of four stages: amplifier, comparator, clock generator and counter. The analog front-end (in particular, the amplifier) strongly influences performance and is therefore of interest to study. In this paper, the relationship between incident and output count rate of the analog front-end is explored under diagnostic imaging conditions for a promising poly-Si based design. The input to the amplifier is modeled in the time domain assuming a realistic input x-ray spectrum. Simulations of circuits based on poly-Si thin-film transistors are used to determine the resulting output count rate as a function of input count rate, energy discrimination threshold and operating conditions.

  12. A New Statistics-Based Online Baseline Restorer for a High Count-Rate Fully Digital System.

    PubMed

    Li, Hongdi; Wang, Chao; Baghaei, Hossain; Zhang, Yuxuan; Ramirez, Rocio; Liu, Shitao; An, Shaohui; Wong, Wai-Hoi

    2010-04-01

    The goal of this work is to develop a novel, accurate, real-time digital baseline restorer using online statistical processing for a high count-rate digital system such as positron emission tomography (PET). In high count-rate nuclear instrumentation applications, analog signals are DC-coupled for better performance. However, the detectors, pre-amplifiers and other front-end electronics would cause a signal baseline drift in a DC-coupling system, which will degrade the performance of energy resolution and positioning accuracy. Event pileups normally exist in a high-count rate system and the baseline drift will create errors in the event pileup-correction. Hence, a baseline restorer (BLR) is required in a high count-rate system to remove the DC drift ahead of the pileup correction. Many methods have been reported for BLR from classic analog methods to digital filter solutions. However a single channel BLR with analog method can only work under 500 kcps count-rate, and normally an analog front-end application-specific integrated circuits (ASIC) is required for the application involved hundreds BLR such as a PET camera. We have developed a simple statistics-based online baseline restorer (SOBLR) for a high count-rate fully digital system. In this method, we acquire additional samples, excluding the real gamma pulses, from the existing free-running ADC in the digital system, and perform online statistical processing to generate a baseline value. This baseline value will be subtracted from the digitized waveform to retrieve its original pulse with zero-baseline drift. This method can self-track the baseline without a micro-controller involved. The circuit consists of two digital counter/timers, one comparator, one register and one subtraction unit. Simulation shows a single channel works at 30 Mcps count-rate with pileup condition. 336 baseline restorer circuits have been implemented into 12 field-programmable-gate-arrays (FPGA) for our new fully digital PET system.

  13. Relationship of milking rate to somatic cell count.

    PubMed

    Brown, C A; Rischette, S J; Schultz, L H

    1986-03-01

    Information on milking rate, monthly bucket somatic cell counts, mastitis treatment, and milk production was obtained from 284 lactations of Holstein cows separated into three lactation groups. Significant correlations between somatic cell count (linear score) and other parameters included production in lactation 1 (-.185), production in lactation 2 (-.267), and percent 2-min milk in lactation 2 (.251). Somatic cell count tended to increase with maximum milking rate in all lactations, but correlations were not statistically significant. Twenty-nine percent of cows with milking rate measurements were treated for clinical mastitis. Treated cows in each lactation group produced less milk than untreated cows. In the second and third lactation groups, treated cows had a shorter total milking time and a higher percent 2-min milk than untreated cows, but differences were not statistically significant. Overall, the data support the concept that faster milking cows tend to have higher cell counts and more mastitis treatments, particularly beyond first lactation. However, the magnitude of the relationship was small.

  14. Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zickefoose, J.; Kulkarni, T.; Martinson, T.

    The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - Xmore » and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of

  15. Optimization of high count rate event counting detector with Microchannel Plates and quad Timepix readout

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.

    2015-07-01

    Many high resolution event counting devices process one event at a time and cannot register simultaneous events. In this article a frame-based readout event counting detector consisting of a pair of Microchannel Plates and a quad Timepix readout is described. More than 104 simultaneous events can be detected with a spatial resolution of 55 μm, while >103 simultaneous events can be detected with <10 μm spatial resolution when event centroiding is implemented. The fast readout electronics is capable of processing >1200 frames/sec, while the global count rate of the detector can exceed 5×108 particles/s when no timing information on every particle is required. For the first generation Timepix readout, the timing resolution is limited by the Timepix clock to 10-20 ns. Optimization of the MCP gain, rear field voltage and Timepix threshold levels are crucial for the device performance and that is the main subject of this article. These devices can be very attractive for applications where the photon/electron/ion/neutron counting with high spatial and temporal resolution is required, such as energy resolved neutron imaging, Time of Flight experiments in lidar applications, experiments on photoelectron spectroscopy and many others.

  16. Laboratory productivity and the rate of manual peripheral blood smear review: a College of American Pathologists Q-Probes study of 95,141 complete blood count determinations performed in 263 institutions.

    PubMed

    Novis, David A; Walsh, Molly; Wilkinson, David; St Louis, Mary; Ben-Ezra, Jonathon

    2006-05-01

    Automated laboratory hematology analyzers are capable of performing differential counts on peripheral blood smears with greater precision and more accurate detection of distributional and morphologic abnormalities than those performed by manual examinations of blood smears. Manual determinations of blood morphology and leukocyte differential counts are time-consuming, expensive, and may not always be necessary. The frequency with which hematology laboratory workers perform manual screens despite the availability of labor-saving features of automated analyzers is unknown. To determine the normative rates with which manual peripheral blood smears were performed in clinical laboratories, to examine laboratory practices associated with higher or lower manual review rates, and to measure the effects of manual smear review on the efficiency of generating complete blood count (CBC) determinations. From each of 3 traditional shifts per day, participants were asked to select serially, 10 automated CBC specimens, and to indicate whether manual scans and/or reviews with complete differential counts were performed on blood smears prepared from those specimens. Sampling continued until a total of 60 peripheral smears were reviewed manually. For each specimen on which a manual review was performed, participants indicated the patient's age, hemoglobin value, white blood cell count, platelet count, and the primary reason why the manual review was performed. Participants also submitted data concerning their institutions' demographic profiles and their laboratories' staffing, work volume, and practices regarding CBC determinations. The rates of manual reviews and estimations of efficiency in performing CBC determinations were obtained from the data. A total of 263 hospitals and independent laboratories, predominantly located in the United States, participating in the College of American Pathologists Q-Probes Program. There were 95,141 CBC determinations examined in this study

  17. Pneumotachometer counts respiration rate of human subject

    NASA Technical Reports Server (NTRS)

    Graham, O.

    1964-01-01

    To monitor breaths per minute, two rate-to-analog converters are alternately used to read and count the respiratory rate from an impedance pneumograph sequentially displayed numerically on electroluminescent matrices.

  18. ChromAIX2: A large area, high count-rate energy-resolving photon counting ASIC for a Spectral CT Prototype

    NASA Astrophysics Data System (ADS)

    Steadman, Roger; Herrmann, Christoph; Livne, Amir

    2017-08-01

    Spectral CT based on energy-resolving photon counting detectors is expected to deliver additional diagnostic value at a lower dose than current state-of-the-art CT [1]. The capability of simultaneously providing a number of spectrally distinct measurements not only allows distinguishing between photo-electric and Compton interactions but also discriminating contrast agents that exhibit a K-edge discontinuity in the absorption spectrum, referred to as K-edge Imaging [2]. Such detectors are based on direct converting sensors (e.g. CdTe or CdZnTe) and high-rate photon counting electronics. To support the development of Spectral CT and show the feasibility of obtaining rates exceeding 10 Mcps/pixel (Poissonian observed count-rate), the ChromAIX ASIC has been previously reported showing 13.5 Mcps/pixel (150 Mcps/mm2 incident) [3]. The ChromAIX has been improved to offer the possibility of a large area coverage detector, and increased overall performance. The new ASIC is called ChromAIX2, and delivers count-rates exceeding 15 Mcps/pixel with an rms-noise performance of approximately 260 e-. It has an isotropic pixel pitch of 500 μm in an array of 22×32 pixels and is tile-able on three of its sides. The pixel topology consists of a two stage amplifier (CSA and Shaper) and a number of test features allowing to thoroughly characterize the ASIC without a sensor. A total of 5 independent thresholds are also available within each pixel, allowing to acquire 5 spectrally distinct measurements simultaneously. The ASIC also incorporates a baseline restorer to eliminate excess currents induced by the sensor (e.g. dark current and low frequency drifts) which would otherwise cause an energy estimation error. In this paper we report on the inherent electrical performance of the ChromAXI2 as well as measurements obtained with CZT (CdZnTe)/CdTe sensors and X-rays and radioactive sources.

  19. A real-time phoneme counting algorithm and application for speech rate monitoring.

    PubMed

    Aharonson, Vered; Aharonson, Eran; Raichlin-Levi, Katia; Sotzianu, Aviv; Amir, Ofer; Ovadia-Blechman, Zehava

    2017-03-01

    Adults who stutter can learn to control and improve their speech fluency by modifying their speaking rate. Existing speech therapy technologies can assist this practice by monitoring speaking rate and providing feedback to the patient, but cannot provide an accurate, quantitative measurement of speaking rate. Moreover, most technologies are too complex and costly to be used for home practice. We developed an algorithm and a smartphone application that monitor a patient's speaking rate in real time and provide user-friendly feedback to both patient and therapist. Our speaking rate computation is performed by a phoneme counting algorithm which implements spectral transition measure extraction to estimate phoneme boundaries. The algorithm is implemented in real time in a mobile application that presents its results in a user-friendly interface. The application incorporates two modes: one provides the patient with visual feedback of his/her speech rate for self-practice and another provides the speech therapist with recordings, speech rate analysis and tools to manage the patient's practice. The algorithm's phoneme counting accuracy was validated on ten healthy subjects who read a paragraph at slow, normal and fast paces, and was compared to manual counting of speech experts. Test-retest and intra-counter reliability were assessed. Preliminary results indicate differences of -4% to 11% between automatic and human phoneme counting. Differences were largest for slow speech. The application can thus provide reliable, user-friendly, real-time feedback for speaking rate control practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, J.A.; Kopp, M.K.

    1980-05-23

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (< 60 keV) at count rates of greater than 10/sup 5/ counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  1. Multianode cylindrical proportional counter for high count rates

    DOEpatents

    Hanson, James A.; Kopp, Manfred K.

    1981-01-01

    A cylindrical, multiple-anode proportional counter is provided for counting of low-energy photons (<60 keV) at count rates of greater than 10.sup.5 counts/sec. A gas-filled proportional counter cylinder forming an outer cathode is provided with a central coaxially disposed inner cathode and a plurality of anode wires disposed in a cylindrical array in coaxial alignment with and between the inner and outer cathodes to form a virtual cylindrical anode coaxial with the inner and outer cathodes. The virtual cylindrical anode configuration improves the electron drift velocity by providing a more uniform field strength throughout the counter gas volume, thus decreasing the electron collection time following the detection of an ionizing event. This avoids pulse pile-up and coincidence losses at these high count rates. Conventional RC position encoding detection circuitry may be employed to extract the spatial information from the counter anodes.

  2. The use of noise equivalent count rate and the NEMA phantom for PET image quality evaluation.

    PubMed

    Yang, Xin; Peng, Hao

    2015-03-01

    PET image quality is directly associated with two important parameters among others: count-rate performance and image signal-to-noise ratio (SNR). The framework of noise equivalent count rate (NECR) was developed back in the 1990s and has been widely used since then to evaluate count-rate performance for PET systems. The concept of NECR is not entirely straightforward, however, and among the issues requiring clarification are its original definition, its relationship to image quality, and its consistency among different derivation methods. In particular, we try to answer whether a higher NECR measurement using a standard NEMA phantom actually corresponds to better imaging performance. The paper includes the following topics: 1) revisiting the original analytical model for NECR derivation; 2) validating three methods for NECR calculation based on the NEMA phantom/standard; and 3) studying the spatial dependence of NECR and quantitative relationship between NECR and image SNR. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE PAGES

    Drescher, A.; Yoho, M.; Landsberger, S.; ...

    2017-01-15

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  4. Gamma-gamma coincidence performance of LaBr 3:Ce scintillation detectors vs HPGe detectors in high count-rate scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drescher, A.; Yoho, M.; Landsberger, S.

    In this study, a radiation detection system consisting of two cerium doped lanthanum bromide (LaBr 3:Ce) scintillation detectors in a gamma-gamma coincidence configuration has been used to demonstrate the advantages that coincident detection provides relative to a single detector, and the advantages that LaBr 3:Ce detectors provide relative to high purity germanium (HPGe) detectors. Signal to noise ratios of select photopeak pairs for these detectors have been compared to high-purity germanium (HPGe) detectors in both single and coincident detector configurations in order to quantify the performance of each detector configuration. The efficiency and energy resolution of LaBr 3:Ce detectors havemore » been determined and compared to HPGe detectors. Coincident gamma-ray pairs from the radionuclides 152Eu and 133Ba have been identified in a sample that is dominated by 137Cs. Gamma-gamma coincidence successfully reduced the Compton continuum from the large 137Cs peak, revealed several coincident gamma energies characteristic of these nuclides, and improved the signal-to-noise ratio relative to single detector measurements. LaBr 3:Ce detectors performed at count rates multiple times higher than can be achieved with HPGe detectors. The standard background spectrum consisting of peaks associated with transitions within the LaBr 3:Ce crystal has also been significantly reduced. Finally, it is shown that LaBr 3:Ce detectors have the unique capability to perform gamma-gamma coincidence measurements in very high count rate scenarios, which can potentially benefit nuclear safeguards in situ measurements of spent nuclear fuel.« less

  5. High event rate ROICs (HEROICs) for astronomical UV photon counting detectors

    NASA Astrophysics Data System (ADS)

    Harwit, Alex; France, Kevin; Argabright, Vic; Franka, Steve; Freymiller, Ed; Ebbets, Dennis

    2014-07-01

    The next generation of astronomical photocathode / microchannel plate based UV photon counting detectors will overcome existing count rate limitations by replacing the anode arrays and external cabled electronics with anode arrays integrated into imaging Read Out Integrated Circuits (ROICs). We have fabricated a High Event Rate ROIC (HEROIC) consisting of a 32 by 32 array of 55 μm square pixels on a 60 μm pitch. The pixel sensitivity (threshold) has been designed to be globally programmable between 1 × 103 and 1 × 106 electrons. To achieve the sensitivity of 1 × 103 electrons, parasitic capacitances had to be minimized and this was achieved by fabricating the ROIC in a 65 nm CMOS process. The ROIC has been designed to support pixel counts up to 4096 events per integration period at rates up to 1 MHz per pixel. Integration time periods can be controlled via an external signal with a time resolution of less than 1 microsecond enabling temporally resolved imaging and spectroscopy of astronomical sources. An electrical injection port is provided to verify functionality and performance of each ROIC prior to vacuum integration with a photocathode and microchannel plate amplifier. Test results on the first ROICs using the electrical injection port demonstrate sensitivities between 3 × 103 and 4 × 105 electrons are achieved. A number of fixes are identified for a re-spin of this ROIC.

  6. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  7. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guangning; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies ((is) greater than 50%) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  8. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  9. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography.

    PubMed

    Hoerner, Matthew R; Stepusin, Elliott J; Hyer, Daniel E; Hintenlang, David E

    2015-03-01

    Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm(3) Radcal(®) thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm(3) calibrated ionization chamber to measure the

  10. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    NASA Astrophysics Data System (ADS)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  11. A burst-mode photon counting receiver with automatic channel estimation and bit rate detection

    NASA Astrophysics Data System (ADS)

    Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.

    2016-04-01

    We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.

  12. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoerner, Matthew R., E-mail: mrh5038@ufl.edu; Stepusin, Elliott J.; Hyer, Daniel E.

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator,more » which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3

  13. Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate

    PubMed Central

    Schuck, Carsten; Pernice, Wolfram H. P.; Tang, Hong X.

    2013-01-01

    Superconducting nanowire single-photon detectors are an ideal match for integrated quantum photonic circuits due to their high detection efficiency for telecom wavelength photons. Quantum optical technology also requires single-photon detection with low dark count rate and high timing accuracy. Here we present very low noise superconducting nanowire single-photon detectors based on NbTiN thin films patterned directly on top of Si3N4 waveguides. We systematically investigate a large variety of detector designs and characterize their detection noise performance. Milli-Hz dark count rates are demonstrated over the entire operating range of the nanowire detectors which also feature low timing jitter. The ultra-low dark count rate, in combination with the high detection efficiency inherent to our travelling wave detector geometry, gives rise to a measured noise equivalent power at the 10−20 W/Hz1/2 level. PMID:23714696

  14. Note: Operation of gamma-ray microcalorimeters at elevated count rates using filters with constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpert, B. K.; Horansky, R. D.; Bennett, D. A.

    Microcalorimeter sensors operated near 0.1 K can measure the energy of individual x- and gamma-ray photons with significantly more precision than conventional semiconductor technologies. Both microcalorimeter arrays and higher per pixel count rates are desirable to increase the total throughput of spectrometers based on these devices. The millisecond recovery time of gamma-ray microcalorimeters and the resulting pulse pileup are significant obstacles to high per pixel count rates. Here, we demonstrate operation of a microcalorimeter detector at elevated count rates by use of convolution filters designed to be orthogonal to the exponential tail of a preceding pulse. These filters allow operationmore » at 50% higher count rates than conventional filters while largely preserving sensor energy resolution.« less

  15. A Calibration of NICMOS Camera 2 for Low Count Rates

    NASA Astrophysics Data System (ADS)

    Rubin, D.; Aldering, G.; Amanullah, R.; Barbary, K.; Dawson, K. S.; Deustua, S.; Faccioli, L.; Fadeyev, V.; Fakhouri, H. K.; Fruchter, A. S.; Gladders, M. D.; de Jong, R. S.; Koekemoer, A.; Krechmer, E.; Lidman, C.; Meyers, J.; Nordin, J.; Perlmutter, S.; Ripoche, P.; Schlegel, D. J.; Spadafora, A.; Suzuki, N.

    2015-05-01

    NICMOS 2 observations are crucial for constraining distances to most of the existing sample of z\\gt 1 SNe Ia. Unlike conventional calibration programs, these observations involve long exposure times and low count rates. Reciprocity failure is known to exist in HgCdTe devices and a correction for this effect has already been implemented for high and medium count rates. However, observations at faint count rates rely on extrapolations. Here instead, we provide a new zero-point calibration directly applicable to faint sources. This is obtained via inter-calibration of NIC2 F110W/F160W with the Wide Field Camera 3 (WFC3) in the low count-rate regime using z∼ 1 elliptical galaxies as tertiary calibrators. These objects have relatively simple near-IR spectral energy distributions, uniform colors, and their extended nature gives a superior signal-to-noise ratio at the same count rate than would stars. The use of extended objects also allows greater tolerances on point-spread function profiles. We find space telescope magnitude zero points (after the installation of the NICMOS cooling system, NCS) of 25.296\\+/- 0.022 for F110W and 25.803\\+/- 0.023 for F160W, both in agreement with the calibration extrapolated from count rates ≳1000 times larger (25.262 and 25.799). Before the installation of the NCS, we find 24.843\\+/- 0.025 for F110W and 25.498\\+/- 0.021 for F160W, also in agreement with the high-count-rate calibration (24.815 and 25.470). We also check the standard bandpasses of WFC3 and NICMOS 2 using a range of stars and galaxies at different colors and find mild tension for WFC3, limiting the accuracy of the zero points. To avoid human bias, our cross-calibration was “blinded” in that the fitted zero-point differences were hidden until the analysis was finalized. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555, under programs

  16. Fast radio burst event rate counts - I. Interpreting the observations

    NASA Astrophysics Data System (ADS)

    Macquart, J.-P.; Ekers, R. D.

    2018-02-01

    The fluence distribution of the fast radio burst (FRB) population (the `source count' distribution, N (>F) ∝Fα), is a crucial diagnostic of its distance distribution, and hence the progenitor evolutionary history. We critically reanalyse current estimates of the FRB source count distribution. We demonstrate that the Lorimer burst (FRB 010724) is subject to discovery bias, and should be excluded from all statistical studies of the population. We re-examine the evidence for flat, α > -1, source count estimates based on the ratio of single-beam to multiple-beam detections with the Parkes multibeam receiver, and show that current data imply only a very weak constraint of α ≲ -1.3. A maximum-likelihood analysis applied to the portion of the Parkes FRB population detected above the observational completeness fluence of 2 Jy ms yields α = -2.6_{-1.3}^{+0.7 }. Uncertainties in the location of each FRB within the Parkes beam render estimates of the Parkes event rate uncertain in both normalizing survey area and the estimated post-beam-corrected completeness fluence; this uncertainty needs to be accounted for when comparing the event rate against event rates measured at other telescopes.

  17. The effects of awareness and count duration on adult respiratory rate measurements: An experimental study.

    PubMed

    Hill, Andrew; Kelly, Eliza; Horswill, Mark S; Watson, Marcus O

    2018-02-01

    To investigate whether awareness of manual respiratory rate monitoring affects respiratory rate in adults, and whether count duration influences respiratory rate estimates. Nursing textbooks typically suggest that the patient should ideally be unaware of respiratory rate observations; however, there is little published evidence of the effect of awareness on respiratory rate, and none specific to manual measurement. In addition, recommendations about the length of the respiratory rate count vary from text to text, and the relevant empirical evidence is scant, inconsistent and subject to substantial methodological limitations. Experimental study with awareness of respiration monitoring (aware, unaware; randomised between-subjects) and count duration (60 s, 30 s, 15 s; within-subjects) as the independent variables. Respiratory rate (breaths/minute) was the dependent variable. Eighty-two adult volunteers were randomly assigned to aware and unaware conditions. In the baseline block, no live monitoring occurred. In the subsequent experimental block, the researcher informed aware participants that their respiratory rate would be counted, and did so. Respirations were captured throughout via video recording, and counted by blind raters viewing 60-, 30- and 15-s extracts. The data were collected in 2015. There was no baseline difference between the groups. During the experimental block, the respiratory rates of participants in the aware condition were an average of 2.13 breaths/minute lower compared to unaware participants. Reducing the count duration from 1 min to 15 s caused respiratory rate to be underestimated by an average of 2.19 breaths/minute (and 0.95 breaths/minute for 30-s counts). The awareness effect did not depend on count duration. Awareness of monitoring appears to reduce respiratory rate, and shorter monitoring durations yield systematically lower respiratory rate estimates. When interpreting and acting upon respiratory rate data, clinicians should

  18. Predicting county-level cancer incidence rates and counts in the United States

    PubMed Central

    Yu, Binbing

    2018-01-01

    Many countries, including the United States, publish predicted numbers of cancer incidence and death in current and future years for the whole country. These predictions provide important information on the cancer burden for cancer control planners, policymakers and the general public. Based on evidence from several empirical studies, the joinpoint (segmented-line linear regression) model has been adopted by the American Cancer Society to estimate the number of new cancer cases in the United States and in individual states since 2007. Recently, cancer incidence in smaller geographic regions such as counties and FIPS code regions is of increasing interest by local policymakers. The natural extension is to directly apply the joinpoint model to county-level cancer incidence data. The direct application has several drawbacks and its performance has not been evaluated. To address the concerns, we developed a spatial random-effects joinpoint model for county-level cancer incidence data. The proposed model was used to predict both cancer incidence rates and counts at the county level. The standard joinpoint model and the proposed method were compared through a validation study. The proposed method out-performed the standard joinpoint model for almost all cancer sites, especially for moderate or rare cancer sites and for counties with small population sizes. As an application, we predicted county-level prostate cancer incidence rates and counts for the year 2011 in Connecticut. PMID:23670947

  19. Reducing the Teen Death Rate. KIDS COUNT Indicator Brief

    ERIC Educational Resources Information Center

    Shore, Rima; Shore, Barbara

    2009-01-01

    Life continues to hold considerable risk for adolescents in the United States. In 2006, the teen death rate stood at 64 deaths per 100,000 teens (13,739 teens) (KIDS COUNT Data Center, 2009). Although it has declined by 4 percent since 2000, the rate of teen death in this country remains substantially higher than in many peer nations, based…

  20. Relationship of long-term highly active antiretroviral therapy on salivary flow rate and CD4 Count among HIV-infected patients.

    PubMed

    Kumar, J Vijay; Baghirath, P Venkat; Naishadham, P Parameswar; Suneetha, Sujai; Suneetha, Lavanya; Sreedevi, P

    2015-01-01

    To determine if long-term highly active antiretroviral therapy (HAART) therapy alters salivary flow rate and also to compare its relation of CD4 count with unstimulated and stimulated whole saliva. A cross-sectional study was performed on 150 individuals divided into three groups. Group I (50 human immunodeficiency virus (HIV) seropositive patients, but not on HAART therapy), Group II (50 HIV-infected subjects and on HAART for less than 3 years called short-term HAART), Group III (50 HIV-infected subjects and on HAART for more than or equal to 3 years called long-term HAART). Spitting method proposed by Navazesh and Kumar was used for the measurement of unstimulated and stimulated salivary flow rate. Chi-square test and analysis of variance (ANOVA) were used for statistical analysis. The mean CD4 count was 424.78 ± 187.03, 497.82 ± 206.11 and 537.6 ± 264.00 in the respective groups. Majority of the patients in all the groups had a CD4 count between 401 and 600. Both unstimulated and stimulated whole salivary (UWS and SWS) flow rates in Group I was found to be significantly higher than in Group II (P < 0.05). Unstimulated salivary flow rate between Group II and III subjects were also found to be statistically significant (P < 0.05). ANOVA performed between CD4 count and unstimulated and stimulated whole saliva in each group demonstrated a statistically significant relationship in Group II (P < 0.05). There were no significant results found between CD4 count and stimulated whole saliva in each groups. The reduction in CD4 cell counts were significantly associated with salivary flow rates of HIV-infected individuals who are on long-term HAART.

  1. Pulse pileup statistics for energy discriminating photon counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Adam S.; Harrison, Daniel; Lobastov, Vladimir

    Purpose: Energy discriminating photon counting x-ray detectors can be subject to a wide range of flux rates if applied in clinical settings. Even when the incident rate is a small fraction of the detector's maximum periodic rate N{sub 0}, pulse pileup leads to count rate losses and spectral distortion. Although the deterministic effects can be corrected, the detrimental effect of pileup on image noise is not well understood and may limit the performance of photon counting systems. Therefore, the authors devise a method to determine the detector count statistics and imaging performance. Methods: The detector count statistics are derived analyticallymore » for an idealized pileup model with delta pulses of a nonparalyzable detector. These statistics are then used to compute the performance (e.g., contrast-to-noise ratio) for both single material and material decomposition contrast detection tasks via the Cramer-Rao lower bound (CRLB) as a function of the detector input count rate. With more realistic unipolar and bipolar pulse pileup models of a nonparalyzable detector, the imaging task performance is determined by Monte Carlo simulations and also approximated by a multinomial method based solely on the mean detected output spectrum. Photon counting performance at different count rates is compared with ideal energy integration, which is unaffected by count rate. Results: The authors found that an ideal photon counting detector with perfect energy resolution outperforms energy integration for our contrast detection tasks, but when the input count rate exceeds 20%N{sub 0}, many of these benefits disappear. The benefit with iodine contrast falls rapidly with increased count rate while water contrast is not as sensitive to count rates. The performance with a delta pulse model is overoptimistic when compared to the more realistic bipolar pulse model. The multinomial approximation predicts imaging performance very close to the prediction from Monte Carlo simulations. The

  2. Pulse shape discrimination of Cs2LiYCl6:Ce3+ detectors at high count rate based on triangular and trapezoidal filters

    NASA Astrophysics Data System (ADS)

    Wen, Xianfei; Enqvist, Andreas

    2017-09-01

    Cs2LiYCl6:Ce3+ (CLYC) detectors have demonstrated the capability to simultaneously detect γ-rays and thermal and fast neutrons with medium energy resolution, reasonable detection efficiency, and substantially high pulse shape discrimination performance. A disadvantage of CLYC detectors is the long scintillation decay times, which causes pulse pile-up at moderate input count rate. Pulse processing algorithms were developed based on triangular and trapezoidal filters to discriminate between neutrons and γ-rays at high count rate. The algorithms were first tested using low-rate data. They exhibit a pulse-shape discrimination performance comparable to that of the charge comparison method, at low rate. Then, they were evaluated at high count rate. Neutrons and γ-rays were adequately identified with high throughput at rates of up to 375 kcps. The algorithm developed using the triangular filter exhibits discrimination capability marginally higher than that of the trapezoidal filter based algorithm irrespective of low or high rate. The algorithms exhibit low computational complexity and are executable on an FPGA in real-time. They are also suitable for application to other radiation detectors whose pulses are piled-up at high rate owing to long scintillation decay times.

  3. Linking reproduction and survival can improve model estimates of vital rates derived from limited time-series counts of pinnipeds and other species.

    PubMed

    Battaile, Brian C; Trites, Andrew W

    2013-01-01

    We propose a method to model the physiological link between somatic survival and reproductive output that reduces the number of parameters that need to be estimated by models designed to determine combinations of birth and death rates that produce historic counts of animal populations. We applied our Reproduction and Somatic Survival Linked (RSSL) method to the population counts of three species of North Pacific pinnipeds (harbor seals, Phoca vitulina richardii (Gray, 1864); northern fur seals, Callorhinus ursinus (L., 1758); and Steller sea lions, Eumetopias jubatus (Schreber, 1776))--and found our model outperformed traditional models when fitting vital rates to common types of limited datasets, such as those from counts of pups and adults. However, our model did not perform as well when these basic counts of animals were augmented with additional observations of ratios of juveniles to total non-pups. In this case, the failure of the ratios to improve model performance may indicate that the relationship between survival and reproduction is redefined or disassociated as populations change over time or that the ratio of juveniles to total non-pups is not a meaningful index of vital rates. Overall, our RSSL models show advantages to linking survival and reproduction within models to estimate the vital rates of pinnipeds and other species that have limited time-series of counts.

  4. Impact of double counting and transfer bias on estimated rates and outcomes of acute myocardial infarction.

    PubMed

    Westfall, J M; McGloin, J

    2001-05-01

    Ischemic heart disease is the leading cause of death in the United States. Recent studies report inconsistent findings on the changes in the incidence of hospitalizations for ischemic heart disease. These reports have relied primarily on hospital discharge data. Preliminary data suggest that a significant percentage of patients suffering acute myocardial infarction (MI) in rural communities are transferred to urban centers for care. Patients transferred to a second hospital may be counted twice for one episode of ischemic heart disease. To describe the impact of double counting and transfer bias on the estimation of incidence rates and outcomes of ischemic heart disease, specifically acute MI, in the United States. Analysis of state hospital discharge data from Kansas, Colorado (State Inpatient Database [SID]), Nebraska, Arizona, New Jersey, Michigan, Pennsylvania, and Illinois (SID) for the years 1995 to 1997. A matching algorithm was developed for hospital discharges to determine patients counted twice for one episode of ischemic heart disease. Validation of our matching algorithm. Patients reported to have suffered ischemic heart disease (ICD9 codes 410-414, 786.5). Number of patients counted twice for one episode of acute MI. It is estimated that double count rates range from 10% to 15% for all states and increased over the 3 years. Moderate sized rural counties had the highest estimated double count rates at 15% to 20% with a few counties having estimated double count rates a high as 35% to 50%. Older patients and females were less likely to be double counted (P <0.05). Double counting patients has resulted in a significant overestimation in the incidence rate for hospitalization for acute MI. Correction of this double counting reveals a significantly lower incidence rate and a higher in-hospital mortality rate for acute MI. Transferred patients differ significantly from nontransferred patients, introducing significant bias into MI outcome studies. Double

  5. Effects of Perceptually Rich Manipulatives on Preschoolers' Counting Performance: Established Knowledge Counts

    ERIC Educational Resources Information Center

    Petersen, Lori A.; McNeil, Nicole M.

    2013-01-01

    Educators often use concrete objects to help children understand mathematics concepts. However, findings on the effectiveness of concrete objects are mixed. The present study examined how two factors--perceptual richness and established knowledge of the objects--combine to influence children's counting performance. In two experiments, preschoolers…

  6. Separating Spike Count Correlation from Firing Rate Correlation

    PubMed Central

    Vinci, Giuseppe; Ventura, Valérie; Smith, Matthew A.; Kass, Robert E.

    2016-01-01

    Populations of cortical neurons exhibit shared fluctuations in spiking activity over time. When measured for a pair of neurons over multiple repetitions of an identical stimulus, this phenomenon emerges as correlated trial-to-trial response variability via spike count correlation (SCC). However, spike counts can be viewed as noisy versions of firing rates, which can vary from trial to trial. From this perspective, the SCC for a pair of neurons becomes a noisy version of the corresponding firing-rate correlation (FRC). Furthermore, the magnitude of the SCC is generally smaller than that of the FRC, and is likely to be less sensitive to experimental manipulation. We provide statistical methods for disambiguating time-averaged drive from within-trial noise, thereby separating FRC from SCC. We study these methods to document their reliability, and we apply them to neurons recorded in vivo from area V4, in an alert animal. We show how the various effects we describe are reflected in the data: within-trial effects are largely negligible, while attenuation due to trial-to-trial variation dominates, and frequently produces comparisons in SCC that, because of noise, do not accurately reflect those based on the underlying FRC. PMID:26942746

  7. Knowledge of resting heart rate mediates the relationship between intelligence and the heartbeat counting task.

    PubMed

    Murphy, Jennifer; Millgate, Edward; Geary, Hayley; Ichijo, Eri; Coll, Michel-Pierre; Brewer, Rebecca; Catmur, Caroline; Bird, Geoffrey

    2018-03-01

    Evidence suggests that intelligence is positively associated with performance on the heartbeat counting task (HCT). The HCT is often employed as measure of interoception - the ability to perceive the internal state of one's body - however it's use remains controversial as performance on the HCT is strongly influenced by knowledge of resting heart rate. This raises the possibility that heart rate knowledge may mediate the previously-observed association between intelligence and HCT performance. Study One demonstrates an association between intelligence and HCT performance (N = 94), and Study Two demonstrates that this relationship is mediated by knowledge of the average resting heart rate (N = 134). These data underscore the need to account for the influence of prior knowledge and beliefs when examining individual differences in cardiac interoceptive accuracy using the HCT. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Expected count rate for the Self- Interrogation Neutron Resonance Densitometry measurements of spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossa, Riccardo; Universite libre de Bruxelles, Ecole polytechnique de Bruxelles - Service de Metrologie Nucleaire, CP 165/84, Avenue F.D. Roosevelt, 50 - B1050 Brussels; Borella, Alessandro

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive neutron technique that aims at a direct quantification of {sup 239}Pu in the fuel assemblies by measuring the attenuation of the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. The {sup 239}Pu mass is estimated by calculating the SINRD signature, that is the ratio between the neutron flux integrated over the fast energy region and around the 0.3 eV resonance region. The SINRD measurement approach considered in this study consists in introducing a small neutron detector in the central guide tube of a PWRmore » 17x17 fuel assembly. In order to measure the neutron flux in the energy regions defined in the SINRD signature, different detector types are used. The response of a bare {sup 238}U fission chamber is considered for the determination of the fast neutron flux, while other thermal-epithermal detectors wrapped in neutron absorbers are envisaged to measure the neutron flux around the resonance region. This paper provides an estimation of the count rate that can be achieved with the detector types proposed for the SINRD measurement. In the first section a set of detectors are evaluated in terms of count rate and sensitivity to the {sup 239}Pu content, in order to identify the optimal measurement configuration for each detector type. Then a study is performed to increase the count rate by increasing the detector size. The study shows that the highest count rate is achieved by using either {sup 3}He or {sup 10}B proportional counters because of the high neutron efficiency of these detectors. However, the calculations indicate that the biggest contribution to the measurement uncertainty is due to the measurement of the fast neutron flux. Finally, similar sensitivity to the {sup 239}Pu content is obtained by using the different detector types for the measurement of the neutron flux close to the resonance region. Therefore, the count rate associated to each

  9. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging

    PubMed Central

    Cho, Hyo-Min; Barber, William C.; Ding, Huanjun; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: The possible clinical applications which can be performed using a newly developed detector depend on the detector's characteristic performance in a number of metrics including the dynamic range, resolution, uniformity, and stability. The authors have evaluated a prototype energy resolved fast photon counting x-ray detector based on a silicon (Si) strip sensor used in an edge-on geometry with an application specific integrated circuit to record the number of x-rays and their energies at high flux and fast frame rates. The investigated detector was integrated with a dedicated breast spectral computed tomography (CT) system to make use of the detector's high spatial and energy resolution and low noise performance under conditions suitable for clinical breast imaging. The aim of this article is to investigate the intrinsic characteristics of the detector, in terms of maximum output count rate, spatial and energy resolution, and noise performance of the imaging system. Methods: The maximum output count rate was obtained with a 50 W x-ray tube with a maximum continuous output of 50 kVp at 1.0 mA. A109Cd source, with a characteristic x-ray peak at 22 keV from Ag, was used to measure the energy resolution of the detector. The axial plane modulation transfer function (MTF) was measured using a 67 μm diameter tungsten wire. The two-dimensional (2D) noise power spectrum (NPS) was measured using flat field images and noise equivalent quanta (NEQ) were calculated using the MTF and NPS results. The image quality parameters were studied as a function of various radiation doses and reconstruction filters. The one-dimensional (1D) NPS was used to investigate the effect of electronic noise elimination by varying the minimum energy threshold. Results: A maximum output count rate of 100 million counts per second per square millimeter (cps/mm2) has been obtained (1 million cps per 100 × 100 μm pixel). The electrical noise floor was less than 4 keV. The energy resolution

  10. Changes in Sensitization Rate to Weed Allergens in Children with Increased Weeds Pollen Counts in Seoul Metropolitan Area

    PubMed Central

    Kim, Joo-Hwa; Lee, Ha-Baik; Kim, Seong-Won; Kang, Im-Joo; Kook, Myung-Hee; Kim, Bong-Seong; Park, Kang-Seo; Baek, Hey-Sung; Kim, Kyu-Rang; Choi, Young-Jean

    2012-01-01

    The prevalence of allergic diseases in children has increased for several decades. We evaluated the correlation between pollen count of weeds and their sensitization rate in Seoul, 1997-2009. Airborne particles carrying allergens were collected daily from 3 stations around Seoul. Skin prick tests to pollen were performed on children with allergic diseases. Ragweed pollen gradually increased between 1999 and 2005, decreased after 2005 and plateaued until 2009 (peak counts, 67 in 2003, 145 in 2005 and 83 grains/m3/day in 2007). Japanese hop pollen increased between 2002 and 2009 (peak counts, 212 in 2006 and 492 grains/m3/day in 2009). Sensitization rates to weed pollen, especially ragweed and Japanese hop in children with allergic diseases, increased annually (ragweed, 2.2% in 2000 and 2.8% in 2002; Japanese hop, 1.4% in 2000 and 1.9% in 2002). The age for sensitization to pollen gradually became younger since 2000 (4 to 6 yr of age, 3.5% in 1997 and 6.2% in 2009; 7 to 9 yr of age, 4.2% in 1997 and 6.4% in 2009). In conclusion, sensitization rates for weed pollens increase in Korean children given increasing pollen counts of ragweed and Japanese hop. PMID:22468096

  11. Changes in sensitization rate to weed allergens in children with increased weeds pollen counts in Seoul metropolitan area.

    PubMed

    Kim, Joo-Hwa; Oh, Jae-Won; Lee, Ha-Baik; Kim, Seong-Won; Kang, Im-Joo; Kook, Myung-Hee; Kim, Bong-Seong; Park, Kang-Seo; Baek, Hey-Sung; Kim, Kyu-Rang; Choi, Young-Jean

    2012-04-01

    The prevalence of allergic diseases in children has increased for several decades. We evaluated the correlation between pollen count of weeds and their sensitization rate in Seoul, 1997-2009. Airborne particles carrying allergens were collected daily from 3 stations around Seoul. Skin prick tests to pollen were performed on children with allergic diseases. Ragweed pollen gradually increased between 1999 and 2005, decreased after 2005 and plateaued until 2009 (peak counts, 67 in 2003, 145 in 2005 and 83 grains/m(3)/day in 2007). Japanese hop pollen increased between 2002 and 2009 (peak counts, 212 in 2006 and 492 grains/m(3)/day in 2009). Sensitization rates to weed pollen, especially ragweed and Japanese hop in children with allergic diseases, increased annually (ragweed, 2.2% in 2000 and 2.8% in 2002; Japanese hop, 1.4% in 2000 and 1.9% in 2002). The age for sensitization to pollen gradually became younger since 2000 (4 to 6 yr of age, 3.5% in 1997 and 6.2% in 2009; 7 to 9 yr of age, 4.2% in 1997 and 6.4% in 2009). In conclusion, sensitization rates for weed pollens increase in Korean children given increasing pollen counts of ragweed and Japanese hop.

  12. Relationship between salivary flow rates and Candida counts in subjects with xerostomia.

    PubMed

    Torres, Sandra R; Peixoto, Camila Bernardo; Caldas, Daniele Manhães; Silva, Eline Barboza; Akiti, Tiyomi; Nucci, Márcio; de Uzeda, Milton

    2002-02-01

    This study evaluated the relationship between salivary flow and Candida colony counts in the saliva of patients with xerostomia. Sialometry and Candida colony-forming unit (CFU) counts were taken from 112 subjects who reported xerostomia in a questionnaire. Chewing-stimulated whole saliva was collected and streaked in Candida plates and counted in 72 hours. Species identification was accomplished under standard methods. There was a significant inverse relationship between salivary flow and Candida CFU counts (P =.007) when subjects with high colony counts were analyzed (cutoff point of 400 or greater CFU/mL). In addition, the median sialometry of men was significantly greater than that of women (P =.003), even after controlling for confounding variables like underlying disease and medications. Sjögren's syndrome was associated with low salivary flow rate (P =.007). There was no relationship between the median Candida CFU counts and gender or age. There was a high frequency (28%) of mixed colonization. Candida albicans was the most frequent species, followed by C parapsilosis, C tropicalis, and C krusei. In subjects with high Candida CFU counts there was an inverse relationship between salivary flow and Candida CFU counts.

  13. Specificity rates for non-clinical, bilingual, Mexican Americans on three popular performance validity measures.

    PubMed

    Gasquoine, Philip G; Weimer, Amy A; Amador, Arnoldo

    2017-04-01

    To measure specificity as failure rates for non-clinical, bilingual, Mexican Americans on three popular performance validity measures: (a) the language format Reliable Digit Span; (b) visual-perceptual format Test of Memory Malingering; and (c) visual-perceptual format Dot Counting, using optimal/suboptimal effort cut scores developed for monolingual, English-speakers. Participants were 61 consecutive referrals, aged between 18 and 65 years, with <16 years of education who were subjectively bilingual (confirmed via formal assessment) and chose the language of assessment, Spanish or English, for the performance validity tests. Failure rates were 38% for Reliable Digit Span, 3% for the Test of Memory Malingering, and 7% for Dot Counting. For Reliable Digit Span, the failure rates for Spanish (46%) and English (31%) languages of administration did not differ significantly. Optimal/suboptimal effort cut scores derived for monolingual English-speakers can be used with Spanish/English bilinguals when using the visual-perceptual format Test of Memory Malingering and Dot Counting. The high failure rate for Reliable Digit Span suggests it should not be used as a performance validity measure with Spanish/English bilinguals, irrespective of the language of test administration, Spanish or English.

  14. A Six-Year Study on the Changes in Airborne Pollen Counts and Skin Positivity Rates in Korea: 2008-2013.

    PubMed

    Park, Hye Jung; Lee, Jae-Hyun; Park, Kyung Hee; Kim, Kyu Rang; Han, Mae Ja; Choe, Hosoeng; Oh, Jae-Won; Hong, Chein-Soo

    2016-05-01

    The occurrence of pollen allergy is subject to exposure to pollen, which shows regional and temporal variations. We evaluated the changes in pollen counts and skin positivity rates for 6 years, and explored the correlation between their annual rates of change. We assessed the number of pollen grains collected in Seoul, and retrospectively reviewed the results of 4442 skin-prick tests conducted at the Severance Hospital Allergy-Asthma Clinic from January 1, 2008 to December 31, 2013. For 6 years, the mean monthly total pollen count showed two peaks, one in May and the other in September. Pollen count for grasses also showed the same trend. The pollen counts for trees, grasses, and weeds changed annually, but the changes were not significant. The annual skin positivity rates in response to pollen from grasses and weeds increased significantly over the 6 years. Among trees, the skin positivity rates in response to pollen from walnut, popular, elm, and alder significantly increased over the 6 years. Further, there was a significant correlation between the annual rate of change in pollen count and the rate of change in skin positivity rate for oak and hop Japanese. The pollen counts and skin positivity rates should be monitored, as they have changed annually. Oak and hop Japanese, which showed a significant correlation with the annual rate of change in pollen count and the rate of change in skin positivity rate over the 6 years may be considered the major allergens in Korea.

  15. Can simple mobile phone applications provide reliable counts of respiratory rates in sick infants and children? An initial evaluation of three new applications.

    PubMed

    Black, James; Gerdtz, Marie; Nicholson, Pat; Crellin, Dianne; Browning, Laura; Simpson, Julie; Bell, Lauren; Santamaria, Nick

    2015-05-01

    Respiratory rate is an important sign that is commonly either not recorded or recorded incorrectly. Mobile phone ownership is increasing even in resource-poor settings. Phone applications may improve the accuracy and ease of counting of respiratory rates. The study assessed the reliability and initial users' impressions of four mobile phone respiratory timer approaches, compared to a 60-second count by the same participants. Three mobile applications (applying four different counting approaches plus a standard 60-second count) were created using the Java Mobile Edition and tested on Nokia C1-01 phones. Apart from the 60-second timer application, the others included a counter based on the time for ten breaths, and three based on the time interval between breaths ('Once-per-Breath', in which the user presses for each breath and the application calculates the rate after 10 or 20 breaths, or after 60s). Nursing and physiotherapy students used the applications to count respiratory rates in a set of brief video recordings of children with different respiratory illnesses. Limits of agreement (compared to the same participant's standard 60-second count), intra-class correlation coefficients and standard errors of measurement were calculated to compare the reliability of the four approaches, and a usability questionnaire was completed by the participants. There was considerable variation in the counts, with large components of the variation related to the participants and the videos, as well as the methods. None of the methods was entirely reliable, with no limits of agreement better than -10 to +9 breaths/min. Some of the methods were superior to the others, with ICCs from 0.24 to 0.92. By ICC the Once-per-Breath 60-second count and the Once-per-Breath 20-breath count were the most consistent, better even than the 60-second count by the participants. The 10-breath approaches performed least well. Users' initial impressions were positive, with little difference between the

  16. Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.

    PubMed

    Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos

    2013-11-04

    In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10.

  17. Increasing money-counting skills with a student with brain injury: skill and performance deficits.

    PubMed

    Fienup, Daniel M; Mudgal, Dipti; Pace, Gary

    2013-01-01

    Two studies examined the effectiveness of interventions designed to increase money-counting skills of a student with brain injury. Both skill and performance hypotheses were examined. Single subject designs were used to evaluate interventions, including a multiple-baseline across counting paper and coin money (study 1) and a changing criterion design (study 2). In study 1, it was hypothesized that the student had a skill deficit; thus, the participant was taught organizational strategies for counting money. In study 2, a performance deficit was hypothesized and the effects of contingent rewards were evaluated. In study 1, organizational strategies increased organized counting of money, but did not affect counting accuracy. In study 2, contingent rewards increased accurate money counting. When dealing with multi-step behaviours, different components of behaviour can be controlled by different variables, such as skill and performance deficits. Effective academic interventions may need to consider both types of deficits.

  18. Statistical study of muons counts rates in differents directions, observed at the Brazilian Southern Space Observatory

    NASA Astrophysics Data System (ADS)

    Grams, Guilherme; Schuch, Nelson Jorge; Braga, Carlos Roberto; Purushottam Kane, Rajaram; Echer, Ezequiel; Ronan Coelho Stekel, Tardelli

    Cosmic ray are charged particles, at the most time protons, that reach the earth's magne-tosphere from interplanetary space with velocities greater than the solar wind. When these impinge the atmosphere, they interact with atmosphere constituents and decay into sub-particles forming an atmospheric shower. The muons are the sub-particles which normally maintain the originated direction of the primary cosmic ray. A multi-directional muon detec-tor (MMD) was installed in 2001 and upgraded in 2005, through an international cooperation between Brazil, Japan and USA, and operated since then at the Southern Space Observatory -SSO/CRS/CCR/INPE -MCT, (29,4° S, 53,8° W, 480m a.s.l.), São Martinho da Serra, RS, a Brazil. The main objetive of this work is to present a statistical analysis of the intensity of muons, with energy between 50 and 170 GeV, in differents directions, measured by the SSO's multi-directional muon detector. The analysis was performed with data from 2006 and 2007 collected by the SSO's MMD. The MMD consists of two layers of 4x7 detectors with a total observation area of 28 m2 . The counting of muons in each directional channel is made by a coincidence of pulses pair, one from a detector in the upper layer and the other from a detector in the lower layer. The SSO's MMD is equipped with 119 directional channels for muon count rate measurement and is capable of detecting muons incident with zenithal angle between 0° and 75,53° . A statistical analysis was made with the MMD muon count rate for all the di-rectional channels. The average and the standard deviation of the muon count rate in each directional component were calculated. The results show lower cont rate for the channels with larger zenith, and higher cont rate with smaller zenith, as expected from the production and propagation of muons in the atmosphere. It is also possible to identify the Stormer cone. The SSO's MMD is also a detector component of the Global Muon Detector Network (GMDN

  19. Apparatus and method for temperature correction and expanded count rate of inorganic scintillation detectors

    DOEpatents

    Ianakiev, Kiril D [Los Alamos, NM; Hsue, Sin Tao [Santa Fe, NM; Browne, Michael C [Los Alamos, NM; Audia, Jeffrey M [Abiquiu, NM

    2006-07-25

    The present invention includes an apparatus and corresponding method for temperature correction and count rate expansion of inorganic scintillation detectors. A temperature sensor is attached to an inorganic scintillation detector. The inorganic scintillation detector, due to interaction with incident radiation, creates light pulse signals. A photoreceiver processes the light pulse signals to current signals. Temperature correction circuitry that uses a fast light component signal, a slow light component signal, and the temperature signal from the temperature sensor to corrected an inorganic scintillation detector signal output and expanded the count rate.

  20. CASA-Mot technology: how results are affected by the frame rate and counting chamber.

    PubMed

    Bompart, Daznia; García-Molina, Almudena; Valverde, Anthony; Caldeira, Carina; Yániz, Jesús; Núñez de Murga, Manuel; Soler, Carles

    2018-04-04

    For over 30 years, CASA-Mot technology has been used for kinematic analysis of sperm motility in different mammalian species, but insufficient attention has been paid to the technical limitations of commercial computer-aided sperm analysis (CASA) systems. Counting chamber type and frame rate are two of the most important aspects to be taken into account. Counting chambers can be disposable or reusable, with different depths. In human semen analysis, reusable chambers with a depth of 10µm are the most frequently used, whereas for most farm animal species it is more common to use disposable chambers with a depth of 20µm . The frame rate was previously limited by the hardware, although changes in the number of images collected could lead to significant variations in some kinematic parameters, mainly in curvilinear velocity (VCL). A frame rate of 60 frames s-1 is widely considered to be the minimum necessary for satisfactory results. However, the frame rate is species specific and must be defined in each experimental condition. In conclusion, we show that the optimal combination of frame rate and counting chamber type and depth should be defined for each species and experimental condition in order to obtain reliable results.

  1. Detecting trends in raptor counts: power and type I error rates of various statistical tests

    USGS Publications Warehouse

    Hatfield, J.S.; Gould, W.R.; Hoover, B.A.; Fuller, M.R.; Lindquist, E.L.

    1996-01-01

    We conducted simulations that estimated power and type I error rates of statistical tests for detecting trends in raptor population count data collected from a single monitoring site. Results of the simulations were used to help analyze count data of bald eagles (Haliaeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin during 1980-1989. Seven statistical tests were evaluated, including simple linear regression on the log scale and linear regression with a permutation test. Using 1,000 replications each, we simulated n = 10 and n = 50 years of count data and trends ranging from -5 to 5% change/year. We evaluated the tests at 3 critical levels (alpha = 0.01, 0.05, and 0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by adding sampling error with a coefficient of variation of 40% from either a log-normal or autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of data were much more powerful than tests with 10 years of data. Positive autocorrelation inflated alpha-levels upward from their nominal levels, making the tests less conservative and more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart's test and Pollard's test clearly had lower power than the others. Surprisingly, the linear regression t-test, Collins' linear regression permutation test, and the nonparametric Lehmann's and Mann's tests all had similar power in our simulations. Analyses of the count data suggested that bald eagles had increasing trends on at least 2 of the 7 national forests during 1980-1989.

  2. Modeling the performance of a photon counting x-ray detector for CT: energy response and pulse pileup effects.

    PubMed

    Taguchi, Katsuyuki; Zhang, Mengxi; Frey, Eric C; Wang, Xiaolan; Iwanczyk, Jan S; Nygard, Einar; Hartsough, Neal E; Tsui, Benjamin M W; Barber, William C

    2011-02-01

    Recently, photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed for potential use in clinical computed tomography (CT) scanners. These PCXDs have great potential to improve the quality of CT images due to the absence of electronic noise and weights applied to the counts and the additional spectral information. With high count rates encountered in clinical CT, however, coincident photons are recorded as one event with a higher or lower energy due to the finite speed of the PCXD. This phenomenon is called a "pulse pileup event" and results in both a loss of counts (called "deadtime losses") and distortion of the recorded energy spectrum. Even though the performance of PCXDs is being improved, it is essential to develop algorithmic methods based on accurate models of the properties of detectors to compensate for these effects. To date, only one PCXD (model DXMCT-1, DxRay, Inc., Northridge, CA) has been used for clinical CT studies. The aim of that study was to evaluate the agreement between data measured by DXMCT-1 and those predicted by analytical models for the energy response, the deadtime losses, and the distorted recorded spectrum caused by pulse pileup effects. An energy calibration was performed using 99mTc (140 keV), 57Co (122 keV), and an x-ray beam obtained with four x-ray tube voltages (35, 50, 65, and 80 kVp). The DXMCT-1 was placed 150 mm from the x-ray focal spot; the count rates and the spectra were recorded at various tube current values from 10 to 500 microA for a tube voltage of 80 kVp. Using these measurements, for each pulse height comparator we estimated three parameters describing the photon energy-pulse height curve, the detector deadtime tau, a coefficient k that relates the x-ray tube current I to an incident count rate a by a = k x I, and the incident spectrum. The mean pulse shape of all comparators was acquired in a separate study and was used in the model to estimate the distorted recorded

  3. Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects

    PubMed Central

    Taguchi, Katsuyuki; Zhang, Mengxi; Frey, Eric C.; Wang, Xiaolan; Iwanczyk, Jan S.; Nygard, Einar; Hartsough, Neal E.; Tsui, Benjamin M. W.; Barber, William C.

    2011-01-01

    Purpose: Recently, photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed for potential use in clinical computed tomography (CT) scanners. These PCXDs have great potential to improve the quality of CT images due to the absence of electronic noise and weights applied to the counts and the additional spectral information. With high count rates encountered in clinical CT, however, coincident photons are recorded as one event with a higher or lower energy due to the finite speed of the PCXD. This phenomenon is called a “pulse pileup event” and results in both a loss of counts (called “deadtime losses”) and distortion of the recorded energy spectrum. Even though the performance of PCXDs is being improved, it is essential to develop algorithmic methods based on accurate models of the properties of detectors to compensate for these effects. To date, only one PCXD (model DXMCT-1, DxRay, Inc., Northridge, CA) has been used for clinical CT studies. The aim of that study was to evaluate the agreement between data measured by DXMCT-1 and those predicted by analytical models for the energy response, the deadtime losses, and the distorted recorded spectrum caused by pulse pileup effects. Methods: An energy calibration was performed using 99mTc (140 keV), 57Co (122 keV), and an x-ray beam obtained with four x-ray tube voltages (35, 50, 65, and 80 kVp). The DXMCT-1 was placed 150 mm from the x-ray focal spot; the count rates and the spectra were recorded at various tube current values from 10 to 500 μA for a tube voltage of 80 kVp. Using these measurements, for each pulse height comparator we estimated three parameters describing the photon energy-pulse height curve, the detector deadtime τ, a coefficient k that relates the x-ray tube current I to an incident count rate a by a=k×I, and the incident spectrum. The mean pulse shape of all comparators was acquired in a separate study and was used in the model to estimate the

  4. Anti-aliasing techniques in photon-counting depth imaging using GHz clock rates

    NASA Astrophysics Data System (ADS)

    Krichel, Nils J.; McCarthy, Aongus; Collins, Robert J.; Buller, Gerald S.

