Science.gov

Sample records for coupled biogeochemical processes

  1. Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data

    SciTech Connect

    Hubbard, Susan

    2005-06-01

    Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

  2. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Rick Colwell; Corey Radtke; Mark Delwiche; Deborah Newby; Lynn Petzke; Mark Conrad; Eoin Brodie; Hope Lee; Bob Starr; Dana Dettmers; Ron Crawford; Andrzej Paszczynski; Nick Bernardini; Ravi Paidisetti; Tonia Green

    2006-06-01

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires different ?lines of evidence? indicating that the wastes are effectively destroyed. We are studying the coupled biogeochemical processes that dictate the rate of TCE co-metabolism first in the medial zone (TCE concentration: 1,000 to 20,000 ?g/L) of a plume at the Idaho National Laboratory?s Test Area North (TAN) site and then at Paducah or the Savannah River Site. We will use flow-through in situ reactors (FTISR) to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. TCE co-metabolic rates at TAN are being assessed and interpreted in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial co-metabolism relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites contaminated with chlorinated hydrocarbons.

  3. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Colwell, Frederick; Radtke, Corey; Newby, Deborah; Delwiche, Mark; Crawf, Ronald L.; Paszczynski, Andrzej; Strap, Janice; Conrad, Mark; Brodic, Eoin; Starr, Robert; Lee, Hope

    2006-04-05

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires 'lines of evidence' indicating that the wastes are effectively destroyed. Our research will study the coupled biogeochemical processes that dictate the rate of TCE co-metabolism in contaminated aquifers first at the Idaho National Laboratory and then at Paducah or the Savannah River Site, where natural attenuation of TCE is occurring. We will use flow-through in situ reactors to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. We will use new approaches (e.g., stable isotope probing, enzyme activity probes, real-time reverse transcriptase polymerase chain reaction, proteomics) to assay the TCE co-metabolic rates, and interpret these rates in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different methane concentrations and groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites that are contaminated with chlorinated hydrocarbons.

  4. Advances in Coupling of Kinetics and Molecular Scale Tools to Shed Light on Soil Biogeochemical Processes

    SciTech Connect

    Sparks, Donald

    2014-09-02

    Biogeochemical processes in soils such as sorption, precipitation, and redox play critical roles in the cycling and fate of nutrients, metal(loid)s and organic chemicals in soil and water environments. Advanced analytical tools enable soil scientists to track these processes in real-time and at the molecular scale. Our review focuses on recent research that has employed state-of-the-art molecular scale spectroscopy, coupled with kinetics, to elucidate the mechanisms of nutrient and metal(loid) reactivity and speciation in soils. We found that by coupling kinetics with advanced molecular and nano-scale tools major advances have been made in elucidating important soil chemical processes including sorption, precipitation, dissolution, and redox of metal(loids) and nutrients. Such advances will aid in better predicting the fate and mobility of nutrients and contaminants in soils and water and enhance environmental and agricultural sustainability.

  5. Coupled Biogeochemical and Hydrologic Processes Governing Arsenic Mobility Within Sediments of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Kocar, B. D.; Polizzotto, M. L.; Ying, S. C.; Benner, S. G.; Sampson, M.; Fendorf, S.

    2008-12-01

    Weathering of As-bearing rocks in the Himalayas has resulted in the transport of sediments down major river systems such as the Brahmaputra, Ganges, Red, Irrawaddy, and Mekong. Groundwater in these river basins commonly has As concentrations exceeding the World Health Organization's recommended drinking water limit (10 μg L-1) by more than an order of magnitude. Coupling of hydrology and biogeochemical processes underlies the elevated concentrations of As in these aquifers, necessitating studies that allow their deconvolution. Furthermore, to fully elucidate the biogeochemical mechanisms of sedimentary As release, the thermodynamic favorability of controlling biogeochemical reactions must be considered. We therefore used a combination of spectroscopic and wet chemical measurements to resolve the dominant processes controlling As release and transport in surficial soils/sediments within an As-afflicted field area of the Mekong delta. Based on these measurements, we assess the thermodynamic potential for As, Fe, and S reduction to transpire--major processes influencing As release and mobility. Our results illustrate that clay (0-12m deep) underlying oxbow and wetland environments are subjected to continuously reducing conditions due to ample carbon input and saturated conditions. Ensuing reductive mobilization of As from As-bearing Fe (hydr)oxides results in its migration to the underlying sandy aquifer (>12 m deep). Reactive transport modeling using PHREEQC and MIN3P, constrained with chemical and hydrologic field measurements, provides a calibrated illustration of As release and transport occurring within the clays underlying organic-rich, permanently inundated locations. These areas provide sufficient As to the aqueous phase for widespread contamination of the aquifer, and release is predicted to occur for several thousand years prior to depletion of As from the solid phase.

  6. Multi-scale Characterization and Prediction of Coupled Subsurface Biogeochemical-Hydrological Processes

    SciTech Connect

    Hubbard, Susan; Williams, Ken; Steefel, Carl; Banfield, Jill; Long, Phil; Slater, Lee; Pride, Steve; Jinsong Chen

    2006-06-01

    To advance solutions needed for remediation of DOE contaminated sites, approaches are needed that can elucidate and predict reactions associated with coupled biological, geochemical, and hydrological processes over a variety of spatial scales and in heterogeneous environments. Our previous laboratory experimental experiments, which were conducted under controlled and homogeneous conditions, suggest that geophysical methods have the potential for elucidating system transformations that often occur during remediation. Examples include tracking the onset and aggregation of precipitates associated with sulfate reduction using seismic and complex resistivity methods (Williams et al., 2005; Ntarlagiannis et al., 2005) as well as estimating the volume of evolved gas associated with denitrification using radar velocity. These exciting studies illustrated that geophysical responses correlated with biogeochemical changes, but also that multiple factors could impact the geophysical signature and thus a better understanding as well as integration tools were needed to advance the techniques to the point where they can be used to provide quantitative estimates of system transformations.

  7. Three-dimensional approach using two coupled models for description of hydrological and biogeochemical processes at the catchment scale

    NASA Astrophysics Data System (ADS)

    Plesca, Ina; Kraft, Philipp; Haas, Edwin; Klatt, Steffen; Butterbach-Bahl, Klaus; Frede, Hans-Georg; Breuer, Lutz

    2014-05-01

    Hydrological and biogeochemical transport through changing landscapes has been well described during the past years in literature. However, the uncertainties of combined water quality and water quantity models are still challenging, both due to a lack in process understanding as well to spatiotemporal heterogeneity of environmental conditions driving the processes. In order to reduce the uncertainty in water quality and runoff predictions at the catchment scale, a variety of different model approaches from empirical-conceptual to fully physical and process based models have been developed. In this study we present a new modelling approach for the investigation of hydrological processes and nutrient cycles, with a focus on nitrogen in a small catchment from Hessen, Germany. A hydrological model based on the model toolbox Catchment Modelling Framework (CMF) has been coupled with the process based biogeochemical model LandscapeDNDC. States, fluxes and parameters are exchanged between the models at high temporal and spatial resolution using the Python scripting language in order to obtain a 3-dimensional model application. The transport of water and nutrients through the catchment is modelled using a 3D Richards/Darcy approach for subsurface fluxes, a kinematic wave approach for surface runoff and a Penman-Monteith based calculation of evapotranspiration. Biogeochemical processes are modelled by Landscape-DNDC, including plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification and associated nitrous oxide emissions. The interactions and module connectivity between the two coupled models, as well as the model application on a 3.7 km² catchment with the runoff results and nitrogen quantification will be presented in this study.

  8. Coupled physical/biogeochemical modeling including O2-dependent processes in the Eastern Boundary Upwelling Systems: application in the Benguela

    NASA Astrophysics Data System (ADS)

    Gutknecht, E.; Dadou, I.; Le Vu, B.; Cambon, G.; Sudre, J.; Garçon, V.; Machu, E.; Rixen, T.; Kock, A.; Flohr, A.; Paulmier, A.; Lavik, G.

    2013-06-01

    The Eastern Boundary Upwelling Systems (EBUS) contribute to one fifth of the global catches in the ocean. Often associated with Oxygen Minimum Zones (OMZs), EBUS represent key regions for the oceanic nitrogen (N) cycle. Important bioavailable N loss due to denitrification and anammox processes as well as greenhouse gas emissions (e.g, N2O) occur also in these EBUS. However, their dynamics are currently crudely represented in global models. In the climate change context, improving our capability to properly represent these areas is crucial due to anticipated changes in the winds, productivity, and oxygen content. We developed a biogeochemical model (BioEBUS) taking into account the main processes linked with EBUS and associated OMZs. We implemented this model in a 3-D realistic coupled physical/biogeochemical configuration in the Namibian upwelling system (northern Benguela) using the high-resolution hydrodynamic ROMS model. We present here a validation using in situ and satellite data as well as diagnostic metrics and sensitivity analyses of key parameters and N2O parameterizations. The impact of parameter values on the OMZ off Namibia, on N loss, and on N2O concentrations and emissions is detailed. The model realistically reproduces the vertical distribution and seasonal cycle of observed oxygen, nitrate, and chlorophyll a concentrations, and the rates of microbial processes (e.g, NH4+ and NO2- oxidation, NO3- reduction, and anammox) as well. Based on our sensitivity analyses, biogeochemical parameter values associated with organic matter decomposition, vertical sinking, and nitrification play a key role for the low-oxygen water content, N loss, and N2O concentrations in the OMZ. Moreover, the explicit parameterization of both steps of nitrification, ammonium oxidation to nitrate with nitrite as an explicit intermediate, is necessary to improve the representation of microbial activity linked with the OMZ. The simulated minimum oxygen concentrations are driven by

  9. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial population, and their metabolic properties. Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time, their Biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self-sustaining, complete ecosystems in which light energy absorbed over a diel (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen. sulfur, and a host of other elements.

  10. Autonomous Studies of Coupled Physical-Biogeochemical Processes- Lessons from NAB08 and Prospects for the Future

    NASA Astrophysics Data System (ADS)

    Lee, Craig; D'Asaro, Eric; Perry, Mary Jane

    2013-04-01

    Motivated by the increasing application of autonomous sensors to physical, biological and biogeochemical investigations at the submesoscale, we examine techniques developed during the 2008 North Atlantic Bloom Experiment (NAB08), review successes, failures, and lessons learned, and offer perspectives on how these approaches might evolve in response to near-term shifts in scientific goals and technological advances. NAB08 exploited the persistence of autonomous platforms coupled with the extensive capabilities of a ship-based sampling program to investigate the patch-scale physics, biogeochemistry and community dynamics of a spring phytoplankton bloom. Autonomous platforms (Seagliders following a heavily-instrumented Lagrangian float) collected measurements in a quasi-Lagrangian frame, beginning before bloom initiation and extending well past its demise. This system of autonomous instruments resolved variability at the patch scale while also providing the persistence needed to follow bloom evolution. Biological and biogeochemical measurements were conducted from R/V Knorr during the bloom. An aggressive protocol for sensor calibration and proxy building bridged the ship-based and autonomous efforts, leveraging the intensive but sparse ship-based measurements onto the much more numerous autonomous observations. The combination of sampling in the patch-following frame, persistent, autonomous surveys and focused, aggressive calibration and proxy building produced robust, quantitative estimates of physical and biogeochemical processes. For example, budgets of nitrate, dissolved oxygen and particulate organic carbon (POC) following the patch were used to estimate net community production (NCP) and apparent POC export. Net community production was 805 mmol C?m-2 during the main bloom, with apparent POC export of 564 mmol C?m-2 and 282 mmol C?m-2 lost due to net respiration (70%) and apparent export (30%) on the day following bloom termination. Thus, POC export of roughly

  11. Final Progress Report: Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Cometabolism

    SciTech Connect

    Crawford, Ronald L; Paszczynski, Andrzej J

    2010-02-19

    Our goal within the overall project is to demonstrate the presence and abundance of methane monooxygenases (MMOs) enzymes and their genes within the microbial community of the Idaho National Laboratory (INL) Test Area North (TAN) site. MMOs are thought to be the primary catalysts of natural attenuation of trichloroethylene (TCE) in contaminated groundwater at this location. The actual presence of the proteins making up MMO complexes would provide direct evidence for its participation in TCE degradation. The quantitative estimation of MMO genes and their translation products (sMMO and pMMO proteins) and the knowledge about kinetics and substrate specificity of MMOs will be used to develop mathematical models of the natural attenuation process in the TAN aquifer. The model will be particularly useful in prediction of TCE degradation rate in TAN and possibly in the other DOE sites. Bacteria known as methanotrophs produce a set of proteins that assemble to form methane monooxygenase complexes (MMOs), enzymes that oxidize methane as their natural substrate, thereby providing a carbon and energy source for the organisms. MMOs are also capable of co-metabolically transforming chlorinated solvents like TCE into nontoxic end products such as carbon dioxide and chloride. There are two known forms of methane monooxygenase, a membrane-bound particulate form (pMMO) and a cytoplasmic soluble form (sMMO). pMMO consists of two components, pMMOH (a hydroxylase comprised of 47-, 27-, and 24-kDa subunits) and pMMOR (a reductase comprised of 63 and 8-kDa subunits). sMMO consists of three components: a hydroxylase (protein A-250 kDa), a dimer of three subunits (α2β2γ2), a regulatory protein (protein B-15.8 kDa), and a reductase (protein C-38.6 kDa). All methanotrophs will produce a methanol dehydrogenase to channel the product of methane oxidation (methanol) into the central metabolite formaldehyde. University of Idaho (UI) efforts focused on proteomic analyses using mass

  12. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  13. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    USGS Publications Warehouse

    Alexander, R.B.; Böhlke, J.K.; Boyer, E.W.; David, M.B.; Harvey, J.W.; Mulholland, P.J.; Seitzinger, S.P.; Tobias, C.R.; Tonitto, C.; Wollheim, W.M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  14. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  15. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    NASA Astrophysics Data System (ADS)

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-02-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L-1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show

  16. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    USGS Publications Warehouse

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate

  17. Quantifying the dynamic coupling of hydrologic and biogeochemical processes in stream ecosystems: examples from streams in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Lyons, W. B.; Gooseff, M. N.; Koch, J. C.; Neupauer, R.; Cozzetto, K.; Bencala, K.; Cullis, J. D.

    2014-12-01

    While continuous monitoring of stream flow and stream temperature has been a widely used resource for some time, currently there is great potential to expand continuous monitoring to include important water quality parameters such as nutrients and dissolved organic material. In many systems distinguishing between watershed and stream ecosystem controls can be challenging, and the usefulness of such monitoring can be enhanced by application of quantitative models to interpret observed patterns. The glacial meltwater streams of the McMurdo Dry Valleys, Antarctica, are surrounded by large expanses of patterned ground devoid of plants. In contrast, many streams have thriving cyanobacterial mats that are freeze-dried through the winter and begin photosynthesis with the onset of flow. Thus, the daily signal in terms of biogeochemical processes controlling water quality is generated within the stream. As part of the McMurdo Dry Valleys Long Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering of major ions, microbial cycling of nitrogen species, and streams temperature regulation. We have also adapted modelling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models are relevant to understanding the role of in-stream processes in diverse stream systems where watershed processes also contribute to observed patterns.

  18. A Reactive Transport Simulator for Biogeochemical Processes in Subsurface System

    Energy Science and Technology Software Center (ESTSC)

    2003-04-01

    BIOGEOCHEM is a Fortran code that mumerically simulates the coupled processes of solute transport, microbial population dynamics, microbial metabolism, and geochemical reactions. The potential applications of the code include, but not limited to, (a) sensitivity and uncertainty analyses for assessing the impact of microbial activity on subsurface geochemical systems; (b) extraction of biogeochemical parameter values from field observations or laboratory measurements, (c) helping to design and optimize laboratory biogeochemical experiments, and (d) data integration. Methodmore » of Solution: A finite difference method and a Newton-Raphson technique are used to solve a set of coupled nonlinear partial differential equations and algebraic equations. Practical Application: Environmental analysis, bioremediation performance assessments of radioactive or non-radioactive wase disposal, and academic research.« less

  19. Coupling between pore water fluxes, structural heterogeneity, and biogeochemical processes controls contaminant mobility, bioavailability, and toxicity in sediments

    NASA Astrophysics Data System (ADS)

    Xie, M.; Fetters, K.; Jarrett, B.; Yuen, J.; Cadoux, C.; EI-Natour, M.; Packman, A. I.; Gaillard, J.; Burton, G.

    2012-12-01

    Sediments can serve as both sinks and sources of contaminants in aquatic systems. Contaminants are typically not sequestered permanently in sediments, and instead release slowly to the water column, posing an ongoing threat to aquatic ecosystems and human health. Many processes, including hydrodynamic transport, sediment diagenesis, and bioturbation regulate the behavior and effects of contaminants in sediments. While many of these processes have been studied individually, it is extremely important to understand how they interact to control the form, flux and toxicity of metals in sediments. We used well-defined experimental mesocosms to investigate the effects of hydrodynamic and biological processes on the redistribution of metals between sediments, pore water and overlying water, associated changes in metals speciation, and resulting bioavailability and toxicity to benthic organisms. Metals speciation was evaluated in deposited and resuspended particles using x-ray absorption spectroscopy. We also used time-lapse photography and oxygen optode imaging to evaluate how bioturbation and bioirrigation control sediment structure, sediment mixing process, and oxygen delivery to sediments. In the extremely fine sediments used here, local contaminant fluxes are mainly dominated by diffusion, but episodic bioturbation and resuspension cause extreme variability in contaminant flux and increases oxidation of reduced sediments. Metals contamination substantially reduced bioturbation by indwelling organisms. Sediment resuspension decreased survival and increased tissue burden of epi-benthic organisms. Bioturbation mixed sediments as deep as several centimeters, while associated bioirrigation through worm burrows delivered oxygen over an order of magnitude deeper than local diffusion. These results show that it is important to understand how local transport processes, sediment chemistry, and biological activity interact to control rates and patterns of metals speciation and

  20. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    PubMed Central

    Stegen, James C.; Konopka, Allan; McKinley, James P.; Murray, Chris; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-01-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions. PMID:27469056

  1. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies.

    PubMed

    Stegen, James C; Konopka, Allan; McKinley, James P; Murray, Chris; Lin, Xueju; Miller, Micah D; Kennedy, David W; Miller, Erin A; Resch, Charles T; Fredrickson, Jim K

    2016-01-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies-oxidized, reduced, and transition-within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness-the number of microbial taxa-was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions. PMID:27469056

  2. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    NASA Astrophysics Data System (ADS)

    Stegen, James C.; Konopka, Allan; McKinley, James P.; Murray, Chris; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-07-01

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, richness, and composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial richness—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.

  3. Coupled effects of biogeochemical and hydrological processes on C, N, and P export during extreme rainfall events in a purple soil watershed in southwestern China

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhu, Bo; Yu, Guirui; Chen, Weiliang; He, Nianpeng; Wang, Tao; Miao, Chiyuan

    2014-04-01

    As global warming and extreme weather events increase and intensify across the globe, it becomes ever more urgent to study and understand the effects of extreme rainfall events on carbon (C), nitrogen (N), and phosphorus (P) export from terrestrial to riverine ecosystems. There is still much to learn regarding C, N, and P non-point source discharge that results from extremely heavy rainfall as well as their effects on downstream ecosystems. This study aimed to shed light on C, N, and P biogeochemical and hydrological coupling processes. Long-term and short-term water composition monitoring research was carried out within a purple soil watershed in China's Sichuan Province. This study captured both base flow from long-term observations and dynamic runoff under extreme rainfall events that took place during the 2012 rainy season. Dissolved total nitrogen (DTN) was the largest percentage of total nitrogen (TN) in storm runoff. DTN exceeded particulate nitrogen (PN), which itself exceeded dissolved organic nitrogen (DON). Under site conditions, particulate phosphorus (PP) formed the largest constituent of total phosphorus (TP) followed by dissolved total phosphorus (DTP) and dissolved organic phosphorus (DOP). Furthermore, results showed that C, N, and P loads increased sharply in response to heavy rainfall. Although P abundance in purple soils is limited, it was nevertheless shown that C:N:P ratios measured during rainstorms corresponded much more closely to the Redfield ratio than to ratios measured in base flows. This adds to the evidence that suggests that increased storm runoff will increase eutrophication likelihood in ecosystems further downstream.

  4. Simulation of land-atmosphere gaseous exchange using a coupled land surface-biogeochemical model

    NASA Astrophysics Data System (ADS)

    Gu, C.; Riley, W. J.; Perez, T. J.; Pan, L.

    2009-12-01

    It is important to develop and evaluate biogeochemical models that on the one hand represent vegetation and soil dynamics and on the other hand provide energy and water fluxes in a temporal resolution suitable for biogeochemical processes. In this study, we present a consistent coupling between a common land surface model (CLM3.0) and a recently developed biogeochemical model (TOUGHREACT-N). The model TOUGHREACT-N (TR-N) is one of the few process-based models that simulate green house gases fluxes by using an implicit scheme to solve the diffusion equations governing soil heat and water fluxes. By coupling with CLM3.0, we have significantly improved TR-N by including realistic representations of surface water, energy, and momentum exchanges, through the use of improved formulations for soil evaporation, plant transpiration, vegetation growth, and plant nitrogen uptake embedded in CLM3.0. The coupled CLMTR-N model is a first step for a full coupling of land surface and biogeochemical processes. The model is evaluated with measurements of soil temperature, soil water content, and N2O and N2 gaseous emission data from fallow, corn, and forest sites in Venezuela. The results demonstrate that the CLMTR-N model simulates realistic diurnal variation of soil temperature, soil water content, and N gaseous fluxes. For example, mean differences between predicted and observed midday near-surface soil water content were 8, 11, and 4 % in July, August, and September. The sensitivity of the biogeochemical processes and resulting N emissions to variation in environmental drivers is high, which indicates the need to calculate biogeochemical processes in, at least, two hourly time steps using dynamically updated (rather than daily averaged) soil environmental conditions. The development in CLMTR-N of such a complex representation of processes will allow us to characterize relevant processes and simplifications appropriate for regional to global-scale coupled biogeochemical and

  5. Simulating temporal variations of nitrogen losses in river networks with a dynamic transport model unravels the coupled effects of hydrological and biogeochemical processes

    SciTech Connect

    Mulholland, Patrick J; Alexander, Richard; Bohlke, John; Boyer, Elizabeth; Harvey, Judson; Seitzinger, Sybil; Tobias, Craig; Tonitto, Christina; Wollheim, Wilfred

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  6. Diel biogeochemical processes in terrestrial waters

    USGS Publications Warehouse

    Compiled and Edited by Nimick, David A.; Gammons, Christopher H.

    2011-01-01

    Many biogeochemical processes in rivers and lakes respond to the solar photocycle and produce persistent patterns of measureable phenomena that exhibit a day-night, or 24-h, cycle. Despite a large body of recent literature, the mechanisms responsible for these diel fluctuations are widely debated, with a growing consensus that combinations of physical, chemical, and biological processes are involved. These processes include streamflow variation, photosynthesis and respiration, plant assimilation, and reactions involving photochemistry, adsorption and desorption, and mineral precipitation and dissolution. Diel changes in streamflow and water properties such as temperature, pH, and dissolved oxygen concentration have been widely recognized, and recently, diel studies have focused more widely by considering other constituents such as dissolved and particulate trace metals, metalloids, rare earth elements, mercury, organic matter, dissolved inorganic carbon (DIC), and nutrients. The details of many diel processes are being studied using stable isotopes, which also can exhibit diel cycles in response to microbial metabolism, photosynthesis and respiration, or changes in phase, speciation, or redox state. In addition, secondary effects that diel cycles might have, for example, on biota or in the hyporheic zone are beginning to be considered. This special issue is composed primarily of papers presented at the topical session "Diurnal Biogeochemical Processes in Rivers, Lakes, and Shallow Groundwater" held at the annual meeting of the Geological Society of America in October 2009 in Portland, Oregon. This session was organized because many of the growing number of diel studies have addressed just a small part of the full range of diel cycling phenomena found in rivers and lakes. This limited focus is understandable because (1) fundamental aspects of many diel processes are poorly understood and require detailed study, (2) the interests and expertise of individual

  7. Global Biology Research Program: Biogeochemical Processes in Wetlands

    NASA Technical Reports Server (NTRS)

    Bartlett, D. S. (Editor)

    1984-01-01

    The results of a workshop examining potential NASA contributions to research on wetland processes as they relate to global biogeochemical cycles are summarized. A wetlands data base utilizing remotely sensed inventories, studies of wetland/atmosphere exchange processes, and the extrapolation of local measurements to global biogeochemical cycling processes were identified as possible areas for NASA support.

  8. Coupling a terrestrial biogeochemical model to the common land model

    SciTech Connect

    Shi, Xiaoying; Mao, Jiafu; Wang, Yingping; Dai, Yongjiu; Tang, Xuli

    2011-01-01

    A terrestrial biogeochemical model (CASACNP) was coupled to a land surface model (the Common Land Model, CoLM) to simulate the dynamics of carbon substrate in soil and its limitation on soil respiration. The combined model, CoLM-CASACNP, was able to predict long-term carbon sources and sinks that CoLM alone could not. The coupled model was tested using measurements of belowground respiration and surface fluxes from two forest ecosystems. The combined model simulated reasonably well the diurnal and seasonal variations of net ecosystem carbon exchange, as well as seasonal variation in the soil respiration rate of both the forest sites chosen for this study. However, the agreement between model simulations and actual measurements was poorer under dry conditions. The model should be tested against more measurements before being applied globally to investigate the feedbacks between the carbon cycle and climate change.

  9. Climate change effects on watershed hydrological and biogeochemical processes

    EPA Science Inventory

    Projected changes in climate are widely expected to alter watershed processes. However, the extent of these changes is difficult to predict because complex interactions among affected hydrological and biogeochemical processes will likely play out over many decades and spatial sc...

  10. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    NASA Astrophysics Data System (ADS)

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-10-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  11. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    USGS Publications Warehouse

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-01-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  12. Benthic-Pelagic Coupling in Biogeochemical and Climate Models: Existing Approaches, Recent developments and Roadblocks

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra

    2016-04-01

    Marine sediments are key components in the Earth System. They host the largest carbon reservoir on Earth, provide the only long term sink for atmospheric CO2, recycle nutrients and represent the most important climate archive. Biogeochemical processes in marine sediments are thus essential for our understanding of the global biogeochemical cycles and climate. They are first and foremost, donor controlled and, thus, driven by the rain of particulate material from the euphotic zone and influenced by the overlying bottom water. Geochemical species may undergo several recycling loops (e.g. authigenic mineral precipitation/dissolution) before they are either buried or diffuse back to the water column. The tightly coupled and complex pelagic and benthic process interplay thus delays recycling flux, significantly modifies the depositional signal and controls the long-term removal of carbon from the ocean-atmosphere system. Despite the importance of this mutual interaction, coupled regional/global biogeochemical models and (paleo)climate models, which are designed to assess and quantify the transformations and fluxes of carbon and nutrients and evaluate their response to past and future perturbations of the climate system either completely neglect marine sediments or incorporate a highly simplified representation of benthic processes. On the other end of the spectrum, coupled, multi-component state-of-the-art early diagenetic models have been successfully developed and applied over the past decades to reproduce observations and quantify sediment-water exchange fluxes, but cannot easily be coupled to pelagic models. The primary constraint here is the high computation cost of simulating all of the essential redox and equilibrium reactions within marine sediments that control carbon burial and benthic recycling fluxes: a barrier that is easily exacerbated if a variety of benthic environments are to be spatially resolved. This presentation provides an integrative overview of

  13. A General Simulator for Reaction-Based Biogeochemical Processes

    SciTech Connect

    Fang, Yilin; Yabusaki, Steven B.; Yeh, George

    2006-02-01

    As more complex biogeochemical situations are being investigated (e.g., evolving reactivity, passivation of reactive surfaces, dissolution of sorbates), there is a growing need for biogeochemical simulators to flexibly and facilely address new reaction forms and rate laws. This paper presents an approach that accommodates this need to efficiently simulate general biogeochemical processes, while insulating the user from additional code development. The approach allows for the automatic extraction of fundamental reaction stoichiometry and thermodynamics from a standard chemistry database, and the symbolic entry of arbitrarily complex user-specified reaction forms, rate laws, and equilibria. The user-specified equilibrium and kinetic reactions (i.e., reactions not defined in the format of the standardized database) are interpreted by the Maple symbolic mathematical software package. FORTRAN 90 code is then generated by Maple for (1) the analytical Jacobian matrix (if preferred over the numerical Jacobian matrix) used in the Newton-Raphson solution procedure, and (2) the residual functions for user-specified equilibrium expressions and rate laws. Matrix diagonalization eliminates the need to conceptualize the system of reactions as a tableau, while identifying a minimum rank set of basis species with enhanced numerical convergence properties. The newly generated code, which is designed to operate in the BIOGEOCHEM biogeochemical simulator, is then compiled and linked into the BIOGEOCHEM executable. With these features, users can avoid recoding the simulator to accept new equilibrium expressions or kinetic rate laws, while still taking full advantage of the stoichiometry and thermodynamics provided by an existing chemical database. Thus, the approach introduces efficiencies in the specification of biogeochemical reaction networks and eliminates opportunities for mistakes in preparing input files and coding errors. Test problems are used to demonstrate the features of

  14. A Coupled Land Surface-Subsurface Biogeochemical Model for Aqueous and Gaseous Nitrogen Losses

    NASA Astrophysics Data System (ADS)

    Gu, C.; Maggi, F.; Riley, W.; Pan, L.; Xu, T.; Oldenburg, C.; Miller, N.

    2008-12-01

    In recent years concern has grown over the contribution of nitrogen (N) fertilizers to nitrate (NOB3PB-P) water pollution and atmospheric pollution of nitrous oxide (NB2BO), nitric oxide (NO), and ammonia (NHB3B). Characterizing the amount and species of N losses is therefore essential in developing a strategy to estimate and mitigate N leaching and emission to the atmosphere. Indeed, transformations of nitrogen depend strongly on water content, soil temperature, and nitrogen concentration. Land surface processes therefore have to be taken into account to properly characterize N biogeochemical cycling. However, most current nitrogen biogeochemical models take the land surface as the upper boundary by lumping the complex processes above the surface as known boundary conditions. In this study, an extant subsurface mechanistic N cycle model (TOUGHREACT-N) was coupled with the community land model (CLM). The resulting coupled model extends the modeling capability of TOUGHREACT-N to include the important energy, momentum, and moisture dynamics provided by CLM. The coupled model showed a significant impact of land-surface diurnal forcing on soil temperature and moisture and on nitrogen fluxes. We also discuss field applications of the model and discuss how temporal dynamics of nitrogen fluxes are affected by land surface processes.

  15. The interaction between biogeophysical and biogeochemical processes and their feedback on permafrost soil carbon stocks

    NASA Astrophysics Data System (ADS)

    ElMasri, B.; Barman, R.; Jain, A. K.

    2013-12-01

    Our current understanding of the full suite of processes and their responses to recent warming in terrestrial high-latitudes are far from complete. While continued research on development of more detailed Earth system models (ESMs) is essential to understand the interactions and feedbacks between vegetation, soils and climate change in the Northern high latitudes (NHL), one of the major challenges is the treatment of the biophysical and biogeochemical processes and feedback in the ESM and their impact on soil organic carbon. We used a land surface model, the Integrated Science Assessment Model (ISAM), which coupled carbon-nitrogen biogeochemical and energy and hydrology biogeophysical processes, to investigate the effects of feedbacks between the biogeochemical and biogeophysical processes on the model estimated soil organic carbon (SOC) for the NHL permafrost region. We not only focused on recent improvement in the ISAM biogeophysical processes that are deemed important for the high latitude soils/snow; such as deep soil column, modulation of soil thermal and hydrological properties, wind compaction of snow, and depth hoar formation; on permafrost SOC, but also biogeochemical processes; such as dynamic phenology and root distribution, litter carbon decomposition rates and nitrogen amount remaining; on soil biogeochemistry. We selected multiple sites representative of different high latitude biomes to calibrate and evaluate the model. We then carried out several ISAM model simulations to study the effects of feedbacks between biogeochemical and biogeophysical processes on SOC. Our model analysis shows that including the biogeophysical processes alone could increase modeled Northern high-latitude permafrost carbon by about 30% compared to measurements. Accounting for the biogeochmical processes further improve the NHL soil carbon. This study demonstrates that improvements in biogeophysical or biogeochemical processes alone does not help to improve the modeled SOC

  16. Dynamic interactions of ecohydrological and biogeochemical processes in water-stressed environments

    NASA Astrophysics Data System (ADS)

    Wang, L.; Manzoni, S.; Ravi, S.; Riveros-Iregui, D. A.; Caylor, K. K.

    2015-12-01

    Water is the essential reactant, catalyst, or medium for many biogeochemical reactions and flows. The coupling between hydrological and biogeochemical processes is particularly evident in drylands, but also in areas with strong seasonal precipitation patterns or in mesic systems during droughts. Moreover, this coupling is apparent at all levels in the ecosystems - from soil microbial cells to whole plants to landscapes. A holistic approach is essential to fully understand function and processes in water-limited ecosystems and to predict their responses to environmental change. We examine some of the mechanisms responsible for microbial and vegetation responses to moisture inputs in water-limited ecosystems through a synthesis of existing literature and we also summarize the modeling advances in addressing these interactions. This paper focuses on three opportunities to advance coupled hydrological and biogeochemical research: (1) improved quantitative understanding of mechanisms linking hydrological and biogeochemical variations in drylands, (2) experimental and theoretical approaches that describe linkages between hydrology and biogeochemistry (particularly across scales), and (3) the use of these tools and insights to address critical dryland issues of societal relevance.

  17. Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation

    SciTech Connect

    Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

    2010-02-26

    Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

  18. A 3-D variational assimilation scheme in coupled transport-biogeochemical models: Forecast of Mediterranean biogeochemical properties

    NASA Astrophysics Data System (ADS)

    Teruzzi, Anna; Dobricic, Srdjan; Solidoro, Cosimo; Cossarini, Gianpiero

    2014-01-01

    Increasing attention is dedicated to the implementation of suitable marine forecast systems for the estimate of the state of the ocean. Within the framework of the European MyOcean infrastructure, the pre-existing short-term Mediterranean Sea biogeochemistry operational forecast system has been upgraded by assimilating remotely sensed ocean color data in the coupled transport-biogeochemical model OPATM-BFM using a 3-D variational data assimilation (3D-VAR) procedure. In the present work, the 3D-VAR scheme is used to correct the four phytoplankton functional groups included in the OPATM-BFM in the period July 2007 to September 2008. The 3D-VAR scheme decomposes the error covariance matrix using a sequence of different operators that account separately for vertical covariance, horizontal covariance, and covariance among biogeochemical variables. The assimilation solution is found in a reduced dimensional space, and the innovation for the biogeochemical variables is obtained by the sequential application of the covariance operators. Results show a general improvement in the forecast skill, providing a correction of the basin-scale bias of surface chlorophyll concentration and of the local-scale spatial and temporal dynamics of typical bloom events. Further, analysis of the assimilation skill provides insights into the functioning of the model. The computational costs of the assimilation scheme adopted are low compared to other assimilation techniques, and its modular structure facilitates further developments. The 3D-VAR scheme results especially suitable for implementation within a biogeochemistry operational forecast system.

  19. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Blodau, C.

    2013-08-01

    Elevated nitrogen deposition and climate change alter the vegetation communities and carbon (C) and nitrogen (N) cycling in peatlands. To address this issue we developed a new process-oriented biogeochemical model (PEATBOG) for analyzing coupled carbon and nitrogen dynamics in northern peatlands. The model consists of four submodels, which simulate: (1) daily water table depth and depth profiles of soil moisture, temperature and oxygen levels; (2) competition among three plants functional types (PFTs), production and litter production of plants; (3) decomposition of peat; and (4) production, consumption, diffusion and export of dissolved C and N species in soil water. The model is novel in the integration of the C and N cycles, the explicit spatial resolution belowground, the consistent conceptualization of movement of water and solutes, the incorporation of stoichiometric controls on elemental fluxes and a consistent conceptualization of C and N reactivity in vegetation and soil organic matter. The model was evaluated for the Mer Bleue Bog, near Ottawa, Ontario, with regards to simulation of soil moisture and temperature and the most important processes in the C and N cycles. Model sensitivity was tested for nitrogen input, precipitation, and temperature, and the choices of the most uncertain parameters were justified. A simulation of nitrogen deposition over 40 yr demonstrates the advantages of the PEATBOG model in tracking biogeochemical effects and vegetation change in the ecosystem.

  20. PEATBOG: a biogeochemical model for analyzing coupled carbon and nitrogen dynamics in northern peatlands

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Blodau, C.

    2013-03-01

    Elevated nitrogen deposition and climate change alter the vegetation communities and carbon (C) and nitrogen (N) cycling in peatlands. To address this issue we developed a new process-oriented biogeochemical model (PEATBOG) for analyzing coupled carbon and nitrogen dynamics in northern peatlands. The model consists of four submodels, which simulate: (1) daily water table depth and depth profiles of soil moisture, temperature and oxygen levels; (2) competition among three plants functional types (PFTs), production and litter production of plants; (3) decomposition of peat; and (4) production, consumption, diffusion and export of dissolved C and N species in soil water. The model is novel in the integration of the C and N cycles, the explicit spatial resolution belowground, the consistent conceptualization of movement of water and solutes, the incorporation of stoichiometric controls on elemental fluxes and a consistent conceptualization of C and N reactivity in vegetation and soil organic matter. The model was evaluated for the Mer Bleue Bog, near Ottawa, Ontario, with regards to simulation of soil moisture and temperature and the most important processes in the C and N cycles. Model sensitivity was tested for nitrogen input, precipitation, and temperature, and the choices of the most uncertain parameters were justified. A simulation of nitrogen deposition over 40 yr demonstrates the advantages of the PEATBOG model in tracking biogeochemical effects and vegetation change in the ecosystem.

  1. Implementing high-latitude biogeochemical processes into Earth System Models

    NASA Astrophysics Data System (ADS)

    Brovkin, Victor; Kleinen, Thomas; Cresto-Aleina, Fabio; Kloster, Silvia; Ilyina, Tatiana

    2016-04-01

    Projections of future climate changes suggest that air temperatures in the Arctic could rise to the levels unprecedented in the last million years. Sensitivity of carbon storages on land and shelves to climate change of that scale is highly uncertain. Earth System models (ESMs), consisting of atmosphere, ocean, land, and cryosphere components are the main tools to understand interactions between carbon cycle and climate. However, ESM representation of ecological and biogeochemical processes in the Arctic is extremely simplistic. For example, all ESMs agree that tree cover in the future warming scenarios will move northwards to the Arctic coast, but they ignore interactions between vegetation, permafrost, and disturbances such as fires, which are critical for vegetation dynamics in this region. Improving modeling of interactions between model components and their evaluation against growing observational evidence is a promising research area. The first attempts to account for the permafrost carbon dynamics in the ESM framework suggest that CO2 and CH4 emissions from high-latitude regions in the 21st century are relatively small, but they become much more significant afterwards due to committed climate changes. Therefore, extension of ESM simulations beyond 2100 is essential to estimate a proper scale of frozen carbon pool response to human-induced climate change. Additionally, inclusion of sub-sea permafrost component into ESMs is an active research area that brings together terrestrial and marine biogeochemical communities, as well as geologists analyzing climate proxies on glacial timescales. Another challenging aspect of biogeochemical interactions in Arctic is an extreme land surface heterogeneity. A mixture of wetlands, lakes, and vegetation-covered surfaces on fine local scale is not properly reflected in the model structure. A promising approach of dealing with scaling gaps in modeling high-latitude biogeochemical processes in ESMs will be presented.

  2. A 3-D variational assimilation scheme in coupled transport-biogeochemical models: Forecast of Mediterranean biogeochemical properties

    PubMed Central

    Teruzzi, Anna; Dobricic, Srdjan; Solidoro, Cosimo; Cossarini, Gianpiero

    2014-01-01

    [1] Increasing attention is dedicated to the implementation of suitable marine forecast systems for the estimate of the state of the ocean. Within the framework of the European MyOcean infrastructure, the pre-existing short-term Mediterranean Sea biogeochemistry operational forecast system has been upgraded by assimilating remotely sensed ocean color data in the coupled transport-biogeochemical model OPATM-BFM using a 3-D variational data assimilation (3D-VAR) procedure. In the present work, the 3D-VAR scheme is used to correct the four phytoplankton functional groups included in the OPATM-BFM in the period July 2007 to September 2008. The 3D-VAR scheme decomposes the error covariance matrix using a sequence of different operators that account separately for vertical covariance, horizontal covariance, and covariance among biogeochemical variables. The assimilation solution is found in a reduced dimensional space, and the innovation for the biogeochemical variables is obtained by the sequential application of the covariance operators. Results show a general improvement in the forecast skill, providing a correction of the basin-scale bias of surface chlorophyll concentration and of the local-scale spatial and temporal dynamics of typical bloom events. Further, analysis of the assimilation skill provides insights into the functioning of the model. The computational costs of the assimilation scheme adopted are low compared to other assimilation techniques, and its modular structure facilitates further developments. The 3D-VAR scheme results especially suitable for implementation within a biogeochemistry operational forecast system. PMID:26213670

  3. A coupled biogeochemical-Dynamic Energy Budget model as a tool for managing fish production ponds.

    PubMed

    Serpa, Dalila; Pousão-Ferreira, Pedro; Caetano, Miguel; Cancela da Fonseca, Luís; Dinis, Maria Teresa; Duarte, Pedro

    2013-10-01

    The sustainability of semi-intensive aquaculture relies on management practices that simultaneously improve production efficiency and minimize the environmental impacts of this activity. The purpose of the present work was to develop a mathematical model that reproduced the dynamics of a semi-intensive fish earth pond, to simulate different management scenarios for optimizing fish production. The modeling approach consisted of coupling a biogeochemical model that simulated the dynamics of the elements that are more likely to affect fish production and cause undesirable environmental impacts (nitrogen, phosphorus and oxygen) to a fish growth model based on the Dynamic Energy Budget approach. The biogeochemical sub-model successfully simulated most water column and sediment variables. A good model fit was also found between predicted and observed white seabream (Diplodus sargus) growth data over a production cycle. In order to optimize fish production, different management scenarios were analysed with the model (e.g. increase stocking densities, decrease/increase water exchange rates, decrease/increase feeding rates, decrease phosphorus content in fish feeds, increase food assimilation efficiency and decrease pellets sinking velocity) to test their effects on the pond environment as well as on fish yields and effluent nutrient discharges. Scenarios were quantitatively evaluated and compared using the Analytical Hierarchical Process (AHP) methodology. The best management options that allow the maximization of fish production while maintaining a good pond environment and minimum impacts on the adjacent coastal system were to double standard stocking densities and to improve food assimilation efficiency. PMID:23872182

  4. Empirical approaches to more accurately predict benthic-pelagic coupling in biogeochemical ocean models

    NASA Astrophysics Data System (ADS)

    Dale, Andy; Stolpovsky, Konstantin; Wallmann, Klaus

    2016-04-01

    The recycling and burial of biogenic material in the sea floor plays a key role in the regulation of ocean chemistry. Proper consideration of these processes in ocean biogeochemical models is becoming increasingly recognized as an important step in model validation and prediction. However, the rate of organic matter remineralization in sediments and the benthic flux of redox-sensitive elements are difficult to predict a priori. In this communication, examples of empirical benthic flux models that can be coupled to earth system models to predict sediment-water exchange in the open ocean are presented. Large uncertainties hindering further progress in this field include knowledge of the reactivity of organic carbon reaching the sediment, the importance of episodic variability in bottom water chemistry and particle rain rates (for both the deep-sea and margins) and the role of benthic fauna. How do we meet the challenge?

  5. Biogeochemical Process Comparison of the Five USGS Water, Energy, and Biogeochemical Budget (WEBB) Sites

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Peters, N. E.; Aulenbach, B. T.; Blum, A. E.; Campbell, D. H.; Clow, D. W.; Larsen, M. C.; Mast, M. A.; Stallard, R. F.; Troester, J. W.; Walker, J. F.; Webb, R. M.; White, A. F.

    2001-12-01

    Input - output budgets (in wet deposition and streamwater) have been constructed for water and major solutes at the five USGS Water, Energy, and Biogeochemical Budget (WEBB) sites for the period 1992-97 (Peters et al., 2000). In this poster we interpret the net chemical fluxes to identify the controlling biogeochemical processes, as influenced by the strong physical and biological contrasts (climate, geology, physiography, and vegetation types) in the five diverse environments. The five sites are: Allequash Creek, Wisconsin (low-relief humid continental forest); Andrews Creek, Colorado (cold alpine, taiga/tundra, and subalpine boreal forest); Icacos River, Puerto Rico (lower montane, wet tropical forest); Panola Mountain, Georgia (humid subtropical piedmont forest); and Sleepers River, Vermont (humid northern hardwood forest). Base cations and Si produced by chemical weathering displayed a net export at each site. The magnitude and stoichiometry of export reflects mineralogy, climate (temperature and rainfall), and water residence time in the subsurface. The lowest and highest mass export generally was for Andrews Creek and Icacos River, respectively, consistent with their extreme mean annual temperatures (0/degC in Colorado to 21/degC in Puerto Rico) and the limited residence time of meltwater at Andrews Creek. Calcite in bedrock at the three coldest watersheds caused somewhat higher relative export of Ca, especially at Sleepers River where calcite weathering is a dominant control on stream chemistry. In contrast, the high Mg content of the volcaniclastic rocks at Icacos River and glacial deposits at Allequash Creek caused disproportionately high Mg export relative to the other sites. Relatively high Na export at Panola Mountain and K export at Sleepers River are probably caused by plagioclase and biotite weathering, respectively. SO4 is retained at the two warmest sites, Panola Mountain and Icacos River. SO4 adsorption is known to limit SO4- export in highly

  6. Vesicomyid Clams Alter Biogeochemical Processes at Pacific Methane Seeps

    NASA Astrophysics Data System (ADS)

    Bertics, V. J.; Treude, T.; Ziebis, W.

    2007-12-01

    There exists a close relationship between fluid flow, biogeochemistry, and biota in seep sediments. Upwelling of methane and sulfide-rich fluids supports abundant macrofauna species harboring thiotrophic or methanotrophic symbionts. Variations in fluid flow, thus supply of methane and sulfide, are considered key factors controlling benthic communities. Vesicomyid clams harbor thiotrophic symbionts in their gills, which are supplied with oxygen from the surrounding water and hydrogen sulfide from the sediment. The clams are capable of extending their foot into the sediment to tap sulfide sources in deeper layers, consequently affecting water-sediment solute exchange. Because seep fluids are generally depleted in sulfate compared to seawater, this bioturbation activity may enhance the supply of sulfate to otherwise sulfate-limited sediments, thus boosting microbial activity of sulfate reduction (SR) coupled to anaerobic oxidation of methane (AOM). The goal of this study was to investigate the activity of three species of vesicomyid clams ( Calyptogena pacifica, C. kilmeri, C. gigas) from three methane seep habitats (Eel River Basin, Hydrate Ridge, Monterey Bay Canyon) and to evaluate its effect on biogeochemical processes. Sediment cores and clams were collected using the submersible Alvin or the ROV Jason, during three cruises with the R/V Atlantis in July and October 2006 and July 2007 (AT 15-7, AT 15-11, and AT 15-20). We performed high-resolution measurements of geochemical gradients in intact sediment cores using microsensors (O2, H2S, pH, redox potential). The cores were then sliced (1 cm intervals) for detailed chemical and microbiological analyses. Parallel cores were used to determine microbial activity (AOM, SR) with radioactive tracers. For detailed laboratory investigations, clams were kept in narrow aquaria (15 cm x 20 cm x 5 cm) in the ship's cold room. The front of the aquaria was perforated with holes at 1 cm resolution. These silicone-filled holes

  7. Microbial Metagenomics Reveals Climate-Relevant Subsurface Biogeochemical Processes.

    PubMed

    Long, Philip E; Williams, Kenneth H; Hubbard, Susan S; Banfield, Jillian F

    2016-08-01

    Microorganisms play key roles in terrestrial system processes, including the turnover of natural organic carbon, such as leaf litter and woody debris that accumulate in soils and subsurface sediments. What has emerged from a series of recent DNA sequencing-based studies is recognition of the enormous variety of little known and previously unknown microorganisms that mediate recycling of these vast stores of buried carbon in subsoil compartments of the terrestrial system. More importantly, the genome resolution achieved in these studies has enabled association of specific members of these microbial communities with carbon compound transformations and other linked biogeochemical processes-such as the nitrogen cycle-that can impact the quality of groundwater, surface water, and atmospheric trace gas concentrations. The emerging view also emphasizes the importance of organism interactions through exchange of metabolic byproducts (e.g., within the carbon, nitrogen, and sulfur cycles) and via symbioses since many novel organisms exhibit restricted metabolic capabilities and an associated extremely small cell size. New, genome-resolved information reshapes our view of subsurface microbial communities and provides critical new inputs for advanced reactive transport models. These inputs are needed for accurate prediction of feedbacks in watershed biogeochemical functioning and their influence on the climate via the fluxes of greenhouse gases, CO2, CH4, and N2O. PMID:27156744

  8. Controllability of mixing errors in a coupled physical biogeochemical model of the North Atlantic: a nonlinear study using anamorphosis

    NASA Astrophysics Data System (ADS)

    Béal, D.; Brasseur, P.; Brankart, J.-M.; Ourmières, Y.; Verron, J.

    2009-06-01

    In biogeochemical models coupled to ocean circulation models, vertical mixing is an important physical process which governs the nutrient supply and the plankton residence in the euphotic layer. However, mixing is often poorly represented in numerical simulations because of approximate parameterizations of sub-grid scale turbulence, wind forcing errors and other mis-represented processes such as restratification by mesoscale eddies. Getting a sufficient knowledge of the nature and structure of these error sources is necessary to implement appropriate data assimilation methods and to evaluate their controllability by a given observation system. In this paper, Monte Carlo simulations are conducted to study mixing errors induced by approximate wind forcings in a three-dimensional coupled physical-biogeochemical model of the North Atlantic with a 1/4° horizontal resolution. An ensemble forecast involving 200 members is performed during the 1998 spring bloom, by prescribing realistic wind perturbations to generate mixing errors. It is shown that the biogeochemical response can be rather complex because of nonlinearities and threshold effects in the coupled model. In particular, the response of the surface phytoplankton depends on the region of interest and is particularly sensitive to the local stratification. We examine the robustness of the statistical relationships computed between the various physical and biogeochemical variables, and we show that significant information on the ecosystem can be obtained from observations of chlorophyll concentration or sea surface temperature. In order to improve the analysis step of sequential assimilation schemes, we propose to perform a simple nonlinear change of variables that operates separately on each state variable, by mapping their ensemble percentiles on the Gaussian percentiles. It is shown that this method is able to substantially reduce the estimation error with respect to the linear estimates computed by the Kalman

  9. Numerical modeling of watershed-scale radiocesium transport coupled with biogeochemical cycling in forests

    NASA Astrophysics Data System (ADS)

    Mori, K.; Tada, K.; Tawara, Y.; Tosaka, H.; Ohno, K.; Asami, M.; Kosaka, K.

    2015-12-01

    Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, intensive monitoring and modeling works on radionuclide transfer in environment have been carried out. Although Cesium (Cs) concentration has been attenuating due to both physical and environmental half-life (i.e., wash-off by water and sediment), the attenuation rate depends clearly on the type of land use and land cover. In the Fukushima case, studying the migration in forest land use is important for predicting the long-term behavior of Cs because most of the contaminated region is covered by forests. Atmospheric fallout is characterized by complicated behavior in biogeochemical cycle in forests which can be described by biotic/abiotic interactions between many components. In developing conceptual and mathematical model on Cs transfer in forest ecosystem, defining the dominant components and their interactions are crucial issues (BIOMASS, 1997-2001). However, the modeling of fate and transport in geosphere after Cs exports from the forest ecosystem is often ignored. An integrated watershed modeling for simulating spatiotemporal redistribution of Cs that includes the entire region from source to mouth and surface to subsurface, has been recently developed. Since the deposited Cs can migrate due to water and sediment movement, the different species (i.e., dissolved and suspended) and their interactions are key issues in the modeling. However, the initial inventory as source-term was simplified to be homogeneous and time-independent, and biogeochemical cycle in forests was not explicitly considered. Consequently, it was difficult to evaluate the regionally-inherent characteristics which differ according to land uses, even if the model was well calibrated. In this study, we combine the different advantages in modeling of forest ecosystem and watershed. This enable to include more realistic Cs deposition and time series of inventory can be forced over the land surface. These processes are integrated

  10. Marine biological feedback associated with Indian Ocean Dipole in a coupled ocean/biogeochemical model

    NASA Astrophysics Data System (ADS)

    Park, Jong-Yeon; Kug, Jong-Seong

    2014-01-01

    The impact of marine ecosystem on the tropical climate variability in the Indian Ocean is investigated by performing coupled ocean/biogeochemical model experiments, which are forced by realistic surface winds from 1951 to 2010. Results from a suite of chlorophyll perturbation experiments reveal that the presence of chlorophyll can have significant effects on the characteristics of the Indian Ocean Dipole (IOD), including its amplitude and skewness, as well as on the mean state. Specifically, chlorophyll increases mean sea surface temperature due to direct biological heating in regions where the mean mixed layer depth is generally shallow. It is also found that the presence of chlorophyll affects the IOD magnitude by two different processes: One is the amplifying effect by the mean chlorophyll, which leads to shoaling of mean thermocline depth, and the other is the damping effect by the interactively varying chlorophyll coupled with the physical model. There is also a biological impact on the skewness of the IOD, resulting in enhanced positive skewness. This skewness change is primarily caused by the phase dependency of the above two contradicting effects involving the asymmetric thermocline feedback and the nonlinear mixed layer heating.

  11. High resolution modelling of the biogeochemical processes in the eutrophic Loire River (France)

    NASA Astrophysics Data System (ADS)

    Minaudo, Camille; Moatar, Florentina; Curie, Florence; Gassama, Nathalie; Billen, Gilles

    2016-04-01

    A biogeochemical model was developed, coupling a physically based water temperature model (T-NET) with a semi-mechanistic biogeochemical model (RIVE, used in ProSe and Riverstrahler models) in order to assess at a fine temporal and spatial resolution the biogeochemical processes in the eutrophic Middle Loire hydrosystem (≈10 000 km², 3361 river segments). The code itself allows parallelized computing, which decreased greatly the calculation time (5 hours for simulating 3 years hourly). We conducted a daily survey during the period 2012-2014 at 2 sampling stations located in the Middle Loire of nutrients, chlorophyll pigments, phytoplankton and physic-chemical variables. This database was used as both input data (upstream Loire boundary) and validation data of the model (basin outlet). Diffuse and non-point sources were assessed based on a land cover analysis and WWTP datasets. The results appeared very sensible to the coefficients governing the dynamic of suspended solids and of phosphorus (sorption/desorption processes) within the model and some parameters needed to be estimated numerically. Both the Lagrangian point of view and fluxes budgets at the seasonal and event-based scale evidenced the biogeochemical functioning of the Loire River. Low discharge levels set up favorable physical conditions for phytoplankton growth (long water travel time, limited water depth, suspended particles sedimentation). Conversely, higher discharge levels highly limited the phytoplankton biomass (dilution of the colony, washing-out, limited travel time, remobilization of suspended sediments increasing turbidity), and most biogeochemical species were basically transferred downstream. When hydrological conditions remained favorable for phytoplankton development, P-availability was the critical factor. However, the model evidenced that most of the P in summer was recycled within the water body: on one hand it was assimilated by the algae biomass, and on the other hand it was

  12. Impacts of Hydrological and Biogeochemical Process Synchrony Transcend Scale

    NASA Astrophysics Data System (ADS)

    Spence, C.; Kokelj, S.; McCluskie, M.; Hedstrom, N.

    2015-12-01

    In portions of the circumpolar north, there are documented cases of increases in annual inorganic nitrogen loading. Confounding the explanation of this phenomenon is a lack of accompanying annual trends in streamflow, precipitation or atmospheric nitrogen deposition. Evidence from Canada's subarctic suggests this dichotomy could be due to three key non-linearities in the predominant biogeochemical and hydrological processes. Because snowfall changes to rainfall near the zero degree air temperature isotherm, there has been an increase in late autumn rainfall across the region due to earlier passage of precipitation generating cold fronts. Runoff generation in cold regions is often a storage threshold-mediated process, and the enhanced rainfall results in more common exceedance of these thresholds and higher winter streamflow. Finally, net mineralization rates in regional lakes peak in winter following the onset of ice cover. Subtle increases in monthly rainfall at specific times of the year can permit hydro-chemical process synchrony within watersheds that enhances annual inorganic nitrogen loading, implying that the impacts of process synchrony transcend scale. The presence of shifts in nitrogen export suggests that sustained regular process synchrony can modify system states. Sound understanding of system processes and interactions across scales will be needed to properly predict impacts and make sound decisions when managing watersheds and competing resource demands.

  13. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    USGS Publications Warehouse

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  14. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.

    2014-12-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.

  15. Coupling Isotopic Fractionation to Multiple-Continuum Reactive Transport Models of Biogeochemical Systems

    NASA Astrophysics Data System (ADS)

    Sonnenthal, E. L.; Wanner, C.

    2014-12-01

    Stable isotopic systems often show an unexpected range in observed fractionation factors associated with biogeochemical systems. In particular, the ranges in such isotopic systems as Cr, Ca, Li, and C have often been attributed to kinetic effects as well as different biogeochemical mechanisms. Reactive transport models developed to capture the sub-micron-scale transport and reaction processes within the macroscale system (e.g., biofilm to cm-scale) have been successful in simulating the biogeochemical processes associated with bacterial growth and the resultant changes in pore-fluid chemistry and redox conditions. Once such multicontinuum reactive transport models are extended to include equilibrium and kinetic isotopic fractionation, diffusive transport, and fluid-gas equilibria, it becomes possible to quantitatively interpret the isotopic changes observed in experimental and natural or engineered biogeochemical systems. We combine a solid-solution approach for isotopic substitution in minerals with the multiple-continuum reactive-transport approach to interpret the effective fractionation factor observed in experimental systems. Although such systems often have poorly constrained inputs (such as the equilibrium fractionation factor and many of the parameters associated with bacterial growth), by combining several independent contraints on reaction rates (such as lactate consumption, 13C/12C and 87Sr/86Sr in calcite), the range of possible interpretations can often be greatly narrowed. Here we present examples of the modeling approaches and their application to experimental systems to examine why the observed fractionation factors are often different from the theoretical values.

