Science.gov

Sample records for coupled ocean-atmosphere gcm

  1. Interannual variability in the stratospheric-tropospheric circulation in a coupled ocean-atmosphere GCM

    SciTech Connect

    Kitoh, Akio; Koide, Hiroshi; Kodera, Kunihiko

    1996-03-01

    The authors look for interannual variations in circulation patterns in the stratosphere/troposphere circulation and sea surface temperatures within the Meteorological Research Institute coupled ocean-atmosphere general circulation model. They are able to identify two modes in this model which exhibit this type of variability. One involves the stratospheric polar vortex, coupled via tropospheric circulation to SST variations. The second mode involves El Nino type phenomena coupled into the tropospheric subtropical jet.

  2. Mesoscale Coupled Ocean-Atmosphere Feedbacks in Boundary Current Systems

    NASA Astrophysics Data System (ADS)

    Putrasahan, Dian Ariyani

    The focus of this dissertation is on studying ocean-atmosphere (OA) interactions in the Humboldt Current System (HCS) and Kuroshio Extension (KE) region using satellite observations and the Scripps Coupled Ocean-Atmosphere Regional (SCOAR) model. Within SCOAR, a new technique is introduced by implementing an interactive 2-D spatial smoother within the SST-flux coupler to remove the mesoscale SST field felt by the atmosphere. This procedure allows large-scale SST coupling to be preserved while extinguishing the mesoscale eddy impacts on the atmospheric boundary layer (ABL). This technique provides insights to spatial-scale dependence of OA coupling, and the impact of mesoscale features on both the ABL and the surface ocean. For the HCS, the use of downscaled forcing from SCOAR, as compared to NCEP Reanalysis 2, proves to be more appropriate in quantifying wind-driven upwelling indices along the coast of Peru and Chile. The difference in their wind stress distribution has significant impact on the wind-driven upwelling processes and total upwelling transport along the coast. Although upwelling induced by coastal Ekman transport dominates the wind-driven upwelling along coastal areas, Ekman pumping can account for 30% of the wind-driven upwelling in several coastal locations. Control SCOAR shows significant SST-wind stress coupling during fall and winter, while Smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air-sea coupling in HCS. The SST-wind stress coupling however, did not produce any rectified response on the ocean eddies. Coupling between SST, wind speed and latent heat flux is insignificant on large-scale coupling and full coupling mode. On the other hand, coupling between these three variables are significant on the mesoscale for most of the model run, which suggests that mesoscale SST affects latent heat through direct flux anomalies as well as indirectly through stability changes on the

  3. Studies of regional-scale climate variability and change. Hidden Markov models and coupled ocean-atmosphere modes

    SciTech Connect

    Ghil, M.; Kravtsov, S.; Robertson, A. W.; Smyth, P.

    2008-10-14

    This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influence large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.

  4. A parallel coupled oceanic-atmospheric general circulation model

    SciTech Connect

    Wehner, M.F.; Bourgeois, A.J.; Eltgroth, P.G.; Duffy, P.B.; Dannevik, W.P.

    1994-12-01

    The Climate Systems Modeling group at LLNL has developed a portable coupled oceanic-atmospheric general circulation model suitable for use on a variety of massively parallel (MPP) computers of the multiple instruction, multiple data (MIMD) class. The model is composed of parallel versions of the UCLA atmospheric general circulation model, the GFDL modular ocean model (MOM) and a dynamic sea ice model based on the Hiber formulation extracted from the OPYC ocean model. The strategy to achieve parallelism is twofold. One level of parallelism is accomplished by applying two dimensional domain decomposition techniques to each of the three constituent submodels. A second level of parallelism is attained by a concurrent execution of AGCM and OGCM/sea ice components on separate sets of processors. For this functional decomposition scheme, a flux coupling module has been written to calculate the heat, moisture and momentum fluxes independent of either the AGCM or the OGCM modules. The flux coupler`s other roles are to facilitate the transfer of data between subsystem components and processors via message passing techniques and to interpolate and aggregate between the possibly incommensurate meshes.