    2010-04-01

    Single-photon detection technologies in conjunction with low laser illumination powers allow for the eye-safe acquisition of time-of-flight range information on non-cooperative target surfaces. We previously presented a photon-counting depth imaging system designed for the rapid acquisition of three-dimensional target models by steering a single scanning pixel across the field angle of interest. To minimise the per-pixel dwelling times required to obtain sufficient photon statistics for accurate distance resolution, periodic illumination at multi- MHz repetition rates was applied. Modern time-correlated single-photon counting (TCSPC) hardware allowed for depth measurements with sub-mm precision. Resolving the absolute target range with a fast periodic signal is only possible at sufficiently short distances: if the round-trip time towards an object is extended beyond the timespan between two trigger pulses, the return signal cannot be assigned to an unambiguous range value. Whereas constructing a precise depth image based on relative results may still be possible, problems emerge for large or unknown pixel-by-pixel separations or in applications with a wide range of possible scene distances. We introduce a technique to avoid range ambiguity effects in time-of-flight depth imaging systems at high average pulse rates. A long pseudo-random bitstream is used to trigger the illuminating laser. A cyclic, fast-Fourier supported analysis algorithm is used to search for the pattern within return photon events. We demonstrate this approach at base clock rates of up to 2 GHz with varying pattern lengths, allowing for unambiguous distances of several kilometers. Scans at long stand-off distances and of scenes with large pixel-to-pixel range differences are presented. Numerical simulations are performed to investigate the relative merits of the technique.

  5. A Six-Year Study on the Changes in Airborne Pollen Counts and Skin Positivity Rates in Korea: 2008–2013

    PubMed Central

    Park, Hye Jung; Lee, Jae-Hyun; Park, Kyung Hee; Kim, Kyu Rang; Han, Mae Ja; Choe, Hosoeng

    2016-01-01

    Purpose The occurrence of pollen allergy is subject to exposure to pollen, which shows regional and temporal variations. We evaluated the changes in pollen counts and skin positivity rates for 6 years, and explored the correlation between their annual rates of change. Materials and Methods We assessed the number of pollen grains collected in Seoul, and retrospectively reviewed the results of 4442 skin-prick tests conducted at the Severance Hospital Allergy-Asthma Clinic from January 1, 2008 to December 31, 2013. Results For 6 years, the mean monthly total pollen count showed two peaks, one in May and the other in September. Pollen count for grasses also showed the same trend. The pollen counts for trees, grasses, and weeds changed annually, but the changes were not significant. The annual skin positivity rates in response to pollen from grasses and weeds increased significantly over the 6 years. Among trees, the skin positivity rates in response to pollen from walnut, popular, elm, and alder significantly increased over the 6 years. Further, there was a significant correlation between the annual rate of change in pollen count and the rate of change in skin positivity rate for oak and hop Japanese. Conclusion The pollen counts and skin positivity rates should be monitored, as they have changed annually. Oak and hop Japanese, which showed a significant correlation with the annual rate of change in pollen count and the rate of change in skin positivity rate over the 6 years may be considered the major allergens in Korea. PMID:26996572

  6. A compact 7-cell Si-drift detector module for high-count rate X-ray spectroscopy.

    PubMed

    Hansen, K; Reckleben, C; Diehl, I; Klär, H

    2008-05-01

    A new Si-drift detector module for fast X-ray spectroscopy experiments was developed and realized. The Peltier-cooled module comprises a sensor with 7 × 7-mm 2 active area, an integrated circuit for amplification, shaping and detection, storage, and derandomized readout of signal pulses in parallel, and amplifiers for line driving. The compactness and hexagonal shape of the module with a wrench size of 16mm allow very short distances to the specimen and multi-module arrangements. The power dissipation is 186mW. At a shaper peaking time of 190 ns and an integration time of 450 ns an electronic rms noise of ~11 electrons was achieved. When operated at 7 °C, FWHM line widths around 260 and 460 eV (Cu-K α ) were obtained at low rates and at sum-count rates of 1.7 MHz, respectively. The peak shift is below 1% for a broad range of count rates. At 1.7-MHz sum-count rate the throughput loss amounts to 30%.

  7. Illinois Quality Counts: QRS Profile. The Child Care Quality Rating System (QRS) Assessment

    ERIC Educational Resources Information Center

    Child Trends, 2010

    2010-01-01

    This paper presents a profile of Illinois' Quality Counts prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators for Family…

  8. NEMA count-rate evaluation of the first and second generation of the Ecat Exact and Ecat Exact HR family of scanners

    NASA Astrophysics Data System (ADS)

    Eriksson, L.; Wienhard, K.; Eriksson, M.; Casey, M. E.; Knoess, C.; Bruckbauer, T.; Hamill, J.; Mulnix, T.; Vollmar, S.; Bendriem, B.; Heiss, W. D.; Nutt, R.

    2002-06-01

    The first and second generation of the Exact and Exact HR family of scanners has been evaluated in terms of noise equivalent count rate (NEC) and count-rate capabilities. The new National Electrical Manufacturers Association standard was used for the evaluation. In spite of improved electronics and improved count-rate capabilities, the peak NEC was found to be fairly constant between the generations. The results are discussed in terms of the different electronic solutions for the two generations and its implications on system dead time and NEC count-rate capability.

  9. High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafari Salim, A., E-mail: ajafaris@uwaterloo.ca; Eftekharian, A.; University of Waterloo, Waterloo, Ontario N2L 3G1

    In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potentialmore » barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.« less

  10. Development of a high-performance multichannel system for time-correlated single photon counting

    NASA Astrophysics Data System (ADS)

    Peronio, P.; Cominelli, A.; Acconcia, G.; Rech, I.; Ghioni, M.

    2017-05-01

    Time-Correlated Single Photon Counting (TCSPC) is one of the most effective techniques for measuring weak and fast optical signals. It outperforms traditional "analog" techniques due to its high sensitivity along with high temporal resolution. Despite those significant advantages, a main drawback still exists, which is related to the long acquisition time needed to perform a measurement. In past years many TCSPC systems have been developed with higher and higher number of channels, aimed to dealing with that limitation. Nevertheless, modern systems suffer from a strong trade-off between parallelism level and performance: the higher the number of channels the poorer the performance. In this work we present the design of a 32x32 TCSPC system meant for overtaking the existing trade-off. To this aim different technologies has been employed, to get the best performance both from detectors and sensing circuits. The exploitation of different technologies will be enabled by Through Silicon Vias (TSVs) which will be investigated as a possible solution for connecting the detectors to the sensing circuits. When dealing with a high number of channels, the count rate is inevitably set by the affordable throughput to the external PC. We targeted a throughput of 10Gb/s, which is beyond the state of the art, and designed the number of TCSPC channels accordingly. A dynamic-routing logic will connect the detectors to the lower number of acquisition chains.

  11. Transforming GSC-II Magnitudes into JWST/FGS Count Rates

    NASA Astrophysics Data System (ADS)

    Holfeltz, Sherie T.; Chayer, P.; Nelan, E. P.

    2010-01-01

    The JWST Fine Guidance Sensor (FGS) will provide the positions of guide stars to the spacecraft attitude control system to facilitate the fine pointing of the Observatory. The FGS is an infrared camera operating in an unfiltered passband from 0.6 to 5.3 microns. The ground system will select guide stars from the Guide Star Catalog II (GSC-II), which is an all-sky catalog with three optical passbands (BJ, RF, IN) derived from photographic plates, and from 2MASS. We present a method for predicting a guide star's FGS photon count rate, which is needed to operate the FGS. The method consists of first deriving equations for transforming the GSC-II optical passbands into J, H, and K for stars that are below the 2MASS faint limiting magnitude, based upon fitting the distribution of brighter stars in color-color diagrams using GSC-II and 2MASS photometry. Next, we convolve the BJ, RF, IN and predicted J, H, and K magnitudes (or 2MASS magnitudes if available) for a given star with the wavelength dependent throughput and sensitivity of the telescope and FGS. To estimate the accuracy of this method for stars that are too faint for 2MASS, we compare the predicted J, H, and K magnitudes for a large sample of stars to data from the United Kingdom Infrared Telescope (UKIRT) Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Using synthetic magnitudes computed from Kurucz models for stars of different spectral types, we show that the method should provide reliable FGS count rates.

  12. Dynamic time-correlated single-photon counting laser ranging

    NASA Astrophysics Data System (ADS)

    Peng, Huan; Wang, Yu-rong; Meng, Wen-dong; Yan, Pei-qin; Li, Zhao-hui; Li, Chen; Pan, Hai-feng; Wu, Guang

    2018-03-01

    We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector (SPD). The multi-channel SPD improve the counting rate more than 4×107 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting (TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×107 cps.

  13. Effective count rates for PET scanners with reduced and extended axial field of view

    NASA Astrophysics Data System (ADS)

    MacDonald, L. R.; Harrison, R. L.; Alessio, A. M.; Hunter, W. C. J.; Lewellen, T. K.; Kinahan, P. E.

    2011-06-01

    We investigated the relationship between noise equivalent count (NEC) and axial field of view (AFOV) for PET scanners with AFOVs ranging from one-half to twice those of current clinical scanners. PET scanners with longer or shorter AFOVs could fulfill different clinical needs depending on exam volumes and site economics. Using previously validated Monte Carlo simulations, we modeled true, scattered and random coincidence counting rates for a PET ring diameter of 88 cm with 2, 4, 6, and 8 rings of detector blocks (AFOV 7.8, 15.5, 23.3, and 31.0 cm). Fully 3D acquisition mode was compared to full collimation (2D) and partial collimation (2.5D) modes. Counting rates were estimated for a 200 cm long version of the 20 cm diameter NEMA count-rate phantom and for an anthropomorphic object based on a patient scan. We estimated the live-time characteristics of the scanner from measured count-rate data and applied that estimate to the simulated results to obtain NEC as a function of object activity. We found NEC increased as a quadratic function of AFOV for 3D mode, and linearly in 2D mode. Partial collimation provided the highest overall NEC on the 2-block system and fully 3D mode provided the highest NEC on the 8-block system for clinically relevant activities. On the 4-, and 6-block systems 3D mode NEC was highest up to ~300 MBq in the anthropomorphic phantom, above which 3D NEC dropped rapidly, and 2.5D NEC was highest. Projected total scan time to achieve NEC-density that matches current clinical practice in a typical oncology exam averaged 9, 15, 24, and 61 min for the 8-, 6-, 4-, and 2-block ring systems, when using optimal collimation. Increasing the AFOV should provide a greater than proportional increase in NEC, potentially benefiting patient throughput-to-cost ratio. Conversely, by using appropriate collimation, a two-ring (7.8 cm AFOV) system could acquire whole-body scans achieving NEC-density levels comparable to current standards within long, but feasible

  14. Palm Beach Quality Counts: QRS Profile. The Child Care Quality Rating System (QRS) Assessment

    ERIC Educational Resources Information Center

    Child Trends, 2010

    2010-01-01

    This paper presents a profile of Palm Beach's Quality Counts prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators for…

  15. Miami-Dade Quality Counts: QRS Profile. The Child Care Quality Rating System (QRS) Assessment

    ERIC Educational Resources Information Center

    Child Trends, 2010

    2010-01-01

    This paper presents a profile of Miami-Dade's Quality Counts prepared as part of the Child Care Quality Rating System (QRS) Assessment Study. The profile consists of several sections and their corresponding descriptions including: (1) Program Information; (2) Rating Details; (3) Quality Indicators for Center-Based Programs; (4) Indicators for…

  16. Hydrophilic-treated plastic plates for wide-range analysis of Giemsa-stained red blood cells and automated Plasmodium infection rate counting.

    PubMed

    Hashimoto, Muneaki; Yatsushiro, Shouki; Yamamura, Shohei; Tanaka, Masato; Sakamoto, Hirokazu; Ido, Yusuke; Kajimoto, Kazuaki; Bando, Mika; Kido, Jun-Ichi; Kataoka, Masatoshi

    2017-08-08

    Malaria is a red blood cell (RBC) infection caused by Plasmodium parasites. To determine RBC infection rate, which is essential for malaria study and diagnosis, microscopic evaluation of Giemsa-stained thin blood smears on glass slides ('Giemsa microscopy') has been performed as the accepted gold standard for over 100 years. However, only a small area of the blood smear provides a monolayer of RBCs suitable for determination of infection rate, which is one of the major reasons for the low parasite detection rate by Giemsa microscopy. In addition, because Giemsa microscopy is exacting and time-consuming, automated counting of infection rates is highly desirable. A method that allows for microscopic examination of Giemsa-stained cells spread in a monolayer on almost the whole surface of hydrophilic-treated cyclic olefin copolymer (COC) plates was established. Because wide-range Giemsa microscopy can be performed on a hydrophilic-treated plate, the method may enable more reliable diagnosis of malaria in patients with low parasitaemia burden. Furthermore, the number of RBCs and parasites stained with a fluorescent nuclear staining dye could be counted automatically with a software tool, without Giemsa staining. As a result, researchers studying malaria may calculate the infection rate easily, rapidly, and accurately even in low parasitaemia. Because the running cost of these methods is very low and they do not involve complicated techniques, the use of hydrophilic COC plates may contribute to improved and more accurate diagnosis and research of malaria.

  17. Linear-log counting-rate meter uses transconductance characteristics of a silicon planar transistor

    NASA Technical Reports Server (NTRS)

    Eichholz, J. J.

    1969-01-01

    Counting rate meter compresses a wide range of data values, or decades of current. Silicon planar transistor, operating in the zero collector-base voltage mode, is used as a feedback element in an operational amplifier to obtain the log response.

  18. In Orbit Performance of Si Avalanche Photodiode Single Photon Counting Modules in the Geoscience Laser Altimeter System on ICESat

    NASA Technical Reports Server (NTRS)

    Sun, X.; Jester, P. L.; Palm, S. P.; Abshire, J. B.; Spinhime, J. D.; Krainak, M. A.

    2006-01-01

    Si avalanche photodiode (APD) single photon counting modules (SPCMs) are used in the Geoscience Laser Altimeter System (GLAS) on Ice, Cloud, anti land Elevation Satellite (ICESat), currently in orbit measuring Earth surface elevation and atmosphere backscattering. These SPCMs are used to measure cloud and aerosol backscatterings to the GLAS laser light at 532-nm wavelength with 60-70% quantum efficiencies and up to 15 millions/s maximum count rates. The performance of the SPCMs has been closely monitored since ICESat launch on January 12, 2003. There has been no measurable change in the quantum efficiency, as indicated by the average photon count rates in response to the background light from the sunlit earth. The linearity and the afterpulsing seen from the cloud and surface backscatterings profiles have been the same as those during ground testing. The detector dark count rates monitored while the spacecraft was in the dark side of the globe have increased almost linearly at about 60 counts/s per day due to space radiation damage. The radiation damage appeared to be independent of the device temperature and power states. There was also an abrupt increase in radiation damage during the solar storm in 28-30 October 2003. The observed radiation damage is a factor of two to three lower than the expected and sufficiently low to provide useful atmosphere backscattering measurements through the end of the ICESat mission. To date, these SPCMs have been in orbit for more than three years. The accumulated operating time to date has reached 290 days (7000 hours). These SPCMs have provided unprecedented receiver sensitivity and dynamic range in ICESat atmosphere backscattering measurements.

  19. Measures of clustering and heterogeneity in multilevel Poisson regression analyses of rates/count data

    PubMed Central

    Austin, Peter C.; Stryhn, Henrik; Leckie, George; Merlo, Juan

    2017-01-01

    Multilevel data occur frequently in many research areas like health services research and epidemiology. A suitable way to analyze such data is through the use of multilevel regression models. These models incorporate cluster‐specific random effects that allow one to partition the total variation in the outcome into between‐cluster variation and between‐individual variation. The magnitude of the effect of clustering provides a measure of the general contextual effect. When outcomes are binary or time‐to‐event in nature, the general contextual effect can be quantified by measures of heterogeneity like the median odds ratio or the median hazard ratio, respectively, which can be calculated from a multilevel regression model. Outcomes that are integer counts denoting the number of times that an event occurred are common in epidemiological and medical research. The median (incidence) rate ratio in multilevel Poisson regression for counts that corresponds to the median odds ratio or median hazard ratio for binary or time‐to‐event outcomes respectively is relatively unknown and is rarely used. The median rate ratio is the median relative change in the rate of the occurrence of the event when comparing identical subjects from 2 randomly selected different clusters that are ordered by rate. We also describe how the variance partition coefficient, which denotes the proportion of the variation in the outcome that is attributable to between‐cluster differences, can be computed with count outcomes. We illustrate the application and interpretation of these measures in a case study analyzing the rate of hospital readmission in patients discharged from hospital with a diagnosis of heart failure. PMID:29114926

  20. Simulation of Rate-Related (Dead-Time) Losses In Passive Neutron Multiplicity Counting Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, L.G.; Norman, P.I.; Leadbeater, T.W.

    Passive Neutron Multiplicity Counting (PNMC) based on Multiplicity Shift Register (MSR) electronics (a form of time correlation analysis) is a widely used non-destructive assay technique for quantifying spontaneously fissile materials such as Pu. At high event rates, dead-time losses perturb the count rates with the Singles, Doubles and Triples being increasingly affected. Without correction these perturbations are a major source of inaccuracy in the measured count rates and assay values derived from them. This paper presents the simulation of dead-time losses and investigates the effect of applying different dead-time models on the observed MSR data. Monte Carlo methods have beenmore » used to simulate neutron pulse trains for a variety of source intensities and with ideal detection geometry, providing an event by event record of the time distribution of neutron captures within the detection system. The action of the MSR electronics was modelled in software to analyse these pulse trains. Stored pulse trains were perturbed in software to apply the effects of dead-time according to the chosen physical process; for example, the ideal paralysable (extending) and non-paralysable models with an arbitrary dead-time parameter. Results of the simulations demonstrate the change in the observed MSR data when the system dead-time parameter is varied. In addition, the paralysable and non-paralysable models of deadtime are compared. These results form part of a larger study to evaluate existing dead-time corrections and to extend their application to correlated sources. (authors)« less

  1. Fluorescence decay data analysis correcting for detector pulse pile-up at very high count rates

    NASA Astrophysics Data System (ADS)

    Patting, Matthias; Reisch, Paja; Sackrow, Marcus; Dowler, Rhys; Koenig, Marcelle; Wahl, Michael

    2018-03-01

    Using time-correlated single photon counting for the purpose of fluorescence lifetime measurements is usually limited in speed due to pile-up. With modern instrumentation, this limitation can be lifted significantly, but some artifacts due to frequent merging of closely spaced detector pulses (detector pulse pile-up) remain an issue to be addressed. We propose a data analysis method correcting for this type of artifact and the resulting systematic errors. It physically models the photon losses due to detector pulse pile-up and incorporates the loss in the decay fit model employed to obtain fluorescence lifetimes and relative amplitudes of the decay components. Comparison of results with and without this correction shows a significant reduction of systematic errors at count rates approaching the excitation rate. This allows quantitatively accurate fluorescence lifetime imaging at very high frame rates.

  2. Field Assessment of Enclosed Cab Filtration System Performance Using Particle Counting Measurements

    PubMed Central

    Organiscak, John A.; Cecala, Andrew B.; Noll, James D.

    2015-01-01

    Enclosed cab filtration systems are typically used on mobile mining equipment to reduce miners’ exposure to airborne dust generated during mining operations. The National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) has recently worked with a mining equipment manufacturer to examine a new cab filtration system design for underground industrial minerals equipment. This cab filtration system uses a combination of three particulate filters to reduce equipment operators’ exposure to dust and diesel particulates present in underground industrial mineral mines. NIOSH initially examined this cab filtration system using a two-instrument particle counting method at the equipment company’s manufacturing shop facility to assess several alternative filters. This cab filtration system design was further studied on several pieces of equipment during a two- to seven-month period at two underground limestone mines. The two-instrument particle counting method was used outside the underground mine at the end of the production shifts to regularly test the cabs’ long-term protection factor performance with particulates present in the ambient air. This particle counting method showed that three of the four cabs achieved protection factors greater than 1,000 during the field studies. The fourth cab did not perform at this level because it had a damaged filter in the system. The particle counting measurements of submicron particles present in the ambient air were shown to be a timely and useful quantification method in assessing cab performance during these field studies. PMID:23915268

  3. Performance Evaluation of High Fluorescence Lymphocyte Count: Comparability to Atypical Lymphocyte Count and Clinical Significance.

    PubMed

    Tantanate, Chaicharoen; Klinbua, Cherdsak

    2018-06-15

    To investigate the association between high-fluorescence lymphocyte cell (HFLC) and atypical lymphocyte (AL) counts, and to determine the clinical significance of HFLC. We compared automated HFLC and microscopic AL counts and analyzed the findings. Patient clinical data for each specimen were reviewed. A total of 320 blood specimens were included. The correlation between HFLC and microscopic AL counts was 0.865 and 0.893 for absolute and percentage counts, respectively. Sensitivity, specificity, and accuracy of HFLC at the cutoff value of 0.1 × 109 per L for detection of AL were 0.8, 0.77, and 0.8, respectively. Studied patients were classified into 4 groups: infection, immunological disorders, malignant neoplasms, and others. Patients with infections had the highest HFLC. Most of those patients (67.7%) had dengue infection. HFLC counts were well-correlated with AL counts with the acceptable test characteristics. Applying HFLC flagging may alert laboratory staff to be aware of ALs.

  4. Comparisons of monthly mean cosmic ray counting rates observes from worldwide network of neutron monitors

    NASA Technical Reports Server (NTRS)

    Ryu, J. Y.; Wada, M.

    1985-01-01

    In order to examine the stability of neutron monitor observation, each of the monthly average counting rates of a neutron monitors is correlated to those of Kiel neutron monitor. The regression coefficients thus obtained are compared with the coupling coefficients of isotropic intensity radiation. The results of the comparisons for five year periods during 1963 to 1982, and for whole period are given. The variation spectrum with a single power law with an exponent of -0.75 up to 50 GV is not so unsatisfactory one. More than one half of the stations show correlations with the coefficient greater than 0.9. Some stations have shifted the level of mean counting rates by changing the instrumental characteristics which can be adjusted.

  5. Material screening with HPGe counting station for PandaX experiment

    NASA Astrophysics Data System (ADS)

    Wang, X.; Chen, X.; Fu, C.; Ji, X.; Liu, X.; Mao, Y.; Wang, H.; Wang, S.; Xie, P.; Zhang, T.

    2016-12-01

    A gamma counting station based on high-purity germanium (HPGe) detector was set up for the material screening of the PandaX dark matter experiments in the China Jinping Underground Laboratory. Low background gamma rate of 2.6 counts/min within the energy range of 20 to 2700 keV is achieved due to the well-designed passive shield. The sentivities of the HPGe detetector reach mBq/kg level for isotopes like K, U, Th, and even better for Co and Cs, resulted from the low-background rate and the high relative detection efficiency of 175%. The structure and performance of the counting station are described in this article. Detailed counting results for the radioactivity in materials used by the PandaX dark-matter experiment are presented. The upgrading plan of the counting station is also discussed.

  6. Aging and Visual Counting

    PubMed Central

    Li, Roger W.; MacKeben, Manfred; Chat, Sandy W.; Kumar, Maya; Ngo, Charlie; Levi, Dennis M.

    2010-01-01

    Background Much previous work on how normal aging affects visual enumeration has been focused on the response time required to enumerate, with unlimited stimulus duration. There is a fundamental question, not yet addressed, of how many visual items the aging visual system can enumerate in a “single glance”, without the confounding influence of eye movements. Methodology/Principal Findings We recruited 104 observers with normal vision across the age span (age 21–85). They were briefly (200 ms) presented with a number of well- separated black dots against a gray background on a monitor screen, and were asked to judge the number of dots. By limiting the stimulus presentation time, we can determine the maximum number of visual items an observer can correctly enumerate at a criterion level of performance (counting threshold, defined as the number of visual items at which ≈63% correct rate on a psychometric curve), without confounding by eye movements. Our findings reveal a 30% decrease in the mean counting threshold of the oldest group (age 61–85: ∼5 dots) when compared with the youngest groups (age 21–40: 7 dots). Surprisingly, despite decreased counting threshold, on average counting accuracy function (defined as the mean number of dots reported for each number tested) is largely unaffected by age, reflecting that the threshold loss can be primarily attributed to increased random errors. We further expanded this interesting finding to show that both young and old adults tend to over-count small numbers, but older observers over-count more. Conclusion/Significance Here we show that age reduces the ability to correctly enumerate in a glance, but the accuracy (veridicality), on average, remains unchanged with advancing age. Control experiments indicate that the degraded performance cannot be explained by optical, retinal or other perceptual factors, but is cortical in origin. PMID:20976149

  7. High Resolution Gamma Ray Spectroscopy at MHz Counting Rates With LaBr3 Scintillators for Fusion Plasma Applications

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.

    2013-04-01

    High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.

  8. Pile-up correction algorithm based on successive integration for high count rate medical imaging and radiation spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-07-01

    In high count rate radiation spectroscopy and imaging, detector output pulses tend to pile up due to high interaction rate of the particles with the detector. Pile-up effects can lead to a severe distortion of the energy and timing information. Pile-up events are conventionally prevented or rejected by both analog and digital electronics. However, for decreasing the exposure times in medical imaging applications, it is important to maintain the pulses and extract their true information by pile-up correction methods. The single-event reconstruction method is a relatively new model-based approach for recovering the pulses one-by-one using a fitting procedure, for which a fast fitting algorithm is a prerequisite. This article proposes a fast non-iterative algorithm based on successive integration which fits the bi-exponential model to experimental data. After optimizing the method, the energy spectra, energy resolution and peak-to-peak count ratios are calculated for different counting rates using the proposed algorithm as well as the rejection method for comparison. The obtained results prove the effectiveness of the proposed method as a pile-up processing scheme designed for spectroscopic and medical radiation detection applications.

  9. Automated cell counts on CSF samples: A multicenter performance evaluation of the GloCyte system.

    PubMed

    Hod, E A; Brugnara, C; Pilichowska, M; Sandhaus, L M; Luu, H S; Forest, S K; Netterwald, J C; Reynafarje, G M; Kratz, A

    2018-02-01

    Automated cell counters have replaced manual enumeration of cells in blood and most body fluids. However, due to the unreliability of automated methods at very low cell counts, most laboratories continue to perform labor-intensive manual counts on many or all cerebrospinal fluid (CSF) samples. This multicenter clinical trial investigated if the GloCyte System (Advanced Instruments, Norwood, MA), a recently FDA-approved automated cell counter, which concentrates and enumerates red blood cells (RBCs) and total nucleated cells (TNCs), is sufficiently accurate and precise at very low cell counts to replace all manual CSF counts. The GloCyte System concentrates CSF and stains RBCs with fluorochrome-labeled antibodies and TNCs with nucleic acid dyes. RBCs and TNCs are then counted by digital image analysis. Residual adult and pediatric CSF samples obtained for clinical analysis at five different medical centers were used for the study. Cell counts were performed by the manual hemocytometer method and with the GloCyte System following the same protocol at all sites. The limits of the blank, detection, and quantitation, as well as precision and accuracy of the GloCyte, were determined. The GloCyte detected as few as 1 TNC/μL and 1 RBC/μL, and reliably counted as low as 3 TNCs/μL and 2 RBCs/μL. The total coefficient of variation was less than 20%. Comparison with cell counts obtained with a hemocytometer showed good correlation (>97%) between the GloCyte and the hemocytometer, including at very low cell counts. The GloCyte instrument is a precise, accurate, and stable system to obtain red cell and nucleated cell counts in CSF samples. It allows for the automated enumeration of even very low cell numbers, which is crucial for CSF analysis. These results suggest that GloCyte is an acceptable alternative to the manual method for all CSF samples, including those with normal cell counts. © 2017 John Wiley & Sons Ltd.

  10. A relationship between salivary flow rates and Candida counts in patients with xerostomia.

    PubMed

    Nadig, Suchetha Devendrappa; Ashwathappa, Deepak Timmasandra; Manjunath, Muniraju; Krishna, Sowmya; Annaji, Araleri Gopalkrishna; Shivaprakash, Praveen Kunigal

    2017-01-01

    Most of the adult population is colonized by Candida in their oral cavity. The process of colonization depends on several factors, including the interaction between Candida and salivary proteins. Therefore, salivary gland hypofunction may alter the oral microbiota and increase the risk for opportunistic infections, such as candidiasis. Hence, it is necessary to evaluate the relationship between salivary flow rates (SFRs) and Candida colony counts in the saliva of patients with xerostomia. This study aims to determine and evaluate the relationship between SFRs and Candida colony forming units (CFUs) in patients with xerostomia. This study was a descriptive study. The study participants were taken from the patients attending outpatient department in a private dental college. Fifty patients, who reported xerostomia in a questionnaire of the symptoms of xerostomia, were selected. Chewing stimulated whole saliva samples were collected from them and their SFRs were assessed. Saliva samples were inoculated in the Sabouraud dextrose agar culture media for 24-48 h, and Candida CFUs were counted. Chi-squared test was used to analyze the data. There was a significant inverse relationship between salivary flow and candida CFUs count when patients with high colony counts were analyzed (cutoff point of 400 or greater CFU/mL). Females had less SFR than males. Most of the patients who had hyposalivation were taking medication for the underlying systemic diseases. Candida albicans was the most frequent species. There was a significantly negative correlation between SFRs and Candida CFUs in the patients with xerostomia.

  11. Real Time Coincidence Detection Engine for High Count Rate Timestamp Based PET

    NASA Astrophysics Data System (ADS)

    Tetrault, M.-A.; Oliver, J. F.; Bergeron, M.; Lecomte, R.; Fontaine, R.

    2010-02-01

    Coincidence engines follow two main implementation flows: timestamp based systems and AND-gate based systems. The latter have been more widespread in recent years because of its lower cost and high efficiency. However, they are highly dependent on the selected electronic components, they have limited flexibility once assembled and they are customized to fit a specific scanner's geometry. Timestamp based systems are gathering more attention lately, especially with high channel count fully digital systems. These new systems must however cope with important singles count rates. One option is to record every detected event and postpone coincidence detection offline. For daily use systems, a real time engine is preferable because it dramatically reduces data volume and hence image preprocessing time and raw data management. This paper presents the timestamp based coincidence engine for the LabPET¿, a small animal PET scanner with up to 4608 individual readout avalanche photodiode channels. The engine can handle up to 100 million single events per second and has extensive flexibility because it resides in programmable logic devices. It can be adapted for any detector geometry or channel count, can be ported to newer, faster programmable devices and can have extra modules added to take advantage of scanner-specific features. Finally, the user can select between full processing mode for imaging protocols and minimum processing mode to study different approaches for coincidence detection with offline software.

  12. Performance of In-Pixel Circuits for Photon Counting Arrays (PCAs) Based on Polycrystalline Silicon TFTs

    PubMed Central

    Liang, Albert K.; Koniczek, Martin; Antonuk, Larry E.; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A.; Lu, Jeng Ping

    2017-01-01

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si) — a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance — information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% FWHM at 70 keV; and the digital components should work well even in the presence of significant TFT variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm. PMID:26878107

  13. Performance of in-pixel circuits for photon counting arrays (PCAs) based on polycrystalline silicon TFTs.

    PubMed

    Liang, Albert K; Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua; Street, Robert A; Lu, Jeng Ping

    2016-03-07

    Photon counting arrays (PCAs), defined as pixelated imagers which measure the absorbed energy of x-ray photons individually and record this information digitally, are of increasing clinical interest. A number of PCA prototypes with a 1 mm pixel-to-pixel pitch have recently been fabricated with polycrystalline silicon (poly-Si)-a thin-film technology capable of creating monolithic imagers of a size commensurate with human anatomy. In this study, analog and digital simulation frameworks were developed to provide insight into the influence of individual poly-Si transistors on pixel circuit performance-information that is not readily available through empirical means. The simulation frameworks were used to characterize the circuit designs employed in the prototypes. The analog framework, which determines the noise produced by individual transistors, was used to estimate energy resolution, as well as to identify which transistors contribute the most noise. The digital framework, which analyzes how well circuits function in the presence of significant variations in transistor properties, was used to estimate how fast a circuit can produce an output (referred to as output count rate). In addition, an algorithm was developed and used to estimate the minimum pixel pitch that could be achieved for the pixel circuits of the current prototypes. The simulation frameworks predict that the analog component of the PCA prototypes could have energy resolution as low as 8.9% full width at half maximum (FWHM) at 70 keV; and the digital components should work well even in the presence of significant thin-film transistor (TFT) variations, with the fastest component having output count rates as high as 3 MHz. Finally, based on conceivable improvements in the underlying fabrication process, the algorithm predicts that the 1 mm pitch of the current PCA prototypes could be reduced significantly, potentially to between ~240 and 290 μm.

  14. Investigation of FPGA-Based Real-Time Adaptive Digital Pulse Shaping for High-Count-Rate Applications

    NASA Astrophysics Data System (ADS)

    Saxena, Shefali; Hawari, Ayman I.

    2017-07-01

    Digital signal processing techniques have been widely used in radiation spectrometry to provide improved stability and performance with compact physical size over the traditional analog signal processing. In this paper, field-programmable gate array (FPGA)-based adaptive digital pulse shaping techniques are investigated for real-time signal processing. National Instruments (NI) NI 5761 14-bit, 250-MS/s adaptor module is used for digitizing high-purity germanium (HPGe) detector's preamplifier pulses. Digital pulse processing algorithms are implemented on the NI PXIe-7975R reconfigurable FPGA (Kintex-7) using the LabVIEW FPGA module. Based on the time separation between successive input pulses, the adaptive shaping algorithm selects the optimum shaping parameters (rise time and flattop time of trapezoid-shaping filter) for each incoming signal. A digital Sallen-Key low-pass filter is implemented to enhance signal-to-noise ratio and reduce baseline drifting in trapezoid shaping. A recursive trapezoid-shaping filter algorithm is employed for pole-zero compensation of exponentially decayed (with two-decay constants) preamplifier pulses of an HPGe detector. It allows extraction of pulse height information at the beginning of each pulse, thereby reducing the pulse pileup and increasing throughput. The algorithms for RC-CR2 timing filter, baseline restoration, pile-up rejection, and pulse height determination are digitally implemented for radiation spectroscopy. Traditionally, at high-count-rate conditions, a shorter shaping time is preferred to achieve high throughput, which deteriorates energy resolution. In this paper, experimental results are presented for varying count-rate and pulse shaping conditions. Using adaptive shaping, increased throughput is accepted while preserving the energy resolution observed using the longer shaping times.

  15. A relationship between salivary flow rates and Candida counts in patients with xerostomia

    PubMed Central

    Nadig, Suchetha Devendrappa; Ashwathappa, Deepak Timmasandra; Manjunath, Muniraju; Krishna, Sowmya; Annaji, Araleri Gopalkrishna; Shivaprakash, Praveen Kunigal

    2017-01-01

    Context: Most of the adult population is colonized by Candida in their oral cavity. The process of colonization depends on several factors, including the interaction between Candida and salivary proteins. Therefore, salivary gland hypofunction may alter the oral microbiota and increase the risk for opportunistic infections, such as candidiasis. Hence, it is necessary to evaluate the relationship between salivary flow rates (SFRs) and Candida colony counts in the saliva of patients with xerostomia. Aims: This study aims to determine and evaluate the relationship between SFRs and Candida colony forming units (CFUs) in patients with xerostomia. Settings and Design: This study was a descriptive study. Subjects and Methods: The study participants were taken from the patients attending outpatient department in a private dental college. Fifty patients, who reported xerostomia in a questionnaire of the symptoms of xerostomia, were selected. Chewing stimulated whole saliva samples were collected from them and their SFRs were assessed. Saliva samples were inoculated in the Sabouraud dextrose agar culture media for 24–48 h, and Candida CFUs were counted. Statistical Analysis Used: Chi-squared test was used to analyze the data. Results: There was a significant inverse relationship between salivary flow and candida CFUs count when patients with high colony counts were analyzed (cutoff point of 400 or greater CFU/mL). Females had less SFR than males. Most of the patients who had hyposalivation were taking medication for the underlying systemic diseases. Candida albicans was the most frequent species. Conclusions: There was a significantly negative correlation between SFRs and Candida CFUs in the patients with xerostomia. PMID:28932047

  16. The Dependence of Tropical Cyclone Count and Size on Rotation Rate

    NASA Astrophysics Data System (ADS)

    Chavas, D. R.; Reed, K. A.

    2017-12-01

    Both theory and idealized equilibrium modeling studies indicate that tropical cyclone size decreases with background rotation rate. In contrast, in real-world observations size tends to increase with latitude. Here we seek to resolve this apparent contradiction via a set of reduced-complexity global aquaplanet simulations with varying planetary rotation rates using the NCAR Community Atmosphere Model 5. The latitudinal distribution of both storm count and size are found to vary markedly with rotation rate, yielding insight into the dynamical constraints on tropical cyclone activity on a rotating planet. Moreover, storm size is found to vary non-monotonically with latitude, indicating that non-equilibrium effects are crucial to the life-cycle evolution of size in nature. Results are then compared to experiments in idealized, time-dependent limited-area modeling simulations using CM1 in axisymmetric and three-dimensional geometry. Taken together, this hierarchy of models is used to quantify the role of equilibrium versus transient controls on storm size and the relevance of each to real storms in nature.

  17. 45 CFR 2522.540 - Do the costs of performance measurement or evaluation count towards the statutory cap on...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... evaluation count towards the statutory cap on administrative costs? 2522.540 Section 2522.540 Public Welfare... measurement or evaluation count towards the statutory cap on administrative costs? No, the costs of performance measurement and evaluation do not count towards the statutory five percent cap on administrative...

  18. Avian leucocyte counting using the hemocytometer

    USGS Publications Warehouse

    Dein, F.J.; Wilson, A.; Fischer, D.; Langenberg, P.

    1994-01-01

    Automated methods for counting leucocytes in avian blood are not available because of the presence of nucleated erythrocytes and thrombocytes. Therefore, total white blood cell counts are performed by hand using a hemocytometer. The Natt and Herrick and the Unopette methods are the most common stain and diluent preparations for this procedure. Replicate hemocytometer counts using these two methods were performed on blood from four birds of different species. Cells present in each square of the hemocytometer were counted. Counting cells in the corner, side, or center hemocytometer squares produced statistically equivalent results; counting four squares per chamber provided a result similar to that obtained by counting nine squares; and the Unopette method was more precise for hemocytometer counting than was the Natt and Herrick method. The Unopette method is easier to learn and perform but is an indirect process, utilizing the differential count from a stained smear. The Natt and Herrick method is a direct total count, but cell identification is more difficult.

  19. Counting-On, Trading and Partitioning: Effects of Training and Prior Knowledge on Performance on Base-10 Tasks

    ERIC Educational Resources Information Center

    Saxton, Matthew; Cakir, Kadir

    2006-01-01

    Factors affecting performance on base-10 tasks were investigated in a series of four studies with a total of 453 children aged 5-7 years. Training in counting-on was found to enhance child performance on base-10 tasks (Studies 2, 3, and 4), while prior knowledge of counting-on (Study 1), trading (Studies 1 and 3), and partitioning (Studies 1 and…

  20. Neutron counting with cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involvedmore » are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)« less

  1. Single Photon Counting Detectors for Low Light Level Imaging Applications

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly

    2015-10-01

    This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for

  2. Designing a Bicycle and Pedestrian Traffic Count Program to Estimate Performance Measures on Streets and Sidewalks in Blacksburg, VA

    DOT National Transportation Integrated Search

    2016-05-31

    We developed and implemented a traffic count program in Blacksburg, VA to estimate performance measures of bicycle and pedestrian traffic. We deployed and validated automated counters at 101 count sites; the count sites consisted of 4 permanent refer...

  3. Performance of 3DOSEM and MAP algorithms for reconstructing low count SPECT acquisitions.

    PubMed

    Grootjans, Willem; Meeuwis, Antoi P W; Slump, Cornelis H; de Geus-Oei, Lioe-Fee; Gotthardt, Martin; Visser, Eric P

    2016-12-01

    Low count single photon emission computed tomography (SPECT) is becoming more important in view of whole body SPECT and reduction of radiation dose. In this study, we investigated the performance of several 3D ordered subset expectation maximization (3DOSEM) and maximum a posteriori (MAP) algorithms for reconstructing low count SPECT images. Phantom experiments were conducted using the National Electrical Manufacturers Association (NEMA) NU2 image quality (IQ) phantom. The background compartment of the phantom was filled with varying concentrations of pertechnetate and indiumchloride, simulating various clinical imaging conditions. Images were acquired using a hybrid SPECT/CT scanner and reconstructed with 3DOSEM and MAP reconstruction algorithms implemented in Siemens Syngo MI.SPECT (Flash3D) and Hermes Hybrid Recon Oncology (Hyrid Recon 3DOSEM and MAP). Image analysis was performed by calculating the contrast recovery coefficient (CRC),percentage background variability (N%), and contrast-to-noise ratio (CNR), defined as the ratio between CRC and N%. Furthermore, image distortion is characterized by calculating the aspect ratio (AR) of ellipses fitted to the hot spheres. Additionally, the performance of these algorithms to reconstruct clinical images was investigated. Images reconstructed with 3DOSEM algorithms demonstrated superior image quality in terms of contrast and resolution recovery when compared to images reconstructed with filtered-back-projection (FBP), OSEM and 2DOSEM. However, occurrence of correlated noise patterns and image distortions significantly deteriorated the quality of 3DOSEM reconstructed images. The mean AR for the 37, 28, 22, and 17mm spheres was 1.3, 1.3, 1.6, and 1.7 respectively. The mean N% increase in high and low count Flash3D and Hybrid Recon 3DOSEM from 5.9% and 4.0% to 11.1% and 9.0%, respectively. Similarly, the mean CNR decreased in high and low count Flash3D and Hybrid Recon 3DOSEM from 8.7 and 8.8 to 3.6 and 4.2, respectively

  4. Tutorial on X-ray photon counting detector characterization.

    PubMed

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2018-01-01

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  5. A physics investigation of deadtime losses in neutron counting at low rates with Cf252

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Louise G; Croft, Stephen

    2009-01-01

    {sup 252}Cf spontaneous fission sources are used for the characterization of neutron counters and the determination of calibration parameters; including both neutron coincidence counting (NCC) and neutron multiplicity deadtime (DT) parameters. Even at low event rates, temporally-correlated neutron counting using {sup 252}Cf suffers a deadtime effect. Meaning that in contrast to counting a random neutron source (e.g. AmLi to a close approximation), DT losses do not vanish in the low rate limit. This is because neutrons are emitted from spontaneous fission events in time-correlated 'bursts', and are detected over a short period commensurate with their lifetime in the detector (characterizedmore » by the system die-away time, {tau}). Thus, even when detected neutron events from different spontaneous fissions are unlikely to overlap in time, neutron events within the detected 'burst' are subject to intrinsic DT losses. Intrinsic DT losses for dilute Pu will be lower since the multiplicity distribution is softer, but real items also experience self-multiplication which can increase the 'size' of the bursts. Traditional NCC DT correction methods do not include the intrinsic (within burst) losses. We have proposed new forms of the traditional NCC Singles and Doubles DT correction factors. In this work, we apply Monte Carlo neutron pulse train analysis to investigate the functional form of the deadtime correction factors for an updating deadtime. Modeling is based on a high efficiency {sup 3}He neutron counter with short die-away time, representing an ideal {sup 3}He based detection system. The physics of dead time losses at low rates is explored and presented. It is observed that new forms are applicable and offer more accurate correction than the traditional forms.« less

  6. Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes.

    PubMed

    Acconcia, G; Labanca, I; Rech, I; Gulinatti, A; Ghioni, M

    2017-02-01

    The minimization of Single Photon Avalanche Diodes (SPADs) dead time is a key factor to speed up photon counting and timing measurements. We present a fully integrated Active Quenching Circuit (AQC) able to provide a count rate as high as 100 MHz with custom technology SPAD detectors. The AQC can also operate the new red enhanced SPAD and provide the timing information with a timing jitter Full Width at Half Maximum (FWHM) as low as 160 ps.

  7. Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinohara, K., E-mail: shinohara.koji@jaea.go.jp; Ochiai, K.; Sukegawa, A.

    In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons.more » The results suggested that the concept of a multi-stage detection system will work in practice.« less

  8. Using Crater Counts to Constrain Erosion Rates on Mars: Implications for the Global Dust Cycle, Sedimentary Rock Erosion and Organic Matter Preservation

    NASA Astrophysics Data System (ADS)

    Mayer, D. P.; Kite, E. S.

    2016-12-01

    Sandblasting, aeolian infilling, and wind deflation all obliterate impact craters on Mars, complicating the use of crater counts for chronology, particularly on sedimentary rock surfaces. However, crater counts on sedimentary rocks can be exploited to constrain wind erosion rates. Relatively small, shallow craters are preferentially obliterated as a landscape undergoes erosion, so the size-frequency distribution of impact craters in a landscape undergoing steady exhumation will develop a shallower power-law slope than a simple production function. Estimating erosion rates is important for several reasons: (1) Wind erosion is a source of mass for the global dust cycle, so the global dust reservoir will disproportionately sample fast-eroding regions; (2) The pace and pattern of recent wind erosion is a sorely-needed constraint on models of the sculpting of Mars' sedimentary-rock mounds; (3) Near-surface complex organic matter on Mars is destroyed by radiation in <108 years, so high rates of surface exhumation are required for preservation of near-surface organic matter. We use crater counts from 18 HiRISE images over sedimentary rock deposits as the basis for estimating erosion rates. Each image was counted by ≥3 analysts and only features agreed on by ≥2 analysts were included in the erosion rate estimation. Erosion rates range from 0.1-0.2 {μ }m/yr across all images. These rates represent an upper limit on surface erosion by landscape lowering. At the conference we will discuss the within and between-image variability of erosion rates and their implications for recent geological processes on Mars.

  9. Tower counts

    USGS Publications Warehouse

    Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers. 

  10. Historical data decrease complete blood count reflex blood smear review rates without missing patients with acute leukaemia.

    PubMed

    Rabizadeh, Esther; Pickholtz, Itay; Barak, Mira; Froom, Paul

    2013-08-01

    The availability of historical data decreases the rate of blood smear review rates in outpatients, but we are unaware of studies done at referral centres. In the following study, we determined the effect of historical data on the rates of peripheral blood smears over a 3-month period and then the detection rate of patients with acute leukaemia. All results of complete blood counts (CBCs) tested on three ADVIA 120 analyzers at the regional Rabin Medical Centre, Beilinson Campus over a 3-month period were accessed on a computerised laboratory information system. Over a 3-month period, we determined the proportion of total CBC and patients with criteria for a manual differential count and the actual number of peripheral blood smears done. Finally, we determined the proportion of 100 consecutive patients with acute leukaemia detected using our criteria that included limiting reflex testing according to historical data. Over the 3-month period, there were 34,827 tests done in 12,785 patients. Without historical data, our smear rate would have been 24.5%, but with the availability of historical data, the blood smear review rate was 5.6%. The detection rate for cases of acute leukaemia was 100%. We conclude that the availability of previous test results significantly reduces the need for blood smear review without missing any patients with acute leukaemia.

  11. Dark-count-less photon-counting x-ray computed tomography system using a YAP-MPPC detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    A high-sensitive X-ray computed tomography (CT) system is useful for decreasing absorbed dose for patients, and a dark-count-less photon-counting CT system was developed. X-ray photons are detected using a YAP(Ce) [cerium-doped yttrium aluminum perovskite] single crystal scintillator and an MPPC (multipixel photon counter). Photocurrents are amplified by a high-speed current-voltage amplifier, and smooth event pulses from an integrator are sent to a high-speed comparator. Then, logical pulses are produced from the comparator and are counted by a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The image contrast of gadolinium medium slightly fell with increase in lower-level voltage (Vl) of the comparator. The dark count rate was 0 cps, and the count rate for the CT was approximately 250 kcps.

  12. 32-channel single photon counting module for ultrasensitive detection of DNA sequences

    NASA Astrophysics Data System (ADS)

    Gudkov, Georgiy; Dhulla, Vinit; Borodin, Anatoly; Gavrilov, Dmitri; Stepukhovich, Andrey; Tsupryk, Andrey; Gorbovitski, Boris; Gorfinkel, Vera

    2006-10-01

    We continue our work on the design and implementation of multi-channel single photon detection systems for highly sensitive detection of ultra-weak fluorescence signals, for high-performance, multi-lane DNA sequencing instruments. A fiberized, 32-channel single photon detection (SPD) module based on single photon avalanche diode (SPAD), model C30902S-DTC, from Perkin Elmer Optoelectronics (PKI) has been designed and implemented. Unavailability of high performance, large area SPAD arrays and our desire to design high performance photon counting systems drives us to use individual diodes. Slight modifications in our quenching circuit has doubled the linear range of our system from 1MHz to 2MHz, which is the upper limit for these devices and the maximum saturation count rate has increased to 14 MHz. The detector module comprises of a single board computer PC-104 that enables data visualization, recording, processing, and transfer. Very low dark count (300-1000 counts/s), robust, efficient, simple data collection and processing, ease of connectivity to any other application demanding similar requirements and similar performance results to the best commercially available single photon counting module (SPCM from PKI) are some of the features of this system.

  13. HgCdTe APD-based linear-mode photon counting components and ladar receivers

    NASA Astrophysics Data System (ADS)

    Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.

    2011-05-01

    Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.

  14. AUTOMATIC COUNTING APPARATUS

    DOEpatents

    Howell, W.D.

    1957-08-20

    An apparatus for automatically recording the results of counting operations on trains of electrical pulses is described. The disadvantages of prior devices utilizing the two common methods of obtaining the count rate are overcome by this apparatus; in the case of time controlled operation, the disclosed system automatically records amy information stored by the scaler but not transferred to the printer at the end of the predetermined time controlled operations and, in the case of count controlled operation, provision is made to prevent a weak sample from occupying the apparatus for an excessively long period of time.

  15. Photon Counting Using Edge-Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Gin, Jonathan W.; Nguyen, Danh H.; Farr, William H.

    2010-01-01

    New applications such as high-datarate, photon-starved, free-space optical communications require photon counting at flux rates into gigaphoton-per-second regimes coupled with subnanosecond timing accuracy. Current single-photon detectors that are capable of handling such operating conditions are designed in an array format and produce output pulses that span multiple sample times. In order to discern one pulse from another and not to overcount the number of incoming photons, a detection algorithm must be applied to the sampled detector output pulses. As flux rates increase, the ability to implement such a detection algorithm becomes difficult within a digital processor that may reside within a field-programmable gate array (FPGA). Systems have been developed and implemented to both characterize gigahertz bandwidth single-photon detectors, as well as process photon count signals at rates into gigaphotons per second in order to implement communications links at SCPPM (serial concatenated pulse position modulation) encoded data rates exceeding 100 megabits per second with efficiencies greater than two bits per detected photon. A hardware edge-detection algorithm and corresponding signal combining and deserialization hardware were developed to meet these requirements at sample rates up to 10 GHz. The photon discriminator deserializer hardware board accepts four inputs, which allows for the ability to take inputs from a quadphoton counting detector, to support requirements for optical tracking with a reduced number of hardware components. The four inputs are hardware leading-edge detected independently. After leading-edge detection, the resultant samples are ORed together prior to deserialization. The deserialization is performed to reduce the rate at which data is passed to a digital signal processor, perhaps residing within an FPGA. The hardware implements four separate analog inputs that are connected through RF connectors. Each analog input is fed to a high-speed 1

  16. Performance evaluation of the automated nucleated red blood cell count of five commercial hematological analyzers.

    PubMed

    Da Rin, G; Vidali, M; Balboni, F; Benegiamo, A; Borin, M; Ciardelli, M L; Dima, F; Di Fabio, A; Fanelli, A; Fiorini, F; Francione, S; Germagnoli, L; Gioia, M; Lari, T; Lorubbio, M; Marini, A; Papa, A; Seghezzi, M; Solarino, L; Pipitone, S; Tilocca, E; Buoro, S

    2017-12-01

    Recent automated hematology analyzers (HAs) can identify and report nucleated red blood cells (NRBC) count as a separate population out of white blood cells (WBC). The aim of this study was to investigate the analytical performances of NRBC enumeration on five top of the range HAs. We evaluated the within-run and between-day precision, limit of blank (LoB), limit of detection (LoD), and limit of quantitation (LoQ) of XE-2100 and XN-module (Sysmex), ADVIA 2120i (Siemens), BC-6800 (Mindray), and UniCel DxH 800 (Beckman Coulter). Automated NRBC counts were also compared with optical microscopy (OM). The limits of detection for NRBC of the BC-6800, XN-module, XE-2100, UniCel DxH 800, and ADVIA 2120i are 0.035×10 9 /L, 0.019×10 9 /L, 0.067×10 9 /L, 0.038×10 9 /L, and 0.167×10 9 /L, respectively. Our data indicated excellent performance in terms of precision. The agreement with OM was excellent for BC-6800, XN-module, and XE-2100 (Bias 0.023, 0.019, and 0.033×10 9 /L, respectively). ADVIA 2120i displayed a significant constant error and UniCel DxH 800 both proportional and small constant error. Regards to NRBC counting, the performances shown by BC-6800, XN-module, and XE-2100 are excellent also a low count, ADVIA 2120i and UniCel DxH 800 need to be improved. © 2017 John Wiley & Sons Ltd.

  17. External quality assessment for CD4 + T-lymphocyte count test: Performance of the Brazilian public health laboratories network.

    PubMed

    Gaspar, Pâmela Cristina; Wohlke, Bruna Lovizutto Protti; Brunialti, Milena Karina Coló; Pires, Ana Flávia; Kohiyama, Igor Massaki; Salomão, Reinaldo; Alonso Neto, José Boullosa; Júnior, Orlando da Costa Ferreira; Franchini, Miriam; Bazzo, Maria Luiza; Benzaken, Adele Schwartz

    2018-05-01

    The National Network for CD4+ T-lymphocyte counting of Brazil comprises 93 laboratories. This study reports the laboratory performances achieved in external quality assessment (EQA) rounds provides by Ministry of Health to evaluate the quality of the kits used and the performance of test by the technicians.Ten EQA rounds were analyzed according the EQA criteria aimed to evaluate individual laboratory performance on the basis of the accuracy of their results compared to the general mean obtained by all participating laboratories and the reproducibility of the results obtained between 2 samples from the same donor.The percentage of approved and failed laboratories in the EQAs tends to follow a uniform pattern. Since 2011, approval has remained above 80% and the failure rate has never exceeded 15%.EQA is very important to evaluate the performance of the laboratories, to identify monitor, and to resolve errors as quickly as possible.

  18. Comparison between two time-resolved approaches for prostate cancer diagnosis: high rate imager vs. photon counting system

    NASA Astrophysics Data System (ADS)

    Boutet, J.; Debourdeau, M.; Laidevant, A.; Hervé, L.; Dinten, J.-M.

    2010-02-01

    Finding a way to combine ultrasound and fluorescence optical imaging on an endorectal probe may improve early detection of prostate cancer. A trans-rectal probe adapted to fluorescence diffuse optical tomography measurements was developed by our team. This probe is based on a pulsed NIR laser source, an optical fiber network and a time-resolved detection system. A reconstruction algorithm was used to help locate and quantify fluorescent prostate tumors. In this study, two different kinds of time-resolved detectors are compared: High Rate Imaging system (HRI) and a photon counting system. The HRI is based on an intensified multichannel plate and a CCD Camera. The temporal resolution is obtained through a gating of the HRI. Despite a low temporal resolution (300ps), this system allows a simultaneous acquisition of the signal from a large number of detection fibers. In the photon counting setup, 4 photomultipliers are connected to a Time Correlated Single Photon Counting (TCSPC) board, providing a better temporal resolution (0.1 ps) at the expense of a limited number of detection fibers (4). At last, we show that the limited number of detection fibers of the photon counting setup is enough for a good localization and dramatically improves the overall acquisition time. The photon counting approach is then validated through the localization of fluorescent inclusions in a prostate-mimicking phantom.