  16. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

    NASA Astrophysics Data System (ADS)

    Tsai, C. H.; Yeh, G. T.

    2015-12-01

    In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

  17. Modeling Nitrogen Leaching With A Biogeochemical Model Coupled With Soil Hydrology Model

    NASA Astrophysics Data System (ADS)

    Barman, R.; Yang, X.; Jain, A.; Post, W. M.; Sivapalan, M.

    2008-12-01

    Land use changes for cropland, excessive application of fertilizers in agriculture, and increase in anthropogenic activities such as fossil fuel burning have lead to widespread increases in anthropogenic production of reactive N and NH3 emissions, and N deposition rates. An important consequence of these processes is intensification of soil nutrient leaching activities, leading to serious ground water contamination problems. The current study focuses on the issue of nitrogen (nitrate and ammonium) leaching due to land cover changes for cropland, excess N fertilizer application, and atmospheric nitrogen deposition on nitrogen leaching at a global scale. Simulations of nitrogen leaching require integration of processes involving soil hydrology and biogeochemical cycles. An existing terrestrial coupled carbon-nitrogen cycle model, Integrated Science Assessment Model (ISAM), was used to estimate nitrogen leaching. The N-cycle in ISAM includes the major processes associated with nitrogen (immobilization, mineralization, nitrification, denitrification, leaching, nitrogen fixation, and vegetation nitrogen uptake). ISAM also considers how carbon and nitrogen dynamics are influenced by the effects of human perturbations to the N cycle including atmospheric deposition and fertilizer application, and the fate of N in land use activities, i.e., deforestation and agricultural harvest. In this study, the ISAM soil hydrology was extended and improved with CLM 3.5 hydrology processes and algorithms, which extended the modeling capabilities to consider the prediction of nitrogen leaching. The model performance was evaluated with flow and nutrient data at several locations within the Upper Sangamon River Basin in Illinois, and flow data in contrasting watersheds in Oklahoma. This talk will focus on describing the results of a series of modeling experiments examining the influence of land management changes for cropland and nitrogen deposition on nitrogen leaching at a global scale

  18. Characterizing biogeochemical processes in the hyporheic zone using flume experiments and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Quick, A. M.; Reeder, W. J.; Farrell, T. B.; Feris, K. P.; Tonina, D.; Benner, S. G.

    2015-12-01

    The hyporheic zones of streams are hotspots of biogeochemical cycling, where reactants from surface water and groundwater are continually brought into contact with microbial populations on the surfaces of stream sediments and reaction products are removed by hyporheic flow and degassing. Using large flume experiments we have documented the complex redox dynamics associated with dune-scale hyporheic flow. Observations, coupled with reactive transport modeling, provide insight into how flow dictates spatio-temporal distribution of redox reactions and the associated consumption and production of reactants and products. Dune hyporheic flow was experimentally produced by maintaining control over flow rates, slopes, sediment grain size, bedform geomorphology, and organic carbon content. An extensive in-situ monitoring array combined with sampling events over time elucidated redox-sensitive processes including constraints on the spatial distribution and magnitude of aerobic respiration, organic carbon consumption, sulfide deposition, and denitrification. Reactive transport modeling reveals further insight into the influence of system geometry and reaction rate. As an example application of the model, the relationship between residence times and reaction rates may be used to generate Damköhler numbers that are related to biogeochemical processes, such as the potential of streambed morphology and nitrate loading to influence production of the greenhouse gas nitrous oxide via incomplete denitrification.

  19. Silicon biogeochemical processes in a large river (Cauvery, India)

    NASA Astrophysics Data System (ADS)

    Kameswari Rajasekaran, Mangalaa; Arnaud, Dapoigny; Jean, Riotte; Sarma Vedula, V. S. S.; Nittala, S. Sarma; Sankaran, Subramanian; Gundiga Puttojirao, Gurumurthy; Keshava, Balakrishna; Cardinal, Damien

    2016-04-01

    Silicon (Si), one of the key nutrients for diatom growth in ocean, is principally released during silicate weathering on continents and then exported by rivers. Phytoplankton composition is determined by the availability of Si relative to other nutrients, mainly N and P, which fluxes in estuarine and coastal systems are affected by eutrophication due to land use and industrialization. In order to understand the biogeochemical cycle of Si and its supply to the coastal ocean, we studied a tropical monsoonal river from Southern India (Cauvery) and compare it with other large and small rivers. Cauvery is the 7th largest river in India with a basin covering 85626 sq.km. The major part of the basin (˜66%) is covered by agriculture and inhabited by more than 30 million inhabitants. There are 96 dams built across the basin. As a consequence, 80% of the historical discharge is diverted, mainly for irrigation (Meunier et al. 2015). This makes the Cauvery River a good example of current anthropogenic pressure on silicon biogeochemical cycle. We measured amorphous silica contents (ASi) and isotopic composition of dissolved silicon (δ30Si-DSi) in the Cauvery estuary, including freshwater end-member and groundwater as well as along a 670 km transect along the river course. Other Indian rivers and estuaries have also been measured, including some less impacted by anthropogenic pressure. The average Cauvery δ30Si signature just upstream the estuary is 2.21±0.15 ‰ (n=3) which is almost 1‰ heavier than the groundwater isotopic composition (1.38±0.03). The δ30Si-DSi of Cauvery water is also almost 1‰ heavier than the world river supply to the ocean estimated so far and 0.4‰ heavier than other large Indian rivers like Ganges (Frings et al 2015) and Krishna. On the other hand, the smaller watersheds (Ponnaiyar, Vellar, and Penna) adjacent to Cauvery also display heavy δ30Si-DSi. Unlike the effect of silicate weathering, the heavy isotopic compositions in the river

  20. Simulating anchovy's full life cycle in the northern Aegean Sea (eastern Mediterranean): A coupled hydro-biogeochemical-IBM model

    NASA Astrophysics Data System (ADS)

    Politikos, D.; Somarakis, S.; Tsiaras, K. P.; Giannoulaki, M.; Petihakis, G.; Machias, A.; Triantafyllou, G.

    2015-11-01

    A 3-D full life cycle population model for the North Aegean Sea (NAS) anchovy stock is presented. The model is two-way coupled with a hydrodynamic-biogeochemical model (POM-ERSEM). The anchovy life span is divided into seven life stages/age classes. Embryos and early larvae are passive particles, but subsequent stages exhibit active horizontal movements based on specific rules. A bioenergetics model simulates the growth in both the larval and juvenile/adult stages, while the microzooplankton and mesozooplankton fields of the biogeochemical model provide the food for fish consumption. The super-individual approach is adopted for the representation of the anchovy population. A dynamic egg production module, with an energy allocation algorithm, is embedded in the bioenergetics equation and produces eggs based on a new conceptual model for anchovy vitellogenesis. A model simulation for the period 2003-2006 with realistic initial conditions reproduced well the magnitude of population biomass and daily egg production estimated from acoustic and daily egg production method (DEPM) surveys, carried out in the NAS during June 2003-2006. Model simulated adult and egg habitats were also in good agreement with observed spatial distributions of acoustic biomass and egg abundance in June. Sensitivity simulations were performed to investigate the effect of different formulations adopted for key processes, such as reproduction and movement. The effect of the anchovy population on plankton dynamics was also investigated, by comparing simulations adopting a two-way or a one-way coupling of the fish with the biogeochemical model.

  1. CALIBRATION OF SUBSURFACE BATCH AND REACTIVE-TRANSPORT MODELS INVOLVING COMPLEX BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    In this study, the calibration of subsurface batch and reactive-transport models involving complex biogeochemical processes was systematically evaluated. Two hypothetical nitrate biodegradation scenarios were developed and simulated in numerical experiments to evaluate the perfor...

  2. Effect of Vertical Flow Exchange on Biogeochemical Processes in Hyporheic Zones

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, S.; Shin, D.; Hyun, Y.; Lee, K.

    2008-12-01

    Biogeochemical processes in hyporheic zones are of great interest because they make the hyporheic zones highly productive and complex environments. When contaminants or polluted water pass through hyporheic zones, in particular, biogeochemical processes play an important role in removing contaminants or attenuating contamination under certain conditions. The study site, a reach of Munsan stream (Paju-si, South Korea), exhibits severe contamination of surface water by nitrate released from Water Treatment Plant (WTP) nearby. The objectives of this study are to investigate the hydrologic and biogeochemical processes at the riparian area of the site which may contribute to natural attenuation of surface water driven nitrate, and analyze the effect of vertical (hyporheic) flow exchange on the biogeochemical processes in the area. To examine hydraulic mixing or dilution processes, vertical hydraulic gradients were measured at several depth levels using minipiezometers, and then soil temperatures were measured by using i-buttons installed inside the minipiezometers. The microbial analyses by means of polymerase chain reaction (PCR)-cloning methods were also done in order to identify the denitrification process in soil samples. In addition, correlation between vertical flow exchange, temperature data, and denitrifying bacteria activity was also investigated so as to examine the effects on one another. The results showed that there were significant effects of vertical flow exchange and hyporheic soil temperature on the biogeochemical processes of the site. This study found strong support for the idea that the biogeochemical function of hyporheic zone is a predictable outcome of the interaction between microbial activity and flow exchange.

  3. A Coupled Ocean General Circulation, Biogeochemical, and Radiative Model of the Global Oceans: Seasonal Distributions of Ocean Chlorophyll and Nutrients

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.

  4. Prospecting for natural attenuation: Coupled geophysical-biogeochemical studies at DOE's Rifle IFRC site

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Kukkadapu, R. K.; Long, P. E.; Flores Orozco, A.; Kemna, A.

    2011-12-01

    Research activities at the Rifle Integrated Field Research Challenge (IFRC) site in Rifle, Colorado (USA) are designed to integrate geochemical, biological, and hydrological studies to enhance our understanding of subsurface uranium mobility. While much of the research activities at the site have focused on stimulating subsurface microbial activity through acetate amendment, there is growing interest in the role that natural biogeochemical processes play in constraining uranium mobility in the aquifer. Such processes constitute a form of natural uranium attenuation in the subsurface and are inferred to result from elevated concentrations of natural organic matter associated with alluvial sediments. Referred to as naturally reduced zones (NRZ's), they are characterized by the presence of reduced and/or magnetic mineral phases (e.g. FeS, FeS2, and Fe3O4), elevated Fe(II), and refractory organic carbon compounds (e.g. roots, twigs, and cones). Elevated rates of microbial activity associated with NRZ's and their mineralogical makeup act to sequester uranium from groundwater at levels higher that background alluvium. Their unique composition within a matrix of relatively oxidized, low-bioactivity sediments constitutes a potential target for a variety of exploration geophysical techniques, such as induced polarization and magnetic susceptibility. Both methods have been successfully applied at the Rifle IFRC site to delineate the ubiquity and extent of NRZ's across the floodplain. Sediments recovered from drilling targets identified through the use of exploration geophysical techniques have identified elevated uranium concentrations associated with both magnetite and framboid pyrite; however, the extent to which such minerals are the direct product of in situ microbial activity remains unknown. While diverse, the microbial community composition of NRZ's suggest dominance by fermentative organisms capable of degrading lignitic carbon to low molecular weight organic

  5. Study of the plankton ecosystem variability using a coupled hydrodynamics biogeochemical modelling in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Kessouri, Fayçal; Ulses, Caroline; Estournel, Claude; Marsaleix, Patrick

    2015-04-01

    The Mediterranean Sea presents a wide variety of trophic regimes since the large and intense spring bloom of the North-Western Mediterranean Sea (NWMS) that follows winter convection to the extreme oligotrophic regions of the South-eastern basin. The Mediterranean Sea displays a strong time variability revealing its high sensitivity to climate and anthropic pressures. In this context, it is crucial to develop tools allowing to understand the evolution of the Mediterranean hydrology and marine ecosystem as a response to external forcing. Numerical coupled hydrodynamic and biogeochemical modelling carefully calibrated in the different regions of the basin is the only tool that can answer this question. However, this important step of calibration is particularly difficult because of the lack of coherent sets of data describing the seasonal evolution of the main parameters characterizing the physical and biogeochemical environment in the different sub-basins. The chlorophyll satellite data from 4km MODIS products, a multiple in situ data from MerMEX MOOSE and DEWEX cruises and Bio-Argo floats from NAOS project are believed to be an opportunity to strongly improve the realism of ecosystem models. The model is a 3D coupled simulation using NemoMed12 for hydrodynamics and ECO 3MS for biogeochemistry and covers the whole Mediterranean Sea and runs at 1/12°. The relevant variables mentioned are phytoplankton, organic and inorganic matters faced to water masses dynamics, over ten years since summer 2003. After a short validation, we will expose two topics: First, through this coupling we quantify the nutrients fluxes across the Mediterranean straits over the years. For example, we found an annual net average around 150 Giga moles NO3 per year at Gibraltar, where we expect low annual fluctuations. In contrast, the Strait of Sicily shows greater annual variability going from 70 to 92 Giga moles NO3 per year. All the fluxes are resumed in a detailed diagram of the transport

  6. Nitrogen and Sulfur Deposition Effects on Forest Biogeochemical Processes.

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.

    2014-12-01

    Chronic atmospheric deposition of nitrogen and sulfur have widely ranging biogeochemical consequences in terrestrial ecosystems. Both N and S deposition can affect plant growth, decomposition, and nitrous oxide production, with sometimes synergistic and sometimes contradictory responses; yet their separate effects are rarely isolated and their interactive biogeochemical impacts are often overlooked. For example, S deposition and consequent acidification and mortality may negate stimulation of plant growth induced by N deposition; decomposition can be slowed by both N and S deposition, though through different mechanisms; and N2O production may be stimulated directly by N and indirectly by S amendments. Recent advances in conceptual models and whole-ecosystem experiments provide novel means for disentangling the impacts of N and S in terrestrial ecosystems. Results from a new whole-ecosystem N x S- addition experiment will be presented in detail, examining differential response of tree and soil carbon storage to N and S additions. These results combine with observations from a broad array of long-term N addition studies, atmospheric deposition gradients, stable isotope tracer studies, and model analyses to inform the magnitude, controls, and stability of ecosystem C storage in response to N and S addition.

  7. Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models

    SciTech Connect

    Sarmiento, Jorge L.; Gnanadesikan, Anand; Gruber, Nicolas; Jin, Xin; Armstrong, Robert

    2007-06-21

    This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecological-biogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to an increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1; and, December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the

  8. Deriving forest fire ignition risk with biogeochemical process modelling☆

    PubMed Central

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  9. Hierarchical framework for coupling a biogeochemical trace gas model to a general circulation model

    SciTech Connect

    Miller, N.L.; Foster, I.T.

    1994-04-01

    A scheme is described for the computation of terrestrial biogeochemical trace gas fluxes in the context of a general circulation model. This hierarchical system flux scheme (HSFS) incorporates five major components: (1) a general circulation model (GCM), which provides a medium-resolution (i.e., 1{degrees} by 1{degrees}) simulation of the atmospheric circulation; (2) a procedure for identifying regions of defined homogeneity of surface type within GCM grid cells; (3) a set of surface process models, to be run within each homogeneous region, which include a biophysical model, the Biosphere Atmospheric Transfer Scheme (BATS), and a biogeochemical model (BGCM); (4) an interpolation/integration system that transfers information between the GCM and surface process models with finer resolution; and (5) an interactive data array based on a geographic information system (GIS), which provides land characteristic information via the interpolator. The goals of this detailed investigation are to compute the local and global sensitivities of trace gas fluxes to GCM and BATS variables, the effects of trace gas fluxes on global climate, and the effects of global climate on specific biomes.

  10. Hybrid Numerical Methods for Multiscale Simulations of Subsurface Biogeochemical Processes

    SciTech Connect

    Scheibe, Timothy D.; Tartakovsky, Alexandre M.; Tartakovsky, Daniel M.; Redden, George D.; Meakin, Paul

    2007-08-01

    Many subsurface flow and transport problems of importance today involve coupled non-linear flow, transport, and reaction in media exhibiting complex heterogeneity. In particular, problems involving biological mediation of reactions fall into this class of problems. Recent experimental research has revealed important details about the physical, chemical, and biological mechanisms involved in these processes at a variety of scales ranging from molecular to laboratory scales. However, it has not been practical or possible to translate detailed knowledge at small scales into reliable predictions of field-scale phenomena important for environmental management applications. A large assortment of numerical simulation tools have been developed, each with its own characteristic scale including molecular (e.g., molecular dynamics), microbial (e.g., cellular automata or particle individual-based models), pore (e.g., lattice-Boltzmann, pore network models, and discrete particle methods such as smoothed particle hydrodynamics) and continuum scales (e.g., traditional partial differential equations solved by finite difference or finite element methods). While many problems can be effectively addressed by one of these models at a single scale, some problems may require explicit integration of models across multiple scales. We are developing a hybrid multi-scale subsurface reactive transport modeling framework that integrates models with diverse representations of physics, chemistry and biology at different scales (sub-pore, pore and continuum). The modeling framework is being designed to take advantage of advanced computational technologies including parallel code components using the Common Component Architecture, parallel solvers, gridding, data and workflow management, and visualization. This paper describes the specific methods/codes being used at each scale, techniques used to directly and adaptively couple across model scales, and preliminary results of application to a

  11. Skill assessment of the coupled physical-biogeochemical operational Mediterranean Forecasting System

    NASA Astrophysics Data System (ADS)

    Cossarini, Gianpiero; Clementi, Emanuela; Salon, Stefano; Grandi, Alessandro; Bolzon, Giorgio; Solidoro, Cosimo

    2016-04-01

    The Mediterranean Monitoring and Forecasting Centre (Med-MFC) is one of the regional production centres of the European Marine Environment Monitoring Service (CMEMS-Copernicus). Med-MFC operatively manages a suite of numerical model systems (3DVAR-NEMO-WW3 and 3DVAR-OGSTM-BFM) that provides gridded datasets of physical and biogeochemical variables for the Mediterranean marine environment with a horizontal resolution of about 6.5 km. At the present stage, the operational Med-MFC produces ten-day forecast: daily for physical parameters and bi-weekly for biogeochemical variables. The validation of the coupled model system and the estimate of the accuracy of model products are key issues to ensure reliable information to the users and the downstream services. Product quality activities at Med-MFC consist of two levels of validation and skill analysis procedures. Pre-operational qualification activities focus on testing the improvement of the quality of a new release of the model system and relays on past simulation and historical data. Then, near real time (NRT) validation activities aim at the routinely and on-line skill assessment of the model forecast and relays on the NRT available observations. Med-MFC validation framework uses both independent (i.e. Bio-Argo float data, in-situ mooring and vessel data of oxygen, nutrients and chlorophyll, moored buoys, tide-gauges and ADCP of temperature, salinity, sea level and velocity) and semi-independent data (i.e. data already used for assimilation, such as satellite chlorophyll, Satellite SLA and SST and in situ vertical profiles of temperature and salinity from XBT, Argo and Gliders) We give evidence that different variables (e.g. CMEMS-products) can be validated at different levels (i.e. at the forecast level or at the level of model consistency) and at different spatial and temporal scales. The fundamental physical parameters temperature, salinity and sea level are routinely validated on daily, weekly and quarterly base

  12. The value of automated high-frequency nutrient monitoring in inference of biogeochemical processes, temporal variability and trends

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2013-04-01

    Stream water quality signals integrate catchment-scale processes responsible for delivery and biogeochemical transformation of the key biotic macronutrients (N, C, P). This spatial and temporal integration is particularly pronounced in the groundwater-dominated streams, as in-stream nutrient dynamics are mediated by the processes occurring within riparian and hyporheic ecotones. In this paper we show long-term high-frequency in-stream macronutrient dynamics from a small agricultural catchment located in the North West England. Hourly in-situ measurements of total and reactive phosphorus (Systea, IT), nitrate (Hach Lange, DE) and physical water quality parameters (turbidity, specific conductivity, dissolved oxygen, temperature, pH; WaterWatch, UK) were carried out on the lowland, gaining reach of the River Leith. High-frequency data show complex non-linear nutrient concentration-discharge relationships. The dominance of hysteresis effects suggests the presence of a temporally varying apportionment of allochthonous and autochthonous nutrient sources. Varying direction, magnitude and dynamics of the hysteretic responses between storm events is driven by the variation in the contributing source areas and shows the importance of the coupling of catchment-scale, in-stream, riparian and hyporheic biogeochemical cycles. The synergistic effect of physical (temperature-driven, the hyporheic exchange controlled by diffusion) and biogeochemical drivers (stream and hyporheic metabolism) on in-stream nutrient concentrations manifests itself in observed diurnal patterns. As inferred from the high-frequency nutrient monitoring, the diurnal dynamics are of the greatest importance under baseflow conditions. Understanding the role and relative importance of these processes can be difficult due to spatial and temporal heterogeneity of the key mechanisms involved. This study shows the importance of in-situ, fine temporal resolution, automated monitoring approaches in providing evidence

  13. Coupling between Pentachlorophenol Dechlorination and Soil Redox As Revealed by Stable Carbon Isotope, Microbial Community Structure, and Biogeochemical Data.

    PubMed

    Xu, Yan; He, Yan; Zhang, Qian; Xu, Jianming; Crowley, David

    2015-05-01

    Carbon isotopic analysis and molecular-based methods were used in conjunction with geochemical data sets to assess the dechlorination of pentachlorophenol (PCP) when coupled to biogeochemical processes in a mangrove soil having no prior history of anthropogenic contamination. The PCP underwent 96% dechlorination in soil amended with acetate, compared to 21% dehalogenation in control soil. Carbon isotope analysis of residual PCP demonstrated an obvious enrichment of 13C (εC, -3.01±0.1%). Molecular and statistical analyses demonstrated that PCP dechlorination and Fe(III) reduction were synergistically combined electron-accepting processes. Microbial community analysis further suggested that enhanced dechlorination of PCP during Fe(III) reduction was mediated by members of the multifunctional family of Geobacteraceae. In contrast, PCP significantly suppressed the growth of SO4(2-) reducers, which, in turn, facilitated the production of CH4 by diversion of electrons from SO4(2-) reduction to methanogenesis. The integrated data regarding stoichiometric alterations in this study gives direct evidence showing PCP, Fe(III), and SO4(2-) reduction, and CH4 production are coupled microbial processes during changes in soil redox. PMID:25853431

  14. Biogeochemical Processes Controlling Microbial Reductive Precipitation of Radionuclides

    SciTech Connect

    Fredrickson, James K.; Brooks, Scott C.

    2004-03-17

    This project is focused on elucidating the principal biogeochemical reactions that govern the concentrations, chemical speciation, and distribution of the redox sensitive contaminants uranium (U) and technetium (Tc) between the aqueous and solid phases. The research is designed to provide new insights into the under-explored areas of competing geochemical and microbiological oxidation-reduction reactions that govern the fate and transport of redox sensitive contaminants and to generate fundamental scientific understanding of the identity and stoichiometry of competing microbial reduction and geochemical oxidation reactions. These goals and objectives are met through a series of hypothesis-driven tasks that focus on (1) the use of well-characterized microorganisms and synthetic and natural mineral oxidants, (2) advanced spectroscopic and microscopic techniques to monitor redox transformations of U and Tc, and (3) the use of flow-through experiments to more closely approximate groundwater environments. The results are providing an improved understanding and predictive capability of the mechanisms that govern the redox dynamics of radionuclides in subsurface environments. For purposes of this poster, the results are divided into three sections: (1) influence of Ca on U(VI) bioreduction; (2) localization of biogenic UO{sub 2} and TcO{sub 2}; and (3) reactivity of Mn(III/IV) oxides.

  15. Seasonal Distributions of Global Ocean Chlorophyll and Nutrients: Analysis with a Coupled Ocean General Circulation Biogeochemical, and Radiative Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    1999-01-01

    A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological

  16. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume

    NASA Astrophysics Data System (ADS)

    van Breukelen, Boris M.; Griffioen, Jasper; Röling, Wilfred F. M.; van Verseveld, Henk W.

    2004-06-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two DOC fractions with different reactivity, and was coupled to reductive dissolution of iron oxide. The following secondary geochemical processes were required in the model to match observations: kinetic precipitation of calcite and siderite, cation exchange, proton buffering and degassing. Rate constants for DOC oxidation and carbonate mineral precipitation were determined, and other model parameters were optimized using the nonlinear optimization program PEST by means of matching hydrochemical observations closely (pH, DIC, DOC, Na, K, Ca, Mg, NH 4, Fe(II), SO 4, Cl, CH 4, saturation index of calcite and siderite). The modelling demonstrated the relevance and impact of various secondary geochemical processes on leachate plume evolution. Concomitant precipitation of siderite masked the act of iron reduction. Cation exchange resulted in release of Fe(II) from the pristine anaerobic aquifer to the leachate. Degassing, triggered by elevated CO 2 pressures caused by carbonate precipitation and proton buffering at the front of the plume, explained the observed downstream decrease in methane concentration. Simulation of the carbon isotope geochemistry independently supported the proposed reaction network.

  17. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    PubMed

    van Breukelen, Boris M; Griffioen, Jasper; Röling, Wilfred F M; van Verseveld, Henk W

    2004-06-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two DOC fractions with different reactivity, and was coupled to reductive dissolution of iron oxide. The following secondary geochemical processes were required in the model to match observations: kinetic precipitation of calcite and siderite, cation exchange, proton buffering and degassing. Rate constants for DOC oxidation and carbonate mineral precipitation were determined, and other model parameters were optimized using the nonlinear optimization program PEST by means of matching hydrochemical observations closely (pH, DIC, DOC, Na, K, Ca, Mg, NH4, Fe(II), SO4, Cl, CH4, saturation index of calcite and siderite). The modelling demonstrated the relevance and impact of various secondary geochemical processes on leachate plume evolution. Concomitant precipitation of siderite masked the act of iron reduction. Cation exchange resulted in release of Fe(II) from the pristine anaerobic aquifer to the leachate. Degassing, triggered by elevated CO2 pressures caused by carbonate precipitation and proton buffering at the front of the plume, explained the observed downstream decrease in methane concentration. Simulation of the carbon isotope geochemistry independently supported the proposed reaction network. PMID:15134877

  18. Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis

    NASA Astrophysics Data System (ADS)

    Béal, D.; Brasseur, P.; Brankart, J.-M.; Ourmières, Y.; Verron, J.

    2010-02-01

    In biogeochemical models coupled to ocean circulation models, vertical mixing is an important physical process which governs the nutrient supply and the plankton residence in the euphotic layer. However, vertical mixing is often poorly represented in numerical simulations because of approximate parameterizations of sub-grid scale turbulence, wind forcing errors and other mis-represented processes such as restratification by mesoscale eddies. Getting a sufficient knowledge of the nature and structure of these errors is necessary to implement appropriate data assimilation methods and to evaluate if they can be controlled by a given observation system. In this paper, Monte Carlo simulations are conducted to study mixing errors induced by approximate wind forcings in a three-dimensional coupled physical-biogeochemical model of the North Atlantic with a 1/4° horizontal resolution. An ensemble forecast involving 200 members is performed during the 1998 spring bloom, by prescribing perturbations of the wind forcing to generate mixing errors. The biogeochemical response is shown to be rather complex because of nonlinearities and threshold effects in the coupled model. The response of the surface phytoplankton depends on the region of interest and is particularly sensitive to the local stratification. In addition, the statistical relationships computed between the various physical and biogeochemical variables reflect the signature of the non-Gaussian behaviour of the system. It is shown that significant information on the ecosystem can be retrieved from observations of chlorophyll concentration or sea surface temperature if a simple nonlinear change of variables (anamorphosis) is performed by mapping separately and locally the ensemble percentiles of the distributions of each state variable on the Gaussian percentiles. The results of idealized observational updates (performed with perfect observations and neglecting horizontal correlations) indicate that the implementation

  19. The Interactions between Biogeophysical and Biogeochemical Processes and their Feedbacks on Permafrost Soil Carbon Stocks

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; El Masri, B.; Barman, R.; Shu, S.; Song, Y.

    2014-12-01

    One of the major challenges in more detailed Earth system models (ESMs) is the treatment of the biophysical and biogeochemical processes and feedbacks and their impact on soil organic carbon in the Northern high latitudes (NHL). We use a land surface model, the Integrated Science Assessment Model (ISAM) to investigate the effects of feedbacks between the biogeochemical and biogeophysical processes on the model estimated soil organic carbon (SOC) for the NHL permafrost region. We not only focus on recent model improvements in the biogeophysical processes that are deemed important for the high latitude soils/snow; such as deep soil column, modulation of soil thermal and hydrological properties, wind compaction of snow, and depth hoar formation; on permafrost SOC; but also biogeochemical processes; such as dynamic phenology and root distribution, litter carbon decomposition rates and nitrogen amount remaining; on soil biogeochemistry. We select multiple sites to evaluate the model. We then carried out several model simulations to study the effects of feedbacks between biogeochemical and biogeophysical processes on SOC. Our model analysis shows that including the biogeophysical processes alone could increase modeled NHL permafrost carbon by about 30% compared to measurements. Accounting for the biogeochmical processes further improve the NHL soil carbon.

  20. A flexible numerical component to simulate surface runoff transport and biogeochemical processes through dense vegetation

    NASA Astrophysics Data System (ADS)

    Munoz-Carpena, R.; Perez-Ovilla, O.

    2012-12-01

    Methods to estimate surface runoff pollutant removal using dense vegetation buffers (i.e. vegetative filter strips) usually consider a limited number of factors (i.e. filter length, slope) and are in general based on empirical relationships. When an empirical approach is used, the application of the model is limited to those conditions of the data used for the regression equations. The objective of this work is to provide a flexible numerical mechanistic tool to simulate dynamics of a wide range of surface runoff pollutants through dense vegetation and their physical, chemical and biological interactions based on equations defined by the user as part of the model inputs. A flexible water quality model based on the Reaction Simulation Engine (RSE) modeling component is coupled to a transport module based on the traditional Bubnov -Galerkin finite element method to solve the advection-dispersion-reaction equation using the alternating split-operator technique. This coupled transport-reaction model is linked to the VFSMOD-W (http://abe.ufl.edu/carpena/vfsmod) program to mechanistically simulate mobile and stabile pollutants through dense vegetation based on user-defined conceptual models (differential equations written in XML language as input files). The key factors to consider in the creation of a conceptual model are the components in the buffer (i.e. vegetation, soil, sediments) and how the pollutant interacts with them. The biogeochemical reaction component was tested successfully with laboratory and field scale experiments. One of the major advantages when using this tool is that the pollutant transport and removal thought dense vegetation is related to physical and biogeochemical process occurring within the filter. This mechanistic approach increases the range of use of the model to a wide range of pollutants and conditions without modification of the core model. The strength of the model relies on the mechanistic approach used for simulating the removal of

  1. A Unified Multi-scale Model for Cross-Scale Evaluation and Integration of Hydrological and Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Yang, X.; Bailey, V. L.; Bond-Lamberty, B. P.; Hinkle, C.

    2013-12-01

    Mathematical representations of hydrological and biogeochemical processes in soil, plant, aquatic, and atmospheric systems vary with scale. Process-rich models are typically used to describe hydrological and biogeochemical processes at the pore and small scales, while empirical, correlation approaches are often used at the watershed and regional scales. A major challenge for multi-scale modeling is that water flow, biogeochemical processes, and reactive transport are described using different physical laws and/or expressions at the different scales. For example, the flow is governed by the Navier-Stokes equations at the pore-scale in soils, by the Darcy law in soil columns and aquifer, and by the Navier-Stokes equations again in open water bodies (ponds, lake, river) and atmosphere surface layer. This research explores whether the physical laws at the different scales and in different physical domains can be unified to form a unified multi-scale model (UMSM) to systematically investigate the cross-scale, cross-domain behavior of fundamental processes at different scales. This presentation will discuss our research on the concept, mathematical equations, and numerical execution of the UMSM. Three-dimensional, multi-scale hydrological processes at the Disney Wilderness Preservation (DWP) site, Florida will be used as an example for demonstrating the application of the UMSM. In this research, the UMSM was used to simulate hydrological processes in rooting zones at the pore and small scales including water migration in soils under saturated and unsaturated conditions, root-induced hydrological redistribution, and role of rooting zone biogeochemical properties (e.g., root exudates and microbial mucilage) on water storage and wetting/draining. The small scale simulation results were used to estimate effective water retention properties in soil columns that were superimposed on the bulk soil water retention properties at the DWP site. The UMSM parameterized from smaller

  2. The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments

    PubMed Central

    Taillefert, Martial; Neuhuber, Stephanie; Bristow, Gwendolyn

    2007-01-01

    Background Early diagenetic processes involved in natural organic matter (NOM) oxidation in marine sediments have been for the most part characterized after collecting sediment cores and extracting porewaters. These techniques have proven useful for deep-sea sediments where biogeochemical processes are limited to aerobic respiration, denitrification, and manganese reduction and span over several centimeters. In coastal marine sediments, however, the concentration of NOM is so high that the spatial resolution needed to characterize these processes cannot be achieved with conventional sampling techniques. In addition, coastal sediments are influenced by tidal forcing that likely affects the processes involved in carbon oxidation. Results In this study, we used in situ voltammetry to determine the role of tidal forcing on early diagenetic processes in intertidal salt marsh sediments. We compare ex situ measurements collected seasonally, in situ profiling measurements, and in situ time series collected at several depths in the sediment during tidal cycles at two distinct stations, a small perennial creek and a mud flat. Our results indicate that the tides coupled to the salt marsh topography drastically influence the distribution of redox geochemical species and may be responsible for local differences noted year-round in the same sediments. Monitoring wells deployed to observe the effects of the tides on the vertical component of porewater transport reveal that creek sediments, because of their confinements, are exposed to much higher hydrostatic pressure gradients than mud flats. Conclusion Our study indicates that iron reduction can be sustained in intertidal creek sediments by a combination of physical forcing and chemical oxidation, while intertidal mud flat sediments are mainly subject to sulfate reduction. These processes likely allow microbial iron reduction to be an important terminal electron accepting process in intertidal coastal sediments. PMID:17567893

  3. A Virtual Soil System to Study Macroscopic Manifestation of Pore-Scale Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, C.; Fang, Y.; Shang, J.; Bailey, V. L.

    2012-12-01

    Mechanistic soil biogeochemical processes occur at the pore-scale that fundamentally control the moisture and CO2 fluxes at the soil and atmosphere interface. This presentation will present an on-going research to investigate pore-scale moisture migration and biogeochemical processes of organic carbon degradation, and their macroscopic manifestation in soils. Soil cores collected from Rattlesnake Mountain in southeastern Washington, USA, where a field experiment was conducted to investigate dynamic response of soil biogeochemistry to changing climate conditions, were used as an example for this study. The cores were examined using computerized x-ray tomography (XCT) to determine soil pore structures. The XCT imaging, together with various measurements of soil properties such as porosity, moisture content, organic carbon, biochemistry, etc are used to establish a virtual soil core with a high spatial resolution (~20um). The virtual soil system is then used to simulate soil moisture migration and organic carbon degradation, to identify important physical and biogeochemical factors controlling macroscopic moisture and CO2 fluxes in response to changing climate conditions, and to develop and evaluate pragmatic biogeochemical process models for larger scale applications. Core-scale measurements of CO2 flux and moisture change are used for development and validation of the process models.

  4. Switchgrass influences soil biogeochemical processes in dryland region of the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass and other perennial grasses have been promoted as biomass crops for production of renewable fuels. The objective of this study was to evaluate the effect of biomass removal on soil biogeochemical processes. A three year field study consisting of three levels of net primary productivity (...

  5. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes.

    PubMed

    Roose-Amsaleg, Céline; Laverman, Anniet M

    2016-03-01

    Antibiotic use in the early 1900 vastly improved human health but at the same time started an arms race of antibiotic resistance. The widespread use of antibiotics has resulted in ubiquitous trace concentrations of many antibiotics in most environments. Little is known about the impact of these antibiotics on microbial processes or "non-target" organisms. This mini-review summarizes our knowledge of the effect of synthetically produced antibiotics on microorganisms involved in biogeochemical cycling. We found only 31 articles that dealt with the effects of antibiotics on such processes in soil, sediment, or freshwater. We compare the processes, antibiotics, concentration range, source, environment, and experimental approach of these studies. Examining the effects of antibiotics on biogeochemical processes should involve environmentally relevant concentrations (instead of therapeutic), chronic exposure (versus acute), and monitoring of the administered antibiotics. Furthermore, the lack of standardized tests hinders generalizations regarding the effects of antibiotics on biogeochemical processes. We investigated the effects of antibiotics on biogeochemical N cycling, specifically nitrification, denitrification, and anammox. We found that environmentally relevant concentrations of fluoroquinolones and sulfonamides could partially inhibit denitrification. So far, the only documented effects of antibiotic inhibitions were at therapeutic doses on anammox activities. The most studied and inhibited was nitrification (25-100 %) mainly at therapeutic doses and rarely environmentally relevant. We recommend that firm conclusions regarding inhibition of antibiotics at environmentally relevant concentrations remain difficult due to the lack of studies testing low concentrations at chronic exposure. There is thus a need to test the effects of these environmental concentrations on biogeochemical processes to further establish the possible effects on ecosystem functioning. PMID

  6. Reservoir and contaminated sediments impacts in high-Andean environments: Morphodynamic interactions with biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Escauriaza, C. R.; Contreras, M. T.; Müllendorff, D. A.; Pasten, P.; Pizarro, G. E.

    2014-12-01

    Rapid changes due to anthropic interventions in high-altitude environments, such as the Altiplano region in South America, require new approaches to understand the connections between physical and biogeochemical processes. Alterations of the water quality linked to the river morphology can affect the ecosystems and human development in the long-term. The future construction of a reservoir in the Lluta river, located in northern Chile, will change the spatial distribution of arsenic-rich sediments, which can have significant effects on the lower parts of the watershed. In this investigation we develop a coupled numerical model to predict and evaluate the interactions between morphodynamic changes in the Lluta reservoir, and conditions that can potentially desorb arsenic from the sediments. Assuming that contaminants are mobilized under anaerobic conditions, we calculate the oxygen concentration within the sediments to study the interactions of the delta progradation with the potential arsenic release. This work provides a framework for future studies aimed to analyze the complex connections between morphodynamics and water quality, when contaminant-rich sediments accumulate in a reservoir. The tool can also help to design effective risk management and remediation strategies in these extreme environments. Research has been supported by Fondecyt grant 1130940 and CONICYT/FONDAP Grant 15110017

  7. Connections between physical, optical and biogeochemical processes in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Chai, Fei

    2014-03-01

    A new biogeochemical model has been developed and coupled to a three-dimensional physical model in the Pacific Ocean. With the explicitly represented dissolved organic pools, this new model is able to link key biogeochemical processes with optical processes. Model validation against satellite and in situ data indicates the model is robust in reproducing general biogeochemical and optical features. Colored dissolved organic matter (CDOM) has been suggested to play an important role in regulating underwater light field. With the coupled model, physical and biological regulations of CDOM in the euphotic zone are analyzed. Model results indicate seasonal variability of CDOM is mostly determined by biological processes, while the importance of physical regulation manifests in the annual mean terms. Without CDOM attenuating light, modeled depth-integrated primary production is about 10% higher than the control run when averaged over the entire basin, while this discrepancy is highly variable in space with magnitudes reaching higher than 100% in some locations. With CDOM dynamics integrated in physical-biological interactions, a new mechanism by which physical processes affect biological processes is suggested, namely, physical transport of CDOM changes water optical properties, which can further modify underwater light field and subsequently affect the distribution of phytoplankton chlorophyll. This mechanism tends to occur in the entire Pacific basin but with strong spatial variability, implying the importance of including optical processes in the coupled physical-biogeochemical model. If ammonium uptake is sufficient to permit utilization of DOM, that is, UB∗⩾-U{U}/{U}-{(1-r_b)}/{RB}, then bacteria uptake of DOM has the form of FB=(1-r_b){U}/{RB}, bacteria respiration, SB=r_b×U, remineralization by bacteria, EB=UC{UN}/{UC}-{(1-r_b)}/{RB}. If EB > 0, then UB = 0; otherwise, UB = -EB. If there is insufficient ammonium, that is, UB∗<-U{U}/{U}-{(1-r_b)}/{RB}, then

  8. Evaluation of an operational ocean configuration at 1/12° on the Indonesian seas: Physical/Biogeochemical coupling

    NASA Astrophysics Data System (ADS)

    Gutknecht, Elodie; Reffray, Guillaume; Gehlen, Marion

    2015-04-01

    In the framework of the INDESO (Infrastructure Development of Space Oceanography) project, an operational ocean forecasting center has been developed to monitor the state of the Indonesian seas in terms of circulation, biogeochemistry and fisheries. The forecasting system combines a suite of numerical models connecting physical and biogeochemical parameters to population dynamics of large marine predators. Developed by Mercator Ocean and CLS, the physical/biogeochemical coupled component (INDO12BIO configuration) covers a large region extending from the western Pacific Ocean to the Eastern Indian Ocean at 1/12° resolution. The OPA/NEMO physical ocean model and the PISCES biogeochemical model are coupled in mode "on-line" without degradation in space and time. The operational global ocean forecasting system (1/4°) operated by Mercator Ocean provides the physical forcing while climatological open boundary conditions are prescribed for the biogeochemistry. This poster describes the performances of the INDO12BIO configuration. They are assessed by the evaluation of a reference hindcast simulation covering the last 8 years (2007-2014). Confrontations to satellite, in-situ and climatological observations are commented. Diagnostics are performed on chlorophyll-a, primary production, nutrients and oxygen. The model catches the main characteristics of the biogeochemical tracers in space and time. The seasonal cycle of chlorophyll-a and primary production is in phase with satellite-based products. The northern and southern parts of the archipelago present a distinct seasonal cycle, with higher chlorophyll biomass and production rates in the southern (northern) part during SE (NW) monsoon. Nutrient and oxygen concentrations are correctly reproduced in terms of horizontal and vertical distributions. The biogeochemical content of water masses entering in the archipelago as well as the water mass transformation across the archipelago conserves realistic vertical distribution

  9. Dimensionless Numbers For Morphological, Thermal And Biogeochemical Controls Of Hyporheic Processes

    NASA Astrophysics Data System (ADS)

    Bellin, Alberto; Marzadri, Alessandra; Tonina, Daniele

    2013-04-01

    Transport of solutes and heat within the hyporheic zone are interface processes that gained growing attention in the last decade, when several modelling strategies have been proposed, mainly at the local or reach scale. We propose to upscale local hyporheic biogeochemical processes to reach and network scales by means of a Lagrangian modelling framework, which allows to consider the impact of the flow structure on the processes modelled. This analysis shows that geochemical processes can be parametrized through two new Damköhler numbers, DaO, and DaT. DaO = ?up,50-?lim is defined as the ratio between the median hyporheic residence time, ?up,50 and the time of consuming dissolved oxygen to a prescribed threshold concentration, ?lim, below which reductive reactions are activated. It quantifies the biogeochemical status of the hyporheic zone and could be a metric for upscaling local hyporheic biogeochemical processes to reach and river-network scale processes. In addition, ?up,50 is the time scale of hyporheic advection; while ?lim is the representative time scale of biogeochemical reactions and indicates the distance along the streamline, measured as the time needed to travel that distance, that a particle of water travels before the dissolved oxygen concentration declines to [DO]lim, the value at which denitrification is activated. We show that DaO is representative of the redox status and indicates whether the hyporheic zone is a source or a sink of nitrate. Values of DaO larger than 1 indicate prevailing anaerobic conditions, whereas values smaller than 1 prevailing aerobic conditions. Similarly, DaT quantifies the importance of the temperature daily oscillations of the stream water on the hyporheic environment. It is defined as the ratio between ?up,50, and the time limit at which the ratio between the amplitude of the temperature oscillation within the hyporheic zone (evaluated along the streamline) and in the stream water is smaller than e-1. We show that

  10. Development of a 3D Coupled Physical-Biogeochemical Model for the Marseille Coastal Area (NW Mediterranean Sea): What Complexity Is Required in the Coastal Zone?

    PubMed Central

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007–2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model. PMID:24324589

  11. Significant differences in biogeochemical processes between a glaciated and a permafrost dominated catchment

    NASA Astrophysics Data System (ADS)

    Hindshaw, Ruth; Heaton, Tim; Boyd, Eric; Lang, Susan; Tipper, Ed

    2014-05-01

    It is increasingly recognised that microbially mediated processes have a significant impact on chemical fluxes from glaciated catchments. One important reaction is the oxidation of pyrite since the production of sulphuric acid facilitates the dissolution of minerals without the need for acidity generated by dissolved atmospheric CO2. Thus weathering processes can still continue even when isolated from the atmosphere, as is thought to occur under large ice masses. However, as a glacier melts, it is expected that the microbial community will change with knock-on effects on the stream water chemistry. Understanding the difference in solute generation processes between glaciated and un-glaciated terrain is key to understanding how glacial-interglacial cycles affect atmospheric CO2 consumption by chemical weathering. In order to investigate whether biogeochemical processes differ between glaciated and un-glaciated terrain we collected stream water samples from two small catchments (each approximately 3 km2) in Svalbard. One catchment is glaciated and the other catchment is un-glaciated but is affected by permafrost and a seasonal snow-pack. The two catchments are situated next to each other with identical bedrock (shale with minor siltstone and sandstone). The proximity of the catchments to each other ensures that meteorological variables such as temperature and precipitation are very similar. Sampling was conducted early in the melt-season when there was still significant snow-cover and in mid-summer when most of the seasonal snow-pack had melted. The water samples were analysed for δ34S-SO4, δ18O-SO4, δ18O-H2O, δ13C-DIC and δ13C-DOC, together with major anions and cations. Despite the nominally identical lithology, there were significant differences in the stream water chemistry between the two catchments. For example, sulphate was the dominant anion in the un-glaciated catchment whereas bicarbonate was the dominant anion in the glaciated catchment. Pyrite

  12. Biogeochemical processes driving mercury cycling in estuarine ecosystems

    NASA Astrophysics Data System (ADS)

    Schartup, A. T.

    2015-12-01

    Mercury (Hg) is a naturally occurring element that has been enriched in the environment through human activities, particularly in the coastal zone. Bioaccumulation of methylmercury (MeHg) in marine fishposes health risks for fish-consuming populations and is a worldwide health concern. A broader understanding of major environmental processes controlling Hg cycling and MeHg production and bioaccumulation in estuaries is therefore needed. Recent fieldwork and modeling show diverse sources of MeHg production in estuaries. We present geochemical modeling results for Hg and MeHg acrossmultiple estuaries with contrasting physical, chemical and biological characteristics. We report new measurements of water column and sediment mercury speciation and methylation data from the subarctic (Lake Melville, Labrador Canada) and temperate latitudes (Long Island Sound, Delaware Bay, Chesapeake Bay). We find that benthic sediment is a relatively small source of MeHg to the water column in all systems. Water column methylation drives MeHg levels in Lake Melville, whereas in more impacted shallow systems such as Chesapeake Bay and Long Island Sound, external inputs and sediment resuspension are more dominant. All systems are a net source of MeHg to the ocean through tidal exchange. In light of these inter-system differences, we will evaluate timescales of coastal ecosystem responses to changes in Hg loading that can help predict potential responses to future perturbations.

  13. Evidence of biogeochemical processes in iron duricrust formation

    NASA Astrophysics Data System (ADS)

    Levett, Alan; Gagen, Emma; Shuster, Jeremiah; Rintoul, Llew; Tobin, Mark; Vongsvivut, Jitraporn; Bambery, Keith; Vasconcelos, Paulo; Southam, Gordon

    2016-11-01

    Canga is a moderately hard iron-rich duricrust primarily composed of goethite as a result of the weathering of banded iron formations. Canga duricrusts lack a well-developed soil profile and consequently form an innate association with rupestrian plants that may become ferruginised, contributing to canga possessing macroscopic biological features. Examination of polished canga using a field emission scanning electron microscope (FE-SEM) revealed the biological textures associated with canga extended to the sub-millimetre scale in petrographic sections and polished blocks. Laminae that formed by abiotic processes and regions where goethite cements were formed in association with microorganisms were observed in canga. Biological cycling of iron within canga has resulted in two distinct forms of microbial fossilisation: permineralisation of multispecies biofilms and mineralisation of cell envelopes. Goethite permineralised biofilms frequently formed around goethite-rich kaolinite grains in close proximity to goethite bands and were composed of micrometre-scale rod-shaped, cocci and filamentous microfossils. In contrast, the cell envelopes immobilised by authigenic iron oxides were primarily of rod-shaped microorganisms, were not permineralised and occurred in pore spaces within canga. Complete mineralisation of intact rod-shaped casts and the absence of permineralisation suggested mineralised cell envelopes may represent fossilised iron-oxidising bacteria in the canga ecosystem. Replication of these iron-oxidising bacteria appeared to infill the porous regions within canga. Synchrotron-based Fourier transform infrared (FTIR) microspectroscopy demonstrated that organic biomarkers were poorly preserved with only weak bands indicative of aliphatic methylene (CH2) associated with permineralised microbial biofilms. High resolution imaging of microbial fossils in canga that had been etched with oxalic acid supported the poor preservation of organic biomarkers within canga

  14. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    precipitation in the mixolimnion and metalimnion, but the absence of calcareous sediments at depth suggests dissolution and recycling during winter months. Dissolved carbon concentrations [dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC)] increased with depth, reaching ∼0.04 mol/L at the metalimnion-monimolimnion boundary. DIC concentrations were seasonally variable in the mixolimnion and metalimnion, and were influenced by calcium carbonate precipitation. DOC concentrations mimicked those of conservative salts (e.g., Na+-Cl-) in the mixolimnion and metalimnion, but decreased in the monimolimnion where mass loss by anaerobic microbial processes is implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) were biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. With its extreme geochemical and thermal regime, Hot Lake functions as analog of early earth and extraterrestrial life environments.

  15. HYDROBIOGEOCHEM: A coupled model of HYDROlogic transport and mixed BIOGEOCHEMical kinetic/equilibrium reactions in saturated-unsaturated media

    SciTech Connect

    Yeh, G.T.; Salvage, K.M.; Gwo, J.P.; Zachara, J.M.; Szecsody, J.E.

    1998-07-01

    The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.

  16. Rn as a geochemical tool for estimating residence times in the hyporheic zone and its application to biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Gilfedder, Benjamin; Dörner, Sebastian; Ebertshäuser, Marlene Esther; Glaser, Barbara; Klug, Maria; Pittroff, Marco; Pieruschka, Ines; Waldemer, Carolin

    2014-05-01

    The hyporheic zone is at the interface between groundwater and surface water systems. It is also often a geochemical and redox boundary between typically reduced groundwater and oxic surface water. It experiences dynamic physical and chemical conditions as both groundwater fluxes and surface water levels vary in time and space. This can be particularly important for processes such as biogeochemical processing of nutrients and carbon. There has recently been an increasing focus on coupling residence times of surface water in the hyporheic zone with biogeochemical reactions. While geochemical profiles can be readily measured using established geochemical sampling techniques (e.g. peepers), quantifying surface water residence times and flow paths within the hyporheic zone is more elusive. The nobel gas radon offers a method for quantification of surface water residence times in the hyporheic zone. Radon activities are typically low in surface waters due to degassing to the atmosphere and decay. However once the surface water flows into the hyporheic zone radon accumulates along the flow path due to emanation from the sediments. Using simple analytical equations the water residence time can be calculated based on the difference between measured 222Rn activities and 222Rn activities at secular equilibrium, with a maximum limit of about 20 days (depending on measurement precision). Rn is particularly suited to residence time measurements in the hyporheic zone since it does not require addition of tracers to the stream nor does it require complex simulations and assumptions (such as 1D vertical flow) as for temperature measurements. As part of the biogeochemistry course at the University of Bayreuth, we have investigated the coupling of redox processes and water residence times in the hyporheic zone using 222Rn as a tracer for residence time. Of particular interest were nitrate and sulfate reduction and methane and CO2 production. Measurements were made in a sandy section

  17. Towards coupled physical-biogeochemical models of the ocean carbon cycle

    NASA Technical Reports Server (NTRS)

    Rintoul, Stephen R.

    1992-01-01

    The purpose of this review is to discuss the critical gaps in our knowledge of ocean dynamics and biogeochemical cycles. It is assumed that the ultimate goal is the design of a model of the earth system that can predict the response to changes in the external forces driving climate.

  18. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.

    2012-01-01

    A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.

  19. Characterization of eco-hydraulic habitats for examining biogeochemical processes in rivers

    NASA Astrophysics Data System (ADS)

    McPhillips, L. E.; O'Connor, B. L.; Harvey, J. W.

    2009-12-01

    Spatial variability in biogeochemical reaction rates in streams is often attributed to sediment characteristics such as particle size, organic material content, and biota attached to or embedded within the sediments. Also important in controlling biogeochemical reaction rates are hydraulic conditions, which influence mass transfer of reactants from the stream to the bed, as well as hyporheic exchange within near-surface sediments. This combination of physical and ecological variables has the potential to create habitats that are unique not only in sediment texture but also in their biogeochemical processes and metabolism rates. In this study, we examine the two-dimensional (2D) variability of these habitats in an agricultural river in central Iowa. The streambed substratum was assessed using a grid-based survey identifying dominant particle size classes, as well as aerial coverage of green algae, benthic organic material, and coarse woody debris. Hydraulic conditions were quantified using a calibrated 2D model, and hyporheic exchange was assessed using a scaling relationship based on sediment and hydraulic characteristics. Point-metabolism rates were inferred from measured sediment dissolved oxygen profiles using an effective diffusion model and compared to traditional whole-stream measurements of metabolism. The 185 m study reach had contrasting geomorphologic and hydraulic characteristics in the upstream and downstream portions of an otherwise relatively straight run of a meandering river. The upstream portion contained a large central gravel bar (50 m in length) flanked by riffle-run segments and the downstream portion contained a deeper, fairly uniform channel cross-section. While relatively high flow velocities and gravel sediments were characteristic of the study river, the upstream island bar separated channels that differed with sandy gravels on one side and cobbley gravels on the other. Additionally, green algae was almost exclusively found in riffle

  20. EFFECT OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND HIGH SALT MARSH, SPARTINA PATNES, (AITON MUHL)

    EPA Science Inventory

    Coastal marshes represent an important transitional zone between uplands and estuaries and can assimilate nutrient inputs from uplands. We examined the effects of nitrogen (N) and phosphorus (P) fertilization on biogeochemical and microbial processes during the summer growing sea...

  1. Modeling greenhouse gas emissions and nutrient transport in managed arable soils with a fully coupled hydrology-biogeochemical modeling system

    NASA Astrophysics Data System (ADS)

    Haas, Edwin; Klatt, Steffen; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification, chemodenitrification and methanogenesis producing and consuming soil based greenhouse gases. The model application will present first results of the coupled model to simulate soil based greenhouse gas emissions as well as nitrate discharge from the Yanting catchment. The model application will also present the effects of different management practices (fertilization rates and timings, tilling, residues management) on the redistribution of N surplus within the catchment causing biomass productivity gradients and different levels of indirect N2O emissions along topographical gradients.

  2. Global Biogeochemical Cycle of Si: Its Coupling to the Perturbed C-N-P cycles in Industrial Time

    NASA Astrophysics Data System (ADS)

    Lerman, A.; Li, D. D.; MacKenzie, F. T.

    2010-12-01

    The importance of silicon (Si) in global biogeochemical cycles is demonstrated by its abundance in the land and aquatic biomass, where Si/C is 0.02 in land plants and 0.15 in marine organisms. Estimates show that Si-bioproduction accounts for ~1.5% of terrestrial primary production, and ~4.5% in the coastal ocean. Human land-use activities have substantially changed regional patterns of vegetation distribution, soil conditions, and nutrient fluxes via runoff to the coastal ocean. Anthropogenic chemical fertilization of the land has caused a significant increase in fluvial nitrogen (N) and phosphorus (P) transport, whereas land-use and vegetation mass changes have caused variations in the riverine Si input, all eventually affecting the cycling of nutrients in the marine environment. We developed a global biogeochemical model of the Si cycle as coupled to the global C-N-P cycle model, TOTEM II (Terrestrial-Ocean-aTmosphere-Ecosystem-Model). In the model analysis from year 1700, taken as the start of the Anthropocene, to 2050, the bioproduction of Si on land and in the ocean is coupled to the bioproduction of C, perturbed by the atmospheric CO2 rise, land-use changes, and chemical fertilization. Also, temperature rise affects the Si cycling on land through bioproduction rates, terrestrial organic matter remineralization, and weathering, thereby affecting its delivery to the coastal zone. The results show that biouptake and subsequent release of Si on land strongly affect the Si river flux to the coastal ocean. During the 350-year period, Si river discharge has increased by ~10% until ~1940, decreasing since then to below its 1700 value and continuing to drop, under the current IPCC IS92 projections of CO2, temperature and other forcings. From 1700 to ~1950, land-use changes, associated with slash and burn of large areas of high-productivity land, caused a decrease of global land vegetation. Dissolution of Si in soil humus and weathering of silicate minerals are the

  3. Biogeochemical processes on tree islands in the greater everglades: Initiating a new paradigm

    USGS Publications Warehouse

    Wetzel, P.R.; Sklar, Fred H.; Coronado, C.A.; Troxler, T.G.; Krupa, S.L.; Sullivan, P.L.; Ewe, S.; Price, R.M.; Newman, S.; Orem, W.H.

    2011-01-01

    Scientists' understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising. Copyright ?? 2011 Taylor & Francis Group, LLC.

  4. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-08-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems, covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of Northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  5. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Quideau, S. A.; Swallow, M. J. B.; Prescott, C. E.; Grayston, S. J.; Oh, S.-W.

    2013-04-01

    Emulating the variability that exists in the natural landscape prior to disturbance should be a goal of soil reconstruction and land reclamation efforts following resource extraction. Long-term ecosystem sustainability within reclaimed landscapes can only be achieved with the re-establishment of biogeochemical processes between reconstructed soils and plants. In this study, we assessed key soil biogeochemical attributes (nutrient availability, organic matter composition, and microbial communities) in reconstructed, novel, anthropogenic ecosystems covering different reclamation treatments following open-cast mining for oil extraction. We compared the attributes to those present in a range of natural soils representative of mature boreal forest ecosystems in the same area of northern Alberta. Soil nutrient availability was determined in situ with resin probes, organic matter composition was described with 13C nuclear magnetic resonance spectroscopy and soil microbial community structure was characterized using phospholipid fatty acid analysis. Significant differences among natural ecosystems were apparent in nutrient availability and seemed more related to the dominant tree cover than to soil type. When analyzed together, all natural forests differed significantly from the novel ecosystems, in particular with respect to soil organic matter composition. However, there was some overlap between the reconstructed soils and some of the natural ecosystems in nutrient availability and microbial communities, but not in organic matter characteristics. Hence, our results illustrate the importance of considering the range of natural landscape variability, and including several soil biogeochemical attributes when comparing novel, anthropogenic ecosystems to the mature ecosystems that constitute ecological targets.