  5. Coupled Ocean-Atmosphere 4D-Var: Formulation and Sensitivity Analysis Results

    NASA Astrophysics Data System (ADS)

    Ngodock, Hans; Carrier, Matthew; Xu, Liang; Amerault, Clark; Campbell, Tim; Rowley, Clark

    2016-04-01

    The US Navy is currently developing the first coupled ocean-atmosphere four-dimensional variational (4D-Var) data assimilation system to be used for short-term regional forecasting. This project merges the 4D-Var capabilities of the atmospheric component of the Coupled Ocean/Atmospheric Mesoscale Prediction System (COAMPS©) with the Navy Coastal Ocean Model (NCOM) through the Earth System Modeling Framework (ESMF). This will provide the coupled ocean-atmosphere forecast with a fully balanced analysis that accounts for all combined observations in both primary fluids (i.e. ocean and atmosphere). In this present work, the formulation of the system is presented in detail along with a series of adjoint sensitivity analysis results using the coupled ocean-atmosphere adjoint model. The sensitivity of the atmosphere (ocean) to each ocean (atmosphere) model variable is analyzed in detail in order to illustrate the usefulness of this approach in the coupled data assimilation system.

  6. ENSO Bred Vectors in Coupled Ocean-Atmosphere General Circulation Models

    NASA Technical Reports Server (NTRS)

    Yang, S. C.; Cai, Ming; Kalnay, E.; Rienecker, M.; Yuan, G.; Toth, ZA.

    2004-01-01

    The breeding method has been implemented in the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Coupled General Circulation Model (CGCM) with the goal of improving operational seasonal to interannual climate predictions through ensemble forecasting and data assimilation. The coupled instability as cap'tured by the breeding method is the first attempt to isolate the evolving ENSO instability and its corresponding global atmospheric response in a fully coupled ocean-atmosphere GCM. Our results show that the growth rate of the coupled bred vectors (BV) peaks at about 3 months before a background ENSO event. The dominant growing BV modes are reminiscent of the background ENSO anomalies and show a strong tropical response with wind/SST/thermocline interrelated in a manner similar to the background ENSO mode. They exhibit larger amplitudes in the eastern tropical Pacific, reflecting the natural dynamical sensitivity associated with the presence of the shallow thermocline. Moreover, the extratropical perturbations associated with these coupled BV modes reveal the variations related to the atmospheric teleconnection patterns associated with background ENSO variability, e.g. over the North Pacific and North America. A similar experiment was carried out with the NCEP/CFS03 CGCM. Comparisons between bred vectors from the NSIPP CGCM and NCEP/CFS03 CGCM demonstrate the robustness of the results. Our results strongly suggest that the breeding method can serve as a natural filter to identify the slowly varying, coupled instabilities in a coupled GCM, which can be used to construct ensemble perturbations for ensemble forecasts and to estimate the coupled background error covariance for coupled data assimilation.

  7. Ocean-atmosphere coupling from a climate network perspective

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donges, Jonathan F.; Donner, Reik V.; Kurths, Jürgen

    2014-05-01

    In recent years extensive studies on the climate system have been carried out making use of advanced complex network statistics. However, most previous studies have been characterized by two conceptual restrictions: First, in most cases network measures have been computed without taking into account the topology of the discrete grid, regular or irregular, that climate data is typically stored on. To overcome this problem, the concept of node splitting invariant network measures has been introduced considering individual node weights, for example according to the surface area a node represents, when computing network measures [1]. Second, the great majority of recent studies have been focussing on single climatological fields located on surfaces parallel to or directly on the Earth's surface. A recent work introduced a methodology for quantifying interaction structures between geopotential height fields at different isobaric surfaces by proposing general definitions for network measures dealing with a network of networks composed from distinct subnetworks [2]. In this work, we combine both, the node-weighting scheme as well as the interacting network measure approach. For this purpose, we invent new node-weighted cross-network measures that provide a general tool for quantifying interaction structures in multilayer networks that is applicable to many fields beyond the study of the climate system, such as communication, social or trade networks. Our new approach is utilized for studying ocean-atmosphere coupling in the northern hemisphere. Specifically, we construct 18 coupled climate networks based on monthly data from the ERA 40 reanalysis, each consisting of two subnetworks. In all cases, one subnetwork represents sea-surface temperature (SST) anomalies while the other is based on the geopotential height (HGT) of isobaric surfaces at different pressure levels. By investigating the connectivity of the resulting interdependent network structures, we identify a