  19. A scaling relation between merger rate of galaxies and their close pair count

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, C. Y.; Jing, Y. P.; Han, Jiaxin, E-mail: ypjing@sjtu.edu.cn

    We study how to measure the galaxy merger rate from the observed close pair count. Using a high-resolution N-body/SPH cosmological simulation, we find an accurate scaling relation between galaxy pair counts and merger rates down to a stellar mass ratio of about 1:30. The relation explicitly accounts for the dependence on redshift (or time), on pair separation, and on mass of the two galaxies in a pair. With this relation, one can easily obtain the mean merger timescale for a close pair of galaxies. The use of virial masses, instead of the stellar mass, is motivated by the fact thatmore » the dynamical friction timescale is mainly determined by the dark matter surrounding central and satellite galaxies. This fact can also minimize the error induced by uncertainties in modeling star formation in the simulation. Since the virial mass can be determined from the well-established relation between the virial masses and the stellar masses in observations, our scaling relation can easily be applied to observations to obtain the merger rate and merger timescale. For major merger pairs (1:1-1:4) of galaxies above a stellar mass of 4 × 10{sup 10} h {sup –1} M{sub ☉} at z = 0.1, it takes about 0.31 Gyr to merge for pairs within a projected distance of 20 h {sup –1} kpc with a stellar mass ratio of 1:1, while the time goes up to 1.6 Gyr for mergers with stellar mass ratio of 1:4. Our results indicate that a single timescale usually used in the literature is not accurate to describe mergers with a stellar mass ratio spanning even a narrow range from 1:1 to 1:4.« less

  20. Phase space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22.

    PubMed

    Silva, H G; Lopes, I

    Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.

  1. Regression Analysis of Mixed Recurrent-Event and Panel-Count Data with Additive Rate Models

    PubMed Central

    Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L.

    2015-01-01

    Summary Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007; Zhao et al., 2011). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013). In this paper, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. PMID:25345405

  2. Comparison of pregnancy rates in pre-treatment male infertility and low total motile sperm count at insemination.

    PubMed

    Xiao, Cheng Wei; Agbo, Chioma; Dahan, Michael H

    2016-01-01

    In intrauterine insemination (IUI), total motile sperm count (TMSC) is an important predictor of pregnancy. However, the clinical significance of a poor TMSC on the day of IUI in a patient with prior normal semen analysis (SA) is unclear. We performed this study to determine if these patients perform as poorly as those who had male factor infertility diagnosed prior to commencing treatment. 147 males with two abnormal SA based on the 2010 World Health Organization criteria underwent 356 IUI with controlled ovarian hyper-stimulation (COH). Their pregnancy rates were compared to 120 males who had abnormal TMSC at the time of 265 IUI with COH, in a retrospective university-based study. The two groups were comparable in female age (p = 0.11), duration of infertility (p = 0.17), previous pregnancies (p = 0.13), female basal serum FSH level (p = 0.54) and number of mature follicles on the day of ovulation trigger (p = 0.27). Despite better semen parameters on the day of IUI in the pre-treatment male factor infertility group (TMSC mean ± SD: 61 ± 30 million vs. 3.5 ± 2 million, p < 0.001), pregnancy rates were much higher in the group with low TMSC on the day of IUI (5 % vs. 17 %, p < 0.001). A patient with a recent (within 6 months) normal pre-treatment SA but low TMSC on the day of IUI likely has a reasonable chance to achieve pregnancy, and does not perform as poorly as subjects previously diagnosed with male factor infertility. More studies should be performed to confirm these findings.

  3. Clustering method for counting passengers getting in a bus with single camera

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Zhang, Yanning; Shao, Dapei; Li, Ying

    2010-03-01

    Automatic counting of passengers is very important for both business and security applications. We present a single-camera-based vision system that is able to count passengers in a highly crowded situation at the entrance of a traffic bus. The unique characteristics of the proposed system include, First, a novel feature-point-tracking- and online clustering-based passenger counting framework, which performs much better than those of background-modeling-and foreground-blob-tracking-based methods. Second, a simple and highly accurate clustering algorithm is developed that projects the high-dimensional feature point trajectories into a 2-D feature space by their appearance and disappearance times and counts the number of people through online clustering. Finally, all test video sequences in the experiment are captured from a real traffic bus in Shanghai, China. The results show that the system can process two 320×240 video sequences at a frame rate of 25 fps simultaneously, and can count passengers reliably in various difficult scenarios with complex interaction and occlusion among people. The method achieves high accuracy rates up to 96.5%.

  4. Spatial variability in the pollen count in Sydney, Australia: can one sampling site accurately reflect the pollen count for a region?

    PubMed

    Katelaris, Constance H; Burke, Therese V; Byth, Karen

    2004-08-01

    There is increasing interest in the daily pollen count, with pollen-sensitive individuals using it to determine medication use and researchers relying on it for commencing clinical drug trials and assessing drug efficacy according to allergen exposure. Counts are often expressed qualitatively as low, medium, and high, and often only 1 pollen trap is used for an entire region. To examine the spatial variability in the pollen count in Sydney, Australia, and to compare discrepancies among low-, medium-, and high-count days at 3 sites separated by a maximum of 30 km. Three sites in western Sydney were sampled using Burkard traps. Data from the 3 sites were used to compare vegetation differences, possible effects of some meteorological parameters, and discrepancies among sites in low-, medium-, and high-count days. Total pollen counts during the spring months were 14,382 grains/m3 at Homebush, 11,584 grains/m3 at Eastern Creek, and 9,269 grains/m3 at Nepean. The only significant correlation between differences in meteorological parameters and differences in pollen counts was the Homebush-Nepean differences in rainfall and pollen counts. Comparison between low- and high-count days among the 3 sites revealed a discordance rate of 8% to 17%. For informing the public about pollen counts, the count from 1 trap is a reasonable estimation in a 30-km region; however, the discrepancies among 3 trap sites would have a significant impact on the performance of a clinical trial where enrollment was determined by a low or high count. Therefore, for clinical studies, data collection must be local and applicable to the study population.

  5. Kids Count in Indiana: 1996 Data Book.

    ERIC Educational Resources Information Center

    Erickson, Judith B.

    This Kids Count report is the third in a series examining statewide trends in the well-being of Indiana's children. The report combines statistics of special concern in Indiana with 10 national Kids Count well-being indicators: (1) percent low birthweight; (2) infant mortality rate; (3) child death rate; (4) birth rate to unmarried teens ages 15…

  6. Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting

    PubMed Central

    Schmitz, Christoph; Eastwood, Brian S.; Tappan, Susan J.; Glaser, Jack R.; Peterson, Daniel A.; Hof, Patrick R.

    2014-01-01

    Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D) stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D) “cell counting” approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38 and 99% and false-positive rates from 3.6 to 82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections. PMID:24847213

  7. Modeling and simulation of count data.

    PubMed

    Plan, E L

    2014-08-13

    Count data, or number of events per time interval, are discrete data arising from repeated time to event observations. Their mean count, or piecewise constant event rate, can be evaluated by discrete probability distributions from the Poisson model family. Clinical trial data characterization often involves population count analysis. This tutorial presents the basics and diagnostics of count modeling and simulation in the context of pharmacometrics. Consideration is given to overdispersion, underdispersion, autocorrelation, and inhomogeneity.

  8. Single photon counting linear mode avalanche photodiode technologies

    NASA Astrophysics Data System (ADS)

    Williams, George M.; Huntington, Andrew S.

    2011-10-01

    The false count rate of a single-photon-sensitive photoreceiver consisting of a high-gain, low-excess-noise linear-mode InGaAs avalanche photodiode (APD) and a high-bandwidth transimpedance amplifier (TIA) is fit to a statistical model. The peak height distribution of the APD's multiplied dark current is approximated by the weighted sum of McIntyre distributions, each characterizing dark current generated at a different location within the APD's junction. The peak height distribution approximated in this way is convolved with a Gaussian distribution representing the input-referred noise of the TIA to generate the statistical distribution of the uncorrelated sum. The cumulative distribution function (CDF) representing count probability as a function of detection threshold is computed, and the CDF model fit to empirical false count data. It is found that only k=0 McIntyre distributions fit the empirically measured CDF at high detection threshold, and that false count rate drops faster than photon count rate as detection threshold is raised. Once fit to empirical false count data, the model predicts the improvement of the false count rate to be expected from reductions in TIA noise and APD dark current. Improvement by at least three orders of magnitude is thought feasible with further manufacturing development and a capacitive-feedback TIA (CTIA).

  9. Regression analysis of mixed recurrent-event and panel-count data with additive rate models.

    PubMed

    Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L

    2015-03-01

    Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007, The Statistical Analysis of Recurrent Events. New York: Springer-Verlag; Zhao et al., 2011, Test 20, 1-42). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013, Statistics in Medicine 32, 1954-1963). In this article, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. © 2014, The International Biometric Society.

  10. Effect of font size, italics, and colour count on web usability.

    PubMed

    Bhatia, Sanjiv K; Samal, Ashok; Rajan, Nithin; Kiviniemi, Marc T

    2011-04-01

    Web usability measures the ease of use of a website. This study attempts to find the effect of three factors - font size, italics, and colour count - on web usability. The study was performed using a set of tasks and developing a survey questionnaire. We performed the study using a set of human subjects, selected from the undergraduate students taking courses in psychology. The data computed from the tasks and survey questionnaire were statistically analysed to find if there was any effect of font size, italics, and colour count on the three web usability dimensions. We found that for the student population considered, there was no significant effect of font size on usability. However, the manipulation of italics and colour count did influence some aspects of usability. The subjects performed better for pages with no italics and high italics compared to moderate italics. The subjects rated the pages that contained only one colour higher than the web pages with four or six colours. This research will help web developers better understand the effect of font size, italics, and colour count on web usability in general, and for young adults, in particular.

  11. Effect of font size, italics, and colour count on web usability

    PubMed Central

    Samal, Ashok; Rajan, Nithin; Kiviniemi, Marc T.

    2013-01-01

    Web usability measures the ease of use of a website. This study attempts to find the effect of three factors – font size, italics, and colour count – on web usability. The study was performed using a set of tasks and developing a survey questionnaire. We performed the study using a set of human subjects, selected from the undergraduate students taking courses in psychology. The data computed from the tasks and survey questionnaire were statistically analysed to find if there was any effect of font size, italics, and colour count on the three web usability dimensions. We found that for the student population considered, there was no significant effect of font size on usability. However, the manipulation of italics and colour count did influence some aspects of usability. The subjects performed better for pages with no italics and high italics compared to moderate italics. The subjects rated the pages that contained only one colour higher than the web pages with four or six colours. This research will help web developers better understand the effect of font size, italics, and colour count on web usability in general, and for young adults, in particular. PMID:24358055

  12. Change in work day step counts, wellbeing and job performance in Catalan university employees: a randomised controlled trial.

    PubMed

    Puig-Ribera, Anna; McKenna, Jim; Gilson, Nicholas; Brown, Wendy J

    2008-12-01

    Using a randomised controlled trial design, this feasibility study assessed the impact of two walking interventions on quality of life (QoL) and job performance of Catalan university employees. A convenience sample of 70 employees completed baseline and intervention measures of step counts (Yamax SW 200 pedometer), wellbeing (SF-12 questionnaire) and work performance (Work Limitations Questionnaire) over 9 weeks. Before intervention, baseline step counts (five working days) were used to randomly allocate participants to a control (n = 26), "walking routes" (n = 19) and "walking while working" (n = 25) groups. Intervention effects were evaluated by calculating differences between pre-intervention and intervention data. One-way ANOVA was used to examine differences between groups. No significant group differences were found for changes in work-day step counts, QoL or work performance. When data from the two intervention groups were pooled (n = 44) there was a significant increase in step counts (+659 steps/day; n = 12; p < 0.01) among participants classified as ;Sedentary-Low active' (0-7499 steps/day) at baseline. In contrast there was a significant decrease (-637 steps/day; p < 0.05) in those initially categorised as ;Active' (> 10,000 steps/day; n = 21) and no change in those categorised as ;Moderately Active' (7500-9999, n = 11). The ;Sedentary-Low activity' group showed consistently greater improvements in QoL and work performance scores than the Moderate and Active groups. Initially low active participants showed the greatest increase in step counts and improved QoL and work productivity profiles. These data indicate the potential for improving QoL and job productivity through workplace walking in inactive Catalan employees.

  13. CLARO: an ASIC for high rate single photon counting with multi-anode photomultipliers

    NASA Astrophysics Data System (ADS)

    Baszczyk, M.; Carniti, P.; Cassina, L.; Cotta Ramusino, A.; Dorosz, P.; Fiorini, M.; Gotti, C.; Kucewicz, W.; Malaguti, R.; Pessina, G.

    2017-08-01

    The CLARO is a radiation-hard 8-channel ASIC designed for single photon counting with multi-anode photomultiplier tubes. Each channel outputs a digital pulse when the input signal from the photomultiplier crosses a configurable threshold. The fast return to baseline, typically within 25 ns, and below 50 ns in all conditions, allows to count up to 107 hits/s on each channel, with a power consumption of about 1 mW per channel. The ASIC presented here is a much improved version of the first 4-channel prototype. The threshold can be precisely set in a wide range, between 30 ke- (5 fC) and 16 Me- (2.6 pC). The noise of the amplifier with a 10 pF input capacitance is 3.5 ke- (0.6 fC) RMS. All settings are stored in a 128-bit configuration and status register, protected against soft errors with triple modular redundancy. The paper describes the design of the ASIC at transistor-level, and demonstrates its performance on the test bench.

  14. Patient-dependent count-rate adaptive normalization for PET detector efficiency with delayed-window coincidence events

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofeng; Ye, Hongwei; Xia, Ting; Asma, Evren; Winkler, Mark; Gagnon, Daniel; Wang, Wenli

    2015-07-01

    Quantitative PET imaging is widely used in clinical diagnosis in oncology and neuroimaging. Accurate normalization correction for the efficiency of each line-of- response is essential for accurate quantitative PET image reconstruction. In this paper, we propose a normalization calibration method by using the delayed-window coincidence events from the scanning phantom or patient. The proposed method could dramatically reduce the ‘ring’ artifacts caused by mismatched system count-rates between the calibration and phantom/patient datasets. Moreover, a modified algorithm for mean detector efficiency estimation is proposed, which could generate crystal efficiency maps with more uniform variance. Both phantom and real patient datasets are used for evaluation. The results show that the proposed method could lead to better uniformity in reconstructed images by removing ring artifacts, and more uniform axial variance profiles, especially around the axial edge slices of the scanner. The proposed method also has the potential benefit to simplify the normalization calibration procedure, since the calibration can be performed using the on-the-fly acquired delayed-window dataset.

  15. Influence of Point Count Length and Repeated Visits on Habitat Model Performance

    Treesearch

    Randy Dettmers; David A. Buehler; John G. Bartlett; Nathan A. Klaus

    1999-01-01

    Point counts are commonly used to monitor bird populations, and a substantial amount of research has investigated how conducting counts for different lengths of time affects the accuracy of these counts and the subsequent ability to monitor changes in population trends. However, little work has been done io assess how changes in count duration affect bird-habitat...

  16. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  17. Performance in population models for count data, part II: a new SAEM algorithm

    PubMed Central

    Savic, Radojka; Lavielle, Marc

    2009-01-01

    Analysis of count data from clinical trials using mixed effect analysis has recently become widely used. However, algorithms available for the parameter estimation, including LAPLACE and Gaussian quadrature (GQ), are associated with certain limitations, including bias in parameter estimates and the long analysis runtime. The stochastic approximation expectation maximization (SAEM) algorithm has proven to be a very efficient and powerful tool in the analysis of continuous data. The aim of this study was to implement and investigate the performance of a new SAEM algorithm for application to count data. A new SAEM algorithm was implemented in MATLAB for estimation of both, parameters and the Fisher information matrix. Stochastic Monte Carlo simulations followed by re-estimation were performed according to scenarios used in previous studies (part I) to investigate properties of alternative algorithms (1). A single scenario was used to explore six probability distribution models. For parameter estimation, the relative bias was less than 0.92% and 4.13 % for fixed and random effects, for all models studied including ones accounting for over- or under-dispersion. Empirical and estimated relative standard errors were similar, with distance between them being <1.7 % for all explored scenarios. The longest CPU time was 95s for parameter estimation and 56s for SE estimation. The SAEM algorithm was extended for analysis of count data. It provides accurate estimates of both, parameters and standard errors. The estimation is significantly faster compared to LAPLACE and GQ. The algorithm is implemented in Monolix 3.1, (beta-version available in July 2009). PMID:19680795

  18. High Broadband Spectral Resolving Transition-Edge Sensors for High Count-Rate Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Smith, Stephen

    2011-01-01

    We are developing arrays of transition-edge sensor (TES) X-ray detectors optimized for high count-rate solar astronomy applications where characterizing the high velocity motions of X-ray jets in solar flares is of particular interest. These devices are fabricated on thick Si substrates and consist of 35x35micron^2 TESs with 4.5micron thick, 60micron pitch, electroplated absorbers. We have tested devices fabricated with different geometric stem contact areas with the TES and surrounding substrate area, which allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between the stem contact area and a non-Gaussian broadening in the spectral line shape consistent with athermal phonon loss. When the contact area is minimized we have obtained remarkable board-band spectral resolving capabilities of 1.3 plus or minus 0.leV at an energy of 1.5 keV, 1.6 plus or minus 0.1 eV at 5.9 keV and 2.0 plus or minus 0.1 eV at 8 keV. This, coupled with a capability of accommodating 100's of counts per second per pixel makes these devices an exciting prospect of future x-ray astronomy applications.

  19. Noise models for low counting rate coherent diffraction imaging.

    PubMed

    Godard, Pierre; Allain, Marc; Chamard, Virginie; Rodenburg, John

    2012-11-05

    Coherent diffraction imaging (CDI) is a lens-less microscopy method that extracts the complex-valued exit field from intensity measurements alone. It is of particular importance for microscopy imaging with diffraction set-ups where high quality lenses are not available. The inversion scheme allowing the phase retrieval is based on the use of an iterative algorithm. In this work, we address the question of the choice of the iterative process in the case of data corrupted by photon or electron shot noise. Several noise models are presented and further used within two inversion strategies, the ordered subset and the scaled gradient. Based on analytical and numerical analysis together with Monte-Carlo studies, we show that any physical interpretations drawn from a CDI iterative technique require a detailed understanding of the relationship between the noise model and the used inversion method. We observe that iterative algorithms often assume implicitly a noise model. For low counting rates, each noise model behaves differently. Moreover, the used optimization strategy introduces its own artefacts. Based on this analysis, we develop a hybrid strategy which works efficiently in the absence of an informed initial guess. Our work emphasises issues which should be considered carefully when inverting experimental data.

  20. Multiplicity counting from fission detector signals with time delay effects

    NASA Astrophysics Data System (ADS)

    Nagy, L.; Pázsit, I.; Pál, L.

    2018-03-01

    In recent work, we have developed the theory of using the first three auto- and joint central moments of the currents of up to three fission chambers to extract the singles, doubles and triples count rates of traditional multiplicity counting (Pázsit and Pál, 2016; Pázsit et al., 2016). The objective is to elaborate a method for determining the fissile mass, neutron multiplication, and (α, n) neutron emission rate of an unknown assembly of fissile material from the statistics of the fission chamber signals, analogous to the traditional multiplicity counting methods with detectors in the pulse mode. Such a method would be an alternative to He-3 detector systems, which would be free from the dead time problems that would be encountered in high counting rate applications, for example the assay of spent nuclear fuel. A significant restriction of our previous work was that all neutrons born in a source event (spontaneous fission) were assumed to be detected simultaneously, which is not fulfilled in reality. In the present work, this restriction is eliminated, by assuming an independent, identically distributed random time delay for all neutrons arising from one source event. Expressions are derived for the same auto- and joint central moments of the detector current(s) as in the previous case, expressed with the singles, doubles, and triples (S, D and T) count rates. It is shown that if the time-dispersion of neutron detections is of the same order of magnitude as the detector pulse width, as they typically are in measurements of fast neutrons, the multiplicity rates can still be extracted from the moments of the detector current, although with more involved calibration factors. The presented formulae, and hence also the performance of the proposed method, are tested by both analytical models of the time delay as well as with numerical simulations. Methods are suggested also for the modification of the method for large time delay effects (for thermalised neutrons).

  1. Automated vehicle counting using image processing and machine learning

    NASA Astrophysics Data System (ADS)

    Meany, Sean; Eskew, Edward; Martinez-Castro, Rosana; Jang, Shinae

    2017-04-01

    Vehicle counting is used by the government to improve roadways and the flow of traffic, and by private businesses for purposes such as determining the value of locating a new store in an area. A vehicle count can be performed manually or automatically. Manual counting requires an individual to be on-site and tally the traffic electronically or by hand. However, this can lead to miscounts due to factors such as human error A common form of automatic counting involves pneumatic tubes, but pneumatic tubes disrupt traffic during installation and removal, and can be damaged by passing vehicles. Vehicle counting can also be performed via the use of a camera at the count site recording video of the traffic, with counting being performed manually post-recording or using automatic algorithms. This paper presents a low-cost procedure to perform automatic vehicle counting using remote video cameras with an automatic counting algorithm. The procedure would utilize a Raspberry Pi micro-computer to detect when a car is in a lane, and generate an accurate count of vehicle movements. The method utilized in this paper would use background subtraction to process the images and a machine learning algorithm to provide the count. This method avoids fatigue issues that are encountered in manual video counting and prevents the disruption of roadways that occurs when installing pneumatic tubes

  2. Survey material choices in haematology EQA: a confounding factor in automated counting performance assessment.

    PubMed

    De la Salle, Barbara

    2017-02-15

    The complete blood count (CBC) is one of the most frequently requested tests in laboratory medicine, performed in a range of healthcare situations. The provision of an ideal assay material for external quality assessment is confounded by the fragility of the cellular components of blood, the lack of commutability of stabilised whole blood material and the lack of certified reference materials and methods to which CBC results can be traced. The choice of assay material between fresh blood, extended life assay material and fully stabilised, commercially prepared, whole blood material depends upon the scope and objectives of the EQA scheme. The introduction of new technologies in blood counting and the wider clinical application of parameters from the extended CBC will bring additional challenges for the EQA provider.

  3. SU-G-IeP4-12: Performance of In-111 Coincident Gamma-Ray Counting: A Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlka, R; Kappadath, S; Mawlawi, O

    2016-06-15

    Purpose: The decay of In-111 results in a non-isotropic gamma-ray cascade, which is normally imaged using a gamma camera. Creating images with a gamma camera using coincident gamma-rays from In-111 has not been previously studied. Our objective was to explore the feasibility of imaging this cascade as coincidence events and to determine the optimal timing resolution and source activity using Monte Carlo simulations. Methods: GEANT4 was used to simulate the decay of the In-111 nucleus and to model the gamma camera. Each photon emission was assigned a timestamp, and the time delay and angular separation for the second gamma-ray inmore » the cascade was consistent with the known intermediate state half-life of 85ns. The gamma-rays are transported through a model of a Siemens dual head Symbia “S” gamma camera with a 5/8-inch thick crystal and medium energy collimators. A true coincident event was defined as a single 171keV gamma-ray followed by a single 245keV gamma-ray within a specified time window (or vice versa). Several source activities (ranging from 10uCi to 5mCi) with and without incorporation of background counts were then simulated. Each simulation was analyzed using varying time windows to assess random events. The noise equivalent count rate (NECR) was computed based on the number of true and random counts for each combination of activity and time window. No scatter events were assumed since sources were simulated in air. Results: As expected, increasing the timing window increased the total number of observed coincidences albeit at the expense of true coincidences. A timing window range of 200–500ns maximizes the NECR at clinically-used source activities. The background rate did not significantly alter the maximum NECR. Conclusion: This work suggests coincident measurements of In-111 gamma-ray decay can be performed with commercial gamma cameras at clinically-relevant activities. Work is ongoing to assess useful clinical applications.« less

  4. The Slope Imaging Multi-Polarization Photon-Counting Lidar: Development and Performance Results

    NASA Technical Reports Server (NTRS)

    Dabney, Phillip

    2010-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar is an airborne instrument developed to demonstrate laser altimetry measurement methods that will enable more efficient observations of topography and surface properties from space. The instrument was developed through the NASA Earth Science Technology Office Instrument Incubator Program with a focus on cryosphere remote sensing. The SIMPL transmitter is an 11 KHz, 1064 nm, plane-polarized micropulse laser transmitter that is frequency doubled to 532 nm and split into four push-broom beams. The receiver employs single-photon, polarimetric ranging at 532 and 1064 nm using Single Photon Counting Modules in order to achieve simultaneous sampling of surface elevation, slope, roughness and depolarizing scattering properties, the latter used to differentiate surface types. Data acquired over ice-covered Lake Erie in February, 2009 are documenting SIMPL s measurement performance and capabilities, demonstrating differentiation of open water and several ice cover types. ICESat-2 will employ several of the technologies advanced by SIMPL, including micropulse, single photon ranging in a multi-beam, push-broom configuration operating at 532 nm.

  5. The absolute counting of red cell-derived microparticles with red cell bead by flow rate based assay.

    PubMed

    Nantakomol, Duangdao; Imwong, Malika; Soontarawirat, Ingfar; Kotjanya, Duangporn; Khakhai, Chulalak; Ohashi, Jun; Nuchnoi, Pornlada

    2009-05-01

    Activation of red blood cell is associated with the formation of red cell-derived microparticles (RMPs). Analysis of circulating RMPs is becoming more refined and clinically useful. A quantitative Trucount tube method is the conventional method uses for quantitating RMPs. In this study, we validated a quantitative method called "flow rate based assay using red cell bead (FCB)" to measure circulating RMPs in the peripheral blood of healthy subjects. Citrated blood samples collected from 30 cases of healthy subjects were determined the RMPs count by using double labeling of annexin V-FITC and anti-glycophorin A-PE. The absolute RMPs numbers were measured by FCB, and the results were compared with the Trucount or with flow rate based calibration (FR). Statistical correlation and agreement were analyzed using linear regression and Bland-Altman analysis. There was no significant difference in the absolute number of RMPs quantitated by FCB when compared with those two reference methods including the Trucount tube and FR method. The absolute RMPs count obtained from FCB method was highly correlated with those obtained from Trucount tube (r(2) = 0.98, mean bias 4 cell/microl, limit of agreement [LOA] -20.3 to 28.3 cell/microl), and FR method (r(2) = 1, mean bias 10.3 cell/microl, and LOA -5.5 to 26.2 cell/microl). This study demonstrates that FCB is suitable and more affordable for RMPs quantitation in the clinical samples. This method is a low cost and interchangeable to latex bead-based method for generating the absolute counts in the resource-limited areas. (c) 2008 Clinical Cytometry Society.

  6. Death rates in HIV-positive antiretroviral-naive patients with CD4 count greater than 350 cells per microL in Europe and North America: a pooled cohort observational study

    PubMed Central

    2011-01-01

    Background It is unclear whether antiretroviral (ART) naive HIV-positive individuals with high CD4 counts have a raised mortality risk compared with the general population, but this is relevant for considering earlier initiation of antiretroviral therapy. Methods Pooling data from 23 European and North American cohorts, we calculated country-, age-, sex-, and year-standardised mortality ratios (SMRs), stratifying by risk group. Included patients had at least one pre-ART CD4 count above 350 cells/mm3. The association between CD4 count and death rate was evaluated using Poisson regression methods. Findings Of 40,830 patients contributing 80,682 person-years of follow up with CD4 count above 350 cells/mm3, 419 (1.0%) died. The SMRs (95% confidence interval) were 1.30 (1.06-1.58) in homosexual men, and 2.94 (2.28-3.73) and 9.37 (8.13-10.75) in the heterosexual and IDU risk groups respectively. CD4 count above 500 cells/mm3 was associated with a lower death rate than 350-499 cells/mm3: adjusted rate ratios (95% confidence intervals) for 500-699 cells/mm3 and above 700 cells/mm3 were 0.77 (0.61-0.95) and 0.66 (0.52-0.85) respectively. Interpretation In HIV-infected ART-naive patients with high CD4 counts, death rates were raised compared with the general population. In homosexual men this was modest, suggesting that a proportion of the increased risk in other groups is due to confounding by other factors. Even in this high CD4 count range, lower CD4 count was associated with raised mortality. PMID:20638118

  7. Evaluation of the performance of a point-of-care method for total and differential white blood cell count in clozapine users.

    PubMed

    Bui, H N; Bogers, J P A M; Cohen, D; Njo, T; Herruer, M H

    2016-12-01

    We evaluated the performance of the HemoCue WBC DIFF, a point-of-care device for total and differential white cell count, primarily to test its suitability for the mandatory white blood cell monitoring in clozapine use. Leukocyte count and 5-part differentiation was performed by the point-of-care device and by routine laboratory method in venous EDTA-blood samples from 20 clozapine users, 20 neutropenic patients, and 20 healthy volunteers. From the volunteers, also a capillary sample was drawn. Intra-assay reproducibility and drop-to-drop variation were tested. The correlation between both methods in venous samples was r > 0.95 for leukocyte, neutrophil, and lymphocyte counts. The correlation between point-of-care (capillary sample) and routine (venous sample) methods for these cells was 0.772; 0.817 and 0.798, respectively. Only for leukocyte and neutrophil counts, the intra-assay reproducibility was sufficient. The point-of-care device can be used to screen for leukocyte and neutrophil counts. Because of the relatively high measurement uncertainty and poor correlation with venous samples, we recommend to repeat the measurement with a venous sample if cell counts are in the lower reference range. In case of clozapine therapy, neutropenia can probably be excluded if high neutrophil counts are found and patients can continue their therapy. © 2016 John Wiley & Sons Ltd.

  8. Analysis of Sample Size, Counting Time, and Plot Size from an Avian Point Count Survey on Hoosier National Forest, Indiana

    Treesearch

    Frank R. Thompson; Monica J. Schwalbach

    1995-01-01

    We report results of a point count survey of breeding birds on Hoosier National Forest in Indiana. We determined sample size requirements to detect differences in means and the effects of count duration and plot size on individual detection rates. Sample size requirements ranged from 100 to >1000 points with Type I and II error rates of <0.1 and 0.2. Sample...

  9. Reducing the Child Poverty Rate. KIDS COUNT Indicator Brief

    ERIC Educational Resources Information Center

    Shore, Rima; Shore, Barbara

    2009-01-01

    In 2007, nearly one in five or 18 percent of children in the U.S. lived in poverty (KIDS COUNT Data Center, 2009). Many of these children come from minority backgrounds. African American (35 percent), American Indian (33 percent) and Latino (27 percent) children are more likely to live in poverty than their white (11 percent) and Asian (12…

  10. Metals processing control by counting molten metal droplets

    DOEpatents

    Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.

    2000-01-01

    Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.

  11. Quality Counts 2005: No Small Change--Targeting Money toward Student Performance

    ERIC Educational Resources Information Center

    Education Week, 2005

    2005-01-01

    "Quality Counts 2005" focuses on the burgeoning efforts to link funding to educational outcomes. This special issue of "Education Week" includes the following articles: (1) Financial Evolution (Lynn Olson); (2) Making Every Dollar Count (Robert C. Johnston); (3) Weighty Decisions (Jeff Archer); (4) Salary Adjustments (Melissa…

  12. Knowledge Workers' Perceptions of Performance Ratings

    ERIC Educational Resources Information Center

    Smith, Alan D.; Rupp, William T.

    2004-01-01

    One major purpose of performance appraisals is to determine individual merit, especially where pay for performance systems are employed. Based upon expectancy theory, high performance ratings should entail high merit increases while low performance ratings result in low merit increases. However, it appears that decoupling performance ratings and…

  13. Photon Counting Detectors for the 1.0 - 2.0 Micron Wavelength Range

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.

    2004-01-01

    We describe results on the development of greater than 200 micron diameter, single-element photon-counting detectors for the 1-2 micron wavelength range. The technical goals include quantum efficiency in the range 10-70%; detector diameter greater than 200 microns; dark count rate below 100 kilo counts-per-second (cps), and maximum count rate above 10 Mcps.

  14. Point count length and detection of forest neotropical migrant birds

    USGS Publications Warehouse

    Dawson, D.K.; Smith, D.R.; Robbins, C.S.; Ralph, C. John; Sauer, John R.; Droege, Sam

    1995-01-01

    Comparisons of bird abundances among years or among habitats assume that the rates at which birds are detected and counted are constant within species. We use point count data collected in forests of the Mid-Atlantic states to estimate detection probabilities for Neotropical migrant bird species as a function of count length. For some species, significant differences existed among years or observers in both the probability of detecting the species and in the rate at which individuals are counted. We demonstrate the consequence that variability in species' detection probabilities can have on estimates of population change, and discuss ways for reducing this source of bias in point count studies.

  15. 5 CFR 430.308 - Rating performance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Rating performance. 430.308 Section 430.308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Managing Senior Executive Performance § 430.308 Rating performance. (a) Initial summary rating...

  16. 5 CFR 430.308 - Rating performance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Rating performance. 430.308 Section 430.308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Managing Senior Executive Performance § 430.308 Rating performance. (a) Initial summary rating...

  17. 5 CFR 430.308 - Rating performance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Rating performance. 430.308 Section 430.308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Managing Senior Executive Performance § 430.308 Rating performance. (a) Initial summary rating...

  18. 5 CFR 430.308 - Rating performance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Rating performance. 430.308 Section 430.308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Managing Senior Executive Performance § 430.308 Rating performance. (a) Initial summary rating...

  19. 5 CFR 430.308 - Rating performance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Rating performance. 430.308 Section 430.308 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Managing Senior Executive Performance § 430.308 Rating performance. (a) Initial summary rating...

  20. Marginalized zero-altered models for longitudinal count data.

    PubMed

    Tabb, Loni Philip; Tchetgen, Eric J Tchetgen; Wellenius, Greg A; Coull, Brent A

    2016-10-01

    Count data often exhibit more zeros than predicted by common count distributions like the Poisson or negative binomial. In recent years, there has been considerable interest in methods for analyzing zero-inflated count data in longitudinal or other correlated data settings. A common approach has been to extend zero-inflated Poisson models to include random effects that account for correlation among observations. However, these models have been shown to have a few drawbacks, including interpretability of regression coefficients and numerical instability of fitting algorithms even when the data arise from the assumed model. To address these issues, we propose a model that parameterizes the marginal associations between the count outcome and the covariates as easily interpretable log relative rates, while including random effects to account for correlation among observations. One of the main advantages of this marginal model is that it allows a basis upon which we can directly compare the performance of standard methods that ignore zero inflation with that of a method that explicitly takes zero inflation into account. We present simulations of these various model formulations in terms of bias and variance estimation. Finally, we apply the proposed approach to analyze toxicological data of the effect of emissions on cardiac arrhythmias.

  1. Marginalized zero-altered models for longitudinal count data

    PubMed Central

    Tabb, Loni Philip; Tchetgen, Eric J. Tchetgen; Wellenius, Greg A.; Coull, Brent A.

    2015-01-01

    Count data often exhibit more zeros than predicted by common count distributions like the Poisson or negative binomial. In recent years, there has been considerable interest in methods for analyzing zero-inflated count data in longitudinal or other correlated data settings. A common approach has been to extend zero-inflated Poisson models to include random effects that account for correlation among observations. However, these models have been shown to have a few drawbacks, including interpretability of regression coefficients and numerical instability of fitting algorithms even when the data arise from the assumed model. To address these issues, we propose a model that parameterizes the marginal associations between the count outcome and the covariates as easily interpretable log relative rates, while including random effects to account for correlation among observations. One of the main advantages of this marginal model is that it allows a basis upon which we can directly compare the performance of standard methods that ignore zero inflation with that of a method that explicitly takes zero inflation into account. We present simulations of these various model formulations in terms of bias and variance estimation. Finally, we apply the proposed approach to analyze toxicological data of the effect of emissions on cardiac arrhythmias. PMID:27867423

  2. Improving the counting efficiency in time-correlated single photon counting experiments by dead-time optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peronio, P.; Acconcia, G.; Rech, I.

    Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach basedmore » on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.« less

  3. High Count-Rate Study of Two TES X-Ray Microcalorimeters With Different Transition Temperatures

    NASA Technical Reports Server (NTRS)

    Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; hide

    2017-01-01

    We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures T(sub c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T(sub c)(sup s) had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.eV at 6 keV from lower and higher T(sub c) devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the socalled event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96 Percent throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T(sub c) (faster) device, and 5.8 eV FWHM with 97 Percent throughput with the lower T(sub c) (slower) device at 722 Hz.

  4. High count-rate study of two TES x-ray microcalorimeters with different transition temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Jun; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, Frederick S.; Sadleir, John E.; Smith, Stephen J.; Wassell, Edward J.

    2017-10-01

    We have developed transition-edge sensor (TES) microcalorimeter arrays with high count-rate capability and high energy resolution to carry out x-ray imaging spectroscopy observations of various astronomical sources and the Sun. We have studied the dependence of the energy resolution and throughput (fraction of processed pulses) on the count rate for such microcalorimeters with two different transition temperatures (T c). Devices with both transition temperatures were fabricated within a single microcalorimeter array directly on top of a solid substrate where the thermal conductance of the microcalorimeter is dependent upon the thermal boundary resistance between the TES sensor and the dielectric substrate beneath. Because the thermal boundary resistance is highly temperature dependent, the two types of device with different T cs had very different thermal decay times, approximately one order of magnitude different. In our earlier report, we achieved energy resolutions of 1.6 and 2.3 eV at 6 keV from lower and higher T c devices, respectively, using a standard analysis method based on optimal filtering in the low flux limit. We have now measured the same devices at elevated x-ray fluxes ranging from 50 Hz to 1000 Hz per pixel. In the high flux limit, however, the standard optimal filtering scheme nearly breaks down because of x-ray pile-up. To achieve the highest possible energy resolution for a fixed throughput, we have developed an analysis scheme based on the so-called event grade method. Using the new analysis scheme, we achieved 5.0 eV FWHM with 96% throughput for 6 keV x-rays of 1025 Hz per pixel with the higher T c (faster) device, and 5.8 eV FWHM with 97% throughput with the lower T c (slower) device at 722 Hz.

  5. Study of Rubber Composites with Positron Doppler Broadening Spectroscopy: Consideration of Counting Rate

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Quarles, C. A.

    2007-10-01

    We have used positron Doppler Broadening Spectroscopy (DBS) to investigate the uniformity of rubber-carbon black composite samples. The amount of carbon black added to a rubber sample is characterized by phr, the number of grams of carbon black per hundred grams of rubber. Typical concentrations in rubber tires are 50 phr. It has been shown that the S parameter measured by DBS depends on the phr of the sample, so the variation in carbon black concentration can be easily measured to 0.5 phr. In doing the experiments we observed a dependence of the S parameter on small variation in the counting rate or deadtime. By carefully calibrating this deadtime correction we can significantly reduce the experimental run time and thus make faster determination of the uniformity of extended samples.

  6. Re-Visiting the Competence/Performance Debate in the Acquisition of the Counting Principles

    ERIC Educational Resources Information Center

    Le Corre, Mathieu; Van de Walle, Gretchen; Brannon, Elizabeth M.; Carey, Susan.

    2006-01-01

    Advocates of the ''continuity hypothesis'' have argued that innate non-verbal counting principles guide the acquisition of the verbal count list (Gelman & Gallistel, 1978). Some studies have supported this hypothesis, but others have suggested that the counting principles must be constructed anew by each child. Defenders of the continuity…

  7. Performance time transformed by count as a determinant of difficulty in the Shotokan karate Heian kata set.

    PubMed

    Layton, C; Lawrence, J M

    1997-06-01

    Black-belt subjects (10 men) were timed on each of the five Heian kata and the scores transformed by count. Trend analyses showed that increased performance time was significantly related to assumed complexity in Heian ranking.

  8. A matrix-inversion method for gamma-source mapping from gamma-count data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adsley, Ian; Burgess, Claire; Bull, Richard K

    In a previous paper it was proposed that a simple matrix inversion method could be used to extract source distributions from gamma-count maps, using simple models to calculate the response matrix. The method was tested using numerically generated count maps. In the present work a 100 kBq Co{sup 60} source has been placed on a gridded surface and the count rate measured using a NaI scintillation detector. The resulting map of gamma counts was used as input to the matrix inversion procedure and the source position recovered. A multi-source array was simulated by superposition of several single-source count maps andmore » the source distribution was again recovered using matrix inversion. The measurements were performed for several detector heights. The effects of uncertainties in source-detector distances on the matrix inversion method are also examined. The results from this work give confidence in the application of the method to practical applications, such as the segregation of highly active objects amongst fuel-element debris. (authors)« less

  9. Kids Count Data Sheet, 2000.

    ERIC Educational Resources Information Center

    Annie E. Casey Foundation, Baltimore, MD.

    Data from the 50 United States are listed for 1997 from Kids Count in an effort to track state-by-state the status of children in the United States and to secure better futures for all children. Data include percent low birth weight babies; infant mortality rate; child death rate; rate of teen deaths by accident, homicide, and suicide; teen birth…

  10. Single-photon counting multicolor multiphoton fluorescence microscope.

    PubMed

    Buehler, Christof; Kim, Ki H; Greuter, Urs; Schlumpf, Nick; So, Peter T C

    2005-01-01

    We present a multicolor multiphoton fluorescence microscope with single-photon counting sensitivity. The system integrates a standard multiphoton fluorescence microscope, an optical grating spectrograph operating in the UV-Vis wavelength region, and a 16-anode photomultiplier tube (PMT). The major technical innovation is in the development of a multichannel photon counting card (mC-PhCC) for direct signal collection from multi-anode PMTs. The electronic design of the mC-PhCC employs a high-throughput, fully-parallel, single-photon counting scheme along with a high-speed electrical or fiber-optical link interface to the data acquisition computer. There is no electronic crosstalk among the detection channels of the mC-PhCC. The collected signal remains linear up to an incident photon rate of 10(8) counts per second. The high-speed data interface offers ample bandwidth for real-time readout: 2 MByte lambda-stacks composed of 16 spectral channels, 256 x 256 pixel image with 12-bit dynamic range can be transferred at 30 frames per second. The modular design of the mC-PhCC can be readily extended to accommodate PMTs of more anodes. Data acquisition from a 64-anode PMT has been verified. As a demonstration of system performance, spectrally resolved images of fluorescent latex spheres and ex-vivo human skin are reported. The multicolor multiphoton microscope is suitable for highly sensitive, real-time, spectrally-resolved three-dimensional imaging in biomedical applications.

  11. Effects of dilution rates, animal species and instruments on the spectrophotometric determination of sperm counts.

    PubMed

    Rondeau, M; Rouleau, M

    1981-06-01

    Using semen from bull, boar and stallion as well as different spectrophotometers, we established the calibration curves relating the optical density of a sperm sample to the sperm count obtained on the hemacytometer. The results show that, for a given spectrophotometer, the calibration curve is not characteristic of the animal species we studied. The differences in size of the spermatozoa are probably too small to account for the anticipated specificity of the calibration curve. Furthermore, the fact that different dilution rates must be used, because of the vastly different concentrations of spermatozoa which is characteristic of those species, has no effect on the calibration curves since the dilution rate is shown to be artefactual. On the other hand, for a given semen, the calibration curve varies depending upon the spectrophotometry used. However, if two instruments have the same characteristic in terms of spectral bandwidth, the calibration curves are not statistically different.

  12. Field performance of a low-cost and fully-automated blood counting system operated by trained and untrained users (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xie, Dengling; Xie, Yanjun; Liu, Peng; Tong, Lieshu; Chu, Kaiqin; Smith, Zachary J.

    2017-02-01

    Current flow-based blood counting devices require expensive and centralized medical infrastructure and are not appropriate for field use. In this paper we report a method to count red blood cells, white blood cells as well as platelets through a low-cost and fully-automated blood counting system. The approach consists of using a compact, custom-built microscope with large field-of-view to record bright-field and fluorescence images of samples that are diluted with a single, stable reagent mixture and counted using automatic algorithms. Sample collection is performed manually using a spring loaded lancet, and volume-metering capillary tubes. The capillaries are then dropped into a tube of pre-measured reagents and gently shaken for 10-30 seconds. The sample is loaded into a measurement chamber and placed on a custom 3D printed platform. Sample translation and focusing is fully automated, and a user has only to press a button for the measurement and analysis to commence. Cost of the system is minimized through the use of custom-designed motorized components. We performed a series of comparative experiments by trained and untrained users on blood from adults and children. We compare the performance of our system, as operated by trained and untrained users, to the clinical gold standard using a Bland-Altman analysis, demonstrating good agreement of our system to the clinical standard. The system's low cost, complete automation, and good field performance indicate that it can be successfully translated for use in low-resource settings where central hematology laboratories are not accessible.

  13. All-digital full waveform recording photon counting flash lidar

    NASA Astrophysics Data System (ADS)

    Grund, Christian J.; Harwit, Alex

    2010-08-01

    Current generation analog and photon counting flash lidar approaches suffer from limitation in waveform depth, dynamic range, sensitivity, false alarm rates, optical acceptance angle (f/#), optical and electronic cross talk, and pixel density. To address these issues Ball Aerospace is developing a new approach to flash lidar that employs direct coupling of a photocathode and microchannel plate front end to a high-speed, pipelined, all-digital Read Out Integrated Circuit (ROIC) to achieve photon-counting temporal waveform capture in each pixel on each laser return pulse. A unique characteristic is the absence of performance-limiting analog or mixed signal components. When implemented in 65nm CMOS technology, the Ball Intensified Imaging Photon Counting (I2PC) flash lidar FPA technology can record up to 300 photon arrivals in each pixel with 100 ps resolution on each photon return, with up to 6000 range bins in each pixel. The architecture supports near 100% fill factor and fast optical system designs (f/#<1), and array sizes to 3000×3000 pixels. Compared to existing technologies, >60 dB ultimate dynamic range improvement, and >104 reductions in false alarm rates are anticipated, while achieving single photon range precision better than 1cm. I2PC significantly extends long-range and low-power hard target imaging capabilities useful for autonomous hazard avoidance (ALHAT), navigation, imaging vibrometry, and inspection applications, and enables scannerless 3D imaging for distributed target applications such as range-resolved atmospheric remote sensing, vegetation canopies, and camouflage penetration from terrestrial, airborne, GEO, and LEO platforms. We discuss the I2PC architecture, development status, anticipated performance advantages, and limitations.

  14. Real-time people counting system using a single video camera

    NASA Astrophysics Data System (ADS)

    Lefloch, Damien; Cheikh, Faouzi A.; Hardeberg, Jon Y.; Gouton, Pierre; Picot-Clemente, Romain

    2008-02-01

    There is growing interest in video-based solutions for people monitoring and counting in business and security applications. Compared to classic sensor-based solutions the video-based ones allow for more versatile functionalities, improved performance with lower costs. In this paper, we propose a real-time system for people counting based on single low-end non-calibrated video camera. The two main challenges addressed in this paper are: robust estimation of the scene background and the number of real persons in merge-split scenarios. The latter is likely to occur whenever multiple persons move closely, e.g. in shopping centers. Several persons may be considered to be a single person by automatic segmentation algorithms, due to occlusions or shadows, leading to under-counting. Therefore, to account for noises, illumination and static objects changes, a background substraction is performed using an adaptive background model (updated over time based on motion information) and automatic thresholding. Furthermore, post-processing of the segmentation results is performed, in the HSV color space, to remove shadows. Moving objects are tracked using an adaptive Kalman filter, allowing a robust estimation of the objects future positions even under heavy occlusion. The system is implemented in Matlab, and gives encouraging results even at high frame rates. Experimental results obtained based on the PETS2006 datasets are presented at the end of the paper.

  15. WBC count

    MedlinePlus

    Leukocyte count; White blood cell count; White blood cell differential; WBC differential; Infection - WBC count; Cancer - WBC count ... called leukopenia. A count less than 4,500 cells per microliter (4.5 × 10 9 /L) is ...

  16. Experimental evaluation of the extended Dytlewski-style dead time correction formalism for neutron multiplicity counting

    NASA Astrophysics Data System (ADS)

    Lockhart, M.; Henzlova, D.; Croft, S.; Cutler, T.; Favalli, A.; McGahee, Ch.; Parker, R.

    2018-01-01

    Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli(DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory and implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. The current paper discusses and presents the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. In order to assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. The DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.

  17. Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping.

    PubMed

    Hong, Xu; Zhou, Jianbin; Ni, Shijun; Ma, Yingjie; Yao, Jianfeng; Zhou, Wei; Liu, Yi; Wang, Min

    2018-03-01

    High-precision measurement of X-ray spectra is affected by the statistical fluctuation of the X-ray beam under low-counting-rate conditions. It is also limited by counting loss resulting from the dead-time of the system and pile-up pulse effects, especially in a high-counting-rate environment. In this paper a detection system based on a FAST-SDD detector and a new kind of unit impulse pulse-shaping method is presented, for counting-loss correction in X-ray spectroscopy. The unit impulse pulse-shaping method is evolved by inverse deviation of the pulse from a reset-type preamplifier and a C-R shaper. It is applied to obtain the true incoming rate of the system based on a general fast-slow channel processing model. The pulses in the fast channel are shaped to unit impulse pulse shape which possesses small width and no undershoot. The counting rate in the fast channel is corrected by evaluating the dead-time of the fast channel before it is used to correct the counting loss in the slow channel.

  18. Safety performance factor.

    PubMed

    Venkataraman, Naray

    2008-01-01

    Workplace safety performance is computed using frequency rate (FR) and severity rate (SR). Only work time lost due to occupational incidents that need to be reported is counted. FR and SR are the 2 most important safety performance indicators that are applied universally; however, calculations differ from country to country. All injuries and time lost should be considered while calculating safety performance. The extent of severity does not matter as every incident is counted. So, a new factor has to be defined; it should be based on the hours or days lost due to each occupational incident, irrespective of its severity. The new safety performance factor is defined as the average human-hour unit lost due to occupational accidents/incidents, including fatalities, first-aid incidents, bruises and cuts. The formula is simple and easy to apply.

  19. Identification of CSF fistulas by radionuclide counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Y.; Kunishio, K.; Sunami, N.

    1990-07-01

    A radionuclide counting method, performed with the patient prone and the neck flexed, was used successfully to diagnose CSF rhinorrhea in two patients. A normal radionuclide ratio (radionuclide counts in pledget/radionuclide counts in 1-ml blood sample) was obtained in 11 normal control subjects. Significance was determined to be a ratio greater than 0.37. Use of radionuclide counting method of determining CSF rhinorrhea is recommended when other methods have failed to locate a site of leakage or when posttraumatic meningitis suggests subclinical CSF rhinorrhea.

  20. Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets

    NASA Astrophysics Data System (ADS)

    Leng, Shuai; Zhou, Wei; Yu, Zhicong; Halaweish, Ahmed; Krauss, Bernhard; Schmidt, Bernhard; Yu, Lifeng; Kappler, Steffen; McCollough, Cynthia

    2017-09-01

    Photon-counting computed tomography (PCCT) uses a photon counting detector to count individual photons and allocate them to specific energy bins by comparing photon energy to preset thresholds. This enables simultaneous multi-energy CT with a single source and detector. Phantom studies were performed to assess the spectral performance of a research PCCT scanner by assessing the accuracy of derived images sets. Specifically, we assessed the accuracy of iodine quantification in iodine map images and of CT number accuracy in virtual monoenergetic images (VMI). Vials containing iodine with five known concentrations were scanned on the PCCT scanner after being placed in phantoms representing the attenuation of different size patients. For comparison, the same vials and phantoms were also scanned on 2nd and 3rd generation dual-source, dual-energy scanners. After material decomposition, iodine maps were generated, from which iodine concentration was measured for each vial and phantom size and compared with the known concentration. Additionally, VMIs were generated and CT number accuracy was compared to the reference standard, which was calculated based on known iodine concentration and attenuation coefficients at each keV obtained from the U.S. National Institute of Standards and Technology (NIST). Results showed accurate iodine quantification (root mean square error of 0.5 mgI/cc) and accurate CT number of VMIs (percentage error of 8.9%) using the PCCT scanner. The overall performance of the PCCT scanner, in terms of iodine quantification and VMI CT number accuracy, was comparable to that of EID-based dual-source, dual-energy scanners.

  1. No Fatigue Effect on Blink Rate

    NASA Technical Reports Server (NTRS)

    Kim, W.; Zangemeister, W.; Stark, L.

    1984-01-01

    Blink rate is reported to vary dependent upon ongoing task performance, perceptual, attentional and cognitive factors, and fatigue. Five levels of task difficulty were operationally defined and task performance as lines read aloud per minute were measured. A single noninvasive infrared TV eyetracker was modified to measure blinking and an on-line computer program identified and counted blinks while the subject performed the tasks. Blink rate decreased by 50% when either task performance increased (fast reading) or visual difficulty increased (blurred text); blink rate increased greatly during rest breaks. There was no change in blink rate during one hour experiments even though subjects complained of severe fatigue.

  2. Evaluation of Pulse Counting for the Mars Organic Mass Analyzer (MOMA) Ion Trap Detection Scheme

    NASA Technical Reports Server (NTRS)

    Van Amerom, Friso H.; Short, Tim; Brinckerhoff, William; Mahaffy, Paul; Kleyner, Igor; Cotter, Robert J.; Pinnick, Veronica; Hoffman, Lars; Danell, Ryan M.; Lyness, Eric I.

    2011-01-01

    The Mars Organic Mass Analyzer is being developed at Goddard Space Flight Center to identify organics and possible biological compounds on Mars. In the process of characterizing mass spectrometer size, weight, and power consumption, the use of pulse counting was considered for ion detection. Pulse counting has advantages over analog-mode amplification of the electron multiplier signal. Some advantages are reduced size of electronic components, low power consumption, ability to remotely characterize detector performance, and avoidance of analog circuit noise. The use of pulse counting as a detection method with ion trap instruments is relatively rare. However, with the recent development of high performance electrical components, this detection method is quite suitable and can demonstrate significant advantages over analog methods. Methods A prototype quadrupole ion trap mass spectrometer with an internal electron ionization source was used as a test setup to develop and evaluate the pulse-counting method. The anode signal from the electron multiplier was preamplified. The an1plified signal was fed into a fast comparator for pulse-level discrimination. The output of the comparator was fed directly into a Xilinx FPGA development board. Verilog HDL software was written to bin the counts at user-selectable intervals. This system was able to count pulses at rates in the GHz range. The stored ion count nun1ber per bin was transferred to custom ion trap control software. Pulse-counting mass spectra were compared with mass spectra obtained using the standard analog-mode ion detection. Prelin1inary Data Preliminary mass spectra have been obtained for both analog mode and pulse-counting mode under several sets of instrument operating conditions. Comparison of the spectra revealed better peak shapes for pulse-counting mode. Noise levels are as good as, or better than, analog-mode detection noise levels. To artificially force ion pile-up conditions, the ion trap was overfilled

  3. Final Pilot Performance Rating Scales.

    ERIC Educational Resources Information Center

    Horner, Walter R.; And Others

    These rating scales are intended for evaluation of student pilot performance. Each student is evaluated individually on the basis of video recordings of the student in flight. Ten point rating lines are used for the ten criterion performance elements of each of three maneuvers, (1) Final Turn to Landing, (2) Lazy Eight, and (3) Vertical S "A".…

  4. 5 CFR 430.208 - Rating performance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Rating performance. 430.208 Section 430.208 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Performance Appraisal for General Schedule, Prevailing Rate, and Certain Other Employees § 430.208...

  5. 5 CFR 430.208 - Rating performance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Rating performance. 430.208 Section 430.208 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Performance Appraisal for General Schedule, Prevailing Rate, and Certain Other Employees § 430.208...

  6. 5 CFR 430.208 - Rating performance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Rating performance. 430.208 Section 430.208 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Performance Appraisal for General Schedule, Prevailing Rate, and Certain Other Employees § 430.208...

  7. 5 CFR 430.208 - Rating performance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Rating performance. 430.208 Section 430.208 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERFORMANCE MANAGEMENT Performance Appraisal for General Schedule, Prevailing Rate, and Certain Other Employees § 430.208...