  6. Coupled biogeochemical cycles in riparian zones with contrasting hydrogeomorphic characteristics in the US Midwest

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2012-12-01

    In this study we aims to understand what drives the fate and transport of multiple contaminants sensitive to soil redox condition across hydrogeomorphic (HGM) gradient and evaluate overall biogeochemical functions of riparian zones regarding those contaminants. We conducted monthly field work for 19 consecutive months from November 2009 to May 2011 at three study sites representative for main HGM types at the US Midwest. We collected the parameters from different sources which include field parameters, such as topography, water table depth, oxidation reduction potential (ORP) and dissolved oxygen (DO), and groundwater chemistry, such as NH4+, NO3-, PO43-, SO42-, CI- , and Hg and MeHg. Our results demonstrated that seasonal water table fluctuations and groundwater flows characteristics at three sites are strongly affected by their HGM setting. Specifically, the convergence of quick rise of water table, high ORP and sharp decrease in concentrations of NO3- and SO42 from field edge to stream edge (60-90% at LWD and 90% at WR) in spring after snowmelt and early May, which could be explained by that snow melt and early summer rainfall are major drivers of fluctuations of water table, variations of ORP and transport and transformation of contaminants. Riparian zones removed NO3- and SO42- during high water table but released Mercury in summer at both LWD and WR, and sulfate reduction, ammonia production and MeHg production all occurred when ORP and water tables were low in summer. These results might reflect the strong ORP control on these processes at landscape scale. These findings supported our hypothesis. Other findings however contrast to our hypothesis. For instances, unusual high concentrations of nitrate and Hg at WR suggest that the transport and fate of multiple contaminants relate not only to HGM settings but geographic location and land use. Negligible variations of P concentration in groundwater indicate that the transformation of P is not sensitive to soil

  7. Study of the Tagus estuarine plume using coupled hydro and biogeochemical models

    NASA Astrophysics Data System (ADS)

    Vaz, Nuno; Leitão, Paulo C.; Juliano, Manuela; Mateus, Marcos; Dias, João. Miguel; Neves, Ramiro

    2010-05-01

    Plumes of buoyant water produced by inflow from rivers and estuaries are common on the continental shelf. Buoyancy associated with estuarine waters is a key mediating factor in the transport and transformation of dissolved and particulate materials in coastal margins. The offshore displacement of the plume is influenced greatly by the local alongshore wind, which will tend to advect the plume either offshore or onshore, consistently with the Ekman transport. Other factor affecting the propagation of an estuarine plume is the freshwater inflow on the landward boundary. In this paper, a coupled three-dimensional ocean circulation and biogeochemical model with realistic high and low frequency forcing is used to get insight on how the Tagus River plume responds to wind and freshwater discharge during winter and spring. A nesting approach based on the MOHID numerical system was implemented for the Tagus estuary near shelf. Realistic hindcast simulations were performed, covering a period from January to June 2007. Model results were evaluated using in-situ and satellite imagery data. The numerical model was implemented using a three level nesting model. The model domain includes the whole Portuguese coast, the Tagus estuary near shelf and the Tagus River estuary, using a realistic coastline and bottom topography. River discharge and wind forcing are considered as landward and surface boundary conditions, respectively. Initial ocean stratification is from the MERCATOR solution. Ambient shelf conditions include tidal motion. As a prior validation, models outputs of salinity and water temperature were compared to available data (January 30th and May 30th, 2007) and were found minor differences between model outputs and data. On January 30th, outside the estuary, the model results reveal a stratified water column, presenting salinity stratification of the order of 3-4. The model also reproduces the hydrography for the May 30th observations. In May, near the Tagus mouth

  8. Approaches for Investigating Hydraulic and Biogeochemical Gradients at Multiple Scales in Critical Zone Processes

    NASA Astrophysics Data System (ADS)

    Tokunaga, T. K.

    2011-12-01

    Transport and transformations of chemical species in soils and other near-surface terrestrial environments of Earth's critical zone reflect complex interactions among physical, chemical, and biological processes. Hydraulic and biogeochemical gradients driving transport and reactions occur over multiple scales in the subsurface. Thus, bulk measurements that average across hydraulic, chemical, and/or microbiological gradients limit identification of basic processes. Over the decades, a variety of tools and experimental methods have been developed with capabilities to resolve very steep environmental gradients. Although most of these methods are laboratory-based, they can provide insights into critical zone processes, especially when field-relevant conditions are reasonably replicated. In this presentation, examples of some novel experimental methods are reviewed, suitable for characterizing properties and processes at scales ranging from meters down to about 10 nm. The larger scale experimental approaches address dynamic processes in soil profiles. Intermediate scale experimental approaches are compatible with investigating biogeochemical dynamics within soil aggregates. Still finer scale techniques permit examination of heterogeneity within individual soil particles and micro-aggregates.

  9. Trees actively and directly influence biogeochemical processes in boreal forested watersheds

    NASA Astrophysics Data System (ADS)

    Högberg, Peter

    2010-05-01

    Trees actively and directly influence biogeochemical processes in boreal forested watersheds Peter Högberg, Dept. of Forest Ecology and Management, SLU, SE-901 83 Umeå, Sweden It is increasingly realized that trees are directly influencing soil processes, and thereby significantly also biogeochemical processes at the scale of watersheds. For example, it is now well established that recent photosynthesis supports on average around 50% of the soil respiratory activity. It takes only a few days from tree canopy photosynthesis to the use of that C by plant roots and soil microbes. Importantly, not only does this represent a significant and rapid return flux of CO2 back to the atmosphere, but it also relates to a range of important biogeochemical processes. These occur not only in the soil, but also in streams and lakes, e.g., in nutrient-poor boreal forests areas labile C compounds produced by tree roots and their associated microorganisms constitute an important C source for lake biota. Furthermore, the tree belowground C allocation is under strong physiological control and responds to the supply of nutrients, especially to the supply of nitrogen. When this is low, as in most boreal forests, the belowground C allocation to roots and mycorrhizal fungi is large. This explains the very large N retention capacity of these forests. However, after large additions of N, this belowground C flux is reduced and consequently also the N retention capacity of mycorrhizal fungi. When this occurs, bacteria, organisms with a much lower C/N ratio, become dominant; but as these are C-limited, their capacity to sequester N is much lower than that of fungi. As a consequence, the N cycle opens up, and N is lost through leaching of nitrate and denitrification. However, if the N-load is removed, the trees start to allocate more C belowground to their mycorrhizal fungi again, and this important N-trap is restored. Thus, there are many examples of how trees actively and directly (with short

  10. Technical note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis

    NASA Astrophysics Data System (ADS)

    Boxhammer, Tim; Bach, Lennart T.; Czerny, Jan; Riebesell, Ulf

    2016-05-01

    Sediment traps are the most common tool to investigate vertical particle flux in the marine realm. However, the spatial and temporal decoupling between particle formation in the surface ocean and particle collection in sediment traps at depth often handicaps reconciliation of production and sedimentation even within the euphotic zone. Pelagic mesocosms are restricted to the surface ocean, but have the advantage of being closed systems and are therefore ideally suited to studying how processes in natural plankton communities influence particle formation and settling in the ocean's surface. We therefore developed a protocol for efficient sample recovery and processing of quantitatively collected pelagic mesocosm sediment trap samples for biogeochemical analysis. Sedimented material was recovered by pumping it under gentle vacuum through a silicon tube to the sea surface. The particulate matter of these samples was subsequently separated from bulk seawater by passive settling, centrifugation or flocculation with ferric chloride, and we discuss the advantages and efficiencies of each approach. After concentration, samples were freeze-dried and ground with an easy to adapt procedure using standard lab equipment. Grain size of the finely ground samples ranged from fine to coarse silt (2-63 µm), which guarantees homogeneity for representative subsampling, a widespread problem in sediment trap research. Subsamples of the ground material were perfectly suitable for a variety of biogeochemical measurements, and even at very low particle fluxes we were able to get a detailed insight into various parameters characterizing the sinking particles. The methods and recommendations described here are a key improvement for sediment trap applications in mesocosms, as they facilitate the processing of large amounts of samples and allow for high-quality biogeochemical flux data.

  11. Technical Note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis

    NASA Astrophysics Data System (ADS)

    Boxhammer, T.; Bach, L. T.; Czerny, J.; Riebesell, U.

    2015-11-01

    Sediment traps are the most common tool to investigate vertical particle flux in the marine realm. However, the spatial decoupling between particle formation and collection often handicaps reconciliation of these two processes even within the euphotic zone. Pelagic mesocosms have the advantage of being closed systems and are therefore ideally suited to study how processes in natural plankton communities influence particle formation and settling in the ocean's surface. We therefore developed a protocol for efficient sample recovery and processing of quantitatively collected pelagic mesocosm sediment trap samples. Sedimented material was recovered by pumping it under gentle vacuum through a silicon tube to the sea surface. The particulate matter of these samples was subsequently concentrated by passive settling, centrifugation or flocculation with ferric chloride and we discuss the advantages of each approach. After concentration, samples were freeze-dried and ground with an easy to adapt procedure using standard lab equipment. Grain size of the finely ground samples ranges from fine to coarse silt (2-63 μm), which guarantees homogeneity for representative subsampling, a widespread problem in sediment trap research. Subsamples of the ground material were perfectly suitable for a variety of biogeochemical measurements and even at very low particle fluxes we were able to get a detailed insight on various parameters characterizing the sinking particles. The methods and recommendations described here are a key improvement for sediment trap applications in mesocosms, as they facilitate processing of large amounts of samples and allow for high-quality biogeochemical flux data.

  12. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  13. Spatio-temporal evolution of biogeochemical processes at a landfill site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Mohanty, B. P.; McGuire, J. T.

    2011-12-01

    Predictions of fate and transport of contaminants are strongly dependent on spatio-temporal variability of soil hydraulic and geochemical properties. This study focuses on time-series signatures of hydrological and geochemical properties at different locations within the Norman landfill site. Norman Landfill is a closed municipal landfill site with prevalent organic contamination. Monthly data at the site include specific conductance, δ18O, δ2H, dissolved organic carbon (DOC) and anions (chloride, sulfate, nitrate) from 1998-2006. Column scale data on chemical concentrations, redox gradients, and flow parameters are also available on daily and hydrological event (infiltration, drainage, etc.) scales. Since high-resolution datasets of contaminant concentrations are usually unavailable, Wavelet and Fourier analyses were used to infer the dominance of different biogeochemical processes at different spatio-temporal scales and to extract linkages between transport and reaction processes. Results indicate that time variability controls the progression of reactions affecting biodegradation of contaminants. Wavelet analysis suggests that iron-sulfide reduction reactions had high seasonal variability at the site, while fermentation processes dominated at the annual time scale. Findings also suggest the dominance of small spatial features such as layered interfaces and clay lenses in driving biogeochemical reactions at both column and landfill scales. A conceptual model that caters to increased understanding and remediating structurally heterogeneous variably-saturated media is developed from the study.

  14. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System.

    PubMed

    Ho, Adrian; Angel, Roey; Veraart, Annelies J; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L E

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  15. Can spectroscopic analysis improve our understanding of biogeochemical processes in agricultural streams?

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Ann Louise

    2015-04-01

    In agricultural catchments diffuse fluxes of nutrients, mainly nitrogen (N) and phosphorus (P) from arable land and livestock are responsible for pollution of receiving waters and their eutrophication. Organic matter (OM) can play an important role in mediating a range of biogeochemical processes controlling diffuse pollution in streams and at their interface with surrounding land in the riparian and hyporheic zones. Thus, a holistic and simultaneous monitoring of N, P and OM fractions can help to improve our understanding of biogeochemical functioning of agricultural streams. In this study we build on intensive in situ monitoring of diffuse pollution in a small agricultural groundwater-fed stream in NW England carried out since 2009. The in situ monitoring unit captures high-frequency (15 minutes to hourly) responses of water quality parameters including total phosphorus, total reactive phosphorus and nitrate-nitrogen to changing flow conditions. For two consecutive hydrological years we have carried out additional spectroscopic water analyses to characterise organic matter components and their interactions with nutrient fractions. Automated and grab water samples have been analysed using ultraviolet-visible (UV-Vis) absorbance and excitation-emission (EEM) fluorescence spectroscopy. In addition, a tryptophan sensor was trialled to capture in situ fluorescence dynamics. Our paper evaluates patterns in nutrient and OM responses to baseflow and storm flow conditions and provides an assessment of storage-related changes of automated samples and temperature and turbidity effects on in situ tryptophan measurements. The paper shows the value of spectroscopic measurements to understand biogeochemical and hydrological nutrient dynamics and quantifies analytical uncertainty associated with both laboratory-based and in situ spectroscopic measurements.

  16. MODELING COUPLED HYDROLOGICAL AND CHEMICAL PROCESSES: LONG-TERM URANIUM TRANSPORT FOLLOWING PHOSPHOROUS-FERTILIZATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminants in the vadose zone are affected by the physical processes of water flow, heat movement and multicomponent transport, as well as generally by a range of interacting biogeochemical processes. Coupling these various processes within one integrated numerical simulator provides a process-ba...

  17. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage.

    PubMed

    Chen, Ya-ting; Li, Jin-tian; Chen, Lin-xing; Hua, Zheng-shuang; Huang, Li-nan; Liu, Jun; Xu, Bi-bo; Liao, Bin; Shu, Wen-sheng

    2014-05-20

    The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals. PMID:24730689

  18. Tracing biogeochemical and microbial variability over a complete oil sand mining and recultivation process.

    PubMed

    Noah, Mareike; Lappé, Michael; Schneider, Beate; Vieth-Hillebrand, Andrea; Wilkes, Heinz; Kallmeyer, Jens

    2014-11-15

    Recultivation of disturbed oil sand mining areas is an issue of increasing importance. Nevertheless only little is known about the fate of organic matter, cell abundances and microbial community structures during oil sand processing, tailings management and initial soil development on reclamation sites. Thus the focus of this work is on biogeochemical changes of mined oil sands through the entire process chain until its use as substratum for newly developing soils on reclamation sites. Therefore, oil sand, mature fine tailings (MFTs) from tailings ponds and drying cells and tailings sand covered with peat-mineral mix (PMM) as part of land reclamation were analyzed. The sample set was selected to address the question whether changes in the above-mentioned biogeochemical parameters can be related to oil sand processing or biological processes and how these changes influence microbial activities and soil development. GC-MS analyses of oil-derived biomarkers reveal that these compounds remain unaffected by oil sand processing and biological activity. In contrast, changes in polycyclic aromatic hydrocarbon (PAH) abundance and pattern can be observed along the process chain. Especially naphthalenes, phenanthrenes and chrysenes are altered or absent on reclamation sites. Furthermore, root-bearing horizons on reclamation sites exhibit cell abundances at least ten times higher (10(8) to 10(9) cells g(-1)) than in oil sand and MFT samples (10(7) cells g(-1)) and show a higher diversity in their microbial community structure. Nitrate in the pore water and roots derived from the PMM seem to be the most important stimulants for microbial growth. The combined data show that the observed compositional changes are mostly related to biological activity and the addition of exogenous organic components (PMM), whereas oil extraction, tailings dewatering and compaction do not have significant influences on the evaluated compounds. Microbial community composition remains relatively

  19. Significant Findings: Seasonal Distributions of Global Ocean Chlorophyll and Nutrients With a Coupled Ocean General Circulation, Biogeochemical, and Radiative Model. 2; Comparisons With Satellite and In Situ Data

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model were determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (>1000 km) model chlorophyll seasonal distributions were statistically positively correlated with CZCS chlorophyll in 10 of 12 major oceanographic regions, and with SeaWiFS in all 12. Notable disparities in magnitudes occurred, however, in the tropical Pacific, the spring/summer bloom in the Antarctic, autumn in the northern high latitudes, and during the southwest monsoon in the North Indian Ocean. Synoptic scale (100-1000 km) comparisons of satellite and in situ data exhibited broad agreement, although occasional departures were apparent. Model nitrate distributions agreed with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicated that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on basin and synoptic scales.

  20. Molecular organic tracers of biogeochemical processes in a saline meromictic lake (Ace Lake)

    NASA Astrophysics Data System (ADS)

    Schouten, S.; Rijpstra, W. I. C.; Kok, M.; Hopmans, E. C.; Summons, R. E.; Volkman, J. K.; Sinninghe Damsté, J. S.

    2001-05-01

    The chemical structures, distribution and stable carbon isotopic compositions of lipids in a sediment core taken in meromictic Ace Lake (Antarctica) were analyzed to trace past biogeochemical cycling. Biomarkers from methanogenic archaea, methanotrophic bacteria and photosynthetic green sulfur bacteria were unambiguously assigned using organic geochemical understanding and by reference to what is known about the lake's present-day ecosystem. For instance, saturated and unsaturated 2,6,10,15,19-pentamethylicosane, archaeol and sn2-hydroxyarchaeol were derived from methanogenic archaea. Carotenoid analysis revealed chlorobactene and isorenieratene derived from the green-colored and brown-colored strains of the green sulfur bacteria (Chlorobiaceae); isotopic analyses showed that they were 13C-enriched. Phytenes appear to be derived from photoautotrophs that use the Calvin-Benson cycle, while phytane has a different source, possibly within the archaea. The most 13C-depleted compounds (ca. -55‰) identified were 4-methyl-5α-cholest-8(14)-en-3β-ol, identified using an authentic standard, and co-occurring 4-methylsteradienes: these originate from the aerobic methanotrophic bacterium Methylosphaera hansonii. Lipids of photoautotrophic origin, steranes and alkenones, are relatively depleted (ca. -28 to -36‰) whilst archaeal biomarkers are relatively enriched in 13C (ca. -17 to -25‰). The structural and carbon isotope details of sedimentary lipids thus revealed aspects of in situ biogeochemical processes such as methane generation and oxidation and phototrophic sulfide oxidation.

  1. The CO2 system in the Mediterranean Sea inferred from a 3D coupled physical-biogeochemical model

    NASA Astrophysics Data System (ADS)

    Ulses, Caroline; Kessouri, Fayçal; Estournel, Claude; Marsaleix, Patrick; Beuvier, Jonathan; Somot, Samuel; Touratier, Frank; Goyet, Catherine; Coppola, Laurent; Diamond, Emilie; Metzl, Nicolas

    2015-04-01

    The semi-enclosed Mediterranean Sea characterized by short residence times is considered as a region particularly sensitive to natural and anthropogenic forcing. Due to scarce CO2 measurements in the whole basin, the CO2 system, for instance the air-sea CO2 exchanges and the effects of the increase of atmospheric CO2, are poorly characterized. 3D physical-biogeochemical coupled models are unique tools that can provide integrated view and gain understanding in the temporal and spatial variation of the CO2 system variables (dissolved inorganic carbon, total alkalinity, partial pressure of CO2 and pH). An extended version of the biogeochemical model Eco3m-S (Auger et al., 2014), that describes the cycles of carbon, nitrogen, phosphorus and silica, was forced by a regional circulation model (Beuvier et al., 2012) to investigate the CO2 system in the Mediterranean Sea over a 13-years period (2001-2013). First, the quality of the modelling was evaluated through comparisons with satellite and in situ observations collected in the whole basin over the study period (Touratier and Goyet, 2009; 2011 ; Rivaro et al., 2010 ; Pujo-Pay et al., 2011 ; Alvarez et al, 2014). The model reasonably reproduced the various biological regimes (north-western phytoplanctonic bloom regime, oligotrophic eastern regime, etc.) as well as the recorded spatial distribution and temporal variations of the carbonate system variables. The coupled model was then used to estimate the air-sea pCO2 exchanges and the transport of DIC and TA towards the Atlantic Ocean at the Strait of Gibraltar.

  2. Quantifying the surface-subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies

    SciTech Connect

    Boyd, P.W.; Gall, M.P.; Silver, M.W.; Bishop, J.K.B.; Coale, Susan L.; Bidigare, Robert R.

    2008-02-25

    A central question addressed by the VERTIGO (VERtical Transport In the Global Ocean) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size-partitioning of Net Primary Production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, F{sub v}/F{sub m} (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size-partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m{sup -2} d{sup -1} at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2 x export flux at 150 m (E{sub 150}). At K2, export was 111 mg C m{sup -2} d{sup -1} (21% NPP (0-50 m); 1.8 x E{sub 150}) and 33 mg POC m{sup -2} d{sup -1} (11% NPP, 0-55 m); 1.4 x E{sub 150}) for deployments 1 and 2, respectively. This decrease in predicted export at K2 matches the observed trend for E{sub 150}. Also, the low attenuation of export flux from 60 to 150 m is consistent with that between 150 to 500 m. This strong surface-subsurface coupling suggests that phytoplankton productivity and floristics play a key role at K2 in setting export flux, and moreover that pelagic particle transformations by grazers strongly influence

  3. Quantifying the surface subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Gall, Mark P.; Silver, Mary W.; Coale, Susan L.; Bidigare, Robert R.; Bishop, James L. K. B.

    2008-07-01

    A central question addressed by the VERtical Transport In the Global Ocean (VERTIGO) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size partitioning of net primary production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, Fv/ Fm (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m -2 d -1 at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2×export flux at 150 m ( E150). At K2, export was 111 mg C m -2 d -1 (21% NPP (0-50 m); 1.8× E150) and 33 mg POC m -2 d -1 (11% NPP, 0-55 m); 1.4× E150) for deployments 1 and 2, respectively. This decrease in predicted export at K2 matches the observed trend for E150. Also, the low attenuation of export flux from 60 to 150 m is consistent with that between 150 and 500 m. This strong surface-subsurface coupling suggests that phytoplankton productivity and floristics play a key role at K2 in setting export flux, and moreover that pelagic particle transformations by grazers strongly influence to what extent sinking particles are further broken down in the

  4. Nitrogen transfers off Walvis Bay: a 3-D coupled physical/biogeochemical modeling approach in the Namibian upwelling system

    NASA Astrophysics Data System (ADS)

    Gutknecht, E.; Dadou, I.; Marchesiello, P.; Cambon, G.; Le Vu, B.; Sudre, J.; Garçon, V.; Machu, E.; Rixen, T.; Kock, A.; Flohr, A.; Paulmier, A.; Lavik, G.

    2013-06-01

    Eastern boundary upwelling systems (EBUS) are regions of high primary production often associated with oxygen minimum zones (OMZs). They represent key regions for the oceanic nitrogen (N) cycle. By exporting organic matter (OM) and nutrients produced in the coastal region to the open ocean, EBUS can play an important role in sustaining primary production in subtropical gyres. However, losses of fixed inorganic N through denitrification and anammox processes take place in oxygen depleted environments such as EBUS, and can potentially mitigate the role of these regions as a source of N to the open ocean. EBUS can also represent a considerable source of nitrous oxide (N2O) to the atmosphere, affecting the atmospheric budget of N2O. In this paper a 3-D coupled physical/biogeochemical model (ROMS/BioEBUS) is used to investigate the N budget in the Namibian upwelling system. The main processes linked to EBUS and associated OMZs are taken into account. The study focuses on the northern part of the Benguela upwelling system (BUS), especially the Walvis Bay area (between 22° S and 24° S) where the OMZ is well developed. Fluxes of N off the Walvis Bay area are estimated in order to understand and quantify (1) the total N offshore export from the upwelling area, representing a possible N source that sustains primary production in the South Atlantic subtropical gyre; (2) export production and subsequent losses of fixed N via denitrification and anammox under suboxic conditions (O2 < 25 mmol O2 m-3); and (3) the N2O emission to the atmosphere in the upwelling area. In the mixed layer, the total N offshore export is estimated as 8.5 ± 3.9 × 1010 mol N yr-1 at 10° E off the Walvis Bay area, with a mesoscale contribution of 20%. Extrapolated to the whole BUS, the coastal N source for the subtropical gyre corresponds to 0.1 ± 0.04 mol N m-2 yr-1. This N flux represents a major source of N for the gyre compared with other N sources, and contributes 28% of the new primary

  5. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  6. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes.

    PubMed

    Hayes, J M; Freeman, K H; Popp, B N; Hoham, C H

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake. PMID:11540919

  7. Spatial dynamics of biogeochemical processes in the St. Louis River freshwater estuary

    EPA Science Inventory

    In the Great Lakes, river-lake transition zones within freshwater estuaries are hydrologically and biogeochemically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. The goal of our study was to characterize the biogeochemical properties of th...

  8. Isotope biogeochemical assessment of natural biodegradation processes in open cast pit mining landscapes

    NASA Astrophysics Data System (ADS)

    Jeschke, Christina; Knöller, Kay; Koschorreck, Matthias; Ussath, Maria; Hoth, Nils

    2014-05-01

    In Germany, a major share of the energy production is based on the burning of lignite from open cast pit mines. The remediation and re-cultivation of the former mining areas in the Lusatian and Central German lignite mining district is an enormous technical and economical challenge. After mine closures, the surrounding landscapes are threatened by acid mine drainage (AMD), i.e. the acidification and mineralization of rising groundwater with metals and inorganic contaminants. The high content of sulfur (sulfuric acid, sulfate), nitrogen (ammonium) and iron compounds (iron-hydroxides) deteriorates the groundwater quality and decelerates sustainable development of tourism in (former) mining landscapes. Natural biodegradation or attenuation (NA) processes of inorganic contaminants are considered to be a technically low impact and an economically beneficial solution. The investigations of the stable isotope compositions of compounds involved in NA processes helps clarify the dynamics of natural degradation and provides specific informations on retention processes of sulfate and nitrogen-compounds in mine dump water, mine dump sediment, and residual pit lakes. In an active mine dump we investigated zones where the process of bacterial sulfate reduction, as one very important NA process, takes place and how NA can be enhanced by injecting reactive substrates. Stable isotopes signatures of sulfur and nitrogen components were examined and evaluated in concert with hydrogeochemical data. In addition, we delineated the sources of ammonium pollution in mine dump sediments and investigated nitrification by 15N-labeling techniques to calculate the limit of the conversion of harmful ammonium to nitrate in residual mining lakes. Ultimately, we provided an isotope biogeochemical assessment of natural attenuation of sulfate and ammonium at mine dump sites and mining lakes. Also, we estimated the risk potential for water in different compartments of the hydrological system. In

  9. Evaluation of Boundless Biogeochemical Cycle through Development of Process-Based Eco-Hydrological and Biogeochemical Cycle Model to Incorporate Terrestrial-Aquatic Continuum

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2014-12-01

    Inland water might act as important transport pathway for continental biogeochemical cycle although its contribution has remained uncertain yet due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local-regional-global scales, and can simulate iteratively nonlinear feedback between hydrologic-geomorphic-ecological processes. Because NICE incorporates 3-D groundwater sub-model and expands from previous 1- or 2-D or steady state, the model can simulate the lateral transport pronounced at steeper-slope or riparian/floodplain with surface-groundwater connectivity. River discharge and groundwater level simulated by NICE agreed reasonably with those in previous researches (Niu et al., 2007; Fan et al., 2013) and extended to clarify lateral subsurface also has important role on global hydrologic cycle (Nakayama, 2011b; Nakayama and Shankman, 2013b) though the resolution was coarser. NICE was further developed to incorporate biogeochemical cycle including reaction between inorganic and organic carbons in terrestrial and aquatic ecosystems. The missing role of carbon cycle simulated by NICE, for example, CO2 evasion from inland water (global total flux was estimated as about 1.0 PgC/yr), was relatively in good agreement in that estimated by empirical relation using previous pCO2 data (Aufdenkampe et al., 2011; Laruelle et al., 2013). The model would play important role in identification of greenhouse gas balance of the biosphere and spatio-temporal hot spots, and bridging gap between top-down and bottom-up approaches (Cole et al. 2007; Frei et al. 2012).

  10. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-12-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced ~ 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  11. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon

    NASA Astrophysics Data System (ADS)

    Neubauer, S. C.; Franklin, R. B.; Berrier, D. J.

    2013-07-01

    Environmental perturbations in wetlands affect the integrated plant-microbial-soil system, causing biogeochemical responses that can manifest at local to global scales. The objective of this study was to determine how saltwater intrusion affects carbon mineralization and greenhouse gas production in coastal wetlands. Working with tidal freshwater marsh soils that had experienced roughly 3.5 yr of in situ saltwater additions, we quantified changes in soil properties, measured extracellular enzyme activity associated with organic matter breakdown, and determined potential rates of anaerobic carbon dioxide (CO2) and methane (CH4) production. Soils from the field plots treated with brackish water had lower carbon content and higher C : N ratios than soils from freshwater plots, indicating that saltwater intrusion reduced carbon availability and increased organic matter recalcitrance. This was reflected in reduced activities of enzymes associated with the hydrolysis of cellulose and the oxidation of lignin, leading to reduced rates of soil CO2 and CH4 production. The effects of long-term saltwater additions contrasted with the effects of short-term exposure to brackish water during three-day laboratory incubations, which increased rates of CO2 production but lowered rates of CH4 production. Collectively, our data suggest that the long-term effect of saltwater intrusion on soil CO2 production is indirect, mediated through the effects of elevated salinity on the quantity and quality of autochthonous organic matter inputs to the soil. In contrast, salinity, organic matter content, and enzyme activities directly influence CH4 production. Our analyses demonstrate that saltwater intrusion into tidal freshwater marshes affects the entire process of carbon mineralization, from the availability of organic carbon through its terminal metabolism to CO2 and/or CH4, and illustrate that long-term shifts in biogeochemical functioning are not necessarily consistent with short

  12. Biogeochemical Coupling of Fe and Tc Speciation in Subsurface Sediments: Implications to Long-Term Tc Immobilization

    SciTech Connect

    Jim K. Fredrickson; C. I. Steefel; R. K. Kukkadapu; S. M. Heald

    2006-06-01

    The project has been focused on biochemical processes in subsurface sediments involving Fe that control the valence state, solubility, and effective mobility of 99Tc. Our goal has been to understand the Tc biogeochemistry as it may occur in suboxic and biostimulated subsurface environments. Two objectives have been pursued: (1) To determine the relative reaction rates of 99Tc(VII)O2(aq) with metal reducing bacteria and biogenic Fe(II); and to characterize the identity, structure, and molecular speciation of Tc(IV) products formed through reaction with both biotic and abiotic reductants. (2) To quantify the biogeochemical factors controlling the reaction rate of O2 with Tc(IV)O2?nH2O in sediment resulting from the direct enzymatic reduction of Tc(VII) by DIRB and/or the reaction of Tc(VII) with the various types of biogenic Fe(II) produced by DIRB.

  13. New Insights from Electrochemical Noise: A Coupled Biogeochemical and Electrochemical Investigation of an Anoxic Groundwater Seep

    NASA Astrophysics Data System (ADS)

    Enright, A. M.; Ferris, F. G.

    2013-12-01

    Understanding the electrochemical properties of microbial processes is a significant step towards developing physical and chemical signatures of biotic activity and the impact of microbes within Earth systems. Electrochemical noise techniques, borrowed from corrosion science, hold promise as a method of discerning contributions from chemical reactions occurring in a natural system. These techniques rely exclusively on measurements of fluctuation in potential or current to assess different chemical contributors. To this end, a coupled electrochemical and geochemical study of flocculent ocherous mats of bacteriogenic iron oxides in an anoxic, neutral pH groundwater seep near Deep River, Ontario, Canada, was undertaken. Hydrogeochemical properties, including redox potential, dissolved oxygen, and dissolved ferrous and total iron concentrations were measured in a series of three microcosms. (A), a chemical control of 0.22 μm filtered groundwater; (B) an abiotic control with 50 mL of autoclaved biogenic iron oxides (BIOS), and (C), a live microcosm with 50 mL of BIOS. All BIOS and groundwater samples were collected at a distance of 200 cm from the spring source using sterile syringes, and measurements were recorded every 30 minutes over a period of two hours from initial collection. Redox potential was measured using a Pt/Ag/Ag-Cl electrode and a National Instruments data-acquisition device (DAQ) at a frequency of 200 Hz for 60 seconds at 30 minute intervals, for the purpose of electrochemical noise analysis. After 120 minutes, for microcosm (A), 75% of the initial total dissolved iron remained in solution, as well as 32% of the initial dissolved ferrous iron. The pseudo-first order rate constant for Fe2+ oxidation was 0.007 min-1. Dissolved oxygen increased from 1.40 mg/L to 2.74 mg/L, and redox potential remained relatively constant at approximately 248 mV, relative to the standard hydrogen electrode (SHE), over this time interval. In microcosm (B), 16% of the total

  14. Perirheic mixing and biogeochemical processing in flow-through and backwater floodplain wetlands

    NASA Astrophysics Data System (ADS)

    Jones, C. Nathan; Scott, Durelle T.; Edwards, Brandon L.; Keim, Richard F.

    2014-09-01

    Inundation hydrology and associated processes control biogeochemical processing in floodplains. To better understand how hydrologic connectivity, residence time, and intrafloodplain mixing vary in floodplain wetlands, we examined how water quality of two contrasting areas in the floodplain of the Atchafalaya River—a flow-through and a backwater wetland—responded to an annual flood pulse. Large, synoptic sampling campaigns occurred in both wetlands during the rising limb, peak, and falling limb of the hydrograph. Using a combination of conservative and reactive tracers, we inferred three dominant processes that occurred over the course of the flood pulse: flushing (rising limb), advective transport (peak), and organic matter accumulation (falling limb). Biogeochemistry of the two wetlands was similar during the peak while the river overflowed into both. However, during the rising and falling limbs, flow in the backwater wetland experienced much greater residence time. This led to the accumulation of dissolved organic matter and dissolved phosphorus. There were also elevated ratios of dissolved organic carbon to nitrate in the backwater wetland, suggesting nitrogen removal was limited by nitrate transported into the floodplain there. Collectively, our results suggest inclusion of a temporal component into the perirheic concept more fully describes inundation hydrology and biogeochemistry in large river floodplain. This article was corrected on 6 OCT 2014. See the end of the full text for details

  15. Integrated Biogeochemical and Hydrologic Processes Driving Arsenic Release from Shallow Sediments to Groundwaters of the Mekong Delta

    SciTech Connect

    Kocar, Benjamin D.; Polizzotto, Matthew L.; Benner, Shawn G.; Ying, Samantha C.; Ung, Mengieng; Ouch, Kagna; Samreth, Sopheap; Suy, Bunseang; Phan, Kongkea; Sampson, Michael; Fendorf, Scott

    2008-11-01

    Arsenic is contaminating the groundwater of Holocene aquifers throughout South and Southeast Asia. To examine the biogeochemical and hydrological processes influencing dissolved concentrations and transport of As within soils/sediments in the Mekong River delta, a ~50 km₂ field site was established near Phnom Penh, Cambodia, where aqueous As concentrations are dangerously high and where groundwater retrieval for irrigation is minimal. Dissolved As concentrations vary spatially, ranging up to 1300 µg/L in aquifer groundwater and up to 600 µg/L in surficial clay pore water. Groundwaters with high As concentrations are reducing with negligible dissolved O₂ and high concentrations of Fe(II), NH⁺₄ , and dissolved organic C. Within near-surface environments, these conditions are most pronounced in sediments underlying permanent wetlands, often found within oxbow channels near the Mekong River. There, labile C, co-deposited with As-bearing Fe (hydr)oxides under reducing conditions, drives the reductive mobilization (inclusive of Fe and As reduction) of As. Here, conditions are described under which As is mobilized from these sediments, and near-surface As release is linked to aquifer contamination over long time periods (100s to 1000s of years). Site biogeochemistry is coupled with extensive hydrologic measurements, and, accordingly, a comprehensive interpretation of spatial As release and transport within a calibrated hydraulic flow-field is provided of an As-contaminated aquifer that is representative of those found throughout South and Southeast Asia.

  16. The effect of gold mining and processing on biogeochemical cycles in Muteh area, Isfahan province, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, B.; Moore, F.

    2009-04-01

    The environmental impacts of gold mining and processing on geochemical and biogeochemical cycles in Muteh region located northwest of Esfahan province and northeast of Golpaygan city is investigated. For this purpose systematic sampling was carried out in, rock, soil, water, and sediment environments along with plant, livestocks and human hair samples. Mineralogical and Petrological studies show that ore mineral such as pyrite and arsenopyrite along with fluorine-bearing minerals like tremolite, actinolite, biotite and muscovite occur in green schist, amphibolite and lucogranitic rocks in the area. The hydrochemistry of the analysed water samples indicate that As and F display the highest concentrations among the analysed elements. Indeed arsenic has the highest concentration in both topsoil and subsoil samples when compared with other potentially toxic elements. Anthropogenic activity also have it s greatest effect on increasing arsenic concentration among the analysed samples. The concentration of the majority of the analysed elements in the shoots and leaves of two local plants of the region i.e Artemesia and Penagum is higher than their concentration in the roots. Generally speaking, Artemesia has a greater tendency for bioaccumulating heavy metals. The results of cyanide analysis in soil samples show that cyanide concentration in the soils near the newly built tailing dam is much higher than that in the vicinity of the old tailing dam. The high concentration of fluorine in the drinking water of the Muteh village is the main reason of the observed dental fluorosis symptoms seen in the inhabitants. One of the two drinking water wells which is located near the metamorphic complex and supplies part of the tap water in the village, probably has the greatest impact in this regard. A decreasing trend in fluorine concentration is illustrated with increasing distance from the metamorphic complex. Measurements of As concentration in human hair specimens indicate that As

  17. Lacustrine wetland in an agricultural catchment: nitrogen removal and related biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Balestrini, R.; Arese, C.; Delconte, C.

    2007-09-01

    The role of specific catchment areas, such as the soil-river or lake interfaces, in removing or buffering the flux of N from terrestrial to aquatic ecosystems is globally recognized but the extreme variability of microbiological and hydrological processes make it difficult to predict the extent to which different wetlands function as buffer systems. In this paper we evaluate the degree to which biogeochemical processes in a lacustrine wetland are responsible for the nitrate removal from ground waters feeding Candia Lake (Northern Italy). A transect of 18 piezometers was installed perpendicular to the shoreline, in a sub-unit formed by 80 m of poplar plantation, close to a crop field and 30 m of reed swamp. The chemical analysis revealed a drastic NO3-N ground water depletion from the crop field to the lake, with concentrations decreasing from 15-18 mg N/l to the detection limit within the reeds. Patterns of Cl, SO4, O2, NO2-N, HCO3 and DOC suggest that the metabolic activity of bacterial communities, based on the differential use of electron donors and acceptors in redox reactions is the key function of this system. The significant inverse relationship found between NO3-N and HCO3 is a valuable indicator of the denitrification activity. The pluviometric regime, the temperature, the organic carbon availability and the hydrogeomorphic properties are the main environmental factors affecting the N transformations in the studied lacustrine ecosystem.

  18. Lacustrine wetland in an agricultural catchment: nitrogen removal and related biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Balestrini, R.; Arese, C.; Delconte, C.

    2008-03-01

    The role of specific catchment areas, such as the soil-river or lake interfaces, in removing or buffering the flux of N from terrestrial to aquatic ecosystems is globally recognized but the extreme variability of microbiological and hydrological processes make it difficult to predict the extent to which different wetlands function as buffer systems. In this paper we evaluate the degree to which biogeochemical processes in a lacustrine wetland are responsible for the nitrate removal from ground waters feeding Candia Lake (Northern Italy). A transect of 18 piezometers was installed perpendicular to the shoreline, in a sub-unit formed by 80 m of poplar plantation, close to a crop field and 30 m of reed swamp. The chemical analysis revealed a drastic NO3--N ground water depletion from the crop field to the lake, with concentrations decreasing from 15-18 mg N/l to the detection limit within the reeds. Patterns of Cl-, SO42-, O2, NO2--N, HCO3- and DOC suggest that the metabolic activity of bacterial communities, based on the differential use of electron donors and acceptors in redox reactions is the key function of this system. The significant inverse relationship found between NO3--N and HCO3- is a valuable indicator of the denitrification activity. The pluviometric regime, the temperature, the organic carbon availability and the hydrogeomorphic properties are the main environmental factors affecting the N transformations in the studied lacustrine ecosystem.

  19. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    NASA Astrophysics Data System (ADS)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  20. Biogeochemical processes in the ocean and at the ocean-atmosphere interface

    NASA Astrophysics Data System (ADS)

    Saliot, A.

    2006-12-01

    The ocean can be considered as a chemical reactor, whose energy sources are the various matter inputs originating from the continent and the ocean. Among various elements, carbon plays a key role as it is involved in both inorganic form as CO{2} and organic forms such as compounds synthesized through photosynthesis. Thus, the ocean is presently an active actor in climate change and ocean-atmosphere exchange processes. This review will present some insights into: 1) schematic representations of the carbon cycle, with emphasis on CO{2} exchange between the ocean and the atmosphere and to the organic parts of this cycle, 2) concepts relative to the biological pump of CO{2}, with a detailed view on photosynthesis, 3) concepts leading to the existence of oceanic provinces and associated productivity for open sea and coastal areas, 4) addressing the question: what is the net efficiency of the biological pump of CO{2 }in terms of exportation of organic carbon and sequestration in sediments and 5) specific aspects on biogeochemical processes occurring at the boundary between the ocean and the atmosphere.

  1. Biogeochemical processes and nutrient cycling within an artificial reef off Southern Portugal.

    PubMed

    Falcão, M; Santos, M N; Vicente, M; Monteiro, C C

    2007-06-01

    This study (2002/2004) examines the effect of artificial reef (AR) structures off the southern coast of Portugal on biogeochemical process and nutrient cycling. Organic and inorganic carbon, nitrogen, phosphorus and chlorophyll a were determined monthly in sediment cores and settled particles for a two-year period. Ammonium, nitrates, phosphates, silicates, total organic nitrogen and phosphorus, chlorophyll a and phaeopigments were also determined monthly in water samples within AR and control sites. Results of the two-year study showed that: (i) there was a significant exponential fit between organic carbon and chlorophyll a (r2=0.91; p<0.01) in reef sediment suggesting an increase of benthic productivity; (ii) organic carbon and nitrogen content in settled particles within AR environment was about four times higher two years after reef deployment; (iii) nutrients and chlorophyll a in the water column were higher at AR than control site. Two years after AR deployment, dissolved organic and inorganic compounds in near bottom water were 30-60% higher, emphasizing benthic remineralization processes at AR's organically rich sediment. Marked chemical changes in the ecosystem were observed during the two-year study period, reinforcing the importance of these structures for sandy coastal areas rehabilitation through trophic chain pull-out. PMID:17239434

  2. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    USGS Publications Warehouse

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. Biogeochemical processes controlling density stratification in an iron-meromictic lake

    NASA Astrophysics Data System (ADS)

    Nixdorf, E.; Boehrer, B.

    2015-06-01

    Biogeochemical processes and mixing regime of a lake can control each other mutually. The prominent case of iron meromixis is investigated in Waldsee near Doebern, a small lake that originated from surface mining of lignite. From a four years data set of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed changing chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we constructed a lab experiment, in which aeration of monimolimnetic waters removed iron compounds and organic material. Precipitates could be identified by visual inspection. Introduced air bubbles ascended through the water column and formed a water mass similar to the mixolimnetic Waldsee water. The remaining less dense water remained floating on the nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron rich deep groundwater and the aeration through the lake surface were fully sufficient.

  4. A continuous time random walk approach to model biogeochemical processes in rivers and hyporheic water

    NASA Astrophysics Data System (ADS)

    Aubeneau, A. F.; Drummond, J. D.; Packman, A. I.

    2011-12-01

    Exchange of solutes and particles between river channels and the subsurface is critical for biogeochemical processes in rivers. Subsurface water moves slowly, delaying downstream transport and providing ample time for reactions to proceed. We present a stochastic modeling framework for the transport of reactive solutes in rivers based on continuous time random walk theory. This model includes solute transport, storage, and reactions in both the channel and the bed. Hyporheic residence times can take any distribution. The model produces realistic breakthrough curves for conservative and reactive solutes. Reactive solutes breakthrough curves exhibit characteristic late time truncation. We have also extended the model for river networks and use it to assess how the interaction of exchange rates, residence time distributions and reaction rates affect export at the watershed scale. We show that extended travel times reduce total export, but in proportions that vary with reaction kinetics relative to transport rates. When reactions are fast relative to transport rates, exchange between the surface and subsurface tend to control removal whereas for slow reactions, residence time distributions become more important.

  5. Seasonal Variation in Floodplain Biogeochemical Processing in a Restored Headwater Stream.

    PubMed

    Jones, C Nathan; Scott, Durelle T; Guth, Christopher; Hester, Erich T; Hession, W Cully

    2015-11-17

    Stream and river restoration activities have recently begun to emphasize the enhancement of biogeochemical processing within river networks through the restoration of river-floodplain connectivity. It is generally accepted that this practice removes pollutants such as nitrogen and phosphorus because the increased contact time of nutrient-rich floodwaters with reactive floodplain sediments. Our study examines this assumption in the floodplain of a recently restored, low-order stream through five seasonal experiments. During each experiment, a floodplain slough was artificially inundated for 3 h. Both the net flux of dissolved nutrients and nitrogen uptake rate were measured during each experiment. The slough was typically a source of dissolved phosphorus and dissolved organic matter, a sink of NO3(-), and variable source/sink of ammonium. NO3(-) uptake rates were relatively high when compared to riverine uptake, especially during the spring and summer experiments. However, when scaled up to the entire 1 km restoration reach with a simple inundation model, less than 0.5-1.5% of the annual NO3(-) load would be removed because of the short duration of river-floodplain connectivity. These results suggest that restoring river-floodplain connectivity is not necessarily an appropriate best management practice for nutrient removal in low-order streams with legacy soil nutrients from past agricultural landuse. PMID:26463837

  6. Biogeochemical processes and the diversity of Nhecolândia lakes, Brazil.

    PubMed

    Almeida, Teodoro I R; Calijuri, Maria do Carmo; Falco, Patrícia B; Casali, Simone P; Kupriyanova, Elena; Paranhos Filho, Antonio C; Sigolo, Joel B; Bertolo, Reginaldo A

    2011-06-01

    The Pantanal of Nhecolândia, the world's largest and most diversified field of tropical lakes, comprises approximately 10,000 lakes, which cover an area of 24,000 km(2) and vary greatly in salinity, pH, alkalinity, colour, physiography and biological activity. The hyposaline lakes have variable pHs, low alkalinity, macrophytes and low phytoplankton densities. The saline lakes have pHs above 9 or 10, high alkalinity, a high density of phytoplankton and sand beaches. The cause of the diversity of these lakes has been an open question, which we have addressed in our research. Here we propose a hybrid process, both geochemical and biological, as the main cause, including (1) a climate with an important water deficit and poverty in Ca(2+) in both superficial and phreatic waters; and (2) an elevation of pH during cyanobacteria blooms. These two aspects destabilise the general tendency of Earth's surface waters towards a neutral pH. This imbalance results in an increase in the pH and dissolution of previously precipitated amorphous silica and quartzose sand. During extreme droughts, amorphous silica precipitates in the inter-granular spaces of the lake bottom sediment, increasing the isolation of the lake from the phreatic level. This paper discusses this biogeochemical problem in the light of physicochemical, chemical, altimetric and phytoplankton data. PMID:21670869

  7. Linking Food Webs and Biogeochemical Processes in Wetlands: Insights From Sulfur Isotopes

    NASA Astrophysics Data System (ADS)

    Stricker, C. A.; Guntenspergen, G. R.; Rye, R. O.

    2005-05-01

    To better understand the transfer of nutrients into prairie wetland food webs we have investigated the cycling of S (via S isotope systematics and geochemistry) in a prairie wetland landscape by characterizing sources (ground water, interstitial water, surface water) and processes in a small catchment comprised of four wetlands in eastern South Dakota. We focused on S to derive process information that is not generally available from carbon isotopes alone. The wetlands chosen for study spanned a considerable range in SO4 concentration (0.1-13.6 mM), which corresponded with landscape position. Ground water δ34SSO4 values remained relatively constant (mean = -13.2 per mil) through time. However, δ34SSO4 values of wetland surface waters ranged from -2.9 to -30.0 per mil (CDT) and were negatively correlated with SO4 concentrations (p<0.05). The isotopic variability of surface water SO4 resulted from mixing with re-oxidized sulfides associated with recently flushed wetland soils. The δ34S signatures of wetland primary (Gastropoda: Stagnicola elodes) and secondary (Odonata: Anax sp.) consumers were significantly related to surface water δ34SSO4 values (p<0.05) suggesting that food web components were responding to changes in the isotopic composition of the S source. Both primary and secondary consumer δ34S signatures differed between wetlands (ANOVA, p<0.05). These data illustrate the complexity of S cycling in prairie wetlands and the influence of wetland hydrologic and biogeochemical processes on prairie wetland food webs. Additionally, this work has demonstrated that sulfur isotopes can provide unique source and process information that cannot be derived from traditional carbon and nitrogen isotope studies.

  8. New HYDRUS Modules for Simulating Preferential Flow, Colloid-Facilitated Contaminant Transport, and Various Biogeochemical Processes in Soils

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Sejna, M.; Jacques, D.; Langergraber, G.; Bradford, S. A.; van Genuchten, M. Th.

    2012-04-01

    We have dramatically expanded the capabilities of the HYDRUS (2D/3D) software package by developing new modules to account for processes not available in the standard HYDRUS version. These new modules include the DualPerm, C-Hitch, HP2/3, Wetland, and Unsatchem modules. The dual-permeability modeling approach of Gerke and van Genuchten [1993] simulating preferential flow and transport is implemented into the DualPerm module. Colloid transport and colloid-facilitated solute transport, the latter often observed for many contaminants, such as heavy metals, radionuclides, pharmaceuticals, pesticides, and explosives [Šimůnek et al., 2006] are implemented into the C-Hitch module. HP2 and HP3 are the two and three-dimensional alternatives of the HP1 module, currently available with HYDRUS-1D [Jacques and Šimůnek, 2005], that couple HYDRUS flow and transport routines with the generic geochemical model PHREEQC of Parkhurst and Appelo [1999]. The Wetland module includes two alternative approaches (CW2D of Langergraber and Šimůnek [2005] and CWM1 of Langergraber et al. [2009]) for modeling aerobic, anaerobic, and anoxic biogeochemical processes in natural and constructed wetlands. Finally, the Unsatchem module simulates the transport and reactions of major ions in a soil profile. Brief descriptions and an application of each module will be presented. Except for HP3, all modules simulate flow and transport processes in two-dimensional transport domains. All modules are fully supported by the HYDRUS graphical user interface. Further development of these modules, as well as of several other new modules (such as Overland), is still envisioned. Continued feedback from the research community is encouraged.

  9. COUPLED REACTIVE TRANSPORT MODELING BASED ON THE NEW BIOGEOCHEMICAL CODE HP1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The migration of many naturally occurring elements and contaminants in the subsurface is affected by a multitude of complex, interactive physical, chemical, mineralogical, geological, and biological processes. Recently, a new comprehensive simulation tool HP1 (HYDRUS1D-PHREEQC) was developed by cou...

  10. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    NASA Astrophysics Data System (ADS)

    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.

    2015-03-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity in any hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water-column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting data set was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air-sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment-water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  11. Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Spencer, K. L.; Harvey, G. L.

    2012-06-01

    Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

  12. Parameter Sensitivity and Laboratory Benchmarking of a Biogeochemical Process Model for Enhanced Anaerobic Dechlorination

    NASA Astrophysics Data System (ADS)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.

    2008-12-01

    A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems

  13. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  14. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  15. Significant Findings: Tracking the SeaWiFS Record with a Coupled Physical/Biogeochemical/Radiative Model of the Global Oceans

    NASA Technical Reports Server (NTRS)

    Watson, Gregg W.

    2000-01-01

    The Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) has observed 2.5 years of routine global chlorophyll observations from space. The mission was launched into a record El Nino event, which eventually gave way to one of the most intensive and longest-lasting La Nina events ever recorded. The SeaWiFS chlorophyll record captured the response of ocean phytoplankton to these significant events in the tropical Indo-Pacific basins, but also indicated significant interannual variability unrelated to the El Nino/La Nina events. This included large variability in the North Atlantic and Pacific basins, in the North Central and equatorial Atlantic, and milder patterns in the North Central Pacific. This SeaWiFS record was tracked with a coupled physical/biogeochemical/radiative model of the global oceans using near-real-time forcing data such as wind stresses, sea surface temperatures, and sea ice. This provided an opportunity to offer physically and biogeochemically meaningful explanations of the variability observed in the SeaWiFS data set, since the causal mechanisms and interrelationships of the model are completely understood. The coupled model was able to represent the seasonal distributions of chlorophyll during the SeaWiFS era, and was capable of differentiating among the widely different processes and dynamics occurring in the global oceans. The model was also reasonably successful in representing the interannual signal, especially when it was large, such as, the El Nino and La Nina events in the tropical Pacific and Indian Oceans. The model provided different phytoplankton group responses for the different events in these regions: diatoms were predominant in the tropical Pacific during the La Nina but other groups were predominant during El Nino. The opposite condition occurred in the tropical Indian Ocean. Both situations were due to the different responses of the basins to El Nino. The interannual variability in the North Atlantic, which was exhibited in Sea

  16. Biogeochemical responses following coral mass spawning on the Great Barrier Reef: pelagic-benthic coupling

    NASA Astrophysics Data System (ADS)

    Wild, C.; Jantzen, C.; Struck, U.; Hoegh-Guldberg, O.; Huettel, M.

    2008-03-01

    This study quantified how the pulse of organic matter from the release of coral gametes triggered a chain of pelagic and benthic processes during an annual mass spawning event on the Australian Great Barrier Reef. Particulate organic matter (POM) concentrations in reef waters increased by threefold to 11-fold the day after spawning and resulted in a stimulation of pelagic oxygen consumption rates that lasted for at least 1 week. Water column microbial communities degraded the organic carbon of gametes of the broadcast-spawning coral Acropora millepora at a rate of >15% h-1, which is about three times faster than the degradation rate measured for larvae of the brooding coral Stylophora pistillata. Stable isotope signatures of POM in the water column reflected the fast transfer of organic matter from coral gametes into higher levels of the food chain, and the amount of POM reaching the seafloor immediately increased after coral spawning and then tailed-off in the next 2 weeks. Short-lasting phytoplankton blooms developed within a few days after the spawning event, indicating a prompt recycling of nutrients released through the degradation of spawning products. These data show the profound effects of coral mass spawning on the reef community and demonstrate the tight recycling of nutrients in this oligotrophic ecosystem.

  17. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins.

    PubMed

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to <0.016 mg L, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts. PMID:22370419

  18. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Harris, Willie G.; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L-1 and decreases in nitrate nitrogen (NO3-–N) from 2.7 mg L-1 to -1, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0–7.8 mg L-1), resulting in NO3-–N of 1.3 to 3.3 mg L-1 in shallow groundwater. Enrichment of d15N and d18O of NO3- combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO3- transport beneath the sandy basin. Soil-extractable NO3-–N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO3- impacts.

  19. Assessment of the GHG reduction potential from energy crops using a combined LCA and biogeochemical process models: a review.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  20. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    PubMed Central

    Jiang, Dong; Hao, Mengmeng; Wang, Qiao; Huang, Yaohuan; Fu, Xinyu

    2014-01-01

    The main purpose for developing biofuel is to reduce GHG (greenhouse gas) emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA), as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG) emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops) soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed. PMID:25045736

  1. A skill assessment of the biogeochemical model REcoM2 coupled to the finite element sea-ice ocean model (FESOM 1.3)

    NASA Astrophysics Data System (ADS)

    Schourup-Kristensen, V.; Sidorenko, D.; Wolf-Gladrow, D. A.; Völker, C.

    2014-07-01

    In coupled ocean-biogeochemical models, the choice of numerical schemes in the ocean circulation component can have a large influence on the distribution of the biological tracers. Biogeochemical models are traditionally coupled to ocean general circulation models (OGCMs), which are based on dynamical cores employing quasi regular meshes, and therefore utilize limited spatial resolution in a global setting. An alternative approach is to use an unstructured-mesh ocean model, which allows variable mesh resolution. Here, we present initial results of a coupling between the Finite Element Sea-ice Ocean Model (FESOM) and the biogeochemical model REcoM2, with special focus on the Southern Ocean. Surface fields of nutrients, chlorophyll a and net primary production were compared to available data sets with focus on spatial distribution and seasonal cycle. The model produced realistic spatial distributions, especially regarding net primary production and chlorophyll a, whereas the iron concentration became too low in the Pacific Ocean. The modelled net primary production was 32.5 Pg C yr-1 and the export production 6.1 Pg C yr-1. This is lower than satellite-based estimates, mainly due to the excessive iron limitation in the Pacific along with too little coastal production. Overall, the model performed better in the Southern Ocean than on the global scale, though the assessment here is hindered by the lower availability of observations. The modelled net primary production was 3.1 Pg C yr-1 in the Southern Ocean and the export production 1.1 Pg C yr-1. All in all, the combination of a circulation model on an unstructured grid with an ocean biogeochemical model shows similar performance to other models at non-eddy-permitting resolution. It is well suited for studies of the Southern Ocean, but on the global scale deficiencies in the Pacific Ocean would have to be taken into account.

  2. Identifying biogeochemical processes beneath stormwater infiltration ponds in support of a new best management practice for groundwater protection

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin

    2011-01-01

     When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.