  8. Global thermohaline circulation and ocean-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli

    1997-09-01

    A global ocean general circulation model (GCM) with idealized geometry (two basins of equal size, Marotzke and Willebrand, 1991) is coupled to an energy balance atmospheric model with nonlinear parameterizations of meridional atmospheric transports of heat and moisture. With the coupled model that prescribes the atmospheric heat and moisture transports, the North Atlantic meridional mass overturning rates at equilibrium increases as the global hydrological cycle strength increases. Furthermore, the equilibrium overturning rate is primarily controlled by the hydrological cycle of the Southern Hemisphere, whereas the Northern Hemispheric hydrological cycle has little impact. The transition of the thermohaline circulation from the conveyor belt to the southern sinking state is controlled by two factors, the hydrological cycle in Northern Hemisphere, and the ratio of hydrological cycle strengths between the Northern Hemisphere and the Southern Hemisphere. Increasing either of them destabilizes the thermohaline circulation. The large-scale dynamics of the North Atlantic overturning is mainly interhemispheric, with the bulk of the overturning rising in the Southern Hemisphere. Multiple intermediate states exist that are only quantitatively different, under very small salinity perturbations. The coupled feedbacks between the thermohaline circulation and the atmospheric heat and moisture transports are demonstrated to exist in the coupled model, and all of them are positive. In addition, it is identified that the coupled feedbacks associated with the atmospheric transports in the Southern Hemisphere are also positive. Two different flux adjustments are used in the coupled model, with one adjusting the atmospheric transports efficiencies, the other adjusting the surface fluxes. Different flux adjustments influence the coupled feedback intensities, and hence the stability of the thermohaline circulation. (Copies available exclusively from MIT Libraries, Rm. 14

  9. Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report

    SciTech Connect

    Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee; Padhraic Smyth, UC Irvine

    2006-08-04

    The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics through atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.

  10. Ocean-Atmosphere Coupled Model Simulations of Precipitation in the Central Andes

    NASA Technical Reports Server (NTRS)

    Nicholls, Stephen D.; Mohr, Karen I.

    2015-01-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. In addition, South American meteorology and climate are also made further complicated by ENSO, a powerful coupled ocean-atmosphere phenomenon. Modelling studies in this region have typically resorted to either atmospheric mesoscale or atmosphere-ocean coupled global climate models. The latter offers full physics and high spatial resolution, but it is computationally inefficient typically lack an interactive ocean, whereas the former offers high computational efficiency and ocean-atmosphere coupling, but it lacks adequate spatial and temporal resolution to adequate resolve the complex orography and explicitly simulate precipitation. Explicit simulation of precipitation is vital in the Central Andes where rainfall rates are light (0.5-5 mm hr-1), there is strong seasonality, and most precipitation is associated with weak mesoscale-organized convection. Recent increases in both computational power and model development have led to the advent of coupled ocean-atmosphere mesoscale models for both weather and climate study applications. These modelling systems, while computationally expensive, include two-way ocean-atmosphere coupling, high resolution, and explicit simulation of precipitation. In this study, we use the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST), a fully-coupled mesoscale atmosphere-ocean modeling system. Previous work has shown COAWST to reasonably simulate the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data when ECMWF interim analysis data were used for boundary conditions on a 27-9-km grid configuration (Outer grid extent: 60.4S to 17.7N and 118.6W to 17.4W).

  11. Global coupled ocean-atmosphere general circulation models in LASG/IAP

    NASA Astrophysics Data System (ADS)

    Yongqiang, Yu; Xuehong, Zhang; Yufu, Guo

    2004-06-01

    Coupled ocean-atmospheric general circulation models are the only tools to quantitatively simulate the climate system. Since the end of the 1980s, a group of scientists in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), have been working to develop a global OGCM and a global coupled ocean-atmosphere general circulation model (CGCM). From the original flux anomaly-coupling model developed in the beginning of the 1990s to the latest directly-coupling model, LASG scientists have developed four global coupled GCMs. This study summarizes the development history of these models and describes the third and fourth coupled GCMs and selected applications. Strengths and weaknesses of these models are highlighted.

  12. Synchronizing Two AGCMs via Ocean-Atmosphere Coupling (Invited)

    NASA Astrophysics Data System (ADS)

    Kirtman, B. P.