  8. Observation of fluctuation of gamma-ray count rate accompanying thunderstorm activity and energy spectrum of gamma rays in the atmosphere up to several kilometers altitude from the ground

    NASA Astrophysics Data System (ADS)

    Torii, T.; Sanada, Y.; Watanabe, A.

    2017-12-01

    In the vicinity of the tops of high mountains and in the coastal areas of the Sea of Japan in winter, the generation of high energy photons that lasts more than 100 seconds at the occurrence of thunderclouds has been reported. At the same time, 511 keV gamma rays are also detected. On the other hand, we irradiated a radiosonde equipped with gamma-ray detectors at the time of thunderstorm and observed fluctuation in gamma-ray count-rate. As a result, we found that the gamma-ray count-rate increases significantly near the top of the thundercloud. Therefore, in order to investigate the fluctuation of the energy of the gamma rays, we developed a radiation detector for radiosonde to observe the fluctuation of the low energy gamma-ray spectrum and observed the fluctuation of the gamma-ray spectrum. We will describe the counting rate and spectral fluctuation of gamma-ray detectors for radiosonde observed in the sky in Fukushima prefecture, Japan.

  9. Effects of sampling strategy, detection probability, and independence of counts on the use of point counts

    USGS Publications Warehouse

    Pendleton, G.W.; Ralph, C. John; Sauer, John R.; Droege, Sam

    1995-01-01

    Many factors affect the use of point counts for monitoring bird populations, including sampling strategies, variation in detection rates, and independence of sample points. The most commonly used sampling plans are stratified sampling, cluster sampling, and systematic sampling. Each of these might be most useful for different objectives or field situations. Variation in detection probabilities and lack of independence among sample points can bias estimates and measures of precision. All of these factors should be con-sidered when using point count methods.

  10. Validation of a Cytotechnologist Manual Counting Service for the Ki67 Index in Neuroendocrine Tumors of the Pancreas and Gastrointestinal Tract.

    PubMed

    Cottenden, Jennielee; Filter, Emily R; Cottreau, Jon; Moore, David; Bullock, Martin; Huang, Weei-Yuarn; Arnason, Thomas

    2018-03-01

    - Pathologists routinely assess Ki67 immunohistochemistry to grade gastrointestinal and pancreatic neuroendocrine tumors. Unfortunately, manual counts of the Ki67 index are very time consuming and eyeball estimation has been criticized as unreliable. Manual Ki67 counts performed by cytotechnologists could potentially save pathologist time and improve accuracy. - To assess the concordance between manual Ki67 index counts performed by cytotechnologists versus eyeball estimates and manual Ki67 counts by pathologists. - One Ki67 immunohistochemical stain was retrieved from each of 18 archived gastrointestinal or pancreatic neuroendocrine tumor resections. We compared pathologists' Ki67 eyeball estimates on glass slides and printed color images with manual counts performed by 3 cytotechnologists and gold standard manual Ki67 index counts by 3 pathologists. - Tumor grade agreement between pathologist image eyeball estimate and gold standard pathologist manual count was fair (κ = 0.31; 95% CI, 0.030-0.60). In 9 of 20 cases (45%), the mean pathologist eyeball estimate was 1 grade higher than the mean pathologist manual count. There was almost perfect agreement in classifying tumor grade between the mean cytotechnologist manual count and the mean pathologist manual count (κ = 0.910; 95% CI, 0.697-1.00). In 20 cases, there was only 1 grade disagreement between the 2 methods. Eyeball estimation by pathologists required less than 1 minute, whereas manual counts by pathologists required a mean of 17 minutes per case. - Eyeball estimation of the Ki67 index has a high rate of tumor grade misclassification compared with manual counting. Cytotechnologist manual counts are accurate and save pathologist time.

  11. Experimental evaluation of the extended Dytlewski-style dead time correction formalism for neutron multiplicity counting

    DOE PAGES

    Lockhart, M.; Henzlova, D.; Croft, S.; ...

    2017-09-20

    Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli (DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory andmore » implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. Here, we discuss and present the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. To assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. In conclusion, the DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.« less

  12. Experimental evaluation of the extended Dytlewski-style dead time correction formalism for neutron multiplicity counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockhart, M.; Henzlova, D.; Croft, S.

    Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli (DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory andmore » implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. Here, we discuss and present the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. To assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. In conclusion, the DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.« less

  13. [A multicenter study of correlation between peripheral lymphocyte counts and CD(+)4T cell counts in HIV/AIDS patients].

    PubMed

    Xie, Jing; Qiu, Zhifeng; Han, Yang; Li, Yanling; Song, Xiaojing; Li, Taisheng

    2015-02-01

    To evaluate the accuracy of lymphocyte count as a surrogate for CD(+)4T cell count in treatment-naїve HIV-infected adults. A total of 2 013 HIV-infected patients were screened at 23 sites in China. CD(+)4T cell counts were measured by flow cytometry. Correlation between CD(+)4T cell count and peripheral lymphocyte count were analyzed by spearman coefficient. AUCROC were used to evaluate the performance of lymphocyte count as a surrogate for CD(+)4T cell count. The lymphocyte count and CD(+)4T cell count of these 2 013 patients were (1 600 ± 670) × 10(6)/L and (244 ± 148) × 10(6)/L respectively. CD(+)4T cell count were positively correlated with lymphocyte count (r = 0.482, P < 0.000 1). AUCROC of lymphocyte count as a surrogate for CD(+)4T cell counts of <100×10(6)/L, <200×10(6)/L and <350×10(6)/L were 0.790 (95%CI 0.761-0.818, P < 0.000 1), 0.733 (95%CI 0.710-0.755, P < 0.000 1) and 0.732 (95%CI 0.706-0.758, P < 0.000 1) respectively. Lymphocyte count could be considerad as a potential surrogate marker for CD(+)4T cell count in HIV/AIDS patients not having access to T cell subset test by flowcytometry.

  14. Droplet-counting Microtitration System for Precise On-site Analysis.

    PubMed

    Kawakubo, Susumu; Omori, Taichi; Suzuki, Yasutada; Ueta, Ikuo

    2018-01-01

    A new microtitration system based on the counting of titrant droplets has been developed for precise on-site analysis. The dropping rate was controlled by inserting a capillary tube as a flow resistance in a laboratory-made micropipette. The error of titration was 3% in a simulated titration with 20 droplets. The pre-addition of a titrant was proposed for precise titration within an error of 0.5%. The analytical performances were evaluated for chelate titration, redox titration and acid-base titration.

  15. Sensitivity analysis of pulse pileup model parameter in photon counting detectors

    NASA Astrophysics Data System (ADS)

    Shunhavanich, Picha; Pelc, Norbert J.

    2017-03-01

    Photon counting detectors (PCDs) may provide several benefits over energy-integrating detectors (EIDs), including spectral information for tissue characterization and the elimination of electronic noise. PCDs, however, suffer from pulse pileup, which distorts the detected spectrum and degrades the accuracy of material decomposition. Several analytical models have been proposed to address this problem. The performance of these models are dependent on the assumptions used, including the estimated pulse shape whose parameter values could differ from the actual physical ones. As the incident flux increases and the corrections become more significant the needed parameter value accuracy may be more crucial. In this work, the sensitivity of model parameter accuracies is analyzed for the pileup model of Taguchi et al. The spectra distorted by pileup at different count rates are simulated using either the model or Monte Carlo simulations, and the basis material thicknesses are estimated by minimizing the negative log-likelihood with Poisson or multivariate Gaussian distributions. From simulation results, we find that the accuracy of the deadtime, the height of pulse negative tail, and the timing to the end of the pulse are more important than most other parameters, and they matter more with increasing count rate. This result can help facilitate further work on parameter calibrations.

  16. Compensated gadolinium-loaded plastic scintillators for thermal neutron detection (and counting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumazert, Jonathan; Coulon, Romain; Bertrand, Guillaume H. V.

    2015-07-01

    Plastic scintillator loading with gadolinium-rich organometallic complexes shows a high potential for the deployment of efficient and cost-effective neutron detectors. Due to the low-energy photon and electron signature of thermal neutron capture by gadolinium-155 and gadolinium-157, alternative treatment to Pulse Shape Discrimination has to be proposed in order to display a trustable count rate. This paper discloses the principle of a compensation method applied to a two-scintillator system: a detection scintillator interacts with photon radiation and is loaded with gadolinium organometallic compound to become a thermal neutron absorber, while a non-gadolinium loaded compensation scintillator solely interacts with the photon partmore » of the incident radiation. Posterior to the nonlinear smoothing of the counting signals, a hypothesis test determines whether the resulting count rate after photon response compensation falls into statistical fluctuations or provides a robust image of a neutron activity. A laboratory prototype is tested under both photon and neutron irradiations, allowing us to investigate the performance of the overall compensation system in terms of neutron detection, especially with regards to a commercial helium-3 counter. The study reveals satisfactory results in terms of sensitivity and orientates future investigation toward promising axes. (authors)« less

  17. Antral follicle counts are strongly associated with live-birth rates after assisted reproduction, with superior treatment outcome in women with polycystic ovaries.

    PubMed

    Holte, Jan; Brodin, Thomas; Berglund, Lars; Hadziosmanovic, Nermin; Olovsson, Matts; Bergh, Torbjörn

    2011-09-01

    To evaluate the association of antral follicle count (AFC) with in vitro fertilization/intracytoplasmic sperm injection (IVF-ICSI) outcome in a large unselected cohort of patients covering the entire range of AFC. Prospective observational study. University-affiliated private infertility center. 2,092 women undergoing 4,308 IVF-ICSI cycles. AFC analyzed for associations with treatment outcome and statistically adjusted for repeated treatments and age. Pregnancy rate, live-birth rate, and stimulation outcome parameters. The AFC was log-normally distributed. Pregnancy rates and live-birth rates were positively associated with AFC in a log-linear way, leveling out above AFC ∼30. Treatment outcome was superior among women with polycystic ovaries, independent from ovulatory status. The findings were significant also after adjustment for age and number of oocytes retrieved. Pregnancy and live-birth rates are log-linearly related to AFC. Polycystic ovaries, most often excluded from studies on ovarian reserve, fit as one extreme in the spectrum of AFC; a low count constitutes the other extreme, with the lowest ovarian reserve and poor treatment outcome. The findings remained statistically significant also after adjustment for the number of oocytes retrieved, suggesting this measure of ovarian reserve comprises information on oocyte quality and not only quantity. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Pitch Counts in Youth Baseball and Softball: A Historical Review.

    PubMed

    Feeley, Brian T; Schisel, Jessica; Agel, Julie

    2018-07-01

    Pitching injuries are getting increased attention in the mass media. Many references are made to pitch counts and the role they play in injury prevention. The original purpose of regulating the pitch count in youth baseball was to reduce injury and fatigue to pitchers. This article reviews the history and development of the pitch count limit in baseball, the effect it has had on injury, and the evidence regarding injury rates on softball windmill pitching. Literature search through PubMed, mass media, and organizational Web sites through June 2015. Pitch count limits and rest recommendations were introduced in 1996 after a survey of 28 orthopedic surgeons and baseball coaches showed injuries to baseball pitchers' arms were believed to be from the number of pitches thrown. Follow-up research led to revised recommendations with more detailed guidelines in 2006. Since that time, data show a relationship between innings pitched and upper extremity injury, but pitch type has not clearly been shown to affect injury rates. Current surveys of coaches and players show that coaches, parents, and athletes often do not adhere to these guidelines. There are no pitch count guidelines currently available in softball. The increase in participation in youth baseball and softball with an emphasis on early sport specialization in youth sports activities suggests that there will continue to be a rise in injury rates to young throwers. The published pitch counts are likely to positively affect injury rates but must be adhered to by athletes, coaches, and parents.

  19. Point Count Length and Detection of Forest Neotropical Migrant Birds

    Treesearch

    Deanna K. Dawson; David R. Smith; Chandler S. Robbins

    1995-01-01

    Comparisons of bird abundances among years or among habitats assume that the rates at which birds are detected and counted are constant within species. We use point count data collected in forests of the Mid-Atlantic states to estimate detection probabilities for Neotropical migrant bird species as a function of count length. For some species, significant differences...

  20. Mars sedimentary rock erosion rates constrained using crater counts, with applications to organic-matter preservation and to the global dust cycle

    NASA Astrophysics Data System (ADS)

    Kite, Edwin S.; Mayer, David P.

    2017-04-01

    Small-crater counts on Mars light-toned sedimentary rock are often inconsistent with any isochron; these data are usually plotted then ignored. We show (using an 18-HiRISE-image, > 104-crater dataset) that these non-isochron crater counts are often well-fit by a model where crater production is balanced by crater obliteration via steady exhumation. For these regions, we fit erosion rates. We infer that Mars light-toned sedimentary rocks typically erode at ∼102 nm/yr, when averaged over 10 km2 scales and 107-108 yr timescales. Crater-based erosion-rate determination is consistent with independent techniques, but can be applied to nearly all light-toned sedimentary rocks on Mars. Erosion is swift enough that radiolysis cannot destroy complex organic matter at some locations (e.g. paleolake deposits at SW Melas), but radiolysis is a severe problem at other locations (e.g. Oxia Planum). The data suggest that the relief of the Valles Marineris mounds is currently being reduced by wind erosion, and that dust production on Mars < 3 Gya greatly exceeds the modern reservoir of mobile dust.

  1. Estimation of DMFT, Salivary Streptococcus Mutans Count, Flow Rate, Ph, and Salivary Total Calcium Content in Pregnant and Non-Pregnant Women: A Prospective Study.

    PubMed

    Kamate, Wasim Ismail; Vibhute, Nupura Aniket; Baad, Rajendra Krishna

    2017-04-01

    Pregnancy, a period from conception till birth, causes changes in the functioning of the human body as a whole and specifically in the oral cavity that may favour the emergence of dental caries. Many studies have shown pregnant women at increased risk for dental caries, however, specific salivary caries risk factors and the particular period of pregnancy at heightened risk for dental caries are yet to be explored and give a scope of further research in this area. The aim of the present study was to assess the severity of dental caries in pregnant women compared to non-pregnant women by evaluating parameters like Decayed, Missing, Filled Teeth (DMFT) index, salivary Streptococcus mutans count, flow rate, pH and total calcium content. A total of 50 first time pregnant women in the first trimester were followed during their second trimester, third trimester and postpartum period for the evaluation of DMFT by World Health Organization (WHO) scoring criteria, salivary flow rate by drooling method, salivary pH by pH meter, salivary total calcium content by bioassay test kit and salivary Streptococcus mutans count by semiautomatic counting of colonies grown on Mitis Salivarius (MS) agar supplemented by 0.2U/ml of bacitracin and 10% sucrose. The observations of pregnant women were then compared with same parameters evaluated in the 50 non-pregnant women. Paired t-test and Wilcoxon sign rank test were performed to assess the association between the study parameters. Evaluation of different caries risk factors between pregnant and non-pregnant women clearly showed that pregnant women were at a higher risk for dental caries. Comparison of caries risk parameters during the three trimesters and postpartum period showed that the salivary Streptococcus mutans count had significantly increased in the second trimester , third trimester and postpartum period while the mean pH and mean salivary total calcium content decreased in the third trimester and postpartum period. These

  2. Estimation of DMFT, Salivary Streptococcus Mutans Count, Flow Rate, Ph, and Salivary Total Calcium Content in Pregnant and Non-Pregnant Women: A Prospective Study

    PubMed Central

    Vibhute, Nupura Aniket; Baad, Rajendra Krishna

    2017-01-01

    Introduction Pregnancy, a period from conception till birth, causes changes in the functioning of the human body as a whole and specifically in the oral cavity that may favour the emergence of dental caries. Many studies have shown pregnant women at increased risk for dental caries, however, specific salivary caries risk factors and the particular period of pregnancy at heightened risk for dental caries are yet to be explored and give a scope of further research in this area. Aim The aim of the present study was to assess the severity of dental caries in pregnant women compared to non-pregnant women by evaluating parameters like Decayed, Missing, Filled Teeth (DMFT) index, salivary Streptococcus mutans count, flow rate, pH and total calcium content. Materials and Methods A total of 50 first time pregnant women in the first trimester were followed during their second trimester, third trimester and postpartum period for the evaluation of DMFT by World Health Organization (WHO) scoring criteria, salivary flow rate by drooling method, salivary pH by pH meter, salivary total calcium content by bioassay test kit and salivary Streptococcus mutans count by semiautomatic counting of colonies grown on Mitis Salivarius (MS) agar supplemented by 0.2U/ml of bacitracin and 10% sucrose. The observations of pregnant women were then compared with same parameters evaluated in the 50 non-pregnant women. Paired t-test and Wilcoxon sign rank test were performed to assess the association between the study parameters. Results Evaluation of different caries risk factors between pregnant and non-pregnant women clearly showed that pregnant women were at a higher risk for dental caries. Comparison of caries risk parameters during the three trimesters and postpartum period showed that the salivary Streptococcus mutans count had significantly increased in the second trimester, third trimester and postpartum period while the mean pH and mean salivary total calcium content decreased in the third

  3. Differential Die-Away Instrument: Report on Neutron Detector Recovery Performance and Proposed Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir

    2014-09-22

    Four helium-3 ( 3He) detector/preamplifier packages (¾”/KM200, DDSI/PDT-A111, DDA/PDT-A111, and DDA/PDT10A) were experimentally tested to determine the deadtime effects at different DT neutron generator output settings. At very high count rates, the ¾”/KM200 package performed best. At high count rates, the ¾”/KM200 and the DDSI/PDT-A111 packages performed very well, with the DDSI/PDT-A111 operating with slightly higher efficiency. All of the packages performed similarly at mid to low count rates. Proposed improvements include using a fast recovery LANL-made dual channel preamplifier, testing smaller diameter 3He tubes, and further investigating quench gases.

  4. Predicting U.S. tuberculosis case counts through 2020.

    PubMed

    Woodruff, Rachel S Y E L K; Winston, Carla A; Miramontes, Roque

    2013-01-01

    In 2010, foreign-born persons accounted for 60% of all tuberculosis (TB) cases in the United States. Understanding which national groups make up the highest proportion of TB cases will assist TB control programs in concentrating limited resources where they can provide the greatest impact on preventing transmission of TB disease. The objective of our study was to predict through 2020 the numbers of U.S. TB cases among U.S.-born, foreign-born and foreign-born persons from selected countries of birth. TB case counts reported through the National Tuberculosis Surveillance System from 2000-2010 were log-transformed, and linear regression was performed to calculate predicted annual case counts and 95% prediction intervals for 2011-2020. Data were analyzed in 2011 before 2011 case counts were known. Decreases were predicted between 2010 observed and 2020 predicted counts for total TB cases (11,182 to 8,117 [95% prediction interval 7,262-9,073]) as well as TB cases among foreign-born persons from Mexico (1,541 to 1,420 [1,066-1,892]), the Philippines (740 to 724 [569-922]), India (578 to 553 [455-672]), Vietnam (532 to 429 [367-502]) and China (364 to 328 [249-433]). TB cases among persons who are U.S.-born and foreign-born were predicted to decline 47% (4,393 to 2,338 [2,113-2,586]) and 6% (6,720 to 6,343 [5,382-7,476]), respectively. Assuming rates of declines observed from 2000-2010 continue until 2020, a widening gap between the numbers of U.S.-born and foreign-born TB cases was predicted. TB case count predictions will help TB control programs identify needs for cultural competency, such as languages and interpreters needed for translating materials or engaging in appropriate community outreach.

  5. A Comparison of Bird Detection Rates Derived from On-Road vs. Off-Road Point Counts in Northern Montana

    Treesearch

    Richard L. Hutto; Sallie J. Hejl; Jeffrey F. Kelly; Sandra M. Pletschet

    1995-01-01

    We conducted a series of 275 paired (on- and off-road) point counts within 4 distinct vegetation cover types in northwestern Montana. Roadside counts generated a bird list that was essentially the same as the list generated from off-road counts within the same vegetation cover type. Species that were restricted to either on- or off-road counts were rare, suggesting...

  6. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; hide

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  7. Time and resource limits on working memory: cross-age consistency in counting span performance.

    PubMed

    Ransdell, Sarah; Hecht, Steven

    2003-12-01

    This longitudinal study separated resource demand effects from those of retention interval in a counting span task among 100 children tested in grade 2 and again in grades 3 and 4. A last card large counting span condition had an equivalent memory load to a last card small, but the last card large required holding the count over a longer retention interval. In all three waves of assessment, the last card large condition was found to be less accurate than the last card small. A model predicting reading comprehension showed that age was a significant predictor when entered first accounting for 26% of the variance, but counting span accounted for a further 22% of the variance. Span at Wave 1 accounted for significant unique variance at Wave 2 and at Wave 3. Results were similar for math calculation with age accounting for 31% of the variance and counting span accounting for a further 34% of the variance. Span at Wave 1 explained unique variance in math at Wave 2 and at Wave 3.

  8. Performance evaluation of the Sysmex XN-1000 hematology analyzer in assessment of the white blood cell count differential in pediatric specimens.

    PubMed

    Becker, P-H; Fenneteau, O; Da Costa, L

    2016-02-01

    The automated XN-1000 hematology analyzer enables to perform a blood cell count and a leukocyte differential. When abnormal cells were detected, a flag was generated by the analyzer and a manual microscopic examination of the corresponding blood film was performed. We compared the white blood cell differentials provided by the automated hematology analyzer XN-1000 in a pediatric population (n = 765) with those obtained through microscopic examination by cytologists and those obtained using a previous version of this analyzer, the XE-2100. Leukocytes count as well as flags sensitivity and specificity was analyzed. The leukocytes count provided by the analyzer is in good accordance with the differential obtained by manual count in children older than 3 months. The sensitivity for blast detection is 99% and the detection of reactive cells is 63%. The flag specificity remains low (<35%) for blood samples collected from infants between 8 days and 2 years of age, but increases up to 67% thereafter. The results obtained with the XN-1000 analyzer show an improvement in comparison with those obtained with the XE-2100 analyzer. The automated WBC differential provided by the XN-1000 analyzer in the pediatric setting is accurate, but a meticulous microscopic examination of blood smears remains necessary for infants up to 3 months of age to validate the analyzer flags. © 2015 John Wiley & Sons Ltd.

  9. A New High Channel-Count, High Scan-Rate, Data Acquisition System for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Sekula, Martin K.; Piatak, David J.; Simmons, Scott A.; Babel, Walter C.; Collins, Jesse G.; Ramey, James M.; Heald, Dean M.

    2016-01-01

    A data acquisition system upgrade project, known as AB-DAS, is underway at the NASA Langley Transonic Dynamics Tunnel. AB-DAS will soon serve as the primary data system and will substantially increase the scan-rate capabilities and analog channel count while maintaining other unique aeroelastic and dynamic test capabilities required of the facility. AB-DAS is configurable, adaptable, and enables buffet and aeroacoustic tests by synchronously scanning all analog channels and recording the high scan-rate time history values for each data quantity. AB-DAS is currently available for use as a stand-alone data system with limited capabilities while development continues. This paper describes AB-DAS, the design methodology, and the current features and capabilities. It also outlines the future work and projected capabilities following completion of the data system upgrade project.

  10. Poisson mixture model for measurements using counting.

    PubMed

    Miller, Guthrie; Justus, Alan; Vostrotin, Vadim; Dry, Donald; Bertelli, Luiz

    2010-03-01

    Starting with the basic Poisson statistical model of a counting measurement process, 'extraPoisson' variance or 'overdispersion' are included by assuming that the Poisson parameter representing the mean number of counts itself comes from another distribution. The Poisson parameter is assumed to be given by the quantity of interest in the inference process multiplied by a lognormally distributed normalising coefficient plus an additional lognormal background that might be correlated with the normalising coefficient (shared uncertainty). The example of lognormal environmental background in uranium urine data is discussed. An additional uncorrelated background is also included. The uncorrelated background is estimated from a background count measurement using Bayesian arguments. The rather complex formulas are validated using Monte Carlo. An analytical expression is obtained for the probability distribution of gross counts coming from the uncorrelated background, which allows straightforward calculation of a classical decision level in the form of a gross-count alarm point with a desired false-positive rate. The main purpose of this paper is to derive formulas for exact likelihood calculations in the case of various kinds of backgrounds.

  11. Gender Bias in Managerial Performance Ratings.

    ERIC Educational Resources Information Center

    Knight, Patrick A.; Saal, Frank E.

    As more women enter the managerial ranks, organizations are finding it necessary to address the possibility of gender bias in managerial performance ratings. To investigate the existence of gender bias in managerial performance ratings as they relate to problem-solving strategies, 197 college students (46 percent female) and 127 managers (of those…

  12. Single electron counting using a dual MCP assembly

    NASA Astrophysics Data System (ADS)

    Yang, Yuzhen; Liu, Shulin; Zhao, Tianchi; Yan, Baojun; Wang, Peiliang; Yu, Yang; Lei, Xiangcui; Yang, Luping; Wen, Kaile; Qi, Ming; Heng, Yuekun

    2016-09-01

    The gain, pulse height resolution and peak-to-valley ratio of single electrons detected by using a Chevron configured Microchannel Plate (MCP) assembly are studied. The two MCPs are separated by a 280 μm gap and are biased by four electrodes. The purpose of the study is to determine the optimum bias voltage arrangements for single electron counting. By comparing the results of various bias voltage combinations, we conclude that good performance for the electron counting can be achieved by operating the MCP assembly in saturation mode. In addition, by applying a small reverse bias voltage across the gap while adjusting the bias voltages of the MCPs, optimum performance of electron counting can be obtained.

  13. Triple-Label β Liquid Scintillation Counting

    PubMed Central

    Bukowski, Thomas R.; Moffett, Tyler C.; Revkin, James H.; Ploger, James D.; Bassingthwaighte, James B.

    2010-01-01

    The detection of radioactive compounds by liquid scintillation has revolutionized modern biology, yet few investigators make full use of the power of this technique. Even though multiple isotope counting is considerably more difficult than single isotope counting, many experimental designs would benefit from using more than one isotope. The development of accurate isotope counting techniques enabling the simultaneous use of three β-emitting tracers has facilitated studies in our laboratory using the multiple tracer indicator dilution technique for assessing rates of transmembrane transport and cellular metabolism. The details of sample preparation, and of stabilizing the liquid scintillation spectra of the tracers, are critical to obtaining good accuracy. Reproducibility is enhanced by obtaining detailed efficiency/quench curves for each particular set of tracers and solvent media. The numerical methods for multiple-isotope quantitation depend on avoiding error propagation (inherent to successive subtraction techniques) by using matrix inversion. Experimental data obtained from triple-label β counting illustrate reproducibility and good accuracy even when the relative amounts of different tracers in samples of protein/electrolyte solutions, plasma, and blood are changed. PMID:1514684

  14. Performance of a Discrete Wavelet Transform for Compressing Plasma Count Data and its Application to the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Barrie, Alexander C.; Yeh, Penshu; Dorelli, John C.; Clark, George B.; Paterson, William R.; Adrian, Mark L.; Holland, Matthew P.; Lobell, James V.; Simpson, David G.; Pollock, Craig J.; hide

    2015-01-01

    Plasma measurements in space are becoming increasingly faster, higher resolution, and distributed over multiple instruments. As raw data generation rates can exceed available data transfer bandwidth, data compression is becoming a critical design component. Data compression has been a staple of imaging instruments for years, but only recently have plasma measurement designers become interested in high performance data compression. Missions will often use a simple lossless compression technique yielding compression ratios of approximately 2:1, however future missions may require compression ratios upwards of 10:1. This study aims to explore how a Discrete Wavelet Transform combined with a Bit Plane Encoder (DWT/BPE), implemented via a CCSDS standard, can be used effectively to compress count information common to plasma measurements to high compression ratios while maintaining little or no compression error. The compression ASIC used for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS) is used for this study. Plasma count data from multiple sources is examined: resampled data from previous missions, randomly generated data from distribution functions, and simulations of expected regimes. These are run through the compression routines with various parameters to yield the greatest possible compression ratio while maintaining little or no error, the latter indicates that fully lossless compression is obtained. Finally, recommendations are made for future missions as to what can be achieved when compressing plasma count data and how best to do so.

  15. 2D dark-count-rate modeling of PureB single-photon avalanche diodes in a TCAD environment

    NASA Astrophysics Data System (ADS)

    Knežević, Tihomir; Nanver, Lis K.; Suligoj, Tomislav

    2018-02-01

    PureB silicon photodiodes have nm-shallow p+n junctions with which photons/electrons with penetration-depths of a few nanometer can be detected. PureB Single-Photon Avalanche Diodes (SPADs) were fabricated and analysed by 2D numerical modeling as an extension to TCAD software. The very shallow p+ -anode has high perimeter curvature that enhances the electric field. In SPADs, noise is quantified by the dark count rate (DCR) that is a measure for the number of false counts triggered by unwanted processes in the non-illuminated device. Just like for desired events, the probability a dark count increases with increasing electric field and the perimeter conditions are critical. In this work, the DCR was studied by two 2D methods of analysis: the "quasi-2D" (Q-2D) method where vertical 1D cross-sections were assumed for calculating the electron/hole avalanche-probabilities, and the "ionization-integral 2D" (II-2D) method where crosssections were placed where the maximum ionization-integrals were calculated. The Q-2D method gave satisfactory results in structures where the peripheral regions had a small contribution to the DCR, such as in devices with conventional deepjunction guard rings (GRs). Otherwise, the II-2D method proved to be much more precise. The results show that the DCR simulation methods are useful for optimizing the compromise between fill-factor and p-/n-doping profile design in SPAD devices. For the experimentally investigated PureB SPADs, excellent agreement of the measured and simulated DCR was achieved. This shows that although an implicit GR is attractively compact, the very shallow pn-junction gives a risk of having such a low breakdown voltage at the perimeter that the DCR of the device may be negatively impacted.

  16. Performance Evaluation of the microPET®—FOCUS-F120

    NASA Astrophysics Data System (ADS)

    Laforest, Richard; Longford, Desmond; Siegel, Stefan; Newport, Danny F.; Yap, Jeffrey

    2007-02-01

    microPETreg-Focus-F120 is the latest model of dedicated small animal PET scanners from CTI-Concorde Microsystems LLC, (Knoxville, TN). This scanner, based on the geometry of the microPET-R4, takes advantage of several detector modifications to the coincidence processing electronics that improve the image resolution, sensitivity, and counting rate performance as compared to the predecessor models. This work evaluates the performance of the Focus-F120 system and shows its improvement over the earlier models. In particular, the spatial resolution is shown to improve from 2.32 to 1.69 mm at 5 mm radial distance and the peak absolute sensitivity increases from 4.1% to 7.1% compared to the microPET-R4. The counting rate capability, expressed in noise equivalent counting rate (NEC-1R), was shown to peak at over 800 kcps at 88 MBq for both systems using a mouse phantom. For this small phantom, the NECR counting rate is limited by the data transmission bandwidth between the scanner and the acquisition console. The rat-like phantom showed peak NEC-1R value at 300 kcps at 140 MBq. Evaluation of image quality and quantitation accuracy was also performed using specially designed phantoms and animal experiments

  17. Growth Curve Models for Zero-Inflated Count Data: An Application to Smoking Behavior

    ERIC Educational Resources Information Center

    Liu, Hui; Powers, Daniel A.

    2007-01-01

    This article applies growth curve models to longitudinal count data characterized by an excess of zero counts. We discuss a zero-inflated Poisson regression model for longitudinal data in which the impact of covariates on the initial counts and the rate of change in counts over time is the focus of inference. Basic growth curve models using a…

  18. Atmospheric mold spore counts in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  19. High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s.

    PubMed

    Acconcia, Giulia; Rech, Ivan; Gulinatti, Angelo; Ghioni, Massimo

    2016-08-08

    Single photon avalanche diodes (SPADs) have been subject to a fast improvement in recent years. In particular, custom technologies specifically developed to fabricate SPAD devices give the designer the freedom to pursue the best detector performance required by applications. A significant breakthrough in this field is represented by the recent introduction of a red enhanced SPAD (RE-SPAD) technology, capable of attaining a good photon detection efficiency in the near infrared range (e.g. 40% at a wavelength of 800 nm) while maintaining a remarkable timing resolution of about 100ps full width at half maximum. Being planar, the RE-SPAD custom technology opened the way to the development of SPAD arrays particularly suited for demanding applications in the field of life sciences. However, to achieve such excellent performance custom SPAD detectors must be operated with an external active quenching circuit (AQC) designed on purpose. Next steps toward the development of compact and practical multichannel systems will require a new generation of monolithically integrated AQC arrays. In this paper we present a new, fully integrated AQC fabricated in a high-voltage 0.18 µm CMOS technology able to provide quenching pulses up to 50 Volts with fast leading and trailing edges. Although specifically designed for optimal operation of RE-SPAD devices, the new AQC is quite versatile: it can be used with any SPAD detector, regardless its fabrication technology, reaching remarkable count rates up to 80 Mcounts/s and generating a photon detection pulse with a timing jitter as low as 119 ps full width at half maximum. The compact design of our circuit has been specifically laid out to make this IC a suitable building block for monolithically integrated AQC arrays.

  20. The complete blood count and reticulocyte count--are they necessary in the evaluation of acute vasoocclusive sickle-cell crisis?

    PubMed

    Lopez, B L; Griswold, S K; Navek, A; Urbanski, L

    1996-08-01

    To assess the usefulness of the complete blood count (CBC) and the reticulocyte count in the evaluation of adult patients with acute vasoocclusive sickle-cell crisis (SCC) presenting to the ED. A 2-part study was performed. Part 1 was retrospective chart review of patients with a sole ED diagnosis of acute SCC. Part 2 was a prospective evaluation of consecutive patients presenting in SCC. In both parts of the study, patients with coexisting acute disease were excluded. The remaining patients were divided into 2 groups: admitted and released. The mean values for white blood cell (WBC) count, hemoglobin (Hb) level, and reticulocyte count were compared. In Part 2, the change (delta) from the patient's baseline in WBC count, Hb level, and reticulocyte count also was determined. Data were analyzed by 2-tailed Student's t-test. Part 1: There was no difference between the admitted (n = 33) and the released (n = 86) groups in mean WBC count (p = 0.10), Hb level (p = 0.25), or reticulocyte count (p = 0.08). Part 2: There was no difference between the admitted (n = 44) and the released (n = 160) groups in mean Hb level (p = 0.88), reticulocyte count (p = 0.47), delta Hb level (p = 0.88), and delta reticulocyte count (p = 0.76). There was a difference in mean WBC counts (15.8 +/- 4.9 x 10(9)/L admitted vs 12.8 +/- 4.9 x 10(9)/L released, p = 0.003) and delta WBC counts (5.1 +/- 4.6 x 10(9)/L admitted vs 1.8 +/- 4.6 x 10(9)/L released, p < 0.002). Determination of the Hb level and the reticulocyte count do not appear useful in the evaluation of acute SCC in the ED. Admission decisions appear associated with elevations in the WBC count. Further study is required to determine the true value of the WBC count in such decisions.

  1. Investigation of the Performance of an Ultralow-Dark-Count Superconducting Nanowire Single-Photon Detector

    NASA Astrophysics Data System (ADS)

    Subashchandran, Shanthi; Okamoto, Ryo; Zhang, Labao; Tanaka, Akira; Okano, Masayuki; Kang, Lin; Chen, Jian; Wu, Peiheng; Takeuchi, Shigeki

    2013-10-01

    The realization of an ultralow-dark-count rate (DCR) along with the conservation of high detection efficiency (DE) is critical for many applications using single photon detectors in quantum information technologies, material sciences, and biological sensing. For this purpose, a fiber-coupled superconducting nanowire single-photon detector (SNSPD) with a meander-type niobium nitride nanowire (width: 50 nm) is studied. Precise measurements of the bias current dependence of DE are carried out for a wide spectral range (from 500 to 1650 nm in steps of 50 nm) using a white light source and a laser line Bragg tunable band-pass filter. An ultralow DCR (0.0015 cps) and high DE (32%) are simultaneously achieved by the SNSPD at a wavelength of 500 nm.

  2. Choral Counting

    ERIC Educational Resources Information Center

    Turrou, Angela Chan; Franke, Megan L.; Johnson, Nicholas

    2017-01-01

    The students in Ms. Moscoso's second-grade class gather on the rug after recess, ready for one of their favorite math warm-ups: Choral Counting. Counting is an important part of doing mathematics throughout the school; students count collections (Schwerdtfeger and Chan 2007) and solve problems using a variety of strategies, many of which are…

  3. Absolute dose calibration of an X-ray system and dead time investigations of photon-counting techniques

    NASA Astrophysics Data System (ADS)

    Carpentieri, C.; Schwarz, C.; Ludwig, J.; Ashfaq, A.; Fiederle, M.

    2002-07-01

    High precision concerning the dose calibration of X-ray sources is required when counting and integrating methods are compared. The dose calibration for a dental X-ray tube was executed with special dose calibration equipment (dosimeter) as function of exposure time and rate. Results were compared with a benchmark spectrum and agree within ±1.5%. Dead time investigations with the Medipix1 photon-counting chip (PCC) have been performed by rate variations. Two different types of dead time, paralysable and non-paralysable will be discussed. The dead time depends on settings of the front-end electronics and is a function of signal height, which might lead to systematic defects of systems. Dead time losses in excess of 30% have been found for the PCC at 200 kHz absorbed photons per pixel.

  4. Evaluation of the UFXC32k photon-counting detector for pump-probe experiments using synchrotron radiation.

    PubMed

    Koziol, Anna; Bordessoule, Michel; Ciavardini, Alessandra; Dawiec, Arkadiusz; Da Silva, Paulo; Desjardins, Kewin; Grybos, Pawel; Kanoute, Brahim; Laulhe, Claire; Maj, Piotr; Menneglier, Claude; Mercere, Pascal; Orsini, Fabienne; Szczygiel, Robert

    2018-03-01

    This paper presents the performance of a single-photon-counting hybrid pixel X-ray detector with synchrotron radiation. The camera was evaluated with respect to time-resolved experiments, namely pump-probe-probe experiments held at SOLEIL. The UFXC camera shows very good energy resolution of around 1.5 keV and allows the minimum threshold setting to be as low as 3 keV keeping the high-count-rate capabilities. Measurements of a synchrotron characteristic filling mode prove the proper separation of an isolated bunch of photons and the usability of the detector in time-resolved experiments.

  5. Learning to Count: School Finance Formula Count Methods and Attendance-Related Student Outcomes

    ERIC Educational Resources Information Center

    Ely, Todd L.; Fermanich, Mark L.

    2013-01-01

    School systems are under increasing pressure to improve student performance. Several states have recently explored adopting student count methods for school funding purposes that incentivize school attendance and continuous enrollment by adjusting funding for changes in enrollment or attendance over the course of the school year. However, no…

  6. Sperm count as a surrogate endpoint for male fertility control.

    PubMed

    Benda, Norbert; Gerlinger, Christoph

    2007-11-30

    When assessing the effectiveness of a hormonal method of fertility control in men, the classical approach used for the assessment of hormonal contraceptives in women, by estimating the pregnancy rate or using a life-table analysis for the time to pregnancy, is difficult to apply in a clinical development program. The main reasons are the dissociation of the treated unit, i.e. the man, and the observed unit, i.e. his female partner, the high variability in the frequency of male intercourse, the logistical cost and ethical concerns related to the monitoring of the trial. A reasonable surrogate endpoint of the definite endpoint time to pregnancy is sperm count. In addition to the avoidance of the mentioned problems, trials that compare different treatments are possible with reasonable sample sizes, and study duration can be shorter. However, current products do not suppress sperm production to 100 per cent in all men and the sperm count is only observed with measurement error. Complete azoospermia might not be necessary in order to achieve an acceptable failure rate compared with other forms of male fertility control. Therefore, the use of sperm count as a surrogate endpoint must rely on the results of a previous trial in which both the definitive- and surrogate-endpoint results were assessed. The paper discusses different estimation functions of the mean pregnancy rate (corresponding to the cumulative hazard) that are based on the results of sperm count trial and a previous trial in which both sperm count and time to pregnancy were assessed, as well as the underlying assumptions. Sample size estimations are given for pregnancy rate estimation with a given precision.

  7. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  8. High-performance reconfigurable coincidence counting unit based on a field programmable gate array.

    PubMed

    Park, Byung Kwon; Kim, Yong-Su; Kwon, Osung; Han, Sang-Wook; Moon, Sung

    2015-05-20

    We present a high-performance reconfigurable coincidence counting unit (CCU) using a low-end field programmable gate array (FPGA) and peripheral circuits. Because of the flexibility guaranteed by the FPGA program, we can easily change system parameters, such as internal input delays, coincidence configurations, and the coincidence time window. In spite of a low-cost implementation, the proposed CCU architecture outperforms previous ones in many aspects: it has 8 logic inputs and 4 coincidence outputs that can measure up to eight-fold coincidences. The minimum coincidence time window and the maximum input frequency are 0.47 ns and 163 MHz, respectively. The CCU will be useful in various experimental research areas, including the field of quantum optics and quantum information.

  9. Photon Counting - One More Time

    NASA Astrophysics Data System (ADS)

    Stanton, Richard H.

    2012-05-01

    Photon counting has been around for more than 60 years, and has been available to amateurs for most of that time. In most cases single photons are detected using photomultiplier tubes, "old technology" that became available after the Second World War. But over the last couple of decades the perfection of CCD devices has given amateurs the ability to perform accurate photometry with modest telescopes. Is there any reason to still count photons? This paper discusses some of the strengths of current photon counting technology, particularly relating to the search for fast optical transients. Technology advances in counters and photomultiplier modules are briefly mentioned. Illustrative data are presented including FFT analysis of bright star photometry and a technique for finding optical pulses in a large file of noisy data. This latter technique is shown to enable the discovery of a possible optical flare on the polar variable AM Her.

  10. A comparison of manual and electronic counting for total nucleated cell counts on synovial fluid from canine stifle joints.

    PubMed

    Atilola, M A; Lumsden, J H; Rooke, F

    1986-04-01

    Synovial fluids collected from the stifle joints of 20 physically normal adult dogs were subjected to cytological examination. A total nucleated cell count was performed on each sample using both an electronic cell counter and a hemocytometer. The mean of the total counts done with the electronic counter was significantly higher (1008 cells/microL) than that obtained manually with the hemocytometer (848 cells/microL).

  11. Accounting for What Counts

    ERIC Educational Resources Information Center

    Milner, Joseph O.; Ferran, Joan E.; Martin, Katharine Y.

    2003-01-01

    No Child Left Behind legislation makes it clear that outside evaluators determine what gets taught in the classroom. It is important to ensure they measure what truly counts in school. This fact is poignantly and sadly true for the under funded, poorly resourced, "low performing" schools that may be hammered by administration accountants…

  12. Maryland Kids Count Factbook, 2001.

    ERIC Educational Resources Information Center

    Advocates for Children and Youth, Baltimore, MD.

    This 7th annual Kids Count Factbook provides information on trends in the well-being of children in Maryland and its 24 jurisdictions. The statistical portrait is based on 18 indicators of well-being: (1) low birth-weight infants; (2) infant mortality; (3) early prenatal care; (4) binge drinking; (5) child deaths; (6) child injury rate; (7) grade…

  13. Maryland's Kids Count Factbook 1996.

    ERIC Educational Resources Information Center

    Advocates for Children and Youth, Baltimore, MD.

    This Kids Count report details statewide trends in the well-being of Maryland's children. The statistical portrait is based on 14 indicators of child well being: (1) child poverty; (2) child support; (3) births to teens; (4) low birthweight infants; (5) infant mortality; (6) lead screening; (7) child abuse and neglect; (8) child death rate; (9)…

  14. Kids Count in Delaware, Families Count in Delaware: Fact Book, 2003.

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Kids Count in Delaware.

    This Kids Count Fact Book is combined with the Families Count Fact Book to provide information on statewide trends affecting children and families in Delaware. The Kids Count and Families Count indicators have been combined into four new categories: health and health behaviors, educational involvement and achievement, family environment and…

  15. Novel Photon-Counting Detectors for Free-Space Communication

    NASA Technical Reports Server (NTRS)

    Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.

    2016-01-01

    We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.

  16. Vehicle counting system using real-time video processing

    NASA Astrophysics Data System (ADS)

    Crisóstomo-Romero, Pedro M.

    2006-02-01

    Transit studies are important for planning a road network with optimal vehicular flow. A vehicular count is essential. This article presents a vehicle counting system based on video processing. An advantage of such system is the greater detail than is possible to obtain, like shape, size and speed of vehicles. The system uses a video camera placed above the street to image transit in real-time. The video camera must be placed at least 6 meters above the street level to achieve proper acquisition quality. Fast image processing algorithms and small image dimensions are used to allow real-time processing. Digital filters, mathematical morphology, segmentation and other techniques allow identifying and counting all vehicles in the image sequences. The system was implemented under Linux in a 1.8 GHz Pentium 4 computer. A successful count was obtained with frame rates of 15 frames per second for images of size 240x180 pixels and 24 frames per second for images of size 180x120 pixels, thus being able to count vehicles whose speeds do not exceed 150 km/h.

  17. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  18. Montana Kids Count Data Book and County Profiles, 1994.

    ERIC Educational Resources Information Center

    Healthy Mothers, Healthy Babies--The Montana Coalition, Helena.

    This Kids Count publication is the first to examine statewide trends in the well-being of Montana's children. The statistical portrait is based on 13 indicators of well-being: (1) low birthweight rate; (2) infant mortality rate; (3) child death rate; (4) teen violent death rate; (5) percent of public school enrollment in Chapter 1 programs; (6)…

  19. Monte Carlo simulation of Ray-Scan 64 PET system and performance evaluation using GATE toolkit

    NASA Astrophysics Data System (ADS)

    Li, Suying; Zhang, Qiushi; Vuletic, Ivan; Xie, Zhaoheng; Yang, Kun; Ren, Qiushi

    2017-02-01

    In this study, we aimed to develop a GATE model for the simulation of Ray-Scan 64 PET scanner and model its performance characteristics. A detailed implementation of system geometry and physical process were included in the simulation model. Then we modeled the performance characteristics of Ray-Scan 64 PET system for the first time, based on National Electrical Manufacturers Association (NEMA) NU-2 2007 protocols and validated the model against experimental measurement, including spatial resolution, sensitivity, counting rates and noise equivalent count rate (NECR). Moreover, an accurate dead time module was investigated to simulate the counting rate performance. Overall results showed reasonable agreement between simulation and experimental data. The validation results showed the reliability and feasibility of the GATE model to evaluate major performance of Ray-Scan 64 PET system. It provided a useful tool for a wide range of research applications.

  20. Avalanche photodiode photon counting receivers for space-borne lidars

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.

    1991-01-01

    Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.

  1. The Money/Counting Kit. The Prospectus Series, Paper No. 6.

    ERIC Educational Resources Information Center

    Musumeci, Judith

    The Money/Counting Kit for Handicapped Children and Youth, frees the teacher from lessons in money and counting concepts and enables a student to learn at his own rate with immediate feedback from activity cards, name cards, thermoformed coin cards (optional), and self-instructional booklets. The activity cards, which may be used individually or…

  2. Laser Transmitter Design and Performance for the Slope Imaging Multi-Polarization Photon-Counting Lidar (SIMPL) Instrument

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Harding, David J.; Dabney, Philip W.

    2016-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) instrument is a polarimetric, two-color, multibeam push broom laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program and has been flown successfully on multiple airborne platforms since 2008. In this talk we will discuss the laser transmitter performance and present recent science data collected over the Greenland ice sheet and sea ice in support of the NASA Ice Cloud and land Elevation Satellite 2 (ICESat-2) mission to be launched in 2017.

  3. An evaluation of the utility and limitations of counting motor unit action potentials in the surface electromyogram

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Zev Rymer, William

    2004-12-01

    The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.

  4. Effects of Sampling Strategy, Detection Probability, and Independence of Counts on the Use of Point Counts

    Treesearch

    Grey W. Pendleton

    1995-01-01

    Many factors affect the use of point counts for monitoring bird populations, including sampling strategies, variation in detection rates, and independence of sample points. The most commonly used sampling plans are stratified sampling, cluster sampling, and systematic sampling. Each of these might be most useful for different objectives or field situations. Variation...

  5. A study of cellular counting to determine minimum thresholds for adequacy for liquid-based cervical cytology using a survey and counting protocol.

    PubMed

    Kitchener, Henry C; Gittins, Matthew; Desai, Mina; Smith, John H F; Cook, Gary; Roberts, Chris; Turnbull, Lesley

    2015-03-01

    Liquid-based cytology (LBC) for cervical screening would benefit from laboratory practice guidelines that define specimen adequacy for reporting of slides. The evidence base required to define cell adequacy should incorporate both ThinPrep™ (TP; Hologic, Inc., Bedford, MA, USA) and SurePath™ (SP; BD Diagnostics, Burlington, NC, USA), the two LBC systems used in the UK cervical screening programmes. The objectives of this study were to determine (1) current practice for reporting LBC in England, Wales and Scotland, (2) a reproducible method for cell counting, (3) the cellularity of slides classified as inadequate, negative or abnormal and (4) the impact of varying cellularity on the likelihood of detecting cytological abnormalities. The study involved four separate arms to pursue each of the four objectives. (1) A questionnaire survey of laboratories was conducted. (2) A standard counting protocol was developed and used by three experienced cytopathologists to determine a reliable and reproducible cell counting method. (3) Slide sets which included a range of cytological abnormalities were each sent to three laboratories for cell counting to study the correlation between cell counts and reported cytological outcomes. (4) Dilution of LBC samples by fluid only (unmixed) or by dilution with a sample containing normal cells (mixed) was performed to study the impact on reporting of reducing either the total cell count or the relative proportion of abnormal to normal cells. The study was conducted within the cervical screening programmes in England, Wales and Scotland, using routinely obtained cervical screening samples, and in 56 participating NHS cervical cytology laboratories. The study involved only routinely obtained cervical screening samples. There was no clinical intervention. The main outcome measures were (1) reliability of counting method, (2) correlation of reported cytology grades with cellularity and (3) levels of detection of abnormal cells in

  6. Experience with local lymph node assay performance standards using standard radioactivity and nonradioactive cell count measurements.

    PubMed

    Basketter, David; Kolle, Susanne N; Schrage, Arnhild; Honarvar, Naveed; Gamer, Armin O; van Ravenzwaay, Bennard; Landsiedel, Robert

    2012-08-01

    The local lymph node assay (LLNA) is the preferred test for identification of skin-sensitizing substances by measuring radioactive thymidine incorporation into the lymph node. To facilitate acceptance of nonradioactive variants, validation authorities have published harmonized minimum performance standards (PS) that the alternative endpoint assay must meet. In the present work, these standards were applied to a variant of the LLNA based on lymph node cell counts (LNCC) run in parallel as a control with the standard LLNA with radioactivity measurements, with threshold concentrations (EC3) being determined for the sensitizers. Of the 22 PS chemicals tested in this study, 21 yielded the same results from standard radioactivity and cell count measurements; only 2-mercaptobenzothiazole was positive by LLNA but negative by LNCC. Of the 16 PS positives, 15 were positive by LLNA and 14 by LNCC; methylmethacrylate was not identified as sensitizer by either of the measurements. Two of the six PS negatives tested negative in our study by both LLNA and LNCC. Of the four PS negatives which were positive in our study, chlorobenzene and methyl salicylate were tested at higher concentrations than the published PS, whereas the corresponding concentrations resulted in consistent negative results. Methylmethacrylate and nickel chloride tested positive within the concentration range used for the published PS. The results indicate cell counts and radioactive measurements are in good accordance within the same LLNA using the 22 PS test substances. Comparisons with the published PS results may, however, require balanced analysis rather than a simple checklist approach. Copyright © 2011 John Wiley & Sons, Ltd.

  7. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses.

    PubMed

    Tang, Wan; Lu, Naiji; Chen, Tian; Wang, Wenjuan; Gunzler, Douglas David; Han, Yu; Tu, Xin M

    2015-10-30

    Zero-inflated Poisson (ZIP) and negative binomial (ZINB) models are widely used to model zero-inflated count responses. These models extend the Poisson and negative binomial (NB) to address excessive zeros in the count response. By adding a degenerate distribution centered at 0 and interpreting it as describing a non-risk group in the population, the ZIP (ZINB) models a two-component population mixture. As in applications of Poisson and NB, the key difference between ZIP and ZINB is the allowance for overdispersion by the ZINB in its NB component in modeling the count response for the at-risk group. Overdispersion arising in practice too often does not follow the NB, and applications of ZINB to such data yield invalid inference. If sources of overdispersion are known, other parametric models may be used to directly model the overdispersion. Such models too are subject to assumed distributions. Further, this approach may not be applicable if information about the sources of overdispersion is unavailable. In this paper, we propose a distribution-free alternative and compare its performance with these popular parametric models as well as a moment-based approach proposed by Yu et al. [Statistics in Medicine 2013; 32: 2390-2405]. Like the generalized estimating equations, the proposed approach requires no elaborate distribution assumptions. Compared with the approach of Yu et al., it is more robust to overdispersed zero-inflated responses. We illustrate our approach with both simulated and real study data. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Linear operating region in the ozone dial photon counting system

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine

    1995-01-01

    Ozone is a relatively unstable molecule found in Earth's atmosphere. An ozone molecule is made up of three atoms of oxygen. Depending on where ozone resides, it can protect or harm life on Earth. High in the atmosphere, about 15 miles up, ozone acts as a shield to protect Earth's surface from the sun's harmful ultraviolet radiation. Without this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth, in the air we breathe, ozone is a harmful pollutant that causes damage to lung tissue and plants. Since the early 1980's, airborne lidar systems have been used for making measurements of ozone. The differential absorption lidar (DIAL) technique is used in the remote measurement of O3. This system allows the O3 to be measured as function of the range in the atmosphere. Two frequency-doubled Nd:YAG lasers are used to pump tunable dye lasers. The lasers are operating at 289 nm for the DIAL on-line wavelength of O3, and the other one is operated at 300 nm for the off-line wavelength. The DIAL wavelengths are produced in sequential laser pulses with a time separation of 300 micro s. The backscattered laser energy is collected by telescopes and measured using photon counting systems. The photon counting system measures the light signal by making use of the photon nature of light. The output pulse from the Photo-Multiplier Tube (PE), caused by a photon striking the PMT photo-cathode, is amplified and passed to a pulse height discriminator. The peak value of the pulse is compared to a reference voltage (discrimination level). If the pulse amplitude exceeds the discrimination level, the discriminator generates a standard pulse which is counted by the digital counter. Non-linearity in the system is caused by the overlapping of pulses and the finite response time of the electronics. At low count rates one expects the system to register one event for each output pulse from the PMT corresponding to a photon incident upon the

  9. The origin and reduction of spurious extrahepatic counts observed in 90Y non-TOF PET imaging post radioembolization

    NASA Astrophysics Data System (ADS)

    Walrand, Stephan; Hesse, Michel; Jamar, François; Lhommel, Renaud

    2018-04-01

    Our literature survey revealed a physical effect unknown to the nuclear medicine community, i.e. internal bremsstrahlung emission, and also the existence of long energy resolution tails in crystal scintillation. None of these effects has ever been modelled in PET Monte Carlo (MC) simulations. This study investigates whether these two effects could be at the origin of two unexplained observations in 90Y imaging by PET: the increasing tails in the radial profile of true coincidences, and the presence of spurious extrahepatic counts post radioembolization in non-TOF PET and their absence in TOF PET. These spurious extrahepatic counts hamper the microsphere delivery check in liver radioembolization. An acquisition of a 32P vial was performed on a GSO PET system. This is the ideal setup to study the impact of bremsstrahlung x-rays on the true coincidence rate when no positron emission and no crystal radioactivity are present. A MC simulation of the acquisition was performed using Gate-Geant4. MC simulations of non-TOF PET and TOF-PET imaging of a synthetic 90Y human liver radioembolization phantom were also performed. Internal bremsstrahlung and long energy resolution tails inclusion in MC simulations quantitatively predict the increasing tails in the radial profile. In addition, internal bremsstrahlung explains the discrepancy previously observed in bremsstrahlung SPECT between the measure of the 90Y bremsstrahlung spectrum and its simulation with Gate-Geant4. However the spurious extrahepatic counts in non-TOF PET mainly result from the failure of conventional random correction methods in such low count rate studies and poor robustness versus emission-transmission inconsistency. A novel proposed random correction method succeeds in cleaning the spurious extrahepatic counts in non-TOF PET. Two physical effects not considered up to now in nuclear medicine were identified to be at the origin of the unusual 90Y true coincidences radial profile. TOF reconstruction removing

  10. Design Study of an Incinerator Ash Conveyor Counting System - 13323

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaederstroem, Henrik; Bronson, Frazier

    A design study has been performed for a system that should measure the Cs-137 activity in ash from an incinerator. Radioactive ash, expected to consist of both Cs-134 and Cs-137, will be transported on a conveyor belt at 0.1 m/s. The objective of the counting system is to determine the Cs-137 activity and direct the ash to the correct stream after a diverter. The decision levels are ranging from 8000 to 400000 Bq/kg and the decision error should be as low as possible. The decision error depends on the total measurement uncertainty which depends on the counting statistics and themore » uncertainty in the efficiency of the geometry. For the low activity decision it is necessary to know the efficiency to be able to determine if the signal from the Cs-137 is above the minimum detectable activity and that it generates enough counts to reach the desired precision. For the higher activity decision the uncertainty of the efficiency needs to be understood to minimize decision errors. The total efficiency of the detector is needed to be able to determine if the detector will be able operate at the count rate at the highest expected activity. The design study that is presented in this paper describes how the objectives of the monitoring systems were obtained, the choice of detector was made and how ISOCS (In Situ Object Counting System) mathematical modeling was used to calculate the efficiency. The ISOCS uncertainty estimator (IUE) was used to determine which parameters of the ash was important to know accurately in order to minimize the uncertainty of the efficiency. The examined parameters include the height of the ash on the conveyor belt, the matrix composition and density and relative efficiency of the detector. (authors)« less

  11. Technology Counts 2007: A Digital Decade

    ERIC Educational Resources Information Center

    Education Week, 2007

    2007-01-01

    "Technology Counts 2007" looks back, and ahead, after a decade of enormous upheaval in the educational technology landscape. This special issue of "Education Week" includes the following articles: (1) A Digital Decade; (2) Getting Up to Speed (Andrew Trotter); (3) E-Rate's Imprint Seen in Schools (Andrew Trotter); (4) Teaching…

  12. Alternative Optimizations of X-ray TES Arrays: Soft X-rays, High Count Rates, and Mixed-Pixel Arrays

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A.-D.; Chervenak, J. A.; Figueroa-Feliciano, E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.