  3. MOPS-1.0: towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Kriest, I.; Oschlies, A.

    2015-09-01

    Global models of the oceanic nitrogen cycle are subject to many uncertainties regarding the representation of the relevant biogeochemical processes and of the feedbacks between nitrogen sources and sinks that determine space- and timescales on which the global nitrogen budget is regulated. We investigate these aspects using a global model of ocean biogeochemistry that explicitly considers phosphorus and nitrogen, including pelagic denitrification and nitrogen fixation as sink and source terms of fixed nitrogen, respectively. The model explores different parameterizations of organic matter sinking speed, oxidant affinity of oxic and suboxic remineralization, and regulation of nitrogen fixation by temperature and different stoichiometric ratios. Examination of the initial transient behavior of different model setups initialized from observed biogeochemical tracer distributions reveal changes in simulated nitrogen inventories and fluxes particularly during the first centuries. Millennial timescales have to be resolved in order to bring all biogeochemical and physical processes into a dynamically consistent steady state. Analysis of global properties suggests that not only particularly particle sinking speed but also the parameterization of denitrification determine the extent of oxygen minimum zones, global nitrogen fluxes, and hence the oceanic nitrogen inventory. However, the ways and directions in which different parameterizations of particle sinking, nitrogen fixation, and denitrification affect the global diagnostics are different suggesting that these may, in principle, be constrained independently from each other. Analysis of the model misfit with respect to observed biogeochemical tracer distributions and fluxes suggests a particle flux profile close to the one suggested by Martin et al. (1987). Simulated pelagic denitrification best agrees with the lower values between 59 and 84 Tg N yr-1 recently estimated by other authors.

  4. Synchronous DOM and dissolved phosphorus release in riparian soil waters: linking water table fluctuations and biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Gruau, G.; Dupas, R.; Humbert, G.; GU, S.; Jeanneau, L.; Fovet, O.; Denis, M.; Gascuel-Odoux, C.; Jaffrezic, A.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Petitjean, P.

    2015-12-01

    Riparian zones are often viewed as hot spots controlling N, C, P and Fe cycling and export in catchments. Groundwater and surface water flowpaths converge in these zones, and encounter the most reactive, organic-rich, uppermost soil horizons, while being at the same time zones in which soil moisture conditions temporarily fluctuate due to changes in water table depth, which can trigger biogeochemical processes. One well documented example is the process of denitrification which can remove N from riparian groundwater due to the anaerobic reduction of nitrate by soil organic matter. However, the role of riparian zones on the cycling of other nutrients such as dissolved organic matter (DOM) and dissolved P (DP) is much less well documented. In this study, we evaluated this role by using time series of DOM and DP concentrations obtained on the Kervidy-Naizin catchment, a temperate agricultural headwater catchment controlled by shallow groundwater. Over 2 years, groundwater DOM and DP were monitored fortnightly both in the riparian zones and at the bottom of hillslope domains. Two periods of synchronous DOM and DP release were evidenced, the first corresponding to the rise of the water table after the dry summer period, the second being concomitant of the installation of reducing conditions. The reductive dissolution of soil Fe oxyhydroxides initiated by the prolonged soil water saturation caused the second peak, a process which was, however, strongly temporarily and spatially variable at the catchment scale, being dependent on i) the local topographic slope and ii) the annual rainfall amount and frequency. As regard the first peak, it was due either to the flushing by the water table of DOM and DP accumulated during the summer period, or to the release of microbial DOM and DP due to microbial biomass killing by osmotic shock. This study argues for the existence of coupled and complex DOM and DP release processes in the riparian zones of shallow groundwater dominated

  5. Carbon Characteristics and Biogeochemical Processes of Uranium Accumulating Organic Matter Rich Sediments in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Boye, K.; Noel, V.; Tfaily, M. M.; Dam, W. L.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium plume persistence in groundwater aquifers is a problem on several former ore processing sites on floodplains in the upper Colorado River Basin. Earlier observations by our group and others at the Old Rifle Site, CO, have noted that U concentrations are highest in organic rich, fine-grained, and, therefore, diffusion limited sediment material. Due to the constantly evolving depositional environments of floodplains, surficial organic matter may become buried at various stages of decomposition, through sudden events such as overbank flooding and through the slower progression of river meandering. This creates a discontinuous subsurface distribution of organic-rich sediments, which are hotspots for microbial activity and thereby central to the subsurface cycling of contaminants (e.g. U) and biologically relevant elements (e.g. C, N, P, Fe). However, the organic matter itself is poorly characterized. Consequently, little is known about its relevance in driving biogeochemical processes that control U fate and transport in the subsurface. In an investigation of soil/sediment cores from five former uranium ore processing sites on floodplains distributed across the Upper Colorado River Basin we confirmed consistent co-enrichment of U with organic-rich layers in all profiles. However, using C K-edge X-ray Absorption Spectroscopy (XAS) coupled with Fourier-Transformed Ion-Cyclotron-Resonance Mass-Spectroscopy (FT-ICR-MS) on bulk sediments and density-separated organic matter fractions, we did not detect any chemical difference in the organic rich sediments compared to the surrounding coarser-grained aquifer material within the same profile, even though there were differences in organic matter composition between the 5 sites. This suggests that U retention and reduction to U(IV) is independent of C chemical composition on the bulk scale. Instead it appears to be the abundance of organic matter in combination with a limited O2 supply in the fine-grained material that

  6. Biogeochemical Processes Contributing to Nickel Dynamics Within a Mine Tailings Impacted Lake

    NASA Astrophysics Data System (ADS)

    Bernier, L.; Warren, L. A.

    2001-12-01

    Nickel mining in the Sudbury area in Ontario, Canada has been pursued since the late 1920's by Falconbridge and INCO. Large tailings deposits have therefore been generated and require remediation. At the Onaping mine site, Moose Lake is used as the treatment pond for tailings. The drainage released has had a profound effect on Moose Lake's geochemistry, rendering it highly acidic (pH below 3.5), metal impacted, and chemically stratified. These conditions removed higher trophic levels, thus making microbial processes dominant. Since Moose Lake discharges into the Onaping River system, waters from its upper basin need to be treated. Presently, chemical treatment is performed, however this procedure is not useful for long-term remediation. Rather, an effective remediation strategy for Moose Lake requires an understanding of metal transport through, and cycling within, its water column and particularly of the role that microbial processes play in influencing metal fate. Since the prevailing geochemical conditions and processes occurring within this lake are not well characterized, our aims are to: determine metal concentrations through the water column; identify potential solid phases retaining metals; and to identify biogeochemical processes controlling the dynamics of their partitioning. Initial samples were collected from June - Sept. 2001 for water column metals (particulate (above 0.45 um), colloidal (0.2-0.45 um) and dissolved (lower than 0.2um), iron (Fe3+ and Fe2+) sulfate and sulfide, microbial community structure and physico-chemical parameters (pH, temperature, O2, redox, conductivity). Results indicate that the water column is chemically stratified at a depth of 3.5 m (25 m max. depth). Water column pH is less than 3.5 and shows low to anoxic conditions below the chemocline. Metal analyses indicate high dissolved nickel concentrations (700 uM). A depth related decrease of Ni levels was observed near the sediment-water interface, probably due to solid

  7. Using Bathymodiolus tissue stable isotope signatures to infer biogeochemical process at hydrocarbon seeps

    NASA Astrophysics Data System (ADS)

    Feng, D.; Kiel, S.; Qiu, J.; Yang, Q.; Zhou, H.; Peng, Y.; Chen, D.

    2015-12-01

    Here we use stable isotopes of carbon, nitrogen and sulfur in the tissue of two bathymodiolin mussel species with different chemotrophic symbionts (methanotrophs in B. platifrons and sulfide-oxidizers in B. aduloides) to gain insights into the biogeochemical processes at an active site in 1120 m depth on the Formosa Ridge, called Site F. Because mussels with methanotrophic symbionts acquire the isotope signature of the used methane, the average δ13C values of B. platifrons (-70.3‰; n=36) indicates a biogenic methane source at Site F, consistent with the measured carbon isotope signature of methane (-61.1‰ to -58.7‰) sampled 1.5 m above the mussel beds. The only small offset between the δ13C signatures of the ascending methane and the authigenic carbonate at site F (as low as -55.3‰) suggests only minor mixing of the pore water with marine bicarbonate, which in turn may be used as an indicator for advective rather than diffusive seepage at this site. B. aduloides has much higher average δ13C values of -34.4‰ (n=9), indicating inorganic carbon (DIC) dissolved in epibenthic bottom water as its main carbon source. The DIC was apparently marine bicarbonate with a small contribution of 13C-depleted carbon from locally oxidized methane. The δ34S values of the two mussel species indicate that they used two different sulfur sources. B. platifrons (average δ34S = +6.4±2.6‰; n=36) used seawater sulfate mixed with isotopically light re-oxidized sulfide from the sulfate-dependent anaerobic oxidation of methane (AOM), while the sulfur source of B. aduloides (δ34S = -8.0±3.1‰; n=9) was AOM-derived sulfide used by its symbionts. δ15N values differed between the mussels, with B. platifrons having a wider range of on average slightly lower values (mean = +0.5±0.7‰, n=36) than B. aduloides (mean = +1.1±0.0‰). These values are significantly lower than δ15N values of South China Sea deep-sea sediments (+5‰ to +6‰), indicating that the organic nitrogen

  8. Biogeochemical hotspots within forested landscapes: quantifying the functional role of vernal pools in ecosystem processes

    NASA Astrophysics Data System (ADS)

    Capps, K. A.; Rancatti, R.; Calhoun, A.; Hunter, M.

    2013-12-01

    Biogeochemical hotspots are characterized as small areas within a landscape matrix that show comparably high chemical reaction rates relative to surrounding areas. For small, natural features to generate biogeochemical hotspots within a landscape, their contribution to nutrient dynamics must be significant relative to nutrient demand of the surrounding landscape. In northeastern forests in the US, vernal pools are abundant, small features that typically fill in spring with snow melt and precipitation and dry by the end of the summer. Ephemeral flooding alters soil moisture and the depth of the oxic/anoxic boundary in the soil, which may affect leaf-litter decomposition rates and nutrient dynamics including denitrification. Additionally, pool-breeding organisms may influence nutrient dynamics via consumer-driven nutrient remineralization. We studied the effects of vernal pools on rates of leaf-litter decomposition and denitrification in forested habitats in Maine. Our results indicate leaf-litter decomposition and denitrification rates in submerged habitats of vernal pools were greater than in upland forest habitat. Our data also suggest pool-breeding organisms, such as wood frogs, may play an important role in nutrient dynamics within vernal pools. Together, the results suggest vernal pools may function as biogeochemical hotspots within forested landscapes.

  9. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia.

    PubMed

    Park, Ji-Hyung; Duan, Lei; Kim, Bomchul; Mitchell, Myron J; Shibata, Hideaki

    2010-02-01

    An overview is provided of the potential effects of climate change on the watershed biogeochemical processes and surface water quality in mountainous watersheds of Northeast (NE) Asia that provide drinking water supplies for large populations. We address major 'local' issues with the case studies conducted at three watersheds along a latitudinal gradient going from northern Japan through the central Korean Peninsula and ending in southern China. Winter snow regimes and ground snowpack dynamics play a crucial role in many ecological and biogeochemical processes in the mountainous watersheds across northern Japan. A warmer winter with less snowfall, as has been projected for northern Japan, will alter the accumulation and melting of snowpacks and affect hydro-biogeochemical processes linking soil processes to surface water quality. Soils on steep hillslopes and rich in base cations have been shown to have distinct patterns in buffering acidic inputs during snowmelt. Alteration of soil microbial processes in response to more frequent freeze-thaw cycles under thinner snowpacks may increase nutrient leaching to stream waters. The amount and intensity of summer monsoon rainfalls have been increasing in Korea over recent decades. More frequent extreme rainfall events have resulted in large watershed export of sediments and nutrients from agricultural lands on steep hillslopes converted from forests. Surface water siltation caused by terrestrial export of sediments from these steep hillslopes is emerging as a new challenge for water quality management due to detrimental effects on water quality. Climatic predictions in upcoming decades for southern China include lower precipitation with large year-to-year variations. The results from a four-year intensive study at a forested watershed in Chongquing province showed that acidity and the concentrations of sulfate and nitrate in soil and surface waters were generally lower in the years with lower precipitation, suggesting year

  10. A skill assessment of the biogeochemical model REcoM2 coupled to the Finite Element Sea Ice-Ocean Model (FESOM 1.3)

    NASA Astrophysics Data System (ADS)

    Schourup-Kristensen, V.; Sidorenko, D.; Wolf-Gladrow, D. A.; Völker, C.

    2014-11-01

    In coupled biogeochmical-ocean models, the choice of numerical schemes in the ocean circulation component can have a large influence on the distribution of the biological tracers. Biogeochemical models are traditionally coupled to ocean general circulation models (OGCMs), which are based on dynamical cores employing quasi-regular meshes, and therefore utilize limited spatial resolution in a global setting. An alternative approach is to use an unstructured-mesh ocean model, which allows variable mesh resolution. Here, we present initial results of a coupling between the Finite Element Sea Ice-Ocean Model (FESOM) and the biogeochemical model REcoM2 (Regulated Ecosystem Model 2), with special focus on the Southern Ocean. Surface fields of nutrients, chlorophyll a and net primary production (NPP) were compared to available data sets with a focus on spatial distribution and seasonal cycle. The model produces realistic spatial distributions, especially regarding NPP and chlorophyll a, whereas the iron concentration becomes too low in the Pacific Ocean. The modelled NPP is 32.5 Pg C yr-1 and the export production 6.1 Pg C yr-1, which is lower than satellite-based estimates, mainly due to excessive iron limitation in the Pacific along with too little coastal production. The model performs well in the Southern Ocean, though the assessment here is hindered by the lower availability of observations. The modelled NPP is 3.1 Pg C yr-1 in the Southern Ocean and the export production 1.1 Pg C yr-1. All in all, the combination of a circulation model on an unstructured grid with a biogeochemical-ocean model shows similar performance to other models at non-eddy-permitting resolution. It is well suited for studies of the Southern Ocean, but on the global scale deficiencies in the Pacific Ocean would have to be taken into account.

  11. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands

    SciTech Connect

    Berthrong, Sean T; Schadt, Christopher Warren; Pineiro, Gervasio; Jackson, Robert B

    2009-01-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH{sub 4}{sup +} in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils.

  12. Afforestation alters the composition of functional genes in soil and biogeochemical processes in South American grasslands.

    PubMed

    Berthrong, Sean T; Schadt, Christopher W; Piñeiro, Gervasio; Jackson, Robert B

    2009-10-01

    Soil microbes are highly diverse and control most soil biogeochemical reactions. We examined how microbial functional genes and biogeochemical pools responded to the altered chemical inputs accompanying land use change. We examined paired native grasslands and adjacent Eucalyptus plantations (previously grassland) in Uruguay, a region that lacked forests before European settlement. Along with measurements of soil carbon, nitrogen, and bacterial diversity, we analyzed functional genes using the GeoChip 2.0 microarray, which simultaneously quantified several thousand genes involved in soil carbon and nitrogen cycling. Plantations and grassland differed significantly in functional gene profiles, bacterial diversity, and biogeochemical pool sizes. Most grassland profiles were similar, but plantation profiles generally differed from those of grasslands due to differences in functional gene abundance across diverse taxa. Eucalypts decreased ammonification and N fixation functional genes by 11% and 7.9% (P < 0.01), which correlated with decreased microbial biomass N and more NH(4)(+) in plantation soils. Chitinase abundance decreased 7.8% in plantations compared to levels in grassland (P = 0.017), and C polymer-degrading genes decreased by 1.5% overall (P < 0.05), which likely contributed to 54% (P < 0.05) more C in undecomposed extractable soil pools and 27% less microbial C (P < 0.01) in plantation soils. In general, afforestation altered the abundance of many microbial functional genes, corresponding with changes in soil biogeochemistry, in part through altered abundance of overall functional gene types rather than simply through changes in specific taxa. Such changes in microbial functional genes correspond with altered C and N storage and have implications for long-term productivity in these soils. PMID:19700539

  13. Urban pollution of sediments: Impact on the physiology and burrowing activity of tubificid worms and consequences on biogeochemical processes.

    PubMed

    Pigneret, M; Mermillod-Blondin, F; Volatier, L; Romestaing, C; Maire, E; Adrien, J; Guillard, L; Roussel, D; Hervant, F

    2016-10-15

    In urban areas, infiltration basins are designed to manage stormwater runoff from impervious surfaces and allow the settling of associated pollutants. The sedimentary layer deposited at the surface of these structures is highly organic and multicontaminated (mainly heavy metals and hydrocarbons). Only few aquatic species are able to maintain permanent populations in such an extreme environment, including the oligochaete Limnodrilus hoffmeisteri. Nevertheless, the impact of urban pollutants on these organisms and the resulting influence on infiltration basin functioning remain poorly studied. Thus, the aim of this study was to determine how polluted sediments could impact the survival, the physiology and the bioturbation activity of L. hoffmeisteri and thereby modify biogeochemical processes occurring at the water-sediment interface. To this end, we conducted laboratory incubations of worms, in polluted sediments from infiltration basins or slightly polluted sediments from a stream. Analyses were performed to evaluate physiological state and burrowing activity (X-ray micro-tomography) of worms and their influences on biogeochemical processes (nutrient fluxes, CO2 and CH4 degassing rates) during 30-day long experiments. Our results showed that worms exhibited physiological responses to cope with high pollution levels, including a strong ability to withstand the oxidative stress linked to contamination with heavy metals. We also showed that the presence of urban pollutants significantly increased the burrowing activity of L. hoffmeisteri, demonstrating the sensitivity and the relevance of such a behavioural response as biomarker of sediment toxicity. In addition, we showed that X-ray micro-tomography was an adequate technique for accurate and non-invasive three-dimensional investigations of biogenic structures formed by bioturbators. The presence of worms induced stimulations of nutrient fluxes and organic matter recycling (between +100% and 200% of CO2 degassing rate

  14. In situ response of bay productivity to nutrient loading from a small tributary: The Delaware Bay-Murderkill Estuary tidally-coupled biogeochemical reactor

    NASA Astrophysics Data System (ADS)

    Voynova, Yoana G.; Lebaron, Karine C.; Barnes, Rebecca T.; Ullman, William J.

    2015-07-01

    A small, turbid and nutrient-rich tributary, the Murderkill Estuary, and a large estuarine ecosystem, the Delaware Bay, are tightly linked and form an efficient, tidally-coupled biogeochemical reactor during the summer. Nitrate loading from the Murderkill Estuary generates an instantaneous increase in biological oxygen production in the adjacent Delaware Bay. We are able to capture this primary production response with continuous hourly measurements of dissolved oxygen, chlorophyll, and nitrate. The nitrate influxes from the Murderkill support primary production rates in the Delaware Bay margins that are twice as high as the average production rates measured in the central Bay regions. This elevates chlorophyll in the Bay margins in the summer and fuels metabolism. Tidal transport of the newly produced autochthonous chlorophyll particles from the Bay into the Estuary could also provide a source of labile material to the marshes surrounding the Murderkill, thus perhaps fueling marsh respiration. As a consequence of the tidal coupling between Delaware Bay and the Murderkill Estuary, ecosystem productivity and metabolism in the Bay and Estuary are linked, generating an ecosystem feedback mechanism. Storms modulate this tidally-coupled biogeochemical reactor, by generating significant nitrate and salinity changes. Depending on their magnitude and duration, storms induce large phytoplankton blooms in the Delaware Bay. Such large phytoplankton blooms may occur more often with climate change, since century-long discharge records document an increase in storm frequency.

  15. Spatial patterns in soil biogeochemical process rates along a Louisiana wetland salinity gradient in the Barataria Bay estuarine system

    NASA Astrophysics Data System (ADS)

    Roberts, B. J.; Rich, M. W.; Sullivan, H. L.; Bledsoe, R.; Dawson, M.; Donnelly, B.; Marton, J. M.

    2014-12-01

    Louisiana has the highest rates of coastal wetland loss in the United States. In addition to being lost, Louisiana wetlands experience numerous other environmental stressors including changes in salinity regime (both increases from salt water intrusion and decreases from the creation of river diversions) and climate change induced changes in vegetation (e.g. the northward expansion of Avicennia germinans (black mangrove) into salt marshes). In this study, we examined how these changes might influence biogeochemical process rates important in regulating carbon balance and the cycling, retention, and removal of nutrients in Louisiana wetlands. Specifically, we measured net soil greenhouse gas fluxes and collected cores for the determination of rates of greenhouse gas production, denitrification potential, nitrification potential, iron reduction, and phosphorus sorption from surface (0-5cm) and subsurface (10-15cm) depths for three plots in each of 4 sites along the salinity gradient: a freshwater marsh site, a brackish (7 ppt) marsh site, a salt marsh (17 ppt), and a Avicennia germinans stand (17 ppt; adjacent to salt marsh site) in the Barataria Bay estuarine system. Most biogeochemical processes displayed similar spatial patterns with salt marsh rates being lower than rates in freshwater and/or brackish marsh sites and not having significantly different rates than in Avicennia germinans stands. Rates in surface soils were generally higher than in subsurface soils. These patterns were generally consistent with spatial patterns in soil properties with soil water content, organic matter quantity and quality, and extractable nutrients generally being higher in freshwater and brackish marsh sites than salt marsh and Avicennia germinans sites, especially in surface soils. These spatial patterns suggest that the ability of coastal wetlands to retain and remove nutrients might change significantly in response to future climate changes in the region and that these

  16. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms.

    PubMed Central

    Farrington, J W

    1991-01-01

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussing chemical and geochemical aspects of biogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of entering ecosystems, and their physical chemical forms are discussed. Important factors that influence bioavailability and disposition (e.g., organism-water partitioning, uptake via food, food web transfer) are reviewed. These factors include solubilities of chemicals; partitioning of chemicals between solid surfaces, colloids, and soluble phases; variables rates of sorption, desorption; and physiological status of organism. It appears that more emphasis on considering food as a source of uptake and bioaccumulation is important in benthic and epibenthic ecosystems when sediment-associated pollutants are a significant source of input to an aquatic ecosystem. Progress with mathematical models for exposure and uptake of contaminant chemicals is discussed briefly. PMID:1904812

  17. Coping Processes of Couples Experiencing Infertility

    ERIC Educational Resources Information Center

    Peterson, Brennan D.; Newton, Christopher R.; Rosen, Karen H.; Schulman, Robert S.

    2006-01-01

    This study explored the coping processes of couples experiencing infertility. Participants included 420 couples referred for advanced reproductive treatments. Couples were divided into groups based on the frequency of their use of eight coping strategies. Findings suggest that coping processes, which are beneficial to individuals, may be…

  18. Analysis of mixing and biogeochemical effects induced by tides on the Atlantic Mediterranean flow in the Strait of Gibraltar through a physical biological coupled model

    NASA Astrophysics Data System (ADS)

    Macías, D.; Martin, A. P.; García-Lafuente, J.; García, C. M.; Yool, A.; Bruno, M.; Vázquez-Escobar, A.; Izquierdo, A.; Sein, D. V.; Echevarría, F.

    2007-08-01

    The output of a two-layer hydrodynamic model along a west-east section of the Gibraltar Strait is used to estimate tidal induced mixing between the Mediterranean and Atlantic water layers and to simulate the effects of mixing processes on biogeochemical fluxes and the pelagic community of the area. The hydrodynamic model is used to estimate interfacial mixing and water advection which drive the dynamics of the pelagic community. The model was run for 13 months, in order to analyse the effect of annual modulations in tidal amplitude on mixing. Incorporation of a third intermediate layer leads to a significant improvement in the model results, showing the necessity for a three layer circulation scheme when modelling biogeochemical processes in the Strait of Gibraltar. Pelagic processes are modelled using a simple Nutrient-Phytoplankton-Zooplankton (NPZ) model. The intense physical mixing and advection in the channel are the main influence on plankton dynamics in the area. It is found that residence times within the channel are so short that phytoplankton communities cannot grow appreciably during their transit. As a consequence, the use of a more sophisticated biogeochemical model does not lead to significant changes in the results obtained. According to the model, mixing over the Camarinal Sill causes an average of 16% of the out-flowing nutrients to be returned back to the Mediterranean. This fraction varies between 4% and 35% as a function of the tidal amplitude. The comparison of the model results with field data suggests that in order to obtain an accurate simulation of the plankton ecosystem dynamics in the strait, it is necessary to take into account the full horizontal flow, as recirculation and coast-channel interactions seems to be very important processes in explaining the biological patterns in the area.

  19. Earthquake-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    an ionospheric phenomenon attributed to tsunami, termed tsunamigenic ionospheric hole (TIH) [Kakinami and Kamogwa et al., GRL, 2012]. After the TEC depression accompanying a monoperiodic variation with approximately 4-minute period as an acoustic resonance between the ionosphere and the solid earth, the TIH gradually recovered. In addition, geomagnetic pulsations with the periods of 150, 180 and 210 seconds were observed on the ground in Japan approximately 5 minutes after the mainshock. Since the variation with the period of 180 seconds was simultaneously detected at the magnetic conjugate of points of Japan, namely Australia, field aligned currents along the magnetic field line were excited. The field aligned currents might be excited due to E and F region dynamo current caused by acoustic waves originating from the tsunami. This result implies that a large earthquake generates seismogenic field aligned currents. Furthermore, monoperiodical geomagnetic oscillation pointing to the epicenter of which velocity corresponds to Rayleigh waves occurs. This may occur due to seismogenic arc-current in E region. Removing such magnetic oscillations from the observed data, clear tsunami dynamo effect was found. This result implies that a large EQ generates seismogenic field aligned currents, seismogenic arc-current and tsunami dynamo current which disturb geomagnetic field. Thus, we found the complex coupling process between a large EQ and an ionosphere from the results of Tohoku EQ.

  20. Ozone and Nitrogen Deposition as Modifiers of Biogeochemical Fluxes and Processes in California Forests

    NASA Astrophysics Data System (ADS)

    Fenn, M. E.

    2011-12-01

    The combined effects of ozone and N deposition results in major perturbations of C and N cycling in forests of southern and central California. Increased shoot:root ratios of the major trees species, N-stimulation of aboveground growth, and premature foliar abscission result in greater aboveground C and N pools. Fire suppression exacerbates these perturbations and provides the opportunity for chronic N deposition to further increase the stand densification problem. Long-term litter decomposition rates are retarded by N enrichment which contributes further to litter accumulation in the forest floor. Stage 3 of N saturation in California mixed conifer forests occurs as chronic N deposition, in conjunction with co-occurring ozone effects, decreases fine root biomass, interferes with stomatal control, and increases the susceptibility of ponderosa pine trees to drought stress and bark beetle attack, leading to increased stand mortality. Hot moments of N transfers from canopy to the forest floor occur during precipitation events that follow long dry periods, but particularly during fog events. During initial soil wet up, pulses of NO and N2O emissions from the forest floor occur. Streamwater losses of nitrate are highest following storms preceded by dry periods, but also during peak runoff, typically in February and March. However, major losses of accumulated N occur during and after fire events. However, ecosystem N budgets, biogeochemical modeling studies and experimental burns in N-saturated chaparral catchments in southern California demonstrate that symptoms of N excess are not easily reversed by N release in and following fire. Even with decreased N deposition, momentum for elevated N losses from California forests would likely continue, driven by actively nitrifying soils and increased N content of litter and soil organic matter. Initial studies show that during peak runoff, as much as 20-40% of runoff nitrate in some catchments is throughput of unassimilated

  1. Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients

    NASA Astrophysics Data System (ADS)

    Spiteri, Claudette; Slomp, Caroline P.; Tuncay, Kagan; Meile, Christof

    2008-02-01

    A two-dimensional density-dependent reactive transport model, which couples groundwater flow and biogeochemical reactions, is used to investigate the fate of nutrients (NO3-, NH4+, and PO4) in idealized subterranean estuaries representing four end-members of oxic/anoxic aquifer and seawater redox conditions. Results from the simplified model representations show that the prevalent flow characteristics and redox conditions in the freshwater-seawater mixing zone determine the extent of nutrient removal and the input of nitrogen and phosphorus to coastal waters. At low to moderate groundwater velocities, simultaneous nitrification and denitrification can lead to a reversal in the depth of freshwater NO3- and NH4+-PO4 plumes, compared to their original positions at the landward source. Model results suggest that autotrophic denitrification pathways with Fe2+ or FeS2 may provide an important, often overlooked link between nitrogen and phosphorus biogeochemistry through the precipitation of iron oxides and subsequent binding of phosphorus. Simulations also highlight that deviations of nutrient data from conservative mixing curves do not necessarily indicate nutrient removal.

  2. Biogeochemical and hydrologic processes controlling mercury cycling in Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Naftz, D.; Kenney, T.; Angeroth, C.; Waddell, B.; Darnall, N.; Perschon, C.; Johnson, W. P.

    2006-12-01

    Great Salt Lake (GSL), in the Western United States, is a terminal lake with a highly variable surface area that can exceed 5,100 km2. The open water and adjacent wetlands of the GSL ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere, as well as a brine shrimp industry with annual revenues exceeding 70 million dollars. Despite the ecologic and economic significance of GSL, little is known about the biogeochemical cycling of mercury (Hg) and no water-quality standards currently exist for this system. Whole water samples collected since 2000 were determined to contain elevated concentrations of total Hg (100 ng/L) and methyl Hg (33 ng/L). The elevated levels of methyl Hg are likely the result of high rates of SO4 reduction and associated Hg methylation in persistently anoxic areas of the lake at depths greater than 6.5 m below the water surface. Hydroacoustic equipment deployed in this anoxic layer indicates a "conveyor belt" flow system that can distribute methyl Hg in a predominantly southerly direction throughout the southern half of GSL (fig. 1, URL: http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs- AUG06.pdf). Periodic and sustained wind events on GSL may result in transport of the methyl Hg-rich anoxic water and bottom sediments into the oxic and biologically active regions. Sediment traps positioned above the anoxic brine interface have captured up to 6 mm of bottom sediment during cumulative wind-driven resuspension events (fig. 2, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Vertical velocity data collected with hydroacoustic equipment indicates upward flow > 1.5 cm/sec during transient wind events (fig. 3, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Transport of methyl Hg into the oxic regions of GSL is supported by biota samples. The median Hg concentration (wet weight) in brine shrimp increased seasonally from the spring to fall time period and is likely a

  3. Effect of sulfidogenesis cycling on the biogeochemical process in arsenic-enriched aquifers in the Lanyang Plain of Taiwan: Evidence from a sulfur isotope study

    NASA Astrophysics Data System (ADS)

    Kao, Yu-Hsuan; Liu, Chen-Wuing; Wang, Pei-Ling; Liao, Chung-Min

    2015-09-01

    This study evaluated the biogeochemical interactions between arsenic (As) and sulfur (S) in groundwater to understand the natural and anthropogenic influences of S redox processes on As mobilization in the Lanyang Plain, Taiwan. Cl- and the sulfate isotopic composition (δ34S[SO4]) were selected as conservative tracers. River water and saline seawater were considered as end members in the binary mixing model. Thirty-two groundwater samples were divided into four types of groundwater (I, pyrite-oxidation; II, iron- and sulfate-reducing; III, sulfate-reducing; and IV, anthropogenic and others). The binary mixing model coupled with discriminant analysis was applied to yield a classification with 97% correctness, indicating that the DO/ORP values and δ34S[SO4] and Fe2+ concentrations are effective redox-sensitive indicators. Type I groundwater is mostly located in a mountainous recharge area where pyrite oxidation is the major geochemical process. A high 18O enrichment factor (ε[SO4-H2O]) and high 34S enrichment factor (ε34S[FeS2-SO4]) indicate that disproportionation and dissimilatory sulfate reduction are both involved in Type II and Type III groundwater. The process of bacterial sulfate reduction may coprecipitate and sequester As, a mechanism that is unlikely to occur in Type II groundwater. The presence of high As and Fe2+ concentrations and enriched δ34S[SO4] in Type II groundwater suggest that biogeochemical reactions occurred under anaerobic conditions. The reductive dissolution of As-bearing Fe oxyhydroxides together with microbial disproportionation of sulfur explains the substantial correlations among the high As concentration and enriched δ34S[SO4] and Fe2+ concentrations in the iron- and sulfate-reducing zone (Type II). The As concentration in Type III groundwater (sulfate-reducing) is lower than that in Type II groundwater because of bacterial sulfate reduction and coprecipitation with As. Furthermore, the dissolution of sulfate minerals is not the

  4. The influence of biogeochemical processes on the pH dynamics in the seasonally hypoxic saline Lake Grevelingen, The Netherlands

    NASA Astrophysics Data System (ADS)

    Hagens, Mathilde; Slomp, Caroline; Meysman, Filip; Borges, Alberto; Middelburg, Jack

    2013-04-01

    Coastal areas experience more pronounced short-term fluctuations in pH than the open ocean due to higher rates of biogeochemical processes such as primary production, respiration and nitrification. These processes and changes therein can mask or amplify the ocean acidification signal induced by increasing atmospheric pCO2. Coastal acidification can be enhanced when eutrophication-induced hypoxia develops. This is because the carbon dioxide produced during respiration leads to a decrease in the buffering capacity of the hypoxic bottom water. Saline Lake Grevelingen (SW Netherlands) has limited water exchange with the North Sea and experiences seasonal bottom water hypoxia, which differs in severity interannually. Hence this lake provides an ideal site to study how coastal acidification is affected by seasonal hypoxia. We examined the annual cycle of the carbonate system in Lake Grevelingen in 2012 and how biogeochemical processes in the water column impact it. Monthly measurements of all carbonate system parameters (DIC, pH, fCO2 and TA), suspended matter, oxygen and nutrients were accompanied by measurements of primary production and respiration using O2 light-dark incubations. Primary production was also estimated every season using 14C-incubations and monthly via 13C-labeling of phospholipid-derived fatty acids (PLFA). Finally, incubations to estimate nitrification and NH4 uptake using 15N-enriched ammonium were carried out seasonally. Preliminary results show that the hypoxic period was rather short in 2012. During stratification and hypoxia, pH varied by up to 0.75 units between the oxic surface water and the hypoxic bottom water. Consistency calculations of the carbonate system reveal that pH is best computed using DIC and TA and that there is no significant difference between TA measured on filtered (0.45 μm) and unfiltered samples. Primary production rates were highest in summer and range up to 800 mmol C/m2/d. Nitrification rates varied between 73

  5. Variability of atmospheric greenhouse gases as a biogeochemical processing signal at regional scale in a karstic ecosystem

    NASA Astrophysics Data System (ADS)

    Borràs, Sílvia; Vazquez, Eusebi; Morguí, Josep-Anton; Àgueda, Alba; Batet, Oscar; Cañas, Lídia; Curcoll, Roger; Grossi, Claudia; Nofuentes, Manel; Occhipinti, Paola; Rodó, Xavier

    2015-04-01

    The South-eastern area of the Iberian Peninsula is an area where climatic conditions reach extreme climatic conditions during the year, and is also heavily affected by the ENSO and NAO. The Natural Park of Cazorla, Segura de la Sierra and Las Villas is located in this region, and it is the largest protected natural area in Spain (209920 Ha). This area is characterized by important climatic and hydrologic contrasts: although the mean annual precipitation is 770 nm, the karstic soils are the main cause for water scarcity during the summer months, while on the other hand it is in this area where the two main rivers of Southern Spain, the Segura and the Guadalquivir, are born. The protected area comprises many forested landscapes, karstic areas and reservoirs like Tranco de Beas. The temperatures during summer are high, with over 40°C heatwaves occurring each year. But during the winter months, the land surface can be covered by snow for periods of time up until 30 days. The ENSO and NAO influences cause also an important inter annual climatic variability in this area. Under the ENSO, autumnal periods are more humid while the following spring is drier. In this area vegetal Mediterranean communities are dominant. But there are also a high number of endemic species and derelict species typical of temperate climate. Therefore it is a protected area with high specific diversity. Additionally, there is an important agricultural activity in the fringe areas of the Natural Park, mainly for olive production, while inside the Park this activity is focused on mountain wheat production. Therefore the diverse vegetal communities and landscapes can easily be under extreme climatic pressures, affecting in turn the biogeochemical processes at the regional scale. The constant, high-frequency monitoring of greenhouse gases (GHG) (CO2 and CH4) integrates the biogeochemical signal of changes in this area related to the carbon cycle at the regional scale, capturing the high diversity of

  6. Are Changes in Biogeochemical or Hydrologic Processes Responsible for Increasing DOC Concentrations in Headwater Streams of Northeastern North America?

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Murdoch, P. S.

    2005-12-01

    The recent recognition of widespread and significant upward trends in dissolved organic carbon (DOC) concentrations in surface waters of northeastern North America and Europe has stimulated research to understand the cause of these trends. Several factors have been offered to explain these DOC trends including climate warming, chronic atmospheric nitrogen deposition, decreasing atmospheric sulfur deposition, and increasing surface water pH. Changes in these factors have acted to either increase the solubility of DOC or increase the rates of biogeochemical processes that generate labile carbon in the soil. Additionally, it is well known that rain events and snowmelt increase DOC concentrations in many surface waters through flushing along shallow flow paths where most labile carbon is stored. Changes in hydrologic flushing rates have generally not been explored as a possible explanation of these widely reported upward trends in DOC concentrations. Biscuit Brook, a 9.9 km2 catchment in the Catskill Mountains of New York has shown a significant increasing trend in DOC concentrations since 1992, consistent with other streams in this region. Stream chemistry has been monitored at Biscuit Brook on a weekly basis supplemented with event samples since 1983, providing a detailed data set with which to examine the causes of changes in DOC concentrations. Here, we examine the relative roles of climate warming, decreasing sulfate (SO42-) and nitrate (NO3-) concentrations, and changes in the frequency and size of hydrologic events on the long-term temporal pattern (1992 to 2004) of DOC concentrations in Biscuit Brook. DOC concentrations increased significantly in weekly samples collected primarily during low flow conditions. No similar trend was apparent in the high flow samples. Mean annual SO42- plus NO3- concentrations showed a strong inverse relation (r2 = 0.91, p < 0.01) to DOC concentrations, but these concentrations were not related to stream pH nor to air temperature

  7. [Neutrophilic lithotrophic iron-oxidizing prokaryotes and their role in the biogeochemical processes of the iron cycle].

    PubMed

    Dubinina, G A; Sorokina, A Iu

    2014-01-01

    Biology of lithotrophic neutrophilic iron-oxidizing prokaryotes and their role in the processes of the biogeochemical cycle of iron are discussed. This group of microorganisms is phylogenetically, taxonomically, and physiologically heterogeneous, comprising three metabolically different groups: aerobes, nitrate-dependent anaerobes, and phototrophs; the latter two groups have been revealed relatively recently. Their taxonomy and metabolism are described. Materials on the structure and functioning of the electron transport chain in the course of Fe(II) oxidation by members of various physiological groups are discussed. Occurrence of iron oxidizers in freshwater and marine ecosystems, thermal springs, areas of hydrothermal activity, and underwater volcanic areas are considered. Molecular genetic techniques were used to determine the structure of iron-oxidizing microbial communities in various natural ecosystems. Analysis of stable isotope fractioning of 56/54Fe in pure cultures and model experiments revealed predominance of biological oxidation over abiotic ones in shallow aquatic habitats and mineral springs, which was especially pronounced under microaerobic conditions at the redox zone boundary. Discovery of anaerobic bacterial Fe(II) oxidation resulted in development of new hypotheses concerning the possible role of microorganisms and the mechanisms of formation of the major iron ore deposits in Precambrian and early Proterozoic epoch. Paleobiological data are presented on the microfossils and specific biomarkers retrieved from ancient ore samples and confirming involvement of anaerobic biogenic processes in their formation. PMID:25423717

  8. [Neutrophilic lithotrophic iron-oxidizing prokaryotes and their role in the biogeochemical processes of the iron cycle].

    PubMed

    2014-01-01

    Biology of lithotrophic neutrophilic iron-oxidizing prokaryotes and their role in the processes of the biogeochemical cycle of iron are discussed. This group of microorganisms is phylogenetically, taxonomically, and physiologically heterogeneous, comprising three metabolically different groups: aerobes, nitrate-dependent anaerobes, and phototrophs; the latter two groups have been revealed relatively recently. Their taxonomy and metabolism are described. Materials on the structure and functioning of the electron transport chain in the course of Fe(II) oxidation by members of various physiological groups are discussed. Occurrence of iron oxidizers in freshwater and marine ecosystems, thermal springs, areas of hydrothermal activity, and underwater volcanic areas are considered. Molecular genetic techniques were used to determine the structure of iron-oxidizing microbial communities in various natural ecosystems. Analysis of stable isotope fractioning of 56/54Fe in pure cultures and model experiments revealed predominance of biological oxidation over abiotic ones in shallow aquatic habitats and mineral springs, which was especially pronounced under microaerobic conditions at the redox zone boundary. Discovery of anaerobic bacterial Fe(II) oxidation resulted in development of new hypotheses concerning the possible role of microorganisms and the mechanisms of formation of the major iron ore deposits in Precambrian and early Proterozoic epoch. Paleobiological data are presented on the microfossils and specific biomarkers retrieved from ancient ore samples and confirming involvement of anaerobic biogenic processes in their formation. PMID:25507440

  9. Non-conservative behaviors of chromophoric dissolved organic matter in a turbid estuary: Roles of multiple biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Yang, Liyang; Guo, Weidong; Hong, Huasheng; Wang, Guizhi

    2013-11-01

    Chromophoric dissolved organic matter (CDOM) may show notable non-conservative behaviors in many estuaries due to a variety of biogeochemical processes. The partition between CDOM and chromophoric particulate organic matter (CPOM) was examined in the Jiulong Estuary (China) using absorption and fluorescence spectroscopy, which was also compared with microbial and photochemical degradations. The absorption coefficient of water-soluble CPOM (aCPOM(280)) at ambient Milli-Q water pH (6.1) ranged from 0.11 to 7.94 m-1 in the estuary and was equivalent to 5-101% of CDOM absorption coefficient. The aCPOM(280) correlated significantly with the concentration of suspended particulate matter and was highest in the bottom water of turbidity maximum zone. Absorption spectral slope (S275-295) and slope ratio (SR) correlated positively with salinity for both CPOM and CDOM, suggesting decreases in the average molecular weight with increasing salinity. The adsorption of CDOM to re-suspended sediments (at 500 mg L-1) within 2 h was equivalent to 4-26% of the initial aCDOM(280). The adsorption of CDOM to particles was less selective with respect to various CDOM constituents, while the microbial degradation resulted decreases in S275-295 and SR of CDOM and preferential removal of protein-like components. The partition between CPOM and CDOM represented a rapid and important process for the non-conservative behavior of CDOM in turbid estuaries.

  10. U(VI) reduction at the nano, meso and meter scale: concomitant transition from simpler to more complex biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Veeramani, H.; Hochella, M. F.

    2012-12-01

    Reduction of aqueous hexavalent U(VI) to the sparingly soluble nanoparticulate mineral uraninite [UO2] represents a promising strategy for the in situ immobilization of uranium in contaminated subsurface sediments and groundwater. Studies related to uranium reduction have been extensively carried out at various scales ranging from nano to meso to the meter scale with varying degrees of success. While nanoscale processes involving simple two-electron transfer reactions such as enzymatic microbial U(VI) reduction results in biogenic UO2 formation, mesoscale processes involving minerals and U(VI) are a step up in complexity and have shown varying results ranging from partial uranium reduction to the formation of mixed U(IV)/U(V) species. Although nano- and meso-scale biogeochemical processes have been helpful in predicting the contaminant dynamics at the meter scale, their occurrence is not necessarily apparent in soils and aquifers given the enormous volume of contaminated groundwater to be remediated, among other factors. The formation and long-term stability of biologically reduced uranium at the meter scale is also determined in addition by the complex interplay of aqueous geochemistry, hydrology, soil and sediment mineralogy and microbial community dynamics. For instance, indigenous subsurface microbes often encounter multiple electron acceptors in heterogeneous environments during biostimulation and can catalyze the formation of various reactive biogenic minerals. In such cases, abiotic interactions between U(VI) and reactive biogenic minerals is potentially important because the success of a remediation strategy is contingent upon the speciation of reduced uranium. This presentation will give an overview of uranium reduction ranging from simple nanoscale biological processes to increasingly complex meso and meter scale processes involving abiotic interactions between aqueous uranium and nano-biogenic minerals and the effect of mineralogy and aqueous

  11. Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea)

    NASA Astrophysics Data System (ADS)

    Wegener, G.; Shovitri, M.; Knittel, K.; Niemann, H.; Hovland, M.; Boetius, A.

    2008-08-01

    Fluid flow related seafloor structures and gas seeps were detected in the North Sea in the 1970s and 1980s by acoustic sub-bottom profiling and oil rig surveys. A variety of features like pockmarks, gas vents and authigenic carbonate cements were found to be associated with sites of oil and gas exploration, indicating a link between these surface structures and the underlying, deep hydrocarbon reservoirs. In this study we performed acoustic surveys and videographic observation at Gullfaks, Holene Trench, Tommeliten, Witch's Hole and the giant pockmarks of the UK Block 15/25, to investigate the occurrence and distribution of cold seep ecosystems in the Northern North Sea. The most active gas seep sites, i.e. Gullfaks and Tommeliten, were investigated in detail. At both sites, gas bubbles escaped continuously from small holes in the seabed to the water column, reaching the upper mixed surface layer. At Gullfaks a gas emitting, flat area of 0.1 km2 of sandy seabed covered by filamentous sulfur-oxidizing bacteria was detected. At Tommeliten, we found a patchy distribution of small bacterial mats indicating sites of gas seepage. Below the patches the seafloor consisted of sand from which gas emissions were observed. At both sites, the anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was the major source of sulfide. Molecular analyses targeting specific lipid biomarkers and 16S rRNA gene sequences identified an active microbial community dominated by sulfur-oxidizing and sulfate-reducing bacteria (SRB) as well as methanotrophic bacteria and archaea. Stable carbon isotope values of specific, microbial fatty acids and alcohols from both sites were highly depleted in the heavy isotope 13C, indicating that the microbial community incorporates methane or its metabolites. The microbial community composition of both shallow seeps shows high similarities to the deep water seeps associated with gas hydrates such as Hydrate Ridge or the Eel River basin.

  12. Biogeochemical processes and microbial diversity of the Gullfaks and Tommeliten methane seeps (Northern North Sea)

    NASA Astrophysics Data System (ADS)

    Wegener, G.; Shovitri, M.; Knittel, K.; Niemann, H.; Hovland, M.; Boetius, A.

    2008-02-01

    Fluid-flow related seafloor structures and gas seeps were detected in the North Sea in the 1970s and 1980s by acoustic sub-bottom profiling and oil rig surveys. A variety of features like pockmarks, gas vents and authigenic carbonate cements were found to be associated with sites of oil and gas exploration, indicating a link between these surface structures and underlying deep hydrocarbon reservoirs. In this study we performed acoustic surveys and videographic observation at Gullfaks, Holene Trench, Tommeliten, Witch's Hole and the giant pockmarks of the UK Block 15/25, to investigate the occurrence and distribution of cold seep ecosystems in the Northern North Sea. The most active gas seep sites, i.e. Gullfaks and Tommeliten, were investigated in detail: at both sites gas bubbles escaped continuously from small holes in the seabed to the water column, reaching the upper mixed surface layer as indicated by acoustic images of the gas flares. At Gullfaks a 0.1 km2 large gas emission site was detected on a flat sandy seabed, covered by filamentous sulfide-oxidizing bacteria. At Tommeliten we found a patchy distribution of small bacterial mats indicating sites of gas seepage. Here the seafloor consists of layers of sand and stiff clay, and gas emission was observed from small cracks in the seafloor. At both sites the anaerobic oxidation of methane (AOM) coupled to sulfate reduction is the major source of sulfide. Molecular analyses targeting specific lipid biomarkers and 16 S rRNA gene sequences identified an active microbial community dominated by sulfide-oxidizing and sulfate-reducing bacteria (SRB) as well as methanotrophic bacteria and archaea. Carbon isotope values of specific microbial fatty acids and alcohols were highly depleted, indicating that the microbial community at both gas seeps incorporates methane or its metabolites. The microbial community composition of both shallow seeps show high similarities to the deep water seeps associated with gas hydrates

  13. The Effect of Biogeochemical and Hydrologic Processes on Nitrogen in Stream Water Originating From Coal-Bed Methane Supply Wells

    NASA Astrophysics Data System (ADS)

    Smith, R. L.; Repert, D. A.; Hart, C. P.

    2003-12-01

    Water obtained from coal-bed methane (CBM) wells typically contains a variety of reduced chemical constituents, including methane, metal ions, particulate and dissolved organic carbon, and ammonium. In many locales in Wyoming and Montana, CBM water is disposed via discharge to stream channels and reservoirs. Though it is likely that biogeochemical and hydrologic processes will result in major changes in the chemical composition of these waters with subsequent downstream transport, few studies have actually examined these water quality changes or their ecological impacts. A field study was conducted in the Powder River Basin, WY to document changes in solute composition within stream channels below discharge points of CBM water. Particular emphasis was placed on nitrogen and nitrogen cycling processes. Concentration ranges in discharge water were: DOC, 200-350 μ M; alkalinity, 40-50 meq/L; specific conductance, 3.3-4.0 mS/cm; ammonium, 350-400 μ M; and pH, 7.2-7.3. Ammonium concentrations decreased with transport distance via nitrification, with subsequent increases in nitrite and nitrate. Within a single discharge channel, nitrite concentrations increased with travel distance, peaking at >100 μ M at 100-200 m, but also exhibited a strong diel pattern that was inversely related to incident light. Nitrite production/consumption processes differed significantly within in-stream incubation chambers, depending upon location relative to the CBM discharge point and time of day. In the main channel, subject to several CBM discharge points, diel nitrite concentrations were more constant at a fixed station, but did increase with distance downstream. Main channel total inorganic nitrogen remained relatively constant ( ˜400 μ M N) with distance (>5 km), suggesting little net nitrogen removal. The results of this study suggest that CBM discharge can serve as a significant source of dissolved nitrogen to western watersheds, with oxidative processes resulting in nitrate and

  14. Changing Seasonality in the Arctic and its Influences on Biogeochemical Processing in Tundra River Networks

    NASA Astrophysics Data System (ADS)

    Bowden, W. B.; Gooseff, M. N.; Wollheim, W. M.; Herstand, M. R.; Treat, C. C.; Whittinghill, K. A.; Wlostowski, A. N.

    2011-12-01

    One of the primary expressions of climate change in the arctic is a change in "seasonality"; i.e., changes in the timing, duration, and characteristics of the traditional arctic seasons. These changes are most likely to affect temperature and precipitation patterns but will have relatively little effect on the annual light regime. Temperature, precipitation, and light are crucial drivers in any ecosystem and so the potential that the relationships between these three master environmental variables will change in the future has important consequences. Our research addresses how river networks process critical nutrients (C, N, and P) delivered from land as they are transported to coastal zones. We are currently focusing on land-water interactions in headwater streams. As in any ecosystem, temperature strongly influences microbial processing in soils and thus net mineralization of organic nutrients. Nutrients made available by microbial processing in the soil will be used by vegetation as long as the vegetation actively grows. However, active growth by vegetation is highly dependent on the annual light regime, which is not changing substantially. Thus, as arctic seasonality changes there is a growing asynchrony developing between production of nutrients by soil microbes and the demand for nutrients by vegetation, with greater production of nutrients by temperature-dependent microbes than demand by light-dependent vegetation. It is reasonable to expect that the "excess" nutrients produced in this way will migrate to streams and we hypothesize that this seasonal subsidy may strongly influence the structure and function of arctic stream ecosystems. Previous stream research in the arctic largely ignored the spring and fall tail seasons. Preliminary findings indicate that the seasonal asynchrony has profound influences on nutrient concentrations and autotrophic biomass in arctic streams. We expect this to have important influences on key processes such as primary

  15. Development of advanced process-based model towards evaluation of boundless biogeochemical cycles in terrestrial-aquatic continuum

    NASA Astrophysics Data System (ADS)

    Nakayama, Tadanobu; Maksyutov, Shamil

    2014-05-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which incorporates surface-groundwater interactions, includes up- and down-scaling processes between local, regional and global scales, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes. In this study, NICE was extended to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. Then, NICE was further developed to incorporate the biogeochemical cycle including the reaction between inorganic and organic carbons (DOC, POC, DIC, pCO2, etc.) in the biosphere (terrestrial and aquatic ecosystems including surface water and groundwater). The model simulated the carbon cycle, for example, CO2 evasion from inland water in global scale, which is relatively in good agreement in that estimated by empirical relation using the previous pCO2 data (Aufdenkampe et al., 2011; Global River Chemistry Database, 2013). This simulation system would play important role in identification of full greenhouse gas balance of the biosphere and spatio-temporal hot spots in boundless biogeochemical cycle (Cole et al. 2007; Frei et al. 2012). References; Aufdenkampe, A.K., et al., Front. Ecol. Environ., doi:10.1890/100014, 2011. Battin, T.J., et al., Nat. Geosci., 2, 598-600, 2009. Cole, J.J. et al., Ecosystems, doi:10.1007/s10021-006-9013-8, 2007. Fan, Y. et al

  16. Isotopic order, biogeochemical processes, and earth history - Goldschmidt lecture, Davos, Switzerland, August 2002

    NASA Astrophysics Data System (ADS)

    Hayes, John M.

    2004-04-01

    The impetus to interpret carbon isotopic signals comes from an understanding of isotopic fractionations imposed by living organisms. That understanding rests in turn on studies of enzymatic isotope effects, on fruitful concepts of isotopic order, and on studies of the distribution of 13C both between and within biosynthetic products. In sum, these studies have shown that the isotopic compositions of biological products are governed by reaction kinetics and by pathways of carbon flow. Isotopic compositions of individual compounds can indicate specific processes or environments. Examples include biomarkers which record the isotopic compositions of primary products in aquatic communities, which indicate that certain bacteria have used methane as a carbon source, and which show that some portions of marine photic zones have been anaerobic. In such studies, the combination of structural and isotopic lines of evidence reveals relationships between compounds and leads to process-related thinking. These are large steps. Reconstruction of the sources and histories of molecular fossils redeems much of the early promise of organic geochemistry by resolving and clarifying paleoenviron-mental signals. In turn, contemplation of this new information is driving geochemists to study microbial ecology and evolution, oceanography, and sedimentology.

  17. Parameterization of biogeochemical sediment-water fluxes using in-situ measurements and a steady-state diagenetic model

    NASA Astrophysics Data System (ADS)

    Laurent, Arnaud; Fennel, Katja; Wilson, Robin; Lehrter, John; Devereux, Richard

    2014-05-01

    Sediment biogeochemical processes are important drivers of water column biogeochemistry in coastal areas. For example, sediment oxygen consumption can be an important driver of bottom water oxygen depletion in hypoxic systems, and sediment-water nutrient fluxes support primary productivity in the overlying water column. Yet, biogeochemical sediment-water fluxes are often parameterized crudely and only poorly constrained in coupled physical-biogeochemical models. Here, we present a method for parameterizing biogeochemical sediment-water fluxes realistically and efficiently, using in-situ measurements and a steady state diagenetic model. We apply this method to the Louisiana Shelf where high primary production induced by excess nutrient loads from the Mississippi-Atchafalaya River system promotes the development of hypoxic bottom waters in summer. The implementation of the parameterizations in a coupled circulation-biogeochemical model of the northern Gulf of Mexico results in realistic sediment-water fluxes that enable a sediment-water column feedback at low bottom oxygen concentrations.

  18. Coupled processes associated with nuclear waste repositories

    SciTech Connect

    Tsang, C.F.

    1987-01-01

    This book deals with coupled processes which affect a nuclear waste repository. While there are many descriptive accounts of environmental degradation resulting from various land uses, the author emphasizes the geomorphic processes responsible for such changes and the reasons why various reclamation practices are valuable in environmental management.

  19. Coupled transport processes in semipermeable media

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1990-03-01

    The thermodynamics of irreversible processes leads to nonlinear governing equations for direct and coupled mass transport processes. Analytical solutions of linearized versions of these equations can be used to verify numerical solutions of the nonlinear equations under conditions such that nonlinear terms are relatively small. This report presents derivations of the analytical solutions for one-dimensional and axisymmetric geometries. 7 refs.

  20. Distinguishing biogeochemical processes influencing phosphorus dynamics in oxidizing and desiccating mud deposits from a freshwater wetland system

    NASA Astrophysics Data System (ADS)

    Saaltink, Rémon; Dekker, Stefan C.; Wassen, Martin J.; Griffioen, Jasper

    2015-04-01

    Focus and aim: Currently, lake Markermeer (680 km2) provides poor environmental conditions for the development of flora and fauna due to a thick fluffy layer that prevails at the lake's bed. To improve the conditions in the lake, large wetlands will be built from this fluffy layer, possibly mixed with sand or with the underlying Southern Sea deposit. The aim of this study is to distinguish biogeochemical processes influencing phosphorus dynamics in porewater during oxidation and desiccation of mud deposits from this lake. We focus on three important aspects that potentially influence these processes: granulometry, sediment type and modification by plants. Material and methods: A greenhouse experiment was conducted with three types of sediment that potentially will function as building material for the islands: fluffy mud (FM), sandy mud (SM) and Southern Sea deposit (SSD). Reed (Phragmites australis) was planted in half of the pots to distinguish influence by plants. For six months, the porewater-, soil- and plant quality was monitored to determine important biogeochemical processes. Variables measured from the porewater include: Cl-, NO2-, NO3-, PO43- and SO42- (IC); Ca, Fe, K, Mn, Na, P, Si, Sr (ICP-OES); as well as Fe2+, pH, alkalinity and EC. A phosphorus fractionation was carried out on the sediment to determine the phosphorus pools and the major elements of the sediments were determined following an aqua regia destruction using ICP-OES. Plant tissue was analysed for N, P, K and C content as well as the above- and belowground biomass. Results and discussion: It was found that sulfate production was the most important process influencing phosphorus availability in these soils. Due to oxidation processes in the mud, sulfate (SO42-) concentrations rose drastically in porewater from 100 ppm at the beginning of the experiment to well over 2000 ppm at the end of the experiment. This effect was strongest in SSD soils, likely due to higher presence of pyrite that gets

  1. Biogeochemical Processes in Late Archean Marine Biosphere Revealed by Isotopic and Molecular Records

    NASA Astrophysics Data System (ADS)

    Eigenbrode, J. L.; Freeman, K. H.; Summons, R. E.