    2009-12-01

    A new approach for fusing or synchronizing to very different Atmospheric General Circulation Models (AGCMs) is described. The approach is also well suited for understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold

  13. Coupled ocean-atmosphere variability in the tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Yamagata, Toshio; Behera, Swadhin K.; Luo, Jing-Jia; Masson, Sebastien; Jury, Mark R.; Rao, Suryachandra A.

    The Indian Ocean Dipole (IOD) is a natural ocean—atmosphere coupled mode that plays important roles in seasonal and interannual climate variations. The coupled mode locked to boreal summer and fall is distinguished as a dipole in the SST anomalies that are coupled to zonal winds. The equatorial winds reverse their direction from westerlies to easterlies during the peak phase of the positive IOD events when SST is cool in the east and warm in the west. In response to changes in the wind, the thermocline rises in the east and subsides in the west. Subsurface equatorial long Rossby waves play a major role in strengthening SST anomalies in (he central and western parts. The SINTEX-F1 coupled model results support the observational finding that these equatorial Rossby waves are coupled to the surface wind forcing associated with IOD rather than ENSO. The ENSO influence is only distinct in off-equatorial latitudes south of 10°S. Although IOD events dominate the ocean—atmosphere variability during its evolution, their less frequent occurrence compared to ENSO events leads the mode to the second seat in the interannual variability. Therefore, it is necessary to remove the most dominant uniform mode to capture the IOD statistically. The seasonally stratified correlation between the indices of IOD and ENSO peaks at 0.53 in September—November. This means that only one third of IOD events are associated with ENSO events. Since a large number of IOD events are not associated with ENSO events, the independent nature of IOD is examined using partial correlation and pure composite techniques. Through changes in atmospheric circulation and water vapor transport, a positive IOD event causes drought in Indonesia, above normal rainfall in Africa, India, Bangladesh and Vietnam, and dry as well as hot summer in Europe, Japan, Korea and East China. In the Southern Hemisphere, the positive IOD causes dry winter in Australia, and dry as well as warm conditions in Brazil. The

  14. Upscalling processes in an ocean-atmosphere multiscale coupled model

    NASA Astrophysics Data System (ADS)

    Masson, S. G.; Berthet, S.; Samson, G.; Crétat, J.; Colas, F.; Echevin, V.; Jullien, S.; Hourdin, C.

    2015-12-01

    This work explores new pathways toward a better representation of the multi-scale physics that drive climate variability. We are analysing the key upscaling processes by which small-scale localized errors have a knock-on effect onto global climate. We focus on the Peru-Chilli coastal upwelling, an area known to hold among the strongest models biases in the Tropics. Our approach is based on the development of a multiscale coupling interface allowing us to couple WRF with the NEMO oceanic model in a configuration including 2-way nested zooms in the oceanic and/or the atmospheric component of the coupled model. Upscalling processes are evidenced and quantified by comparing three 20-year long simulations of a tropical channel (45°S-45°N), which differ by their horizontal resolution: 0.75° everywhere, 0.75°+0.25° zoom in the southeastern Pacific or 0.25° everywhere. This set of three 20-year long simulations was repeated with 3 different sets of parameterizations to assess the robustness of our results. Our results show that adding an embedded zoom over the southeastern Pacific only in the atmosphere cools down the SST along the Peru-Chili coast, which is a clear improvement. This change is associated with a displacement of the low-level cloud cover, which moves closer to the coast cooling further the coastal area SST. Offshore, we observe the opposite effect with a reduction of the cloud cover with higher resolution, which increases solar radiation and warms the SST. Increasing the resolution in the oceanic component show contrasting results according to the different set parameterization used in the experiments. Some experiment shows a coastal cooling as expected, whereas, in other cases, we observe a counterintuitive response with a warming of the coastal SST. Using at the same time an oceanic and an atmospheric zoom mostly combines the results obtained when using the 2-way nesting in only one component of the coupled model. In the best case, we archive by this

  15. Nonlinear dynamics approach to the predictability of the Cane-Zebiak coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    Siqueira, L.; Kirtman, B.