    2007-01-01

    We are developing arrays of superconducting transition-edge sensors (TES) for imaging spectroscopy telescopes such as the XMS on Constellation-X. While our primary focus has been on arrays that meet the XMS requirements (of which, foremost, is an energy resolution of 2.5 eV at 6 keV and a bandpass from approx. 0.3 keV to 12 keV), we have also investigated other optimizations that might be used to extend the XMS capabilities. In one of these optimizations, improved resolution below 1 keV is achieved by reducing the heat capacity. Such pixels can be based on our XMS-style TES's with the separate absorbers omitted. These pixels can added to an array with broadband response either as a separate array or interspersed, depending on other factors that include telescope design and science requirements. In one version of this approach, we have designed and fabricated a composite array of low-energy and broad-band pixels to provide high spectral resolving power over a broader energy bandpass than could be obtained with a single TES design. The array consists of alternating pixels with and without overhanging absorbers. To explore optimizations for higher count rates, we are also optimizing the design and operating temperature of pixels that are coupled to a solid substrate. We will present the performance of these variations and discuss other optimizations that could be used to enhance the XMS or enable other astrophysics experiments.

  13. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    PubMed

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.

  14. Evaluation of lactate, white blood cell count, neutrophil count, procalcitonin and immature granulocyte count as biomarkers for sepsis in emergency department patients.

    PubMed

    Karon, Brad S; Tolan, Nicole V; Wockenfus, Amy M; Block, Darci R; Baumann, Nikola A; Bryant, Sandra C; Clements, Casey M

    2017-11-01

    Lactate, white blood cell (WBC) and neutrophil count, procalcitonin and immature granulocyte (IG) count were compared for the prediction of sepsis, and severe sepsis or septic shock, in patients presenting to the emergency department (ED). We prospectively enrolled 501 ED patients with a sepsis panel ordered for suspicion of sepsis. WBC, neutrophil, and IG counts were measured on a Sysmex XT-2000i analyzer. Lactate was measured by i-STAT, and procalcitonin by Brahms Kryptor. We classified patients as having sepsis using a simplification of the 1992 consensus conference sepsis definitions. Patients with sepsis were further classified as having severe sepsis or septic shock using established criteria. Univariate receiver operating characteristic (ROC) analysis was performed to determine odds ratio (OR), area under the ROC curve (AUC), and sensitivity/specificity at optimal cut-off for prediction of sepsis (vs. no sepsis), and prediction of severe sepsis or septic shock (vs. no sepsis). There were 267 patients without sepsis; and 234 with sepsis, including 35 patients with severe sepsis or septic shock. Lactate had the highest OR (1.44, 95th% CI 1.20-1.73) for the prediction of sepsis; while WBC, neutrophil count and percent (neutrophil/WBC) had OR>1.00 (p<0.05). All biomarkers had AUC<0.70 and sensitivity and specificity <70% at the optimal cut-off. Initial lactate was the best biomarker for predicting severe sepsis or septic shock, with an odds ratio (95th% CI) of 2.70 (2.02-3.61) and AUC 0.89 (0.82-0.96). Traditional biomarkers (lactate, WBC, neutrophil count, procalcitonin, IG) have limited utility in the prediction of sepsis. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. Correlation of platelet count and acute ST-elevation in myocardial infarction.

    PubMed

    Paul, G K; Sen, B; Bari, M A; Rahman, Z; Jamal, F; Bari, M S; Sazidur, S R

    2010-07-01

    The role of platelets in the pathogenesis of ST-elevation myocardial infarction (STEMI) has been substantiated by studies that demonstrated significant clinical benefits associated with antiplatelet therapy. Initial platelet counts in Acute Myocardial Infarction (AMI) may be a useful adjunct for identifying those patients who may or may not respond to fibrinolytic agents. Patient with acute STEMI has variable level of platelet count and with higher platelet count have poor in hospital outcome. There are many predictors of poor outcome in Acute Myocardial Infarction (AMI) like cardiac biomarkers (Troponin I, Troponin T and CK-MB), C-Reactive Protien (CRP) and WBC (White Blood Cell) counts. Platelet count on presentation of STEMI is one of them. Higher platelet count is associated with higher rate of adverse clinical outcome in ST-Elevation Myocardial Infarction (STEMI), like heart failure, arrhythmia, re-infarction & death. So, categorization of patient with STEMI on the basis of platelet counts may be helpful for risk stratification and management of these patients.

  16. Assessing Rotation-Invariant Feature Classification for Automated Wildebeest Population Counts.

    PubMed

    Torney, Colin J; Dobson, Andrew P; Borner, Felix; Lloyd-Jones, David J; Moyer, David; Maliti, Honori T; Mwita, Machoke; Fredrick, Howard; Borner, Markus; Hopcraft, J Grant C

    2016-01-01

    Accurate and on-demand animal population counts are the holy grail for wildlife conservation organizations throughout the world because they enable fast and responsive adaptive management policies. While the collection of image data from camera traps, satellites, and manned or unmanned aircraft has advanced significantly, the detection and identification of animals within images remains a major bottleneck since counting is primarily conducted by dedicated enumerators or citizen scientists. Recent developments in the field of computer vision suggest a potential resolution to this issue through the use of rotation-invariant object descriptors combined with machine learning algorithms. Here we implement an algorithm to detect and count wildebeest from aerial images collected in the Serengeti National Park in 2009 as part of the biennial wildebeest count. We find that the per image error rates are greater than, but comparable to, two separate human counts. For the total count, the algorithm is more accurate than both manual counts, suggesting that human counters have a tendency to systematically over or under count images. While the accuracy of the algorithm is not yet at an acceptable level for fully automatic counts, our results show this method is a promising avenue for further research and we highlight specific areas where future research should focus in order to develop fast and accurate enumeration of aerial count data. If combined with a bespoke image collection protocol, this approach may yield a fully automated wildebeest count in the near future.

  17. Hospital performance measures and 30-day readmission rates.

    PubMed

    Stefan, Mihaela S; Pekow, Penelope S; Nsa, Wato; Priya, Aruna; Miller, Lauren E; Bratzler, Dale W; Rothberg, Michael B; Goldberg, Robert J; Baus, Kristie; Lindenauer, Peter K

    2013-03-01

    Lowering hospital readmission rates has become a primary target for the Centers for Medicare & Medicaid Services, but studies of the relationship between adherence to the recommended hospital care processes and readmission rates have provided inconsistent and inconclusive results. To examine the association between hospital performance on Medicare's Hospital Compare process quality measures and 30-day readmission rates for patients with acute myocardial infarction (AMI), heart failure and pneumonia, and for those undergoing major surgery. We assessed hospital performance on process measures using the 2007 Hospital Inpatient Quality Reporting Program. The process measures for each condition were aggregated in two separate measures: Overall Measure (OM) and Appropriate Care Measure (ACM) scores. Readmission rates were calculated using Medicare claims. Risk-standardized 30-day all-cause readmission rate was calculated as the ratio of predicted to expected rate standardized by the overall mean readmission rate. We calculated predicted readmission rate using hierarchical generalized linear models and adjusting for patient-level factors. Among patients aged ≥ 66 years, the median OM score ranged from 79.4 % for abdominal surgery to 95.7 % for AMI, and the median ACM scores ranged from 45.8 % for abdominal surgery to 87.9 % for AMI. We observed a statistically significant, but weak, correlation between performance scores and readmission rates for pneumonia (correlation coefficient R = 0.07), AMI (R = 0.10), and orthopedic surgery (R = 0.06). The difference in the mean readmission rate between hospitals in the 1st and 4th quartiles of process measure performance was statistically significant only for AMI (0.25 percentage points) and pneumonia (0.31 percentage points). Performance on process measures explained less than 1 % of hospital-level variation in readmission rates. Hospitals with greater adherence to recommended care processes did not achieve

  18. Scale-dependent associations of Band-tailed Pigeon counts at mineral sites

    USGS Publications Warehouse

    Overton, Cory T.; Casazza, Michael L.; Coates, Peter S.

    2010-01-01

    The abundance of Band-tailed Pigeons (Patagioenas fasciata monilis) has declined substantially from historic numbers along the Pacific Coast. Identification of patterns and causative factors of this decline are hampered because habitat use data are limited, and temporal and spatial variability patterns associated with population indices are not known. Furthermore, counts are influenced not only by pigeon abundance but also by rate of visitation to mineral sites, which may not be consistent. To address these issues, we conducted mineral site counts during 2001 and 2002 at 20 locations from 4 regions in the Pacific Northwest, including central Oregon and western Washington, USA, and British Columbia, Canada. We developed inference models that consisted of environmental factors and spatial characteristics at multiple spatial scales. Based on information theory, we compared models within a final set that included variables measured at 3 spatial scales (0.03 ha, 3.14 ha, and 7850 ha). Pigeon counts increased from central Oregon through northern Oregon and decreased into British Columbia. After accounting for this spatial pattern, we found that pigeon counts increased 12% ± 2.7 with a 10% increase in the amount of deciduous forested area within 100 m from a mineral site. Also, distance from the mineral site of interest to the nearest known mineral site was positively related to pigeon counts. These findings provide direction for future research focusing on understanding the relationships between indices of relative abundance and complete counts (censuses) of pigeon populations by identifying habitat characteristics that might influence visitation rates. Furthermore, our results suggest that spatial arrangement of mineral sites influences Band-tailed Pigeon counts and the populations which those counts represent.

  19. South Dakota KIDS COUNT Factbook, 1999.

    ERIC Educational Resources Information Center

    Cochran, Carole, Ed.

    This Kids Count fact book examines statewide trends in well-being for South Dakota's children. The statistical portrait is based on 25 indicators in the areas of demographics, health, education, economic status, and safety. The indicators are: (1) population; (2) family profile; (3) poverty thresholds; (4) infant mortality rate; (5) low birth…

  20. Mcps-range photon-counting x-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Enomoto, Toshiyuki; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-10-01

    10 Mcps photon counting was carried out using a detector consisting of a 2.0 mm-thick ZnO (zinc oxide) single-crystal scintillator and an MPPC (multipixel photon counter) module in an X-ray computed tomography (CT) system. The maximum count rate was 10 Mcps (mega counts per second) at a tube voltage of 70 kV and a tube current of 2.0 mA. Next, a photon-counting X-ray CT system consists of an X-ray generator, a turntable, a scan stage, a two-stage controller, the ZnO-MPPC detector, a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan with a scan velocity of 25 mm/s. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The exposure time for obtaining a tomogram was 600 s at a scan step of 0.5 mm and a rotation step of 1.0°, and photon-counting CT was accomplished using iodine-based contrast media.

  1. Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, William H.

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pu eff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  2. Persistent Ratee Contaminants in Performance Appraisal.

    ERIC Educational Resources Information Center

    Van Fleet, David D.; Chamberlain, Howard

    The hypothesis that conventional approaches to evaluating contaminants in performance appraisal overlook important individual ratee effects was examined. A rating form was developed that consisted of the following dimensions and behaviors: warmth; guided discourse or indirect teaching methods; control of subject matter; enthusiasm and reinforcing;…

  3. A Burst-Mode Photon-Counting Receiver with Automatic Channel Estimation and Bit Rate Detection

    DTIC Science & Technology

    2016-02-24

    communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode...obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver...receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB

  4. Multiple-Event, Single-Photon Counting Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  5. Alabama Kids Count 2002 Data Book.

    ERIC Educational Resources Information Center

    Curtis, Apreill; Bogie, Don

    This Kids Count data book examines statewide trends in well-being of Alabamas children. The statistical portrait is based on 18 indicators in the areas of child health, education, safety, and security: (1) infant mortality rate; (2) low weight births; (3) child health index; (4) births to unmarried teens; (5) first grade retention; (6) school…

  6. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  7. South Carolina Kids Count, 2001.

    ERIC Educational Resources Information Center

    Holmes, A. Baron

    This Kids Count report examines statewide trends in the well-being of South Carolina's children. The statistical portrait is based on 42 indicators in the areas of demographics, family, economic status, health, readiness and early school performance, scholastic achievement, and adolescent risk behaviors. The indicators are: (1) population; (2)…

  8. South Carolina Kids Count, 2000.

    ERIC Educational Resources Information Center

    Holmes, A. Baron

    This Kids Count report examines statewide trends in the well-being of South Carolina's children. The statistical portrait is based on 41 indicators in the areas of demographics, family, economic status, health, readiness and early school performance, scholastic achievement, and adolescent risk behaviors. The indicators are: (1) population; (2)…

  9. Characterization of photon-counting multislit breast tomosynthesis.

    PubMed

    Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik

    2018-02-01

    It has been shown that breast tomosynthesis may improve sensitivity and specificity compared to two-dimensional mammography, resulting in increased detection-rate of cancers or lowered call-back rates. The purpose of this study is to characterize a spectral photon-counting multislit breast tomosynthesis system that is able to do single-scan spectral imaging with multiple collimated x-ray beams. The system differs in many aspects compared to conventional tomosynthesis using energy-integrating flat-panel detectors. The investigated system was a prototype consisting of a dual-threshold photon-counting detector with 21 collimated line detectors scanning across the compressed breast. A review of the system is done in terms of detector, acquisition geometry, and reconstruction methods. Three reconstruction methods were used, simple back-projection, filtered back-projection and an iterative algebraic reconstruction technique. The image quality was evaluated by measuring the modulation transfer-function (MTF), normalized noise-power spectrum, detective quantum-efficiency (DQE), and artifact spread-function (ASF) on reconstructed spectral tomosynthesis images for a total-energy bin (defined by a low-energy threshold calibrated to remove electronic noise) and for a high-energy bin (with a threshold calibrated to split the spectrum in roughly equal parts). Acquisition was performed using a 29 kVp W/Al x-ray spectrum at a 0.24 mGy exposure. The difference in MTF between the two energy bins was negligible, that is, there was no energy dependence on resolution. The MTF dropped to 50% at 1.5 lp/mm to 2.3 lp/mm in the scan direction and 2.4 lp/mm to 3.3 lp/mm in the slit direction, depending on the reconstruction method. The full width at half maximum of the ASF was found to range from 13.8 mm to 18.0 mm for the different reconstruction methods. The zero-frequency DQE of the system was found to be 0.72. The fraction of counts in the high-energy bin was measured to be 59% of the

  10. Zero adjusted models with applications to analysing helminths count data.

    PubMed

    Chipeta, Michael G; Ngwira, Bagrey M; Simoonga, Christopher; Kazembe, Lawrence N

    2014-11-27

    It is common in public health and epidemiology that the outcome of interest is counts of events occurrence. Analysing these data using classical linear models is mostly inappropriate, even after transformation of outcome variables due to overdispersion. Zero-adjusted mixture count models such as zero-inflated and hurdle count models are applied to count data when over-dispersion and excess zeros exist. Main objective of the current paper is to apply such models to analyse risk factors associated with human helminths (S. haematobium) particularly in a case where there's a high proportion of zero counts. The data were collected during a community-based randomised control trial assessing the impact of mass drug administration (MDA) with praziquantel in Malawi, and a school-based cross sectional epidemiology survey in Zambia. Count data models including traditional (Poisson and negative binomial) models, zero modified models (zero inflated Poisson and zero inflated negative binomial) and hurdle models (Poisson logit hurdle and negative binomial logit hurdle) were fitted and compared. Using Akaike information criteria (AIC), the negative binomial logit hurdle (NBLH) and zero inflated negative binomial (ZINB) showed best performance in both datasets. With regards to zero count capturing, these models performed better than other models. This paper showed that zero modified NBLH and ZINB models are more appropriate methods for the analysis of data with excess zeros. The choice between the hurdle and zero-inflated models should be based on the aim and endpoints of the study.

  11. A technology review of time-of-flight photon counting for advanced remote sensing

    NASA Astrophysics Data System (ADS)

    Lamb, Robert A.

    2010-04-01

    Time correlated single photon counting (TCSPC) has made tremendous progress during the past ten years enabling improved performance in precision time-of-flight (TOF) rangefinding and lidar. In this review the development and performance of several ranging systems is presented that use TCSPC for accurate ranging and range profiling over distances up to 17km. A range resolution of a few millimetres is routinely achieved over distances of several kilometres. These systems include single wavelength devices operating in the visible; multi-wavelength systems covering the visible and near infra-red; the use of electronic gating to reduce in-band solar background and, most recently, operation at high repetition rates without range aliasing- typically 10MHz over several kilometres. These systems operate at very low optical power (<100μW). The technique therefore has potential for eye-safe lidar monitoring of the environment and obvious military, security and surveillance sensing applications. The review will highlight the theoretical principles of photon counting and progress made in developing absolute ranging techniques that enable high repetition rate data acquisition that avoids range aliasing. Technology trends in TCSPC rangefinding are merging with those of quantum cryptography and its future application to revolutionary quantum imaging provides diverse and exciting research into secure covert sensing, ultra-low power active imaging and quantum rangefinding.

  12. Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes.

    PubMed

    Hougaard, P; Lee, M L; Whitmore, G A

    1997-12-01

    Count data often show overdispersion compared to the Poisson distribution. Overdispersion is typically modeled by a random effect for the mean, based on the gamma distribution, leading to the negative binomial distribution for the count. This paper considers a larger family of mixture distributions, including the inverse Gaussian mixture distribution. It is demonstrated that it gives a significantly better fit for a data set on the frequency of epileptic seizures. The same approach can be used to generate counting processes from Poisson processes, where the rate or the time is random. A random rate corresponds to variation between patients, whereas a random time corresponds to variation within patients.

  13. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cammin, Jochen, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Taguchi, Katsuyuki, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Xu, Jennifer

    Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra andmore » count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi et al., “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102

  14. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT

    PubMed Central

    Cammin, Jochen; Xu, Jennifer; Barber, William C.; Iwanczyk, Jan S.; Hartsough, Neal E.; Taguchi, Katsuyuki

    2014-01-01

    Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra and count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi , “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011)]. The

  15. Kids Count Report in Nebraska, 2002.

    ERIC Educational Resources Information Center

    Johnston, Janet M.

    This Kids Count report examines statewide trend data on the well-being of Nebraska's children. Section 1 of the report presents U.S. Census data on population trends in Nebraska as well as child poverty rates, and urges Nebraskans to work together to ensure that its youngest citizens have the best start possible. Section 2, the bulk of this…

  16. Nevada Kids Count Data Book, 1997.

    ERIC Educational Resources Information Center

    We Can, Inc., Las Vegas, NV.

    This Kids Count data book is the first to examine statewide indicators of the well being of Nevada's children. The statistical portrait is based on 15 indicators of child well being: (1) percent low birth-weight babies; (2) infant mortality rate; (3) percent of children in poverty; (4) percent of children in single-parent families; (5) percent of…

  17. Alabama Kids Count 2001 Data Book.

    ERIC Educational Resources Information Center

    Curtis, Apreill; Bogie, Don

    This Kids Count data book examines statewide trends in well-being for Alabama's children. The statistical portrait is based on 17 indicators in the areas of health, education, safety, and security. The indicators are: (1) infant mortality rate; (2) low weight births; (3) child health index; (4) births to unmarried teens; (5) first grade retention;…

  18. External quality assessment for CD4 + T-lymphocyte count test

    PubMed Central

    Gaspar, Pâmela Cristina; Wohlke, Bruna Lovizutto Protti; Brunialti, Milena Karina Coló; Pires, Ana Flávia; Kohiyama, Igor Massaki; Salomão, Reinaldo; Alonso Neto, José Boullosa; Júnior, Orlando da Costa Ferreira; Franchini, Miriam; Bazzo, Maria Luiza; Benzaken, Adele Schwartz

    2018-01-01

    Abstract The National Network for CD4+ T-lymphocyte counting of Brazil comprises 93 laboratories. This study reports the laboratory performances achieved in external quality assessment (EQA) rounds provides by Ministry of Health to evaluate the quality of the kits used and the performance of test by the technicians. Ten EQA rounds were analyzed according the EQA criteria aimed to evaluate individual laboratory performance on the basis of the accuracy of their results compared to the general mean obtained by all participating laboratories and the reproducibility of the results obtained between 2 samples from the same donor. The percentage of approved and failed laboratories in the EQAs tends to follow a uniform pattern. Since 2011, approval has remained above 80% and the failure rate has never exceeded 15%. EQA is very important to evaluate the performance of the laboratories, to identify monitor, and to resolve errors as quickly as possible. PMID:29794603

  19. 5 CFR 9701.409 - Rating and rewarding performance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Rating and rewarding performance. 9701.409 Section 9701.409 Administrative Personnel DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES... SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Performance Management § 9701.409 Rating and rewarding...

  20. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    PubMed

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-07-20

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.

  1. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    PubMed Central

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  2. EM Adaptive LASSO—A Multilocus Modeling Strategy for Detecting SNPs Associated with Zero-inflated Count Phenotypes

    PubMed Central

    Mallick, Himel; Tiwari, Hemant K.

    2016-01-01

    Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice

  3. EM Adaptive LASSO-A Multilocus Modeling Strategy for Detecting SNPs Associated with Zero-inflated Count Phenotypes.

    PubMed

    Mallick, Himel; Tiwari, Hemant K

    2016-01-01

    Count data are increasingly ubiquitous in genetic association studies, where it is possible to observe excess zero counts as compared to what is expected based on standard assumptions. For instance, in rheumatology, data are usually collected in multiple joints within a person or multiple sub-regions of a joint, and it is not uncommon that the phenotypes contain enormous number of zeroes due to the presence of excessive zero counts in majority of patients. Most existing statistical methods assume that the count phenotypes follow one of these four distributions with appropriate dispersion-handling mechanisms: Poisson, Zero-inflated Poisson (ZIP), Negative Binomial, and Zero-inflated Negative Binomial (ZINB). However, little is known about their implications in genetic association studies. Also, there is a relative paucity of literature on their usefulness with respect to model misspecification and variable selection. In this article, we have investigated the performance of several state-of-the-art approaches for handling zero-inflated count data along with a novel penalized regression approach with an adaptive LASSO penalty, by simulating data under a variety of disease models and linkage disequilibrium patterns. By taking into account data-adaptive weights in the estimation procedure, the proposed method provides greater flexibility in multi-SNP modeling of zero-inflated count phenotypes. A fast coordinate descent algorithm nested within an EM (expectation-maximization) algorithm is implemented for estimating the model parameters and conducting variable selection simultaneously. Results show that the proposed method has optimal performance in the presence of multicollinearity, as measured by both prediction accuracy and empirical power, which is especially apparent as the sample size increases. Moreover, the Type I error rates become more or less uncontrollable for the competing methods when a model is misspecified, a phenomenon routinely encountered in practice.

  4. Daily step count predicts acute exacerbations in a US cohort with COPD.

    PubMed

    Moy, Marilyn L; Teylan, Merilee; Weston, Nicole A; Gagnon, David R; Garshick, Eric

    2013-01-01

    COPD is characterized by variability in exercise capacity and physical activity (PA), and acute exacerbations (AEs). Little is known about the relationship between daily step count, a direct measure of PA, and the risk of AEs, including hospitalizations. In an observational cohort study of 169 persons with COPD, we directly assessed PA with the StepWatch Activity Monitor, an ankle-worn accelerometer that measures daily step count. We also assessed exercise capacity with the 6-minute walk test (6MWT) and patient-reported PA with the St. George's Respiratory Questionnaire Activity Score (SGRQ-AS). AEs and COPD-related hospitalizations were assessed and validated prospectively over a median of 16 months. Mean daily step count was 5804±3141 steps. Over 209 person-years of observation, there were 263 AEs (incidence rate 1.3±1.6 per person-year) and 116 COPD-related hospitalizations (incidence rate 0.56±1.09 per person-year). Adjusting for FEV1 % predicted and prednisone use for AE in previous year, for each 1000 fewer steps per day walked at baseline, there was an increased rate of AEs (rate ratio 1.07; 95%CI = 1.003-1.15) and COPD-related hospitalizations (rate ratio 1.24; 95%CI = 1.08-1.42). There was a significant linear trend of decreasing daily step count by quartiles and increasing rate ratios for AEs (P = 0.008) and COPD-related hospitalizations (P = 0.003). Each 30-meter decrease in 6MWT distance was associated with an increased rate ratio of 1.07 (95%CI = 1.01-1.14) for AEs and 1.18 (95%CI = 1.07-1.30) for COPD-related hospitalizations. Worsening of SGRQ-AS by 4 points was associated with an increased rate ratio of 1.05 (95%CI = 1.01-1.09) for AEs and 1.10 (95%CI = 1.02-1.17) for COPD-related hospitalizations. Lower daily step count, lower 6MWT distance, and worse SGRQ-AS predict future AEs and COPD-related hospitalizations, independent of pulmonary function and previous AE history. These results support the importance of

  5. 5 CFR 9701.409 - Rating and rewarding performance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Performance Management § 9701.409 Rating and rewarding... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Rating and rewarding performance. 9701...

  6. 5 CFR 9701.409 - Rating and rewarding performance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Performance Management § 9701.409 Rating and rewarding... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Rating and rewarding performance. 9701...

  7. 5 CFR 9701.409 - Rating and rewarding performance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Performance Management § 9701.409 Rating and rewarding... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Rating and rewarding performance. 9701...

  8. 5 CFR 9901.412 - Rating and rewarding performance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... LABOR RELATIONS SYSTEMS (DEPARTMENT OF DEFENSE-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF DEFENSE NATIONAL SECURITY PERSONNEL SYSTEM (NSPS) Performance Management § 9901.412 Rating and rewarding... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Rating and rewarding performance. 9901...

  9. 5 CFR 9701.409 - Rating and rewarding performance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... MANAGEMENT SYSTEM (DEPARTMENT OF HOMELAND SECURITY-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF HOMELAND SECURITY HUMAN RESOURCES MANAGEMENT SYSTEM Performance Management § 9701.409 Rating and rewarding... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Rating and rewarding performance. 9701...

  10. 5 CFR 9901.412 - Rating and rewarding performance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... LABOR RELATIONS SYSTEMS (DEPARTMENT OF DEFENSE-OFFICE OF PERSONNEL MANAGEMENT) DEPARTMENT OF DEFENSE NATIONAL SECURITY PERSONNEL SYSTEM (NSPS) Performance Management § 9901.412 Rating and rewarding... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Rating and rewarding performance. 9901...

  11. Comparative Effectiveness of Two Walking Interventions on Participation, Step Counts, and Health.

    PubMed

    Smith-McLallen, Aaron; Heller, Debbie; Vernisi, Kristin; Gulick, Diana; Cruz, Samantha; Snyder, Richard L

    2017-03-01

    To (1) compare the effects of two worksite-based walking interventions on employee participation rates; (2) compare average daily step counts between conditions, and; (3) examine the effects of increases in average daily step counts on biometric and psychologic outcomes. We conducted a cluster-randomized trial in which six employer groups were randomly selected and randomly assigned to condition. Four manufacturing worksites and two office-based worksite served as the setting. A total of 474 employees from six employer groups were included. A standard walking program was compared to an enhanced program that included incentives, feedback, competitive challenges, and monthly wellness workshops. Walking was measured by self-reported daily step counts. Survey measures and biometric screenings were administered at baseline and 3, 6, and 9 months after baseline. Analysis used linear mixed models with repeated measures. During 9 months, participants in the enhanced condition averaged 726 more steps per day compared with those in the standard condition (p < .001). A 1000-step increase in average daily steps was associated with significant weight loss for both men (-3.8 lbs.) and women (-2.1 lbs.), and reductions in body mass index (-0.41 men, -0.31 women). Higher step counts were also associated with improvements in mood, having more energy, and higher ratings of overall health. An enhanced walking program significantly increases participation rates and daily step counts, which were associated with weight loss and reductions in body mass index.

  12. Counting-backward test for executive function in idiopathic normal pressure hydrocephalus.

    PubMed

    Kanno, S; Saito, M; Hayashi, A; Uchiyama, M; Hiraoka, K; Nishio, Y; Hisanaga, K; Mori, E

    2012-10-01

    The aim of this study was to develop and validate a bedside test for executive function in patients with idiopathic normal pressure hydrocephalus (INPH). Twenty consecutive patients with INPH and 20 patients with Alzheimer's disease (AD) were enrolled in this study. We developed the counting-backward test for evaluating executive function in patients with INPH. Two indices that are considered to be reflective of the attention deficits and response suppression underlying executive dysfunction in INPH were calculated: the first-error score and the reverse-effect index. Performance on both the counting-backward test and standard neuropsychological tests for executive function was assessed in INPH and AD patients. The first-error score, reverse-effect index and the scores from the standard neuropsychological tests for executive function were significantly lower for individuals in the INPH group than in the AD group. The two indices for the counting-backward test in the INPH group were strongly correlated with the total scores for Frontal Assessment Battery and Phonemic Verbal Fluency. The first-error score was also significantly correlated with the error rate of the Stroop colour-word test and the score of the go/no-go test. In addition, we found that the first-error score highly distinguished patients with INPH from those with AD using these tests. The counting-backward test is useful for evaluating executive dysfunction in INPH and for differentiating between INPH and AD patients. In particular, the first-error score may reflect deficits in the response suppression related to executive dysfunction in INPH. © 2012 John Wiley & Sons A/S.

  13. Short communication: Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count.

    PubMed

    Koop, G; Dik, N; Nielen, M; Lipman, L J A

    2010-06-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC (Fossomatic 5000, Foss, Hillerød, Denmark) and TBC (BactoScan FC 150, Foss) were measured. Staphylococcal count was correlated to SCC (r=0.40), TBC (r=0.51), and SPC (r=0.53). Coliform count was correlated to TBC (r=0.33), but not to any of the other variables. Staphylococcus aureus did not correlate to SCC. The contribution of the staphylococcal count to the SPC was 31%, whereas the coliform count comprised only 1% of the SPC. The agreement of the repeated measurements was low. This study indicates that staphylococci in goat bulk milk are related to SCC and make a significant contribution to SPC. Because of the high variation in bacterial counts, repeated sampling is necessary to draw valid conclusions from bulk milk culturing. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Particle and Photon Detection: Counting and Energy Measurement

    PubMed Central

    Janesick, James; Tower, John

    2016-01-01

    Fundamental limits for photon counting and photon energy measurement are reviewed for CCD and CMOS imagers. The challenges to extend photon counting into the visible/nIR wavelengths and achieve energy measurement in the UV with specific read noise requirements are discussed. Pixel flicker and random telegraph noise sources are highlighted along with various methods used in reducing their contribution on the sensor’s read noise floor. Practical requirements for quantum efficiency, charge collection efficiency, and charge transfer efficiency that interfere with photon counting performance are discussed. Lastly we will review current efforts in reducing flicker noise head-on, in hopes to drive read noise substantially below 1 carrier rms. PMID:27187398

  15. Photon counting spectral breast CT: effect of adaptive filtration on CT numbers, noise, and contrast to noise ratio.

    PubMed

    Silkwood, Justin D; Matthews, Kenneth L; Shikhaliev, Polad M

    2013-05-01

    Photon counting spectral (PCS) computed tomography (CT) shows promise for breast imaging. An issue with current photon-counting detectors is low count rate capabilities, artifacts resulting from nonuniform count rate across the field of view, and suboptimal spectral information. These issues are addressed in part by using tissue-equivalent adaptive filtration of the x-ray beam. The purpose of the study was to investigate the effect of adaptive filtration on different aspects of PCS breast CT. The theoretical formulation for the filter shape was derived for different filter materials and evaluated by simulation and an experimental prototype of the filter was fabricated from a tissue-like material (acrylic). The PCS CT images of a glandular breast phantom with adipose and iodine contrast elements were simulated at 40, 60, 90, and 120 kVp tube voltages, with and without adaptive filter. The CT numbers, CT noise, and contrast-to-noise ratio (CNR) were compared for spectral CT images acquired with and without adaptive filters. Similar comparison was made for material-decomposed PCS CT images. The adaptive filter improved the uniformity of CT numbers, CT noise, and CNR in both ordinary and material decomposed PCS CT images. At the same tube output the average CT noise with adaptive filter, although uniform, was higher than the average noise without adaptive filter due to x-ray absorption by the filter. Increasing tube output, so that average skin exposure with the adaptive filter was same as without filter, made the noise with adaptive filter comparable to or lower than that without adaptive filter. Similar effects were observed when energy weighting was applied, and when material decompositions were performed using energy selective CT data. An adaptive filter decreases count rate requirements to the photon counting detectors which enables PCS breast CT based on commercially available detector technologies. Adaptive filter also improves image quality in PCS breast CT by

  16. A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Christopher

    2014-12-04

    The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need bymore » developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal

  17. Kids Count in Delaware, Families Count in Delaware: Fact Book, 2002.

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Kids Count in Delaware.

    This Kids Count Fact Book is combined with the Families Count Fact Book to provide information on statewide trends affecting children and families in Delaware. The Kids Count statistical profile is based on 11 main indicators of child well-being: (1) births to teens 15-17 years; (2) births to teens 10 to 14 years; (3) low birth weight babies; (3)…

  18. Scatter Fraction, Count Rates, and Noise Equivalent Count Rate of a Single-Bed Position RPC TOF-PET System Assessed by Simulations Following the NEMA NU2-2001 Standards

    NASA Astrophysics Data System (ADS)

    Couceiro, Miguel; Crespo, Paulo; Marques, Rui F.; Fonte, Paulo

    2014-06-01

    Scatter Fraction (SF) and Noise Equivalent Count Rate (NECR) of a 2400 mm wide axial field-of-view Positron Emission Tomography (PET) system based on Resistive Plate Chamber (RPC) detectors with 300 ps Time Of Flight (TOF) resolution were studied by simulation using Geant4. The study followed the NEMA NU2-2001 standards, using the standard 700 mm long phantom and an axially extended one with 1800 mm, modeling the foreseeable use of this PET system. Data was processed based on the actual RPC readout, which requires a 0.2 μs non-paralyzable dead time for timing signals and a paralyzable dead time (τps) for position signals. For NECR, the best coincidence trigger consisted of a multiple time window coincidence sorter retaining single coincidence pairs (involving only two photons) and all possible coincidence pairs obtained from Multiple coincidences, keeping only those for which the direct TOF-reconstructed point falls inside a tight region surrounding the phantom. For the 700 mm phantom, the SF was 51.8% and, with τps = 3.0 μs, the peak NECR was 167 kcps at 7.6 kBq/cm3. Using τps = 1.0 μs the NECR was 349 kcps at 7.6 kBq/cm3, and no peak was found. For the 1800 mm phantom, the SF was slightly higher, and the NECR curves were identical to those obtained with the standard phantom, but shifted to lower activity concentrations. Although the higher SF, the values obtained for NECR allow concluding that the proposed scanner is expected to outperform current commercial PET systems.

  19. A Next Generation Digital Counting System For Low-Level Tritium Studies (Project Report)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, P.

    2016-10-03

    Since the early seventies, SRNL has pioneered low-level tritium analysis using various nuclear counting technologies and techniques. Since 1999, SRNL has successfully performed routine low-level tritium analyses with counting systems based on digital signal processor (DSP) modules developed in the late 1990s. Each of these counting systems are complex, unique to SRNL, and fully dedicated to performing routine tritium analyses of low-level environmental samples. It is time to modernize these systems due to a variety of issues including (1) age, (2) lack of direct replacement electronics modules and (3) advances in digital signal processing and computer technology. There has beenmore » considerable development in many areas associated with the enterprise of performing low-level tritium analyses. The objective of this LDRD project was to design, build, and demonstrate a Next Generation Tritium Counting System (NGTCS), while not disrupting the routine low-level tritium analyses underway in the facility on the legacy counting systems. The work involved (1) developing a test bed for building and testing new counting system hardware that does not interfere with our routine analyses, (2) testing a new counting system based on a modern state of the art DSP module, and (3) evolving the low-level tritium counter design to reflect the state of the science.« less

  20. Nutsedge Counts Predict Meloidogyne incognita Juvenile Counts in an Integrated Management System.

    PubMed

    Ou, Zhining; Murray, Leigh; Thomas, Stephen H; Schroeder, Jill; Libbin, James

    2008-06-01

    The southern root-knot nematode (Meloidogyne incognita), yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus) are important pests in crops grown in the southern US. Management of the individual pests rather than the pest complex is often unsuccessful due to mutually beneficial pest interactions. In an integrated pest management scheme using alfalfa to suppress nutsedges and M. incognita, we evaluated quadratic polynomial regression models for prediction of the number of M. incognita J2 in soil samples as a function of yellow and purple nutsedge plant counts, squares of nutsedge counts and the cross-product between nutsedge counts . In May 2005, purple nutsedge plant count was a significant predictor of M. incognita count. In July and September 2005, counts of both nutsedges and the cross-product were significant predictors. In 2006, the second year of the alfalfa rotation, counts of all three species were reduced. As a likely consequence, the predictive relationship between nutsedges and M. incognita was not significant for May and July. In September 2006, purple nutsedge was a significant predictor of M. incognita. These results lead us to conclude that nutsedge plant counts in a field infested with the M. incognita-nutsedge pest complex can be used as a visual predictor of M. incognita J2 populations, unless the numbers of nutsedge plants and M. incognita are all very low.

  1. Nutsedge Counts Predict Meloidogyne incognita Juvenile Counts in an Integrated Management System

    PubMed Central

    Ou, Zhining; Murray, Leigh; Thomas, Stephen H.; Schroeder, Jill; Libbin, James

    2008-01-01

    The southern root-knot nematode (Meloidogyne incognita), yellow nutsedge (Cyperus esculentus) and purple nutsedge (Cyperus rotundus) are important pests in crops grown in the southern US. Management of the individual pests rather than the pest complex is often unsuccessful due to mutually beneficial pest interactions. In an integrated pest management scheme using alfalfa to suppress nutsedges and M. incognita, we evaluated quadratic polynomial regression models for prediction of the number of M. incognita J2 in soil samples as a function of yellow and purple nutsedge plant counts, squares of nutsedge counts and the cross-product between nutsedge counts . In May 2005, purple nutsedge plant count was a significant predictor of M. incognita count. In July and September 2005, counts of both nutsedges and the cross-product were significant predictors. In 2006, the second year of the alfalfa rotation, counts of all three species were reduced. As a likely consequence, the predictive relationship between nutsedges and M. incognita was not significant for May and July. In September 2006, purple nutsedge was a significant predictor of M. incognita. These results lead us to conclude that nutsedge plant counts in a field infested with the M. incognita-nutsedge pest complex can be used as a visual predictor of M. incognita J2 populations, unless the numbers of nutsedge plants and M. incognita are all very low. PMID:19259526

  2. Photon-counting image sensors for the ultraviolet

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1985-01-01

    An investigation on specific performance details of photon counting, ultraviolet image sensors having 2-dimensional formats is reviewed. In one study, controlled experiments were performed which compare the quantum efficiencies, in pulse counting mode, of CsI photocathodes deposited on: (1) the front surface of a microchannel plate (MCP), (2) a solid surface in front of an MCP, and (3) an intensified CCD image sensor (ICCD) where a CCD is directly bombarded by accelerated photoelectrons. Tests indicated that the detection efficiency of the CsI-coated MCP at 1026 A is lower by a factor of 2.5 than that of the MCP with a separate, opaque CsI photocathode, and the detection efficiency ratio increases substantially at longer wavelengths (ratio is 5 at 1216 A and 20 at 1608 A).

  3. High-rate x-ray spectroscopy in mammography with a CdTe detector: a digital pulse processing approach.

    PubMed

    Abbene, L; Gerardi, G; Principato, F; Del Sordo, S; Ienzi, R; Raso, G

    2010-12-01

    Direct measurement of mammographic x-ray spectra under clinical conditions is a difficult task due to the high fluence rate of the x-ray beams as well as the limits in the development of high resolution detection systems in a high counting rate environment. In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP) system, for high-rate x-ray spectroscopy in mammography. The DPP system performs a digital pile-up inspection and a digital pulse height analysis of the detector signals, digitized through a 14-bit, 100 MHz digitizer, for x-ray spectroscopy even at high photon counting rates. We investigated on the response of the digital detection system both at low (150 cps) and at high photon counting rates (up to 500 kcps) by using monoenergetic x-ray sources and a nonclinical molybdenum anode x-ray tube. Clinical molybdenum x-ray spectrum measurements were also performed by using a pinhole collimator and a custom alignment device. The detection system shows excellent performance up to 512 kcps with an energy resolution of 4.08% FWHM at 22.1 keV. Despite the high photon counting rate (up to 453 kcps), the molybdenum x-ray spectra, measured under clinical conditions, are characterized by a low number of pile-up events. The agreement between the attenuation curves and the half value layer values, obtained from the measured spectra, simulated spectra, and from the exposure values directly measured with an ionization chamber, also shows the accuracy of the measurements. These results make the proposed detection system a very attractive tool for both laboratory research and advanced quality controls in mammography.

  4. Handheld 2-channel impedimetric cell counting system with embedded real-time processing

    NASA Astrophysics Data System (ADS)

    Rottigni, A.; Carminati, M.; Ferrari, G.; Vahey, M. D.; Voldman, J.; Sampietro, M.

    2011-05-01

    Lab-on-a-chip systems have been attracting a growing attention for the perspective of miniaturization and portability of bio-chemical assays. Here we present a the design and characterization of a miniaturized, USB-powered, self-contained, 2-channel instrument for impedance sensing, suitable for label-free tracking and real-time detection of cells flowing in microfluidic channels. This original circuit features a signal generator based on a direct digital synthesizer, a transimpedance amplifier, an integrated square-wave lock-in coupled to a Σ▵ ADC converter, and a digital processing platform. Real-time automatic peak detection on two channels is implemented in a FPGA. System functionality has been tested with an electronic resistance modulator to simulate 1% impedance variation produced by cells, reaching a time resolution of 50μs (enabling a count rate of 2000 events/s) with an applied voltage as low as 200mV. Biological experiments have been carried out counting yeast cells. Statistical analysis of events is in agreement with the expected amplitude and time distributions. 2-channel yeast counting has been performed with concomitant dielectrophoretic cell separation, showing that this novel and ultra compact sensing system, thanks to the selectivity of the lock-in detector, is compatible with other AC electrical fields applied to the device.

  5. 500-MHz x-ray counting with a Si-APD and a fast-pulse processing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, Shunji; Taniguchi, Takashi; Tanaka, Manobu

    2010-06-23

    We introduce a counting system of up to 500 MHz for synchrotron x-ray high-rate measurements. A silicon avalanche photodiode detector was used in the counting system. The fast-pulse circuit of the amplifier was designed with hybrid ICs to prepare an ASIC system for a large-scale pixel array detector in near future. The fast amplifier consists of two cascading emitter-followers using 10-GHz band transistors. A count-rate of 3.25x10{sup 8} s{sup -1} was then achieved using the system for 8-keV x-rays. However, a baseline shift by adopting AC-coupling in the amplifier disturbed us to observe the maximum count of 4.49x10{sup 8} s{supmore » -1}, determined by electron-bunch filling into a ring accelerator. We also report that an amplifier with a baseline restorer was tested in order to keep the baseline level to be 0 V even at high input rates.« less

  6. The cosmological analysis of X-ray cluster surveys - I. A new method for interpreting number counts

    NASA Astrophysics Data System (ADS)

    Clerc, N.; Pierre, M.; Pacaud, F.; Sadibekova, T.

    2012-07-01

    We present a new method aimed at simplifying the cosmological analysis of X-ray cluster surveys. It is based on purely instrumental observable quantities considered in a two-dimensional X-ray colour-magnitude diagram (hardness ratio versus count rate). The basic principle is that even in rather shallow surveys, substantial information on cluster redshift and temperature is present in the raw X-ray data and can be statistically extracted; in parallel, such diagrams can be readily predicted from an ab initio cosmological modelling. We illustrate the methodology for the case of a 100-deg2XMM survey having a sensitivity of ˜10-14 erg s-1 cm-2 and fit at the same time, the survey selection function, the cluster evolutionary scaling relations and the cosmology; our sole assumption - driven by the limited size of the sample considered in the case study - is that the local cluster scaling relations are known. We devote special attention to the realistic modelling of the count-rate measurement uncertainties and evaluate the potential of the method via a Fisher analysis. In the absence of individual cluster redshifts, the count rate and hardness ratio (CR-HR) method appears to be much more efficient than the traditional approach based on cluster counts (i.e. dn/dz, requiring redshifts). In the case where redshifts are available, our method performs similar to the traditional mass function (dn/dM/dz) for the purely cosmological parameters, but constrains better parameters defining the cluster scaling relations and their evolution. A further practical advantage of the CR-HR method is its simplicity: this fully top-down approach totally bypasses the tedious steps consisting in deriving cluster masses from X-ray temperature measurements.

  7. Making Hawai'i's Kids Count. Issue Paper Number 3.

    ERIC Educational Resources Information Center

    Hawaii Univ., Manoa. Center on the Family.

    This issue paper from Hawai'i Kids Count addresses the issue of teen pregnancy and birth rates. The paper notes that teen pregnancy and birth rates are declining both nationally and in Hawaii and describes key risk factors associated with having a baby before age 20: (1) early school failure; (2) early behavioral problems; (3) family dysfunction;…

  8. Prognostic value of resident clinical performance ratings.

    PubMed

    Williams, Reed G; Dunnington, Gary L

    2004-10-01

    This study investigated the concurrent and predictive validity of end-of-rotation (EOR) clinical performance ratings. Surgeon EOR ratings of residents were collected and compared with end-of-year (EOY) progress decisions and to EOR and EOY confidential judgments of resident ability to provide patient care without direct supervision. Eighty percent to 85% of EOR ratings were Excellent or Very Good. Five percent or fewer were Fair or Poor. Almost all residents receiving Excellent or Very Good EOR ratings also received positive EOR judgments about ability to provide patient care without direct supervision. Residents rated Fair or Poor received negative EOR judgments about ability to provide patient care without direct supervision. As the cumulative percent of Good, Fair, and Poor EOR ratings increased, the number of residents promoted without stipulations at the end of the year decreased and the percentage of faculty members who judged the residents capable of providing effective patient care without direct supervision at the end of the year declined. All residents receiving 40% or more EOR ratings below Very Good had stipulations associated with their promotion. Despite use of descriptive anchors on the scale, clinical performance ratings have no direct meaning. Their meaning needs to be established in the same manner as is done in setting normal values for diagnostic tests, ie, by establishing the relationship between EOR ratings and practice outcomes.

  9. Development of a Photon Counting System for Differential Lidar Signal Detection

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1997-01-01

    Photon counting has been chosen as a means to extend the detection range of current airborne DIAL ozone measurements. Lidar backscattered return signals from the on and off-line lasers experience a significant exponential decay. To extract further data from the decaying ozone return signals, photon counting will be used to measure the low light levels, thus extending the detection range. In this application, photon counting will extend signal measurement where the analog return signal is too weak. The current analog measurement range is limited to approximately 25 kilometers from an aircraft flying at 12 kilometers. Photon counting will be able to exceed the current measurement range so as to follow the mid-latitude model of ozone density as a function of height. This report describes the development of a photon counting system. The initial development phase begins with detailed evaluation of individual photomultiplier tubes. The PMT qualities investigated are noise count rates, single electron response peaks, voltage versus gain values, saturation effects, and output signal linearity. These evaluations are followed by analysis of two distinctive tube base gating schemes. The next phase is to construct and operate a photon counting system in a laboratory environment. The laboratory counting simulations are used to determine optimum discriminator setpoints and to continue further evaluations of PMT properties. The final step in the photon counting system evaluation process is the compiling of photon counting measurements on the existing ozone DIAL laser system.

  10. Comparative analysis of dose rates in bricks determined by neutron activation analysis, alpha counting and X-ray fluorescence analysis for the thermoluminescence fine grain dating method

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.

    2014-11-01

    In order to evaluate the age from the equivalent dose and to obtain an optimized and efficient procedure for thermoluminescence (TL) dating, it is necessary to obtain the values of both the internal and the external dose rates from dated samples and from their environment. The measurements described and compared in this paper refer to bricks from historic buildings and a fine-grain dating method. The external doses are therefore negligible, if the samples are taken from a sufficient depth in the wall. However, both the alpha dose rate and the beta and gamma dose rates must be taken into account in the internal dose. The internal dose rate to fine-grain samples is caused by the concentrations of natural radionuclides 238U, 235U, 232Th and members of their decay chains, and by 40K concentrations. Various methods can be used for determining trace concentrations of these natural radionuclides and their contributions to the dose rate. The dose rate fraction from 238U and 232Th can be calculated, e.g., from the alpha count rate, or from the concentrations of 238U and 232Th, measured by neutron activation analysis (NAA). The dose rate fraction from 40K can be calculated from the concentration of potassium measured, e.g., by X-ray fluorescence analysis (XRF) or by NAA. Alpha counting and XRF are relatively simple and are accessible for an ordinary laboratory. NAA can be considered as a more accurate method, but it is more demanding regarding time and costs, since it needs a nuclear reactor as a neutron source. A comparison of these methods allows us to decide whether the time- and cost-saving simpler techniques introduce uncertainty that is still acceptable.

  11. Kids Count Data Book, 2003: State Profiles of Child Well-Being.

    ERIC Educational Resources Information Center

    O'Hare, William P.

    This Kids Count data book examines national and statewide trends in the well being of the nation's children. Statistical portraits are based on 10 indicators of well being: (1) percent of low birth weight babies; (2) infant mortality rate; (3) child death rate; (4) rate of teen deaths by accident, homicide, and suicide; (5) teen birth rate; (6)…

  12. KIDS COUNT Data Book, 2002: State Profiles of Child Well-Being.

    ERIC Educational Resources Information Center

    O'Hare, William P.

    This KIDS COUNT data book examines national and statewide trends in the well being of the nations children. Statistical portraits are based on 10 indicators of well being: (1) percent of low birth weight babies; (2) infant mortality rate; (3) child death rate; (4) rate of teen deaths by accident, homicide, and suicide; (5) teen birth rate; (6)…

  13. KIDS COUNT Data Book, 2001: State Profiles of Child Well-Being.

    ERIC Educational Resources Information Center

    Annie E. Casey Foundation, Baltimore, MD.

    This Kids Count report examines national and statewide trends in the well-being of the nation's children. The statistical portrait is based on 10 indicators of well being: (1) percent of low birth weight babies; (2) infant mortality rate; (3) child death rate; (4) rate of teen deaths by accident, homicide and suicide; (5) teen birth rate; (6)…

  14. Density estimation in aerial images of large crowds for automatic people counting

    NASA Astrophysics Data System (ADS)

    Herrmann, Christian; Metzler, Juergen

    2013-05-01

    Counting people is a common topic in the area of visual surveillance and crowd analysis. While many image-based solutions are designed to count only a few persons at the same time, like pedestrians entering a shop or watching an advertisement, there is hardly any solution for counting large crowds of several hundred persons or more. We addressed this problem previously by designing a semi-automatic system being able to count crowds consisting of hundreds or thousands of people based on aerial images of demonstrations or similar events. This system requires major user interaction to segment the image. Our principle aim is to reduce this manual interaction. To achieve this, we propose a new and automatic system. Besides counting the people in large crowds, the system yields the positions of people allowing a plausibility check by a human operator. In order to automatize the people counting system, we use crowd density estimation. The determination of crowd density is based on several features like edge intensity or spatial frequency. They indicate the density and discriminate between a crowd and other image regions like buildings, bushes or trees. We compare the performance of our automatic system to the previous semi-automatic system and to manual counting in images. By counting a test set of aerial images showing large crowds containing up to 12,000 people, the performance gain of our new system will be measured. By improving our previous system, we will increase the benefit of an image-based solution for counting people in large crowds.

  15. How to improve the standardization and the diagnostic performance of the fecal egg count reduction test?

    PubMed

    Levecke, Bruno; Kaplan, Ray M; Thamsborg, Stig M; Torgerson, Paul R; Vercruysse, Jozef; Dobson, Robert J

    2018-04-15

    Although various studies have provided novel insights into how to best design, analyze and interpret a fecal egg count reduction test (FECRT), it is still not straightforward to provide guidance that allows improving both the standardization and the analytical performance of the FECRT across a variety of both animal and nematode species. For example, it has been suggested to recommend a minimum number of eggs to be counted under the microscope (not eggs per gram of feces), but we lack the evidence to recommend any number of eggs that would allow a reliable assessment of drug efficacy. Other aspects that need further research are the methodology of calculating uncertainty intervals (UIs; confidence intervals in case of frequentist methods and credible intervals in case of Bayesian methods) and the criteria of classifying drug efficacy into 'normal', 'suspected' and 'reduced'. The aim of this study is to provide complementary insights into the current knowledge, and to ultimately provide guidance in the development of new standardized guidelines for the FECRT. First, data were generated using a simulation in which the 'true' drug efficacy (TDE) was evaluated by the FECRT under varying scenarios of sample size, analytic sensitivity of the diagnostic technique, and level of both intensity and aggregation of egg excretion. Second, the obtained data were analyzed with the aim (i) to verify which classification criteria allow for reliable detection of reduced drug efficacy, (ii) to identify the UI methodology that yields the most reliable assessment of drug efficacy (coverage of TDE) and detection of reduced drug efficacy, and (iii) to determine the required sample size and number of eggs counted under the microscope that optimizes the detection of reduced efficacy. Our results confirm that the currently recommended criteria for classifying drug efficacy are the most appropriate. Additionally, the UI methodologies we tested varied in coverage and ability to detect reduced

  16. Cultural values and performance appraisal: assessing the effects of rater self-construal on performance ratings.

    PubMed

    Mishra, Vipanchi; Roch, Sylvia G

    2013-01-01

    Much of the prior research investigating the influence of cultural values on performance ratings has focused either on conducting cross-national comparisons among raters or using cultural level individualism/collectivism scales to measure the effects of cultural values on performance ratings. Recent research has shown that there is considerable within country variation in cultural values, i.e. people in one country can be more individualistic or collectivistic in nature. Taking the latter perspective, the present study used Markus and Kitayama's (1991) conceptualization of independent and interdependent self-construals as measures of individual variations in cultural values to investigate within culture variations in performance ratings. Results suggest that rater self-construal has a significant influence on overall performance evaluations; specifically, raters with a highly interdependent self-construal tend to show a preference for interdependent ratees, whereas raters high on independent self-construal do not show a preference for specific type of ratees when making overall performance evaluations. Although rater self-construal significantly influenced overall performance evaluations, no such effects were observed for specific dimension ratings. Implications of these results for performance appraisal research and practice are discussed.