    2004-12-01

    The presence of shallow-marine oxygen oases and associated aerobic ecosystems in an otherwise anoxic and anaerobic world has been proposed by researchers to explain the anomalous 40 permil spread in organic-carbon isotope values during the late Archean. To test this hypothesis, we studied isotopic, molecular, and lithologic records of 2.7-2.5 Ga rocks of different depositional facies from the Hamersley Province, Western Australia. Kerogen carbon-isotopic compositions indicate that extreme 13C-depletion (more than -45 permil) was associated with shallow-marine-carbonate environments at 2.72 Ga and with deepwater environments thereafter. Moreover, kerogen-carbon-isotope values associated with carbonate environments became enriched by more than 10 permil over 100-150 Ma. These observations suggest that microbial processes responsible for extreme 13C-depletion became less significant in shallow carbonate environments, but remained important in deeper settings. Molecular biomarker ratios determined for associated bitumens: 1) strongly correlate to kerogen carbon-isotope values and other biomarker ratios, and, 2) show relationships with depositional facies and dolomite abundance giving credence to a syngenetic relationship with host rocks. The biomarker data confirm aerobic methanotrophs in the Late Archean biosphere, but not in strong association with extreme 13C-depletion. Biomarker patterns reflect a greater association of aerobic respiration and oxygenic photosynthesis in shallow carbonate environments compared to deeper settings. Collectively, the data record dramatic changes in carbon cycling associated with environmental partitioning of microbial processes and ecosystems over 100-150 Ma. Most likely, this represents increased bioavailability of strong electron acceptors with the expansion of oxidant-rich oases prior to rise in atmospheric oxygen.

  2. One-Dimensional Coupled Ecosystem-Carbon Flux Model for the Simulation of Biogeochemical Parameters at Ocean Weather Station P

    NASA Technical Reports Server (NTRS)

    Signorini, S.; McClain, C.; Christian, J.; Wong, C. S.

    2000-01-01

    In this Technical Publication, we describe the model functionality and analyze its application to the seasonal and interannual variations of phytoplankton, nutrients, pCO2 and CO2 concentrations in the eastern subarctic Pacific at Ocean Weather Station P (OWSP, 50 deg. N 145 deg. W). We use a verified one-dimensional ecosystem model, coupled with newly incorporated carbon flux and carbon chemistry components, to simulate 22 years (1958-1980) of pCO2 and CO2 variability at Ocean Weather Station P (OWS P). This relatively long period of simulation verifies and extends the findings of previous studies using an explicit approach for the biological component and realistic coupling with the carbon flux dynamics. The slow currents and the horizontally homogeneous ocean in the subarctic Pacific make OWS P one of the best available candidates for modeling the chemistry of the upper ocean in one dimension. The chlorophyll and ocean currents composite for 1998 illustrates this premise. The chlorophyll concentration map was derived from SeaWiFS data and the currents are from an OGCM simulation (from R. Murtugudde).

  3. Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions

    SciTech Connect

    Fred J. Molz, III

    2010-05-28

    To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted

  4. The Precambrian Biogeochemical Carbon Isotopic Record: Contributions of Thermal Versus Biological Processes

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Superplumes offer a new approach for understanding global C cycles. Isotopes help to discern the impacts of geological, environmental and biological processes ujpun the evolution of these cycles. For example, C-13/C-12 values of coeval sedimentary organics and carbonates give global estimates of the fraction of C buried as organics (Forg), which today lies near 0.2. Before Oxygenic photosynthesis arose, our biosphere obtained reducing power for biosynthesis solely from thermal volatiles and rock alteration. Thus Forg was dominated by the mantle redox state, which has remained remarkably constant for greater than Gy. Recent data confirm that the long-term change in Forg had been small, indicating that the mantle redox buffer remains important even today. Oxygenic photosynthesis enabled life to obtain additional reducing power by splitting the water molecule. Accordingly, biological organic production rose above the level constrained by the mantle-derived flux of reduced species. For example, today, chemoautotrophs harvesting energy from hydrothermal emanations can synthesize at most between 0.2 x 10(exp 12) and 2x 10(exp 12) mol C yr-1 of organic C globally. In contrast, global photosynthetic productivity is estimated at 9000 x 10(exp 12) mol C yr-1. Occasionally photosynthetic productivity did contribute to dramatically -elevated Forg values (to 0.4 or more) as evidenced by very high carbonate C-13/C-12. The interplay between biological, tectonic and other environmental factors is illustrated by the mid-Archean to mid-Proterozoic isotopic record. The relatively constant C-13/C-12 values of Archean carbonates support the view that photosynthetically-driven Forg increases were not yet possible. In contrast, major excursions in C-13/C-12, and thus also in Forg, during the early Proterozoic confirmed the global importance of oxygenic photosynthesis by that time. Remarkably, the superplume event at 1.9 Ga did not trigger another major Forg increase, despite the

  5. Inorganic Carbon Cycling and Biogeochemical Processes in an Arctic Inland Sea (Hudson Bay)

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Miller, Lisa; Granskog, Mats; Papakyriakou, Tim; Pengelly, Leah

    2016-04-01

    The distributions of CO2 system parameters in Hudson Bay, which not only receives nearly one third of Canada's river discharge, but is also subject to annual cycles of sea-ice formation and melt, indicate that the timing and magnitude of freshwater inputs play an important role in carbon biogeochemistry and ocean acidification in this unique Arctic ecosystem. This study uses basin-wide measurements of dissolved inorganic carbon (DIC) and total alkalinity (TA), as well as stable isotope tracers (δ18OH2O and δ13CDIC), to provide a detailed assessment of carbon cycling processes throughout the bay. Surface distributions of carbonate parameters reveal the particular importance of freshwater inputs in the southern portion of the bay. Riverine TA end-members vary significantly both regionally and with small changes in near-surface depths, highlighting the importance of careful surface water sampling in highly stratified waters. In an along-shore transect, large increases in subsurface DIC are accompanied by equivalent decreases in δ13CDIC with no discernable change in TA, indicating a respiratory DIC production on the order of 100 μmol/kg during deep water circulation around the bay. Based on TA data we surmise that the deep waters in the Hudson Bay are of Pacific origin.

  6. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Nguyen, A. V.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Lake Gilmore in Western Australia is an acidic ephemeral lake that is analogous to Martian geochemical processes represented by interbedded phyllosilicates and sulfates. These areas demonstrate remnants of a global-scale change on Mars during the late Noachian era from a neutral to alkaline pH to relatively lower pH in the Hesperian era that continues to persist today. The geochemistry of these areas could possibly be caused by small-scale changes such as microbial metabolism. Two approaches were used to determine the presence of microbes in the Australian dry lake cores: DNA analysis and lipid analysis. Detecting DNA or lipids in the cores will provide evidence of living or deceased organisms since they provide distinct markers for life. Basic DNA analysis consists of extraction, amplification through PCR, plasmid cloning, and DNA sequencing. Once the sequence of unknown DNA is known, an online program, BLAST, will be used to identify the microbes for further analysis. The lipid analysis approach consists of phospholipid fatty acid analysis that is done by Microbial ID, which will provide direct identification any microbes from the presence of lipids. Identified microbes are then compared to mineralogy results from the x-ray diffraction of the core samples to determine if the types of metabolic reactions are consistent with the variation in composition in these analog deposits. If so, it provides intriguing implications for the presence of life in similar Martian deposits.

  7. [Biogeochemical processes of the major ions and dissolved inorganic carbon in the Guijiang River].

    PubMed

    Tang, Wen-Kui; Tao, Zhen; Gao, Quan-Zhou; Mao, Hai-Ruo; Jiang, Guang-Hui; Jiao, Shu-Lin; Zheng, Xiong-Bo; Zhang, Qian-Zhu; Ma, Zan-Wen

    2014-06-01

    Within the drainage basin, information about natural processes and human activities can be recorded in the chemical composition of riverine water. The analysis of the Guijiang River, the first level tributary of the Xijiang River, demonstrated that the chemical composition of water in the Guijiang River was mainly influenced by the chemical weathering of carbonate rocks within the drainage basin, in which CO2 was the main erosion medium, and that the weathering of carbonate rock by H2SO4 had a remarkable impact on the water chemical composition in the Guijiang River. Precipitation, human activities, the weathering of carbonate rocks and silicate rocks accounted for 2.7%, 6.3%, 72.8% and 18.2% of the total dissolved load, respectively. The stable isotopic compositions of dissolved inorganic carbon (delta13C(DIC)) indicated that DIC in the Guijiang River had been assimilated by the phytoplankton in photosynthesis. The primary production of phytoplankton contributed to 22.3%-30.9% of particulate organic carbon (POC) in the Guijiang River, which implies that phytoplankton can transform DIC into POC by photosynthesis, and parts of POC will sink into the bottom of the river in transit, which leads into the formation of burial organic carbon. PMID:25158483

  8. Impact of hydrotalcite deposition on biogeochemical processes in a shallow tropical bay.

    PubMed

    Alongi, Daniel M; McKinnon, A David

    2011-03-01

    The biogeochemistry of a tropical shoal bay (Melville Bay, Australia) impacted by the effluent release, precipitation, and deposition of hydrotalcite from an alumina refinery was studied in both wet and dry seasons. Within the deposition zone, sulfate reduction dominated benthic carbon cycling accounting for ≈100% of total microbial activity, with rates greater than those measured in most other marine sediments. These rapid rates of anoxic metabolism resulted in high rates of sulfide and ammonium production and low C:S ratios, implying significant preservation of S in stable sulfide minerals. Rates of total microbial activity were significantly less in control sediments of equivalent grain size, where sulfate reduction accounted for ≈50% of total benthic metabolism. Rates of planktonic carbon cycling overlying the deposition zone were also greater than those measured in the control areas of southern Melville Bay. At the sediment surface, productive algal and cyanobacterial mats helped stabilize the sediment surface and oxidize sulfide to sulfate to maintain a fully oxygenated water-column overlying the impacted zone. The mats utilized a significant fraction of dissolved inorganic N and P released from the sea bed; some nutrients escaped to the water-column such that benthic regeneration of NH₄+ and PO₄³⁻ accounted for 100% and 42% of phytoplankton requirements for N and P, respectively. These percentages are high compared to other tropical coastal environments and indicate that benthic nutrient recycling may be a significant factor driving water-column production overlying the deposition zone. With regard to remediation, it is recommended that the sea bed not be disturbed as attempts at removal may result in further environmental problems and would require specific assessment of the proposed removal process. PMID:21176952

  9. Benthic Communities as Indicators of Geological and Biogeochemical Processes in the Gulf of Papua

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Dhir, S.; Chummar, J.; Dantzler, M. M.; Aller, R. C.

    2003-12-01

    Benthic communities inhabiting Gulf of Papua deposits play important roles in determining remineralization and material cycling processes at the seafloor. Faunal abundances, size-frequency distributions, functional groups, and vertical distributions reflect a spectrum of diagenetic depositional environments produced by variations in local sediment transport dynamics and coastal morphology. Thus faunal properties provide a basis for comparison of factors influencing sediment - overlying water interactions, elemental cycling, and material storage. During mid NW monsoon periods (Jan-Feb), macrofaunal densities at Gulf stations are generally low (260 to 1270 m{-2 }), large macroinfauna are absent in the upper ˜25 cm, and small (< 0.5 mm) surface deposit-feeding polychaetes and tubiculous amphipods dominate, reflecting a frequently destabilized seabed and high sedimentation / erosion rates. Although significant numbers of macrofauna have generally been found to be absent over large areas due to frequent physical disturbance, sedimentary structures demonstrate that many regions of the GoP deltaic complex are periodically extensively bioturbated by relatively large and deep-burrowing infauna. Additionally, faunal samples from February 2003 have significantly increased numbers of opportunistic polychaete and crustacean species relative to 1999 and 2000, indicating that there are periods of faunal colonization and community expansion. These changes may correlate with decreased riverine sediment input associated with El Niño conditions. While the macrofaunal community is relatively depauperate and apparently subject to inhibition by inhospitable physical conditions, the microbial community is highly active, diverse, and abundant throughout the upper ˜1m. The dominance of bacteria and microfauna rather than macrofauna in wet tropical environments like the GoP, contrasts with many reactive continental shelf mud deposits in temperate regions.

  10. Impact of depositional and biogeochemical processes on small scale variations in nodule abundance in the Clarion-Clipperton Fracture Zone

    NASA Astrophysics Data System (ADS)

    Mewes, K.; Mogollón, J. M.; Picard, A.; Rühlemann, C.; Kuhn, T.; Nöthen, K.; Kasten, S.

    2014-09-01

    Manganese nodules of the Clarion-Clipperton Fracture Zone (CCFZ) in the NE Pacific Ocean are highly enriched in Ni, Cu, Co, Mo and rare-earth elements, and thus may be the subject of future mining operations. Elucidating the depositional and biogeochemical processes that contribute to nodule formation, as well as the respective redox environment, in both water column and sediment, supports our ability to locate future nodule deposits and to evaluate the potential ecological and environmental effects of future deep-sea mining. For these purposes we studied the local hydrodynamics and pore-water geochemistry with respect to the nodule coverage at four sites in the eastern CCFZ. Furthermore, we carried out selective leaching experiments at these sites in order to assess the potential mobility of Mn in the solid phase, and compared them with the spatial variations in sedimentation rates. We found that the oxygen penetration depth is 180-300 cm at all four sites, while reduction of Mn and NO3- is only significant below the oxygen penetration depth at sites with small or no nodules on the sediment surface. At the site without nodules, potential microbial respiration rates, determined by incubation experiments using 14C-labeled acetate, are slightly higher than at sites with nodules. Leaching experiments showed that surface sediments covered with big or medium-sized nodules are enriched in mobilizable Mn. Our deep oxygen measurements and pore-water data suggest that hydrogenetic and oxic-diagenetic processes control the present-day nodule growth at these sites, since free manganese from deeper sediments is unable to reach the sediment surface. We propose that the observed strong lateral contrasts in nodule size and abundance are sensitive to sedimentation rates, which in turn, are controlled by small-scale variations in seafloor topography and bottom-water current intensity.

  11. Investigating the interactions between biogeophysical and biogeochemical processes in the northern high latitudes using a land surface model; feedbacks and climatic impacts

    NASA Astrophysics Data System (ADS)

    Barman, R.; Jain, A.; Liang, M.; McGuire, A. D.

    2010-12-01

    The dynamics of carbon fluxes in the permafrost region is likely to have tremendous impacts for the future global climate. Recently, several ecosystem and land surface models have demonstrated improved permafrost modeling capabilities by incorporating deep soil layers, organic soils, and parameterizing the effects of wind compaction and depth hoar formations, which influence high latitude soil biogeophysics. However, no global study has yet incorporated the combined effects of these biogeophysical improvements. Additionally, the primary focus has been on modeling biogeophysical fluxes rather than on how biogeochemical processes and feedbacks are impacted. In this study, we evaluate how biogeochemistry (carbon and nitrogen dynamics) responds to improved biogeophysics in the high latitudes. We employ a land surface model, the Integrated Science Assessment Model (ISAM), to model the fluxes of water, energy and carbon, as well as the change in active layer depths during the historical period. The ISAM represents fully prognostic carbon and nitrogen cycles, coupled with biogeophysics schemes adapted selectively from other land surface models such as the Community Land Model (CLM3.5) and the Common Land Model (CoLM). The soil decomposition module in the ISAM was calibrated with field experiment data, which includes representation of nitrogen mineralization processes. Additionally, biogeophysical improvements such as the inclusion of deep soils, organic soils, wind compaction and depth hoar formation effects, which are critical for high-latitude soil thermal dynamics, have been incorporated into the model. The performance of the model is evaluated using observations for active layer depths and carbon fluxes, together with recent estimates for total soil carbon amount in the permafrost region. This is one of the first studies to explore the combined effects of improvements in biogeophysics, coupled with a detailed model of soil carbon and nitrogen dynamics, for the entire

  12. New insights into biogeochemical processing gained from sub-daily river monitoring

    NASA Astrophysics Data System (ADS)

    Halliday, S. J.; Wade, A. J.; Skeffington, R. A.; Bowes, M.; Palmer-Felgate, E.; Loewenthal, M.; Jarvie, H.; Neal, C.; Reynolds, B.; Gozzard, E.; Newman, J.

    2012-12-01

    This talk will focus on the insights obtained from sub-daily hydrochemical monitoring for a sustained time periods (> 1 year), at multiple sites within a catchment and across different catchment types. Sub-daily instream hydrochemical dynamics were investigated, using non-stationary time-series analysis techniques, for two catchments representative of upland and lowland UK. The River Hafren at Plynlimon, mid-Wales drains an upland catchment where half the land cover is unmanaged moorland and the other half is first generation plantation forestry. The Hafren was monitored at two sites on a 7-hourly basis, between March 2007 and January 2009, using a Xian automatic sampler. The River Enborne, Berkshire, southeast England, is a rural lowland catchment, impacted by agricultural runoff, and septic tank and sewage treatment works discharges. The Enborne was monitored on an hourly basis between November 2009 and February 2012, using in situ field deployable analytical equipment to measure: Total Reactive Phosphorus (TRP: Systea Micromac C), Nitrate (Hach-Lange Nitratax), pH, dissolved oxygen, conductivity and water temperature (YSI 6600 Multi-parameter sonde). The results reveal complex diurnal patterns which exhibit seasonal changes in phase and amplitude, and are influenced by both flow conditions and nutrient sources. The comparison of the upland and lowland nitrate time series highlights how the different nitrogen sources within each system results in marked differences in the seasonal and diurnal dynamics, with a seasonal maximum in winter and a single peak diurnal cycle in the upland system, compared to a summer maximum and a two peak diurnal cycle in the lowland system. The analysis of TRP and nitrate concentrations in the Enborne catchment, in combination with flow, pH, dissolved oxygen, conductivity and water temperature, allowed the main processes controlling the observed sub-daily nutrient dynamics to be investigated. The different monitoring approaches adopted

  13. A comparison of coupled biogeophysical and biogeochemical dynamics across a precipitation gradient in Oregon using data assimilation

    NASA Astrophysics Data System (ADS)

    Pettijohn, J. C.; Law, B. E.; Williams, M. D.; Stoekli, R.; Thornton, P. E.; Thomas, C. K.; Hudiburg, T. W.; Martin, J.

    2010-12-01

    We present results from our coupled biophysical - biochemical model data fusion (MDF) analysis across a climatic gradient in Oregon, USA, using data from a coast-range Douglas-fir (US-Fir; 2006-2008) and a semi-arid ponderosa pine (US-Me2; 2002-2008) AmeriFlux site. Our MDF scheme couples the Ensemble Kalman Filter (EnKF) with the National Center for Atmospheric Research (NCAR) Community Land Model with Carbon-Nitrogen coupling (CLM-CN, version 3.5). Assimilated data includes continuous eddy covariance measurements of forest-atmosphere CO2 (NEE, net ecosystem exchange) and water vapor fluxes (λE, latent heat flux), chamber-based soil respiratory flux, soil moisture and temperature, snow depth (US-Me2), MODIS-derived 8 day LAI, and carbon and nitrogen pools. We quantify the ecosystem carbon and nitrogen budgets, partition NEE and λE fluxes, and thus increase confidence in multi-scale controls on CO2 and water vapor exchange. The MDF did a better job predicting NEE than λE at both sites (r2 = 0.86 for NEE at both sites; λE r2 = 0.65 and 0.63 at the US-ME2 and US-Fir sites, respectively) partly due to a weighting scheme we prescribed for NEE. The distribution of carbon and nitrogen differed significantly between sites, with total ecosystem carbon (vegetation, detritus, soil) of the US-Fir site being about 1.4 times higher than the US-Me2 site (35 kg C m-2 vs. 25 kg C m-2). Mean NEE over overlapping water years ‘07-‘08 was -495 gC m-2 at the US-Me2 site as opposed to -809 gC m-2 at the US-Fir site, nearly a two-fold difference in C uptake across this precipitation gradient. Average GPP and ecosystem respiration (Re) over these two water years were both ~1.7x greater at the US-Fir site, with 1712 gC m^-2 and 1217 gC m-2, respectively, at the US-Me2 site vs. 2841 gC m-2 and 2032 gC m-2 at the US-Fir. Autotrophic respiration contributed 79% and 72% to the Re flux at the US-Me2 and US-Fir sites, respectively, with total soil respiration contributing 53% and 58% to

  14. Effect of bottom water oxygenation on oxygen consumption and benthic biogeochemical processes at the Crimean Shelf (Black Sea)

    NASA Astrophysics Data System (ADS)

    Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.

    2012-04-01

    Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen

  15. Biogeochemical Processes and Microbial Characteristics Across Groundwater-Surface Water Boundaries

    NASA Astrophysics Data System (ADS)

    Arntzen, E. V.; McKinley, J. P.

    2002-12-01

    The flux of contaminants from ground water to surface water is spatially and temporally dynamic and a function of the variability of the hydrogeology, geochemistry, and biology within the boundary between groundwater and surface waters (i.e., the hyporheic zone). Currently, there lacks a basic understanding of processes within this interaction zone, and consequently, it is not possible to accurately predict the transport and fate of contaminants to sensitive surface water biota. A study was conducted on the U.S. Department of Energy's Hanford Site in southeast Washington State to develop and evaluate methods for collecting samples from ground water - surface water mixing zones and to characterize microbiological, geochemical, and hydraulic gradients between the Columbia River and the adjacent unconfined aquifer. During 2002 we sampled the hyporheic zone using passive multilevel samplers (MLS) deployed in riverbed piezometers to determine fine-scale geochemical variations. MLS units were deployed at four locations in the Hanford Reach of the Columbia River, one near an area where contaminant chromate is known to enter the river and the other three near areas where salmon spawn. MLS units were used to collect ambient water samples in 10 cm intervals to depths ranging from 114 cm to 123 cm below the riverbed. MLS results reflected ambient water conditions integrated over an approximately 10 hour period prior to removal (equilibration time between the MLS and ambient hyporheic water was approximately 10 hours). MLS units were recovered following periods of relatively high and low diurnal fluctuation of river stage. The period of maximum stage occurred at a river discharge of 192,000 ft3/s (median river discharge over 10 hours prior to removal = 192,000 ft3/s); the minimum at 52,000 ft3/s (median river discharge over 10 hours prior to removal = 52,000 ft3/s). The median vertical hydraulic gradient (VHG) was larger at all sites during minimum discharge, with values 1

  16. Coupling environmental models and geospatial data processing

    NASA Astrophysics Data System (ADS)

    Brandmeyer, Jo Ellen

    2000-10-01

    This research investigated geospatial functions for solving environmental problems from the perspective of the environmental modeler. Its purpose is to better understand the different approaches to coupling complex models and geospatial data processing, plus the implications for the coupled system. To this end, various coupling methodologies were systematically explored using a geographic information system (GIS) and an emissions processor (SMOKE) for air quality models (AQMs). SMOKE converts an emissions inventory into the format required by an AQM. A GIS creates a file describing the spatial distribution of emissions among the cells in a modeling domain. To demonstrate advantages of a coupled GIS---environmental model system, two methods of spatially distributing on-road mobile emissions to cells were examined. The existing method calculates emissions for each road class, but distributes emissions to the cells using population density. For the new method a GIS builds road density by class and then distributes the emissions using road density. Comparing these methods reveals a significantly different spatial pattern of emissions. Next, various model-coupling methodologies were analyzed, revealing numerous coupling approaches, some of which were categorized in the literature. Critiquing these categorizations while comparing them with documented implementations led to the development of a new coupling hierarchy. The properties of each hierarchical level are discussed with the advantages and limitations of each design. To successfully couple models, the spatial and temporal scales of all models in the coupled system and the spatiotemporal extents of the data must be reconciled. Finally, a case study demonstrated methodologies for coupling SMOKE and a GIS. One methodology required a new approach utilizing dynamically linked libraries. Consequently, emissions were processed using SMOKE from a GIS. Also, a new method of converting data from netCDF files into a database

  17. Biogeochemical Processes Related to Metal Removal and Toxicity Reduction in the H-02 Constructed Wetland, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Burgess, E. A.; Mills, G. L.; Harmon, M.; Samarkin, V.

    2011-12-01

    The H-02 wetland system was designed to treat building process water and storm water runoff from multiple sources associated with the Tritium Facility at the DOE-Savannah River Site, Aiken, SC. The wetland construction included the addition of gypsum (calcium sulfate) to foster a sulfate-reducing bacterial population. Conceptually, the wetland functions as follows: ? Cu and Zn initially bind to both dissolved and particulate organic detritus within the wetland. ? A portion of this organic matter is subsequently deposited into the surface sediments within the wetland. ? The fraction of Cu and Zn that is discharged in the wetland effluent is organically complexed, less bioavailable, and consequently, less toxic. ? The Cu and Zn deposited in the surface sediments are eventually sequestered into insoluble sulfide minerals in the wetland. Development of the H-02 system has been closely monitored; sampling began in August 2007, shortly after its construction. This monitoring has included the measurement of water quality parameters, Cu and Zn concentrations in surface water and sediments, as well as, characterization of the prokaryotic (e.g., bacterial) component of wetland biogeochemical processes. Since the beginning of the study, the mean influent Cu concentration was 31.5±12.1 ppb and the mean effluent concentration was 11.9±7.3 ppb, corresponding to an average Cu removal of 64%. Zn concentrations were more variable, averaging 39.2±13.8 ppb in the influent and 25.7±21.3 ppb in the effluent. Average Zn removal was 52%. The wetland also ameliorated high pH values associated with influent water to values similar to those measured at reference sites. Seasonal variations in DOC concentration corresponded to seasonal variations in Cu and Zn removal efficiency. The concentration of Cu and Zn in the surface layer of the sediments has increased over the lifetime of the wetland and, like removal efficiency, demonstrated seasonal variation. Within its first year, the H-02

  18. Induction coupled thermomagnetic processing: A disruptive technology

    DOE PAGESBeta

    Ahmad, Aquil; Mackiewicz-Ludtka, Gail; Pfaffmann, George; Ludtka, Gerard Michael

    2016-06-01

    Here, one of the major goals of the U.S. Department of Energy (DoE) is to achieve energy savings with a corresponding reduction in the carbon footprint. With this in mind, the DoE sponsored the Induction Coupled Thermomagnetic Processing (ITMP) project with major partners Eaton Corp., Ajax Tocco Magnethermic, and Oak Ridge National Laboratory (ORNL) to evaluate the viability of processing metals in a strong magnetic field.

  19. CAD/CAM-coupled image processing systems

    NASA Astrophysics Data System (ADS)

    Ahlers, Rolf-Juergen; Rauh, W.

    1990-08-01

    Image processing systems have found wide application in industry. For most computer integrated manufacturing faci- lities it is necessary to adapt these systems thus that they can automate the interaction with and the integration of CAD and CAM Systems. In this paper new approaches will be described that make use of the coupling of CAD and image processing as well as the automatic generation of programmes for the machining of products.

  20. Controlled Freeze-thaw Experiments to Study Biogeochemical Process and its Effects on Greenhouse Gas Release in Arctic Soil Columns

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Kneafsey, T. J.; Tas, N.; Bill, M.; Ulrich, C.; Hubbard, S. S.

    2014-12-01

    Greenhouse gas release associated with permafrost thawing is one of the largest uncertainties in future climate prediction. Improvement of such prediction relies on a better representation of the interactions between hydrological, geochemical and microbial processes in the Arctic ecosystem that occur over a wide range of space and time scales and under dynamic freeze-thaw conditions. As part of the Next Generation Ecosystem Experiments in the Arctic (NGEE-Arctic), we conducted controlled laboratory freeze-thaw experiments to study greenhouse gas release in vertical permafrost soil columns with vertically heterogeneous hydrological, geochemical and microbial properties. The studies were performed using soil cores collected from the NGEE Barrow, AK site. Two cores collected next to each other with very similar soil structures were used for the experiment. One of the cores was destructively sampled for baseline characterization, and the second core was used for the freeze-thaw experiments. The core extends from the ground surface into the permafrost with roughly 40 cm of active layer. The column was instrumented with various sensors and sampling devices, including thermocouples, geophysical (electrical) sensors, and sampling ports for solids and fluids. The headspace of the soil column was purged with CO2 free air and the gas samples were collected periodically for greenhouse gas analysis. Our initial tests simulated seasonal temperature variation from ~ -10°C to +10°C at the ground surface. Our results demonstrated that temperature and geophysical data provided real time information on the freeze thaw dynamics of the column and the surface greenhouse gas fluxes correlated with the freeze thaw stages and associated hydrological and biogeochemical processes in the vertical soil column. For example, surface fluxes data revealed an early burst of GHG concentrations during the initial thawing of the surface ice rich layer of the soil, indicating the presence of trapped

  1. Use of Zn isotopes as a probe of anthropogenic contamination and biogeochemical processes in the Seine River, France

    NASA Astrophysics Data System (ADS)

    Chen, J.; Gaillardet, J.; Louvat, P.; Birck, J.

    2009-05-01

    a whole river basin, showing Zn isotopes a powerful probe to trace contamination sources and biogeochemical processes in hydrologic systems.

  2. Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France)

    NASA Astrophysics Data System (ADS)

    Bolou-Bi, Emile B.; Vigier, Nathalie; Poszwa, Anne; Boudot, Jean-Pierre; Dambrine, Etienne

    2012-06-01

    This study investigates the potential of Mg isotopes as tracers of biogeochemical processes in a small-forested catchment located on sandstones extremely poor in Mg-bearing minerals. The average δ26Mg is -0.63 ± 0.12‰ and 0 ± 0.14‰ for local rainwater and bedrock, respectively. From the C horizon to the upper eluvial (E) horizon, soil δ26Mg (from 0.0 ± 0.14‰ to 0.25 ± 0.14‰) is close to the bedrock value, while more than 70% of Mg is lost, suggesting a small isotopic shift during illite dissolution. The surface soil horizon (Ah) δ26Mg is close to plant δ26Mg, and especially to the grass δ26Mg value (-0.49‰). The bulk δ26Mg of trees and grass (-0.32‰ and -0.41‰, respectively) are higher than the average δ26Mg values of the soil exchangeable fraction (-0.92‰ to -0.42‰), and of rainwater (-0.65‰). Within plants, roots are enriched in heavy isotopes, whereas light isotopes are preferentially translocated and stored in the above ground parts. In Norway spruce, the older needles, forming the annual litterfall, are isotopically lighter and strongly depleted in Mg compared to more recent needles. Soil solution δ26Mg shifts seasonally, from low values, lower than rainwater and close to litterfall during a high rainfall period in spring, to higher values, close to soil δ26Mg in dryer periods of winter or summer. At the watershed scale, streamwater δ26Mg varies between -0.85 ± 0.14‰ and -0.08 ± 0.14‰ and δ26Mg values decrease linearly with discharge. The high streamwater δ26Mg at low flow, close to bedrock δ26Mg, most likely reflects dissolution processes in the deep saprolite in relation to the very long water residence time. Conversely, we suggest that low stream level δ26Mg values are at least partly related to the contribution of surface flows from wet areas. Using a simple mass and isotopic balance approach, we compute that mineral dissolution rates in the soil (0.35 kg Mg ha-1 year-1) presently compensate for Mg losses from

  3. Coupled transport processes in semipermeable media

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1990-04-01

    A numerical simulator has been developed to investigate the effects of coupled processes on heat and mass transport in semipermeable media. The governing equations on which the simulator is based were derived using the thermodynamics of irreversible processes. The equations are nonlinear and have been solved numerically using the n-dimensional Newton's method. As an example of an application, the numerical simulator has been used to investigate heat and solute transport in the vicinity of a heat source buried in a saturated clay-like medium, in part to study solute transport in bentonite packing material surrounding a nuclear waste canister. The coupled processes considered were thermal filtration, thermal osmosis, chemical osmosis and ultrafiltration. In the simulations, heat transport by coupled processes was negligible compared to heat conduction, but pressure and solute migration were affected. Solute migration was retarded relative to the uncoupled case when only chemical osmosis was considered. When both chemical osmosis and thermal osmosis were included, solute migration was enhanced. 18 refs., 20 figs.

  4. Effects of Privately Owned Land Management Practices on Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Getson, J. M.; Hutyra, L.; Short, A. G.; Templer, P. H.; Kittredge, D.

    2014-12-01

    An increasing fraction of the global population lives in urban settings. Understanding how the human-natural system couple and decouple biogeochemical cycles across urbanization gradients is crucial for human health and environmental sustainability. Natural processes of nutrient deposition, export, uptake, and internal cycling can be disrupted by human activities. Residential landscape management (e.g. composting, leaf litter collection, fertilizer application) interrupts these natural biogeochemical cycles; therefore, it is key to characterize these practices and their impacts. This study looks at private land management practices along a rural to urban gradient in Boston, Massachusetts. We used a mail survey instrument coupled with biogeochemical measurements and remote sensing derived estimates of aboveground biomass to estimate biogeochemical modifications associated with residential landscape management practices. We find parcel size influences management behavior, management practices differ for leaf litter and lawn clippings, and fertilizer application is unrelated to parcel size or degree of urban-ness. These management practices result in nutrient redistribution that differs with residential characteristics.

  5. Modeling of Inner Magnetosphere Coupling Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2011-01-01

    The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.

  6. Coupled transport processes in semipermeable media

    SciTech Connect

    Carnahan, C.L.; Jacobsen, J.S.

    1990-04-01

    The thermodynamics of irreversible processes (TTIP) is used to derive governing equations and phenomenological equations for transport processes and chemical reactions in water-saturated semipermeable media. TTIP is based on three fundamental postulates. The first postulate, the assumption of local equilibrium, allows the formulation of balance equations for entropy. These equations are the bases for the derivation of governing equations for the thermodynamic variables, temperature, pressure, and composition. The governing equations involve vector fluxes of heat and mass and scalar rates of chemical reactions; in accordance with the second postulate of TTIP, these fluxes and rates are related, respectively, to all scalar driving forces (gradients of thermodynamic variables) acting within the system. The third postulate of TTIP states equality (the Onsager reciprocal relations) between certain of the phenomenological coefficients relating forces and fluxes. The description by TTIP of a system undergoing irreversible processes allows consideration of coupled transport processes such as thermal osmosis, chemical osmosis, and ultrafiltration. The coupled processes can make significant contributions to flows of mass and energy in slightly permeable, permselective geological materials such as clays and shales.

  7. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation.

    PubMed

    van Breukelen, Boris M; Griffioen, Jasper

    2004-09-01

    Various redox reactions may occur at the fringe of a landfill leachate plume, involving oxidation of dissolved organic carbon (DOC), CH4, Fe(II), Mn(II), and NH4 from leachate and reduction of O2, NO3 and SO4 from pristine groundwater. Knowledge on the relevance of these processes is essential for the simulation and evaluation of natural attenuation (NA) of pollution plumes. The occurrence of such biogeochemical processes was investigated at the top fringe of a landfill leachate plume (Banisveld, the Netherlands). Hydrochemical depth profiles of the top fringe were captured via installation of a series of multi-level samplers at 18, 39 and 58 m downstream from the landfill. Ten-centimeter vertical resolution was necessary to study NA within a fringe as thin as 0.5 m. Bromide appeared an equally well-conservative tracer as chloride to calculate dilution of landfill leachate, and its ratio to chloride was high compared to other possible sources of salt in groundwater. The plume fringe rose steadily from a depth of around 5 m towards the surface with a few meters in the period 1998-2003. The plume uplift may be caused by enhanced exfiltration to a brook downstream from the landfill, due to increased precipitation over this period and an artificial lowering of the water level of the brook. This rise invoked cation exchange including proton buffering, and triggered degassing of methane. The hydrochemical depth profile was simulated in a 1D vertical reactive transport model using PHREEQC-2. Optimization using the nonlinear optimization program PEST brought forward that solid organic carbon and not clay minerals controlled retardation of cations. Cation exchange resulted in spatial separation of Fe(II), Mn(II) and NH4 fronts from the fringe, and thereby prevented possible oxidation of these secondary redox species. Degradation of DOC may happen in the fringe zone. Re-dissolution of methane escaped from the plume and subsequent oxidation is an explanation for absence of

  8. Biogeochemical processing of nutrients in groundwater-fed stream during baseflow conditions - the value of fluorescence spectroscopy and automated high-frequency nutrient monitoring

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2014-05-01

    Recent research in groundwater-dominated streams indicates that organic matter plays an important role in nutrient transformations at the surface-groundwater interface known as the hyporheic zone. Mixing of water and nutrient fluxes in the hyporheic zone controls in-stream nutrients availability, dynamics and export to downstream reaches. In particular, benthic sediments can form adsorptive sinks for organic matter and reactive nutrients (nitrogen and phosphorus) that sustain a variety of hyporheic processes e.g. denitrification, microbial uptake. Thus, hyporheic metabolism can have an important effect on both quantity (concentration) and quality (labile vs. refractory character) of organic matter. Here high-frequency nutrient monitoring combined with spectroscopic analysis was used to provide insights into biogeochemical processing of a small, agricultural stream in the NE England subject to diffuse nutrient pollution. Biogeochemical data were collected hourly for a week at baseflow conditions when in-stream-hyporheic nutrient dynamics have the greatest impact on stream health. In-stream nutrients (total phosphorus, reactive phosphorus, nitrate nitrogen) and water quality parameters (turbidity, specific conductivity, pH, temperature, dissolved oxygen, redox potential) were measured in situ hourly by an automated bank-side laboratory. Concurrent hourly autosamples were retrieved daily and analysed for nutrients and fine sediments including spectroscopic analyses of dissolved organic matter - excitation-emission matrix (EEM) fluorescence spectroscopy and ultraviolet-visible (UV-Vis) absorbance spectroscopy. Our results show that organic matter can potentially be utilised as a natural, environmental tracer of the biogeochemical processes occurring at the surface-groundwater interface in streams. High-frequency spectroscopic characterisation of in-stream organic matter can provide useful quantitative and qualitative information on fluxes of reactive nutrients in

  9. Synthesis report on thermally driven coupled processes

    SciTech Connect

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  10. Abstraction of Drift-Scale Coupled Processes

    SciTech Connect

    N.D. Francis; D. Sassani

    2000-03-31

    This Analysis/Model Report (AMR) describes an abstraction, for the performance assessment total system model, of the near-field host rock water chemistry and gas-phase composition. It also provides an abstracted process model analysis of potentially important differences in the thermal hydrologic (TH) variables used to describe the performance of a geologic repository obtained from models that include fully coupled reactive transport with thermal hydrology and those that include thermal hydrology alone. Specifically, the motivation of the process-level model comparison between fully coupled thermal-hydrologic-chemical (THC) and thermal-hydrologic-only (TH-only) is to provide the necessary justification as to why the in-drift thermodynamic environment and the near-field host rock percolation flux, the essential TH variables used to describe the performance of a geologic repository, can be obtained using a TH-only model and applied directly into a TSPA abstraction without recourse to a fully coupled reactive transport model. Abstraction as used in the context of this AMR refers to an extraction of essential data or information from the process-level model. The abstraction analysis reproduces and bounds the results of the underlying detailed process-level model. The primary purpose of this AMR is to abstract the results of the fully-coupled, THC model (CRWMS M&O 2000a) for effects on water and gas-phase composition adjacent to the drift wall (in the near-field host rock). It is assumed that drift wall fracture water and gas compositions may enter the emplacement drift before, during, and after the heating period. The heating period includes both the preclosure, in which the repository drifts are ventilated, and the postclosure periods, with backfill and drip shield emplacement at the time of repository closure. Although the preclosure period (50 years) is included in the process models, the postclosure performance assessment starts at the end of this initial period

  11. Modeling greenhouse gas emissions (CO2, N2O, CH4) from managed arable soils with a fully coupled hydrology-biogeochemical modeling system simulating water and nutrient transport and associated carbon and nitrogen cycling at catchment scale

    NASA Astrophysics Data System (ADS)

    Klatt, Steffen; Haas, Edwin; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Plesca, Ina; Breuer, Lutz; Zhu, Bo; Zhou, Minghua; Zhang, Wei; Zheng, Xunhua; Wlotzka, Martin; Heuveline, Vincent

    2014-05-01

    The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in a small catchment at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation

  12. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    This is the third semi-annual report for NAS5-97039, covering January through June 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strengths and weaknesses of the next generation assessment models.

  13. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Rodriguez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Junusz; Sze, Nien-Dak

    1999-01-01

    This is the final report. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. and (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  14. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  15. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  16. Genome-Enabled Modeling of Biogeochemical Processes Predicts Metabolic Dependencies that Connect the Relative Fitness of Microbial Functional Guilds

    NASA Astrophysics Data System (ADS)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.

    2015-12-01

    Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined

  17. Up-scaling of process-based eco-hydrology model to global scale for identification of hot spots in boundless biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2013-12-01

    Recent research shows inland water may play some role in continental biogeochemical cycling though its contribution has remained uncertain due to a paucity of data (Battin et al. 2009). The author has developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2008a-b, 2010, 2011a-b, 2012a-c, 2013; Nakayama and Fujita, 2010; Nakayama and Hashimoto, 2011; Nakayama and Shankman, 2013a-b; Nakayama and Watanabe, 2004, 2006, 2008a-b; Nakayama et al., 2006, 2007, 2010, 2012), which includes surface-groundwater interactions and down-scaling process from regional to local simulation with finer resolution, and can simulate iteratively nonlinear feedback between hydrologic, geomorphic, and ecological processes in east Asia. In this study, NICE was further extended to implement map factor and non-uniform grid through up-scaling process of coordinate transformation from rectangular to longitude-latitude system applicable to global scale. This improved model was applied to several basins in Eurasia to evaluate the impact of coordinate transformation on eco-hydrological changes. Simulated eco-hydrological process after up-scaling corresponded reasonably to that in the original there after evaluating the effect of different latitude. Then, the model was expanded to evaluate global hydrologic cycle by using various global datasets. The simulated result agreed reasonably with that in the previous research (Fan et al., 2013) and extended to clarify further eco-hydrological process in global scale. This simulation system would play important role in identification of spatio-temporal hot spots in boundless biogeochemical cycle along terrestrial-aquatic continuum for global environmental change (Cole et al. 2007; Battin et al. 2009; Frei et al. 2012).

  18. Biogeochemical modeling at mass extinction boundaries

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Caldeira, K. G.

    1991-01-01

    The causes of major mass extinctions is a subject of considerable interest to those concerned with the history and evolution of life on earth. The primary objectives of the proposed plan of research are: (1) to develop quantitative time-dependent biogeochemical cycle models, coupled with an ocean atmosphere in order to improve the understanding of global scale physical, chemical, and biological processes that control the distribution of elements important for life at times of mass extinctions; and (2) to develop a comprehensive data base of the best available geochemical, isotopic, and other relevant geologic data from sections across mass extinction boundaries. These data will be used to constrain and test the biogeochemical model. These modeling experiments should prove useful in: (1) determining the possible cause(s) of the environmental changes seen at bio-event boundaries; (2) identifying and quantifying little-known feedbacks among the oceans, atmosphere, and biosphere; and (3) providing additional insights into the possible responses of the earth system to perturbations of various timescales. One of the best known mass extinction events marks the Cretaceous/Tertiary (K/T) boundary (66 Myr ago). Data from the K/T boundary are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results predict significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures caused by extinction of calcareous plankton and reduction in the sedimentation rates of pelagic carbonates and organic carbon. Oxygen-isotome and other paleoclimatic data from K/T time provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedbacks may have acted to reduce the ocean alkalinity and carbon dioxide fluctuations.

  19. Geophysical Measurements for Real-time Monitoring of Biogeochemical Processes for Improvement of Soil Engineering Properties and Subsurface Environmental Conditions (Invited)

    NASA Astrophysics Data System (ADS)

    DeJong, J. T.

    2013-12-01

    A variety of biogeochemical processes, from inorganic mineral precipitation, to bio-film formation, to bio-gas generation, are being investigated as alternative methods to improve soil engineering properties and subsurface environmental conditions. Every process applied in a geotechnical or geoenvironmental application requires the ability to monitor the progression of treatment non-destructively and in real-time. Geophysical methods have been shown effective to monitor temporally and map spatially soil improvement. Results from seismic velocity (compression and shear wave) and resistivity measurements obtained on 1-D, 2-D, and 3-D experiments at scales ranging from bench-top to field scale will be presented. Shear wave velocity will be demonstrated to be most effective in monitoring microbially induced calcite precipitation (MICP) in sands while compression wave velocity will be used to monitor desaturation through bio-gas formation. Finally, the implications of these results for real-time monitoring during field-scale applications will be discussed.

  20. Processes of Change in Self-Directed Couple Relationship Education

    ERIC Educational Resources Information Center

    Wilson, Keithia L.; Halford, W. Kim

    2008-01-01

    The current study examined the learning processes involved in professionally supported self-directed couple relationship education (CRE). Fifty-nine couples completed Couple CARE, a systematic, self-directed CRE program designed in flexible delivery mode to be completed at home. Couples watched a DVD introducing key relationship ideas and skills…

  1. Development of assimilative biogeochemical ocean models for operational and research applications

    NASA Astrophysics Data System (ADS)

    Brasseur, Pierre

    The Green-Mercator project (2007-2009, http://mercator-vert.ipsl.jussieu.fr/) aims at implementing the marine biogeochemical model PISCES at global scale into the MERCATOR operational monitoring and forecasting system. Besides the development of the model system itself, this project relies on two major research activities to improve biogeochemical simulations: (1) the refinement of process resolution to investigate the impact of the transition between eddy permitting to eddy resolving on biogeochemical simulations at global scale, and (2) the assimilation of physical and biogeochemical data (such as ocean color) into the model. The project also includes research activities to demonstrate the potential of an operational biogeochemical model for regional downscaling and extension towards marine resources. In this talk, we will focus on developments achieved in the framework of the E.U. MERSEA project (2004-2008) to assimilate satellite and in situ data into coupled models. Experiments using the SEEK filter in a North Atlantic prototype at 1/4° resolution illustrate the feasability of the approach. The results show that traditional methods such as the Kalman filter may lead to physical inconsistencies originating from the gaussian nature of the KF analysis scheme. A new scheme based on truncated gaussian pdfs is therefore developed (TGF) to integrate inequality constraints during the assimilation process. This new scheme represents a major step toward the assimilation of a variety of satellite data, such as sea-ice thickness and ocean colour data, into coupled models.

  2. A new post-processing tool for the source-related element tracing in biogeochemical models: A case study for the North Sea

    NASA Astrophysics Data System (ADS)

    Große, Fabian; Kreus, Markus; Pätsch, Johannes

    2015-04-01

    The mitigation of eutrophication and its concomitants, like harmful algal blooms or deoxygenation of bottom waters, is one of the major aspects of the ecological management of coastal marine ecosystems. In the past, biogeochemical models helped to significantly improve the understanding of the interaction of the physical and biological processes behind eutrophication. Nevertheless, the quantification of the influence of source-related nutrient inputs to eutrophication in a specific region remains an important issue, since it is as crucial for an efficient management as it is difficult to obtain. About a decade ago, a method applicable to biogeochemical models had been developed allowing for the tracing of elements from different sources, e.g. phosphorus and/or nitrogen from two different rivers, throughout the whole process chain of the applied model. This tracing method - often referred to as 'trans-boundary nutrient transport' (TBNT) - provides additional information about the contributions from different sources to the overall amount ('bulk') of an element in each part of the model domain. This information constitutes the basis for the quantification, evaluation and optimisation of nutrient reduction targets for the tributaries of a marine ecosystem. In the meantime, the TBNT method has been applied to a variety of different biogeochemical models, e.g. to quantify the influence of nutrient loads from different rivers or atmospheric deposition on phytoplankton blooms or to determine the source-related composition of total nitrogen in different parts of an ecosystem. However, for all of these applications the method was directly implemented into the considered model, and thus was model-dependent and required an individual solution to deal with the model specifics like grid structure, programming language etc. For the application of the TBNT method to the ECOHAM model (ECOlogical model HAMburg), we further developed the approach by creating a post-processing

  3. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    NASA Astrophysics Data System (ADS)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  4. Seasonal baseline of nutrients and stable isotopes in a saline lake of Argentina: biogeochemical processes and river runoff effects.

    PubMed

    Kopprio, Germán A; Kattner, Gerhard; Freije, R Hugo; de Paggi, Susana José; Lara, Rubén J

    2014-05-01

    The seasonal variability of inorganic and organic nutrients and stable isotopes and their relations with plankton and environmental conditions were monitored in Lake Chasicó. Principal component analysis evidenced the strong influence of the river runoff on several biogeochemical variables. Silicate concentrations were controlled by diatom biomass and river discharge. Higher values of nitrate and soluble reactive phosphorus (SRP) indicated agricultural uses in the river basin. Elevated pH values (∼ 9) inhibiting nitrification in the lake explained partially the dominance of ammonium: ∼ 83 % of dissolved inorganic nitrogen (DIN). The low DIN/SRP ratio inferred nitrogen limitation, although the hypotheses of iron and CO2 limitation are relevant in alkaline lakes. Particulate organic matter (POM) and dissolved organic matter (DOM) were mainly of autochthonous origin. The main allochthonous input was imported by the river as POM owning to the arid conditions. Dissolved organic carbon was likely top-down regulated by the bacterioplankton grazer Brachionus plicatilis. The δ(13)C signature was a good indicator of primary production and its values were influenced probably by CO2 limitation. The δ(15)N did not evidence nitrogen fixation and suggested the effects of anthropogenic activities. The preservation of a good water quality in the lake is crucial for resource management. PMID:24415133

  5. Modeling the biogeochemical seasonal cycle in the Strait of Gibraltar

    NASA Astrophysics Data System (ADS)

    Ramírez-Romero, E.; Vichi, M.; Castro, M.; Macías, J.; Macías, D.; García, C. M.; Bruno, M.

    2014-11-01

    A physical-biological coupled model was used to estimate the effect of the physical processes at the Strait of Gibraltar over the biogeochemical features of the Atlantic Inflow (AI) towards the Mediterranean Sea. This work was focused on the seasonal variation of the biogeochemical patterns in the AI and the role of the Strait; including primary production and phytoplankton features. As the physical model is 1D (horizontal) and two-layer, different integration methods for the primary production in the Biogeochemical Fluxes Model (BFM) have been evaluated. An approach based on the integration of a production-irradiance function was the chosen method. Using this Plankton Functional Type model (BFM), a simplified phytoplankton seasonal cycle in the AI was simulated. Main results included a principal bloom in spring dominated by nanoflagellates, whereas minimum biomass (mostly picophytoplankton) was simulated during summer. Physical processes occurring in the Strait could trigger primary production and raise phytoplankton biomass (during spring and autumn), mainly due to two combined effects. First, in the Strait a strong interfacial mixing (causing nutrient supply to the upper layer) is produced, and, second, a shoaling of the surface Atlantic layer occurs eastward. Our results show that these phenomena caused an integrated production of 105 g C m- 2 year- 1 in the eastern side of the Strait, and would also modify the proportion of the different phytoplankton groups. Nanoflagellates were favored during spring/autumn while picophytoplankton is more abundant in summer. Finally, AI could represent a relevant source of nutrients and biomass to Alboran Sea, fertilizing the upper layer of this area with 4.95 megatons nitrate year- 1 (79.83 gigamol year- 1) and 0.44 megatons C year- 1. A main advantage of this coupled model is the capability of solving relevant high-resolution processes as the tidal forcing without expensive computing requirements, allowing to assess the

  6. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Li; Sze, N. D.

    1997-01-01

    This is the first semi-annual report for NAS5-97039 summarizing work performed for January 1997 through June 1997. Work in this project is related to NAS1-20666, also funded by NASA ACMAP. The work funded in this project also benefits from work at AER associated with the AER three-dimensional isentropic transport model funded by NASA AEAP and the AER two-dimensional climate-chemistry model (co-funded by Department of Energy). The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry.

  7. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Shia, Run-Lie; Scott, Courtney J.; Sze, Nien Dak

    1998-01-01

    This is the fourth semi-annual report for NAS5-97039, covering the time period July through December 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the Atmospheric and Environmental Research (AER) two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. For this six month period, we report on a modeling study of new rate constant which modify the NOx/NOy ratio in the lower stratosphere; sensitivity to changes in stratospheric water vapor in the future atmosphere; a study of N2O and CH4 observations which has allowed us to adjust diffusion in the 2-D CTM in order to obtain appropriate polar vortex isolation; a study of SF6 and age of air with comparisons of models and measurements; and a report on the Models and Measurements II effort.

  8. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Rodriquez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Janusz; Sze, Nien-Dak; Stewart, Richard W. (Technical Monitor)

    1999-01-01

    This is the final report for NAS5-97039 for work performed between December 1996 and November 1999. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  9. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  10. A 3D partial-equilibrium model to simulate coupled hydrogeological, microbiological, and geochemical processes in subsurface systems

    NASA Astrophysics Data System (ADS)

    Phanikumar, M. S.; McGuire, Jennifer T.

    2004-06-01

    This paper reports the development and application of a three-dimensional multi-component reactive transport model (BGTK) to simulate a wide range of biogeochemical processes in subsurface environments. The model can handle both equilibrium and kinetically controlled reactions and is based on the well tested modular models RT3D [Clement et al., 1998] and PHREEQC-2 [Parkhurst and Appelo, 1999]. Here we describe the details of the new coupled model and demonstrate its capabilities using test problems involving microbial transport in a laboratory column and redox zonation in a contaminated aquifer.

  11. Subsurface Uranium Fate and Transport: Integrated Experiments and Modeling of Coupled Biogeochemical Mechanisms of Nanocrystalline Uraninite Oxidation by Fe(III)-(hydr)oxides - Project Final Report

    SciTech Connect

    Peyton, Brent M.; Timothy, Ginn R.; Sani, Rajesh K.

    2013-08-14

    Subsurface bacteria including sulfate reducing bacteria (SRB) reduce soluble U(VI) to insoluble U(IV) with subsequent precipitation of UO2. We have shown that SRB reduce U(VI) to nanometer-sized UO2 particles (1-5 nm) which are both intra- and extracellular, with UO2 inside the cell likely physically shielded from subsequent oxidation processes. We evaluated the UO2 nanoparticles produced by Desulfovibrio desulfuricans G20 under growth and non-growth conditions in the presence of lactate or pyruvate and sulfate, thiosulfate, or fumarate, using ultrafiltration and HR-TEM. Results showed that a significant mass fraction of bioreduced U (35-60%) existed as a mobile phase when the initial concentration of U(VI) was 160 µM. Further experiments with different initial U(VI) concentrations (25 - 900 M) in MTM with PIPES or bicarbonate buffers indicated that aggregation of uraninite depended on the initial concentrations of U(VI) and type of buffer. It is known that under some conditions SRB-mediated UO2 nanocrystals can be reoxidized (and thus remobilized) by Fe(III)-(hydr)oxides, common constituents of soils and sediments. To elucidate the mechanism of UO2 reoxidation by Fe(III) (hydr)oxides, we studied the impact of Fe and U chelating compounds (citrate, NTA, and EDTA) on reoxidation rates. Experiments were conducted in anaerobic batch systems in PIPES buffer. Results showed EDTA significantly accelerated UO2 reoxidation with an initial rate of 9.5 M day-1 for ferrihydrite. In all cases, bicarbonate increased the rate and extent of UO2 reoxidation with ferrihydrite. The highest rate of UO2 reoxidation occurred when the chelator promoted UO2 and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO2 dissolution did not occur, UO2 reoxidation likely proceeded through an aqueous Fe(III) intermediate as observed for both NTA and

  12. Numerical simulation of in-situ chemical oxidation (ISCO) and biodegradation of petroleum hydrocarbons using a coupled model for bio-geochemical reactive transport

    NASA Astrophysics Data System (ADS)

    Marin, I. S.; Molson, J. W.

    2013-05-01

    Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.

  13. Treatment of oil and grease in produced water by a pilot-scale constructed wetland system using biogeochemical processes.

    PubMed

    Pardue, Michael J; Castle, James W; Rodgers, John H; Huddleston, George M

    2014-05-01

    Constructed wetland treatment systems (CWTSs) can effectively remove many constituents that limit beneficial use of oilfield produced water. The objectives of this investigation were: (1) to assess the effect of mass loadings of oil and grease (O & G) on treatment performance in pilot-scale subsurface flow and free water surface CWTS series having sequential reducing and oxidizing cells, and (2) to evaluate effects on treatment performance of adding a pilot-scale oil-water separator. Increase in O & G mass loading from 5 to 20 mg min(-1) caused decreases in both dissolved oxygen concentration and sediment redox potential, which affected treatment performance. Biogeochemical pathways for removal of O & G, iron, and manganese operate under oxidizing conditions, and removal rate coefficients for these constituents decreased (0.905-0.514 d(-1) for O & G, 0.773-0.452 d(-1) for iron, and 0.970-0.518 d(-1) for manganese) because greater mass loading of O & G promoted reducing conditions. With increased mass loading, removal rate coefficients for nickel and zinc increased from 0.074 to 0.565 d(-1) and from 0.196 to 1.08 d(-1), respectively. Although the sequential reducing and oxidizing cells in the CWTS were very effective in treating the targeted constituents, an oil-water separator was added prior to wetland cells to enhance O & G removal at high inflow concentration (100 mg L(-1)). The oil-water separator removed approximately 50% of the O & G, and removal extents and efficiencies approximated those observed at 50 mg L(-1) inflow concentration during treatment without an oil-water separator. PMID:24321330

  14. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-07-07

    Experiments at the Department of Energy’s Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer – a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  15. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  16. Biogeochemical Processes leading to release of As and Mn in the groundwaters of Murshidabad District of West Bengal, India

    NASA Astrophysics Data System (ADS)

    Johannesson, K. H.; Datta, S.; Vega, M.; Berube, M.

    2015-12-01

    Elevated concentrations of both manganese (Mn) and arsenic (As) have been observed in the groundwaters of Murshidabad, in eastern India. Mn, a postulated neurotoxin is known to cause neuromuscular problems, inhibition of neurological development particularly in children. The health impacts from higher bioavailable proportions of As is well known in being a Class I carcinogen. The discovery of this additional contaminant in the already As afflicted regions of SE Asia poses serious implications for millions of inhabitants. The current study aims to address three objectives in understanding biogeochemical cycling of Mn and As in groundwaters: i) the occurrence and overall distribution (lateral and temporal) of groundwater Mn and As; ii) characterization of the dissolved organic matter and microbial content and the resultant effects that are imposed on dissolved As and Mn; and iii) the relationship between Mn, As, and various other inorganic constituents and their impact on the subsequent release of Mn, on top of As. A three year time series of chemical data for the dissolved constituents from six villages in Murshidabad will be presented. Hariharpara, Beldanga, Naoda villages contain reducing groundwaters (mean Mn: 0.93mg/L); Nabagram, Kandi, Khidirpore demonstrate oxidizing aquifers (Mn: 0.74mg/L). Eighty-three percent of the wells surveyed contain Mn levels that exceed the recommended WHO limit of 0.4 mg/L. Dissolved As within the same locations show a range from <10μg/L to ~4000 μg/L. DOC values demonstrate a positive correlation with Mn in reducing and a negative correlation in oxidizing environments. The reducing aquifers are also high in As and DOC, indicating that the microbially mediated reductive dissolution of As-sorbed onto Fe-Mn mineral phases is probable. Fluorescence analyses of dissolved OM, solidphase modeling of Mn speciation are being combined in this study for more insight into the mechanisms of Mn release and its relation if any to As release.