    2014-01-01

    The predictability of the Cane-Zebiak coupled ocean-atmosphere model is investigated using nonlinear dynamics analysis. Newer theoretical concepts are applied to the coupled model in order to help quantify maximal prediction horizons for finite amplitude perturbations on different scales. Predictability analysis based on the maximum Lyapunov exponent considers infinitesimal perturbations, which are associated with errors in the smallest fastest-evolving scales of motion. However, these errors become irrelevant for the predictability of larger scale motions. In this study we employed finite-size Lyapunov exponent analysis to assess the predictability of the Cane-Zebiak coupled ocean-atmosphere model as a function of scale. We demonstrate the existence of fast and slow timescales, as noted in earlier studies, and the expected enhanced predictability of the anomalies on large scales. The final results and conclusions clarify the applicability of these new methods to seasonal forecasting problems.

  16. An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Betts, Alan K.

    1991-01-01

    An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.

  17. Intercomparison of present and future climates simulated by coupled ocean-atmosphere GCMs

    SciTech Connect

    Covey, C; AchutaRao, K M; Lambert, S J

    2000-09-06

    We present an overview of results from the most recent phase of the Coupled Model Intercomparison Project (CMIP). This phase of CMIP has archived output from both unforced (''control run'') and perturbed (1% per year increasing atmospheric carbon dioxide) simulations by 15 modern coupled ocean-atmosphere general circulation models. The models are about equally divided between those employing and those not employing ad hoc flux corrections at the ocean-atmosphere interface. The new generation of non-flux-connected control runs are nearly as stable and agree with observations nearly as well as the flux-corrected models. This development represents significant progress in the state of the art of climate modeling since the Second (1995) Scientific Assessment Report of the Intergovernmental Panel on Climate Change (IPCC; see Gates et al. 1996). From the increasing-CO{sub 2} runs, we find that differences between different models, while substantial, are not as great as would be expected from earlier assessments that relied on equilibrium climate sensitivity.

  18. Coupled land-ocean-atmosphere processes and South asian monsoon variability.

    PubMed

    Meehl, G A

    1994-10-14

    Results from a global coupled ocean-atmosphere climate model and a model with specified tropical convective heating anomalies show that the South Asian monsoon was an active part of the tropical biennial oscillation (TBO). Convective heating anomalies over Africa and the western Pacific Ocean associated with the TBO altered the simulated pattern of atmospheric circulation for the Northern Hemisphere winter mid-latitude over Asia. This alteration in the mid-latitude circulation maintained temperature anomalies over South Asia through winter and helped set up the land-sea temperature contrast for subsequent monsoon development. South Asian snow cover contributed to monsoon strength but was symptomatic of the larger scale alteration in the mid-latitude atmospheric circulation pattern. PMID:17771448

  19. Assessment of climate sensitivity to the representation of aerosols in a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    Watson, Laura; Michou, Martine; Nabat, Pierre; Saint-Martin, David

    2016-04-01

    Atmospheric aerosols can significantly affect the Earth's radiative balance due to absorption, scattering, and indirect effects upon the climate system. Although our understanding of aerosol properties has improved over recent decades, aerosol radiative forcing remains as one of the largest uncertainties when projecting future climate change. A coupled ocean-atmosphere general circulation model was used to perform sensitivity tests in order to investigate how the representation of aerosols within the model can affect decadal climate variability. These tests included looking at the difference between using constant emissions versus using emissions that evolve over a period of thirty years; examining the impacts of including indirect effects from sea salt and organics; altering the aerosol optical properties; and using an interactive aerosol scheme versus using 2-D climatologies. The results of these sensitivity tests show how modifying certain aspects of the aerosol scheme can significantly modify radiative flux and global surface temperature.

  20. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model

    SciTech Connect

    Delworth, T.; Manabe, S.; Stouffer, R.J. )

    1993-11-01

    A fully coupled ocean-atmosphere model is shown to have irregular oscillations of the thermohaline circulation in the NOrth Atlantic Ocean with a time scale of approximately 50 years. The irregular oscillation appears to be driven by density anomalies in the sinking region of the thermohaline circulation (approximately 52[degrees]N to 72[degrees]N) combined with much smaller density anomalies of opposite sign in the broad, rising region. The spatial pattern of sea surface temperature anomalies associated with this irregular oscillation bears an encouraging resemblance to a pattern of observed interdecadal variability in the North Atlantic. The anomalies of sea surface temperature induce model surface air temperature anomalies over the northern North Atlantic, Arctic, and northwestern Europe. 21 refs., 28 figs.