  17. Pollen count and presentation of angiotensin-converting enzyme inhibitor-associated angioedema.

    PubMed

    Straka, Brittany; Nian, Hui; Sloan, Chantel; Byrd, James Brian; Woodard-Grice, Alencia; Yu, Chang; Stone, Elizabeth; Steven, Gary; Hartert, Tina; Teo, Koon K; Pare, Guillaume; McCarty, Catherine A; Brown, Nancy J

    2013-01-01

    The incidence of angiotensin-converting enzyme (ACE) inhibitor-associated angioedema is increased in patients with seasonal allergies. We tested the hypothesis that patients with ACE inhibitor-associated angioedema present during months when pollen counts are increased. Cohort analysis examined the month of presentation of ACE inhibitor-associated angioedema and pollen counts in the ambulatory and hospital setting. Patients with ACE inhibitor-associated angioedema were ascertained through (1) an observational study of patients presenting to Vanderbilt University Medical Center, (2) patients presenting to the Marshfield Clinic and participating in the Marshfield Clinic Personalized Medicine Research Project, and (3) patients enrolled in The Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET). Measurements include date of presentation of ACE inhibitor-associated angioedema, population exposure to ACE inhibitor by date, and local pollen counts by date. At Vanderbilt, the rate of angioedema was significantly associated with tree pollen months (P = .01 from χ(2) test). When separate analyses were conducted in patients with a history of seasonal allergies and patients without, the rate of ACE inhibitor-associated angioedema was increased during tree pollen months only in patients with a history of seasonal allergies (P = .002). In Marshfield, the rate of angioedema was significantly associated with ragweed pollen months (P = .025). In ONTARGET, a positive trend was observed between the ACE inhibitor-associated angioedema rate and grass season, although it was not statistically significant (P = .057). Patients with ACE inhibitor-associated angioedema are more likely to present with this adverse drug event during months when pollen counts are increased. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. All Our Children: Massachusetts Kids Count 1994.

    ERIC Educational Resources Information Center

    Diamond, Franna, Ed.

    This Kids Count report examines statewide trends from 1990 to 1994 in the well-being of Massachusetts' children. The statistical portrait is based on indicators of well-being in five areas: (1) economic well-being of children and their families, including child poverty rate, family income, job loss, earnings of male high school dropouts and…

  19. KIDS COUNT in Virginia: 1999 Data Book.

    ERIC Educational Resources Information Center

    Action Alliance for Virginia's Children and Youth, Richmond.

    This Kids Count data book examines statewide trends in the well-being of Virginia's children. The statistical portrait is based on five general areas of children's well being: health, safety, education, families, and economic factors. Key indicators in these five areas include: (1) prenatal care rates; (2) low birthweight; (3) child deaths; (4)…

  20. Disclosure of Individual Surgeon's Performance Rates During Informed Consent

    PubMed Central

    Burger, Ingrid; Schill, Kathryn; Goodman, Steven

    2007-01-01

    Objective: The purpose of the paper is to examine the ethical arguments for and against disclosing surgeon-specific performance rates to patients during informed consent, and to examine the challenges that generating and using performance rates entail. Methods: Ethical, legal, and statistical theory is explored to approach the question of whether, when, and how surgeons should disclosure their personal performance rates to patients. The main ethical question addressed is what type of information surgeons owe their patients during informed consent. This question comprises 3 related, ethically relevant considerations that are explored in detail: 1) Does surgeon-specific performance information enhance patient decision-making? 2) Do patients want this type of information? 3) How do the potential benefits of disclosure balance against the risks? Results: Calculating individual performance measures requires tradeoffs and involves inherent uncertainty. There is a lack of evidence regarding whether patients want this information, whether it facilitates their decision-making for surgery, and how it is best communicated to them. Disclosure of personal performance rates during informed consent has the potential benefits of enhancing patient autonomy, improving patient decision-making, and improving quality of care. The major risks of disclosure include inaccurate and misleading performance rates, avoidance of high-risk cases, unjust damage to surgeon's reputations, and jeopardized patient trust. Conclusion: At this time, we think that, for most conditions, surgical procedures, and outcomes, the accuracy of surgeon- and patient-specific performance rates is illusory, obviating the ethical obligation to communicate them as part of the informed consent process. Nonetheless, the surgical profession has the duty to develop information systems that allow for performance to be evaluated to a high degree of accuracy. In the meantime, patients should be informed of the quantity of

  1. Guidebooks for estimating total transit usage through extrapolating incomplete counts : final report.

    DOT National Transportation Integrated Search

    2016-09-01

    This report provides guidance for transit agencies to estimate transit usage for reporting to the National Transit : Database (NTD) when their counting procedure that is designed to perform full counts misses some trips. Transit usage : refers to unl...

  2. Inventory count strategies.

    PubMed

    Springer, W H

    1996-02-01

    An important principle of accounting is that asset inventory needs to be correctly valued to ensure that the financial statements of the institution are accurate. Errors is recording the value of ending inventory in one fiscal year result in errors to published financial statements for that year as well as the subsequent fiscal year. Therefore, it is important that accurate physical counts be periodically taken. It is equally important that any system being used to generate inventory valuation, reordering or management reports be based on consistently accurate on-hand balances. At the foundation of conducting an accurate physical count of an inventory is a comprehensive understanding of the process coupled with a written plan. This article presents a guideline of the physical count processes involved in a traditional double-count approach.

  3. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  4. South Carolina Kids Count Report, 2003.

    ERIC Educational Resources Information Center

    South Carolina Kids Count, Columbia.

    This Kids Count report examines statewide trends in the well-being of South Carolina's children. The statistical portrait is based on 44 indicators in the areas of demographics, family, economic status, health, readiness and early school performance, scholastic achievement, and adolescent risk behaviors. The indicators are: (1) population; (2)…

  5. Establishing a gold standard for manual cough counting: video versus digital audio recordings

    PubMed Central

    Smith, Jaclyn A; Earis, John E; Woodcock, Ashley A

    2006-01-01

    Background Manual cough counting is time-consuming and laborious; however it is the standard to which automated cough monitoring devices must be compared. We have compared manual cough counting from video recordings with manual cough counting from digital audio recordings. Methods We studied 8 patients with chronic cough, overnight in laboratory conditions (diagnoses were 5 asthma, 1 rhinitis, 1 gastro-oesophageal reflux disease and 1 idiopathic cough). Coughs were recorded simultaneously using a video camera with infrared lighting and digital sound recording. The numbers of coughs in each 8 hour recording were counted manually, by a trained observer, in real time from the video recordings and using audio-editing software from the digital sound recordings. Results The median cough frequency was 17.8 (IQR 5.9–28.7) cough sounds per hour in the video recordings and 17.7 (6.0–29.4) coughs per hour in the digital sound recordings. There was excellent agreement between the video and digital audio cough rates; mean difference of -0.3 coughs per hour (SD ± 0.6), 95% limits of agreement -1.5 to +0.9 coughs per hour. Video recordings had poorer sound quality even in controlled conditions and can only be analysed in real time (8 hours per recording). Digital sound recordings required 2–4 hours of analysis per recording. Conclusion Manual counting of cough sounds from digital audio recordings has excellent agreement with simultaneous video recordings in laboratory conditions. We suggest that ambulatory digital audio recording is therefore ideal for validating future cough monitoring devices, as this as this can be performed in the patients own environment. PMID:16887019

  6. High-rate dead-time corrections in a general purpose digital pulse processing system

    PubMed Central

    Abbene, Leonardo; Gerardi, Gaetano

    2015-01-01

    Dead-time losses are well recognized and studied drawbacks in counting and spectroscopic systems. In this work the abilities on dead-time correction of a real-time digital pulse processing (DPP) system for high-rate high-resolution radiation measurements are presented. The DPP system, through a fast and slow analysis of the output waveform from radiation detectors, is able to perform multi-parameter analysis (arrival time, pulse width, pulse height, pulse shape, etc.) at high input counting rates (ICRs), allowing accurate counting loss corrections even for variable or transient radiations. The fast analysis is used to obtain both the ICR and energy spectra with high throughput, while the slow analysis is used to obtain high-resolution energy spectra. A complete characterization of the counting capabilities, through both theoretical and experimental approaches, was performed. The dead-time modeling, the throughput curves, the experimental time-interval distributions (TIDs) and the counting uncertainty of the recorded events of both the fast and the slow channels, measured with a planar CdTe (cadmium telluride) detector, will be presented. The throughput formula of a series of two types of dead-times is also derived. The results of dead-time corrections, performed through different methods, will be reported and discussed, pointing out the error on ICR estimation and the simplicity of the procedure. Accurate ICR estimations (nonlinearity < 0.5%) were performed by using the time widths and the TIDs (using 10 ns time bin width) of the detected pulses up to 2.2 Mcps. The digital system allows, after a simple parameter setting, different and sophisticated procedures for dead-time correction, traditionally implemented in complex/dedicated systems and time-consuming set-ups. PMID:26289270

  7. Uncertainties in internal gas counting

    NASA Astrophysics Data System (ADS)

    Unterweger, M.; Johansson, L.; Karam, L.; Rodrigues, M.; Yunoki, A.

    2015-06-01

    The uncertainties in internal gas counting will be broken down into counting uncertainties and gas handling uncertainties. Counting statistics, spectrum analysis, and electronic uncertainties will be discussed with respect to the actual counting of the activity. The effects of the gas handling and quantities of counting and sample gases on the uncertainty in the determination of the activity will be included when describing the uncertainties arising in the sample preparation.

  8. County Data Book 1997: Kentucky Kids Count.

    ERIC Educational Resources Information Center

    Kentucky Kids Count Consortium.

    This Kids Count data book examines trends in the well-being of Kentucky's children on a statewide and county basis. An introduction summarizes some of the trends for Kentucky's children in the 1990s. The bulk of the report presents statewide and county data grouped into five categories: (1) poverty rates and programs (persons in poverty; median…

  9. Musculoskeletal imaging with a prototype photon-counting detector.

    PubMed

    Gruber, M; Homolka, P; Chmeissani, M; Uffmann, M; Pretterklieber, M; Kainberger, F

    2012-01-01

    To test a digital imaging X-ray device based on the direct capture of X-ray photons with pixel detectors, which are coupled with photon-counting readout electronics. The chip consists of a matrix of 256 × 256 pixels with a pixel pitch of 55 μm. A monolithic image of 11.2 cm × 7 cm was obtained by the consecutive displacement approach. Images of embalmed anatomical specimens of eight human hands were obtained at four different dose levels (skin dose 2.4, 6, 12, 25 μGy) with the new detector, as well as with a flat-panel detector. The overall rating scores for the evaluated anatomical regions ranged from 5.23 at the lowest dose level, 6.32 at approximately 6 μGy, 6.70 at 12 μGy, to 6.99 at the highest dose level with the photon-counting system. The corresponding rating scores for the flat-panel detector were 3.84, 5.39, 6.64, and 7.34. When images obtained at the same dose were compared, the new system outperformed the conventional DR system at the two lowest dose levels. At the higher dose levels, there were no significant differences between the two systems. The photon-counting detector has great potential to obtain musculoskeletal images of excellent quality at very low dose levels.

  10. Rad-hard Dual-threshold High-count-rate Silicon Pixel-array Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Adam

    In this program, a Voxtel-led team demonstrates a full-format (192 x 192, 100-µm pitch, VX-810) high-dynamic-range x-ray photon-counting sensor—the Dual Photon Resolved Energy Acquisition (DUPREA) sensor. Within the Phase II program the following tasks were completed: 1) system analysis and definition of the DUPREA sensor requirements; 2) design, simulation, and fabrication of the full-format VX-810 ROIC design; 3) design, optimization, and fabrication of thick, fully depleted silicon photodiodes optimized for x-ray photon collection; 4) hybridization of the VX-810 ROIC to the photodiode array in the creation of the optically sensitive focal-plane array; 5) development of an evaluation camera; and 6)more » electrical and optical characterization of the sensor.« less

  11. Fighter pilots' heart rate, heart rate variation and performance during instrument approaches.

    PubMed

    Mansikka, Heikki; Simola, Petteri; Virtanen, Kai; Harris, Don; Oksama, Lauri

    2016-10-01

    Fighter pilots' heart rate (HR), heart rate variation (HRV) and performance during instrument approaches were examined. The subjects were required to fly instrument approaches in a high-fidelity simulator under various levels of task demand. The task demand was manipulated by increasing the load on the subjects by reducing the range at which they commenced the approach. HR and the time domain components of HRV were used as measures of pilot mental workload (PMWL). The findings of this study indicate that HR and HRV are sensitive to varying task demands. HR and HRV were able to distinguish the level of PMWL after which the subjects were no longer able to cope with the increasing task demands and their instrument landing system performance fell to a sub-standard level. The major finding was the HR/HRV's ability to differentiate the sub-standard performance approaches from the high-performance approaches. Practitioner Summary: This paper examined if HR and HRV were sensitive to varying task demands in a fighter aviation environment and if these measures were related to variations in pilot's performance.

  12. Multi-Parameter Linear Least-Squares Fitting to Poisson Data One Count at a Time

    NASA Technical Reports Server (NTRS)

    Wheaton, W.; Dunklee, A.; Jacobson, A.; Ling, J.; Mahoney, W.; Radocinski, R.

    1993-01-01

    A standard problem in gamma-ray astronomy data analysis is the decomposition of a set of observed counts, described by Poisson statistics, according to a given multi-component linear model, with underlying physical count rates or fluxes which are to be estimated from the data.

  13. Investigating the limits of PET/CT imaging at very low true count rates and high random fractions in ion-beam therapy monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurz, Christopher, E-mail: Christopher.Kurz@physik.uni-muenchen.de; Bauer, Julia; Conti, Maurizio

    Purpose: External beam radiotherapy with protons and heavier ions enables a tighter conformation of the applied dose to arbitrarily shaped tumor volumes with respect to photons, but is more sensitive to uncertainties in the radiotherapeutic treatment chain. Consequently, an independent verification of the applied treatment is highly desirable. For this purpose, the irradiation-induced β{sup +}-emitter distribution within the patient is detected shortly after irradiation by a commercial full-ring positron emission tomography/x-ray computed tomography (PET/CT) scanner installed next to the treatment rooms at the Heidelberg Ion-Beam Therapy Center (HIT). A major challenge to this approach is posed by the small numbermore » of detected coincidences. This contribution aims at characterizing the performance of the used PET/CT device and identifying the best-performing reconstruction algorithm under the particular statistical conditions of PET-based treatment monitoring. Moreover, this study addresses the impact of radiation background from the intrinsically radioactive lutetium-oxyorthosilicate (LSO)-based detectors at low counts. Methods: The authors have acquired 30 subsequent PET scans of a cylindrical phantom emulating a patientlike activity pattern and spanning the entire patient counting regime in terms of true coincidences and random fractions (RFs). Accuracy and precision of activity quantification, image noise, and geometrical fidelity of the scanner have been investigated for various reconstruction algorithms and settings in order to identify a practical, well-suited reconstruction scheme for PET-based treatment verification. Truncated listmode data have been utilized for separating the effects of small true count numbers and high RFs on the reconstructed images. A corresponding simulation study enabled extending the results to an even wider range of counting statistics and to additionally investigate the impact of scatter coincidences. Eventually, the

  14. Investigating the limits of PET/CT imaging at very low true count rates and high random fractions in ion-beam therapy monitoring.

    PubMed

    Kurz, Christopher; Bauer, Julia; Conti, Maurizio; Guérin, Laura; Eriksson, Lars; Parodi, Katia

    2015-07-01

    External beam radiotherapy with protons and heavier ions enables a tighter conformation of the applied dose to arbitrarily shaped tumor volumes with respect to photons, but is more sensitive to uncertainties in the radiotherapeutic treatment chain. Consequently, an independent verification of the applied treatment is highly desirable. For this purpose, the irradiation-induced β(+)-emitter distribution within the patient is detected shortly after irradiation by a commercial full-ring positron emission tomography/x-ray computed tomography (PET/CT) scanner installed next to the treatment rooms at the Heidelberg Ion-Beam Therapy Center (HIT). A major challenge to this approach is posed by the small number of detected coincidences. This contribution aims at characterizing the performance of the used PET/CT device and identifying the best-performing reconstruction algorithm under the particular statistical conditions of PET-based treatment monitoring. Moreover, this study addresses the impact of radiation background from the intrinsically radioactive lutetium-oxyorthosilicate (LSO)-based detectors at low counts. The authors have acquired 30 subsequent PET scans of a cylindrical phantom emulating a patientlike activity pattern and spanning the entire patient counting regime in terms of true coincidences and random fractions (RFs). Accuracy and precision of activity quantification, image noise, and geometrical fidelity of the scanner have been investigated for various reconstruction algorithms and settings in order to identify a practical, well-suited reconstruction scheme for PET-based treatment verification. Truncated listmode data have been utilized for separating the effects of small true count numbers and high RFs on the reconstructed images. A corresponding simulation study enabled extending the results to an even wider range of counting statistics and to additionally investigate the impact of scatter coincidences. Eventually, the recommended reconstruction scheme

  15. Associations between CXCR1 polymorphisms and pathogen-specific incidence rate of clinical mastitis, test-day somatic cell count, and test-day milk yield.

    PubMed

    Verbeke, Joren; Van Poucke, Mario; Peelman, Luc; Piepers, Sofie; De Vliegher, Sarne

    2014-12-01

    The CXCR1 gene plays an important role in the innate immunity of the bovine mammary gland. Associations between single nucleotide polymorphisms (SNP) CXCR1c.735C>G and c.980A>G and udder health have been identified before in small populations. A fluorescent multiprobe PCR assay was designed specifically and validated to genotype both SNP simultaneously in a reliable and cost-effective manner. In total, 3,106 cows from 50 commercial Flemish dairy herds were genotyped using this assay. Associations between genotype and detailed phenotypic data, including pathogen-specific incidence rate of clinical mastitis (IRCM), test-day somatic cell count, and test-day milk yield (MY) were analyzed. Staphylococcus aureus IRCM tended to associate with SNP c.735C>G. Cows with genotype c.735GG had lower Staph. aureus IRCM compared with cows with genotype c.735CC (rate ratio = 0.35, 95% confidence interval = 0.14–0.90). Additionally, a parity-specific association between Staph. aureus IRCM and SNP c.980A>G was detected. Heifers with genotype c.980GG had a lower Staph. aureus IRCM compared with heifers with genotype c.980AG (rate ratio = 0.15, 95% confidence interval = 0.04–0.56). Differences were less pronounced in multiparous cows. Associations between CXCR1 genotype and somatic cell count were not detected. However, MY was associated with SNP c.735C>G. Cows with genotype c.735GG out-produced cows with genotype c.735CC by 0.8 kg of milk/d. Results provide a basis for further research on the relation between CXCR1 polymorphism and pathogen-specific mastitis resistance and MY.

  16. Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method

    PubMed Central

    Veta, Mitko; van Diest, Paul J.; Jiwa, Mehdi; Al-Janabi, Shaimaa; Pluim, Josien P. W.

    2016-01-01

    Background Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histological slide preparations, is an important biomarker for breast cancer. Although mitosis counting is routinely performed by pathologists, it is a tedious and subjective task with poor reproducibility, particularly among non-experts. Inter- and intraobserver reproducibility of mitosis counting can be improved when a strict protocol is defined and followed. Previous studies have examined only the agreement in terms of the mitotic count or the mitotic activity score. Studies of the observer agreement at the level of individual objects, which can provide more insight into the procedure, have not been performed thus far. Methods The development of automatic mitosis detection methods has received large interest in recent years. Automatic image analysis is viewed as a solution for the problem of subjectivity of mitosis counting by pathologists. In this paper we describe the results from an interobserver agreement study between three human observers and an automatic method, and make two unique contributions. For the first time, we present an analysis of the object-level interobserver agreement on mitosis counting. Furthermore, we train an automatic mitosis detection method that is robust with respect to staining appearance variability and compare it with the performance of expert observers on an “external” dataset, i.e. on histopathology images that originate from pathology labs other than the pathology lab that provided the training data for the automatic method. Results The object-level interobserver study revealed that pathologists often do not agree on individual objects, even if this is not reflected in the mitotic count. The disagreement is larger for objects from smaller size, which suggests that adding a size constraint in the mitosis counting protocol can improve reproducibility. The automatic mitosis detection method can perform mitosis counting in an unbiased

  17. Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method.

    PubMed

    Veta, Mitko; van Diest, Paul J; Jiwa, Mehdi; Al-Janabi, Shaimaa; Pluim, Josien P W

    2016-01-01

    Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histological slide preparations, is an important biomarker for breast cancer. Although mitosis counting is routinely performed by pathologists, it is a tedious and subjective task with poor reproducibility, particularly among non-experts. Inter- and intraobserver reproducibility of mitosis counting can be improved when a strict protocol is defined and followed. Previous studies have examined only the agreement in terms of the mitotic count or the mitotic activity score. Studies of the observer agreement at the level of individual objects, which can provide more insight into the procedure, have not been performed thus far. The development of automatic mitosis detection methods has received large interest in recent years. Automatic image analysis is viewed as a solution for the problem of subjectivity of mitosis counting by pathologists. In this paper we describe the results from an interobserver agreement study between three human observers and an automatic method, and make two unique contributions. For the first time, we present an analysis of the object-level interobserver agreement on mitosis counting. Furthermore, we train an automatic mitosis detection method that is robust with respect to staining appearance variability and compare it with the performance of expert observers on an "external" dataset, i.e. on histopathology images that originate from pathology labs other than the pathology lab that provided the training data for the automatic method. The object-level interobserver study revealed that pathologists often do not agree on individual objects, even if this is not reflected in the mitotic count. The disagreement is larger for objects from smaller size, which suggests that adding a size constraint in the mitosis counting protocol can improve reproducibility. The automatic mitosis detection method can perform mitosis counting in an unbiased way, with substantial

  18. High-performance integrated pick-up circuit for SPAD arrays in time-correlated single photon counting

    NASA Astrophysics Data System (ADS)

    Acconcia, Giulia; Cominelli, Alessandro; Peronio, Pietro; Rech, Ivan; Ghioni, Massimo

    2017-05-01

    The analysis of optical signals by means of Single Photon Avalanche Diodes (SPADs) has been subject to a widespread interest in recent years. The development of multichannel high-performance Time Correlated Single Photon Counting (TCSPC) acquisition systems has undergone a fast trend. Concerning the detector performance, best in class results have been obtained resorting to custom technologies leading also to a strong dependence of the detector timing jitter from the threshold used to determine the onset of the photogenerated current flow. In this scenario, the avalanche current pick-up circuit plays a key role in determining the timing performance of the TCSPC acquisition system, especially with a large array of SPAD detectors because of electrical crosstalk issues. We developed a new current pick-up circuit based on a transimpedance amplifier structure able to extract the timing information from a 50-μm-diameter custom technology SPAD with a state-of-art timing jitter as low as 32ps and suitable to be exploited with SPAD arrays. In this paper we discuss the key features of this structure and we present a new version of the pick-up circuit that also provides quenching capabilities in order to minimize the number of interconnections required, an aspect that becomes more and more crucial in densely integrated systems.

  19. Dropout Count Procedural Handbook.

    ERIC Educational Resources Information Center

    Nevada State Dept. of Education, Carson City. Planning, Research and Evaluation Branch.

    This manual outlines the procedure for counting dropouts from the Nevada schools. The State Department of Education instituted a new dropout counting procedure to its student accounting system in January 1988 as part of its response to recommendations of a task force on at-risk youth. The count is taken from each secondary school and includes…

  20. [Correlation between red blood cell count and liver function status].

    PubMed

    Xie, Xiaomeng; Wang, Leijie; Yao, Mingjie; Wen, Xiajie; Chen, Xiangmei; You, Hong; Jia, Jidong; Zhao, Jingmin; Lu, Fengmin

    2016-02-01

    To investigate the changes in red blood cell count in patients with different liver diseases and the correlation between red blood cell count and degree of liver damage. The clinical data of 1427 patients with primary liver cancer, 172 patients with liver cirrhosis, and 185 patients with hepatitis were collected, and the Child-Pugh class was determined for all patients. The differences in red blood cell count between patients with different liver diseases were retrospectively analyzed, and the correlation between red blood cell count and liver function status was investigated. The Mann-Whitney U test, Kruskal-Wallis H test, rank sum test, Spearman rank sum correlation test, and chi-square test were performed for different types of data. Red blood cell count showed significant differences between patients with chronic hepatitis, liver cancer, and liver cirrhosis and was highest in patients with chronic hepatitis and lowest in patients with liver cirrhosis (P < 0.05). In the patients with liver cirrhosis, red blood cell count tended to decrease in patients with a higher Child-Pugh class (P < 0.05). For patients with liver cirrhosis, red blood cell count can reflect the degree of liver damage, which may contribute to an improved liver function prediction model for these patients.

  1. Analysis of counting errors in the phase/Doppler particle analyzer

    NASA Technical Reports Server (NTRS)

    Oldenburg, John R.

    1987-01-01

    NASA is investigating the application of the Phase Doppler measurement technique to provide improved drop sizing and liquid water content measurements in icing research. The magnitude of counting errors were analyzed because these errors contribute to inaccurate liquid water content measurements. The Phase Doppler Particle Analyzer counting errors due to data transfer losses and coincidence losses were analyzed for data input rates from 10 samples/sec to 70,000 samples/sec. Coincidence losses were calculated by determining the Poisson probability of having more than one event occurring during the droplet signal time. The magnitude of the coincidence loss can be determined, and for less than a 15 percent loss, corrections can be made. The data transfer losses were estimated for representative data transfer rates. With direct memory access enabled, data transfer losses are less than 5 percent for input rates below 2000 samples/sec. With direct memory access disabled losses exceeded 20 percent at a rate of 50 samples/sec preventing accurate number density or mass flux measurements. The data transfer losses of a new signal processor were analyzed and found to be less than 1 percent for rates under 65,000 samples/sec.

  2. Platelet Counts in Insoluble Platelet-Rich Fibrin Clots: A Direct Method for Accurate Determination.

    PubMed

    Kitamura, Yutaka; Watanabe, Taisuke; Nakamura, Masayuki; Isobe, Kazushige; Kawabata, Hideo; Uematsu, Kohya; Okuda, Kazuhiro; Nakata, Koh; Tanaka, Takaaki; Kawase, Tomoyuki

    2018-01-01

    Platelet-rich fibrin (PRF) clots have been used in regenerative dentistry most often, with the assumption that growth factor levels are concentrated in proportion to the platelet concentration. Platelet counts in PRF are generally determined indirectly by platelet counting in other liquid fractions. This study shows a method for direct estimation of platelet counts in PRF. To validate this method by determination of the recovery rate, whole-blood samples were obtained with an anticoagulant from healthy donors, and platelet-rich plasma (PRP) fractions were clotted with CaCl 2 by centrifugation and digested with tissue-plasminogen activator. Platelet counts were estimated before clotting and after digestion using an automatic hemocytometer. The method was then tested on PRF clots. The quality of platelets was examined by scanning electron microscopy and flow cytometry. In PRP-derived fibrin matrices, the recovery rate of platelets and white blood cells was 91.6 and 74.6%, respectively, after 24 h of digestion. In PRF clots associated with small and large red thrombi, platelet counts were 92.6 and 67.2% of the respective total platelet counts. These findings suggest that our direct method is sufficient for estimating the number of platelets trapped in an insoluble fibrin matrix and for determining that platelets are distributed in PRF clots and red thrombi roughly in proportion to their individual volumes. Therefore, we propose this direct digestion method for more accurate estimation of platelet counts in most types of platelet-enriched fibrin matrix.

  3. Platelet Counts in Insoluble Platelet-Rich Fibrin Clots: A Direct Method for Accurate Determination

    PubMed Central

    Kitamura, Yutaka; Watanabe, Taisuke; Nakamura, Masayuki; Isobe, Kazushige; Kawabata, Hideo; Uematsu, Kohya; Okuda, Kazuhiro; Nakata, Koh; Tanaka, Takaaki; Kawase, Tomoyuki

    2018-01-01

    Platelet-rich fibrin (PRF) clots have been used in regenerative dentistry most often, with the assumption that growth factor levels are concentrated in proportion to the platelet concentration. Platelet counts in PRF are generally determined indirectly by platelet counting in other liquid fractions. This study shows a method for direct estimation of platelet counts in PRF. To validate this method by determination of the recovery rate, whole-blood samples were obtained with an anticoagulant from healthy donors, and platelet-rich plasma (PRP) fractions were clotted with CaCl2 by centrifugation and digested with tissue-plasminogen activator. Platelet counts were estimated before clotting and after digestion using an automatic hemocytometer. The method was then tested on PRF clots. The quality of platelets was examined by scanning electron microscopy and flow cytometry. In PRP-derived fibrin matrices, the recovery rate of platelets and white blood cells was 91.6 and 74.6%, respectively, after 24 h of digestion. In PRF clots associated with small and large red thrombi, platelet counts were 92.6 and 67.2% of the respective total platelet counts. These findings suggest that our direct method is sufficient for estimating the number of platelets trapped in an insoluble fibrin matrix and for determining that platelets are distributed in PRF clots and red thrombi roughly in proportion to their individual volumes. Therefore, we propose this direct digestion method for more accurate estimation of platelet counts in most types of platelet-enriched fibrin matrix. PMID:29450197

  4. The impact of pitch counts and days of rest on performance among major-league baseball pitchers.

    PubMed

    Bradbury, John C; Forman, Sean L

    2012-05-01

    Although the belief that overuse can harm pitchers is widespread, there exists little evidence to show that the number of pitches thrown and the days of rest affect future performance and injury among adults. The purpose of this study is to quantify the effects of pitches thrown and the days of rest on pitcher performance. We examined performances of major-league baseball starting pitchers from 1988 to 2009 using fractional polynomial multiple regression to estimate the immediate and cumulative impact of pitches thrown and the days of rest on performance, while controlling for other factors that likely affect pitcher effectiveness. Estimates indicate each pitch thrown in the preceding game increased earned run average (ERA) by 0.007 in the following game. Each pitch averaged in the preceding 5 and 10 games increased the ERA by 0.014 and 0.022, respectively. Older pitchers were more sensitive to cumulative pitching loads than younger pitchers were, but they were less affected by pitches thrown in the preceding game. Rest days were weakly associated with performance. In summary, we found that there is a negative relationship between past pitches thrown and future performance that is virtually linear. The impact of the cumulative pitching load is larger than the impact of a single game. Rest days do not appear to have a large impact on performance. This study supports the popular notion that high pitching loads can dampen future performance; however, because the effect is small, pitch-count benchmarks have limited use for maintaining performance and possibly preventing injury.

  5. Effects of Rating Purpose and Rater Self-Esteem on Performance Ratings.

    DTIC Science & Technology

    1983-03-01

    examined in a laboratory study, using a 2x2 analysis of variance design. Results indicate that low self - esteem raters assign significantly higher...design. Results indicate that low self - esteem raters assign significantly higher performance ratings when performance appraisal information will be used...studies indicated that individuals low in self - esteem have less self -confidence, feel less competent, and rely more on others’ opinions than do individuals

  6. Implementing Graduation Counts: State Progress to Date, 2009

    ERIC Educational Resources Information Center

    Curran, Bridget; Reyna, Ryan

    2009-01-01

    In 2005, all 50 state governors made an unprecedented commitment to voluntarily implement a common, more reliable formula for calculating their states' high school graduation rates by signing the National Governors Association (NGA) Graduation Counts Compact. Four years later, progress is steady. Twenty states now report that they use the Compact…

  7. Kids Count [and] Families Count in Delaware: Fact Book, 1998.

    ERIC Educational Resources Information Center

    Nelson, Carl, Ed.; Wilson, Nancy, Ed.

    This Kids Count report is combined with Families Count, and provides information on statewide trends affecting children and families in Delaware. The first statistical profile is based on 10 main indicators of child well-being: (1) births to teens; (2) low birth weight babies; (3) infant mortality; (4) child deaths; (5) teen deaths; (6) juvenile…

  8. Youth Count: Exploring How KIDS COUNT Grantees Address Youth Issues

    ERIC Educational Resources Information Center

    Wilson-Ahlstrom, Alicia; Gaines, Elizabeth; Ferber, Thaddeus; Yohalem, Nicole

    2005-01-01

    Inspired by the 2004 Kids Count Databook essay, "Moving Youth From Risk to Opportunity," this new report highlights the history of data collection, challenges and innovative strategies of 12 Annie E. Casey Foundation KIDS COUNT grantees in their work to serve the needs of older youth. (Contains 3 figures, 2 tables, and 9 notes.)

  9. Approach for counting vehicles in congested traffic flow

    NASA Astrophysics Data System (ADS)

    Tan, Xiaojun; Li, Jun; Liu, Wei

    2005-02-01

    More and more image sensors are used in intelligent transportation systems. In practice, occlusion is always a problem when counting vehicles in congested traffic. This paper tries to present an approach to solve the problem. The proposed approach consists of three main procedures. Firstly, a new algorithm of background subtraction is performed. The aim is to segment moving objects from an illumination-variant background. Secondly, object tracking is performed, where the CONDENSATION algorithm is used. This can avoid the problem of matching vehicles in successive frames. Thirdly, an inspecting procedure is executed to count the vehicles. When a bus firstly occludes a car and then the bus moves away a few frames later, the car will appear in the scene. The inspecting procedure should find the "new" car and add it as a tracking object.

  10. Social motivation in prospective memory: higher importance ratings and reported performance rates for social tasks.

    PubMed

    Penningroth, Suzanna L; Scott, Walter D; Freuen, Margaret

    2011-03-01

    Few studies have addressed social motivation in prospective memory (PM). In a pilot study and two main studies, we examined whether social PM tasks possess a motivational advantage over nonsocial PM tasks. In the pilot study and Study 1, participants listed their real-life important and less important PM tasks. Independent raters categorized the PM tasks as social or nonsocial. Results from both studies showed a higher proportion of tasks rated as social when important tasks were requested than when less important tasks were requested. In Study 1, participants also reported whether they had remembered to perform each PM task. Reported performance rates were higher for tasks rated as social than for those rated as nonsocial. Finally, in Study 2, participants rated the importance of two hypothetical PM tasks, one social and one nonsocial. The social PM task was rated higher in importance. Overall, these findings suggest that social PM tasks are viewed as more important than nonsocial PM tasks and they are more likely to be performed. We propose that consideration of the social relevance of PM will lead to a more complete and ecologically valid theoretical description of PM performance. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  11. Reducing the Child Death Rate. KIDS COUNT Indicator Brief

    ERIC Educational Resources Information Center

    Shore, Rima; Shore, Barbara

    2009-01-01

    In the 20th century's final decades, advances in the prevention and treatment of infectious diseases sharply reduced the child death rate. Despite this progress, the child death rate in the U.S. remains higher than in many other wealthy nations. The under-five mortality rate in the U.S. is almost three times higher than that of Iceland and Sweden…

  12. Automatic vehicle counting system for traffic monitoring

    NASA Astrophysics Data System (ADS)

    Crouzil, Alain; Khoudour, Louahdi; Valiere, Paul; Truong Cong, Dung Nghy

    2016-09-01

    The article is dedicated to the presentation of a vision-based system for road vehicle counting and classification. The system is able to achieve counting with a very good accuracy even in difficult scenarios linked to occlusions and/or presence of shadows. The principle of the system is to use already installed cameras in road networks without any additional calibration procedure. We propose a robust segmentation algorithm that detects foreground pixels corresponding to moving vehicles. First, the approach models each pixel of the background with an adaptive Gaussian distribution. This model is coupled with a motion detection procedure, which allows correctly location of moving vehicles in space and time. The nature of trials carried out, including peak periods and various vehicle types, leads to an increase of occlusions between cars and between cars and trucks. A specific method for severe occlusion detection, based on the notion of solidity, has been carried out and tested. Furthermore, the method developed in this work is capable of managing shadows with high resolution. The related algorithm has been tested and compared to a classical method. Experimental results based on four large datasets show that our method can count and classify vehicles in real time with a high level of performance (>98%) under different environmental situations, thus performing better than the conventional inductive loop detectors.

  13. UAS-based automatic bird count of a common gull colony

    NASA Astrophysics Data System (ADS)

    Grenzdörffer, G. J.

    2013-08-01

    The standard procedure to count birds is a manual one. However a manual bird count is a time consuming and cumbersome process, requiring several people going from nest to nest counting the birds and the clutches. High resolution imagery, generated with a UAS (Unmanned Aircraft System) offer an interesting alternative. Experiences and results of UAS surveys for automatic bird count of the last two years are presented for the bird reserve island Langenwerder. For 2011 1568 birds (± 5%) were detected on the image mosaic, based on multispectral image classification and GIS-based post processing. Based on the experiences of 2011 the results and the accuracy of the automatic bird count 2012 became more efficient. For 2012 1938 birds with an accuracy of approx. ± 3% were counted. Additionally a separation of breeding and non-breeding birds was performed with the assumption, that standing birds cause a visible shade. The final section of the paper is devoted to the analysis of the 3D-point cloud. Thereby the point cloud was used to determine the height of the vegetation and the extend and depth of closed sinks, which are unsuitable for breeding birds.

  14. Fighter pilots' heart rate, heart rate variation and performance during an instrument flight rules proficiency test.

    PubMed

    Mansikka, Heikki; Virtanen, Kai; Harris, Don; Simola, Petteri

    2016-09-01

    Increased task demand will increase the pilot mental workload (PMWL). When PMWL is increased, mental overload may occur resulting in degraded performance. During pilots' instrument flight rules (IFR) proficiency test, PMWL is typically not measured. Therefore, little is known about workload during the proficiency test and pilots' potential to cope with higher task demands than those experienced during the test. In this study, fighter pilots' performance and PMWL was measured during a real IFR proficiency test in an F/A-18 simulator. PMWL was measured using heart rate (HR) and heart rate variation (HRV). Performance was rated using Finnish Air Force's official rating scales. Results indicated that HR and HRV differentiate varying task demands in situations where variations in performance are insignificant. It was concluded that during a proficiency test, PMWL should be measured together with the task performance measurement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Liver stiffness and platelet count for identifying patients with compensated liver disease at low risk of variceal bleeding.

    PubMed

    Marot, Astrid; Trépo, Eric; Doerig, Christopher; Schoepfer, Alain; Moreno, Christophe; Deltenre, Pierre

    2017-05-01

    The 2015 Baveno VI guidelines recommend against performing upper gastrointestinal endoscopy in patients with compensated cirrhosis who have a liver stiffness <20 kPa and a platelet count >150 000/mm³ because of a low prevalence of varices at risk of bleeding in this population. The aim was to synthesize the available evidence on the usefulness of the combined use of liver stiffness and platelet count to identify patients without oesophageal varices. Meta-analysis of trials evaluating the usefulness of a given cut-off for liver stiffness and platelet count to rule out the presence of oesophageal varices. Fifteen studies were included. All studies excepting five used the Baveno VI criteria. Compared to patients with either high liver stiffness or low platelet count, those with low liver stiffness and normal platelet count had a lower risk of varices at risk of bleeding (OR=0.22, 95% CI=0.13-0.39, P<.001) with low heterogeneity between studies (I 2 =21%). They also had a lower risk of varices (OR=0.23, 95% CI=0.17-0.32, P<.001) with moderate heterogeneity between studies (I 2 =28%). In patients with low liver stiffness and normal platelet count, the pooled estimate rates for varices at risk of bleeding was 0.040 (95% CI=0.027-0.059) with low heterogeneity between studies (I 2 =3%). Patients with low liver stiffness and normal platelet count have a lower risk of varices than those with either high liver stiffness or low platelet count. Varices at risk of bleeding are found in no more than 4% of patients when liver stiffness is <20 kPa and platelet count is normal. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Performance of coincidence-based PSD on LiF/ZnS Detectors for Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Sean M.; Stave, Sean C.; Lintereur, Azaree

    Abstract: Mass accountancy measurement is a nuclear nonproliferation application which utilizes coincidence and multiplicity counters to verify special nuclear material declarations. With a well-designed and efficient detector system, several relevant parameters of the material can be verified simultaneously. 6LiF/ZnS scintillating sheets may be used for this purpose due to a combination of high efficiency and short die-away times in systems designed with this material, but involve choices of detector geometry and exact material composition (e.g., the addition of Ni-quenching in the material) that must be optimized for the application. Multiplicity counting for verification of declared nuclear fuel mass involves neutronmore » detection in conditions where several neutrons arrive in a short time window, with confounding gamma rays. This paper considers coincidence-based Pulse-Shape Discrimination (PSD) techniques developed to work under conditions of high pileup, and the performance of these algorithms with different detection materials. Simulated and real data from modern LiF/ZnS scintillator systems are evaluated with these techniques and the relationship between the performance under pileup and material characteristics (e.g., neutron peak width and total light collection efficiency) are determined, to allow for an optimal choice of detector and material.« less

  17. How Fred Hoyle Reconciled Radio Source Counts and the Steady State Cosmology

    NASA Astrophysics Data System (ADS)

    Ekers, Ron

    2012-09-01

    In 1969 Fred Hoyle invited me to his Institute of Theoretical Astronomy (IOTA) in Cambridge to work with him on the interpretation of the radio source counts. This was a period of extreme tension with Ryle just across the road using the steep slope of the radio source counts to argue that the radio source population was evolving and Hoyle maintaining that the counts were consistent with the steady state cosmology. Both of these great men had made some correct deductions but they had also both made mistakes. The universe was evolving, but the source counts alone could tell us very little about cosmology. I will try to give some indication of the atmosphere and the issues at the time and look at what we can learn from this saga. I will conclude by briefly summarising the exponential growth of the size of the radio source counts since the early days and ask whether our understanding has grown at the same rate.

  18. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    NASA Astrophysics Data System (ADS)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  19. Implementing Graduation Counts: State Progress to Date, 2010

    ERIC Educational Resources Information Center

    Curran, Bridget; Reyna, Ryan

    2010-01-01

    In 2005, the governors of all 50 states made an unprecedented commitment to voluntarily implement a common, more reliable formula for calculating their state's high school graduation rate by signing the Graduation Counts Compact of the National Governors Association (NGA). Five years later, progress is steady. Twenty-six states say they have…

  20. Effects of flicker rate, complexity, and color combinations of Chinese characters and backgrounds on visual search performance with varying flicker types.

    PubMed

    Huang, Kuo-Chen; Lin, Rung-Tai; Wu, Chih-Fu

    2011-08-01

    This study investigated the effects of number of strokes in Chinese characters, flicker rate, flicker type, and character/background color combination on search performance. 37 participants ages 14 to 18 years were randomly assigned to each flicker-type condition. The search field contained 36 characters arranged in a 6 x 6 matrix. Participants were asked to search for the target characters among the surrounding distractors and count how many target characters were displayed in the search array. Analysis indicated that the character/background color combination significantly affected search times. The color combinations of white/purple and white/green yielded search times greater than those for black/white and black/yellow combinations. A significant effect for flicker type on search time was also identified. Rotating characters facilitated search time, compared with twinkling ones. The number of strokes and the flicker rates also had positive effects on search performances. For flicker rate, the search accuracy for 0.5 Hz was greater than that for 1.0 Hz, and the latter was also greater than that for 2.0 Hz. Results are applicable to web advertisement designs containing dynamic characters, in terms of how to best capture readers' attention by various means of dynamic character presentation.

  1. Comparison of Primary Models to Predict Microbial Growth by the Plate Count and Absorbance Methods.

    PubMed

    Pla, María-Leonor; Oltra, Sandra; Esteban, María-Dolores; Andreu, Santiago; Palop, Alfredo

    2015-01-01

    The selection of a primary model to describe microbial growth in predictive food microbiology often appears to be subjective. The objective of this research was to check the performance of different mathematical models in predicting growth parameters, both by absorbance and plate count methods. For this purpose, growth curves of three different microorganisms (Bacillus cereus, Listeria monocytogenes, and Escherichia coli) grown under the same conditions, but with different initial concentrations each, were analysed. When measuring the microbial growth of each microorganism by optical density, almost all models provided quite high goodness of fit (r(2) > 0.93) for all growth curves. The growth rate remained approximately constant for all growth curves of each microorganism, when considering one growth model, but differences were found among models. Three-phase linear model provided the lowest variation for growth rate values for all three microorganisms. Baranyi model gave a variation marginally higher, despite a much better overall fitting. When measuring the microbial growth by plate count, similar results were obtained. These results provide insight into predictive microbiology and will help food microbiologists and researchers to choose the proper primary growth predictive model.

  2. Conductor and Ensemble Performance Expressivity and State Festival Ratings

    ERIC Educational Resources Information Center

    Price, Harry E.; Chang, E. Christina

    2005-01-01

    This study is the second in a series examining the relationship between conducting and ensemble performance. The purpose was to further examine the associations among conductor, ensemble performance expressivity, and festival ratings. Participants were asked to rate the expressivity of video-only conducting and parallel audio-only excerpts from a…

  3. Rater Effects in Clinical Performance Ratings of Surgery Residents

    ERIC Educational Resources Information Center

    Iramaneerat, Cherdsak; Myford, Carol M.

    2006-01-01

    A multi-faceted Rasch measurement (MFRM) approach was used to analyze clinical performance ratings of 24 first-year residents in one surgery residency program in Thailand to investigate three types of rater effects: leniency, rater inconsistency, and restriction of range. Faculty from 14 surgical services rated the clinical performance of…

  4. Test Scores, Dropout Rates, and Transfer Rates as Alternative Indicators of High School Performance

    ERIC Educational Resources Information Center

    Rumberger, Russell W.; Palardy, Gregory J.

    2005-01-01

    This study investigated the relationships among several different indicators of high school performance: test scores, dropout rates, transfer rates, and attrition rates. Hierarchical linear models were used to analyze panel data from a sample of 14,199 students who took part in the National Education Longitudinal Survey of 1988. The results…

  5. Isospectral discrete and quantum graphs with the same flip counts and nodal counts

    NASA Astrophysics Data System (ADS)

    Juul, Jonas S.; Joyner, Christopher H.

    2018-06-01

    The existence of non-isomorphic graphs which share the same Laplace spectrum (to be referred to as isospectral graphs) leads naturally to the following question: what additional information is required in order to resolve isospectral graphs? It was suggested by Band, Shapira and Smilansky that this might be achieved by either counting the number of nodal domains or the number of times the eigenfunctions change sign (the so-called flip count) (Band et al 2006 J. Phys. A: Math. Gen. 39 13999–4014 Band and Smilansky 2007 Eur. Phys. J. Spec. Top. 145 171–9). Recent examples of (discrete) isospectral graphs with the same flip count and nodal count have been constructed by Ammann by utilising Godsil–McKay switching (Ammann private communication). Here, we provide a simple alternative mechanism that produces systematic examples of both discrete and quantum isospectral graphs with the same flip and nodal counts.

  6. Modeling Count Outcomes from HIV Risk Reduction Interventions: A Comparison of Competing Statistical Models for Count Responses

    PubMed Central

    Xia, Yinglin; Morrison-Beedy, Dianne; Ma, Jingming; Feng, Changyong; Cross, Wendi; Tu, Xin

    2012-01-01

    Modeling count data from sexual behavioral outcomes involves many challenges, especially when the data exhibit a preponderance of zeros and overdispersion. In particular, the popular Poisson log-linear model is not appropriate for modeling such outcomes. Although alternatives exist for addressing both issues, they are not widely and effectively used in sex health research, especially in HIV prevention intervention and related studies. In this paper, we discuss how to analyze count outcomes distributed with excess of zeros and overdispersion and introduce appropriate model-fit indices for comparing the performance of competing models, using data from a real study on HIV prevention intervention. The in-depth look at these common issues arising from studies involving behavioral outcomes will promote sound statistical analyses and facilitate research in this and other related areas. PMID:22536496

  7. 12 CFR 1281.13 - Special counting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... were previously counted by a Bank under any current or previous housing goal within the five years immediately preceding the current performance year; (10) Purchases of mortgages where the property has not been approved for occupancy; and (11) Any combination of factors in paragraphs (b)(1) through (b)(10...

  8. Development of an Automatic Echo-counting Program for HROFFT Spectrograms

    NASA Astrophysics Data System (ADS)

    Noguchi, Kazuya; Yamamoto, Masa-Yuki

    2008-06-01

    Radio meteor observations by Ham-band beacon or FM radio broadcasts using “Ham-band Radio meteor Observation Fast Fourier Transform” (HROFFT) an automatic operating software have been performed widely in recent days. Previously, counting of meteor echoes on the spectrograms of radio meteor observation was performed manually by observers. In the present paper, we introduce an automatic meteor echo counting software application. Although output images of the HROFFT contain both the features of meteor echoes and those of various types of noises, a newly developed image processing technique has been applied, resulting in software that enables a useful auto-counting tool. There exists a slight error in the processing on spectrograms when the observation site is affected by many disturbing noises. Nevertheless, comparison between software and manual counting revealed an agreement of almost 90%. Therefore, we can easily obtain a dataset of detection time, duration time, signal strength, and Doppler shift of each meteor echo from the HROFFT spectrograms. Using this software, statistical analyses of meteor activities is based on the results obtained at many Ham-band Radio meteor Observation (HRO) sites throughout the world, resulting in a very useful “standard” for monitoring meteor stream activities in real time.

  9. Counting It Twice.

    ERIC Educational Resources Information Center

    Schattschneider, Doris

    1991-01-01

    Provided are examples from many domains of mathematics that illustrate the Fubini Principle in its discrete version: the value of a summation over a rectangular array is independent of the order of summation. Included are: counting using partitions as in proof by pictures, combinatorial arguments, indirect counting as in the inclusion-exclusion…

  10. The relationship between pollen count levels and prevalence of Japanese cedar pollinosis in Northeast Japan.

    PubMed

    Honda, Kohei; Saito, Hidekazu; Fukui, Naoko; Ito, Eiko; Ishikawa, Kazuo

    2013-09-01

    The prevalence of Japanese cedar (JC) pollinosis in Japanese children is increasing. However, few studies have reported the relationship between pollen count levels and the prevalence of pollinosis. To evaluate the relationship between JC pollen count levels and the prevalence of pollinosis in children, we investigated the sensitization and development of symptoms for JC pollen in two areas of Akita in northeast Japan with contrasting levels of exposure to JC pollen. The study population consisted of 339 elementary school students (10-11 years of age) from the coastal and mountainous areas of Akita in 2005-2006. A questionnaire about symptoms of allergic rhinitis was filled out by the students' parents. A blood sample was taken to determine specific IgE antibodies against five common aeroallergens. The mean pollen count in the mountainous areas was two times higher than that in the coastal areas in 1996-2006. The prevalence rates of nasal allergy symptoms and sensitization for mites were almost the same in both areas. On the other hand, the rates of nasal allergy symptoms and sensitization for JC pollen were significantly higher in the mountainous areas than in the coastal areas. The rate of the development of symptoms among children sensitized for JC pollen was almost the same in both areas. These results suggest that pollen count levels may correlate with the rate of sensitization for JC pollinosis, but may not affect the rate of onset among sensitized children in northeast Japan.

  11. Partial-Interval Estimation of Count: Uncorrected and Poisson-Corrected Error Levels

    ERIC Educational Resources Information Center

    Yoder, Paul J.; Ledford, Jennifer R.; Harbison, Amy L.; Tapp, Jon T.

    2018-01-01

    A simulation study that used 3,000 computer-generated event streams with known behavior rates, interval durations, and session durations was conducted to test whether the main and interaction effects of true rate and interval duration affect the error level of uncorrected and Poisson-transformed (i.e., "corrected") count as estimated by…

  12. Counted Sb donors in Si quantum dots

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Pacheco, Jose; Bielejec, Edward; Perry, Daniel; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2015-03-01

    Deterministic control over the location and number of donors is critical for donor spin qubits in semiconductor based quantum computing. We have developed techniques using a focused ion beam and a diode detector integrated next to a silicon MOS single electron transistor to gain such control. With the diode detector operating in linear mode, the numbers of ions implanted have been counted and single ion implants have been detected. Poisson statistics in the number of ions implanted have been observed. Transport measurements performed on samples with counted number of implants have been performed and regular coulomb blockade and charge offsets observed. The capacitances to various gates are found to be in agreement with QCAD simulations for an electrostatically defined dot. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  13. Factor V Leiden is associated with increased sperm count.

    PubMed

    van Mens, T E; Joensen, U N; Bochdanovits, Z; Takizawa, A; Peter, J; Jørgensen, N; Szecsi, P B; Meijers, J C M; Weiler, H; Rajpert-De Meyts, E; Repping, S; Middeldorp, S

    2017-11-01

    Is the thrombophilia mutation factor V Leiden (FVL) associated with an increased total sperm count? Carriers of FVL have a higher total sperm count than non-FVL-carriers, which could not be explained by genetic linkage or by observations in a FVL-mouse model. FVL has a high prevalence in Caucasians despite detrimental health effects. Carriers have been shown to have higher fecundity, which might partly explain this evolutionary paradox. We determined FVL status in two cohorts (Dutch, n = 627; Danish, n = 854) of consecutively included men without known causes for spermatogenic failure, and performed an individual patient data meta-analysis of these two cohorts together with one previously published (Dutch, n = 908) cohort. We explored possible biological underpinnings for the relation between sperm count and FVL, by use of a FVL-mouse model and investigations of genetic linkage. Participants were male partners of subfertile couples (two Dutch cohorts) and young men from the general population (Danish cohort): FVL carrier rate was 4.0%, 4.6% and 7.3%, respectively. There were differences in smoking, abstinence time and age between the cohorts. We corrected for these in the primary analysis, which consisted of a mixed linear effects model, also incorporating unobjectified population differences. In public haplotype data from subjects of European descent, we explored linkage disequilibrium of FVL with all known single nucleotide polymorphisms in a 1.5 MB region around the F5 gene with an R2 cutoff of 0.8. We sequenced exons of four candidate genes hypothesized to be linked to FVL in a subgroup of FVL carriers with extreme sperm count values. The animal studies consisted of never mated 15-18-week-old C57BL/J6 mice heterozygous and homozygous for FVL and wild-type mice. We compared spermatogenesis parameters (normalized internal genitalia weights, epididymis sperm content and sperm motility) between FVL and wild-type mice. Human FVL carriers have a higher total sperm

  14. Laboratory and field performance of a laser particle counter for measuring aeolian sand transport

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Barchyn, Thomas E.

    2011-03-01

    This paper reports the results of laboratory and field tests that evaluate the performance of a new laser particle counter for measuring aeolian sand transport. The Wenglor® model YH03PCT8 ("Wenglor") consists of a laser (655 nm), photo sensor, and switching circuit. When a particle passes through the 0.6 mm diameter, 30 mm long laser beam, the sensor outputs a digital signal. Laboratory tests with medium sand and a vertical gravity flume show that the Wenglor count rate scales approximately linearly with mass flux up to the saturation point of the sensor, after which the count rate decreases despite increasing mass flux. Saturation depends on the diameter and concentration of particles in the airstream and may occur during extreme events in the field. Below saturation sensor performance is relatively consistent; the mean difference between average count rate response was between 50 and 100 counts. Field tests provide a complimentary frame of reference for evaluating the performance of the Wenglor under varying environmental conditions and to gauge its performance with respect to a collocated piezoelectric impact sensor (Sensit H11-B). During 136.5 h of deployment on an active sand dune the relative proportion of time sand transport recorded by two Wenglors was 0.09% and 0.79%, compared to 4.68% by the Sensit H11-B. The weak performance of the Wenglors is attributed to persistent lens contamination from adhesion of sand grains on the sensors after rainfall. However, during dry and windy conditions the Wenglor performance improved substantially; sensors measured a concentration of sand particles in the airstream more than seven times greater than that measured by the Sensit. Between the two Wenglors, the mean absolute count rate difference was 6.16 counts per second, with a standard deviation of 8.53 counts per second. For short-term measurement campaigns in dry conditions, therefore, the Wenglor is relatively consistent and can outperform the Sensit in detecting

  15. Ultra-fast photon counting with a passive quenching silicon photomultiplier in the charge integration regime

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqing; Lina, Liu

    2018-02-01

    An ultra-fast photon counting method is proposed based on the charge integration of output electrical pulses of passive quenching silicon photomultipliers (SiPMs). The results of the numerical analysis with actual parameters of SiPMs show that the maximum photon counting rate of a state-of-art passive quenching SiPM can reach ~THz levels which is much larger than that of the existing photon counting devices. The experimental procedure is proposed based on this method. This photon counting regime of SiPMs is promising in many fields such as large dynamic light power detection.