  17. A dynamic marine iron cycle module coupled to the University of Victoria Earth System Model: the Kiel Marine Biogeochemical Model 2 for UVic 2.9

    NASA Astrophysics Data System (ADS)

    Nickelsen, L.; Keller, D. P.; Oschlies, A.

    2015-05-01

    Marine biological production as well as the associated biotic uptake of carbon in many ocean regions depends on the availability of nutrients in the euphotic zone. While large areas are limited by nitrogen and/or phosphorus, the micronutrient iron is considered the main limiting nutrient in the North Pacific, equatorial Pacific and Southern Ocean. Changes in iron availability via changes in atmospheric dust input are discussed to play an important role in glacial-interglacial cycles via climate feedbacks caused by changes in biological ocean carbon sequestration. Although many aspects of the iron cycle remain unknown, its incorporation into marine biogeochemical models is needed to test our current understanding and better constrain its role in the Earth system. In the University of Victoria Earth System Climate Model (UVic) iron limitation in the ocean was, until now, simulated pragmatically with an iron concentration masking scheme that did not allow a consistent interactive response to perturbations of ocean biogeochemistry or iron cycling sensitivity studies. Here, we replace the iron masking scheme with a dynamic iron cycle and compare the results to available observations and the previous marine biogeochemical model. Sensitivity studies are also conducted with the new model to test the sensitivity of the model to parameterized iron ligand concentrations, the importance of considering the variable solubility of iron in dust deposition, the importance of considering high-resolution bathymetry for the sediment release of iron, the effect of scaling the sedimentary iron release with temperature and the sensitivity of the iron cycle to a climate change scenario.

  18. Coupling entropy of co-processing model on social networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanli

    2015-08-01

    Coupling entropy of co-processing model on social networks is investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are achieved to disclose the formation. In order to understand the evolution of the co-processing and design the optimal routing strategy according to the maximal entropic diffusion on networks, we propose the coupling entropy comprehending the structural characteristics and information propagation on social network. Based on the analysis of the co-processing model, we analyze the coupling impact of the structural factor and information propagating factor on the coupling entropy, where the analytical results fit well with the numerical ones on scale-free social networks.

  19. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...

  20. New Insights into Fluvial Carbon Responses to Future Forest Management and Climate Change Obtained from Multi-Scale Modelling of Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Oni, S. K.; Tiwari, T.; Futter, M. N.; Agren, A.; Teutschbein, C.; Ledesma, J.; Schelker, J.; Laudon, H.

    2014-12-01

    The boreal ecozone covers 2x107 km2 of the northern circumpolar region and includes 29% of the world's forests. The boreal consists of mosaic of forest/wetland landscape elements and stores about 500 Gt3 carbon (C) with a delicate sink-source C balance. Dissolved organic carbon (DOC) is the main form of C exported from boreal landscapes and is fundamental to global C cycling. This northern ecosystem is vulnerable to global climate change, and increasing demands for forest products threaten its surface water resources. So far, there have been no attempts to assess the combined impacts of climate change and forest management on the future DOC fluxes from boreal surface waters. While differences in model assumptions may have negligible effects on present day simulations, these differences could be amplified when projecting the future climate and land use change conditions. Here we use an ensemble of regional climate models and multi-scale models of biogeochemical processes to gain insights into uncertainties associated with climate change and forest management on C and runoff dynamics in boreal landscape. While there are significant uncertainties associated with model projections, our results show that climate change will be the main driver of long term DOC dynamics in meso- to large boreal catchments in the future. However, forestry intensifies hydrological processes and can lead to large DOC fluxes at the headwater scales.

  1. Measurements of spectral optical properties and their relation to biogeochemical variables and processes in Crater Lake, Crater Lake National Park, OR

    USGS Publications Warehouse

    Boss, E.S.; Collier, R.; Larson, G.; Fennel, K.; Pegau, W.S.

    2007-01-01

    Spectral inherent optical properties (IOPs) have been measured at Crater Lake, OR, an extremely clear sub-alpine lake. Indeed Pure water IOPs are major contributors to the total IOPs, and thus to the color of the lake. Variations in the spatial distribution of IOPs were observed in June and September 2001, and reflect biogeochemical processes in the lake. Absorption by colored dissolved organic material increases with depth and between June and September in the upper 300 m. This pattern is consistent with a net release of dissolved organic materials from primary and secondary production through the summer and its photo-oxidation near the surface. Waters fed by a tributary near the lake's rim exhibited low levels of absorption by dissolved organic materials. Scattering is mostly dominated by organic particulate material, though inorganic material is found to enter the lake from the rim following a rain storm. Several similarities to oceanic oligotrophic regions are observed: (a) The Beam attenuation correlates well with particulate organic material (POM) and the relationship is similar to that observed in the open ocean. (b) The specific absorption of colored dissolved organic material has a value similar to that of open ocean humic material. (c) The distribution of chlorophyll with depth does not follow the distribution of particulate organic material due to photo-acclimation resulting in a subsurface pigment maximum located about 50 m below the POM maximum. ?? 2007 Springer Science+Business Media B.V.

  2. Mapping pan-Arctic CH4 emissions using an adjoint method by integrating process-based wetland and lake biogeochemical models and atmospheric CH4 concentrations

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E. J.; Sweeney, C.; Turner, A. J.

    2015-12-01

    Understanding CH4 emissions from wetlands and lakes are critical for the estimation of Arctic carbon balance under fast warming climatic conditions. To date, our knowledge about these two CH4 sources is almost solely built on the upscaling of discontinuous measurements in limited areas to the whole region. Many studies indicated that, the controls of CH4 emissions from wetlands and lakes including soil moisture, lake morphology and substrate content and quality are notoriously heterogeneous, thus the accuracy of those simple estimates could be questionable. Here we apply a high spatial resolution atmospheric inverse model (nested-grid GEOS-Chem Adjoint) over the Arctic by integrating SCIAMACHY and NOAA/ESRL CH4 measurements to constrain the CH4 emissions estimated with process-based wetland and lake biogeochemical models. Our modeling experiments using different wetland CH4 emission schemes and satellite and surface measurements show that the total amount of CH4 emitted from the Arctic wetlands is well constrained, but the spatial distribution of CH4 emissions is sensitive to priors. For CH4 emissions from lakes, our high-resolution inversion shows that the models overestimate CH4 emissions in Alaskan costal lowlands and East Siberian lowlands. Our study also indicates that the precision and coverage of measurements need to be improved to achieve more accurate high-resolution estimates.

  3. An approach to quantify sources, seasonal change, and biogeochemical processes affecting metal loading in streams: Facilitating decisions for remediation of mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.

    2010-01-01

    Historical mining has left complex problems in catchments throughout the world. Land managers are faced with making cost-effective plans to remediate mine influences. Remediation plans are facilitated by spatial mass-loading profiles that indicate the locations of metal mass-loading, seasonal changes, and the extent of biogeochemical processes. Field-scale experiments during both low- and high-flow conditions and time-series data over diel cycles illustrate how this can be accomplished. A low-flow experiment provided spatially detailed loading profiles to indicate where loading occurred. For example, SO42 - was principally derived from sources upstream from the study reach, but three principal locations also were important for SO42 - loading within the reach. During high-flow conditions, Lagrangian sampling provided data to interpret seasonal changes and indicated locations where snowmelt runoff flushed metals to the stream. Comparison of metal concentrations between the low- and high-flow experiments indicated substantial increases in metal loading at high flow, but little change in metal concentrations, showing that toxicity at the most downstream sampling site was not substantially greater during snowmelt runoff. During high-flow conditions, a detailed temporal sampling at fixed sites indicated that Zn concentration more than doubled during the diel cycle. Monitoring programs must account for diel variation to provide meaningful results. Mass-loading studies during different flow conditions and detailed time-series over diel cycles provide useful scientific support for stream management decisions.

  4. Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models: FINAL REPORT of grant Grant No. DE-FG02-04ER63726

    SciTech Connect

    Sarmiento, Jorge L; Gnanadesikan, Anand; Gruber, Nicolas

    2007-06-21

    This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecologicalbiogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to an increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: • September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1. • December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during

  5. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we

  6. Next Generation Ecosystem Experiment: Quantification and prediction of coupled processes in the terrestrial Arctic system

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Hinzman, L. D.; Graham, D. E.; Liang, L.; Norby, R.; Riley, W. J.; Rogers, A.; Rowland, J. C.; Thornton, P. E.; Torn, M. S.; Wilson, C. J.; Wullschleger, S. D.; NGEE Scientific Team

    2011-12-01

    Predicting the evolution of Arctic ecosystems to a changing climate is complicated by the many interactions and feedbacks that occur within and between components of the system. A new DOE Biological and Environmental Research project, called the Next-Generation Ecosystem Experiments (NGEE) is being initiated to address "how does permafrost degradation in a warming Arctic, and the associated changes in landscape evolution, hydrology, soil biogeochemical processes, and plant community succession, affect feedbacks to the climate system?". A multi-disciplinary team will use observations, experiments, and simulations carried out from the pore to the landscape scales to address these questions. We will combine field research (performed around thermokarst features in Alaska on the North Slope and Seward Peninsula), laboratory research using a variety of approaches and techniques, and remote sensing observations to improve modeling capabilities for high-latitude systems. Our research is organized into four interrelated 'Challenges' to quantify: (1) environmental controls on permafrost degradation and its influence on hydrological state, stocks, fluxes and pathways; (2) mechanisms that drive structural and functional responses of the tundra plant community to changing resource availability; (3) controls, mechanisms and rates driving biodegradation of soil organic matter; and (4) the impact of permafrost degradation on ecosystem albedo, energy partitioning and total climate forcing. Coordinated data acquisition will be performed using a variety of commonly-used terrestrial ecosystem characterization approaches as well as novel molecular microbiological, geophysical, isotopic and synchrotron techniques. These datasets will be used in parallel with models to identify the key controls on coupled geomechanical, hydrological, soil biogeochemical, vegetation and land-surface processes, as well as the manifestation of these coupled processes over a broad range of space and time

  7. Biogeochemical cycling and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.

    1985-01-01

    Research is underway at the NASA Ames Research Center that is concerned with aspects of the nitrogen cycle in terrestrial ecosystems. An interdisciplinary research group is attempting to correlate nitrogen transformations, processes, and productivity with variables that can be remotely sensed. Recent NASA and other publications concerning biogeochemical cycling at global scales identify attributes of vegetation that could be related or explain the spatial variation in biologically functional variables. These functional variables include net primary productivity, annual nitrogen mineralization, and possibly the emission rate of nitrous oxide from soils.

  8. Thermodynamically coupled mass transport processes in a saturated clay

    SciTech Connect

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table.

  9. Fostering new relational experience: clinical process in couple psychotherapy.

    PubMed

    Marmarosh, Cheri L

    2014-03-01

    One of the most critical goals for couple psychotherapy is to foster a new relational experience in the session where the couple feels safe enough to reveal more vulnerable emotions and to explore their defensive withdrawal, aggressive attacking, or blaming. The lived intimate experience in the session offers the couple an opportunity to gain integrative insight into their feelings, expectations, and behaviors that ultimately hinder intimacy. The clinical processes that are necessary include empathizing with the couple and facilitating safety within the session, looking for opportunities to explore emotions, ruptures, and unconscious motivations that maintain distance in the relationship, and creating a new relational experience in the session that has the potential to engender integrative insight. These clinical processes will be presented with empirical support. Experts from a session will be used to highlight how these processes influence the couple and promote increased intimacy. (PsycINFO Database Record (c) 2014 APA, all rights reserved). PMID:24059733

  10. Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: A virtual modeling experiment

    NASA Astrophysics Data System (ADS)

    Frei, S.; Knorr, K. H.; Peiffer, S.; Fleckenstein, J. H.

    2012-12-01

    Wetlands provide important ecohydrological services by regulating fluxes of nutrients and pollutants to receiving waters, which can in turn mitigate adverse effects on water quality. Turnover of redox-sensitive solutes in wetlands has been shown to take place in distinct spatial and temporal patterns, commonly referred to as hot spots and hot moments. Despite the importance of such patterns for solute fluxes the mechanistic understanding of their formation is still weak and their existence is often explained by variations in soil properties and diffusive transport only. Here we show that surface micro-topography in wetlands can cause the formation of biogeochemical hot spots solely by the advective redistribution of infiltrating water as a result of complex subsurface flow patterns. Surface and subsurface flows are simulated for an idealized section of a riparian wetland using a fully integrated numerical code for coupled surface-subsurface systems. Biogeochemical processes and transport along advective subsurface flow paths are simulated kinetically using the biogeochemical code PHREEQC. Distinct patterns of biogeochemical activity (expressed as reaction rates) develop in response to micro-topography induced subsurface flow patterns. Simulated vertical pore water profiles for various redox-sensitive species resemble profiles observed in the field. This mechanistic explanation of hot spot formation complements the more static explanations that relate hot spots solely to spatial variability in soil characteristics and can account for spatial as well as temporal variability of biogeochemical activity, which is needed to assess future changes in the biogeochemical turnover of wetland systems.

  11. Process for fabricating a charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  12. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: Laboratory studies and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Holden, A. A.; Haque, S. E.; Mayer, K. U.; Ulrich, A. C.

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840 × 106 m3 and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~ 375 mg L- 1) and Na (~ 575 mg L- 1) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides — in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  13. Phase transformations coupled to deformation processes

    NASA Astrophysics Data System (ADS)

    Lookman, Turab

    2013-06-01

    Phase transformation processes have a substantial impact on the inelastic and damage response of materials. Yet, our understanding of how different loading conditions affect volume fractions of transformed phases, microstructure and transformation pathways is very much in its infancy. With an emphasis on distilling single crystal physics that can, in principle, be incorporated into higher length scale models, I will discuss how recent atomistic simulations on Ti are beginning to provide insights into transformation pathways and the interplay of phase transformations and deformation processes. These simulations are complemented by shock experiments on Zr, Ti together with characterization studies at the Advanced Photon Source.

  14. An integrated water system model considering hydrological and biogeochemical processes at basin scale: model construction and application

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.

    2014-08-01

    Integrated water system modeling is a reasonable approach to provide scientific understanding and possible solutions to tackle the severe water crisis faced over the world and to promote the implementation of integrated river basin management. Such a modeling practice becomes more feasible nowadays due to better computing facilities and available data sources. In this study, the process-oriented water system model (HEXM) is developed by integrating multiple water related processes including hydrology, biogeochemistry, environment and ecology, as well as the interference of human activities. The model was tested in the Shaying River Catchment, the largest, highly regulated and heavily polluted tributary of Huai River Basin in China. The results show that: HEXM is well integrated with good performance on the key water related components in the complex catchments. The simulated daily runoff series at all the regulated and less-regulated stations matches observations, especially for the high and low flow events. The average values of correlation coefficient and coefficient of efficiency are 0.81 and 0.63, respectively. The dynamics of observed daily ammonia-nitrogen (NH4N) concentration, as an important index to assess water environmental quality in China, are well captured with average correlation coefficient of 0.66. Furthermore, the spatial patterns of nonpoint source pollutant load and grain yield are also simulated properly, and the outputs have good agreements with the statistics at city scale. Our model shows clear superior performance in both calibration and validation in comparison with the widely used SWAT model. This model is expected to give a strong reference for water system modeling in complex basins, and provide the scientific foundation for the implementation of integrated river basin management all over the world as well as the technical guide for the reasonable regulation of dams and sluices and environmental improvement in river basins.

  15. Effects of physical and biogeochemical processes on aquatic ecosystems at the groundwater-surface water interface: An evaluation of a sulfate-impacted wild rice stream in Minnesota (USA)

    NASA Astrophysics Data System (ADS)

    Ng, G. H. C.; Yourd, A. R.; Myrbo, A.; Johnson, N.

    2015-12-01

    Significant uncertainty and variability in physical and biogeochemical processes at the groundwater-surface water interface complicate how surface water chemistry affects aquatic ecosystems. Questions surrounding a unique 10 mg/L sulfate standard for wild rice (Zizania sp.) waters in Minnesota are driving research to clarify conditions controlling the geochemistry of shallow sediment porewater in stream- and lake-beds. This issue raises the need and opportunity to carry out in-depth, process-based analysis into how water fluxes and coupled C, S, and Fe redox cycles interact to impact aquatic plants. Our study builds on a recent state-wide field campaign that showed that accumulation of porewater sulfide from sulfate reduction impairs wild rice, an annual grass that grows in shallow lakes and streams in the Great Lakes region of North America. Negative porewater sulfide correlations with organic C and Fe quantities also indicated that lower redox rates and greater mineral precipitation attenuate sulfide. Here, we focus on a stream in northern Minnesota that receives high sulfate loading from iron mining activity yet maintains wild rice stands. In addition to organic C and Fe effects, we evaluate the degree to which streambed hydrology, and in particular groundwater contributions, accounts for the active biogeochemistry. We collect field measurements, spanning the surrounding groundwater system to the stream, to constrain a reactive-transport model. Observations from seepage meters, temperature probes, and monitoring wells delineate upward flow that may lessen surface water impacts below the stream. Geochemical analyses of groundwater, porewater, and surface water samples and of sediment extractions reveal distinctions among the different domains and stream banks, which appear to jointly control conditions in the streambed. A model based on field conditions can be used to evaluate the relative the importance and the spatiotemporal scales of diverse flux and

  16. Biogeochemical and hydrological processes controlling the transport and fate of 1,2-dibromoethane (EDB) in soil and ground water, central Florida

    USGS Publications Warehouse

    Katz, Brian G.

    1993-01-01

    Widespread contamination of ground water in central Florida by 1,2-dibromoethane (EDB) has resulted because of its heavy usage as a soil fumigant during a 20-year period, its relatively high aqueous solubility, and the low sorption capacity of the highly permeable sandy soils lacking organic matter. Two models were used to improve understanding of biogeochemical and hydrological processes that control the transport and fate of EDB in soil and ground water. First, a mass-balance model was developed to estimate the max-imum concentration of EDB in ground water resulting from known application rates of EDB. Key processes that were quantified in the model included volatilization, diffusion of EDB vapor in soils, partitioning between aqueous and gaseous phases, sorption of EDB vapor on organic carbon and soil particles, chemical and biological degradation reactions, and nonreversible binding of EDB to soils. Model calculations using an EDB half-life of 0.65 year closely reproduced the maximum observed concentrations in ground water, 37 and 0.22 micrograms per liter, at downgradient sites in two study areas in central Florida. Maximum concentrations of EDB in ground water also were estimated in a second model that incorporated an analytical solution to the three-dimensional advection-dispersion equation for instantaneous point sources of EDB entering the flow systems in the two study areas. The model used an EDB half-life of 0.65 year (obtained from the mass-balance calculations), mean ground-water flow velocities of 0.6 to 1 meter per day, coefficients of longitudinal hydro-dynamic dispersion of 0.6 to 1.0 square meter per day, and coefficients of transverse hydrodynamic dispersion of 0.1 square meter per day. Peak concentrations of EDB in ground water calculated from the analytical model agreed closely with observed peak concentrations measured from 1983 through 1987.

  17. Hydrologic and Biogeochemical Processes as Controls on the Quantity and Chemical Quality of Dissolved Organic Carbon Across Multiple Spatial Scales in the Colorado River

    NASA Astrophysics Data System (ADS)

    Miller, M.

    2012-12-01

    Longitudinal patterns in dissolved organic carbon (DOC) loads and chemical quality were described in the Colorado River from the headwaters in the Rocky Mountains to the United States-Mexico border from 1994-2011. Watershed- and reach-scale climate, land use, river discharge and hydrologic modification conditions that contribute to patterns in DOC were also identified. Principal components analysis (PCA) identified site-specific precipitation and reach-scale discharge as being correlated with sites in the upper basin, where there were increases in DOC load from the upstream to downstream direction. In the lower basin, where DOC load decreased from upstream to downstream, sites were correlated with site-specific temperature and reach-scale population, urban land use, and hydrologic modification. In the reaches containing Lakes Powell and Mead, the two largest reservoirs in the United States, DOC quantity decreased, terrestrially-derived aromatic DOC was degraded and/or autochthonous less aromatic DOC was produced. Taken together these results suggest that longitudinal patterns in the relatively unregulated upper basin are influenced by watershed inputs of water and DOC; whereas DOC patterns in the lower basin are reflective of a balance between watershed contribution of water and DOC to the river, and loss of water and DOC due to hydrologic modification and/or biogeochemical processes. These findings suggest that alteration of constituent fluxes in rivers that are highly regulated may overshadow watershed processes that would control fluxes in comparable unregulated rivers. Further, these results provide a foundation for detailed assessments of factors controlling the transport and chemical quality of DOC in the Colorado River.

  18. DayCent-Chem Simulations of Ecological and Biogeochemical Processes of Eight Mountain Ecosystems in the United States

    USGS Publications Warehouse

    Hartman, Melannie D.; Baron, Jill S.; Clow, David W.; Creed, Irena F.; Driscoll, Charles T.; Ewing, Holly A.; Haines, Bruce D.; Knoepp, Jennifer; Lajtha, Kate; Ojima, Dennis S.; Parton, William J.; Renfro, Jim; Robinson, R. Bruce; Van Miegroet, Helga; Weathers, Kathleen C.; Williams, Mark W.

    2009-01-01

    deposition as a result of dry and fog inputs. The uncertainties related to weathering reactions, deposition, soil cation exchange capacity, and groundwater contributions influenced how well the simulated acid neutralizing capacity (ANC) and pH estimates compared to observed values. Daily discharge was well represented by the model for most sites. The chapters of this report describe the parameterization for each site and summarize model results for ecosystem variables, stream discharge, and stream chemistry. This intersite comparison exercise provided insight about important and possibly not well understood processes.

  19. Solar terrestrial coupling through space plasma processes

    SciTech Connect

    Birn, J.

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project investigates plasma processes that govern the interaction between the solar wind, charged particles ejected from the sun, and the earth's magnetosphere, the region above the ionosphere governed by the terrestrial magnetic field. Primary regions of interest are the regions where different plasma populations interact with each other. These are regions of particularly dynamic plasma behavior, associated with magnetic flux and energy transfer and dynamic energy release. The investigations concerned charged particle transport and energization, and microscopic and macroscopic instabilities in the magnetosphere and adjacent regions. The approaches combined space data analysis with theory and computer simulations.

  20. Dissociative identity disorder and the process of couple therapy.

    PubMed

    Macintosh, Heather B

    2013-01-01

    Couple therapy in the context of dissociative identity disorder (DID) has been neglected as an area of exploration and development in the couple therapy and trauma literature. What little discussion exists focuses primarily on couple therapy as an adjunct to individual therapy rather than as a primary treatment for couple distress and trauma. Couple therapy researchers have begun to develop adaptations to provide effective support to couples dealing with the impact of childhood trauma in their relationships, but little attention has been paid to the specific and complex needs of DID patients in couple therapy (H. B. MacIntosh & S. Johnson, 2008 ). This review and case presentation explores the case of "Lisa," a woman diagnosed with DID, and "Don," her partner, and illustrates the themes of learning to communicate, handling conflicting needs, responding to child alters, and addressing sexuality and education through their therapy process. It is the hope of the author that this discussion will renew interest in the field of couple therapy in the context of DID, with the eventual goal of developing an empirically testable model of treatment for couples. PMID:23282049

  1. Cretaceous-Palaeogene experiments in Biogeochemical Resilience

    NASA Astrophysics Data System (ADS)

    Penman, D. E.; Henehan, M. J.; Hull, P. M.; Planavsky, N.; Schmidt, D. N.; Rae, J. W. B.; Thomas, E.; Huber, B. T.

    2015-12-01

    Human activity is altering biogeochemical cycles in the ocean. While ultimately anthropogenic forcings may be brought under control, it is still unclear whether tipping points may exist beyond which human-induced changes to biogeochemical cycles become irreversible. We use the Late Cretaceous and the Cretaceous-Palaeogene (K-Pg) boundary interval as an informative case study. Over this interval, two carbon cycle perturbations (gradual flood basalt volcanism and abrupt bolide impact) occurred within a short time window, allowing us to investigate the resilience of biogeochemical cycles to different pressures applied to the same initial boundary conditions on very different time scales. We demonstrate that relatively gradual emission of CO2 from the Deccan large igneous province was efficiently mitigated within the limits of existing biogeochemical processes. However, the rapid extinction of pelagic calcifying organisms at the K-Pg boundary due to the Chicxulub bolide impact had more profound effects, and caused lasting (> 1 million years) changes to biogeochemical cycles. By combining sedimentological observations with boron isotope-based pH reconstructions over these events, we document two potentially useful partial analogues for best and worst case scenarios for anthropogenic global change. We suggest that if current ocean acidification results in the mass extinction of marine pelagic calcifiers, we may cause profound changes to the Earth system that will persist for 100,000s to millions of years.

  2. Biogeochemical processes underpin ecosystem services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elemental cycling is critical to the function of ecosystems and delivery of key ecosystem services because many of these elements are essential nutrients or detrimental toxicants that directly affect the health of organisms and ecosystems. A team of authors from North Carolina State University and ...

  3. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  4. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.

    PubMed

    Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  5. Eliminating amplitude death by the asymmetry coupling and process delay in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Yao, Chenggui; Zhao, Qi; Zou, Wei

    2016-02-01

    Coupling mode plays a key role in determining the dynamical behavior and realizing certain system's rhythm and function in the complex systems. In this work, the effects of the asymmetry and process delay in the coupling on the dynamical behavior are investigated. We find that both the asymmetry and process delay effectively reduce the region of the frequency-mismatch-induced amplitude death in the parameter space, and make the system to recover oscillation in the amplitude death regime so as to retain sustained system's rhythm function. Furthermore, we show the asymmetry and process delay can destroy synchronization. Our results suggest that the asymmetry coupling and process delay are of crucial importance in controlling amplitude death and synchronization, and hence that their considerations are vital for modeling real life problems.

  6. The coupling of pathways and processes through shared components

    PubMed Central

    2011-01-01

    Background The coupling of pathways and processes through shared components is being increasingly recognised as a common theme which occurs in many cell signalling contexts, in which it plays highly non-trivial roles. Results In this paper we develop a basic modelling and systems framework in a general setting for understanding the coupling of processes and pathways through shared components. Our modelling framework starts with the interaction of two components with a common third component and includes production and degradation of all these components. We analyze the signal processing in our model to elucidate different aspects of the coupling. We show how different kinds of responses, including "ultrasensitive" and adaptive responses, may occur in this setting. We then build on the basic model structure and examine the effects of additional control regulation, switch-like signal processing, and spatial signalling. In the process, we identify a way in which allosteric regulation may contribute to signalling specificity, and how competitive effects may allow an enzyme to robustly coordinate and time the activation of parallel pathways. Conclusions We have developed and analyzed a common systems platform for examining the effects of coupling of processes through shared components. This can be the basis for subsequent expansion and understanding the many biologically observed variations on this common theme. PMID:21714894

  7. PFLOTRAN: Recent Developments Facilitating Massively-Parallel Reactive Biogeochemical Transport

    NASA Astrophysics Data System (ADS)

    Hammond, G. E.

    2015-12-01

    With the recent shift towards modeling carbon and nitrogen cycling in support of climate-related initiatives, emphasis has been placed on incorporating increasingly mechanistic biogeochemistry within Earth system models to more accurately predict the response of terrestrial processes to natural and anthropogenic climate cycles. PFLOTRAN is an open-source subsurface code that is specialized for simulating multiphase flow and multicomponent biogeochemical transport on supercomputers. The object-oriented code was designed with modularity in mind and has been coupled with several third-party simulators (e.g. CLM to simulate land surface processes and E4D for coupled hydrogeophysical inversion). Central to PFLOTRAN's capabilities is its ability to simulate tightly-coupled reactive transport processes. This presentation focuses on recent enhancements to the code that enable the solution of large parameterized biogeochemical reaction networks with numerous chemical species. PFLOTRAN's "reaction sandbox" is described, which facilitates the implementation of user-defined reaction networks without the need for a comprehensive understanding of PFLOTRAN software infrastructure. The reaction sandbox is written in modern Fortran (2003-2008) and leverages encapsulation, inheritance, and polymorphism to provide the researcher with a flexible workspace for prototyping reactions within a massively parallel flow and transport simulation framework. As these prototypical reactions mature into well-accepted implementations, they can be incorporated into PFLOTRAN as native biogeochemistry capability. Users of the reaction sandbox are encouraged to upload their source code to PFLOTRAN's main source code repository, including the addition of simple regression tests to better ensure the long-term code compatibility and validity of simulation results.

  8. Using Coupled Models to Study the Effects of River Discharge on Biogeochemical Cycling and Hypoxia in the Northern Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Penta, Bradley; Ko, D.; Gould, Richard W.; Arnone, Robert A.; Greene, R.; Lehrter, J.; Hagy, James; Schaeffer, B.; Murrell, M.; Kurtz, J.; Herchenroder, B.; Green, R.; Eldridge, P.

    2009-01-01

    We describe emerging capabilities to understand physical processes and biogeoehemical cycles in coastal waters through the use of satellites, numerical models, and ship observations. Emerging capabilities provide significantly improved ability to model ecological systems and the impact of environmental management actions on them. The complex interaction of physical and biogeoehemical processes responsible for hypoxic events requires an integrated approach to research, monitoring, and modeling in order to fully define the processes leading to hypoxia. Our efforts characterizes the carbon cycle associated with river plumes and the export of organic matter and nutrients form coastal Louisiana wetlands and embayments in a spatially and temporally intensive manner previously not possible. Riverine nutrients clearly affect ecosystems in the northern Gulf of Mexico as evidenced in the occurrence of regional hypoxia events. Less known and largely unqualified is the export of organic matter and nutrients from the large areas of disappearing coastal wetlands and large embayments adjacent to the Louisiana Continental Shelf. This project provides new methods to track the river plume along the shelf and to estimate the rate of export of suspended inorganic and organic paniculate matter and dissolved organic matter form coastal habitats of south Louisiana.

  9. Coupling and Hydrodynamic Limit for the Inclusion Process

    NASA Astrophysics Data System (ADS)

    Opoku, Alex; Redig, Frank

    2015-08-01

    We show propagation of local equilibrium for the symmetric inclusion process (SIP) after diffusive rescaling of space and time, as well as the local equilibrium property of the non-equilibrium steady state in the boundary driven SIP. The main tool is self-duality and a coupling between SIP particles and independent random walkers.

  10. Operator-splitting errors in coupled reactive transport codes for flow and transport under atmospheric boundary conditions or layered soil profiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One possible way of integrating subsurface flow and transport processes with (bio)geochemical reactions is to couple by means of an operator-splitting approach two completely separate codes, one for variably-saturated flow and solute transport and one for equilibrium and kinetic biogeochemical react...

  11. Simulation of Stochastic Processes by Coupled ODE-PDE

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2008-01-01

    A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

  12. Investigating redox processes under diffusive and advective flow conditions using a coupled omics and synchrotron approach

    NASA Astrophysics Data System (ADS)

    Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.

    2015-12-01

    FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.

  13. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  14. Isotopic, petrologic and biogeochemical investigations of banded iron-formations

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Kaufman, A. J.; Klein, C.; Studley, S. A.; Baur, M. E.; Walter, M. R.

    1986-01-01

    It is recognized that the first occurrence of banded iron-formations (BIFs) clearly predates biological oxygenation of the atmosphere-hydrosphere system and that their last occurrences extend beyond plausible dates of pervasive biological oxygenation. For this reason, and because enormous quantities of oxidizing power have been sequestered in them, it is widely thought that these massive, but enigmatic, sediments must encode information about the mechanism and timing of the rise of atmospheric O2. By coupling isotopic analyses of iron-formation carbonates with biogeochemical and petrologic investigations, we are studying (1) the mechanism of initial sedimentation of iron; (2) the role of iron in microbially mediated diagenetic processes in fresh iron-formation sediments; and (3) the logical integration of mechanisms of deposition with observed levels of banding. Thus far, it has been shown that (1) carbonates in BIFs of the Hamersley Group of Western Australia are isotopically inhomogenous; (2) the nature and pattern of isotopic ordering is not consistent with a metamorphic origin for the overall depletion of C-13 observed in the carbonates; (3) if biological, the origin of the C-13 depleted carbonate could be either respiratory or fermentative; (4) iron may have been precipitate d as Fe(3+), then reduced to Fe(2+) within the sediment; and (5) sedimentary biogeochemical systems may have been at least partially closed to mass transport of carbonate species.

  15. Investigating the Impact of a Burrowing Shrimp on Biogeochemical Processes and Microbial Communities in a Shallow Lagoon, Catalina Harbor, California, U.S.A.

    NASA Astrophysics Data System (ADS)

    Bertics, V. J.; Ziebis, W.

    2007-05-01

    Understanding the interactions between the activity of macrofauna organisms and the biogeochemistry and microbiology of marine sediments is crucial in evaluating marine ecosystem functioning and nutrient cycling. Burrows built by different organisms often vary in architecture, size, and permanence, making it difficult to extrapolate from one organism to another and from one location to another, the impact that bioturbation or bioirrigation has on the local biogeochemical processes. The overall goal of this study is to combine interdisciplinary approaches to assess the impact of the ghost shrimp Callianassa californiensis, on the biogeochemistry of a shallow lagoon located in Catalina Harbor, California, USA. Field investigations were performed in the lagoon along a transect from the shoreline out to 10 m. The area is bioturbated by Callianassa californiensis with a linear increase in burrows with distance from the shore (R2 = 0.9481). Highest numbers were found at the 10 m distance with approximately 866 burrows m-2. Oxygen penetration depths were determined using Clark-type amperometric microsensors. These measurements were accompanied by detailed analyses of sediment and pore water parameters (porosity, TOC, H2S, NH4+, NO3-, Fe (II)/Fe (III)) by taking sediment cores at 2 m intervals along the transect and slicing these cores in a vertical resolution of 1 cm. Microbial abundances with sediment depth and along the transect were determined by direct counts (AODC) and microbial diversity patterns were analyzed using the molecular finger printing method ARISA (Automated rRNA Intergenic Spacer Analysis). In addition to the field studies, we examined the effects of the shrimp burrows in more detail by using narrow aquaria (40 cm x 15 cm x 5 cm). Each aquarium was filled with sediment collected from the study site, populated by one or two shrimps, and placed in a flowing seawater system. The front walls of the aquaria were perforated with holes in a 1 cm grid that were

  16. Gene regulation and noise reduction by coupling of stochastic processes

    PubMed Central

    Hornos, José Eduardo M.; Reinitz, John

    2015-01-01

    Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

  17. Gene regulation and noise reduction by coupling of stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  18. Thermodynamic constraints on the utility of ecological stoichiometry for explaining global biogeochemical patterns.

    PubMed

    Helton, Ashley M; Ardón, Marcelo; Bernhardt, Emily S

    2015-10-01

    Carbon and nitrogen cycles are coupled through both stoichiometric requirements for microbial biomass and dissimilatory metabolic processes in which microbes catalyse reduction-oxidation reactions. Here, we integrate stoichiometric theory and thermodynamic principles to explain the commonly observed trade-off between high nitrate and high organic carbon concentrations, and the even stronger trade-off between high nitrate and high ammonium concentrations, across a wide range of aquatic ecosystems. Our results suggest these relationships are the emergent properties of both microbial biomass stoichiometry and the availability of terminal electron acceptors. Because elements with multiple oxidation states (i.e. nitrogen, manganese, iron and sulphur) serve as both nutrients and sources of chemical energy in reduced environments, both assimilative demand and dissimilatory uses determine their concentrations across broad spatial gradients. Conceptual and quantitative models that integrate rather than independently examine thermodynamic, stoichiometric and evolutionary controls on biogeochemical cycling are essential for understanding local to global biogeochemical patterns. PMID:26259672

  19. BIOGEOCHEMICAL STUDIES OF PHOTOSYNTHETIC MICROBIAL MATS AND THEIR BIOTA

    NASA Technical Reports Server (NTRS)

    DesMarais, David; Discipulo, M.; Turk, K.; Londry, K. L.

    2005-01-01

    Photosynthetic microbial mats offer an opportunity to define holistic functionality at the millimeter scale. At the same time. their biogeochemistry contributes to environmental processes on a planetary scale. These mats are possibly direct descendents of the most ancient biological communities; communities in which oxygenic photosynthesis might have been invented. Mats provide one of the best natural systems to study how microbial populations associate to control dynamic biogeochemical gradients. These are self- sustaining, complete ecosystems in which light energy absorbed over a dial (24 hour) cycle drives the synthesis of spatially-organized, diverse biomass. Tightly-coupled microorganisms in the mat have specialized metabolisms that catalyze transformations of carbon, nitrogen, sulfur, and a host of other elements.

  20. Solving the equation for the Iberian upwelling biogeochemical dynamics: an optimization experience

    NASA Astrophysics Data System (ADS)

    Reboreda, R.; Santaren, D.; Castro, C. G.; Alvarez-Salgado, X. A.; Nolasco, R.; Queiroga, H.; Dubert, J.

    2012-04-01

    Trying to find a set of parameters to properly reproduce the biogeochemical dynamics of the region of study is a major concern in biogeochemical ocean modelling. Model parameters are constant values introduced in the equations that calculate the time and space evolution of the state variables of the biogeochemical model. A good set of parameters allows for a better representation of the biological and chemical processes in the system, and thus to model results more approximated to reality. However, it is not a straightforward task, because many parameters are not well constrained in the literature, or they may be unknown or vary considerably between different regions. Usually, the approach to find the appropriate values is running several simulations, after some sensitivity test to individual parameters, until a satisfactory result is obtained. This may be very time consuming and quite subjective. A more systematic way to find this set of parameters has arisen over the last years by using mathematical optimization techniques. The basic principle under optimization is to minimize the difference between an observed and a simulated data series by using a cost function. We have applied an optimization technique to find an appropriate set of parameters for modelling the biogeochemical dynamics of the western Iberian shelf, off the Atlantic coast of Portugal and Galicia (NW Spain), which is characterized by a conspicuous seasonal upwelling. The ocean model is a high resolution 3D regional configuration of ROMS coupled to a N2PZD2 biogeochemical model. Results using the a priori parameters and the optimized parameters are compared and discussed. The study is the result of a multidisciplinary collaborative effort between the University of Aveiro ocean modelling group (Portugal), the ETHZ (Switzerland) and the IIM-CSIC Vigo oceanography group (Spain).

  1. Molecular biogeochemical provinces in the Atlantic Surface Ocean

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Flerus, R.; Schmitt-Kopplin, P.; Lechtenfeld, O. J.; Bracher, A.; Cooper, W.; Frka, S.; Gašparović, B.; Gonsior, M.; Hertkorn, N.; Jaffe, R.; Jenkins, A.; Kuss, J.; Lara, R. J.; Lucio, M.; McCallister, S. L.; Neogi, S. B.; Pohl, C.; Roettgers, R.; Rohardt, G.; Schmitt, B. B.; Stuart, A.; Theis, A.; Ying, W.; Witt, M.; Xie, Z.; Yamashita, Y.; Zhang, L.; Zhu, Z. Y.; Kattner, G.

    2010-12-01

    One of the most important aspects to understand marine organic carbon fluxes is to resolve the molecular mechanisms which convert fresh, labile biomolecules into semi-labile and refractory dissolved and particulate organic compounds in the ocean. In this interdisciplinary project, which was performed on a cruise with RV Polarstern, we carried out a detailed molecular characterisation of dissolved organic matter (DOM) on a North-South transect in the Atlantic surface ocean in order to relate the data to different biological, climatic, oceanographic, and meteorological regimes as well as to terrestrial input from riverine and atmospheric sources. Our goal was to achieve a high resolution data set for the biogeochemical characterisation of the sources and reactivity of DOM. We applied ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), nutrient, trace element, amino acid, and lipid analyses and other biogeochemical measurements for 220 samples from the upper water column (0-200m) and eight deep profiles. Various spectroscopic techniques were applied continuously in a constant sample water flow supplied by a fish system and the moon pool. Radiocarbon dating enabled assessing DOC residence time. Bacterial abundance and production provided a metabolic context for the DOM characterization work and pCO2 concentrations. Combining molecular organic techniques and inductively coupled plasma mass spectrometry (ICP-MS) established an important link between organic and inorganic biogeochemical studies. Multivariate statistics, primarily based on FT-ICR-MS data for 220 samples, allowed identifying geographical clusters which matched ecological provinces proposed previously by Longhurst (2007). Our study demonstrated that marine DOM carries molecular information reflecting the “history” of ocean water masses. This information can be used to define molecular biogeochemical provinces and to improve our understanding of element fluxes in

  2. Numerical simulation of the SAGD process coupled with geomechanical behavior

    NASA Astrophysics Data System (ADS)

    Li, Pingke

    Canada has vast oil sand resources. While a large portion of this resource can be recovered by surface mining techniques, a majority is located at depths requiring the application of in situ recovery technologies. Although a number of in situ recovery technologies exist, the steam assisted gravity drainage (SAGD) process has emerged as one of the most promising technologies to develop the in situ oil sands resources. During the SAGD operations, saturated steam is continuously injected into the oil sands reservoir, which induces pore pressure and stress variations. As a result, reservoir parameters and processes may also vary, particularly when tensile and shear failure occur. This geomechanical effect is obvious for oil sands material because oil sands have the in situ interlocked fabric. The conventional reservoir simulation generally does not take this coupled mechanism into consideration. Therefore, this research is to improve the reservoir simulation techniques of the SAGD process applied in the development of oil sands and heavy oil reservoirs. The analyses of the decoupled reservoir geomechanical simulation results show that the geomechanical behavior in SAGD has obvious impact on reservoir parameters, such as absolute permeability. The issues with the coupled reservoir geomechanical simulations of the SAGD process have been clarified and the permeability variations due to geomechanical behaviors in the SAGD process investigated. A methodology of sequentially coupled reservoir geomechanical simulation technique was developed based on the reservoir simulator, EXOTHERM, and the geomechanical simulator, FLAC. In addition, a representative geomechanical model of oil sands material was summarized in this research. Finally, this reservoir geomechanical simulation methodology was verified with the UTF Phase A SAGD project and applied in a SAGD operation with gas-over-bitumen geometry. Based on this methodology, the geomechanical effect on the SAGD production

  3. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  4. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in

  5. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    E. Sonnenthale

    2001-04-16

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required

  6. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    SciTech Connect

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  7. Biogeochemical Cycles in Degraded Lands

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vieira, Ima Celia G.; ReisdeCarvalho, Claudio Jose; DeaneDeAbreuSa, Tatiana; deSpozaMoutinho, Paulo R.; Figueiredo, Ricardo O.; Stone, Thomas A.

    2003-01-01

    The objectives of this project were to define and describe the types of landscapes that fall under the broad category of "degraded lands" and to study biogeochemical cycles across this range of degradation found in secondary forests. We define degraded land as that which has lost part of its capacity of renovation of a productive ecosystem, either in the context of agroecosystems or as native communities of vegetation. This definition of degradation permits evaluation of biogeochemical constraints to future land uses.

  8. Biogeochemical Cycles in Degraded Lands

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Vieira, Ima Celia G.; ReisdeCarvalho, Claudio Jose; DeanedeAbreuSa, Tatiana; deSouzaMoutinho, Paulo R.; Figueiredo, Ricardo O.; Stone, Thomas A.

    2004-01-01

    The objectives of this project were to define and describe the types of landscapes that fall under the broad category of "degraded lands" and to study biogeochemical cycles across this range of degradation found in secondary forests. We define degraded land as that which has lost part of its capacity of renovation of a productive ecosystem, either in the context of agroecosystems or as native communities of vegetation. This definition of degradation permits evaluation of biogeochemical constraints to future land uses.

  9. Biogeochemical processes in an urban, restored wetland of San Francisco Bay, California, 2007-2009; methods and data for plant, sediment and water parameters

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos; Erikson, Li H.; Ward, Kristen

    2010-01-01

    The restoration of 18 acres of historic tidal marsh at Crissy Field has had great success in terms of public outreach and visibility, but less success in terms of revegetated marsh sustainability. Native cordgrass (Spartina foliosa) has experienced dieback and has failed to recolonize following extended flooding events during unintended periodic closures of its inlet channel, which inhibits daily tidal flushing. We examined the biogeochemical impacts of these impoundment events on plant physiology and on sulfur and mercury chemistry to help the National Park Service land managers determine the relative influence of these inlet closures on marsh function. In this comparative study, we examined key pools of sulfur, mercury, and carbon compounds both during and between closure events. Further, we estimated the net hydrodynamic flux of methylmercury and total mercury to and from the marsh during a 24-hour diurnal cycle. This report documents the methods used and the data generated during the study.

  10. Basin-wide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean dipole during the SeaWiFS era

    NASA Astrophysics Data System (ADS)

    Wiggert, Jerry D.; Vialard, Jérôme; Behrenfeld, Michael J.

    Characterizing how the Indian Ocean dipole (IOD) modifies typical basin-wide dynamical variability has been vigorously pursued over the past decade. Along with this dynamic response, a clear biological impact has been revealed in the ocean color data acquired by remote sensing platforms such as Sea-viewing Wide Field-of-View Sensor (SeaWiFS). The signature feature illustrating IOD alteration of typical spatiotemporal chlorophyll variability is the phytoplankton bloom that first appears in September along the eastern boundary of the IO in tropical waters that are normally highly oligotrophic. Positive chlorophyll anomalies (CLa) are also apparent in the southeastern Bay of Bengal, while negative anomalies are observed over much of the Arabian Sea. Moreover, in situ measurements obtained by the R/V Suroit as part of the Cirene cruise during the 2006/2007 IOD reveal anomalous subsurface biochemical distributions in the southern tropical IO that are not reflected in SeaWiFS data. Despite the clear basin-wide influence of IOD events on biological variability, the accompanying influence on biogeochemical cycling that must occur has received little attention. Here, the dynamical signatures apparent in remote sensing fields for the two positive-phase IODs of the SeaWiFS era are used to illuminate how these events are similar or distinct. A corresponding comparison of IOD-engendered surface CLa is performed, with the dynamical fields providing the framework for interpreting the mechanisms underlying the biological response. Then, results from a newly developed net primary production algorithm are presented that provide the first characterization of how biogeochemical fluxes throughout the IO are altered by IOD occurrence

  11. Calcium dynamics in astrocyte processes during neurovascular coupling

    PubMed Central

    Otsu, Yo; Couchman, Kiri; Lyons, Declan G; Collot, Mayeul; Agarwal, Amit; Mallet, Jean-Maurice; Pfrieger, Frank W; Bergles, Dwight E; Charpak, Serge

    2015-01-01

    Enhanced neuronal activity in the brain triggers a local increase in blood flow, termed functional hyperemia, via several mechanisms, including calcium (Ca2+) signaling in astrocytes. However, recent in vivo studies have questioned the role of astrocytes in functional hyperemia because of the slow and sparse dynamics of their somatic Ca2+ signals and the absence of glutamate metabotropic receptor 5 in adults. Here, we reexamined their role in neurovascular coupling by selectively expressing a genetically encoded Ca2+ sensor in astrocytes of the olfactory bulb. We show that in anesthetized mice, the physiological activation of olfactory sensory neuron (OSN) terminals reliably triggers Ca2+ increases in astrocyte processes but not in somata. These Ca2+ increases systematically precede the onset of functional hyperemia by 1–2 s, reestablishing astrocytes as potential regulators of neurovascular coupling. PMID:25531572

  12. Quantifying biogeochemical responses to hydrological perturbations in terrestrial systems using geophysical monitoring and inversion schemes

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Dafflon, B.; Tran, A. P.; Chen, J.; Wainwright, H. M.

    2015-12-01

    Although recognized that terrestrial hydrological processes drive a variety of biogeochemical processes, quantifying interactions that occur across a range of scales and compartments is challenging. We describe recently developed approaches to quantify these interactions, and demonstrate the value of developed approaches in two different terrestrial systems. The first is a relatively flat Arctic tundra polygonal ground system, where snowmelt-dominated, surface water distribution significantly influences soil microbial activity and resulting production of greenhouse gasses. The second is a Colorado River floodplain-catchment, where a transient snowmelt pulse leads to hydrological and biogeochemical interactions between different compartents of the system. Three capabilties were developed to improve understanding of hydrology influences on biogeochemistry at these sites. The first is a networked sensing system that coincidently measures below-, at- and above-ground critical properties (such as soil moisture, soil temperature, canopy greenness, surface water inundation, active layer depth, and snow thickness). The approach takes advantage of autonomous data acquisition using unmanned aerial vehicles, tram-based sensors, and surface geophysical approaches. The dense datasets enable 'visualization' of interactions that occur across compartments in response to freeze-thaw and runoff processes. The second advance is the development of a coupled hydro-thermal-geophysical inversion scheme that takes advantage of spatially extensive geophysical data as well as direct but sparse measurements in the quantitative estimation of terrestrial responses to hydrological perturbations. The third is the development of stochastic 'zonation' approaches, which use multi-type, multi-scale datasets to identify regions in the landscape that have unique distributions of properties that influence biogeochemical cycling. Together, the sensing, modeling, and integrative functional zonation

  13. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  14. Upscalling processes in an ocean-atmosphere multiscale coupled model

    NASA Astrophysics Data System (ADS)

    Masson, S. G.; Berthet, S.; Samson, G.; Crétat, J.; Colas, F.; Echevin, V.; Jullien, S.; Hourdin, C.

    2015-12-01

    This work explores new pathways toward a better representation of the multi-scale physics that drive climate variability. We are analysing the key upscaling processes by which small-scale localized errors have a knock-on effect onto global climate. We focus on the Peru-Chilli coastal upwelling, an area known to hold among the strongest models biases in the Tropics. Our approach is based on the development of a multiscale coupling interface allowing us to couple WRF with the NEMO oceanic model in a configuration including 2-way nested zooms in the oceanic and/or the atmospheric component of the coupled model. Upscalling processes are evidenced and quantified by comparing three 20-year long simulations of a tropical channel (45°S-45°N), which differ by their horizontal resolution: 0.75° everywhere, 0.75°+0.25° zoom in the southeastern Pacific or 0.25° everywhere. This set of three 20-year long simulations was repeated with 3 different sets of parameterizations to assess the robustness of our results. Our results show that adding an embedded zoom over the southeastern Pacific only in the atmosphere cools down the SST along the Peru-Chili coast, which is a clear improvement. This change is associated with a displacement of the low-level cloud cover, which moves closer to the coast cooling further the coastal area SST. Offshore, we observe the opposite effect with a reduction of the cloud cover with higher resolution, which increases solar radiation and warms the SST. Increasing the resolution in the oceanic component show contrasting results according to the different set parameterization used in the experiments. Some experiment shows a coastal cooling as expected, whereas, in other cases, we observe a counterintuitive response with a warming of the coastal SST. Using at the same time an oceanic and an atmospheric zoom mostly combines the results obtained when using the 2-way nesting in only one component of the coupled model. In the best case, we archive by this

  15. A Generic Biogeochemical Module for Earth System Models: Next Generation BioGeoChemical Module (NGBGC), Version 1.0

    SciTech Connect

    Fang, Yilin; Huang, Maoyi; Liu, Chongxuan; Li, Hongyi; Leung, Lai-Yung R.

    2013-11-13

    Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from atmosphere, influencing global climate changes. Integration of these processes into earth system models (e.g., community land models (CLM)), however, currently faces three major challenges: 1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, 2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and 3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not possible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into the CLM model. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial ecosystems.

  16. Queueing up for enzymatic processing: correlated signaling through coupled degradation.

    PubMed

    Cookson, Natalie A; Mather, William H; Danino, Tal; Mondragón-Palomino, Octavio; Williams, Ruth J; Tsimring, Lev S; Hasty, Jeff

    2011-01-01

    High-throughput technologies have led to the generation of complex wiring diagrams as a post-sequencing paradigm for depicting the interactions between vast and diverse cellular species. While these diagrams are useful for analyzing biological systems on a large scale, a detailed understanding of the molecular mechanisms that underlie the observed network connections is critical for the further development of systems and synthetic biology. Here, we use queueing theory to investigate how 'waiting lines' can lead to correlations between protein 'customers' that are coupled solely through a downstream set of enzymatic 'servers'. Using the E. coli ClpXP degradation machine as a model processing system, we observe significant cross-talk between two networks that are indirectly coupled through a common set of processors. We further illustrate the implications of enzymatic queueing using a synthetic biology application, in which two independent synthetic networks demonstrate synchronized behavior when common ClpXP machinery is overburdened. Our results demonstrate that such post-translational processes can lead to dynamic connections in cellular networks and may provide a mechanistic understanding of existing but currently inexplicable links. PMID:22186735

  17. A Fully Coupled Computational Model of the Silylation Process

    SciTech Connect

    G. H. Evans; R. S. Larson; V. C. Prantil; W. S. Winters

    1999-02-01

    This report documents the development of a new finite element model of the positive tone silylation process. Model development makes use of pre-existing Sandia technology used to describe coupled thermal-mechanical behavior in deforming metals. Material properties and constitutive models were obtained from the literature. The model is two-dimensional and transient and focuses on the part of the lithography process in which crosslinked and uncrosslinked resist is exposed to a gaseous silylation agent. The model accounts for the combined effects of mass transport (diffusion of silylation agent and reaction product), chemical reaction resulting in the uptake of silicon and material swelling, the generation of stresses, and the resulting material motion. The influence of stress on diffusion and reaction rates is also included.

  18. Understanding groundwater, surface water, and hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence properties of dissolved and colloidal organic matter

    NASA Astrophysics Data System (ADS)

    Lapworth, D. J.; Gooddy, D. C.; Allen, D.; Old, G. H.

    2009-09-01

    Understanding groundwater-surface water (GW-SW) interaction in Chalk catchments is complicated by the degree of geological heterogeneity. At this study site, in southern United Kingdom, alluvial deposits in the riparian zone can be considered as a patchwork of varying grades and types with an equally varied lateral connectivity. Some display good connection with the river system and others good connection with the groundwater system and, by definition, poorer connectivity with the surface water. By coupling tangential flow fractionation (TFF) with fluorescence analysis we were able to characterize the organic matter in the river and hyporheic zone. There is a significant proportion of particulate and colloidal fluorescent organic matter (FOM) within the river system and at depth within the gravels beneath the river channel. At depth in the hyporheic zone, the surface water inputs are dampened by mixing with deeper groundwater FOM. The shallow (0-0.5 m below river bed) hyporheic zone is highly dynamic as a result of changing surface water inputs from upstream processes. Labile C in the form of protein-like FOM appears to be attenuated preferentially compared to fulvic-like fluorescence in the hyporheic zone compared to the adjacent gravel and sand deposits. These preliminary findings have important implications for understanding nutrient and trace element mobility and attenuation within the groundwater, surface water, and hyporheic zone of permeable Chalk catchments. Fluorescence analysis of dissolved organic matter has been shown to be a useful environmental tracer that can be used in conjunction with other methods to understand GW-SW processes within a permeable Chalk catchment.

  19. Biogeochemical weathering under ice: Size matters

    NASA Astrophysics Data System (ADS)

    Wadham, J. L.; Tranter, M.; Skidmore, M.; Hodson, A. J.; Priscu, J.; Lyons, W. B.; Sharp, M.; Wynn, P.; Jackson, M.

    2010-09-01

    The basal regions of continental ice sheets are gaps in our current understanding of the Earth's biosphere and biogeochemical cycles. We draw on existing and new chemical data sets for subglacial meltwaters to provide the first comprehensive assessment of sub-ice sheet biogeochemical weathering. We show that size of the ice mass is a critical control on the balance of chemical weathering processes and that microbial activity is ubiquitous in driving dissolution. Carbonate dissolution fueled by sulfide oxidation and microbial CO2 dominate beneath small valley glaciers. Prolonged meltwater residence times and greater isolation characteristic of ice sheets lead to the development of anoxia and enhanced silicate dissolution due to calcite saturation. We show that sub-ice sheet environments are highly geochemically reactive and should be considered in regional and global solute budgets. For example, calculated solute fluxes from Antarctica (72-130 t yr-1) are the same order of magnitude as those from some of the world's largest rivers and rates of chemical weathering (10-17 t km-2 yr-1) are high for the annual specific discharge (2.3-4.1 × 10-3 m). Our model of chemical weathering dynamics provides important information on subglacial biodiversity and global biogeochemical cycles and may be used to design strategies for the first sampling of Antarctic Subglacial Lakes and other sub-ice sheet environments for the next decade.

  20. Upscaled modeling of CO2 injection with coupled thermal processes

    NASA Astrophysics Data System (ADS)

    Gasda, Sarah; Stephansen, Annette; Dahle, Helge; Aavatsmark, Ivar

    2013-04-01

    Large-scale models of CO2 storage in geological formations must capture the relevant physical, chemical and thermodynamical processes that affect the migration and ultimate fate of injected CO2. These processes should be modeled over the appropriate length and time scales. Some important mechanisms include convection-driven dissolution, caprock roughness, and local capillary effects, all of which can impact the direction and speed of the plume as well as long-term trapping efficiency. In addition, CO2 can be injected at a different temperature than reservoir conditions, leading to significant density variation within the plume over space and time. This impacts buoyancy and migration patterns, which becomes particularly important for injection sites with temperature and pressure conditions near the critical point. Therefore, coupling thermal processes with fluid flow should be considered in order to correctly capture plume migration and trapping within the reservoir. A practical modeling approach for CO2 storage over relatively large length and time scales is the vertical-equilibrium model, which solves partially integrated conservation equations for flow in two lateral dimensions. We couple heat transfer within the vertical equilibrium framework for fluid flow, focusing on the thermal processes that most impact the CO2 plume. We investigate a simplified representation of heat exchange between the plume and the reservoir that also includes transport of heat within the plume. In addition, we explore CO2 thermodynamic models for reliable prediction of density under different injection pressures, temperatures and composition. The model concept is demonstrated on simple systems and applied to a realistic storage aquifer.

  1. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    P. Dixon

    2004-04-05

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC

  2. Interactions of Biogeochemical Cycles in Oncoid Microbialites from Cuatro Ciénegas, Mexico

    NASA Astrophysics Data System (ADS)

    Corman, J. R.; Souza, V.; Elser, J. J.

    2010-04-01

    Modern microbialite systems may provide unique opportunities to study the feedbacks that couple or uncouple multiple biogeochemical cycles. Here we present results from a two-week manipulative ecosystem experiment using oncoid microbialites from Cuatro Ciénegas, Mexico.

  3. Terrestrial ecosystems and the global biogeochemical silica cycle

    NASA Astrophysics Data System (ADS)

    Conley, Daniel J.