  1. Wintertime atmospheric response to Atlantic multidecadal variability: effect of stratospheric representation and ocean-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Peings, Yannick; Magnusdottir, Gudrun

    2016-08-01

    The impact of the Atlantic multidecadal variability (AMV) on the wintertime atmosphere circulation is investigated using three different configurations of the Community Atmospheric Model version 5 (CAM5). Realistic SST and sea ice anomalies associated with the AMV in observations are prescribed in CAM5 (low-top model) and WACCM5 (high-top model) to assess the dependence of the results on the representation of the stratosphere. In a third experiment, the role of ocean-atmosphere feedback is investigated by coupling CAM5 to a slab-ocean model in which the AMV forcing is prescribed through oceanic heat flux anomalies. The three experiments give consistent results concerning the response of the NAO in winter, with a negative NAO signal in response to a warming of the North Atlantic ocean. This response is found in early winter when the high-top model is used, and in late winter with the low-top model. With the slab-ocean, the negative NAO response is more persistent in winter and shifted eastward over the continent due to the damping of the atmospheric response over the North Atlantic ocean. Additional experiments suggest that both tropical and extratropical SST anomalies are needed to obtain a significant modulation of the NAO, with small influence of sea ice anomalies. Warm tropical SST anomalies induce a northward shift of the ITCZ and a Rossby-wave response that is reinforced in the mid-latitudes by the extratropical SST anomalies through eddy-mean flow interactions. This modeling study supports that the positive phase of the AMV promotes the negative NAO in winter, while illustrating the impacts of the stratosphere and of the ocean-atmosphere feedbacks in the spatial pattern and timing of this response.

  2. Wintertime atmospheric response to Atlantic multidecadal variability: effect of stratospheric representation and ocean-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Peings, Yannick; Magnusdottir, Gudrun

    2015-10-01

    The impact of the Atlantic multidecadal variability (AMV) on the wintertime atmosphere circulation is investigated using three different configurations of the Community Atmospheric Model version 5 (CAM5). Realistic SST and sea ice anomalies associated with the AMV in observations are prescribed in CAM5 (low-top model) and WACCM5 (high-top model) to assess the dependence of the results on the representation of the stratosphere. In a third experiment, the role of ocean-atmosphere feedback is investigated by coupling CAM5 to a slab-ocean model in which the AMV forcing is prescribed through oceanic heat flux anomalies. The three experiments give consistent results concerning the response of the NAO in winter, with a negative NAO signal in response to a warming of the North Atlantic ocean. This response is found in early winter when the high-top model is used, and in late winter with the low-top model. With the slab-ocean, the negative NAO response is more persistent in winter and shifted eastward over the continent due to the damping of the atmospheric response over the North Atlantic ocean. Additional experiments suggest that both tropical and extratropical SST anomalies are needed to obtain a significant modulation of the NAO, with small influence of sea ice anomalies. Warm tropical SST anomalies induce a northward shift of the ITCZ and a Rossby-wave response that is reinforced in the mid-latitudes by the extratropical SST anomalies through eddy-mean flow interactions. This modeling study supports that the positive phase of the AMV promotes the negative NAO in winter, while illustrating the impacts of the stratosphere and of the ocean-atmosphere feedbacks in the spatial pattern and timing of this response.

  3. Coupled ocean-atmosphere modeling on horizontally icosahedral and vertically hybrid-isentropic/isopycnic grids.

    NASA Astrophysics Data System (ADS)

    Bleck, Rainer; Sun, Shan; Li, Haiqin; Benjamin, Stan

    2016-04-01

    Current efforts to close the gap between weather prediction and climate models have led to the construction of a coupled ocean-atmosphere system consisting of two high-resolution component models, operating on matching icosahedral grids and utilizing adaptive, near-isentropic/isopycnic vertical coordinates. The two components models, FIM and HYCOM (the latter converted to an icosahedral mesh for this purpose), have been tested extensively in twice-daily global medium-range weather prediction (http://fim.noaa.gov) and in real-time ocean data assimilation (http://hycom.org), respectively. The use of matching horizontal grids, currently at resolutions of 15km, 30km and 60km, avoids coastline ambiguities and interpolation errors at the air-sea interface. The intended purpose of the coupled model being subseasonal-to-seasonal prediction, our focus is on mid-term precipitation biases and the statistical steadiness of the atmospheric circulation (blocking frequency, Rossby wave breaking, meridional heat transport, etc.), as well as on possible causes of ocean model drift. An attempt is made to isolate the weather model's role in modifying water mass properties and ocean circulations (including meridional overturning) by comparing coupled model results to ocean-only experiments forced by observed atmospheric boundary conditions. A multi-decadal run at 60km resolution is used to illustrate ENSO variability in the coupled system.