  16. Attention during active visual tasks: counting, pointing, or simply looking

    PubMed Central

    Wilder, John D.; Schnitzer, Brian S.; Gersch, Timothy M.; Dosher, Barbara A.

    2009-01-01

    Visual attention and saccades are typically studied in artificial situations, with stimuli presented to the steadily fixating eye, or saccades made along specified paths. By contrast, in the real world saccadic patterns are constrained only by the demands of the motivating task. We studied attention during pauses between saccades made to perform 3 free-viewing tasks: counting dots, pointing to the same dots with a visible cursor, or simply looking at the dots using a freely-chosen path. Attention was assessed by the ability to identify the orientation of a briefly-presented Gabor probe. All primary tasks produced losses in identification performance, with counting producing the largest losses, followed by pointing and then looking-only. Looking-only resulted in a 37% increase in contrast thresholds in the orientation task. Counting produced more severe losses that were not overcome by increasing Gabor contrast. Detection or localization of the Gabor, unlike identification, were largely unaffected by any of the primary tasks. Taken together, these results show that attention is required to control saccades, even with freely-chosen paths, but the attentional demands of saccades are less than those attached to tasks such as counting, which have a significant cognitive load. Counting proved to be a highly demanding task that either exhausted momentary processing capacity (e.g., working memory or executive functions), or, alternatively, encouraged a strategy of filtering out all signals irrelevant to counting itself. The fact that the attentional demands of saccades (as well as those of detection/localization) are relatively modest makes it possible to continually adjust both the spatial and temporal pattern of saccades so as to re-allocate attentional resources as needed to handle the complex and multifaceted demands of real-world environments. PMID:18649913

  17. ON THE PROGNOSTIC SIGNIFICANCE OF THE ERYTHROCYTE SEDIMENTATION RATE, THE LEUKOCYTE COUNT, THE HEMOGLOBIN VALUE, AND BODY WEIGHT IN IRRADIATED AND NONIRRADIATED CANCER PATIENTS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, D.

    1962-06-01

    Changes in these parameters were followed in 672 women with genital carcinoma during and after radiotherapy to determine whether any of them could be used to predict the eventual success of the treatment. All of these parameters were found to be of prognostic value in the 394 patients with carcinoma of the uterine cervix of grades I, II, and III. Erythrocyte sedimentation rate (ESR) was initially elevated in these patients, and in those without recurrence, irradiation caused a prompt and progressive drop in ESR. It continued to rise after radiotherapy in those who later showed tumor recurrence. Similar changes inmore » leukocyte count were seen in this group, the counts falling and staying down after successful treatment or rising when the treatment failed. An inverse relation with respect to the hemoglobin level and body wt was seen, both values progressively increasing in cases later shown to be cured and falling in those which were not. These relations did not hold or were of less prognostic value in patients with carcinomas of the body of the uterus, ovary, or vulva. However, in general, a gradual continual fall in ESR and a rapid fall in leukocyte count were favorable signs following irradiation. (BBB)« less

  18. 18F-FDG positron autoradiography with a particle counting silicon pixel detector.

    PubMed

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C; Marotta, M; Aloj, L; Lastoria, S

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  19. Complexities of Counting.

    ERIC Educational Resources Information Center

    Stake, Bernadine Evans

    This document focuses on one child's skip counting methods. The pupil, a second grade student at Steuben School, in Kankakee, Illinois, was interviewed as she made several attempts at counting twenty-five poker chips on a circular piece of paper. The interview was part of a larger study of "Children's Conceptions of Number and Numeral,"…

  20. Reconfigurable Computing As an Enabling Technology for Single-Photon-Counting Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Powell, Wesley; Hicks, Edward; Pinchinat, Maxime; Dabney, Philip; McGarry, Jan; Murray, Paul

    2003-01-01

    Single-photon-counting laser altimetry is a new measurement technique offering significant advantages in vertical resolution, reducing instrument size, mass, and power, and reducing laser complexity as compared to analog or threshold detection laser altimetry techniques. However, these improvements come at the cost of a dramatically increased requirement for onboard real-time data processing. Reconfigurable computing has been shown to offer considerable performance advantages in performing this processing. These advantages have been demonstrated on the Multi-KiloHertz Micro-Laser Altimeter (MMLA), an aircraft based single-photon-counting laser altimeter developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This paper describes how reconfigurable computing technology was employed to perform MMLA data processing in real-time under realistic operating constraints, along with the results observed. This paper also expands on these prior results to identify concepts for using reconfigurable computing to enable spaceflight single-photon-counting laser altimeter instruments.

  1. Is Parenting Child's Play? Kids Count in Missouri Report on Adolescent Pregnancy.

    ERIC Educational Resources Information Center

    Citizens for Missouri's Children, St. Louis.

    This Kids Count report presents current information on adolescent pregnancy rates in Missouri. Part 1, "Overview of Adolescent Pregnancy in Missouri," discusses the changing pregnancy, abortion, and birth rates for 15- to 19-year-old adolescents, racial differences in pregnancy risk, regional differences suggesting a link between…

  2. [Prognostic value of absolute monocyte count in chronic lymphocytic leukaemia].

    PubMed

    Szerafin, László; Jakó, János; Riskó, Ferenc

    2015-04-01

    The low peripheral absolute lymphocyte and high monocyte count have been reported to correlate with poor clinical outcome in various lymphomas and other cancers. However, a few data known about the prognostic value of absolute monocyte count in chronic lymphocytic leukaemia. The aim of the authors was to investigate the impact of absolute monocyte count measured at the time of diagnosis in patients with chronic lymphocytic leukaemia on the time to treatment and overal survival. Between January 1, 2005 and December 31, 2012, 223 patients with newly-diagnosed chronic lymphocytic leukaemia were included. The rate of patients needing treatment, time to treatment, overal survival and causes of mortality based on Rai stages, CD38, ZAP-70 positivity and absolute monocyte count were analyzed. Therapy was necessary in 21.1%, 57.4%, 88.9%, 88.9% and 100% of patients in Rai stage 0, I, II, III an IV, respectively; in 61.9% and 60.8% of patients exhibiting CD38 and ZAP-70 positivity, respectively; and in 76.9%, 21.2% and 66.2% of patients if the absolute monocyte count was <0.25 G/l, between 0.25-0.75 G/l and >0.75 G/l, respectively. The median time to treatment and the median overal survival were 19.5, 65, and 35.5 months; and 41.5, 65, and 49.5 months according to the three groups of monocyte counts. The relative risk of beginning the therapy was 1.62 (p<0.01) in patients with absolute monocyte count <0.25 G/l or >0.75 G/l, as compared to those with 0.25-0.75 G/l, and the risk of overal survival was 2.41 (p<0.01) in patients with absolute monocyte count lower than 0.25 G/l as compared to those with higher than 0.25 G/l. The relative risks remained significant in Rai 0 patients, too. The leading causes of mortality were infections (41.7%) and the chronic lymphocytic leukaemia (58.3%) in patients with low monocyte count, while tumours (25.9-35.3%) and other events (48.1 and 11.8%) occurred in patients with medium or high monocyte counts. Patients with low and high monocyte

  3. Effects of lek count protocols on greater sage-grouse population trend estimates

    USGS Publications Warehouse

    Monroe, Adrian; Edmunds, David; Aldridge, Cameron L.

    2016-01-01

    Annual counts of males displaying at lek sites are an important tool for monitoring greater sage-grouse populations (Centrocercus urophasianus), but seasonal and diurnal variation in lek attendance may increase variance and bias of trend analyses. Recommendations for protocols to reduce observation error have called for restricting lek counts to within 30 minutes of sunrise, but this may limit the number of lek counts available for analysis, particularly from years before monitoring was widely standardized. Reducing the temporal window for conducting lek counts also may constrain the ability of agencies to monitor leks efficiently. We used lek count data collected across Wyoming during 1995−2014 to investigate the effect of lek counts conducted between 30 minutes before and 30, 60, or 90 minutes after sunrise on population trend estimates. We also evaluated trends across scales relevant to management, including statewide, within Working Group Areas and Core Areas, and for individual leks. To further evaluate accuracy and precision of trend estimates from lek count protocols, we used simulations based on a lek attendance model and compared simulated and estimated values of annual rate of change in population size (λ) from scenarios of varying numbers of leks, lek count timing, and count frequency (counts/lek/year). We found that restricting analyses to counts conducted within 30 minutes of sunrise generally did not improve precision of population trend estimates, although differences among timings increased as the number of leks and count frequency decreased. Lek attendance declined >30 minutes after sunrise, but simulations indicated that including lek counts conducted up to 90 minutes after sunrise can increase the number of leks monitored compared to trend estimates based on counts conducted within 30 minutes of sunrise. This increase in leks monitored resulted in greater precision of estimates without reducing accuracy. Increasing count

  4. Repeatability of paired counts.

    PubMed

    Alexander, Neal; Bethony, Jeff; Corrêa-Oliveira, Rodrigo; Rodrigues, Laura C; Hotez, Peter; Brooker, Simon

    2007-08-30

    The Bland and Altman technique is widely used to assess the variation between replicates of a method of clinical measurement. It yields the repeatability, i.e. the value within which 95 per cent of repeat measurements lie. The valid use of the technique requires that the variance is constant over the data range. This is not usually the case for counts of items such as CD4 cells or parasites, nor is the log transformation applicable to zero counts. We investigate the properties of generalized differences based on Box-Cox transformations. For an example, in a data set of hookworm eggs counted by the Kato-Katz method, the square root transformation is found to stabilize the variance. We show how to back-transform the repeatability on the square root scale to the repeatability of the counts themselves, as an increasing function of the square mean root egg count, i.e. the square of the average of square roots. As well as being more easily interpretable, the back-transformed results highlight the dependence of the repeatability on the sample volume used.

  5. Statistical aspects of point count sampling

    USGS Publications Warehouse

    Barker, R.J.; Sauer, J.R.; Ralph, C.J.; Sauer, J.R.; Droege, S.

    1995-01-01

    The dominant feature of point counts is that they do not census birds, but instead provide incomplete counts of individuals present within a survey plot. Considering a simple model for point count sampling, we demon-strate that use of these incomplete counts can bias estimators and testing procedures, leading to inappropriate conclusions. A large portion of the variability in point counts is caused by the incomplete counting, and this within-count variation can be confounded with ecologically meaningful varia-tion. We recommend caution in the analysis of estimates obtained from point counts. Using; our model, we also consider optimal allocation of sampling effort. The critical step in the optimization process is in determining the goals of the study and methods that will be used to meet these goals. By explicitly defining the constraints on sampling and by estimating the relationship between precision and bias of estimators and time spent counting, we can predict the optimal time at a point for each of several monitoring goals. In general, time spent at a point will differ depending on the goals of the study.

  6. 45 CFR 261.34 - Are there any limitations in counting job search and job readiness assistance toward the...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 2 2011-10-01 2011-10-01 false Are there any limitations in counting job search and job readiness assistance toward the participation rates? 261.34 Section 261.34 Public Welfare... Work Activities and How Do They Count? § 261.34 Are there any limitations in counting job search and...

  7. 45 CFR 261.34 - Are there any limitations in counting job search and job readiness assistance toward the...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 2 2013-10-01 2012-10-01 true Are there any limitations in counting job search and job readiness assistance toward the participation rates? 261.34 Section 261.34 Public Welfare... Work Activities and How Do They Count? § 261.34 Are there any limitations in counting job search and...

  8. 45 CFR 261.34 - Are there any limitations in counting job search and job readiness assistance toward the...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Are there any limitations in counting job search and job readiness assistance toward the participation rates? 261.34 Section 261.34 Public Welfare... Work Activities and How Do They Count? § 261.34 Are there any limitations in counting job search and...

  9. 45 CFR 261.34 - Are there any limitations in counting job search and job readiness assistance toward the...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 2 2012-10-01 2012-10-01 false Are there any limitations in counting job search and job readiness assistance toward the participation rates? 261.34 Section 261.34 Public Welfare... Work Activities and How Do They Count? § 261.34 Are there any limitations in counting job search and...

  10. 45 CFR 261.34 - Are there any limitations in counting job search and job readiness assistance toward the...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 2 2014-10-01 2012-10-01 true Are there any limitations in counting job search and job readiness assistance toward the participation rates? 261.34 Section 261.34 Public Welfare... Work Activities and How Do They Count? § 261.34 Are there any limitations in counting job search and...

  11. Performance evaluation of neuro-PET using silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Jung, Jiwoong; Choi, Yong; Jung, Jin Ho; Kim, Sangsu; Im, Ki Chun

    2016-05-01

    Recently, we have developed the second prototype Silicon photomultiplier (SiPM) based positron emission tomography (PET) scanner for human brain imaging. The PET system was comprised of detector block which consisted of 4×4 SiPMs and 4×4 Lutetium Yttrium Orthosilicate arrays, charge signal transmission method, high density position decoder circuit and FPGA-embedded ADC boards. The purpose of this study was to evaluate the performance of the newly developed neuro-PET system. The energy resolution, timing resolution, spatial resolution, sensitivity, stability of the photo-peak position and count rate performance were measured. Tomographic image of 3D Hoffman brain phantom was also acquired to evaluate imaging capability of the neuro-PET. The average energy and timing resolutions measured for 511 keV gamma rays were 17±0.1% and 3±0.3 ns, respectively. Spatial resolution and sensitivity at the center of field of view (FOV) were 3.1 mm and 0.8%, respectively. The average scatter fraction was 0.4 with an energy window of 350-650 keV. The maximum true count rate and maximum NECR were measured as 43.3 kcps and 6.5 kcps at an activity concentration of 16.7 kBq/ml and 5.5 kBq/ml, respectively. Long-term stability results show that there was no significant change in the photo-peak position, energy resolution and count rate for 60 days. Phantom imaging studies were performed and they demonstrated the feasibility for high quality brain imaging. The performance tests and imaging results indicate that the newly developed PET is useful for brain imaging studies, if the axial FOV is extended to improve the system sensitivity.

  12. Asm-Triggered too Observations of Z Sources at Low Accretion Rate

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    We propose to perform a pointed observation if the ASM shows that a Z source has entered a state of low accretion rate. This would provide a unique opportunity to detect millisecond pulsations. In Sco X-1 we would expect to discover beat-frequency QPO, and could perform a unique high count rate study of them. At sufficiently low accretion rate it would be possible to study the accretion flow when the magnetospheric radius approaches the corotation radius. The frequency of the horizontal branch QPO should go to zero here, and centrifugal inhibition of the accretion should set in, providing direct tests of the magnetospheric model of Z sources.

  13. A miniaturized 4 K platform for superconducting infrared photon counting detectors

    NASA Astrophysics Data System (ADS)

    Gemmell, Nathan R.; Hills, Matthew; Bradshaw, Tom; Rawlings, Tom; Green, Ben; Heath, Robert M.; Tsimvrakidis, Konstantinos; Dobrovolskiy, Sergiy; Zwiller, Val; Dorenbos, Sander N.; Crook, Martin; Hadfield, Robert H.

    2017-11-01

    We report on a miniaturized platform for superconducting infrared photon counting detectors. We have implemented a fibre-coupled superconducting nanowire single photon detector in a Stirling/Joule-Thomson platform with a base temperature of 4.2 K. We have verified a cooling power of 4 mW at 4.7 K. We report 20% system detection efficiency at 1310 nm wavelength at a dark count rate of 1 kHz. We have carried out compelling application demonstrations in single photon depth metrology and singlet oxygen luminescence detection.

  14. The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model

    PubMed Central

    Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.

    2014-01-01

    Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435

  15. A parametric study of rate of advance and area coverage rate performance of synthetic aperture radar.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, Ann Marie; William H. Hensley, Jr.; Burns, Bryan L.

    2014-11-01

    The linear ground distance per unit time and ground area covered per unit time of producing synthetic aperture radar (SAR) imagery, termed rate of advance (ROA) and area coverage rate (ACR), are important metrics for platform and radar performance in surveillance applications. These metrics depend on many parameters of a SAR system such as wavelength, aircraft velocity, resolution, antenna beamwidth, imaging mode, and geometry. Often the effects of these parameters on rate of advance and area coverage rate are non-linear. This report addresses the impact of different parameter spaces as they relate to rate of advance and area coverage ratemore » performance.« less

  16. A high dynamic range pulse counting detection system for mass spectrometry.

    PubMed

    Collings, Bruce A; Dima, Martian D; Ivosev, Gordana; Zhong, Feng

    2014-01-30

    A high dynamic range pulse counting system has been developed that demonstrates an ability to operate at up to 2e8 counts per second (cps) on a triple quadrupole mass spectrometer. Previous pulse counting detection systems have typically been limited to about 1e7 cps at the upper end of the systems dynamic range. Modifications to the detection electronics and dead time correction algorithm are described in this paper. A high gain transimpedance amplifier is employed that allows a multi-channel electron multiplier to be operated at a significantly lower bias potential than in previous pulse counting systems. The system utilises a high-energy conversion dynode, a multi-channel electron multiplier, a high gain transimpedance amplifier, non-paralysing detection electronics and a modified dead time correction algorithm. Modification of the dead time correction algorithm is necessary due to a characteristic of the pulse counting electronics. A pulse counting detection system with the capability to count at ion arrival rates of up to 2e8 cps is described. This is shown to provide a linear dynamic range of nearly five orders of magnitude for a sample of aprazolam with concentrations ranging from 0.0006970 ng/mL to 3333 ng/mL while monitoring the m/z 309.1 → m/z 205.2 transition. This represents an upward extension of the detector's linear dynamic range of about two orders of magnitude. A new high dynamic range pulse counting system has been developed demonstrating the ability to operate at up to 2e8 cps on a triple quadrupole mass spectrometer. This provides an upward extension of the detector's linear dynamic range by about two orders of magnitude over previous pulse counting systems. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease.

    PubMed

    Yun, Jeong H; Lamb, Andrew; Chase, Robert; Singh, Dave; Parker, Margaret M; Saferali, Aabida; Vestbo, Jørgen; Tal-Singer, Ruth; Castaldi, Peter J; Silverman, Edwin K; Hersh, Craig P

    2018-06-01

    Eosinophilic airway inflammation in patients with chronic obstructive pulmonary disease (COPD) is associated with exacerbations and responsivity to steroids, suggesting potential shared mechanisms with eosinophilic asthma. However, there is no consistent blood eosinophil count that has been used to define the increased exacerbation risk. We sought to investigate blood eosinophil counts associated with exacerbation risk in patients with COPD. Blood eosinophil counts and exacerbation risk were analyzed in patients with moderate-to-severe COPD by using 2 independent studies of former and current smokers with longitudinal data. The Genetic Epidemiology of COPD (COPDGene) study was analyzed for discovery (n = 1,553), and the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study was analyzed for validation (n = 1,895). A subset of the ECLIPSE study subjects were used to assess the stability of blood eosinophil counts over time. COPD exacerbation risk increased with higher eosinophil counts. An eosinophil count threshold of 300 cells/μL or greater showed adjusted incidence rate ratios for exacerbations of 1.32 in the COPDGene study (95% CI, 1.10-1.63). The cutoff of 300 cells/μL or greater was validated for prospective risk of exacerbation in the ECLIPSE study, with adjusted incidence rate ratios of 1.22 (95% CI, 1.06-1.41) using 3-year follow-up data. Stratified analysis confirmed that the increased exacerbation risk associated with an eosinophil count of 300 cells/μL or greater was driven by subjects with a history of frequent exacerbations in both the COPDGene and ECLIPSE studies. Patients with moderate-to-severe COPD and blood eosinophil counts of 300 cells/μL or greater had an increased risk exacerbations in the COPDGene study, which was prospectively validated in the ECLIPSE study. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  19. Rewarded remembering: dissociations between self-rated motivation and memory performance.

    PubMed

    Ngaosuvan, Leonard; Mäntylä, Timo

    2005-08-01

    People often claim that they perform better in memory performance tasks when they are more motivated. However, past research has shown minimal effects of motivation on memory performance when factors contributing to item-specific biases during encoding and retrieval are taken into account. The purpose of the present study was to examine the generality of this apparent dissociation by using more sensitive measures of experienced motivation and memory performance. Extrinsic motivation was manipulated through competition instructions, and subjective ratings of intrinsic and extrinsic motivation were obtained before and after study instructions. Participants studied a series of words, and memory performance was assessed by content recall (Experiment 1) and source recall (Experiment 2). Both experiments showed dissociation between subjective ratings of extrinsic motivation and actual memory performance, so that competition increased self-rated extrinsic motivation but had no effects on memory performance, including source recall. Inconsistent with most people's expectations, the findings suggest that extrinsic motivation has minimal effects on memory performance.

  20. Arkansas Kids Count Data Book 1995: A Portrait of Arkansas' Children.

    ERIC Educational Resources Information Center

    Arkansas Advocates for Children and Families, Little Rock.

    This Kids Count report is the third to examine the well-being of Arkansas' children and the first to provide trend information. The statistical report is based on 10 core indicators of well-being: (1) unemployment rate and per capita personal income; (2) federal and state assistance program participation rates; (3) percent of high school students…

  1. An efficient computational approach to model statistical correlations in photon counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faby, Sebastian; Maier, Joscha; Sawall, Stefan

    2016-07-15

    Purpose: To introduce and evaluate an increment matrix approach (IMA) describing the signal statistics of energy-selective photon counting detectors including spatial–spectral correlations between energy bins of neighboring detector pixels. The importance of the occurring correlations for image-based material decomposition is studied. Methods: An IMA describing the counter increase patterns in a photon counting detector is proposed. This IMA has the potential to decrease the number of required random numbers compared to Monte Carlo simulations by pursuing an approach based on convolutions. To validate and demonstrate the IMA, an approximate semirealistic detector model is provided, simulating a photon counting detector inmore » a simplified manner, e.g., by neglecting count rate-dependent effects. In this way, the spatial–spectral correlations on the detector level are obtained and fed into the IMA. The importance of these correlations in reconstructed energy bin images and the corresponding detector performance in image-based material decomposition is evaluated using a statistically optimal decomposition algorithm. Results: The results of IMA together with the semirealistic detector model were compared to other models and measurements using the spectral response and the energy bin sensitivity, finding a good agreement. Correlations between the different reconstructed energy bin images could be observed, and turned out to be of weak nature. These correlations were found to be not relevant in image-based material decomposition. An even simpler simulation procedure based on the energy bin sensitivity was tested instead and yielded similar results for the image-based material decomposition task, as long as the fact that one incident photon can increase multiple counters across neighboring detector pixels is taken into account. Conclusions: The IMA is computationally efficient as it required about 10{sup 2} random numbers per ray incident on a detector pixel

  2. Count-doubling time safety circuit

    DOEpatents

    Rusch, Gordon K.; Keefe, Donald J.; McDowell, William P.

    1981-01-01

    There is provided a nuclear reactor count-factor-increase time monitoring circuit which includes a pulse-type neutron detector, and means for counting the number of detected pulses during specific time periods. Counts are compared and the comparison is utilized to develop a reactor scram signal, if necessary.

  3. Performance Ratings: Designs for Evaluating Their Validity and Accuracy.

    DTIC Science & Technology

    1986-07-01

    ratees with substantial validity and with little bias due to the ethod for rating. Convergent validity and discriminant validity account for approximately...The expanded research design suggests that purpose for the ratings has little influence on the multitrait-multimethod properties of the ratings...Convergent and discriminant validity again account for substantial differences in the ratings of performance. Little method bias is present; both methods of

  4. Carica papaya Leaves Juice Significantly Accelerates the Rate of Increase in Platelet Count among Patients with Dengue Fever and Dengue Haemorrhagic Fever

    PubMed Central

    Subenthiran, Soobitha; Choon, Tan Chwee; Cheong, Kee Chee; Thayan, Ravindran; Teck, Mok Boon; Muniandy, Prem Kumar; Afzan, Adlin; Abdullah, Noor Rain; Ismail, Zakiah

    2013-01-01

    The study was conducted to investigate the platelet increasing property of Carica papaya leaves juice (CPLJ) in patients with dengue fever (DF). An open labeled randomized controlled trial was carried out on 228 patients with DF and dengue haemorrhagic fever (DHF). Approximately half the patients received the juice, for 3 consecutive days while the others remained as controls and received the standard management. Their full blood count was monitored 8 hours for 48 hours. Gene expression studies were conducted on the ALOX 12 and PTAFR genes. The mean increase in platelet counts were compared in both groups using repeated measure ANCOVA. There was a significant increase in mean platelet count observed in the intervention group (P < 0.001) but not in the control group 40 hours since the first dose of CPLJ. Comparison of mean platelet count between intervention and control group showed that mean platelet count in intervention group was significantly higher than control group after 40 and 48 hours of admission (P < 0.01). The ALOX 12 (FC  =  15.00) and PTAFR (FC  =  13.42) genes were highly expressed among those on the juice. It was concluded that CPLJ does significantly increase the platelet count in patients with DF and DHF. PMID:23662145

  5. Effect of distance-related heterogeneity on population size estimates from point counts

    USGS Publications Warehouse

    Efford, Murray G.; Dawson, Deanna K.

    2009-01-01

    Point counts are used widely to index bird populations. Variation in the proportion of birds counted is a known source of error, and for robust inference it has been advocated that counts be converted to estimates of absolute population size. We used simulation to assess nine methods for the conduct and analysis of point counts when the data included distance-related heterogeneity of individual detection probability. Distance from the observer is a ubiquitous source of heterogeneity, because nearby birds are more easily detected than distant ones. Several recent methods (dependent double-observer, time of first detection, time of detection, independent multiple-observer, and repeated counts) do not account for distance-related heterogeneity, at least in their simpler forms. We assessed bias in estimates of population size by simulating counts with fixed radius w over four time intervals (occasions). Detection probability per occasion was modeled as a half-normal function of distance with scale parameter sigma and intercept g(0) = 1.0. Bias varied with sigma/w; values of sigma inferred from published studies were often 50% for a 100-m fixed-radius count. More critically, the bias of adjusted counts sometimes varied more than that of unadjusted counts, and inference from adjusted counts would be less robust. The problem was not solved by using mixture models or including distance as a covariate. Conventional distance sampling performed well in simulations, but its assumptions are difficult to meet in the field. We conclude that no existing method allows effective estimation of population size from point counts.

  6. Skull counting in late stages after internal contamination by actinides.

    PubMed

    Tani, Kotaro; Shutt, Arron; Kurihara, Osamu; Kosako, Toshiso

    2015-02-01

    Monitoring preparation for internal contamination with actinides (e.g. Pu and Am) is required to assess internal doses at nuclear fuel cycle-related facilities. In this paper, the authors focus on skull counting in case of single-incident inhalation of (241)Am and propose an effective procedure for skull counting with an existing system, taking into account the biokinetic behaviour of (241)Am in the human body. The predicted response of the system to skull counting under a certain counting geometry was found to be only ∼1.0 × 10(-5) cps Bq(-1) 1y after intake. However, this disadvantage could be remedied by repeated measurements of the skull during the late stage of the intake due to the predicted response reaching a plateau at about the 1000th day after exposure and exceeding that in the lung counting. Further studies are needed for the development of a new detection system with higher sensitivity to perform reliable internal dose estimations based on direct measurements. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Poisson and negative binomial item count techniques for surveys with sensitive question.

    PubMed

    Tian, Guo-Liang; Tang, Man-Lai; Wu, Qin; Liu, Yin

    2017-04-01

    Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents' privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.

  8. Digital coincidence counting

    NASA Astrophysics Data System (ADS)

    Buckman, S. M.; Ius, D.

    1996-02-01

    This paper reports on the development of a digital coincidence-counting system which comprises a custom-built data acquisition card and associated PC software. The system has been designed to digitise the pulse-trains from two radiation detectors at a rate of 20 MSamples/s with 12-bit resolution. Through hardware compression of the data, the system can continuously record both individual pulse-shapes and the time intervals between pulses. Software-based circuits are used to process the stored pulse trains. These circuits are constructed simply by linking together icons representing various components such as coincidence mixers, time delays, single-channel analysers, deadtimes and scalers. This system enables a pair of pulse trains to be processed repeatedly using any number of different methods. Some preliminary results are presented in order to demonstrate the versatility and efficiency of this new method.

  9. Does early return to theatre add value to rates of revision at 3 years in assessing surgeon performance for elective hip and knee arthroplasty? National observational study.

    PubMed

    Bottle, Alex; Chase, Helen E; Aylin, Paul P; Loeffler, Mark

    2018-05-01

    Joint replacement revision is the most widely used long-term outcome measure in elective hip and knee surgery. Return to theatre (RTT) has been proposed as an additional outcome measure, but how it compares with revision in its statistical performance is unknown. National hospital administrative data for England were used to compare RTT at 90 days (RTT90) with revision rates within 3 years by surgeon. Standard power calculations were run for different scenarios. Funnel plots were used to count the number of surgeons with unusually high or low rates. From 2006 to 2011, there were 297 650 hip replacements (HRs) among 2952 surgeons and 341 226 knee replacements (KRs) among 2343 surgeons. RTT90 rates were 2.1% for HR and 1.5% for KR; 3-year revision rates were 2.1% for HR and 2.2% for KR. Statistical power to detect surgeons with poor performance on either metric was particularly low for surgeons performing 50 cases per year for the 5 years. The correlation between the risk-adjusted surgeon-level rates for the two outcomes was +0.51 for HR and +0.20 for KR, both p<0.001. There was little agreement between the measures regarding which surgeons had significantly high or low rates. RTT90 appears to provide useful and complementary information on surgeon performance and should be considered alongside revision rates, but low case loads considerably reduce the power to detect unusual performance on either metric. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Estimating the Effective System Dead Time Parameter for Correlated Neutron Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, Stephen; Cleveland, Steve; Favalli, Andrea

    We present that neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correctingmore » these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently

  11. Estimating the effective system dead time parameter for correlated neutron counting

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Cleveland, Steve; Favalli, Andrea; McElroy, Robert D.; Simone, Angela T.

    2017-11-01

    Neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correcting these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently short time, and it

  12. Estimating the Effective System Dead Time Parameter for Correlated Neutron Counting

    DOE PAGES

    Croft, Stephen; Cleveland, Steve; Favalli, Andrea; ...

    2017-04-29

    We present that neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correctingmore » these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently

  13. Statistical Aspects of Point Count Sampling

    Treesearch

    Richard J. Barker; John R. Sauer

    1995-01-01

    The dominant feature of point counts is that they do not census birds, but instead provide incomplete counts of individuals present within a survey plot. Considering a simple model for point count sampling, we demonstrate that use of these incomplete counts can bias estimators and testing procedures, leading to inappropriate conclusions. A large portion of the...

  14. Impact of star performance ratings in English acute hospital trusts.

    PubMed

    Mannion, Russell; Davies, Huw; Marshall, Martin

    2005-01-01

    To explore some of the impacts of star performance ratings in acute hospital trusts in England. A multiple case study design was used which incorporated purposeful sampling of 'low' and 'high' performing trusts using the star rating system. In each case study site, data collection comprised semi-structured interviews and documentary analysis. Between eight and 12 senior managers and senior clinicians were interviewed in each organisation. There was a general view that the star ratings as presently constituted did not represent a rounded or balanced scorecard of their own organisation's performance and a widespread belief that the information used to calculate the ratings was often incomplete and inaccurate. The star ratings were viewed by some managers as useful, in that they gave added weight to their trust's modernisation agenda. In addition to driving beneficial change, the ratings were also sometimes reported to have inadvertently induced a range of unintended and dysfunctional consequences, including tunnel vision and a distortion of clinical priorities, bullying and intimidation, erosion of public trust and reduced staff morale, and ghettoisation. Set in the context of an international body of research, this study highlights some important gaps in knowledge and failings in current policy and practice. In particular, the many dysfunctional consequences of publishing star ratings indicate a need for a re-examination of performance management policies.

  15. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy

  16. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  17. The counting abilities of children with specific language impairment: a comparison of oral and gestural tasks.

    PubMed

    Fazio, B B

    1994-04-01

    This study examined the counting abilities of preschool children with specific language impairment compared to language-matched and mental-age-matched peers. In order to determine the nature of the difficulties SLI children exhibited in counting, the subjects participated in a series of oral counting tasks and a series of gestural tasks that used an invented counting system based on pointing to body parts. Despite demonstrating knowledge of many of the rules associated with counting, SLI preschool children displayed marked difficulty in counting objects. On oral counting tasks, they showed difficulty with rote counting, displayed a limited repertoire of number terms, and miscounted sets of objects. However, on gestural counting tasks, SLI children's performance was significantly better. These findings suggest that SLI children have a specific difficulty with the rote sequential aspect of learning number words.

  18. You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers

    PubMed Central

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H.; Pulvermüller, Friedemann

    2012-01-01

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. PMID:22133748

  19. MicroCT with energy-resolved photon-counting detectors

    PubMed Central

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, BMW; Patt, B E; Frey, E C

    2011-01-01

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with Kabsorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences. PMID:21464527

  20. MicroCT with energy-resolved photon-counting detectors.

    PubMed

    Wang, X; Meier, D; Mikkelsen, S; Maehlum, G E; Wagenaar, D J; Tsui, B M W; Patt, B E; Frey, E C

    2011-05-07

    The goal of this paper was to investigate the benefits that could be realistically achieved on a microCT imaging system with an energy-resolved photon-counting x-ray detector. To this end, we built and evaluated a prototype microCT system based on such a detector. The detector is based on cadmium telluride (CdTe) radiation sensors and application-specific integrated circuit (ASIC) readouts. Each detector pixel can simultaneously count x-ray photons above six energy thresholds, providing the capability for energy-selective x-ray imaging. We tested the spectroscopic performance of the system using polychromatic x-ray radiation and various filtering materials with K-absorption edges. Tomographic images were then acquired of a cylindrical PMMA phantom containing holes filled with various materials. Results were also compared with those acquired using an intensity-integrating x-ray detector and single-energy (i.e. non-energy-selective) CT. This paper describes the functionality and performance of the system, and presents preliminary spectroscopic and tomographic results. The spectroscopic experiments showed that the energy-resolved photon-counting detector was capable of measuring energy spectra from polychromatic sources like a standard x-ray tube, and resolving absorption edges present in the energy range used for imaging. However, the spectral quality was degraded by spectral distortions resulting from degrading factors, including finite energy resolution and charge sharing. We developed a simple charge-sharing model to reproduce these distortions. The tomographic experiments showed that the availability of multiple energy thresholds in the photon-counting detector allowed us to simultaneously measure target-to-background contrasts in different energy ranges. Compared with single-energy CT with an integrating detector, this feature was especially useful to improve differentiation of materials with different attenuation coefficient energy dependences.

  1. Total lymphocyte count and subpopulation lymphocyte counts in relation to dietary intake and nutritional status of peritoneal dialysis patients.

    PubMed

    Grzegorzewska, Alicja E; Leander, Magdalena

    2005-01-01

    Dietary deficiency causes abnormalities in circulating lymphocyte counts. For the present paper, we evaluated correlations between total and subpopulation lymphocyte counts (TLC, SLCs) and parameters of nutrition in peritoneal dialysis (PD) patients. Studies were carried out in 55 patients treated with PD for 22.2 +/- 11.4 months. Parameters of nutritional status included total body mass, lean body mass (LBM), body mass index (BMI), and laboratory indices [total protein, albumin, iron, ferritin, and total iron binding capacity (TIBC)]. The SLCs were evaluated using flow cytometry. Positive correlations were seen between TLC and dietary intake of niacin; TLC and CD8 and CD16+56 counts and energy delivered from protein; CD4 count and beta-carotene and monounsaturated fatty acids 17:1 intake; and CD19 count and potassium, copper, vitamin A, and beta-carotene intake. Anorexia negatively influenced CD19 count. Serum albumin showed correlations with CD4 and CD19 counts, and LBM with CD19 count. A higher CD19 count was connected with a higher red blood cell count, hemoglobin, and hematocrit. Correlations were observed between TIBC and TLC and CD3 and CD8 counts, and between serum Fe and TLC and CD3 and CD4 counts. Patients with a higher CD19 count showed a better clinical-laboratory score, especially less weakness. Patients with a higher CD4 count had less expressed insomnia. Quantities of ingested vitamins and minerals influence lymphocyte counts in the peripheral blood of PD patients. Evaluation of TLC and SLCs is helpful in monitoring the effectiveness of nutrition in these patients.

  2. Evaluation of heterotrophic plate and chromogenic agar colony counting in water quality laboratories.

    PubMed

    Hallas, Gary; Monis, Paul

    2015-01-01

    The enumeration of bacteria using plate-based counts is a core technique used by food and water microbiology testing laboratories. However, manual counting of bacterial colonies is both time and labour intensive, can vary between operators and also requires manual entry of results into laboratory information management systems, which can be a source of data entry error. An alternative is to use automated digital colony counters, but there is a lack of peer-reviewed validation data to allow incorporation into standards. We compared the performance of digital counting technology (ProtoCOL3) against manual counting using criteria defined in internationally recognized standard methods. Digital colony counting provided a robust, standardized system suitable for adoption in a commercial testing environment. The digital technology has several advantages:•Improved measurement of uncertainty by using a standard and consistent counting methodology with less operator error.•Efficiency for labour and time (reduced cost).•Elimination of manual entry of data onto LIMS.•Faster result reporting to customers.

  3. Accuracy of semen counting chambers as determined by the use of latex beads.

    PubMed

    Seaman, E K; Goluboff, E; BarChama, N; Fisch, H

    1996-10-01

    To assess the accuracy of the Hemacytometer (Hausser Scientific, Horsham, PA), Makler (Sefi-Medical Instrument, Haifa, Israel), Cell-VU (Millennium Sciences Inc., New York, NY), and Micro-Cell chambers (Conception Technologies, San Diego, CA) counting chambers. A solution containing a known concentration of latex beads was used as the standard to perform counts on the four different counting chambers. Bead counts for the four different chambers were compared with the bead counts of the standard solution. Variability within chambers also was determined. Mean bead concentrations for both the Cell-VU and Micro-Cell chambers were consistently similar to the bead concentration of the standard solution. Both the hemacytometer and the Makler chambers overestimated the actual bead concentration of the standard solution by as much as 50% and revealed significant interchamber variability. Our data revealed marked differences in the accuracy and reliability of the different counting chambers tested and emphasized the need for standardization and quality control of laboratory procedures.

  4. Phasor imaging with a widefield photon-counting detector

    PubMed Central

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Weiss, Shimon

    2012-01-01

    Abstract. Fluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio. This confines the approach to very low frame rates and limits the number of frames which can be acquired before bleaching the sample. Recently, a computationally efficient and intuitive graphical representation, the phasor approach, has been proposed as an alternative method for FLIM data analysis at the ensemble and single-molecule level. In this article, we illustrate the advantages of combining phasor analysis with a widefield time-resolved single photon-counting detector (the H33D detector) for FLIM applications. In particular we show that phasor analysis allows real-time subsecond identification of species by their lifetimes and rapid representation of their spatial distribution, thanks to the parallel acquisition of FLIM information over a wide field of view by the H33D detector. We also discuss possible improvements of the H33D detector’s performance made possible by the simplicity of phasor analysis and its relaxed timing accuracy requirements compared to standard time-correlated single-photon counting (TCSPC) methods. PMID:22352658

  5. Ultrafast photon counting applied to resonant scanning STED microscopy.

    PubMed

    Wu, Xundong; Toro, Ligia; Stefani, Enrico; Wu, Yong

    2015-01-01

    To take full advantage of fast resonant scanning in super-resolution stimulated emission depletion (STED) microscopy, we have developed an ultrafast photon counting system based on a multigiga sample per second analogue-to-digital conversion chip that delivers an unprecedented 450 MHz pixel clock (2.2 ns pixel dwell time in each scan). The system achieves a large field of view (∼50 × 50 μm) with fast scanning that reduces photobleaching, and advances the time-gated continuous wave STED technology to the usage of resonant scanning with hardware-based time-gating. The assembled system provides superb signal-to-noise ratio and highly linear quantification of light that result in superior image quality. Also, the system design allows great flexibility in processing photon signals to further improve the dynamic range. In conclusion, we have constructed a frontier photon counting image acquisition system with ultrafast readout rate, excellent counting linearity, and with the capacity of realizing resonant-scanning continuous wave STED microscopy with online time-gated detection. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  6. Kids Count in Delaware: Fact Book 1999 [and] Families Count in Delaware: Fact Book, 1999.

    ERIC Educational Resources Information Center

    Delaware Univ., Newark. Kids Count in Delaware.

    This Kids Count Fact Book is combined with the Families Count Fact Book to provide information on statewide trends affecting children and families in Delaware. The Kids Count statistical profile is based on 10 main indicators of child well-being: (1) births to teens; (2) low birth weight babies; (3) infant mortality; (4) child deaths; (5) teen…

  7. Predicting the performance and innovativeness of scientists and engineers.

    PubMed

    Keller, Robert T

    2012-01-01

    A study of 644 scientists and engineers from 5 corporate research and development organizations investigated hypotheses generated from an interactionist framework of 4 individual characteristics as longitudinal predictors of performance and innovativeness. An innovative orientation predicted 1-year-later and 5-years-later supervisory job performance ratings and 5-years-later counts of patents and publications. An internal locus of control predicted 5-years-later patents and publications, and self-esteem predicted performance ratings for both times and patents. Team-level nonroutine tasks moderated the individual-level relationships between an innovative orientation and performance ratings and patents such that the relationships were stronger in a nonroutine task environment. Implications for an interactionist framework of performance and innovativeness for knowledge workers are discussed.

  8. Exact microstate counting for dyonic black holes in AdS4

    NASA Astrophysics Data System (ADS)

    Benini, Francesco; Hristov, Kiril; Zaffaroni, Alberto

    2017-08-01

    We present a counting of microstates of a class of dyonic BPS black holes in AdS4 which precisely reproduces their Bekenstein-Hawking entropy. The counting is performed in the dual boundary description, that provides a non-perturbative definition of quantum gravity, in terms of a twisted and mass-deformed ABJM theory. We evaluate its twisted index and propose an extremization principle to extract the entropy, which reproduces the attractor mechanism in gauged supergravity.

  9. Trajectory-Based Complexity (TBX): A Modified Aircraft Count to Predict Sector Complexity During Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Lee, Paul U.

    2011-01-01

    In this paper we introduce a new complexity metric to predict -in real-time- sector complexity for trajectory-based operations (TBO). TBO will be implemented in the Next Generation Air Transportation System (NextGen). Trajectory-Based Complexity (TBX) is a modified aircraft count that can easily be computed and communicated in a TBO environment based upon predictions of aircraft and weather trajectories. TBX is scaled to aircraft count and represents an alternate and additional means to manage air traffic demand and capacity with more consideration of dynamic factors such as weather, aircraft equipage or predicted separation violations, as well as static factors such as sector size. We have developed and evaluated TBX in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center during human-in-the-loop studies of trajectory-based concepts since 2009. In this paper we will describe the TBX computation in detail and present the underlying algorithm. Next, we will describe the specific TBX used in an experiment at NASA's AOL. We will evaluate the performance of this metric using data collected during a controller-inthe- loop study on trajectory-based operations at different equipage levels. In this study controllers were prompted at regular intervals to rate their current workload on a numeric scale. When comparing this real-time workload rating to the TBX values predicted for these time periods we demonstrate that TBX is a better predictor of workload than aircraft count. Furthermore we demonstrate that TBX is well suited to be used for complexity management in TBO and can easily be adjusted to future operational concepts.

  10. The impact of finger counting habits on arithmetic in adults and children.

    PubMed

    Newman, Sharlene D; Soylu, Firat

    2014-07-01

    Here, we explored the impact of finger counting habits on arithmetic in both adults and children. Two groups of participants were examined, those that begin counting with their left hand (left-starters) and those that begin counting with their right hand (right-starters). For the adults, performance on an addition task in which participants added 2 two-digit numbers was compared. The results revealed that left-starters were slower than right-starters when adding and they had lower forward and backward digit-span scores. The children (aged 5-12) showed similar results on a single-digit timed addition task-right-starters outperformed left-starters. However, the children did not reveal differences in working memory or verbal and non-verbal intelligence as a function of finger counting habit. We argue that the motor act of finger counting influences how number is represented and suggest that left-starters may have a more bilateral representation that accounts for the slower processing.

  11. Subitizing and Counting in Typical and Atypical Development

    ERIC Educational Resources Information Center

    Schleifer, Patrick; Landerl, Karin

    2011-01-01

    Enumeration performance in standard dot counting paradigms was investigated for different age groups with typical and atypically poor development of arithmetic skills. Experiment 1 showed a high correspondence between response times and saccadic frequencies for four age groups with typical development. Age differences were more marked for the…

  12. Point counts from clustered populations: Lessons from an experiment with Hawaiian crows

    USGS Publications Warehouse

    Hayward, G.D.; Kepler, C.B.; Scott, J.M.

    1991-01-01

    We designed an experiment to identify factors contributing most to error in counts of Hawaiian Crow or Alala (Corvus hawaiiensis) groups that are detected aurally. Seven observers failed to detect calling Alala on 197 of 361 3-min point counts on four transects extending from cages with captive Alala. A detection curve describing the relation between frequency of flock detection and distance typified the distribution expected in transect or point counts. Failure to detect calling Alala was affected most by distance, observer, and Alala calling frequency. The number of individual Alala calling was not important in detection rate. Estimates of the number of Alala calling (flock size) were biased and imprecise: average difference between number of Alala calling and number heard was 3.24 (.+-. 0.277). Distance, observer, number of Alala calling, and Alala calling frequency all contributed to errors in estimates of group size (P < 0.0001). Multiple regression suggested that number of Alala calling contributed most to errors. These results suggest that well-designed point counts may be used to estimate the number of Alala flocks but cast doubt on attempts to estimate flock size when individuals are counted aurally.

  13. Command Decision-Making: Experience Counts

    DTIC Science & Technology

    2005-03-18

    USAWC STRATEGY RESEARCH PROJECT COMMAND DECISION - MAKING : EXPERIENCE COUNTS by Lieutenant Colonel Kelly A. Wolgast United States Army Colonel Charles...1. REPORT DATE 18 MAR 2005 2. REPORT TYPE 3. DATES COVERED - 4. TITLE AND SUBTITLE Command Decision Making Experience Counts 5a. CONTRACT...Colonel Kelly A. Wolgast TITLE: Command Decision - making : Experience Counts FORMAT: Strategy Research Project DATE: 18 March 2005 PAGES: 30 CLASSIFICATION

  14. Negative Binomial Process Count and Mixture Modeling.

    PubMed

    Zhou, Mingyuan; Carin, Lawrence

    2015-02-01

    The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural, and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters.

  15. You can count on the motor cortex: finger counting habits modulate motor cortex activation evoked by numbers.

    PubMed

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H; Pulvermüller, Friedemann

    2012-02-15

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Exposure reduces negative bias in self-rated performance in public speaking fearful participants.

    PubMed

    Cheng, Joyce; Niles, Andrea N; Craske, Michelle G

    2017-03-01

    Individuals with public speaking anxiety (PSA) under-rate their performance compared to objective observers. The present study examined whether exposure reduces the discrepancy between self and observer performance ratings and improved observer-rated performance in individuals with PSA. PSA participants gave a speech in front of a small audience and rated their performance using a questionnaire before and after completing repeated exposures to public speaking. Non-anxious control participants gave a speech and completed the questionnaire one time only. Objective observers watched videos of the speeches and rated performance using the same questionnaire. PSA participants underrated their performance to a greater degree than did controls prior to exposure, but also performed significantly more poorly than did controls when rated objectively. Bias significantly decreased and objective-rated performance significantly increased following completion of exposure in PSA participants, and on one performance measure, anxious participants no longer showed a greater discrepancy between self and observer performance ratings compared to controls. The study employed non-clinical student sample, but the results should be replicated in clinical anxiety samples. These findings indicate that exposure alone significantly reduces negative performance bias among PSA individuals, but additional exposure or additional interventions may be necessary to fully correct bias and performance deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Progress on the Use of Combined Analog and Photon Counting Detection for Raman Lidar

    NASA Technical Reports Server (NTRS)

    Newsom, Rob; Turner, Dave; Clayton, Marian; Ferrare, Richard

    2008-01-01

    The Atmospheric Radiation Measurement (ARM) program Raman Lidar (CARL) was upgraded in 2004 with a new data system that provides simultaneous measurements of both the photomultiplier analog output voltage and photon counts. The so-called merge value added procedure (VAP) was developed to combine the analog and count-rate signals into a single signal with improved dynamic range. Earlier versions of this VAP tended to cause unacceptably large biases in the water vapor mixing ratio during the daytime as a result of improper matching between the analog and count-rate signals in the presence of elevated solar background levels. We recently identified several problems and tested a modified version of the merge VAP by comparing profiles of water vapor mixing ratio derived from CARL with simultaneous sonde data over a six month period. We show that the modified merge VAP significantly reduces the daytime bias, and results in mean differences that are within approximately 1% for both nighttime and daytime measurements.

  18. The prevalence of abnormal leukocyte count, and its predisposing factors, in patients with sickle cell disease in Saudi Arabia.

    PubMed

    Ahmed, Anwar E; Ali, Yosra Z; Al-Suliman, Ahmad M; Albagshi, Jafar M; Al Salamah, Majid; Elsayid, Mohieldin; Alanazi, Wala R; Ahmed, Rayan A; McClish, Donna K; Al-Jahdali, Hamdan

    2017-01-01

    High white blood cell (WBC) count is an indicator of sickle cell disease (SCD) severity, however, there are limited studies on WBC counts in Saudi Arabian patients with SCD. The aim of this study was to estimate the prevalence of abnormal leukocyte count (either low or high) and identify factors associated with high WBC counts in a sample of Saudi patients with SCD. A cross-sectional and retrospective chart review study was carried out on 290 SCD patients who were routinely treated at King Fahad Hospital in Hofuf, Saudi Arabia. An interview was conducted to assess clinical presentations, and we reviewed patient charts to collect data on blood test parameters for the previous 6 months. Almost half (131 [45.2%]) of the sample had abnormal leukocyte counts: low WBC counts 15 (5.2%) and high 116 (40%). High WBC counts were associated with shortness of breath ( P =0.022), tiredness ( P =0.039), swelling in hands/feet ( P =0.020), and back pain ( P =0.007). The mean hemoglobin was higher in patients with normal WBC counts ( P =0.024), while the mean hemoglobin S was high in patients with high WBC counts ( P =0.003). After adjustment for potential confounders, predictors of high WBC counts were male gender (adjusted odds ratio [aOR]=3.63) and patients with cough (aOR=2.18), low hemoglobin (aOR=0.76), and low heart rate (aOR=0.97). Abnormal leukocyte count was common: approximately five in ten Saudi SCD patients assessed in this sample. Male gender, cough, low hemoglobin, and low heart rate were associated with high WBC count. Strategies targeting high WBC count could prevent disease complication and thus could be beneficial for SCD patients.

  19. Dying dyons don't count

    NASA Astrophysics Data System (ADS)

    Cheng, Miranda C. N.; Verlinde, Erik P.

    2007-09-01

    The dyonic 1/4-BPS states in 4D string theory with Script N = 4 spacetime supersymmetry are counted by a Siegel modular form. The pole structure of the modular form leads to a contour dependence in the counting formula obscuring its duality invariance. We exhibit the relation between this ambiguity and the (dis-)appearance of bound states of 1/2-BPS configurations. Using this insight we propose a precise moduli-dependent contour prescription for the counting formula. We then show that the degeneracies are duality-invariant and are correctly adjusted at the walls of marginal stability to account for the (dis-)appearance of the two-centered bound states. Especially, for large black holes none of these bound states exists at the attractor point and none of these ambiguous poles contributes to the counting formula. Using this fact we also propose a second, moduli-independent contour which counts the ``immortal dyons" that are stable everywhere.

  20. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.

    PubMed

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-02-21

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  1. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.

    2016-02-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  2. Design considerations of high-performance InGaAs/InP single-photon avalanche diodes for quantum key distribution.

    PubMed

    Ma, Jian; Bai, Bing; Wang, Liu-Jun; Tong, Cun-Zhu; Jin, Ge; Zhang, Jun; Pan, Jian-Wei

    2016-09-20

    InGaAs/InP single-photon avalanche diodes (SPADs) are widely used in practical applications requiring near-infrared photon counting such as quantum key distribution (QKD). Photon detection efficiency and dark count rate are the intrinsic parameters of InGaAs/InP SPADs, due to the fact that their performances cannot be improved using different quenching electronics given the same operation conditions. After modeling these parameters and developing a simulation platform for InGaAs/InP SPADs, we investigate the semiconductor structure design and optimization. The parameters of photon detection efficiency and dark count rate highly depend on the variables of absorption layer thickness, multiplication layer thickness, excess bias voltage, and temperature. By evaluating the decoy-state QKD performance, the variables for SPAD design and operation can be globally optimized. Such optimization from the perspective of specific applications can provide an effective approach to design high-performance InGaAs/InP SPADs.

  3. Evaluation of the platelet counting by Abbott CELL-DYN SAPPHIRE haematology analyser compared with flow cytometry.

    PubMed

    Grimaldi, E; Del Vecchio, L; Scopacasa, F; Lo Pardo, C; Capone, F; Pariante, S; Scalia, G; De Caterina, M

    2009-04-01

    The Abbot Cell-Dyn Sapphire is a new generation haematology analyser. The system uses optical/fluorescence flow cytometry in combination with electronic impedance to produce a full blood count. Optical and impedance are the default methods for platelet counting while automated CD61-immunoplatelet analysis can be run as selectable test. The aim of this study was to determine the platelet count performance of the three counting methods available on the instrument and to compare the results with those provided by Becton Dickinson FACSCalibur flow cytometer used as reference method. A lipid interference experiment was also performed. Linearity, carryover and precision were good, and satisfactory agreement with reference method was found for the impedance, optical and CD61-immunoplatelet analysis, although this latter provided the closest results in comparison with flow cytometry. In the lipid interference experiment, a moderate inaccuracy of optical and immunoplatelet counts was observed starting from a very high lipid value.

  4. Gamma-ray spectroscopy at MHz counting rates with a compact LaBr3 detector and silicon photomultipliers for fusion plasma applications.

    PubMed

    Nocente, M; Rigamonti, D; Perseo, V; Tardocchi, M; Boltruczyk, G; Broslawski, A; Cremona, A; Croci, G; Gosk, M; Kiptily, V; Korolczuk, S; Mazzocco, M; Muraro, A; Strano, E; Zychor, I; Gorini, G

    2016-11-01

    Gamma-ray spectroscopy measurements at MHz counting rates have been carried out, for the first time, with a compact spectrometer based on a LaBr 3 scintillator and silicon photomultipliers. The instrument, which is also insensitive to magnetic fields, has been developed in view of the upgrade of the gamma-ray camera diagnostic for α particle measurements in deuterium-tritium plasmas of the Joint European Torus. Spectra were measured up to 2.9 MHz with a projected energy resolution of 3%-4% in the 3-5 MeV range, of interest for fast ion physics studies in fusion plasmas. The results reported here pave the way to first time measurements of the confined α particle profile in high power plasmas of the next deuterium-tritium campaign at the Joint European Torus.

  5. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  6. Mealtime Insulin Dosing by Carbohydrate Counting in Hospitalized Cardiology Patients: A Retrospective Cohort Study.