    2002-12-01

    Most research on the global Si cycle has focused nearly exclusively on weathering or the oceanic Si cycle and has not explored the complexity of the terrestrial biogeochemical cycle. The global biogeochemical Si cycle is of great interest because of its impact on global CO2 concentrations through the combined processes of weathering of silicate minerals and transfer of CO2 from the atmosphere to the lithosphere. A sizable pool of Si is contained as accumulations of amorphous silica, or biogenic silica (BSi), in living tissues of growing plants, known as phytoliths, and, after decomposition of organic material, as remains in the soil. The annual fixation of phytolith silica ranges from 60-200 Tmol yr-1 and rivals that fixed in the oceanic biogeochemical cycle (240 Tmol yr-1). Internal recycling of the phytolith pool is intense with riverine fluxes of dissolved silicate to the oceans buffered by the terrestrial biogeochemical Si cycle, challenging the ability of weathering models to predict rates of weathering and consequently, changes in global climate. Consideration must be given to the influence of the terrestrial BSi pool on variations in the global biogeochemical Si cycle over geologic time and the influence man has had on modifying both the terrestrial and aquatic biogeochemical cycles.

  4. Mapping pan-Arctic methane emissions at high spatial resolution using an adjoint atmospheric transport and inversion method and process-based wetland and lake biogeochemical models

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E.; Sweeney, C.; Turner, A. J.

    2015-11-01

    Understanding methane emissions from the Arctic, a fast warming carbon reservoir, is important for projecting changes in the global methane cycle under future climate scenarios. Here we optimize Arctic methane emissions with a nested-grid high-resolution inverse model by assimilating both high-precision surface measurements and column-average SCIAMACHY satellite retrievals of methane mole fraction. For the first time, methane emissions from lakes are integrated into an atmospheric transport and inversion estimate, together with prior wetland emissions estimated by six different biogeochemical models. We find that, the global methane emissions during July 2004-June 2005 ranged from 496.4 to 511.5 Tg yr-1, with wetland methane emissions ranging from 130.0 to 203.3 Tg yr-1. The Arctic methane emissions during July 2004-June 2005 were in the range of 14.6-30.4 Tg yr-1, with wetland and lake emissions ranging from 8.8 to 20.4 Tg yr-1 and from 5.4 to 7.9 Tg yr-1 respectively. Canadian and Siberian lakes contributed most of the estimated lake emissions. Due to insufficient measurements in the region, Arctic methane emissions are less constrained in northern Russia than in Alaska, northern Canada and Scandinavia. Comparison of different inversions indicates that the distribution of global and Arctic methane emissions is sensitive to prior wetland emissions. Evaluation with independent datasets shows that the global and Arctic inversions improve estimates of methane mixing ratios in boundary layer and free troposphere. The high-resolution inversions provide more details about the spatial distribution of methane emissions in the Arctic.

  5. Father responsivity: couple processes and the coconstruction of fatherhood.

    PubMed

    Matta, Dana Shawn; Knudson-Martin, Carmen

    2006-03-01

    Forty in-depth interviews of heterosexual parents of children 5 five years of age and younger are analyzed using a qualitative grounded theory approach to understand how couples coproduce fatherhood within their day-to-day relationships and in social, cultural, and economic contexts. The analysis identifies the construct "responsivity" as a central process through which, to varying degrees, fathers are aware of the needs of their wives and children and able to take an active part in meeting them. Three groups of fathers are examined according to their level of responsivity: low, moderate, and high. Factors influencing degree of father responsivity include gender constructions, power and the wife's influence, attunement, work schedules, and emotional tradeoffs. Implications for practice are suggested. PMID:16615251

  6. Anomalous diffusion and scaling in coupled stochastic processes

    SciTech Connect

    Bel, Golan; Nemenman, Ilya

    2009-01-01

    Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. The diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.

  7. Mountain-Scale Coupled Processes (TH/THC/THM)

    SciTech Connect

    P. Dixon

    2004-02-09

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in

  8. Biogeochemical drivers of phosphatase activity in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Freitas, Joana; Duarte, Bernardo; Caçador, Isabel

    2014-10-01

    Although nitrogen has become a major concern for wetlands scientists dealing with eutrophication problems, phosphorous represents another key element, and consequently its biogeochemical cycling has a crucial role in eutrophication processes. Microbial communities are a central component in trophic dynamics and biogeochemical processes on coastal systems, since most of the processes in sediments are microbial-mediated due to enzymatic action, including the mineralization of organic phosphorus carried out by acid phosphatase activity. In the present work, the authors investigate the biogeochemical sediment drivers that control phosphatase activities. Authors also aim to assess biogeochemical factors' influence on the enzyme-mediated phosphorous cycling processes in salt marshes. Plant rhizosediments and bare sediments were collected and biogeochemical features, including phosphatase activities, inorganic and organic phosphorus contents, humic acids content and pH, were assessed. Acid phosphatase was found to give the highest contribution for total phosphatase activity among the three pH-isoforms present in salt marsh sediments, favored by acid pH in colonized sediments. Humic acids also appear to have an important role inhibiting phosphatase activity. A clear relation of phosphatase activity and inorganic phosphorous was also found. The data presented reinforces the role of phosphatase in phosphorous cycling.

  9. Carbon sources and biogeochemical processes in Monticchio maar lakes, Mt Vulture volcano (southern Italy): New geochemical constrains of active degassing of mantle derived fluids

    NASA Astrophysics Data System (ADS)

    Caracausi, A.; Nuccio, P. M.; Favara, R.; Grassa, F.

    2012-04-01

    difference in methane contents between shallower (< 14m) and deep water, being CH4 concentrations higher in the stagnant volume of waters. Nonetheless the large gradient in methane contents (CH4 increases with depth) observed in the deep waters both C and H isotopes of methane remain constant with depth. In contrast, in the shallow waters the changes in dissolved CH4 contents are accompanied with modifications in the isotope signature of methane thus indicating that oxidation processes seem to be relevant only at a depth lower than 14 m. It is striking that in this lake, CO2-reduction is thought to be the main methanogenesis pathway for methane dissolved in the waters, while in the sediments methane is mainly produced by acetate fermentation. As methanogenesis processes leads to both bacterial consumption and production of CO2, the quantification of these becomes fundamental in inferring the nature and the quantitative releasing of carbon dioxide of magmatic origin and estimation of its isotopic signature. The re-calculated isotopic compositions (-7 ‰< ^13C<-1 ‰) fall within typically magmatic values, furthermore they fall also in the range of Mt. Vulture carbonatites. The computed values of C/3He (2-8 x 109) are in the range of sub-continental mantle. As the Monticchio lakes can be view as natural geological reservoirs subjected to injection of bio and a-biogenic gases, this study shows that amounts and isotopic signature of methane coupled to total dissolved inorganic carbon is a sensitive tool to evaluate the amount of mantle-derived fluids carried into groundwater feeding the lakes.

  10. Quantification of Terrestrial Ecosystem Carbon Dynamics in the Conterminous United States Combining a Process-Based Biogeochemical Model and MODIS and AmeriFlux data

    SciTech Connect

    Chen, Min; Zhuang, Qianlai; Cook, David R.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-09-21

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial 24 ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical 25 models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate 26 quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution 27 Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index 28 (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary 29 production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the 30 changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and 31 verify the new version of TEM with eddy flux data. We then apply the model to the conterminous 32 United States over the period 2000-2005 at a 0.05o ×0.05o spatial resolution. We find that the new 33 version of TEM generally captured the expected temporal and spatial patterns of regional carbon 34 dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr-1 and net primary 35 production (NPP) ranges from 3.81 to 4.38 Pg C yr-1 and net ecosystem production (NEP) varies 36 within 0.08-0.73 Pg C yr-1 over the period 2000-2005 for the conterminous United States. The 37 uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr-1 for the regional estimates of GPP, 38 NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 39 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a 40 new independent and more adequate measure of carbon fluxes for the conterminous United States, 41 which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon 42 management and climate.

  11. Effects of soil data and simulation unit resolution on quantifying changes of soil organic carbon at regional scale with a biogeochemical process model.

    PubMed

    Zhang, Liming; Yu, Dongsheng; Shi, Xuezheng; Xu, Shengxiang; Xing, Shihe; Zhao, Yongcong

    2014-01-01

    Soil organic carbon (SOC) models were often applied to regions with high heterogeneity, but limited spatially differentiated soil information and simulation unit resolution. This study, carried out in the Tai-Lake region of China, defined the uncertainty derived from application of the DeNitrification-DeComposition (DNDC) biogeochemical model in an area with heterogeneous soil properties and different simulation units. Three different resolution soil attribute databases, a polygonal capture of mapping units at 1:50,000 (P5), a county-based database of 1:50,000 (C5) and county-based database of 1:14,000,000 (C14), were used as inputs for regional DNDC simulation. The P5 and C5 databases were combined with the 1:50,000 digital soil map, which is the most detailed soil database for the Tai-Lake region. The C14 database was combined with 1:14,000,000 digital soil map, which is a coarse database and is often used for modeling at a national or regional scale in China. The soil polygons of P5 database and county boundaries of C5 and C14 databases were used as basic simulation units. Results project that from 1982 to 2000, total SOC change in the top layer (0-30 cm) of the 2.3 M ha of paddy soil in the Tai-Lake region was +1.48 Tg C, -3.99 Tg C and -15.38 Tg C based on P5, C5 and C14 databases, respectively. With the total SOC change as modeled with P5 inputs as the baseline, which is the advantages of using detailed, polygon-based soil dataset, the relative deviation of C5 and C14 were 368% and 1126%, respectively. The comparison illustrates that DNDC simulation is strongly influenced by choice of fundamental geographic resolution as well as input soil attribute detail. The results also indicate that improving the framework of DNDC is essential in creating accurate models of the soil carbon cycle. PMID:24523922

  12. Using Halogens (Cl, Br, F, I) and Stable Isotopes of Water (δ18O, δ2H) to Trace Hydrological and Biogeochemical Processes in Prairie Wetlands

    NASA Astrophysics Data System (ADS)

    Levy, Z. F.; Lu, Z.; Mills, C. T.; Goldhaber, M. B.; Rosenberry, D. O.; Mushet, D.; Siegel, D. I.; Fiorentino, A. J., II; Gade, M.; Spradlin, J.

    2014-12-01

    Prairie pothole wetlands are ubiquitous features of the Great Plains of North America, and important habitat for amphibians and migratory birds. The salinity of proximal wetlands varies highly due to groundwater-glacial till interactions, which influence wetland biota and associated ecosystem functions. Here we use halogens and stable isotopes of water to fingerprint hydrological and biogeochemical controls on salt cycling in a prairie wetland complex. We surveyed surface, well, and pore waters from a groundwater recharge wetland (T8) and more saline closed (P1) and open (P8) basin discharge wetlands in the Cottonwood Lake Study Area (ND) in August/October 2013 and May 2014. Halogen concentrations varied over a broad range throughout the study area (Cl = 2.2 to 170 mg/L, Br = 13 to 2000 μg/L, F = < 30 (MDL) to 740 μg/L, I = 1 to 538 μg/L). The Cl/Br molar ratios were higher (171 to 574) at the recharge wetland, indicating meteoric sources, and had a tighter and lower range (33 to 320) at the down-gradient sites. The Cl/I molar ratios of waters throughout the site had a wide range (32 to 26,000). Lowest values occurred at the upgradient shore of P1 (32 to 43) due to low Cl concentrations and the center of P1 (196 to 213) where pore water of weathered till underlying 1.2 m of organic-rich sediment and silty clay soil is enriched in I to ~500 µg/L. Stable isotopes of water showed that evaporation-enriched pond water (δ18O = -9.5 to -2.71 ‰) mixes with shallow groundwater in the top 0.6 m of fringing wetland soils and 1.2 m of the substrate in the center of P1. Our results suggest endogenous sources for Br and I within the prairie landscape that may be controlled by biological mechanisms or weathering of shale from glacial till.

  13. Effects of Soil Data and Simulation Unit Resolution on Quantifying Changes of Soil Organic Carbon at Regional Scale with a Biogeochemical Process Model

    PubMed Central

    Zhang, Liming; Yu, Dongsheng; Shi, Xuezheng; Xu, Shengxiang; Xing, Shihe; Zhao, Yongcong

    2014-01-01

    Soil organic carbon (SOC) models were often applied to regions with high heterogeneity, but limited spatially differentiated soil information and simulation unit resolution. This study, carried out in the Tai-Lake region of China, defined the uncertainty derived from application of the DeNitrification-DeComposition (DNDC) biogeochemical model in an area with heterogeneous soil properties and different simulation units. Three different resolution soil attribute databases, a polygonal capture of mapping units at 1∶50,000 (P5), a county-based database of 1∶50,000 (C5) and county-based database of 1∶14,000,000 (C14), were used as inputs for regional DNDC simulation. The P5 and C5 databases were combined with the 1∶50,000 digital soil map, which is the most detailed soil database for the Tai-Lake region. The C14 database was combined with 1∶14,000,000 digital soil map, which is a coarse database and is often used for modeling at a national or regional scale in China. The soil polygons of P5 database and county boundaries of C5 and C14 databases were used as basic simulation units. Results project that from 1982 to 2000, total SOC change in the top layer (0–30 cm) of the 2.3 M ha of paddy soil in the Tai-Lake region was +1.48 Tg C, −3.99 Tg C and −15.38 Tg C based on P5, C5 and C14 databases, respectively. With the total SOC change as modeled with P5 inputs as the baseline, which is the advantages of using detailed, polygon-based soil dataset, the relative deviation of C5 and C14 were 368% and 1126%, respectively. The comparison illustrates that DNDC simulation is strongly influenced by choice of fundamental geographic resolution as well as input soil attribute detail. The results also indicate that improving the framework of DNDC is essential in creating accurate models of the soil carbon cycle. PMID:24523922

  14. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    SciTech Connect

    Chen, Min; Zhuang, Qianlai; Cook, D.; Coulter, Richard L.; Pekour, Mikhail S.; Scott, Russell L.; Munger, J. W.; Bible, Ken

    2011-08-31

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI) and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP) modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000-2005 at a 0.05-0.05 spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 PgC yr{sup -1} and net primary production (NPP) ranges from 3.81 to 4.38 Pg Cyr{sup -1} and net ecosystem production (NEP) varies within 0.08- 0.73 PgC yr{sup -1} over the period 2000-2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 PgC yr{sup -1} for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  15. Linking the Modern and Recent Record of Cabo Frio Upwelling with Local Climate and Biogeochemical Processes in Hypersaline Coastal Lagoons, Região dos Lagos, Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    McKenzie, J. A.; Nascimento, G. S.; Albuquerque, A. L.; Belem, A. L.; Carreira, R.; Eglinton, T. I.; Vasconcelos, C.

    2015-12-01

    A unique marine and lagoonal system along the coast east of Rio de Janeiro is being investigated to understand the impact of climatic variability on the South Atlantic carbon cycle and biomineralisation processes involved in carbonate precipitation in the hypersaline coastal lagoons. The region is dominated by a semi-arid microclimate attributed to the local coastal upwelling phenomenon near Cabo Frio. The intensity of the upwelling affects the hydrology of the annual water and biogeochemical cycles in the lagoons, as well as biogeochemical signals of environmental change recorded in both onshore and offshore sediments. Preliminary results of δ18O and δD values of water samples collected monthly in Lagoa Vermelha and Brejo do Espinho from 2011 to 2014 show lower values for waters corresponding to the wet season, reflecting increased input of meteoric water. The higher values for waters collected during the dry season reflect the greater amount of evaporation with increased seasonal aridity. Radiocarbon dating of Holocene marine and lagoonal cores indicates that Mg-carbonate precipitation in the lagoons is associated with high evaporation. Modern field observations for the last 3 years suggest that the amount of carbonate precipitation is correlated with evaporitic conditions associated with the upwelling phenomenon. A calibration study of hydrogen isotopic fractionation in the modern lagoons is underway to define a relationship between δDlipid of suspended particles and δDwater of associated water. This isotopic relationship will be applied to material obtained in cores from the lagoons. Offshore cores will be studied using well-tested paleotemperature proxies to evaluate the intensity of the upwelling during the Holocene. In summary, linking the coastal upwelling with the lagoonal hydrology has the potential to furnish important insights about the relationship between the local climate and paleoceanographic circulation associated with the regional carbon cycle.

  16. Hydrologic and biogeochemical functioning of intensively managed catchments: A synthesis of top-down analyses

    NASA Astrophysics Data System (ADS)

    Basu, Nandita B.; Thompson, Sally E.; Rao, P. Suresh C.

    2011-10-01

    This paper synthesizes a 3-year collaborative effort to characterize the biogeochemical and hydrological features of intensively managed agricultural catchments by combining data analysis, modeling, and preliminary hypothesis testing. The specific focus was on the Midwestern region of the United States. The results suggest that: (1) water management, specifically the homogenization of evapotranspiration losses driven by mono-cultural vegetation cover, and the homogenization of runoff generation driven by artificial drainage, has created engineered, predictable hydrologic systems; (2) nutrient and pesticide management, specifically their regular applications have created two kinds of biogeochemical export regimes: chemostatic (low variability in concentration as exhibited by nitrate) and episodic (high variability in concentration as exhibited by pesticides); (3) coupled mass-balance models for water and solutes reproduce these two regimes as a function of chemical rate constants. Phosphorus transport regimes were found to be episodic at smaller spatial scales, but chemostatic at larger scales. Chemostatic response dominates in transport-limited catchments that have internal sources of the solute to buffer the periodicity in episodic inputs, while episodic response dominates in source-limited catchments. The shift from episodic nitrate export in pristine catchments to chemostatic regimes in managed watersheds was attributed to legacy stores of nitrogen (built from continued fertilizer applications) that buffer interannual variations in biogeochemical processing. Fast degradation kinetics of pesticides prevents the build-up of legacy sources, and leads to episodic export. Analytical expressions were derived for the probability density functions of solute delivery ratio as a function of the stochastics of rainfall-runoff events and biogeochemical controls.

  17. Evolutionary games of condensates in coupled birth-death processes

    NASA Astrophysics Data System (ADS)

    Weber, Markus F.; Knebel, Johannes; Krueger, Torben; Frey, Erwin

    2015-03-01

    Condensation phenomena occur in many systems, both in a classical and a quantum mechanical context. Typically, the entities that constitute a system collectively concentrate in one distinct state during condensation. For example, cooling of an equilibrated bosonic gas may lead to condensation into the quantum ground state. Notably, the mathematical theory of this Bose-Einstein condensation is not limited to quantum theory but was also successfully applied to condensation in random networks. In our work, we follow the opposite path. We apply the theory of evolutionary dynamics to describe condensation in a bosonic system that is driven and dissipative. It was shown that the system may condense into multiple quantum states, but into which states has remained elusive. We find that vanishing of relative entropy production determines these states. We illuminate the physical principles underlying the condensation and show that the condensates do not need to be static but may engage in ``evolutionary games'' with exchange of particles. On the mathematical level, the condensation is described by coupled birth-death processes. The generic structure of these processes implies that our results also apply to condensation in other systems, ranging from population biology to chemical kinetics.

  18. 3-D Modelling of Electromagnetic, Thermal, Mechanical and Metallurgical Couplings in Metal Forming Processes

    SciTech Connect

    Chenot, Jean-Loup; Bay, Francois

    2007-04-07

    The different stages of metal forming processes often involve - beyond the mechanical deformations processes - other physical coupled problems, such as heat transfer, electromagnetism or metallurgy. The purpose of this paper is to focus on problems involving electromagnetic couplings. After a brief recall on electromagnetic modeling, we shall then focus on induction heating processes and present some results regarding heat transfer, as well as mechanical couplings. A case showing coupling for metallurgic microstructure evolution will conclude this paper.

  19. Eastern Mediterranean biogeochemical flux model - Simulations of the pelagic ecosystem

    NASA Astrophysics Data System (ADS)

    Petihakis, G.; Triantafyllou, G.; Tsiaras, K.; Korres, G.; Pollani, A.; Hoteit, I.

    2009-02-01

    During the second phase (2003-2006) of the Mediterranean ocean Forecasting System Project (MFS) named Toward Environmental Predictions (MFSTEP) one of the three major aims was the development of numerical forecasting systems. In this context a generic Biogeochemical Flux Model (BFM) was developed and coupled with hydrodynamic models already operating at basin scale as well as in regional areas. In the Eastern Mediterranean basin the BFM was coupled with the Aegean Levantine Eddy Resolving MOdel (ALERMO). The BFM is a generic highly complex model based on ERSEM and although a detailed description of the model and its components is beyond the scope of this work, a short overview of the main processes, laying emphasis on the parameter values used is presented. In addition the performance of the model is evaluated with some preliminary results being qualitatively compared against field observations. The model in its present form is rather promising and reproduces all important major features although there are some slight inefficiencies mostly related to primary and bacterial productivity rates.

  20. DRIFT-SCALE COUPLED PROCESSES (DST AND TH SEEPAGE) MODELS

    SciTech Connect

    J.T. Birkholzer; S. Mukhopadhyay

    2005-01-13

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  1. Drift-Scale Coupled Processes (DST and TH Seepage) Models

    SciTech Connect

    J. Birkholzer; S. Mukhopadhyay

    2004-09-29

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  2. Modeling of coupled geochemical and transport processes: An overview

    SciTech Connect

    Carnahan, C.L.

    1989-10-01

    Early coupled models associated with fluid flow and solute transport have been limited by assumed conditions of constant temperature, fully saturated fluid flow, and constant pore fluid velocity. Developments including coupling of chemical reactions to variable fields of temperature and fluid flow have generated new requirements for experimental data. As the capabilities of coupled models expand, needs are created for experimental data to be used for both input and validation. 25 refs.

  3. A GIS-based Framework for Examining the Effects of Water-Driven Erosion on Soil Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Abban, B. K.; Papanicolaou, T.; Wacha, K.; Wilson, C. G.

    2014-12-01

    Soil erosion has long been identified as one of the key mechanisms affecting biogeochemical processes in the soil, through the transport and delivery of carbon and nutrients adsorbed to soil particles in the soil active layer. However, most biogeochemical models treat soil erosion contributions simplistically and lack the capacity to accurately account for the mechanisms that control soil erosion and deposition on the landscape. This stems from the fact that the majority of the biogeochemical models have traditionally been employed on landscapes where lateral and downslope fluxes due to soil erosion have been less significant compared to other vertical fluxes and processes occurring at a fixed location on the landscape. In intensely managed landscapes, however, this may not be the case since land management practices such as tillage and exposed land cover can lead to copious amounts of erosion on the landscape. Therefore, to better understand the role of soil erosion on soil biogeochemical cycling in IMLs, we present a framework for simulating the spatiotemporal effects of soil erosion and deposition on soil biogeochemical cycling. We focus specifically on tillage- and runoff-induced erosion since these are prevalent in IMLs. The framework employs a geospatial approach that loosely couples a GIS-based upland water erosion model, GeoWEPP, with a soil biogeochemistry model, Century, to predict downslope and lateral fluxes of soil erosion and the resultant impacts on soil biogeochemical cycling. The use of a geospatial approach allows us to better capture the effects of topography, soil type, land use/land cover, and climate on soil erosion fluxes as well as soil biogeochemical cycling. The spatiotemporal resolution of the framework makes it particularly beneficial for identifying hotspots in fields and hot moments at scales ranging from daily to annual time scales. We employ the framework to study the monthly redistribution of soil organic carbon over the course of a

  4. Biogeochemical Cycles of Carbon and Sulfur

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The elements carbon (C) and sulfur (S) interact with each other across a network of elemental reservoirs that are interconnected by an array of physical, chemical and biological processes. These networks are termed the biogeochemical C and S cycles. The compounds of C are highly important, not only as organic matter, but also as atmospheric greenhouse gases, pH buffers in seawater, oxidation-reduction buffers virtually everywhere, and key magmatic constituents affecting plutonism and volcanism. The element S assumes important roles as an oxidation-reduction partner with C and Fe in biological systems, as a key constituent in magmas and volcanic gases, and as a major influence upon pH in certain environments. This presentation describes the modern biogeochemical C and S cycles. Measurements are described whereby stable isotopes can help to infer the nature and quantitative significance of biological and geological processes involved in the C and S cycles. This lecture also summarizes the geological and climatologic aspects of the ancient C and S cycles, as well as the planetary and extraterrestrial processes that influenced their evolution over millions to billions of years.

  5. Factors Influencing Phosphorous Cycling in Biogeochemical 'Hot Spots'

    NASA Astrophysics Data System (ADS)

    Saia, S. M.; Walter, M. T.; Buda, A. R.; Carrick, H. J.; Regan, J. M.

    2015-12-01

    Anthropogenic alteration of the phosphorus (P) cycle has led to subsequent soil and water quality issues. For example, P build up in soils due to historic fertilizer application may become biologically available and exacerbate eutrophication and anoxia in nearby water bodies. In the humid Northeastern United States, storm runoff transports P and also stimulates biogeochemical processes, these locations are termed biogeochemical 'hot spots'. Many studies have looked at nitrogen and carbon cycling in biogeochemical hot spots but few have focused on P. We hypothesize the periodic wetting and drying of biogeochemical hot spots promotes a combination of abiotic and biotic processes that influence the mobility of P. To test this hypothesis, we took monthly soil samples (5 cm deep) from May to October in forest, pasture, and cropped land near Ithaca, NY. In-situ measurements taken with each sample included volumetric soil moisture and soil temperature. We also analyzed samples for 'runoff generated' phosphate, nitrate, and sulfate (from 0.01 M CaCl2 extraction), Fe(II), percent organic matter, pH, as well as oxalate extractable and total P, Al, and Fe. We used linear mixed effects models to test how runoff generated phosphate concentrations vary with soil moisture and whether other environmental factors strengthen/weaken this relationship. The knowledge gained from this study will improve our understanding of P cycling in biogeochemical hot spots and can be used to improve the effectiveness of agricultural management practices in the Northeastern United States.

  6. Evolutionary games of condensates in coupled birth–death processes

    PubMed Central

    Knebel, Johannes; Weber, Markus F.; Krüger, Torben; Frey, Erwin

    2015-01-01

    Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose–Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth–death processes, which also occur in evolutionary game theory. Here we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that the vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a rock–paper–scissors game of condensates. PMID:25908384

  7. River restoration: morphological, hydrological, biogeochemical and ecological changes and challenges

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Luster, J.; Linde, N.; Perona, P.; Mitchell, E. A. D.; Barry, D. A.; Cirpka, O. A.; Schneider, P.; Vogt, T.; Durisch-Kaiser, E.

    2013-08-01

    River restoration is essential as a means to enhance river dynamics, environmental heterogeneity and biodiversity. The underlying processes governing the dynamic changes need to be understood thoroughly to ensure that restoration projects meet their goals. In particular, we need to understand quantitatively how hydromorphological variability relates to ecosystem functioning and services, biodiversity and (ground)water quality in restored river corridors. Here, we provide a short overview on the literature and present a study of a restored river corridor in Switzerland combining physical, chemical, and biological observations with modeling. The results show complex spatial patterns of bank infiltration, habitat-type, biotic communities and biogeochemical processes. In particular, we found an increase in taxonomic and functional diversity for earthworms, testate amoebae and bacteria in the restored part of the river. This complexity is driven by river hydrology and morphodynamics, which are in turn actively coupled to riparian vegetation processes. Given this complexity and the multiple constraints on the uses and management of floodplains, a multi-disciplinary approach is needed to monitor the success of restoration measures and to make recommendations for future restoration projects.

  8. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.

    PubMed

    Chen, Huai; Zhu, Qiuan; Peng, Changhui; Wu, Ning; Wang, Yanfen; Fang, Xiuqing; Gao, Yongheng; Zhu, Dan; Yang, Gang; Tian, Jianqing; Kang, Xiaoming; Piao, Shilong; Ouyang, Hua; Xiang, Wenhua; Luo, Zhibin; Jiang, Hong; Song, Xingzhang; Zhang, Yao; Yu, Guirui; Zhao, Xinquan; Gong, Peng; Yao, Tandong; Wu, Jianghua

    2013-10-01

    With a pace of about twice the observed rate of global warming, the temperature on the Qinghai-Tibetan Plateau (Earth's 'third pole') has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane (CH(4)) emissions from wetlands and increased CH(4) consumption of meadows, but might increase CH(4) emissions from lakes. Warming-induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO(2)) and CH(4). Nitrous oxide (N(2)O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process-based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles. PMID:23744573

  9. Ecosystem biogeochemical function and services in an urbanizing desert region

    NASA Astrophysics Data System (ADS)

    Grimm, N. B.; Cook, E. M.; Earl, S.; Hale, R. L.; Hall, S. J.; Hartnett, H. E.; Iwaniec, D.; Larson, E. K.; McHale, M.; Sponseller, R. A.

    2009-12-01

    Ecosystem services derive from underlying ecosystem processes but are distinguished by their benefits to society. Among ecosystem services, those associated with biogeochemical cycling and regulation of water, air, and soil quality are relatively unrecognized by the public, although concentrations of some materials are regulated by local, state and national laws. The disconnection between their importance and the degree to which these services are acknowledged means that biogeochemical ecosystem services have seldom been considered in urban planning and design. Drawing from research at multiple scales in the central Arizona region that includes over twenty cities and towns comprising metropolitan Phoenix, we illustrate the relationships between ecosystem functions and services in three areas. First, at household to whole-city scales, we show that the overriding influence of water and material inputs mediated by humans is changing biogeochemical patterns in soil and vegetation. Second, we show how human modification of aquatic ecosystems for water delivery, stormwater management, and wastewater removal give rise to important trade-offs among these services. And finally, we illustrate the limited capacity of surrounding unproductive desert ecosystems to assimilate the air pollutants generated by this region of >4 million inhabitants. We argue that urban planning and design that take into account the ecosystem functions underlying biogeochemical ecosystem services will be most effective in management of potential pollution problems associated with all of these cases. This paper thus highlights biogeochemical research conducted at the central Arizona-Phoenix LTER within a framework of ecosystem services.

  10. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1990-01-01

    A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

  11. Global Change: A Biogeochemical Perspective

    NASA Technical Reports Server (NTRS)

    Mcelroy, M.

    1983-01-01

    A research program that is designed to enhance our understanding of the Earth as the support system for life is described. The program change, both natural and anthropogenic, that might affect the habitability of the planet on a time scale roughly equal to that of a human life is studied. On this time scale the atmosphere, biosphere, and upper ocean are treated as a single coupled system. The need for understanding the processes affecting the distribution of essential nutrients--carbon, nitrogen, phosphorous, sulfur, and water--within this coupled system is examined. The importance of subtle interactions among chemical, biological, and physical effects is emphasized. The specific objectives are to define the present state of the planetary life-support system; to ellucidate the underlying physical, chemical, and biological controls; and to provide the body of knowledge required to assess changes that might impact the future habitability of the Earth.

  12. Small spatial and fast temporal ionosphere-magnetosphere coupling processes

    NASA Astrophysics Data System (ADS)

    Zhu, Hua

    2000-09-01

    I have developed a two-dimensional, three-fluid model (electrons, ions and neutrals) to simulate small-scale magnetosphere-ionosphere coupling processes. The code includes ionization and recombination processes, the Hall term in Ohm's law, and various heat sources in the energy equations. The electro-dynamic response and the evolution of the collision frequencies are treated self- consistently in a height resolved ionosphere. The model allows for the propagation of Alfvén waves. The simulation is particularly suited for fast temporal variations and small spatial scale ionospheric structures associated with filamentary aurora and ionospheric heating experiments (e.g. HAARP). I have investigated the evolution of field-aligned currents in the magnetosphere-ionosphere system and found several notable effects-ion heating due to plasma- neutral friction, electron heating resulting from energetic particle precipitation and ohmic dissipation by strong field-aligned currents. The simulation of plasma. heating in the ionosphere is motivated by a specific auroral event that was simultaneously observed with optical and radar instruments. The results indicate that a consistent explanation of this event requires ohmic heating of electrons in a strong field-aligned electric current layer. They suggest strongly that the observed sequence of events can be explained only if spatial structure is present in the ionosphere so that it requires at least a two-dimensional model. Electron heating in strong field-aligned currents also provides a mechanism to deposit energy in the F-region of ionosphere and thus can explain the formation of tall auroral arcs. The simulation of the formation of field-aligned currents shows a strong plasma density depletion in the region of downward field-aligned current layer. The depletion is due to the divergent flow of the plasma. Similarly, the plasma density increases in the region of upward field- aligned current because of the convergent plasma motion

  13. The NEON Aquatic Network: Expanding the Availability of Biogeochemical Data

    NASA Astrophysics Data System (ADS)

    Vance, J. M.; Bohall, C.; Fitzgerald, M.; Utz, R.; Parker, S. M.; Roehm, C. L.; Goodman, K. J.; McLaughlin, B.

    2013-12-01

    Aquatic ecosystems are facing unprecedented pressure from climate change and land-use practices. Invasive species, whether plant, animal, insect or microbe present additional threat to aquatic ecosystem services. There are significant scientific challenges to understanding how these forces will interact to affect aquatic ecosystems, as the flow of energy and materials in the environment is driven by multivariate and non-linear biogeochemical cycles. The National Ecological Observatory Network (NEON) will collect and provide observational data across multiple scales. Sites were selected to maximize representation of major North American ecosystems using a multivariate geographic clustering method that partitioned the continental US, AK, HI, and Puerto Rico into 20 eco-climatic domains. The NEON data collection systems and methods are designed to yield standardized, near real-time data subjected to rigorous quality controls prior to public dissemination through an online data portal. NEON will collect data for 30 years to facilitate spatial-temporal analysis of environmental responses and drivers of ecosystem change, ranging from local through continental scales. Here we present the NEON Aquatic Network, a multi-parameter network consisting of a combination of in situ sensor and observational data. This network will provide data to examine biogeochemical, biological, hydrologic and geomorphic metrics at 36 sites, which are a combination of small 1st/2nd order wadeable streams, large rivers and lakes. A typical NEON Aquatic site will host up to two in-stream sensor sets designed to collect near-continuous water quality data (e.g. pH/ORP, temperature, conductivity, dissolved oxygen, CDOM) along with up to 8 shallow groundwater monitoring wells (level, temp., cond.), and a local meteorological station (e.g. 2D wind speed, PAR, barometric pressure, temperature, net radiation). These coupled sensor suites will be complemented by observational data (e.g. water

  14. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  15. Eddy Permitting Simulations of Biogeochemical Cycles in the Global Ocean

    NASA Astrophysics Data System (ADS)

    Sumata, H.; Hashioka, T.; Suzuki, T.; Yamanaka, Y.

    2008-12-01

    A 3D ecosystem-biogeochemical model simulation for the global domain is performed in order to investigate variability of oceanic ecosystem on time scales of years to decades. The model has a horizontal resolution of 1/4 times 1/6 degrees and 51 vertical levels, covering the entire domain of the world ocean. The ecosystem- biogeochemical part of the model is based on NEMURO (North Pacific Ecosystem Model Used for Regional Oceanography), and is coupled with CCSR Ocean Component Model (COCO) version 4.3 by an offline technique. The physical part of the model is driven by the inter-annual forcing by common ocean-ice reference experiments (CORE) data from 1958 to 2004, and reasonably simulates inter-annual to decadal variabilities of ocean conditions related to biogeochemical cycles. These properties of the physical model with its eddying filed enable us to reproduce the realistic distributions of nutrients and plankton productions. Comparisons with historical station data show that the model also reasonably simulates the observed variabilities of ecosystem on time scales of years to decades. In particular, the model captures the transitions of biogeochemical cycles associated with regime shifts.

  16. Client Discourses on the Process of Seeking Same-Sex Couple Counselling

    ERIC Educational Resources Information Center

    Grove, Jan; Peel, Elizabeth; Owen-Pugh, Valerie

    2013-01-01

    How same-sex couples manage the process of seeking help for their relationships is an under-researched area. Twelve semi-structured interviews were conducted with 16 people who had engaged in same-sex couple counselling, and were analysed using discourse analysis. The ways in which the couples positioned themselves as part of a "minority…

  17. Ocean biogeochemical response to phytoplankton-light feedback in a global model

    NASA Astrophysics Data System (ADS)

    Manizza, Manfredi; Le QuéRé, Corinne; Watson, Andrew J.; Buitenhuis, Erik T.

    2008-10-01

    Oceanic phytoplankton, absorbing solar radiation, can influence the bio-optical properties of seawater and hence upper ocean physics. We include this process in a global ocean general circulation model (OGCM) coupled to a dynamic green ocean model (DGOM) based on multiple plankton functional types (PFT). We not only study the impact of this process on ocean physics but we also explore the biogeochemical response due to this biophysical feedback. The phytoplankton-light feedback (PLF) impacts the dynamics of the upper tropical and subtropical oceans. The change in circulation enhances both the vertical supply in the tropics and the lateral supply of nutrients from the tropics to the subtropics boosting the subtropical productivity by up to 60 gC m-2 a-1. Physical changes, due to the PLF, impact on light and nutrient availability causing shifts in the ocean ecosystems. In the extratropics, increased stratification favors calcifiers (by up to ˜8%) at the expense of mixed phytoplankton. In the Southern Ocean, silicifiers increase their biomass (by up to ˜10%) because of the combined alleviation of iron and light limitation. The PLF has a small effect globally on air-sea fluxes of carbon dioxide (CO2, 72 TmolC a-1 outgassing) and oxygen (O2, 46 TmolO2 a-1 ingassing) because changes in biogeochemical processes (primary production, biogenic calcification, and export production) highly vary regionally and can also oppose each other. From our study it emerges that the main impact of the PLF is an amplification of the seasonal cycle of physical and biogeochemical properties of the high-latitude oceans mostly driven by the amplification of the SST seasonal cycle.

  18. The biogeochemical footprint of agricultural soil erosion

    NASA Astrophysics Data System (ADS)

    Govers, Gerard; Van Oost, Kristof; Wang, Zhengang

    2015-04-01

    Global biogeochemical cycles are a key component of the functioning of the Earth System: these cycles are all, to a varying extent, disturbed by human activities which not only has dramatic consequences for the global climate but also for the acidity of the world's oceans. It is only relatively recently that the role of lateral fluxes related to surface water movement and soil erosion and deposition (and the way those fluxes are modified by human action) is explicitly considered by the scientific community. In this paper we present an overview of our present-day understanding of the role of agricultural soil erosion in the global cycles of carbon, nitrogen, phosphorous and silica. We discuss the major processes through which erosion affects these global cycles and pay particular attention to the knowledge gaps that prevent us from accurately assessing the impact of soil erosion on global biogeochemical cycling at different temporal scales. Furthering our understanding (and better constraining our estimates) will require progress both in terms of model development and process understanding. Research needs can be most clearly identified with respect to soil organic carbon: (i) at present, large-scale soil erosion (and deposition) models are poorly constrained so that the amount of carbon mobilised by erosion (and its fate) cannot be accurately estimated and (ii) the fate of soil organic carbon buried by deposition or delivered to river network is poorly understood. Uncertainties for N, P and Si are larger than those for C as we have less information on the amount of these elements stored in agricultural soils and/or do not fully understand how these elements cycle through the soil/plant system. Agricultural soil erosion does not affect soil functioning through its effect on biogeochemical cycling. Erosion directly affects soil hydrological functioning and is likely to affect weathering processes and soil production. Addressing all these issues requires the

  19. Insights into High-Resolution Physico-Biogeochemical Processes in Nearshore Environments of Lake Erie Using an Autonomous Underwater Vehicle (AUV)

    NASA Astrophysics Data System (ADS)

    Roehm, C. L.; Vermette, S.; Perrelli, M.; Bauer, K.; Jerla, B.

    2012-12-01

    The goal of this project is to gain a better understanding of the physico-chemical-biological dynamics in nearshore areas of Lake Erie as a function of environmental and climate change. Nearshore processes in the Great Lakes are complex and drive many efforts in remediating areas of concern (AoCs). Long term studies of the processes and the dynamics of these environments are necessary to determine the success of management strategies and the application of policies. A network of monitoring buoys can provide an insight into long term temporal changes in the system, however, the spatial resolution is rather coarse. As part of a nearshore buoy observations study on the long-term impacts of climate and environmental change on Lake Erie the deployment of an automated underwater vehicle (AUV) compliments and augments the data obtained by the buoys by providing direct high spatial resolution observations. The high resolution data will be used to improve parameter estimates of water circulation and water quality parameters for models (FVCOM) that often cannot accurately predict nearshore surface and subsurface dynamics. An AUV equipped with water quality instrumentation as well as an acoustic doppler current profiler and side scan sonar was deployed in a gridded pattern at multiple locations along the shoreline of Lake Erie throughout the summer of 2012. The data presented here describe and capture at, high spatial resolution, the nearshore-offshore characteristics and inter-relationships of lake bottom morphology, water quality and current patterns and provide an insight into the complex processes and dynamics of these regions. These data will provide a better understanding of nearshore lake processes that can be used to improve current model parameters and inform both science at large and management strategies.

  20. 3D Modeling of influence of oxygenated inflows on biogeochemical structure of redox-layer of enclosed seas

    NASA Astrophysics Data System (ADS)

    Podymov, O.

    2009-04-01

    In this study we used a coupled hydrophysical-biogeochemical model. Biogeochemical processes were described with O-N-S-P-Mn-Fe ROLM model (Yakushev et al, 2007), designed to study processes of organic matter (OM) formation and decay, reduction and oxidation of species of nitrogen, sulphur, manganese and iron, transformation of phosphorus species. Phytoplankton, zooplankton and bacteria were also parameterized and divided into four groups according to their relation to particular energy source and to OM transformation. Hydrophysical processes where described with 3D General Estuarine Transport Model (Burchard et al, 2004). We modeled the influence of oxygenated intrusions on the vertical biogeochemical structure of the central Gotland Sea. The model simulations demonstrate that a complete ventilation of the Gotland Deep bottom water caused by massive inflows of oxygenated North Sea water led to substantial changes of the vertical biogeochemical structure within this basin. During the inflow events large amounts of iron and manganese precipitate and discharge from the water column. In this phase redox reactions are accelerated and growth of bacteria leads to an increase of particulate matter content and consecutive particle sedimentation. An unbalanced structure of water column exists during the period of reestablishment of anoxic conditions. Its appearance is related to the absence of Mn species that play the dominant role in the oxidation-reduction reactions at the pelagic redox interfaces. This unbalanced structure can serve as a biotope for a development of untypical microbial redox-cline reactions (i.e. anammox). According to the model simulations the duration of the reestablishment period for a steady state of biogeochemistry after a complete flushing is about 1.5 years.

  1. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1989-01-01

    A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

  2. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  3. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  4. Biogeochemical processes controlling methane in gassy coastal sediments—Part 2: groundwater flow control of acoustic turbidity in Eckernförde Bay Sediments

    NASA Astrophysics Data System (ADS)

    Albert, Daniel B.; Martens, Christopher S.; Alperin, Marc J.

    1998-12-01

    /shallower onset of methanogenesis, but they also aid loss of methane through advection. A diagenetic model that couples the biogeochemistry of sulfate and methane is used to explain the presence or absence of methane gas in these sediments in relation to the flow rate of fresh groundwater from below. Model results indicate that acoustic windows within otherwise acoustically turbid sediments of the bay are likely due to relatively higher rates of vertical advection of fresh groundwater. The gassy pockmark, however, with an even higher vertical advection rate, seems to require the input of additional reactive organic carbon to explain its vertical methane distribution.

  5. Understanding Biogeochemical and Hydrological Processes in a Reservoir, Kentucky Lake (USA), Using Long-term Monitoring and Real-time Sensors

    NASA Astrophysics Data System (ADS)

    Hendricks, S. P.; White, D.; Williamson, M.; Hooks, R.

    2010-12-01

    . Additional real-time monitoring sites will be located in each stream. We presently are evaluating calibration needs, issues, and performance in a continuous-measurement environment. Continuous, high-resolution water quality and meteorological data coupled with the long-term (16-day interval over 22 years) water quality monitoring program will be extremely valuable in helping us understand constituent and hydrological fluxes within Kentucky Lake and the influence of contrasting land-use watersheds in the Tennessee River basin.

  6. Coupling processes related to the Sun-weather problem

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Herman, J. R.

    1979-01-01

    Physical mechanisms for coupling the energetics of solar activity to meteorological responses are reviewed. Although several hypotheses have been advanced, none can be said to be sufficiently complete to be applied to weather or climate prediction. Solar activity indicators potentially useful for forecasting are identified, including sunspots, solar flares, and magnetic sector boundary crossings. Additional experiments, studies, and analyses are required before Sun-weather concepts can be utilized for predicting meteorological responses.

  7. Panel discussion on near-field coupled processes with emphasis on performance assessment

    SciTech Connect

    Codell, R.B.; Baca, R.G.; Ahola, M.P.

    1996-04-01

    The presentations in this panel discussion involve the general topic of near-field coupled processes and postclosure performance assessment with an emphasis on rock mechanics. The potential impact of near-field rock mass deformation on repository performance was discussed, as well as topics including long term excavation deterioration, the performance of geologic seals, and coupled processes concerning rock mechanics in performance assessments.

  8. Effect of Biogeochemical Redox Processes on the Fate and Transport of As and U at an Abandoned Uranium Mine Site: an X-ray Absorption Spectroscopy Study

    SciTech Connect

    Troyer, Lyndsay D.; Stone, James J.; Borch, Thomas

    2014-01-28

    Although As can occur in U ore at concentrations up to 10 wt-%, the fate and transport of both U and As at U mine tailings have not been previously investigated at a watershed scale. The major objective of this study was to determine primary chemical and physical processes contributing to transport of both U and As to a down gradient watershed at an abandoned U mine site in South Dakota. Uranium is primarily transported by erosion at the site, based on decreasing concentrations in sediment with distance from the tailings. equential extractions and U X-ray absorption near-edge fine structure (XANES) fitting indicate that U is immobilised in a near-source sedimentation pond both by prevention of sediment transport and by reduction of UVI to UIV. In contrast to U, subsequent release of As to the watershed takes place from the pond partially due to reductive dissolution of Fe oxy(hydr)oxides. However, As is immobilised by adsorption to clays and Fe oxy(hydr)oxides in oxic zones and by formation of As–sulfide mineral phases in anoxic zones down gradient, indicated by sequential extractions and As XANES fitting. This study indicates that As should be considered during restoration of uranium mine sites in order to prevent transport.

  9. Biogeochemical processes involving dissolved CO2 and CH4 at Albano, Averno, and Monticchio meromictic volcanic lakes (Central-Southern Italy)

    NASA Astrophysics Data System (ADS)

    Cabassi, Jacopo; Tassi, Franco; Vaselli, Orlando; Fiebig, Jens; Nocentini, Matteo; Capecchiacci, Francesco; Rouwet, Dmitri; Bicocchi, Gabriele

    2013-01-01

    This paper focuses on the chemical and isotopic features of dissolved gases (CH4 and CO2) from four meromictic lakes hosted in volcanic systems of Central-Southern Italy: Lake Albano (Alban Hills), Lake Averno (Phlegrean Fields), and Monticchio Grande and Piccolo lakes (Mt. Vulture). Deep waters in these lakes are characterized by the presence of a significant reservoir of extra-atmospheric dissolved gases mainly consisting of CH4 and CO2. The δ13C-CH4 and δD-CH4 values of dissolved gas samples from the maximum depths of the investigated lakes (from -66.8 to -55.6 ‰ V-PDB and from -279 to -195 ‰ V-SMOW, respectively) suggest that CH4 is mainly produced by microbial activity. The δ13C-CO2 values of Lake Grande, Lake Piccolo, and Lake Albano (ranging from -5.8 to -0.4 ‰ V-PDB) indicate a significant CO2 contribution from sublacustrine vents originating from (1) mantle degassing and (2) thermometamorphic reactions involving limestone, i.e., the same CO2 source feeding the regional thermal and cold CO2-rich fluid emissions. In contrast, the relatively low δ13C-CO2 values (from -13.4 to -8.2 ‰ V-PDB) of Lake Averno indicate a prevalent organic CO2. Chemical and isotopic compositions of dissolved CO2 and CH4 at different depths are mainly depending on (1) CO2 inputs from external sources (hydrothermal and/or anthropogenic); (2) CO2-CH4 isotopic exchange; and (3) methanogenic and methanotrophic activity. In the epilimnion, vertical water mixing, free oxygen availability, and photosynthesis cause the dramatic decrease of both CO2 and CH4 concentrations. In the hypolimnion, where the δ13C-CO2 values progressively increase with depth and the δ13C-CH4 values show an opposite trend, biogenic CO2 production from CH4 using different electron donor species, such as sulfate, tend to counteract the methanogenesis process whose efficiency achieves its climax at the water-bottom sediment interface. Theoretical values, calculated on the basis of δ13C-CO2 values, and

  10. Nitrogen and carbon flow from rock to water: Regulation through soil biogeochemical processes, Mokelumne River watershed, California, and Grand Valley, Colorado

    USGS Publications Warehouse

    Holloway, J.M.; Smith, R.L.

    2005-01-01

    Soil denitrification is an ecologically important nitrogen removal mechanism that releases to the atmosphere the greenhouse gas N2O, an intermediate product from the reduction of NO3- to N 2. In this study we evaluate the relationship between soil carbon and denitrification potential in watersheds with bedrock acting as a nonpoint source of nitrogen, testing the hypothesis that nitrate leaching to stream water is in part regulated by denitrification. Two sites, one in a Mediterranean climate and the other in an arid climate, were investigated to understand the interplay between carbon and denitrification potential. Both sites included carbonaceous bedrock with relatively high nitrogen concentrations (> 1,000 mg N kg-1) and had low background nitrogen concentrations in surface and groundwater. There was a net accumulation of carbon and nitrogen in soil relative to the corresponding bedrock, with the exception of carbonaceous shale from the arid site. There the concentration of carbon in the soil (15,620 mg C kg-1) was less than the shale parent (22,460 mg C kg-1), consistent with the bedrock being a source of soil carbon. Rates of denitrification potential (0.5-83 ??g N kg-1 hr-1) derived from laboratory incubations appeared to be related to the ratio of dissolved organic carbon and nitrate extracted from soils. These data indicate that microbial processes such as denitrification can help maintain background nitrogen concentrations to tens of ??M N in relatively undisturbed ecosystems when nitrogen inputs from weathering bedrock are accompanied by sufficient organic carbon concentrations to promote microbial nitrogen transformations.

  11. Coupled Biogeochemical Processes Governing the Stability of Bacteriogenic Uraninite and Release of U(VI) in Heterogeneous Media: Molecular to Meter Scales

    SciTech Connect

    Bargar, John R.

    2006-11-15

    In-situ reductive biotransformation of subsurface U(VI) to U(IV) (as ?UO2?) has been proposed as a bioremediation method to immobilize uranium at contaminated DOE sites. The chemical stability of bacteriogenic ?UO2? is the seminal issue governing its success as an in-situ waste form in the subsurface. The structure and properties of chemically synthesized UO2+x have been investigated in great detail. It has been found to exhibit complex structural disorder, with nonstoichiometry being common, hence the designation ?UO2+x?, where 0 < x < 0.25. Little is known about the structures and properties of the important bacteriogenic analogs, which are believed to occur as nanoparticles in the environment. Chemically synthesized UO2+x exhibits an open fluorite structure and is known to accommodate significant doping of divalent cations. The extent to which bacteriogenic UO2+x incorporates common ground water cations (e.g., Ca2+) has not been investigated, and little is known about nonstoichiometry and structure defects in the bacteriogenic material. Particle size, nonstoichiometry, and doping may significantly alter the reactivity, and hence stability, of bacteriogenic UO2+x in the subsurface. The presence of associated sulfide minerals, and solid phase oxidants such as bacteriogenic Mn oxides may also affect the longevity of bacteriogenic UO2 in the subsurface.

  12. Oceanographic and biogeochemical insights from diatom genomes.

    PubMed

    Bowler, Chris; Vardi, Assaf; Allen, Andrew E

    2010-01-01

    Diatoms are the most successful group of eukaryotic phytoplankton in the modern ocean and have risen to dominance relatively quickly over the last 100 million years. Recently completed whole genome sequences from two species of diatom, Thalassiosira pseudonana and Phaeodactylum tricornutum, have revealed a wealth of information about the evolutionary origins and metabolic adaptations that have led to their ecological success. A major finding is that they have incorporated genes both from their endosymbiotic ancestors and by horizontal gene transfer from marine bacteria. This unique melting pot of genes encodes novel capacities for metabolic management, for example, allowing the integration of a urea cycle into a photosynthetic cell. In this review we show how genome-enabled approaches are being leveraged to explore major phenomena of oceanographic and biogeochemical relevance, such as nutrient assimilation and life histories in diatoms. We also discuss how diatoms may be affected by climate change-induced alterations in ocean processes. PMID:21141668

  13. Selenium source identification and biogeochemical processes controlling selenium in surface water and biota, Kendrick Reclamation Project, Wyoming, U.S.A.

    USGS Publications Warehouse

    Naftz, D.L.; See, R.B.; Ramirez, P.

    1993-01-01

    The major tributaries draining the Kendrick Reclamation Project (KRP) account for an average of 52% of the total Se load measured in the North Platte River downstream from Casper, Wyoming. The Casper Creek drainage basin contributed the largest Se load of the five tributary sites to the North Platte River. The 4-d average Se concentration in water samples from one site in the part of the North Platte River that receives irrigation return flows exceeded the 5 ??g/l U.S. Environmental Protection Agency's aquatic life criterion five time during a 50-d monitoring period in 1989. In agreement with the water-quality data, muscle and liver tissue rom rainbow trout collected from the same part of the North Platte River had Se concentrations exceeding levels known to cause reproductive failure and chronic Se poisoning. On the basis of Se: Cl, 18O/16O and D/H ratios in water from Goose and Rasmus Lee Lakes (closed-basin systems), the large Se concentrations in those lakes were derived by natural evaporation of irrigation water without leaching of soluble forms of Se from soil or rocks. Water samples from Thirtythree Mile Reservoir and Illco Pond (flow-through systems) showed considerable enrichment in Se over evaporative concentration, presumably due to leaching and desorption of Se from soil and rock. The Se: Cl ratios of irrigation drain water collected from the KRP indicate that leaching and desorption of soluble forms of Se from soils and rocks are the dominant processes in drain water. Results of a Wilcoxon matched-pairs test for 43 paired drain-water samples collected during June and August 1988, indicated there is a statistically larger concentration of Se (0.01 significance level) during the June sampling period. The larger concentrations of Se and other chemical constitutents during the early part of the irrigation season probably were due to dissolution of seleniferous salts that have accumulated in soils within the KRP since the last irrigation season. The large

  14. Ocean fronts drive marine fishery production and biogeochemical cycling.

    PubMed

    Woodson, C Brock; Litvin, Steven Y

    2015-02-10

    Long-term changes in nutrient supply and primary production reportedly foreshadow substantial declines in global marine fishery production. These declines combined with current overfishing, habitat degradation, and pollution paint a grim picture for the future of marine fisheries and ecosystems. However, current models forecasting such declines do not account for the effects of ocean fronts as biogeochemical hotspots. Here we apply a fundamental technique from fluid dynamics to an ecosystem model to show how fronts increase total ecosystem biomass, explain fishery production, cause regime shifts, and contribute significantly to global biogeochemical budgets by channeling nutrients through alternate trophic pathways. We then illustrate how ocean fronts affect fishery abundance and yield, using long-term records of anchovy-sardine regimes and salmon abundances in the California Current. These results elucidate the fundamental importance of biophysical coupling as a driver of bottom-up vs. top-down regulation and high productivity in marine ecosystems. PMID:25624488

  15. Ocean fronts drive marine fishery production and biogeochemical cycling

    PubMed Central

    Woodson, C. Brock; Litvin, Steven Y.

    2015-01-01

    Long-term changes in nutrient supply and primary production reportedly foreshadow substantial declines in global marine fishery production. These declines combined with current overfishing, habitat degradation, and pollution paint a grim picture for the future of marine fisheries and ecosystems. However, current models forecasting such declines do not account for the effects of ocean fronts as biogeochemical hotspots. Here we apply a fundamental technique from fluid dynamics to an ecosystem model to show how fronts increase total ecosystem biomass, explain fishery production, cause regime shifts, and contribute significantly to global biogeochemical budgets by channeling nutrients through alternate trophic pathways. We then illustrate how ocean fronts affect fishery abundance and yield, using long-term records of anchovy–sardine regimes and salmon abundances in the California Current. These results elucidate the fundamental importance of biophysical coupling as a driver of bottom–up vs. top–down regulation and high productivity in marine ecosystems. PMID:25624488

  16. Arsenic in New Jersey Coastal Plain streams, sediments, and shallow groundwater: effects from different geologic sources and anthropogenic inputs on biogeochemical and physical mobilization processes

    USGS Publications Warehouse

    Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Mumford, Adam C.; Benzel, William M.; Szabo, Zoltan; Shourds, Jennifer L.; Young, Lily Y.

    2013-01-01

    Arsenic (As) concentrations in New Jersey Coastal Plain streams generally exceed the State Surface Water Quality Standard (0.017 micrograms per liter (µg/L)), but concentrations seldom exceed 1 µg/L in filtered stream-water samples, regardless of geologic contributions or anthropogenic inputs. Nevertheless, As concentrations in unfiltered stream water indicate substantial variation because of particle inputs from soils and sediments with differing As contents, and because of discharges from groundwater of widely varying chemistry. In the Inner Coastal Plain, streams draining to lower reaches of the Delaware River traverse As-rich glauconitic sediments of marine origin in which As contents typically are about 20 milligrams per kilogram (mg/kg) or greater. In some of these sedimentary units, As concentrations exceed the New Jersey drinking-water maximum contaminant level (5 µg/L) in shallow groundwater that discharges to streams. Microbes, fueled by organic carbon beneath the streambed, reduce iron (Fe) and As, releasing As and Fe into solution in the shallow groundwater from geologic materials that likely include (in addition to glauconite) other phyllosilicates, apatite, and siderite. When the groundwater discharges to the stream, the dissolved Fe and As are oxidized, the Fe precipitates as a hydroxide, and the As sorbs or co-precipitates with the Fe. Because of the oxidation/precipitation process, dissolved As concentrations measured in filtered stream waters of the Inner Coastal Plain are about 1 µg/L, but the total As concentrations (and loads) are greater, substantially amplified by As-bearing suspended sediment in stormflows. In the Outer Coastal Plain, streams draining to the Atlantic Ocean traverse quartz-rich sediments of mainly deltaic origin where the As content generally is low ( With a history of agriculture in the New Jersey Coastal Plain, anthropogenic inputs of As, such as residues from former pesticide applications in soils, can amplify any

  17. Thin film coating process using an inductively coupled plasma

    DOEpatents

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  18. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  19. Scaling hyporheic exchange and its influence on biogeochemical reactions in aquatic ecosystems

    USGS Publications Warehouse

    O'Connor, B.L.; Harvey, J.W.