  4. Ice-ocean-atmosphere coupling in the Regional Arctic System Model

    NASA Astrophysics Data System (ADS)

    Roberts, A.; Brunke, M.; Cassano, J. J.; Craig, A.; Duvivier, A.; Hughes, M.; Maslowski, W.; Nijssen, B.; Osinski, R.

    2013-12-01

    This work demonstrates the sea ice model performance in the latest version of the Regional Arctic System Model (RASM), which is a fully coupled regional climate model developed by a group of U.S. institutions as a regional counterpart to the Community Earth System Model (CESM). RASM is comprised of the Parallel Ocean Program (POP), Los Alamos Sea Ice Model (CICE), Variable Infiltration Capacity (VIC) hydrology model and the Weather Research and Forecasting (WRF) Model. It uses the same coupling infrastructure as CESM, with important physics differences that we have found to be important in our high-resolution model. Model evaluations using SSM/I sea ice extent and concentration, ICESat sea ice thickness measurements, ice-ocean buoys, and satellite retrievals of sea ice drift and deformation, lead us to adjust the standard CESM Monin-Obukhov ice-ocean-atmospheric coupling and ice-ocean stress term used for coupling with POP-CICE at eddy-permitting resolution of 1/12 degree with the 50km resolution WRF and VIC models. Evaluation metrics based on scaling laws and wavelet techniques illustrate that 20-minute coupling produces deformation and drift statistics commensurate with high temporal and spatial resolution measurements. However, dynamical interactions are compromised when typical radiative settings are used as in stand-alone POP-CICE and WRF. This highlights the limitations of surface polar boundary conditions in stand-alone models relative to fully coupled interactions. Our results suggest that use of uncoupled models as testbeds for improved polar components of next-generation global Earth System Models may introduce biases into fully coupled systems, and these can be reduced using a regional coupled climate system model, such as RASM, as a testbed instead.

  5. Secular Trends and Climate Drift in Coupled Ocean-Atmosphere General Circulation Models

    SciTech Connect

    Covey, C C; Gleckler, P J; Phillips, T J; Bader, D C

    2004-11-23

    Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observations unless constrained by ad hoc adjustments to interface fluxes. However, eleven modern coupled GCMs--including three that do not employ flux adjustments--behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, are inconsistent among the models and may be problematic.

  6. The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models

    NASA Astrophysics Data System (ADS)

    Dieppois, Bastien; Rouault, Mathieu; New, Mark

    2015-11-01

    We study the ability of 24 ocean atmosphere global coupled models from the Coupled Model Intercomparison Project 5 (CMIP5) to reproduce the teleconnections between El Niño Southern Oscillation (ENSO) and Southern African rainfall in austral summer using historical forced simulations, with a focus on the atmospheric dynamic associated with El Niño. Overestimations of summer rainfall occur over Southern Africa in all CMIP5 models. Abnormal westward extensions of ENSO patterns are a common feature of all CMIP5 models, while the warming of the Indian Ocean that happens during El Niño is not correctly reproduced. This could impact the teleconnection between ENSO and Southern African rainfall which is represented with mixed success in CMIP5 models. Large-scale anomalies of suppressed deep-convection over the tropical maritime continent and enhanced convection from the central to eastern Pacific are correctly simulated. However, regional biases occur above Africa and the Indian Ocean, particularly in the position of the deep convection anomalies associated with El Niño, which can lead to the wrong sign in rainfall anomalies in the northwest part of South Africa. From the near-surface to mid-troposphere, CMIP5 models underestimate the observed anomalous pattern of pressure occurring over Southern Africa that leads to dry conditions during El Niño years.