    PubMed

    Thurber, Kristina M; Dierkhising, Ross A; Reiland, Sarah A; Pearson, Kristina K; Smith, Steven A; O'Meara, John G

    2016-01-01

    Carbohydrate counting may improve glycemic control in hospitalized cardiology patients by providing individualized insulin doses tailored to meal consumption. The purpose of this study was to compare glycemic outcomes with mealtime insulin dosed by carbohydrate counting versus fixed dosing in the inpatient setting. This single-center retrospective cohort study included 225 adult medical cardiology patients who received mealtime, basal, and correction-scale insulin concurrently for at least 72 h and up to 7 days in the interval March 1, 2010-November 7, 2013. Mealtime insulin was dosed by carbohydrate counting or with fixed doses determined prior to meal intake. An inpatient diabetes consult service was responsible for insulin management. Exclusion criteria included receipt of an insulin infusion. The primary end point compared mean daily postprandial glucose values, whereas secondary end points included comparison of preprandial glucose values and mean daily rates of hypoglycemia. Mean postprandial glucose level on Day 7 was 204 and 183 mg/dL in the carbohydrate counting and fixed mealtime dose groups, respectively (unadjusted P=0.04, adjusted P=0.12). There were no statistical differences between groups on Days 2-6. Greater rates of preprandial hypoglycemia were observed in the carbohydrate counting cohort on Day 5 (8.6% vs. 1.5%, P=0.02), Day 6 (1.7% vs. 0%, P=0.01), and Day 7 (7.1% vs. 0%, P=0.008). No differences in postprandial hypoglycemia were seen. Mealtime insulin dosing by carbohydrate counting was associated with similar glycemic outcomes as fixed mealtime insulin dosing, except for a greater incidence of preprandial hypoglycemia. Additional comparative studies that include hospital outcomes are needed.

  7. A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture.

    PubMed

    Zhong, Yuanhong; Gao, Junyuan; Lei, Qilun; Zhou, Yao

    2018-05-09

    Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications.

  8. Characterization of a hybrid energy-resolving photon-counting detector

    NASA Astrophysics Data System (ADS)

    Zang, A.; Pelzer, G.; Anton, G.; Ballabriga Sune, R.; Bisello, F.; Campbell, M.; Fauler, A.; Fiederle, M.; Llopart Cudie, X.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W. S.; Michel, T.

    2014-03-01

    Photon-counting detectors in medical x-ray imaging provide a higher dose efficiency than integrating detectors. Even further possibilities for imaging applications arise, if the energy of each photon counted is measured, as for example K-edge-imaging or optimizing image quality by applying energy weighting factors. In this contribution, we show results of the characterization of the Dosepix detector. This hybrid photon- counting pixel detector allows energy resolved measurements with a novel concept of energy binning included in the pixel electronics. Based on ideas of the Medipix detector family, it provides three different modes of operation: An integration mode, a photon-counting mode, and an energy-binning mode. In energy-binning mode, it is possible to set 16 energy thresholds in each pixel individually to derive a binned energy spectrum in every pixel in one acquisition. The hybrid setup allows using different sensor materials. For the measurements 300 μm Si and 1 mm CdTe were used. The detector matrix consists of 16 x 16 square pixels for CdTe (16 x 12 for Si) with a pixel pitch of 220 μm. The Dosepix was originally intended for applications in the field of radiation measurement. Therefore it is not optimized towards medical imaging. The detector concept itself still promises potential as an imaging detector. We present spectra measured in one single pixel as well as in the whole pixel matrix in energy-binning mode with a conventional x-ray tube. In addition, results concerning the count rate linearity for the different sensor materials are shown as well as measurements regarding energy resolution.

  9. Conversion from Engineering Units to Telemetry Counts on Dryden Flight Simulators

    NASA Technical Reports Server (NTRS)

    Fantini, Jay A.

    1998-01-01

    Dryden real-time flight simulators encompass the simulation of pulse code modulation (PCM) telemetry signals. This paper presents a new method whereby the calibration polynomial (from first to sixth order), representing the conversion from counts to engineering units (EU), is numerically inverted in real time. The result is less than one-count error for valid EU inputs. The Newton-Raphson method is used to numerically invert the polynomial. A reverse linear interpolation between the EU limits is used to obtain an initial value for the desired telemetry count. The method presented here is not new. What is new is how classical numerical techniques are optimized to take advantage of modem computer power to perform the desired calculations in real time. This technique makes the method simple to understand and implement. There are no interpolation tables to store in memory as in traditional methods. The NASA F-15 simulation converts and transmits over 1000 parameters at 80 times/sec. This paper presents algorithm development, FORTRAN code, and performance results.

  10. SPERM COUNT DISTRIBUTIONS IN FERTILE MEN

    EPA Science Inventory

    Sperm concentration and count are often used as indicators of environmental impacts on male reproductive health. Existing clinical databases may be biased towards subfertile men with low sperm counts and less is known about expected sperm count distributions in cohorts of fertil...

  11. Evaluation of mouse red blood cell and platelet counting with an automated hematology analyzer.

    PubMed

    Fukuda, Teruko; Asou, Eri; Nogi, Kimiko; Goto, Kazuo

    2017-10-07

    An evaluation of mouse red blood cell (RBC) and platelet (PLT) counting with an automated hematology analyzer was performed with three strains of mice, C57BL/6 (B6), BALB/c (BALB) and DBA/2 (D2). There were no significant differences in RBC and PLT counts between manual and automated optical methods in any of the samples, except for D2 mice. For D2, RBC counts obtained using the manual method were significantly lower than those obtained using the automated optical method (P<0.05), and PLT counts obtained using the manual method were higher than those obtained using the automated optical method (P<0.05). An automated hematology analyzer can be used for RBC and PLT counting; however, an appropriate method should be selected when D2 mice samples are used.

  12. Cross-Section Measurements via the Activation Technique at the Cologne Clover Counting Setup

    NASA Astrophysics Data System (ADS)

    Heim, Felix; Mayer, Jan; Netterdon, Lars; Scholz, Philipp; Zilges, Andreas

    The activation technique is a widely used method for the determination of cross-section values for charged-particle induced reactions at astrophysically relevant energies. Since network calculations of nucleosynthesis processes often depend on reaction rates calculated in the scope of the Hauser-Feshbach statistical model, these cross-sections can be used to improve the nuclear-physics input-parameters like optical-model potentials (OMP), γ-ray strength functions, and nuclear level densities. In order to extend the available experimental database, the 108Cd(α, n)111Sn reaction cross section was investigated at ten energies between 10.2 and 13.5 MeV. As this reaction at these energies is almost only sensitive on the α-decay width, the results were compared to statistical model calculations using different models for the α-OMP. The irradiation as well as the consecutive γ-ray counting were performed at the Institute for Nuclear Physics of the University of Cologne using the 10 MV FN-Tandem accelerator and the Cologne Clover Counting Setup. This setup consists of two clover- type high purity germanium (HPGe) detectors in a close face-to-face geometry to cover a solid angle of almost 4π.

  13. Spent Fuel Assay with an Ultra-High Rate HPGe Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, James; Fulsom, Bryan; Pitts, Karl

    2015-07-01

    Traditional verification of spent nuclear fuel (SNF) includes determination of initial enrichment, burnup and cool down time (IE, BU, CT). Along with neutron measurements, passive gamma assay provides important information for determining BU and CT. Other gamma-ray-based assay methods such as passive tomography and active delayed gamma offer the potential to measure the spatial distribution of fission products and the fissile isotopic concentration of the fuel, respectively. All fuel verification methods involving gamma-ray spectroscopy require that the spectrometers manage very high count rates while extracting the signatures of interest. PNNL has developed new digital filtering and analysis techniques to producemore » an ultra-high rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This 37% relative efficiency detector has been operated for SNF measurements at input count rates of 500-1300 kcps and throughput in excess of 150 kcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This paper will present the results of both passive and active SNF measurement performed with this system at PNNL. (authors)« less

  14. A quantile count model of water depth constraints on Cape Sable seaside sparrows

    USGS Publications Warehouse

    Cade, B.S.; Dong, Q.

    2008-01-01

    1. A quantile regression model for counts of breeding Cape Sable seaside sparrows Ammodramus maritimus mirabilis (L.) as a function of water depth and previous year abundance was developed based on extensive surveys, 1992-2005, in the Florida Everglades. The quantile count model extends linear quantile regression methods to discrete response variables, providing a flexible alternative to discrete parametric distributional models, e.g. Poisson, negative binomial and their zero-inflated counterparts. 2. Estimates from our multiplicative model demonstrated that negative effects of increasing water depth in breeding habitat on sparrow numbers were dependent on recent occupation history. Upper 10th percentiles of counts (one to three sparrows) decreased with increasing water depth from 0 to 30 cm when sites were not occupied in previous years. However, upper 40th percentiles of counts (one to six sparrows) decreased with increasing water depth for sites occupied in previous years. 3. Greatest decreases (-50% to -83%) in upper quantiles of sparrow counts occurred as water depths increased from 0 to 15 cm when previous year counts were 1, but a small proportion of sites (5-10%) held at least one sparrow even as water depths increased to 20 or 30 cm. 4. A zero-inflated Poisson regression model provided estimates of conditional means that also decreased with increasing water depth but rates of change were lower and decreased with increasing previous year counts compared to the quantile count model. Quantiles computed for the zero-inflated Poisson model enhanced interpretation of this model but had greater lack-of-fit for water depths > 0 cm and previous year counts 1, conditions where the negative effect of water depths were readily apparent and fitted better with the quantile count model.

  15. Pre-performance Physiological State: Heart Rate Variability as a Predictor of Shooting Performance.

    PubMed

    Ortega, E; Wang, C J K

    2018-03-01

    Heart rate variability (HRV) is commonly used in sport science for monitoring the physiology of athletes but not as an indicator of physiological state from a psychological perspective. Since HRV is established to be an indicator of emotional responding, it could be an objective means of quantifying an athlete's subjective physiological state before competition. A total of 61 sport shooters participated in this study, of which 21 were novice shooters, 19 were intermediate shooters, and 21 were advanced level shooters. HRV, self-efficacy, and use of mental skills were assessed before they completed a standard shooting performance task of 40 shots, as in a competition qualifying round. The results showed that HRV was significantly positively correlated with self-efficacy and performance and was a significant predictor of shooting performance. In addition, advanced shooters were found to have significantly lower average heart rate before shooting and used more self-talk, relaxation, imagery, and automaticity compared to novice and intermediate shooters. HRV was found to be useful in identifying the physiological state of an athlete before competing, and as such, coaches and athletes can adopt practical strategies to improve the pre-performance physiological state as a means to optimize performance.

  16. [Analysis on 2011 quality control results on aerobic plate count of microbiology laboratories in China].

    PubMed

    Han, Haihong; Li, Ning; Li, Yepeng; Fu, Ping; Yu, Dongmin; Li Zhigang; Du, Chunming; Guo, Yunchang

    2015-01-01

    To test the aerobic plate count examining capability of microbiology laboratories, to ensure the accuracy and comparability of quantitative bacteria examination results, and to improve the quality of monitoring. The 4 different concentration aerobic plate count piece samples were prepared and noted as I, II, III and IV. After homogeneity and stability tests, the samples were delivered to monitoring institutions. The results of I, II, III samples were logarithmic transformed, and evaluated with Z-score method using the robust average and standard deviation. The results of IV samples were evaluated as "satisfactory" when reported as < 10 CFU/piece or as "not satisfactory" otherwise. Pearson χ2 test was used to analyze the ratio results. 309 monitoring institutions, which was 99.04% of the total number, reported their results. 271 institutions reported a satisfactory result, and the satisfactory rate was 87.70%. There was no statistical difference in satisfactory rates of I, II and III samples which were 81.52%, 88.30% and 91.40% respectively. The satisfactory rate of IV samples was 93.33%. There was no statistical difference in satisfactory rates between provincial and municipal CDC. The quality control program has provided scientific data that the aerobic plate count capability of the laboratories meets the requirements of monitoring tasks.

  17. Counting in Lattices: Combinatorial Problems from Statistical Mechanics.

    NASA Astrophysics Data System (ADS)

    Randall, Dana Jill

    In this thesis we consider two classical combinatorial problems arising in statistical mechanics: counting matchings and self-avoiding walks in lattice graphs. The first problem arises in the study of the thermodynamical properties of monomers and dimers (diatomic molecules) in crystals. Fisher, Kasteleyn and Temperley discovered an elegant technique to exactly count the number of perfect matchings in two dimensional lattices, but it is not applicable for matchings of arbitrary size, or in higher dimensional lattices. We present the first efficient approximation algorithm for computing the number of matchings of any size in any periodic lattice in arbitrary dimension. The algorithm is based on Monte Carlo simulation of a suitable Markov chain and has rigorously derived performance guarantees that do not rely on any assumptions. In addition, we show that these results generalize to counting matchings in any graph which is the Cayley graph of a finite group. The second problem is counting self-avoiding walks in lattices. This problem arises in the study of the thermodynamics of long polymer chains in dilute solution. While there are a number of Monte Carlo algorithms used to count self -avoiding walks in practice, these are heuristic and their correctness relies on unproven conjectures. In contrast, we present an efficient algorithm which relies on a single, widely-believed conjecture that is simpler than preceding assumptions and, more importantly, is one which the algorithm itself can test. Thus our algorithm is reliable, in the sense that it either outputs answers that are guaranteed, with high probability, to be correct, or finds a counterexample to the conjecture. In either case we know we can trust our results and the algorithm is guaranteed to run in polynomial time. This is the first algorithm for counting self-avoiding walks in which the error bounds are rigorously controlled. This work was supported in part by an AT&T graduate fellowship, a University of

  18. Optimisation of nasal swab analysis by liquid scintillation counting.

    PubMed

    Dai, Xiongxin; Liblong, Aaron; Kramer-Tremblay, Sheila; Priest, Nicholas; Li, Chunsheng

    2012-06-01

    When responding to an emergency radiological incident, rapid methods are needed to provide the physicians and radiation protection personnel with an early estimation of possible internal dose resulting from the inhalation of radionuclides. This information is needed so that appropriate medical treatment and radiological protection control procedures can be implemented. Nasal swab analysis, which employs swabs swiped inside a nostril followed by liquid scintillation counting of alpha and beta activity on the swab, could provide valuable information to quickly identify contamination of the affected population. In this study, various parameters (such as alpha/beta discrimination, swab materials, counting time and volume of scintillation cocktail etc) were evaluated in order to optimise the effectiveness of the nasal swab analysis method. An improved nasal swab procedure was developed by replacing cotton swabs with polyurethane-tipped swabs. Liquid scintillation counting was performed using a Hidex 300SL counter with alpha/beta pulse shape discrimination capability. Results show that the new method is more reliable than existing methods using cotton swabs and effectively meets the analysis requirements for screening personnel in an emergency situation. This swab analysis procedure is also applicable to wipe tests of surface contamination to minimise the source self-absorption effect on liquid scintillation counting.

  19. White blood cell counting analysis of blood smear images using various segmentation strategies

    NASA Astrophysics Data System (ADS)

    Safuan, Syadia Nabilah Mohd; Tomari, Razali; Zakaria, Wan Nurshazwani Wan; Othman, Nurmiza

    2017-09-01

    In white blood cell (WBC) diagnosis, the most crucial measurement parameter is the WBC counting. Such information is widely used to evaluate the effectiveness of cancer therapy and to diagnose several hidden infection within human body. The current practice of manual WBC counting is laborious and a very subjective assessment which leads to the invention of computer aided system (CAS) with rigorous image processing solution. In the CAS counting work, segmentation is the crucial step to ensure the accuracy of the counted cell. The optimal segmentation strategy that can work under various blood smeared image acquisition conditions is remain a great challenge. In this paper, a comparison between different segmentation methods based on color space analysis to get the best counting outcome is elaborated. Initially, color space correction is applied to the original blood smeared image to standardize the image color intensity level. Next, white blood cell segmentation is performed by using combination of several color analysis subtraction which are RGB, CMYK and HSV, and Otsu thresholding. Noises and unwanted regions that present after the segmentation process is eliminated by applying a combination of morphological and Connected Component Labelling (CCL) filter. Eventually, Circle Hough Transform (CHT) method is applied to the segmented image to estimate the number of WBC including the one under the clump region. From the experiment, it is found that G-S yields the best performance.

  20. Reticulocyte count

    MedlinePlus

    Anemia - reticulocyte ... A higher than normal reticulocytes count may indicate: Anemia due to red blood cells being destroyed earlier than normal ( hemolytic anemia ) Bleeding Blood disorder in a fetus or newborn ( ...

  1. Combined blood cell counting and classification with fluorochrome stains and flow instrumentation.

    PubMed

    Shapiro, H M; Schildkraut, E R; Curbelo, R; Laird, C W; Turner, B; Hirschfeld, T

    1976-01-01

    A multiparameter flow cytophotometer was used to count and classify fixed human blood cells fluorochromed with a mixture of ethidium bromide (EB), brilliant sulfaflavine and a blue fluorescent stilbene disulfonic acid derivative (LN). The system measures light scattered by the cells and absorption at 420 nm for all cells. In addition, nuclear EB fluorescence (540 leads to 610 nm) and cytoplasmic fluorescence from LN (366 leads to 470 nm), brilliant sulfaflavine (420 leads to 520 nm) and EB exicted by energy transfer from LN (366 leads to 610 nm) are measured for all nucleated cells. This information is sufficient to perform red and white blood cell counts and to classify leukocytes as lymphocytes, monocytes, basophils, eosinophils or neutrophils. Light scattering and/or nuclear and cytoplasmic fluorescence values may be further analyzed to obtain the ratio of immature to mature neutrophils. Counts produced by the system are in reasonable agreement with those obtained by electronic cells counting and examination of Wright's-stained blood smears; some discrepancies appear to be due to systematic errors in the manual counting method.

  2. Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector.

    PubMed

    Muir, Ryan D; Pogranichniy, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J

    2015-03-12

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  3. Spectral x-ray diffraction using a 6 megapixel photon counting array detector

    NASA Astrophysics Data System (ADS)

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2015-03-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  4. Assessing the Relationship between Vitamin D Status and Impairments in Cognitive and Physical Performance in Older Adults Using a Dual Task Physical Performance Test.

    PubMed

    Lopez, J; Campa, A; Lewis, J E; Huffman, F G; Liuzzi, J P; Li, T; Martinez, A H; Ferris, S M; Rasul, A; Farooqi, A; Lopez Medrano, A M; Atlas, S E; Tiozzo, E; Konefal, J; Woolger, J M

    2017-01-01

    Vitamin D deficiency has been associated with an increased risk of falls in older adults. Several studies have demonstrated an association between vitamin D deficiency and gait and cognitive impairments, which are two risk factors for falls in the elderly. There is lack of research about the role of vitamin D in cognitive function in the context of mobility. The purpose of this study was to evaluate the association between vitamin D status with the age-related changes in mobility through higher order cognitive function using a dual task physical performance test. Cross-sectional. Community-dwelling older adult population located in Miami, Fl. Healthy participants over the age of 55 (n=97) who participated in the parent interventional study. Participants completed assessments that included serum levels of vitamin D, surveys, and dual task physical performance tests. Spearman's correlations, independent t-tests, repeated measures ANOVAs and multiple logistic regressions were used to examine the relationship between vitamin D insufficiency (25-hydroxyvitamin D <30 ng/ml) and sufficiency (≥30 ng/ml) and dual task physical performance variables. The significance level was set at α=0.05. There were no significant associations between vitamin D insufficiency and gait velocity during either task. Using Spearman correlations, slower single (P=0.011) and dual task counting rates (P=0.006) were significantly associated with vitamin D insufficiency. Independent t-tests showed dual and single task counting rates were significantly lower in the vitamin D insufficient group compared to the sufficient group (P=0.018 and P=0.028, respectively). The results for the ANOVAs indicated that velocities and counting rates were not significantly different by vitamin D status (Wilk's Lambda =0.999; F (1, 95) =.11, P=.740) (Wilk's Lambda =.999, F(1,95)=.13, P=.718). Vitamin D status was not significantly associated with dual task physical performance (defined as the difference in dual and

  5. [Effects of HiLo for two weeks on erythrocyte immune adhesion and leukocyte count of swimmers].

    PubMed

    Zhao, Yong-Cai; Gao, Bing-Hong; Wu, Ge-Lin; Zhang, Jiu-Li

    2012-07-01

    To investigate the effects of living high-training low (HiLo) on innate immunity in blood of elite swimmers. Six female swimmers undertook HiLo for two weeks, erythrocyte adhesion function and counts of leukocyte were tested in different time of training period. Red blood cell C3b receptor ring rate (RBC-C3bRR) decreased and red blood cell immune complex matter ring rate (RBC-ICR) increased significantly (P < 0.05), the two markers returned to base line 1 week after training. Counts of leukocyte and granulocyte decreased significantly (P < 0.05), and they recovered 1 week after training; Counts of lymphocyte and monocyte decreased without significance during training and did not recovered after training. Immunity of erythrocyte and granulocyte decreased quickly, but lymphocyte and monocyte recovered slowly, swimmers were adaptive to the training.

  6. Mortality prediction to hospitalized patients with influenza pneumonia: PO2 /FiO2 combined lymphocyte count is the answer.

    PubMed

    Shi, Shu Jing; Li, Hui; Liu, Meng; Liu, Ying Mei; Zhou, Fei; Liu, Bo; Qu, Jiu Xin; Cao, Bin

    2017-05-01

    Community-acquired pneumonia (CAP) severity scores perform well in predicting mortality of CAP patients, but their applicability in influenza pneumonia is powerless. The aim of our research was to test the efficiency of PO 2 /FiO 2 and CAP severity scores in predicting mortality and intensive care unit (ICU) admission with influenza pneumonia patients. We reviewed all patients with positive influenza virus RNA detection in Beijing Chao-Yang Hospital during the 2009-2014 influenza seasons. Outpatients, inpatients with no pneumonia and incomplete data were excluded. We used receiver operating characteristic curves (ROCs) to verify the accuracy of severity scores or indices as mortality predictors in the study patients. Among 170 hospitalized patients with influenza pneumonia, 30 (17.6%) died. Among those who were classified as low-risk (predicted mortality 0.1%-2.1%) by pneumonia severity index (PSI) or confusion, urea, respiratory rate, blood pressure, age ≥65 year (CURB-65), the actual mortality ranged from 5.9 to 22.1%. Multivariate logistic regression indicated that hypoxia (PO 2 /FiO 2  ≤ 250) and lymphopenia (peripheral blood lymphocyte count <0.8 × 10 9 /L) were independent risk factors for mortality, with OR value of 22.483 (95% confidence interval 4.927-102.598) and 5.853 (95% confidence interval 1.887-18.152), respectively. PO 2 /FiO 2 combined lymphocyte count performed well for mortality prediction with area under the curve (AUC) of 0.945, which was significantly better than current CAP severity scores of PSI, CURB-65 and confusion, respiratory rate, blood pressure, age ≥65 years for mortality prediction (P < 0.001). The scores or indices for ICU admission prediction to hospitalized patients with influenza pneumonia confirmed a similar pattern and PO 2 /FiO 2 combined lymphocyte count was also the best predictor for predicting ICU admission. In conclusion, we found that PO 2 /FiO 2 combined lymphocyte count is simple and reliable predictor

  7. A system for counting fetal and maternal red blood cells.

    PubMed

    Ge, Ji; Gong, Zheng; Chen, Jun; Liu, Jun; Nguyen, John; Yang, Zongyi; Wang, Chen; Sun, Yu

    2014-12-01

    The Kleihauer-Betke (KB) test is the standard method for quantitating fetal-maternal hemorrhage in maternal care. In hospitals, the KB test is performed by a certified technologist to count a minimum of 2000 fetal and maternal red blood cells (RBCs) on a blood smear. Manual counting suffers from inherent inconsistency and unreliability. This paper describes a system for automated counting and distinguishing fetal and maternal RBCs on clinical KB slides. A custom-adapted hardware platform is used for KB slide scanning and image capturing. Spatial-color pixel classification with spectral clustering is proposed to separate overlapping cells. Optimal clustering number and total cell number are obtained through maximizing cluster validity index. To accurately identify fetal RBCs from maternal RBCs, multiple features including cell size, roundness, gradient, and saturation difference between cell and whole slide are used in supervised learning to generate feature vectors, to tackle cell color, shape, and contrast variations across clinical KB slides. The results show that the automated system is capable of completing the counting of over 60,000 cells (versus ∼2000 by technologists) within 5 min (versus ∼15 min by technologists). The throughput is improved by approximately 90 times compared to manual reading by technologists. The counting results are highly accurate and correlate strongly with those from benchmarking flow cytometry measurement.

  8. Different binarization processes validated against manual counts of fluorescent bacterial cells.

    PubMed

    Tamminga, Gerrit G; Paulitsch-Fuchs, Astrid H; Jansen, Gijsbert J; Euverink, Gert-Jan W

    2016-09-01

    State of the art software methods (such as fixed value approaches or statistical approaches) to create a binary image of fluorescent bacterial cells are not as accurate and precise as they should be for counting bacteria and measuring their area. To overcome these bottlenecks, we introduce biological significance to obtain a binary image from a greyscale microscopic image. Using our biological significance approach we are able to automatically count about the same number of cells as an individual researcher would do by manual/visual counting. Using the fixed value or statistical approach to obtain a binary image leads to about 20% less cells in automatic counting. In our procedure we included the area measurements of the bacterial cells to determine the right parameters for background subtraction and threshold values. In an iterative process the threshold and background subtraction values were incremented until the number of particles smaller than a typical bacterial cell is less than the number of bacterial cells with a certain area. This research also shows that every image has a specific threshold with respect to the optical system, magnification and staining procedure as well as the exposure time. The biological significance approach shows that automatic counting can be performed with the same accuracy, precision and reproducibility as manual counting. The same approach can be used to count bacterial cells using different optical systems (Leica, Olympus and Navitar), magnification factors (200× and 400×), staining procedures (DNA (Propidium Iodide) and RNA (FISH)) and substrates (polycarbonate filter or glass). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Validation of an inertial measurement unit for the measurement of jump count and height.

    PubMed

    MacDonald, Kerry; Bahr, Roald; Baltich, Jennifer; Whittaker, Jackie L; Meeuwisse, Willem H

    2017-05-01

    To validate the use of an inertial measurement unit (IMU) for the collection of total jump count and assess the validity of an IMU for the measurement of jump height against 3-D motion analysis. Cross sectional validation study. 3D motion-capture laboratory and field based settings. Thirteen elite adolescent volleyball players. Participants performed structured drills, played a 4 set volleyball match and performed twelve counter movement jumps. Jump counts from structured drills and match play were validated against visual count from recorded video. Jump height during the counter movement jumps was validated against concurrent 3-D motion-capture data. The IMU device captured more total jumps (1032) than visual inspection (977) during match play. During structured practice, device jump count sensitivity was strong (96.8%) while specificity was perfect (100%). The IMU underestimated jump height compared to 3D motion-capture with mean differences for maximal and submaximal jumps of 2.5 cm (95%CI: 1.3 to 3.8) and 4.1 cm (3.1-5.1), respectively. The IMU offers a valid measuring tool for jump count. Although the IMU underestimates maximal and submaximal jump height, our findings demonstrate its practical utility for field-based measurement of jump load. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A mind you can count on: validating breath counting as a behavioral measure of mindfulness.

    PubMed

    Levinson, Daniel B; Stoll, Eli L; Kindy, Sonam D; Merry, Hillary L; Davidson, Richard J

    2014-01-01

    Mindfulness practice of present moment awareness promises many benefits, but has eluded rigorous behavioral measurement. To date, research has relied on self-reported mindfulness or heterogeneous mindfulness trainings to infer skillful mindfulness practice and its effects. In four independent studies with over 400 total participants, we present the first construct validation of a behavioral measure of mindfulness, breath counting. We found it was reliable, correlated with self-reported mindfulness, differentiated long-term meditators from age-matched controls, and was distinct from sustained attention and working memory measures. In addition, we employed breath counting to test the nomological network of mindfulness. As theorized, we found skill in breath counting associated with more meta-awareness, less mind wandering, better mood, and greater non-attachment (i.e., less attentional capture by distractors formerly paired with reward). We also found in a randomized online training study that 4 weeks of breath counting training improved mindfulness and decreased mind wandering relative to working memory training and no training controls. Together, these findings provide the first evidence for breath counting as a behavioral measure of mindfulness.

  11. Probabilistic techniques for obtaining accurate patient counts in Clinical Data Warehouses

    PubMed Central

    Myers, Risa B.; Herskovic, Jorge R.

    2011-01-01

    Proposal and execution of clinical trials, computation of quality measures and discovery of correlation between medical phenomena are all applications where an accurate count of patients is needed. However, existing sources of this type of patient information, including Clinical Data Warehouses (CDW) may be incomplete or inaccurate. This research explores applying probabilistic techniques, supported by the MayBMS probabilistic database, to obtain accurate patient counts from a clinical data warehouse containing synthetic patient data. We present a synthetic clinical data warehouse (CDW), and populate it with simulated data using a custom patient data generation engine. We then implement, evaluate and compare different techniques for obtaining patients counts. We model billing as a test for the presence of a condition. We compute billing’s sensitivity and specificity both by conducting a “Simulated Expert Review” where a representative sample of records are reviewed and labeled by experts, and by obtaining the ground truth for every record. We compute the posterior probability of a patient having a condition through a “Bayesian Chain”, using Bayes’ Theorem to calculate the probability of a patient having a condition after each visit. The second method is a “one-shot” approach that computes the probability of a patient having a condition based on whether the patient is ever billed for the condition Our results demonstrate the utility of probabilistic approaches, which improve on the accuracy of raw counts. In particular, the simulated review paired with a single application of Bayes’ Theorem produces the best results, with an average error rate of 2.1% compared to 43.7% for the straightforward billing counts. Overall, this research demonstrates that Bayesian probabilistic approaches improve patient counts on simulated patient populations. We believe that total patient counts based on billing data are one of the many possible applications of our

  12. Particle Count Limits Recommendation for Aviation Fuel

    DTIC Science & Technology

    2015-10-05

    Particle Counter Methodology • Particle counts are taken utilizing calibration methodologies and standardized cleanliness code ratings – ISO 11171 – ISO...Limits Receipt Vehicle Fuel Tank Fuel Injector Aviation Fuel DEF (AUST) 5695B 18/16/13 Parker 18/16/13 14/10/7 Pamas / Parker / Particle Solutions 19/17...12 U.S. DOD 19/17/14/13* Diesel Fuel World Wide Fuel Charter 5th 18/16/13 DEF (AUST) 5695B 18/16/13 Caterpillar 18/16/13 Detroit Diesel 18/16/13 MTU

  13. Spatial Statistics for Tumor Cell Counting and Classification

    NASA Astrophysics Data System (ADS)

    Wirjadi, Oliver; Kim, Yoo-Jin; Breuel, Thomas

    To count and classify cells in histological sections is a standard task in histology. One example is the grading of meningiomas, benign tumors of the meninges, which requires to assess the fraction of proliferating cells in an image. As this process is very time consuming when performed manually, automation is required. To address such problems, we propose a novel application of Markov point process methods in computer vision, leading to algorithms for computing the locations of circular objects in images. In contrast to previous algorithms using such spatial statistics methods in image analysis, the present one is fully trainable. This is achieved by combining point process methods with statistical classifiers. Using simulated data, the method proposed in this paper will be shown to be more accurate and more robust to noise than standard image processing methods. On the publicly available SIMCEP benchmark for cell image analysis algorithms, the cell count performance of the present paper is significantly more accurate than results published elsewhere, especially when cells form dense clusters. Furthermore, the proposed system performs as well as a state-of-the-art algorithm for the computer-aided histological grading of meningiomas when combined with a simple k-nearest neighbor classifier for identifying proliferating cells.

  14. [Reassessment of a combination of cerebrospinal fluid scintigraphy and nasal pledget counts in patients with suspected rhinorrhea].

    PubMed

    Kosuda, S; Arai, S; Hohshito, Y; Tokumitsu, H; Kusano, S; Ishihara, S; Shima, K

    1998-07-01

    A combination study of cerebrospinal fluid scintigraphy and nasal pledget counts was performed using 37 MBq of 111In-DTPA in 12 patients with suspected rhinorrhea. A pledget was inserted and dwelled in each nasal cavity for 6 hours, with the patient prone during at least 30 minutes. A total of 18 studies was implemented and nasal pledget counting method successfully diagnosed all of CSF rhinorrhea. Diagnosis was possible when pledget counts were greater than 1 kcpm. In patients with persistent, intermittent and occult/no nasal discharge, rhinorrhea was found in 100% (5/5), 60% (3/5), 25% (2/8), respectively. Two cases only exhibited positive scintigraphy. MRI or CT cisternography should be first performed in patients with persistent discharge, but in patients with intermittent/occult discharge pledget counting method might take priority of other diagnostic modalities. In conclusion, nasal pledget counting method is a simple and useful tool for detecting rhinorrhea.

  15. A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture

    PubMed Central

    Zhong, Yuanhong; Gao, Junyuan; Lei, Qilun; Zhou, Yao

    2018-01-01

    Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications. PMID:29747429

  16. Artificial neural network-aided image analysis system for cell counting.

    PubMed

    Sjöström, P J; Frydel, B R; Wahlberg, L U

    1999-05-01

    In histological preparations containing debris and synthetic materials, it is difficult to automate cell counting using standard image analysis tools, i.e., systems that rely on boundary contours, histogram thresholding, etc. In an attempt to mimic manual cell recognition, an automated cell counter was constructed using a combination of artificial intelligence and standard image analysis methods. Artificial neural network (ANN) methods were applied on digitized microscopy fields without pre-ANN feature extraction. A three-layer feed-forward network with extensive weight sharing in the first hidden layer was employed and trained on 1,830 examples using the error back-propagation algorithm on a Power Macintosh 7300/180 desktop computer. The optimal number of hidden neurons was determined and the trained system was validated by comparison with blinded human counts. System performance at 50x and lO0x magnification was evaluated. The correlation index at 100x magnification neared person-to-person variability, while 50x magnification was not useful. The system was approximately six times faster than an experienced human. ANN-based automated cell counting in noisy histological preparations is feasible. Consistent histology and computer power are crucial for system performance. The system provides several benefits, such as speed of analysis and consistency, and frees up personnel for other tasks.

  17. Controlling for varying effort in count surveys --an analysis of Christmas Bird Count Data

    USGS Publications Warehouse

    Link, W.A.; Sauer, J.R.

    1999-01-01

    The Christmas Bird Count (CBC) is a valuable source of information about midwinter populations of birds in the continental U.S. and Canada. Analysis of CBC data is complicated by substantial variation among sites and years in effort expended in counting; this feature of the CBC is common to many other wildlife surveys. Specification of a method for adjusting counts for effort is a matter of some controversy. Here, we present models for longitudinal count surveys with varying effort; these describe the effect of effort as proportional to exp(B effortp), where B and p are parameters. For any fixed p, our models are loglinear in the transformed explanatory variable (effort)p and other covariables. Hence we fit a collection of loglinear models corresponding to a range of values of p, and select the best effort adjustment from among these on the basis of fit statistics. We apply this procedure to data for six bird species in five regions, for the period 1959-1988.

  18. Signal to noise ratio of energy selective x-ray photon counting systems with pileup.

    PubMed

    Alvarez, Robert E

    2014-11-01

    To derive fundamental limits on the effect of pulse pileup and quantum noise in photon counting detectors on the signal to noise ratio (SNR) and noise variance of energy selective x-ray imaging systems. An idealized model of the response of counting detectors to pulse pileup is used. The model assumes a nonparalyzable response and delta function pulse shape. The model is used to derive analytical formulas for the noise and energy spectrum of the recorded photons with pulse pileup. These formulas are first verified with a Monte Carlo simulation. They are then used with a method introduced in a previous paper [R. E. Alvarez, "Near optimal energy selective x-ray imaging system performance with simple detectors," Med. Phys. 37, 822-841 (2010)] to compare the signal to noise ratio with pileup to the ideal SNR with perfect energy resolution. Detectors studied include photon counting detectors with pulse height analysis (PHA), detectors that simultaneously measure the number of photons and the integrated energy (NQ detector), and conventional energy integrating and photon counting detectors. The increase in the A-vector variance with dead time is also computed and compared to the Monte Carlo results. A formula for the covariance of the NQ detector is developed. The validity of the constant covariance approximation to the Cramèr-Rao lower bound (CRLB) for larger counts is tested. The SNR becomes smaller than the conventional energy integrating detector (Q) SNR for 0.52, 0.65, and 0.78 expected number photons per dead time for counting (N), two, and four bin PHA detectors, respectively. The NQ detector SNR is always larger than the N and Q SNR but only marginally so for larger dead times. Its noise variance increases by a factor of approximately 3 and 5 for the A1 and A2 components as the dead time parameter increases from 0 to 0.8 photons per dead time. With four bin PHA data, the increase in variance is approximately 2 and 4 times. The constant covariance approximation

  19. Signal to noise ratio of energy selective x-ray photon counting systems with pileup

    PubMed Central

    Alvarez, Robert E.

    2014-01-01

    Purpose: To derive fundamental limits on the effect of pulse pileup and quantum noise in photon counting detectors on the signal to noise ratio (SNR) and noise variance of energy selective x-ray imaging systems. Methods: An idealized model of the response of counting detectors to pulse pileup is used. The model assumes a nonparalyzable response and delta function pulse shape. The model is used to derive analytical formulas for the noise and energy spectrum of the recorded photons with pulse pileup. These formulas are first verified with a Monte Carlo simulation. They are then used with a method introduced in a previous paper [R. E. Alvarez, “Near optimal energy selective x-ray imaging system performance with simple detectors,” Med. Phys. 37, 822–841 (2010)] to compare the signal to noise ratio with pileup to the ideal SNR with perfect energy resolution. Detectors studied include photon counting detectors with pulse height analysis (PHA), detectors that simultaneously measure the number of photons and the integrated energy (NQ detector), and conventional energy integrating and photon counting detectors. The increase in the A-vector variance with dead time is also computed and compared to the Monte Carlo results. A formula for the covariance of the NQ detector is developed. The validity of the constant covariance approximation to the Cramèr–Rao lower bound (CRLB) for larger counts is tested. Results: The SNR becomes smaller than the conventional energy integrating detector (Q) SNR for 0.52, 0.65, and 0.78 expected number photons per dead time for counting (N), two, and four bin PHA detectors, respectively. The NQ detector SNR is always larger than the N and Q SNR but only marginally so for larger dead times. Its noise variance increases by a factor of approximately 3 and 5 for the A1 and A2 components as the dead time parameter increases from 0 to 0.8 photons per dead time. With four bin PHA data, the increase in variance is approximately 2 and 4 times. The

  20. X-ray studies of synthetic radiation-counting diamonds.

    PubMed

    Yacoot, A; Moore, M; Makepeace, A

    1990-10-01

    Synthetic diamonds with a nitrogen content less than 100 ppm may be used as radiation dosemeters in a conduction counting mode, and are especially useful in medical applications. Crystal imperfections, revealed by x-ray diffraction topography, were found to affect counting performance. The best quality diamond gave the highest photocurrent (500 nA at 50 V mm-1 and 2.75 Gy min-1). Diamonds containing dislocations had lower photocurrents but had the advantage of shorter settling times (seconds rather than minutes). Placing contacts on two opposite cube (100) faces gave a higher photocurrent than on a pair of octahedral (111) faces. Higher photocurrents were also achieved when the majority of dislocations were perpendicular rather than parallel, to the electric field. Some recommendations for selecting synthetic diamonds for dosemeters are given.

  1. DC KIDS COUNT e-Databook Indicators

    ERIC Educational Resources Information Center

    DC Action for Children, 2012

    2012-01-01

    This report presents indicators that are included in DC Action for Children's 2012 KIDS COUNT e-databook, their definitions and sources and the rationale for their selection. The indicators for DC KIDS COUNT represent a mix of traditional KIDS COUNT indicators of child well-being, such as the number of children living in poverty, and indicators of…

  2. Nuclear counting filter based on a centered Skellam test and a double exponential smoothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulon, Romain; Kondrasovs, Vladimir; Dumazert, Jonathan

    2015-07-01

    Online nuclear counting represents a challenge due to the stochastic nature of radioactivity. The count data have to be filtered in order to provide a precise and accurate estimation of the count rate, this with a response time compatible with the application in view. An innovative filter is presented in this paper addressing this issue. It is a nonlinear filter based on a Centered Skellam Test (CST) giving a local maximum likelihood estimation of the signal based on a Poisson distribution assumption. This nonlinear approach allows to smooth the counting signal while maintaining a fast response when brutal change activitymore » occur. The filter has been improved by the implementation of a Brown's double Exponential Smoothing (BES). The filter has been validated and compared to other state of the art smoothing filters. The CST-BES filter shows a significant improvement compared to all tested smoothing filters. (authors)« less

  3. The effectiveness of BD Vacutainer® Plus Urinalysis Preservative Tubes in preservation of urine for chemical strip analysis and particle counting.

    PubMed

    Ekşioğlu, Merve Kaymak; Madenci, Özlem Çakır; Yücel, Nihal; Elçi, Abdullah; Turhan, Bülent; Orhan, Gani; Orçun, Asuman

    2016-01-01

    The aim of this study was to evaluate the stability of urine collected in preservative tubes for chemistry strip analyses and particle counting to determine whether the transport of urine samples with all of their constituents is possible. 275 pathologic urine specimens were included. Each urine sample was evaluated after 4, 8, 12, 24, and 48 hours of storage in BD Vacutainer(®) Plus Urinalysis Preservative (BD UAP) tubes and compared with refrigeration at 4 °C. All analyses were peformed on H-800 and FUS-200 automatic modular urine analyzers (Dirui Industry, Changchun, China). The kappa coefficients (κ), false positive (FP) and false negative (FN) rates were evaluated. κ > 0.8 was accepted as good agreement. Haemoglobin (Hb), leucocyte esterase (LE), and protein (Pro) analyses should be performed within 4 hours, whereas glucose (Glc) was stable until the end of 48 hours in both storage conditions. Nitrite (Nit) was well preserved in BD UAP tubes for 24 hours but was stable only up to 8 hours at 4 °C. Bilirubin (Bil) had very high FN rates even at 4 hours in both conditions. The particle counting showed high FN rates for white blood cells (WBC) and red blood cells (RBC), whereas squamous epithelial cells (EC) were stable up to 8 hours in both conditions. Preanalytical requirements for both urine chemical strip analyses and particle counting in a unique sample were not met in either condition. Thus, the transfer of urine samples for centralization of urinalysis is not yet feasible.

  4. The effectiveness of BD Vacutainer® Plus Urinalysis Preservative Tubes in preservation of urine for chemical strip analysis and particle counting

    PubMed Central

    Ekşioğlu, Merve Kaymak; Madenci, Özlem Çakır; Yücel, Nihal; Elçi, Abdullah; Turhan, Bülent; Orhan, Gani; Orçun, Asuman

    2016-01-01

    Introduction The aim of this study was to evaluate the stability of urine collected in preservative tubes for chemistry strip analyses and particle counting to determine whether the transport of urine samples with all of their constituents is possible. Materials and methods 275 pathologic urine specimens were included. Each urine sample was evaluated after 4, 8, 12, 24, and 48 hours of storage in BD Vacutainer® Plus Urinalysis Preservative (BD UAP) tubes and compared with refrigeration at 4 °C. All analyses were peformed on H-800 and FUS-200 automatic modular urine analyzers (Dirui Industry, Changchun, China). The kappa coefficients (κ), false positive (FP) and false negative (FN) rates were evaluated. κ > 0.8 was accepted as good agreement. Results Haemoglobin (Hb), leucocyte esterase (LE), and protein (Pro) analyses should be performed within 4 hours, whereas glucose (Glc) was stable until the end of 48 hours in both storage conditions. Nitrite (Nit) was well preserved in BD UAP tubes for 24 hours but was stable only up to 8 hours at 4 °C. Bilirubin (Bil) had very high FN rates even at 4 hours in both conditions. The particle counting showed high FN rates for white blood cells (WBC) and red blood cells (RBC), whereas squamous epithelial cells (EC) were stable up to 8 hours in both conditions. Conclusions Preanalytical requirements for both urine chemical strip analyses and particle counting in a unique sample were not met in either condition. Thus, the transfer of urine samples for centralization of urinalysis is not yet feasible. PMID:27346967

  5. Photon counting photodiode array detector for far ultraviolet (FUV) astronomy

    NASA Technical Reports Server (NTRS)

    Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.

    1982-01-01

    A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118

  6. The effect of microchannel plate gain depression on PAPA photon counting cameras

    NASA Astrophysics Data System (ADS)

    Sams, Bruce J., III

    1991-03-01

    PAPA (precision analog photon address) cameras are photon counting imagers which employ microchannel plates (MCPs) for image intensification. They have been used extensively in astronomical speckle imaging. The PAPA camera can produce artifacts when light incident on its MCP is highly concentrated. The effect is exacerbated by adjusting the strobe detection level too low, so that the camera accepts very small MCP pulses. The artifacts can occur even at low total count rates if the image has highly a concentrated bright spot. This paper describes how to optimize PAPA camera electronics, and describes six techniques which can avoid or minimize addressing errors.

  7. Evidence Accumulation and Change Rate Inference in Dynamic Environments.

    PubMed

    Radillo, Adrian E; Veliz-Cuba, Alan; Josić, Krešimir; Kilpatrick, Zachary P

    2017-06-01

    In a constantly changing world, animals must account for environmental volatility when making decisions. To appropriately discount older, irrelevant information, they need to learn the rate at which the environment changes. We develop an ideal observer model capable of inferring the present state of the environment along with its rate of change. Key to this computation is an update of the posterior probability of all possible change point counts. This computation can be challenging, as the number of possibilities grows rapidly with time. However, we show how the computations can be simplified in the continuum limit by a moment closure approximation. The resulting low-dimensional system can be used to infer the environmental state and change rate with accuracy comparable to the ideal observer. The approximate computations can be performed by a neural network model via a rate-correlation-based plasticity rule. We thus show how optimal observers accumulate evidence in changing environments and map this computation to reduced models that perform inference using plausible neural mechanisms.

  8. Reducing Opioid Prescribing Rates in Emergency Medicine.

    PubMed

    Guarisco, Joseph; Salup, Adam

    2018-01-01

    Pain management is one of the most common reasons patients visit the emergency department. Understanding the contributions of emergency medicine-and specifically Ochsner Health System's emergency providers-to the opioid crisis is important. Benchmark prescribing data indicated that Ochsner Health System emergency medicine providers' opioid prescription rates were significantly higher than the national average in emergency medicine. Data relevant to visit and opioid prescription counts were extracted from the organization's electronic health record system. Opioid prescription rates were calculated for each provider. A data transparency project was initiated in which provider opioid prescription rates were unblinded and distributed among the provider group. Opioid prescription rates declined in aggregate for the emergency services from 22% to 14% during the 1-year project timeline. Some physicians demonstrated a 70% reduction in prescription rates. Importantly, patient satisfaction scores were not negatively impacted by declining opioid prescription rates. Provider performance transparency using unblinded and transparent data analytics can efficiently and significantly alter provider practice.

  9. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    PubMed

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Zero-inflated count models for longitudinal measurements with heterogeneous random effects.

    PubMed

    Zhu, Huirong; Luo, Sheng; DeSantis, Stacia M

    2017-08-01

    Longitudinal zero-inflated count data arise frequently in substance use research when assessing the effects of behavioral and pharmacological interventions. Zero-inflated count models (e.g. zero-inflated Poisson or zero-inflated negative binomial) with random effects have been developed to analyze this type of data. In random effects zero-inflated count models, the random effects covariance matrix is typically assumed to be homogeneous (constant across subjects). However, in many situations this matrix may be heterogeneous (differ by measured covariates). In this paper, we extend zero-inflated count models to account for random effects heterogeneity by modeling their variance as a function of covariates. We show via simulation that ignoring intervention and covariate-specific heterogeneity can produce biased estimates of covariate and random effect estimates. Moreover, those biased estimates can be rectified by correctly modeling the random effects covariance structure. The methodological development is motivated by and applied to the Combined Pharmacotherapies and Behavioral Interventions for Alcohol Dependence (COMBINE) study, the largest clinical trial of alcohol dependence performed in United States with 1383 individuals.

  11. Equivalence of truncated count mixture distributions and mixtures of truncated count distributions.

    PubMed

    Böhning, Dankmar; Kuhnert, Ronny

    2006-12-01

    This article is about modeling count data with zero truncation. A parametric count density family is considered. The truncated mixture of densities from this family is different from the mixture of truncated densities from the same family. Whereas the former model is more natural to formulate and to interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading to a truncated mixture, a (usually different) mixing distribution can be found so that the associated mixture of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models are used frequently in the capture-recapture setting to estimate population size, and it can be shown that the two Horvitz-Thompson estimators, associated with the two models, agree. In particular, it is possible to achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem has been solved in this class, it might readily be transformed back to the original problem by means of an explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated Poisson family.

  12. Calibration of the Accuscan II In Vivo System for I-125 Thyroid Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovard R. Perry; David L. Georgeson

    2011-07-01

    This report describes the March 2011 calibration of the Accuscan II HpGe In Vivo system for I-125 thyroid counting. The source used for the calibration was a DOE manufactured Am-241/Eu-152 source contained in a 22 ml vial BEA Am-241/Eu-152 RMC II-1 with energies from 26 keV to 344 keV. The center of the detector housing was positioned 64 inches from the vault floor. This position places the approximate center line of the detector housing at the center line of the source in the phantom thyroid tube. The energy and efficiency calibration were performed using an RMC II phantom (Appendix J).more » Performance testing was conducted using source BEA Am-241/Eu-152 RMC II-1 and Validation testing was performed using an I-125 source in a 30 ml vial (I-125 BEA Thyroid 002) and an ANSI N44.3 phantom (Appendix I). This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for counting the thyroid for I-125 and verified in accordance with ANSI/HPS N13.30-1996 criteria.« less

  13. voom: precision weights unlock linear model analysis tools for RNA-seq read counts

    PubMed Central

    2014-01-01

    New normal linear modeling strategies are presented for analyzing read counts from RNA-seq experiments. The voom method estimates the mean-variance relationship of the log-counts, generates a precision weight for each observation and enters these into the limma empirical Bayes analysis pipeline. This opens access for RNA-seq analysts to a large body of methodology developed for microarrays. Simulation studies show that voom performs as well or better than count-based RNA-seq methods even when the data are generated according to the assumptions of the earlier methods. Two case studies illustrate the use of linear modeling and gene set testing methods. PMID:24485249

  14. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts.

    PubMed

    Law, Charity W; Chen, Yunshun; Shi, Wei; Smyth, Gordon K

    2014-02-03

    New normal linear modeling strategies are presented for analyzing read counts from RNA-seq experiments. The voom method estimates the mean-variance relationship of the log-counts, generates a precision weight for each observation and enters these into the limma empirical Bayes analysis pipeline. This opens access for RNA-seq analysts to a large body of methodology developed for microarrays. Simulation studies show that voom performs as well or better than count-based RNA-seq methods even when the data are generated according to the assumptions of the earlier methods. Two case studies illustrate the use of linear modeling and gene set testing methods.

  15. The IAEA neutron coincidence counting (INCC) and the DEMING least-squares fitting programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krick, M.S.; Harker, W.C.; Rinard, P.M.

    1998-12-01

    Two computer programs are described: (1) the INCC (IAEA or International Neutron Coincidence Counting) program and (2) the DEMING curve-fitting program. The INCC program is an IAEA version of the Los Alamos NCC (Neutron Coincidence Counting) code. The DEMING program is an upgrade of earlier Windows{reg_sign} and DOS codes with the same name. The versions described are INCC 3.00 and DEMING 1.11. The INCC and DEMING codes provide inspectors with the software support needed to perform calibration and verification measurements with all of the neutron coincidence counting systems used in IAEA inspections for the nondestructive assay of plutonium and uranium.

  16. The Influence of Self-Ratings versus Peer Ratings on Supervisors' Performance Judgments.

    PubMed

    Makiney; Levy

    1998-06-01

    This study investigated the extent to which supervisors use feedback from outside sources in making performance judgments. A simulation was conducted in which participants with organizational supervisory experience made an initial performance judgment about a profiled employee. Participants then received additional information that was discrepant from their initial judgment (positive or negative) from one of two sources (the profiled employee himself or one of his peers). The direction of the discrepant information and its source interacted in determining final ratings, such that, participants were more likely to use discrepant information to alter their performance judgments in a consistent direction when the source was a peer than when the source was the employee himself. Furthermore, participants' opinions about the usefulness of peer information for performance judgments moderated this interaction. Specifically, participants who believed that information from an employee's peers was useful, were more likely to use discrepant information provided by a peer when making final performance judgments than were participants who did not believe that information from an employee's peers was useful. Copyright 1998 Academic Press.

  17. The Hole-Count Test Revisited: Effects of Test Specimen Thickness

    NASA Technical Reports Server (NTRS)

    Lyman, C. E.; Ackland, D. W.; Williams, D. B.; Goldstein, J. I.

    1989-01-01

    For historical reasons the hole count, an important performance test for the Analytical Electron Microscope (AEM), is somewhat arbitrary yielding different numbers for different investigators. This was not a problem a decade ago when AEM specimens were often bathed with large fluxes of stray electrons and hard x rays. At that time the presence or absence of a thick Pt second condenser (C2) aperture could be detected by a simple comparison of the x-ray spectrum taken 'somewhere in the hole' with a spectrum collected on a 'typical thickness' of Mo or Ag foil. A high hole count of about 10-20% indicated that the electron column needed modifications; whereas a hole count of 1-2% was accepted for most AEM work. The absolute level of the hole count is a function of test specimen atomic number, overall specimen shape, and thin-foil thickness. In order that equivalent results may be obtained for any AEM in any laboratory in the world, this test must become standardized. The hole-count test we seek must be as simpl and as nonsubjective as the graphite 0.344nm lattice-line-resolution test. This lattice-resolution test spurred manufacturers to improve the image resolution of the TEM significantly in the 1970s and led to the even more stringent resolution tests of today. A similar phenomenon for AEM instruments would be welcome. The hole-count test can also indicate whether the spurious x-ray signal is generated by high-energy continuum x rays (bremsstrahlung) generated in the electron column (high K-line to L-line ratio) or uncollimated electrons passing through or around the C2 aperture (low K/L ratio).

  18. Quality specification in haematology: the automated blood cell count.

    PubMed

    Buttarello, Mauro

    2004-08-02

    Quality specifications for automated blood cell counts include topics that go beyond the traditional analytic stage (imprecision, inaccuracy, quality control) and extend to pre- and post-analytic phases. In this review pre-analytic aspects concerning the choice of anticoagulants, maximum conservation times and differences between storage at room temperature or at 4 degrees C are considered. For the analytic phase, goals for imprecision and bias obtained with various approaches (ratio to biologic variation, state of the art, specific clinical situations) are evaluated. For the post-analytic phase, medical review criteria (algorithm, decision limit and delta check) and the structure of the report (general part and comments), which constitutes the formal act through which a laboratory communicates with clinicians, are considered. K2EDTA is considered the anticoagulant of choice for automated cell counts. Regarding storage, specimens should be analyzed as soon as possible. Storage at 4 degrees C may stabilize specimens from 24 to 72 h when complete blood count (CBC) and differential leucocyte count (DLC) is performed. For precision, analytical goals based on the state of the art are acceptable while for bias this is satisfactory only for some parameters. In haematology quality specifications for pre- and analytical phases are important, but the review criteria and the quality of the report play a central role in assuring a definite clinical value.

  19. 24 CFR 985.107 - Required actions for PHA with troubled performance rating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... administrative fee reserve for other housing purposes (see 24 CFR 982.155(b)). (f) Upgrading poor performance... troubled performance rating. 985.107 Section 985.107 Housing and Urban Development Regulations Relating to... § 985.107 Required actions for PHA with troubled performance rating. (a) On-site reviews—(1) Required...

  20. P2 and behavioral effects of stroke count in Chinese characters: Evidence for an analytic and attentional view.

    PubMed

    Yang, Shasha; Zhang, Shunmei; Wang, Quanhong

    2016-08-15

    The inconsistent stroke-count effect in Chinese character recognition has resulted in an intense debate between the analytic and holistic views of character processing. The length effects of English words on behavioral responses and event-related potentials (ERPs) are similarly inconclusive. In this study, we identified any behavioral and ERP stroke-count effects when orthographic neighborhood sizes are balanced across three stroke counts. A delayed character-matching task was conducted while ERPs were recorded. The behavioral data indicated that both response latency and error rate increased with increasing stroke count. The ERP data showed higher P2 but lower N2 amplitudes in the large count than in the median count condition. A higher P2 can reflect increased attentional load and reduced attentional resource for processing each stroke because of the additional strokes in the large count condition. The behavioral and ERP effects of stroke count provide evidence for the analytic view of character processing but also provide evidence against the holistic view. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.