    2008-01-01

    Hyporheic exchange and biogeochemical reactions are difficult to quantify because of the range in fluid-flow and sediment conditions inherent to streams, wetlands, and nearshore marine ecosystems. Field measurements of biogeochemical reactions in aquatic systems are impeded by the difficulty of measuring hyporheic flow simultaneously with chemical gradients in sediments. Simplified models of hyporheic exchange have been developed using Darcy's law generated by flow and bed topography at the sediment-water interface. However, many modes of transport are potentially involved (molecular diffusion, bioturbation, advection, shear, bed mobility, and turbulence) with even simple models being difficult to apply in complex natural systems characterized by variable sediment sizes and irregular bed geometries. In this study, we synthesize information from published hyporheic exchange investigations to develop a scaling relationship for estimating mass transfer in near-surface sediments across a range in fluid-flow and sediment conditions. Net hyporheic exchange was quantified using an effective diffusion coefficient (De) that integrates all of the various transport processes that occur simultaneously in sediments, and dimensional analysis was used to scale De to shear stress velocity, roughness height, and permeability that describe fluid-flow and sediment characteristics. We demonstrated the value of the derived scaling relationship by using it to quantify dissolved oxygen (DO) uptake rates on the basis of DO profiles in sediments and compared them to independent flux measurements. The results support a broad application of the De scaling relationship for quantifying coupled hyporheic exchange and biogeochemical reaction rates in streams and other aquatic ecosystems characterized by complex fluid-flow and sediment conditions.

  20. SHIMMER (1.0): a novel mathematical model for microbial and biogeochemical dynamics in glacier forefield ecosystems

    NASA Astrophysics Data System (ADS)

    Bradley, J. A.; Anesio, A. M.; Singarayer, J. S.; Heath, M. R.; Arndt, S.

    2015-08-01

    SHIMMER (Soil biogeocHemIcal Model for Microbial Ecosystem Response) is a new numerical modelling framework which is developed as part of an interdisciplinary, iterative, model-data based approach fully integrating fieldwork and laboratory experiments with model development, testing, and application. SHIMMER is designed to simulate the establishment of microbial biomass and associated biogeochemical cycling during the initial stages of ecosystem development in glacier forefield soils. However, it is also transferable to other extreme ecosystem types (such as desert soils or the surface of glaciers). The model mechanistically describes and predicts transformations in carbon, nitrogen and phosphorus through aggregated components of the microbial community as a set of coupled ordinary differential equations. The rationale for development of the model arises from decades of empirical observation on the initial stages of soil development in glacier forefields. SHIMMER enables a quantitative and process focussed approach to synthesising the existing empirical data and advancing understanding of microbial and biogeochemical dynamics. Here, we provide a detailed description of SHIMMER. The performance of SHIMMER is then tested in two case studies using published data from the Damma Glacier forefield in Switzerland and the Athabasca Glacier in Canada. In addition, a sensitivity analysis helps identify the most sensitive and unconstrained model parameters. Results show that the accumulation of microbial biomass is highly dependent on variation in microbial growth and death rate constants, Q10 values, the active fraction of microbial biomass, and the reactivity of organic matter. The model correctly predicts the rapid accumulation of microbial biomass observed during the initial stages of succession in the forefields of both the case study systems. Simulation results indicate that primary production is responsible for the initial build-up of substrate that subsequently

  1. Low power, compact charge coupled device signal processing system

    NASA Technical Reports Server (NTRS)

    Bosshart, P. W.; Buss, D. D.; Eversole, W. L.; Hewes, C. R.; Mayer, D. J.

    1980-01-01

    A variety of charged coupled devices (CCDs) for performing programmable correlation for preprocessing environmental sensor data preparatory to its transmission to the ground were developed. A total of two separate ICs were developed and a third was evaluated. The first IC was a CCD chirp z transform IC capable of performing a 32 point DFT at frequencies to 1 MHz. All on chip circuitry operated as designed with the exception of the limited dynamic range caused by a fixed pattern noise due to interactions between the digital and analog circuits. The second IC developed was a 64 stage CCD analog/analog correlator for performing time domain correlation. Multiplier errors were found to be less than 1 percent at designed signal levels and less than 0.3 percent at the measured smaller levels. A prototype IC for performing time domain correlation was also evaluated.

  2. Incorporating nitrogen fixing cyanobacteria in the global biogeochemical model HAMOCC

    NASA Astrophysics Data System (ADS)

    Paulsen, Hanna; Ilyina, Tatiana; Six, Katharina

    2015-04-01

    Nitrogen fixation by marine diazotrophs plays a fundamental role in the oceanic nitrogen and carbon cycle as it provides a major source of 'new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Since most global biogeochemical models include nitrogen fixation only diagnostically, they are not able to capture its spatial pattern sufficiently. Here we present the incorporation of an explicit, dynamic representation of diazotrophic cyanobacteria and the corresponding nitrogen fixation in the global ocean biogeochemical model HAMOCC (Hamburg Ocean Carbon Cycle model), which is part of the Max Planck Institute for Meteorology Earth system model (MPI-ESM). The parameterization of the diazotrophic growth is thereby based on available knowledge about the cyanobacterium Trichodesmium spp., which is considered as the most significant pelagic nitrogen fixer. Evaluation against observations shows that the model successfully reproduces the main spatial distribution of cyanobacteria and nitrogen fixation, covering large parts of the tropical and subtropical oceans. Besides the role of cyanobacteria in marine biogeochemical cycles, their capacity to form extensive surface blooms induces a number of bio-physical feedback mechanisms in the Earth system. The processes driving these interactions, which are related to the alteration of heat absorption, surface albedo and momentum input by wind, are incorporated in the biogeochemical and physical model of the MPI-ESM in order to investigate their impacts on a global scale. First preliminary results will be shown.

  3. KINETICS AND MECHANISMS OF SOIL BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    The application of kinetic studies to soil chemistry is useful to determine reaction mechanisms and fate of nutrients and environmental contaminants. How deeply one wishes to query the mechanism depends on the detail sought. Reactions that involve chemical species in more than on...

  4. Searching for Biogeochemical Cycles on Mars

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    1997-01-01

    The search for life on Mars clearly benefits from a rigorous, yet broad, definition of life that compels us to consider all possible lines of evidence for a martian biosphere. Recent studies in microbial ecology illustrate that the classic definition of life should be expanded beyond the traditional definition of a living cell. The traditional defining characteristics of life are threefold. First, life is capable of metabolism, that is, it performs chemical reactions that utilize energy and also synthesize its cellular constituents. Second, life is capable of self-replication. Third, life can evolve in order to adapt to environmental changes. An expanded, ecological definition of life also recognizes that life is a community of organisms that must interact with their nonliving environment through processes called biogeochemical cycles. This regenerative processing maintains, in an aqueous conditions, a dependable supply of nutrients and energy for growth. In turn, life can significantly affect those processes that control the exchange of materials between the atmosphere, ocean, and upper crust. Because metabolic processes interact directly with the environment, they can alter their surroundings and thus leave behind evidence of life. For example, organic matter is produced from single-carbon-atom precursors for the biosynthesis of cellular constituents. This leads to a reservoir of reduced carbon in sediments that, in turn, can affect the oxidation state of the atmosphere. The harvesting of chemical energy for metabolism often employs oxidation-reduction reactions that can alter the chemistry and oxidation state of the redox-sensitive elements carbon, sulfur, nitrogen, iron, and manganese. Have there ever been biogeochemical cycles on Mars? Certain key planetary processes can offer clues. Active volcanism provides reduced chemical species that biota can use for organic synthesis. Volcanic carbon dioxide and methane can serve as greenhouse gases. Thus the

  5. Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials

    SciTech Connect

    Liu, Chongxuan; Liu, Yuanyuan; Kerisit, Sebastien N.; Zachara, John M.

    2015-09-01

    This manuscript provides a review of pore-scale researches in literature including experimental and numerical approaches, and scale-dependent behavior of geochemical and biogeochemical reaction rates in heterogeneous porous media. A mathematical equation that can be used to predict the scale-dependent behavior of geochemical reaction rates in heterogeneous porous media has been derived. The derived effective rate expression explicitly links the effective reaction rate constant to the intrinsic rate constant, and to the pore-scale variations in reactant concentrations in porous media. Molecular simulations to calculate the intrinsic rate constants were provided. A few examples of pore-scale simulations were used to demonstrate the application of the equation to calculate effective rate constants in heterogeneous materials. The results indicate that the deviation of effective rate constant from the intrinsic rate in heterogeneous porous media is caused by the pore-scale distributions of reactants and their correlation, which are affected by the pore-scale coupling of reactions and transport.

  6. Understanding Biogeochemical Transformations Of Trace Elements In Multi Metal-Rich Geomaterials Under Stimulated Redox Conditions

    EPA Science Inventory

    Natural and anthropogenic influences on hydrological conditions can induce periodic or long-term reduced conditions in geologic materials. Such conditions can cause significant impacts on biogeochemical processes of trace elements in subsurface or near surface environments. The...

  7. Coupled model of physical and biological processes affecting maize pollination

    NASA Astrophysics Data System (ADS)

    Arritt, R.; Westgate, M.; Riese, J.; Falk, M.; Takle, E.

    2003-04-01

    Controversy over the use of genetically modified (GM) crops has led to increased interest in evaluating and controlling the potential for inadvertent outcrossing in open-pollinated crops such as maize. In response to this problem we have developed a Lagrangian model of pollen dispersion as a component of a coupled end-to-end (anther to ear) physical-biological model of maize pollination. The Lagrangian method is adopted because of its generality and flexibility: first, the method readily accommodates flow fields of arbitrary complexity; second, each element of the material being transported can be identified by its source, time of release, or other properties of interest. The latter allows pollen viability to be estimated as a function of such factors as travel time, temperature, and relative humidity, so that the physical effects of airflow and turbulence on pollen dispersion can be considered together with the biological aspects of pollen release and viability. Predicted dispersion of pollen compares well both to observations and to results from a simpler Gaussian plume model. Ability of the Lagrangian model to handle complex air flows is demonstrated by application to pollen dispersion in the vicinity of an agricultural shelter belt. We also show results indicating that pollen viability can be quantified by an "aging function" that accounts for temperature, humidity, and time of exposure.

  8. Parameterization of biogeochemical sediment-water fluxes using in situ measurements and a diagenetic model

    NASA Astrophysics Data System (ADS)

    Laurent, A.; Fennel, K.; Wilson, R.; Lehrter, J.; Devereux, R.

    2016-01-01

    Diagenetic processes are important drivers of water column biogeochemistry in coastal areas. For example, sediment oxygen consumption can be a significant contributor to oxygen depletion in hypoxic systems, and sediment-water nutrient fluxes support primary productivity in the overlying water column. Moreover, nonlinearities develop between bottom water conditions and sediment-water fluxes due to loss of oxygen-dependent processes in the sediment as oxygen becomes depleted in bottom waters. Yet, sediment-water fluxes of chemical species are often parameterized crudely in coupled physical-biogeochemical models, using simple linear parameterizations that are only poorly constrained by observations. Diagenetic models that represent sediment biogeochemistry are available, but rarely are coupled to water column biogeochemical models because they are computationally expensive. Here, we apply a method that efficiently parameterizes sediment-water fluxes of oxygen, nitrate and ammonium by combining in situ measurements, a diagenetic model and a parameter optimization method. As a proof of concept, we apply this method to the Louisiana Shelf where high primary production, stimulated by excessive nutrient loads from the Mississippi-Atchafalaya River system, promotes the development of hypoxic bottom waters in summer. The parameterized sediment-water fluxes represent nonlinear feedbacks between water column and sediment processes at low bottom water oxygen concentrations, which may persist for long periods (weeks to months) in hypoxic systems such as the Louisiana Shelf. This method can be applied to other systems and is particularly relevant for shallow coastal and estuarine waters where the interaction between sediment and water column is strong and hypoxia is prone to occur due to land-based nutrient loads.

  9. Simulating the coupling between atmosphere ocean processes and the planktonic ecosystem during SERIES

    NASA Astrophysics Data System (ADS)

    Steiner, N.; Denman, K.; McFarlane, N.; Solheim, L.

    2006-10-01

    We have developed a 1-D atmosphere-ocean-biogeochemical model to investigate the coupling between atmosphere-ocean exchanges and the planktonic ecosystem during the Subarctic Ecosystem Response to Iron Enrichment Study (SERIES) in 2002. The atmospheric Single Column Model (SCM) is based on the Canadian Centre for Climate Modelling and Analysis (CCCma) Atmospheric General Circulation Model (AGCM). The ocean component employs the General Ocean Turbulence Model (GOTM). A seven-component ecosystem model is embedded in GOTM, which includes nitrogen, organic and inorganic carbon, silica and oxygen cycling. We use observations from SERIES combined with atmospheric reanalysis data to initiate and force the coupled physical model. We found that atmospheric temperatures and humidities are higher and the stratification more stable if nudged to National Centre of Environmental Prediction (NCEP) rather than to European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis data. Doubling the vertical resolution in the atmosphere improved the representation of mixing and the thermal structure, affecting cloudiness and radiative fluxes at the ocean surface as well as planetary boundary layer heights and gas dispersion in the lower atmosphere. From observed ocean-surface dimethyl sulphide (DMS) concentrations (outside the patch) we simulated DMS dispersion in the atmospheric boundary layer by applying a first-order loss term, with turnover times ranging from 1 to 4 days. During SERIES, shallow boundary-layer heights that occurred when DMS production was highest prevented dispersion into the atmosphere beyond several 100 m. Finally, successive model runs with iron fertilization starting on June 25, July 10 and 25 showed that the general nature of the response to iron enrichment at OSP (SERIES) is robust, but the strength as well as length of the response depend strongly on short-term atmospheric conditions (wind and radiative fluxes).

  10. Solute coupled diffusion in osmotically driven membrane processes.

    PubMed

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process. PMID:19764248

  11. "The best is always yet to come": Relationship stages and processes among young LGBT couples.

    PubMed

    Macapagal, Kathryn; Greene, George J; Rivera, Zenaida; Mustanski, Brian

    2015-06-01

    Limited research has examined relationship development among lesbian, gay, bisexual, and transgender (LGBT) couples in emerging adulthood. A better understanding of LGBT couples can inform the development of relationship education programs that reflect their unique needs. The following questions guided this study: (a) What are the stages and processes during young LGBT couples' relationship development? and (b) How do these compare with existing literature on heterosexual adults? A secondary goal was to explore similarities and differences between couples assigned male (MAAB) and female at birth (FAAB). Thirty-six couples completed interviews on their relationship history. Qualitative analyses showed that relationship stages and processes were similar to past research on heterosexuals, but participants' subjective experiences reflected their LGBT identities and emerging adulthood, which exerted additional stress on the relationship. These factors also affected milestones indicative of commitment among heterosexual adults (e.g., introducing partner to family). Mixed methods analyses indicated that MAAB couples described negotiating relationship agreements and safe sex in more depth than FAAB couples. Relationship development models warrant modifications to consider the impact of sexual and gender identity and emerging adulthood when applied to young LGBT couples. These factors should be addressed in interventions to promote relationship health among young LGBT couples. PMID:26053345

  12. Thermodynamic stability analysis of the carbon biogeochemical cycle in aquatic shallow environments

    NASA Astrophysics Data System (ADS)

    Lvov, S. N.; Pastres, R.; Marcomini, A.

    1996-10-01

    We carry out the thermodynamic stability analysis of the carbon cycle in a lagoon. Our approach differs from linear stability analysis, and is based on the excess entropy production. The coupled biogeochemical processes in the lagoon include gas transfer, photosynthesis, respiration, decomposition, sedimentation, and oxidation of algae. The thermodynamic stability criterion derived from this analysis indicates that, in addition to known limiting factors of biomass production such as temperature, light, and nitrogen and phosphorous concentrations, the rate of carbon dioxide delivery from the air reservoir to the water can be also a limiting factor. For the Venice lagoon, the criterion obtained predicts that a doubling of the CO 2 partial pressure in the atmosphere can render the system unstable, driving it to dramatic biomass production and degradation.

  13. Estimating biogeochemical fluxes across sagebrush-steppe landscapes with Thematic Mapper imagery

    NASA Technical Reports Server (NTRS)

    Reiners, W. A.; Strong, L. L.; Matson, P. A.; Burke, I. C.; Ojima, D. S.

    1989-01-01

    Thematic Mapper (TM) satellite data were coupled to an ecosystem simulation model to simulate variation in nitrogen mineralization over time and space in a sagebrush steppe. This system of data inputs and calculations provides estimates of ecosystem properties including rates of biogeochemical processes over extensive and complex landscapes, and under changing management and climatic conditions. The landscape surface was divided into three sagebrush ecosystem types plus one other class consisting of nonsagebrush vegetation. This classification presented a complex mosaic of ecosystem types that shifted markedly in composition from one end of the 933-sq km study area to the other. Annual N-mineralization rates ranged from 5 to 25 kg N/ha among the three sagebrush types. The most active type comprised 42 percent of the entire area but contributed 60 percent to the nitrogen mineralization throughout the landscape.

  14. It Takes Two? An Exploration of Processes and Outcomes in a Two-Session Couple Intervention.

    PubMed

    Bradford, Kay; Mock, D Jim; Stewart, J Wade

    2016-07-01

    Although relationship distress is common, couples often forego professional help due to concerns such as time constraints, financial costs, and stigma. The two-session relationship checkup is an alternative format of couple intervention developed to address these concerns. In this qualitative study, we interviewed 20 coupled participants and six clinicians to examine the checkup's processes and outcomes. The phenomenological themes that emerged revealed sequential processes by which this format works. Couple themes included client motivation, the therapeutic relationship, and therapeutic change in terms of perceptions and behaviors-particularly with regard to communication. Clinician data largely mirrored these themes. The results suggest the intervention addressed barriers to help-seeking and may be a viable selective option for at-risk couples. PMID:26525590

  15. Atmospheric-induced variability of hydrological and biogeochemical signatures in the NW Alboran Sea. Consequences for the spawning and nursery habitats of European anchovy

    NASA Astrophysics Data System (ADS)

    Macías, D.; Catalán, I. A.; Solé, J.; Morales-Nin, B.; Ruiz, J.

    2011-12-01

    The north-western Alboran Sea is a highly dynamic region in which the hydrological processes are mainly controlled by the entrance of the Atlantic Jet (AJ) through the Strait of Gibraltar. The biological patterns of the area are also related to this variability in which atmospheric pressure distributions and wind intensity and direction play major roles. In this work, we studied how changes in atmospheric forcing (from high atmospheric pressure over the Mediterranean to low atmospheric pressure) induced alterations in the physical and biogeochemical environment by re-activating coastal upwelling on the Spanish shore. The nursery area of European anchovy ( Engraulis encrasicolus) in the NW Alboran Sea, confirmed to be the very coastal band around Malaga Bay, did not show any drastic change in its biogeochemical characteristics, indicating that this coastal region is somewhat isolated from the rest of the basin. Our data also suggests that anchovy distribution is tightly coupled to the presence of microzooplankton rather than mesozooplankton. Finally, we use detailed physical and biological information to evaluate a hydrological-biogeochemical coupled model with a specific hydrological configuration to represent the Alboran basin. This model is able to reproduce the general circulation patterns in the region forced by the AJ movements only including two variable external forcings; atmospheric pressure over the western Mediterranean and realistic wind fields.

  16. Coupling between mantle and surface processes: Insights from analogue modelling

    NASA Astrophysics Data System (ADS)

    Király, Ágnes; Sembroni, Andrea; Faccenna, Claudio; Funiciello, Francesca

    2014-05-01

    Thermal or density anomalies located beneath the lithosphere are thought to generate dynamic topography. Such a topographic signal compensates the viscous stresses originating from the anomaly driven mantle flow. It has been demonstrated that the erosion modulates the dynamic signal of topography changing the uplift rate by unload. The characteristic time for adjustments of dynamic topography due to surface erosion is likely similar to post-glacial rebound time (10000 - 50000 years). Here we present preliminary results of a new set of analogue models realized to study and quantify the contribution given by erosion to dynamic topography, during a process specifically driven by a positively buoyant deep anomaly. The adopted set up consists of a Plexiglas box (40x40x50 cm3) filled with glucose syrup as analogue upper mantle. A silicon plate positioned on the top of the syrup simulates the lithosphere. On the silicone plate is placed a thin layer of a high viscous glucose syrup which reproduces the upper, erodible layer of the crust. To simulate the positively buoyant anomaly we used an elastic, undeformable silicon ball free to rise by buoyancy in the syrup until the floating silicone plate is hit. The changes in topography have been monitored by using a 3D laser scan, while a side-view camera recorded the position of the rising ball in time. Data have been post-processed with image analysis techniques (e.g., Particle Image Velocimetry) in order to obtain the evolution of topography, uplift rate, erosion patterns of the top layer, bulge width and mantle circulation during the experiment. We ran experiments with and without the shallow, erodible crustal layer in order to quantify the effect of erosion on dynamic topography. Preliminary results showed that both the maximum topography and uplift rate are inversely proportional to the lithospheric thickness. The maximum uplift rate and the deformation of the lithospheric plate occurred just before the arrival of the

  17. Diagnosing coupled watershed processes using a fully-coupled groundwater, land-surface, surface water and mesoscale atmospheric model

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Kollet, S. J.; Chow, F. K.

    2007-12-01

    A variably-saturated groundwater flow model with an integrated overland flow component, a land-surface model and a mesoscale atmospheric model is used to examine the interplay between coupled water and energy processes. These processes are influenced by land-surface topography and subsurface heterogeneity. This parallel, integrated model simulates spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. Spatial statistics are used to demonstrate spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating. Additionally, spectral transforms of subsurface arrival times are computed using a transient Lagrangian transport simulation. Macrodispersion is used to mimic the effects of subsurface heterogeneity for a range of Peclet numbers. The slopes of these transforms indicate fractal scaling of this system over a range of timescales. All of these techniques point to importance of realistically representing coupled processes and the need to understand and diagnose these processes in nature. This work was conducted under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory (LLNL) under contract W-7405-Eng-48. This project was funded by the Laboratory Directed Research and Development Program at LLNL

  18. The global troposphere - Biogeochemical cycles, chemistry, and remote sensing

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Allario, F.

    1982-01-01

    The chemical composition of the troposphere is controlled by various biogeochemical cycles that couple the atmosphere with the oceans, the solid earth and the biosphere, and by atmospheric photochemical/chemical reactions. These cycles and reactions are discussed and a number of key questions concerning tropospheric composition and chemistry for the carbon, nitrogen, oxygen and sulfur species are identified. Next, various remote sensing techniques and instruments capable of measuring and monitoring tropospheric species from the ground, aircraft and space to address some of these key questions are reviewed. Future thrusts in remote sensing of the troposphere are also considered.

  19. The global troposphere: Biogeochemical cycles, chemistry, and remote sensing.

    PubMed

    Levine, J S; Allario, F

    1982-09-01

    The chemical composition of the troposphere is controlled by various biogeochemical cycles that couple the atmosphere with the oceans, the solid Earth and the biosphere, and by atmospheric photochemical/chemical reactions. These cycles and reactions are discussed and a number of key questions concerning tropospheric composition and chemistry for the carbon, nitrogen, oxygen and sulfur species are identified. Next, we review various remote sensing techniques and instruments capable of measuring and monitoring tropospheric species from the ground, aircraft and space to address some of these key questions. We also consider future thrusts in remote sensing of the troposphere. PMID:24264018

  20. Marine viruses and their biogeochemical and ecological effects

    NASA Astrophysics Data System (ADS)

    Fuhrman, Jed A.

    1999-06-01

    Viruses are the most common biological agents in the sea, typically numbering ten billion per litre. They probably infect all organisms, can undergo rapid decay and replenishment, and influence many biogeochemical and ecological processes, including nutrient cycling, system respiration, particle size-distributions and sinking rates, bacterial and algal biodiversity and species distributions, algal bloom control, dimethyl sulphide formation and genetic transfer. Newly developed fluorescence and molecular techniques leave the field poised to make significant advances towards evaluating and quantifying such effects.

  1. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Krooss, B. M.; Littke, R.

    2012-12-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a subbituminous A coal from the Surat Basin, Queensland Australia (figure). From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg-corrected permeability depends on gas type. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa, with increasing mean pore pressure at lower confining pressure an increase in permeability is observed, which is attributed to a widening of cleat aperture. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane and CO2. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals was significantly lower (by 50%) than that of dry coals, no hysteresis was observed between sorption and desorption on dry and moisture-equilibrated samples and the

  2. A generic reaction-based biogeochemical simulator

    SciTech Connect

    Fang, Yilin; Yabusaki, Steven B.; Yeh, Gour T.; C.T. Miller, M.W. Farthing, W.G. Gray, and G.F. Pinder

    2004-06-17

    This paper presents a generic biogeochemical simulator, BIOGEOCHEM. The simulator can read a thermodynamic database based on the EQ3/EQ6 database. It can also read user-specified equilibrium and kinetic reactions (reactions not defined in the format of that in EQ3/EQ6 database) symbolically. BIOGEOCHEM is developed with a general paradigm. It overcomes the requirement in most available reaction-based models that reactions and rate laws be specified in a limited number of canonical forms. The simulator interprets the reactions, and rate laws of virtually any type for input to the MAPLE symbolic mathematical software package. MAPLE then generates Fortran code for the analytical Jacobian matrix used in the Newton-Raphson technique, which are compiled and linked into the BIOGEOCHEM executable. With this feature, the users are exempted from recoding the simulator to accept new equilibrium expressions or kinetic rate laws. Two examples are used to demonstrate the new features of the simulator.

  3. Sequential Processes in Palladium-Catalyzed Silicon-Based Cross-Coupling

    PubMed Central

    Denmark, Scott E.; Liu, Jack H.-C.

    2012-01-01

    Although developed somewhat later, silicon-based cross-coupling has become a viable alternative to the more conventional Suzuki-Miyaura, Stille-Kosugi-Migita, and Negishi cross-coupling reactions because of its broad substrate scope, high stability of silicon-containing reagents, and low toxicity of waste streams. An empowering and yet underappreciated feature unique to silicon-based cross-coupling is the wide range of sequential processes available. In these processes, simple precursors are first converted to complex silicon-containing cross-coupling substrates, and the subsequent silicon-based cross-coupling reaction affords an even more highly functionalized product in a stereoselective fashion. In so doing, structurally simple and inexpensive starting materials are quickly transformed into value-added and densely substituted products. Therefore, sequential processes are often useful in constructing the carbon backbones of natural products. In this review, studies of sequential processes involving silicon-based cross-coupling are discussed. Additionally, the total syntheses that utilize these sequential processes are also presented. PMID:23293392

  4. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  5. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Cumming, D.; Krooss, B. M.

    2012-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  6. Coupling centrality and authority of co-processing model on complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanli; Li, Huibin

    2016-04-01

    Coupling centrality and authority of co-processing model on complex networks are investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are obtained to disclose the formation. Considering the influence of a node to the global dynamical behavior, coupling centrality and authority are introduced for each node, which determine the relative importance and authority of nodes in the diffusion process. Furthermore, the experimental results on large-scale complex networks confirm our analytical prediction.

  7. The microbial engines that drive Earth's biogeochemical cycles.

    PubMed

    Falkowski, Paul G; Fenchel, Tom; Delong, Edward F

    2008-05-23

    Virtually all nonequilibrium electron transfers on Earth are driven by a set of nanobiological machines composed largely of multimeric protein complexes associated with a small number of prosthetic groups. These machines evolved exclusively in microbes early in our planet's history yet, despite their antiquity, are highly conserved. Hence, although there is enormous genetic diversity in nature, there remains a relatively stable set of core genes coding for the major redox reactions essential for life and biogeochemical cycles. These genes created and coevolved with biogeochemical cycles and were passed from microbe to microbe primarily by horizontal gene transfer. A major challenge in the coming decades is to understand how these machines evolved, how they work, and the processes that control their activity on both molecular and planetary scales. PMID:18497287

  8. Seasonal biogeochemical profiling of an unlined landfill in rural Victoria (Australia): implications for stream and groundwater contamination

    NASA Astrophysics Data System (ADS)

    Minard, A.; Moreau, J. W.

    2010-12-01

    Unlined landfills and waste transfer stations lack collection systems to prevent groundwater pollution. Unmonitored leakage into shallow groundwater can lead to eutrophication of freshwater ecosystems. Such sites are fairly common in rural Australia, and seven years of groundwater and leachate biogeochemical data taken near a rural landfill in Beaufort (Victoria) Australia, showed that interacting biogeochemical cycles (i.e. C, N, S, Fe) influenced contaminant transport into groundwaters seasonally. Reductive dissolution of iron oxyhydroxides coupled with alkalinity spikes was coupled to higher carbon turnover rates within a methanogenic landfill cell. This process appeared to occur mainly during summers and less during winters. Dissolved trace metal concentrations (Co, Cu, Ni, Zn) alternated with increases in dissolved iron, but with less frequency during the winter months. Nitrate and sulphate however seasonally alternated with high nitrate/low sulphate during the winter, and low nitrate/high sulphate during the summer, within the landfill cell. The seasonal variability of nitrate and sulphate in landfill leachate was also reflected in the down-flow groundwater chemistry.

  9. Plant Nitrogen Uptake in Terrestrial Biogeochemical Models

    NASA Astrophysics Data System (ADS)

    Marti Donati, A.; Cox, P.; Smith, M. J.; Purves, D.; Sitch, S.; Jones, C. D.

    2013-12-01

    higher atmospheric CO2 concentrations than originally expected. This study compares the differences in the predictions of alternative models of plant N uptake found in different terrestrial biogeochemical models with the predictions from a new N-uptake model developed under the Joint UK Land Environment Simulator (JULES) framework. We implement a methodology for the construction, parameterization and evaluation of N uptake models to fully decompose all the N uptake component processes in terms of their parameter uncertainty and the accuracy of their predictions with respect to different empirical data sets. Acknowledgements This work has been funded by the European Commission FP7-PEOPLE-ITN-2008 Marie Curie Action: "Greencycles II: FP7-PEOPLE-ITN-2008 Marie Curie Action: "Networks for Initial Training"

  10. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    SciTech Connect

    Tsang, C.F.; Mangold, D.C.

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100{sup 0}C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced.

  11. Progress Towards Coupled Simulation of Surface/Subsurface Hydrologic Processes and Terrestrial Ecosystem Dynamics Using the Community Models PFLOTRAN and CLM

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Bisht, G.; Karra, S.; Hoffman, F. M.; Hammond, G. E.; Kumar, J.; Painter, S.; Thornton, P. E.; Lichtner, P. C.

    2012-12-01

    in how the governing equations are solved, and we will compare different surface flow formulations as well as coupling strategies between the surface and subsurface domains. Additionally, for studies of hydrology in Arctic regions, we have added a three-phase ice model. We will present some demonstrations of this capability and discuss solver strategies for handling the strong nonlinearities that arise. To provide a unified treatment of the unsaturated and saturated zones and to enable lateral redistribution of soil moisture (and eventually surface water, heat, and nutrients) in regional climate models, we have developed an approach for coupling PFLOTRAN with CLM. CLM is the global land model component used within the Community Earth System Model (CESM) to simulate an extensive set of biogeophysical and biogeochemical processes occurring at or near the terrestrial surface. We will describe our approach for replacing the existing CLM hydrology using PFLOTRAN and present some preliminary simulations undertaken with the CLM-PFLOTRAN coupled model.

  12. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-10-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.

  13. Synchronization of elastically coupled processive molecular motors and regulation of cargo transport

    NASA Astrophysics Data System (ADS)

    Kohler, Felix; Rohrbach, Alexander

    2015-01-01

    The collective work of motor proteins plays an important role in cellular transport processes. Since measuring intermotor coupling and hence a comparison to theoretical predictions is difficult, we introduce the synchronization as an alternative observable for motor cooperativity. This synchronization can be determined from the ratio of the mean times of motor resting and stepping. Results from a multistate Markov chain model and Brownian dynamics simulations, describing the elastically coupled motors, coincide well. Our model can explain the experimentally observed effect of strongly increased transport velocities and powers by the synchronization and coupling of myosin V and kinesin I.

  14. Coupled finite element simulation and optimization of single- and multi-stage sheet-forming processes

    NASA Astrophysics Data System (ADS)

    Tamasco, Cynthia M.; Rais-Rohani, Masoud; Buijk, Arjaan

    2013-03-01

    This article presents the development and application of a coupled finite element simulation and optimization framework that can be used for design and analysis of sheet-forming processes of varying complexity. The entire forming process from blank gripping and deep drawing to tool release and springback is modelled. The dies, holders, punch and workpiece are modelled with friction, temperature, holder force and punch speed controlled in the process simulation. Both single- and multi-stage sheet-forming processes are investigated. Process simulation is coupled with a nonlinear gradient-based optimization approach for optimizing single or multiple design objectives with imposed sheet-forming response constraints. A MATLAB program is developed and used for data-flow management between process simulation and optimization codes. Thinning, springback, damage and forming limit diagram are used to define failure in the forming process design optimization. Design sensitivity analysis and optimization results of the example problems are presented and discussed.

  15. Abrupt shifts in ecosystem function and intensification of global biogeochemical cycle driven by hydroclimatic extremes

    NASA Astrophysics Data System (ADS)

    Ma, Xuanlong; Huete, Alfredo; Ponce-Campos, Guillermo; Zhang, Yongguang; Xie, Zunyi; Giovannini, Leandro; Cleverly, James; Eamus, Derek

    2016-04-01

    Amplification of the hydrologic cycle as a consequence of global warming is increasing the frequency, intensity, and spatial extent of extreme climate events globally. The potential influences resulting from amplification of the hydro-climatic cycle, coupled with an accelerating warming trend, pose great concerns on the sustainability of terrestrial ecosystems to sequester carbon, maintain biodiversity, provide ecosystem services, food security, and support human livelihood. Despite the great implications, the magnitude, direction, and carry-over effect of these extreme climate events on ecosystem function, remain largely uncertain. To address these pressing issues, we conducted an observational, interdisciplinary study using satellite retrievals of atmospheric CO2 and photosynthesis (chlorophyll fluorescence), and in-situ flux tower measures of ecosystem-atmosphere carbon exchange, to reveal the shifts in ecosystem function across extreme drought and wet periods. We further determine the factors that govern ecosystem sensitivity to hydroclimatic extremes. We focus on Australia but extended our analyses to other global dryland regions due to their significant role in global biogeochemical cycles. Our results revealed dramatic impacts of drought and wet hydroclimatic extremes on ecosystem function, with abrupt changes in vegetation productivity, carbon uptake, and water-use-efficiency between years. Drought resulted in widespread reductions or collapse in the normal patterns of vegetation growth seasonality such that in many cases there was no detectable phenological cycle during extreme drought years. We further identified a significant increasing trend (p < 0.001) in extreme wet year precipitation amounts over Australia and many other global regions, resulting in an increasing trend in magnitude of the episodic carbon sink pulses coupled to each La Niña-induced wet years. This finding is of global biogeochemical significance, with the consequence of amplifying

  16. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael

    2016-04-01

    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  17. Biogeochemical Transformation Pathways through the Land-water Geosphere

    NASA Astrophysics Data System (ADS)

    Destouni, G.; Asokan, S. M.; Augustsson, A.; Balfors, B.; Bring, A.; Jaramillo, F.; Jarsjo, J.; Johansson, E.; Juston, J.; Levi, L.; Olofsson, B.; Prieto, C.; Quin, A.; Åström, M. E.; Cvetkovic, V.

    2014-12-01

    Water on land undergoes and participates in many biogeochemical exchanges and changes. A bits-and-pieces approach to these may miss essential aspects of change propagation and transformation by land-water through different segments of the Earth system. This paper proposes a conceptualization of the entire land-water geosphere as a scale-free catchment-wise organised system (Figure 1), emphasizing four key new system aspects compared to traditional hydrosphere/water cycle view: i) distinction of coastal divergent in addition to traditional convergent catchments; ii) physical and social-ecological system coupling through four main nodal zones/interfaces (surface, subsurface, coastal, observation); iii) flow-transport pathways as system coupling agents; iv) multiple interactions with the anthroposphere as integral system parts. Utilizing this conceptualization, we identify distinct patterns of direct anthropogenic change in large-scale water and waterborne nutrient fluxes, emerging across different parts of the world. In general, its embedment directly in the anthroposphere/technosphere makes land-water a key geosphere for understanding and monitoring human-driven biogeochemical changes. Further progress in system-level understanding of such changes requires studies of land-water as a continuous yet structured geosphere following the proposed spatiotemporal pathways of change propagation-transformation.

  18. Two-way Coupling of a Process-Based Crop Growth Model (BioCro) and a Biogeochemistry Model (DayCent) and its Application to an Energy Crop Site in the mid-west USA

    NASA Astrophysics Data System (ADS)

    Jaiswal, D.; Long, S.; Parton, W. J.; Hartman, M.

    2012-12-01

    A coupled modeling system of crop growth model (BioCro) and biogeochemical model (DayCent) has been developed to assess the two-way interactions between plant growth and biogeochemistry. Crop growth in BioCro is simulated using a detailed mechanistic biochemical and biophysical multi-layer canopy model and partitioning of dry biomass into different plant organs according to phenological stages. Using hourly weather records, the model partitions light between dynamically changing sunlit and shaded portions of the canopy and computes carbon and water exchange with the atmosphere and through the canopy for each hour of the day, each day of the year. The model has been parameterized for the bioenergy crops sugarcane, Miscanthus and switchgrass, and validation has shown it to predict growth cycles and partitioning of biomass to a high degree of accuracy. As such it provides an ideal input for a soil biogeochemical model. DayCent is an established model for predicting long-term changes in soil C & N and soil-atmosphere exchanges of greenhouse gases. At present, DayCent uses a relatively simple productivity model. In this project BioCro has replaced this simple model to provide DayCent with a productivity and growth model equal in detail to its biogeochemistry. Dynamic coupling of these two models to produce CroCent allows for differential C: N ratios of litter fall (based on rates of senescence of different plant organs) and calibration of the model for realistic plant productivity in a mechanistic way. A process-based approach to modeling plant growth is needed for bioenergy crops because research on these crops (especially second generation feedstocks) has started only recently, and detailed agronomic information for growth, yield and management is too limited for effective empirical models. The coupled model provides means to test and improve the model against high resolution data, such as that obtained by eddy covariance and explore yield implications of different

  19. Benchmark initiative on coupled multiphase flow and geomechanical processes during CO2 injection

    NASA Astrophysics Data System (ADS)

    Benisch, K.; Annewandter, R.; Olden, P.; Mackay, E.; Bauer, S.; Geiger, S.

    2012-12-01

    CO2 injection into deep saline aquifers involves multiple strongly interacting processes such as multiphase flow and geomechanical deformation, which threat to the seal integrity of CO2 repositories. Coupled simulation codes are required to establish realistic prognoses of the coupled process during CO2 injection operations. International benchmark initiatives help to evaluate, to compare and to validate coupled simulation results. However, there is no published code comparison study so far focusing on the impact of coupled multiphase flow and geomechanics on the long-term integrity of repositories, which is required to obtain confidence in the predictive capabilities of reservoir simulators. We address this gap by proposing a benchmark study. A wide participation from academic and industrial institutions is sought, as the aim of building confidence in coupled simulators become more plausible with many participants. Most published benchmark studies on coupled multiphase flow and geomechanical processes have been performed within the field of nuclear waste disposal (e.g. the DECOVALEX project), using single-phase formulation only. As regards CO2 injection scenarios, international benchmark studies have been published comparing isothermal and non-isothermal multiphase flow processes such as the code intercomparison by LBNL, the Stuttgart Benchmark study, the CLEAN benchmark approach and other initiatives. Recently, several codes have been developed or extended to simulate the coupling of hydraulic and geomechanical processes (OpenGeoSys, ELIPSE-Visage, GEM, DuMuX and others), which now enables a comprehensive code comparison. We propose four benchmark tests of increasing complexity, addressing the coupling between multiphase flow and geomechanical processes during CO2 injection. In the first case, a horizontal non-faulted 2D model consisting of one reservoir and one cap rock is considered, focusing on stress and strain regime changes in the storage formation and the

  20. Multi-field coupled numerical simulation of hot reversible rolling process of GCr15 steel rod

    NASA Astrophysics Data System (ADS)

    Gu, Sendong; Zhang, Liwen; Ruan, Jinhua; Mei, Hongyu; Zhen, Yu; Shi, Xinhua

    2013-05-01

    In this paper, based on rolling technology of hot reversible rolling mill, a multi-filed coupled finite element (FE) model of hot reversible rolling process of large dimension cross-section GCr15 steel rod is established. Thermal, mechanical and microstructural phenomena during the rolling process are coupled in the model. By employing grain growth experiment, double and single hit hot compression experiments, the austenite grain size growth mathematical model and recrystallization behavior mathematical models are determined. And a designed subprogram is coupled in the FE model. Actual hot reversible rolling process of GCr15 steel is simulated using the model and the distribution and evolution of different filed-variables, such as temperature, effective strain and austenite grain size are obtained. To verify the model predictions, hot rolling experiments are carried out and the temperature and microstructure of the rolling metal are compared with the predicted results. The comparison between the two sets of data shows a good agreement.

  1. Coupled processes in single fractures, double fractures and fractured porous media

    SciTech Connect

    Tsang, C.F.

    1986-12-01

    The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed.

  2. Atmosphere-ocean coupled processes in the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    DeMott, Charlotte A.; Klingaman, Nicholas P.; Woolnough, Steven J.

    2015-12-01

    The Madden-Julian oscillation (MJO) is a convectively coupled 30-70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understanding of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere-upper ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper ocean mixing in coupled model simulations, designing model experiments that minimize mean state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.

  3. Estimating impacts of lichens and bryophytes on global biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Porada, Philipp; Weber, Bettina; Elbert, Wolfgang; Pöschl, Ulrich; Kleidon, Axel

    2014-02-01

    Lichens and bryophytes may significantly affect global biogeochemical cycles by fixation of nitrogen and biotic enhancement of surface weathering rates. Most of the studies suggesting these effects, however, are either conceptual or rely on upscaling of regional estimates to obtain global numbers. Here we use a different method, based on estimates of net carbon uptake, to quantify the impacts of lichens and bryophytes on biogeochemical cycles at the global scale. We focus on three processes, namely, nitrogen fixation, phosphorus uptake, and chemical weathering. Our estimates have the form of potential rates, which means that we quantify the amount of nitrogen and phosphorus needed by the organisms to build up biomass, also accounting for resorption and leaching of nutrients. Subsequently, we use potential phosphorus uptake on bare ground to estimate chemical weathering by the organisms, assuming that they release weathering agents to obtain phosphorus. The predicted requirement for nitrogen ranges from 3.5 to 34 Tgyr-1 and for phosphorus it ranges from 0.46 to 4.6 Tgyr-1. Estimates of chemical weathering are between 0.058 and 1.1 km3 yr-1 of rock. These values seem to have a realistic order of magnitude, and they support the notion that lichens and bryophytes have the potential to play an important role for biogeochemical cycles.

  4. Biogeochemical mass balances in a turbid tropical reservoir. Field data and modelling approach

    NASA Astrophysics Data System (ADS)

    Phuong Doan, Thuy Kim; Némery, Julien; Gratiot, Nicolas; Schmid, Martin

    2014-05-01

    The turbid tropical Cointzio reservoir, located in the Trans Mexican Volcanic Belt (TMVB), behaves as a warm monomictic water body (area = 6 km2, capacity 66 Mm3, residence time ~ 1 year). It is strategic for the drinking water supply of the city of Morelia, capital of the state of Michoacán, and for downstream irrigation during the dry season. This reservoir is a perfect example of a human-impacted system since its watershed is mainly composed of degraded volcanic soils and is subjected to high erosion processes and agricultural loss. The reservoir is threatened by sediment accumulation and nutrients originating from untreated waters in the upstream watershed. The high content of very fine clay particles and the lack of water treatment plants lead to serious episodes of eutrophication (up to 70 μg chl. a L-1), high levels of turbidity (Secchi depth < 30 cm) and a long period of anoxia (from May to October). Based on intensive field measurements in 2009 (deposited sediment, benthic chamber, water vertical profiles, reservoir inflow and outflow) we determined suspended sediment (SS), carbon (C), nitrogen (N) and phosphorus (P) mass balances. Watershed SS yields were estimated at 35 t km2 y-1 of which 89-92 % were trapped in the Cointzio reservoir. As a consequence the reservoir has already lost 25 % of its initial storage capacity since its construction in 1940. Nutrient mass balances showed that 50 % and 46 % of incoming P and N were retained by sedimentation, and mainly eliminated through denitrification respectively. Removal of C by 30 % was also observed both by sedimentation and through gas emission. To complete field data analyses we examined the ability of vertical one dimensional (1DV) numerical models (Aquasim biogeochemical model coupled with k-ɛ mixing model) to reproduce the main biogeochemical cycles in the Cointzio reservoir. The model can describe all the mineralization processes both in the water column and in the sediment. The values of the

  5. Investigating the Impact of Pore Scale Microenvironments on Contaminant Biogeochemical Reactive Transport

    NASA Astrophysics Data System (ADS)

    Wilkins, M. J.; Pearce, C.; Zhang, C.; Heald, S.; Fredrickson, J. K.; Zachara, J. M.

    2011-12-01

    Microenvironments and transition zones dominate the subsurface biogeochemical cycling of key contaminants, with strong effects resulting from the coupling of chemical reactions, physical transport and microbiological processes. Understanding the impact of pore-scale environments (e.g. spatial heterogeneity, chemical gradients, and redox potential) is essential for modeling contaminant fate and transport in the subsurface. The driver for biogeochemical processes at the pore scale changes from macroscopic advection to microscale diffusion, and this has a significant effect on the retention of soluble, highly mobile contaminants such as U(VI). Here, etched-silicon microfluidic models with defined chemistry, mineralogy, microbiology, and flow regimes are used for the incremental development of complex microenvironments that approach real-world systems. We demonstrate the colonization of such pore spaces by an anaerobic Fe(III)-reducing bacterium, the enzymatic reduction of a bioavailable Fe(III) phase within this environment, and the subsequent effects of both oxidized and reduced Fe phases on uranium biogeochemistry under flow conditions using both X-ray Microprobe (XMP) and X-ray Absorption Spectroscopy (XAS). Precipitated Fe(III) phases within the microfluidic model were most effectively reduced in the presence of an electron shuttle (e.g. AQDS), with Fe(II) ions adsorbing onto mineral precipitates and surfaces. In the absence of Fe, U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated within biomass. In the presence of both oxidized and reduced Fe phases however, differing effects were observed with regards to U behavior; oxidized U(VI) was frequently adsorbed to poorly crystalline Fe(III), and reduced U(IV) associated with more reduced regions of the microscale flow cell. In the future, the flexibility in the design of the microfluidic models, in combination with advanced

  6. Differences in Pornography Use Among Couples: Associations with Satisfaction, Stability, and Relationship Processes.

    PubMed

    Willoughby, Brian J; Carroll, Jason S; Busby, Dean M; Brown, Cameron C

    2016-01-01

    The present study utilized a sample of 1755 adult couples in heterosexual romantic relationships to examine how different patterns of pornography use between romantic partners may be associated with relationship outcomes. While pornography use has been generally associated with some negative and some positive couple outcomes, no study has yet explored how differences between partners may uniquely be associated with relationship well-being. Results suggested that greater discrepancies between partners in pornography use were related to less relationship satisfaction, less stability, less positive communication, and more relational aggression. Mediation analyses suggested that greater pornography use discrepancies were primarily associated with elevated levels of male relational aggression, lower female sexual desire, and less positive communication for both partners which then predicted lower relational satisfaction and stability for both partners. Results generally suggest that discrepancies in pornography use at the couple level are related to negative couple outcomes. Specifically, pornography differences may alter specific couple interaction processes which, in turn, may influence relationship satisfaction and stability. Implications for scholars and clinicians interested in how pornography use is associated with couple process are discussed. PMID:26228990

  7. Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone.

    PubMed

    Hansen, David J; McGuire, Jennifer T; Mohanty, Binayak P

    2011-01-01

    Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events, respectively. In situ collocated probes measured soil water content, matric potential, and Eh. Water samples collected from the same locations were analyzed for Br, Cl, NO, SO, NH, Fe, and total sulfide. Compared with homogeneous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron- and sulfate-reducing bacteria showed 1 to 2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface, the presence of which likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. These findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation or to slow the rate of transport of contaminants. PMID:22031578

  8. Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone

    PubMed Central

    Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.

    2013-01-01

    Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578

  9. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  10. MASSIVELY PARALLEL FULLY COUPLED IMPLICIT MODELING OF COUPLED THERMAL-HYDROLOGICAL-MECHANICAL PROCESSES FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIRS

    SciTech Connect

    Robert Podgorney; Hai Huang; Derek Gaston

    2010-02-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing) to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid system and our ability to reliably predict how reservoirs behave under stimulation and production. In order to increase our understanding of how reservoirs behave under these conditions, we have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a continuum multiphase flow and heat transport model. In DEM simulations, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external load is applied. DEM models have been applied to a very wide range of fracturing processes from the molecular scale (where thermal fluctuations play an important role) to scales on the order of 1 km or greater. In this approach, the continuum flow and heat transport equations are solved on an underlying fixed finite element grid with evolving porosity and permeability for each grid cell that depends on the local structure of the discrete element network (such as DEM particle density). The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms and

  11. Coupling pre-mRNA processing to transcription on the RNA factory assembly line

    PubMed Central

    Lee, Kuo-Ming; Tarn, Woan-Yuh

    2013-01-01

    It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression. PMID:23392244

  12. Linking Tectonics and Surface Processes through SNAC-CHILD Coupling: Preliminary Results Towards Interoperable Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Choi, E.; Kelbert, A.; Peckham, S. D.

    2014-12-01

    We demonstrate that code coupling can be an efficient and flexible method for modeling complicated two-way interactions between tectonic and surface processes with SNAC-CHILD coupling as an example. SNAC is a deep earth process model (a geodynamic/tectonics model), built upon a scientific software framework called StGermain and also compatible with a model coupling framework called Pyre. CHILD is a popular surface process model (a landscape evolution model), interfaced to the CSDMS (Community Surface Dynamics Modeling System) modeling framework. We first present proof-of-concept but non-trivial results from a simplistic coupling scheme. We then report progress towards augmenting SNAC with a Basic Model Interface (BMI), a framework-agnostic standard interface developed by CSDMS that uses the CSDMS Standard Names as controlled vocabulary for model communication across domains. Newly interfaced to BMI, SNAC will be easily coupled with CHILD as well as other BMI-compatible models. In broader context, this work will test BMI as a general and easy-to-implement mechanism for sharing models between modeling frameworks and is a part of the NSF-funded EarthCube Building Blocks project, "Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks."

  13. A Coupled Modeling Approach for Root-Soil Interaction Processes Using DuMuX

    NASA Astrophysics Data System (ADS)

    Schröder, N.; Helmig, R.; Flemisch, B.; Koch, T.

    2015-12-01

    The water and nutrient uptake of plant roots in soils have a crucial influence on soil physical processes. The interacting processes between plant roots and soil are important for several agricultural problems, for example water management or leaching of pesticides. However, the coupled mechanisms of local soil and root water flow, transport of dissolved substances, root growth, and root uptake are difficult to measure and thus experimental data are rare. Numerical models can be used to understand these complex soil-root systems and help to analyze and interpret experimental measurements. The model approach presented here couples a root system and a soil model. Crucial for this approach is the 1D-3D grid coupling which combines a 1D network grid (root system) with the 3D soil grid. Based on that grid coupling, local processes are defined, for instance the local water uptake of a single root segment. Here, the interface conditions between roots and soil play a major role and we use local grid refinement strategies to better resolve these interface processes. This grid refinement of the 3D soil grid is based on the root network (1D grid) and adapts if root growth occurs. It offers the possibility to describe processes in the soil-plant continuum in a more physical manner avoiding empirical descriptions of root water uptake as a function of bulk matric potential, osmotic potential, root length density, and transpiration rate. Our coupling approach is included into the framework of DuMux, an open-source simulator for flow and transport processes in porous media. This implementation combines biological, chemical and physical processes in soil, inside roots, and at root-soil interfaces, and is contained in a sustainable and consistent framework for the implementation. We will show example simulations describing water flow, solute transport and root growth in a soil-root system.

  14. Trimethylbenzoic acids as metabolite signatures in the biogeochemical evolution of an aquifer contaminated with jet fuel hydrocarbons

    NASA Astrophysics Data System (ADS)

    Namocatcat, J. A.; Fang, J.; Barcelona, M. J.; Quibuyen, A. T. O.; Abrajano, T. A.

    2003-12-01

    Evolution of trimethylbenzoic acids in the KC-135 aquifer at the former Wurtsmith Air Force Base (WAFB), Oscoda, MI was examined to determine the functionality of trimethylbenzoic acids as key metabolite signatures in the biogeochemical evolution of an aquifer contaminated with JP-4 fuel hydrocarbons. Changes in the composition of trimethylbenzoic acids and the distribution and concentration profiles exhibited by 2,4,6- and 2,3,5-trimethylbenzoic acids temporally and between multilevel wells reflect processes indicative of an actively evolving contaminant plume. The concentration levels of trimethylbenzoic acids were 3-10 orders higher than their tetramethylbenzene precursors, a condition attributed to slow metabolite turnover under sulfidogenic conditions. The observed degradation of tetramethylbenzenes into trimethylbenzoic acids obviates the use of these alkylbenzenes as non-labile tracers for other degradable aromatic hydrocarbons, but provides rare field evidence on the range of high molecular weight alkylbenzenes and isomeric assemblages amenable to anaerobic degradation in situ. The coupling of actual tetramethylbenzene loss with trimethylbenzoic acid production and the general decline in the concentrations of these compounds demonstrate the role of microbially mediated processes in the natural attenuation of hydrocarbons and may be a key indicator in the overall rate of hydrocarbon degradation and the biogeochemical evolution of the KC-135 aquifer.

  15. Fano-like coupling between two oppositely enhanced processes by diffraction in a dielectric grating.

    PubMed

    Zhang, Jian; Zhang, Xinping

    2015-11-16

    Fano-like coupling was investigated extensively in plasmonic nanostructures, which is based on the interaction between the photonic and plasmonic resonance modes. Metallic photonic crystals consisting of waveguide metallic gratings are typical devices exhibiting strong Fano-coupling between waveguide and plasmon resonance modes. However, we demonstrate here that similar effects can also be achieved in waveguide dielectric grating structures. In this case, the broad-band strong optical extinction results from multifold diffraction processes, instead of the plasmonic absorption and scattering of light. The diffraction efficiency of the waveguide dielectric gratings was tuned by changing the duty cycle through adjusting the exposure time in interference lithography. Enhanced diffraction efficiency reduces the direct transmission while enhances the waveguide resonance mode, leading to a Fano-like coupling process. PMID:26698522

  16. Modelling Marine Biological and Biogeochemical Data

    NASA Astrophysics Data System (ADS)

    Soetaert, Karline; van Oevelen, Dick

    2011-09-01

    In the environmental sciences, mathematic models are commonly applied to analyze ecological and biogeochemical data. The technique where a model is used to interpret available measurements such as to retrieve unmeasured information on the system being observed is called "inverse modelling". In this paper we will discuss and give examples of two modeling techniques used to analyse ecological and biogeochemical data. On the one hand are mechanistic mathematical models that are written as a set of non-linear differential equations. On the other hand are so-called linear inverse models (LIMs) that consist of a set of linear equations that need to be solved for the unknowns.

  17. Managing biogeochemical cycles to reduce greenhouse gases

    SciTech Connect

    Post, Wilfred M; Venterea, Rodney

    2012-01-01

    This special issue focuses on terrestrial biogeochemical cycles as they relate to North America-wide budgeting and future projection of biogenic greenhouse gases (GHGs). Understanding the current magnitude and providing guidance on the future trajectories of atmospheric concentrations of these gases requires investigation of their (i) biogeochemical origins, (ii) response to climate feedbacks and other environmental factors, and (iii) susceptibility to management practices. This special issue provides a group of articles that present the current state of continental scale sources and sinks of biogenic GHGs and the potential to better manage them in the future.

  18. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment

    NASA Astrophysics Data System (ADS)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Andy L.; Dayvault, Richard D.; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-11-01

    Three-dimensional, coupled variably saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport and biogeochemical reactions controlling uranium behavior under pulsed acetate amendment, seasonal water table variation, spatially variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. While the simulation of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado was generally consistent with behaviors identified in previous field experiments at the Rifle IFRC site, the additional process and property detail provided several new insights. A principal conclusion from this work is that uranium bioreduction is most effective when acetate, in excess of the sulfate-reducing bacteria demand, is available to the metal-reducing bacteria. The inclusion of an initially small population of slow growing sulfate-reducing bacteria identified in proteomic analyses led to an additional source of Fe(II) from the dissolution of Fe(III) minerals promoted by biogenic sulfide. The falling water table during the experiment significantly reduced the saturated thickness of the aquifer and resulted in reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted

  19. Childhood Emotional Abuse and Attachment Processes in the Dyadic Adjustment of Dating Couples

    ERIC Educational Resources Information Center

    Riggs, Shelley A.; Cusimano, Angela M.; Benson, Karen M.

    2011-01-01

    In an effort to improve understanding of the mechanisms that link early maltreatment to later outcomes, this study investigated the mediation effects of adult attachment processes on the association between childhood emotional abuse and later romantic relationships among heterosexual couples. College students and their dating partners (N = 310;…

  20. Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Kim, Hyung-Mok; Park, Eui-Seob; Kim, Taek-Kon; Wuttke, Manfred W.; Rinne, Mikael; Backers, Tobias; Stephansson, Ove

    2013-01-01

    This paper describes a boundary element code development on coupled thermal-mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177-189, 1993) and FRACOM (A fracture propagation code—FRACOD, User's manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.

  1. Numerical methods for TVD transport and coupled relaxing processes in gases and plasmas

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1990-01-01

    The construction of second-order upwind schemes for nonequilibrium plasmas, for both one- and two-fluid formulations is demonstrated. Coup