  7. Simulation of global warming with a simple coupled ocean-atmosphere model

    SciTech Connect

    Jin Xiangze; Zhang Xuehong

    1994-12-31

    A highly simplified ocean-atmosphere coupling system is established based on a two-dimensional oceanic thermohaline circulation model and an energy balance atmospheric model. Transient responses of the coupled system to a radiation forcing corresponding to the doubling of the atmospheric CO{sub 2} concentration have been investigated with an emphasis on the role of the model`s thermohaline circulation in the warming processes of the system. The results show that there are some significant differences between the Pacific and the Atlantic in their transient responses. On the whole, the warming in the Atlantic is slower in the surface and faster in the deep layers than those in the Pacific due to the process of the deep water formation in the northern North Atlantic, where the active convection and the downward vertical advection transport the surface thermal anomalies into the lower layers efficiently. On a hundred-year time scale, the thermohaline circulation in the North Atlantic is weakened. As a result, the warming in the upper layer of the northern North Atlantic will be further delayed because of the reduction of the northward heat transport.

  8. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    NASA Astrophysics Data System (ADS)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  9. North Atlantic Interannual Variability in a Coupled Ocean-Atmosphere Model.

    NASA Astrophysics Data System (ADS)

    Delworth, Thomas L.

    1996-10-01

    The primary mode of sea surface temperature variability in the North Atlantic on interannual timescales during winter is examined in a coupled ocean-atmosphere model. The model, developed at die Geophysical Fluid Dynamics Laboratory, is global in domain with realistic geography and a seasonal cycle of insulation. Analyses performed on a 1000-year integration of this model show that this mode is characterized by zonal bands of SST anomalies in the North Atlantic and bears a distinct resemblance to observational results. The largest anomalies in the model are to the southeast of Newfoundland.The model SST variations appear to be related to a north-south dipole in the atmospheric 500-mb geopotential height field, which resembles the North Atlantic oscillation and the Western Atlantic pattern. Analyses are presented that show that this mode of SST variability is primarily driven by perturbations to the surface heat fluxes, which are largely governed by atmospheric variability. Changes in model ocean circulation also contribute to this mode of variability but appear to be of secondary importance.Additional integrations are analyzed to examine the above conclusion. The same atmospheric model used in the above integration was coupled to a 50-m slab ocean and integrated for 500 years. The primary mode of SST variability in this model, in which there were no effects of ocean dynamics, resembles the primary mode from the coupled model, strengthening the conclusion that the surface fluxes are the primary mechanism generating this oceanic variability. One notable difference between the two models is related to the presence of deep vertical mixing at high latitudes in the model with a fully dynamic ocean. An additional 500-year integration of the atmospheric model with a prescribed seasonal cycle of SSTs lends further support to this conclusion, as do additional diagnostic calculations in which a 50-m slab ocean was forced by the time series of surface fluxes from both the

  10. Data Assimilation Into a Coupled Ocean Atmosphere Model: Application to the 1997-1998 El Nino

    NASA Technical Reports Server (NTRS)

    Lee, Tong

    1999-01-01

    As part of JPL's ocean data assimilation effort to study ocean circulation and seasonal-interannual climate variability, sea level anomaly observed by TOPEX altimeter, together with sea surface temperature and wind stress data, are assimilated into a simple coupled ocean atmosphere model of the tropical Pacific. Model-data consistency is examined. Impact of the assimilation (as initialization) on El Nino Southern Oscillation (ENSO) forecasts is evaluated. The coupled model consists of a shallow water component with two baroclinic modes, an Ekman shear layer, a simplified mixed-layer temperature equation, and a statistical atmosphere based on dominant correlations between historical surface temperature and wind stress anomaly data. The adjoins method is used to fit the coupled model to the data over various six-month periods from late 1996 to early 1998 by optimally adjusting the initial state, model parameters, and basis functions of the statistical atmosphere. On average, the coupled model can be fitted to the data to approximately within the data and representation errors (5 cm, 0.5 C, and 10 sq m/sq m for sea level, surface temperature, and pseudo wind stress anomalies, respectively). The estimated fields resemble observed spatio-temporal structure reasonably well. Hindcasts/forecasts of the 1997/1998 El Nino initialized from forced estimated ocean states and parameters are much more realistic than those simply initialized from ocean states (see figure below). In particular, the ability of the model to produce significant warming beyond the initial state is dramatically improved. Parameter estimation, which compensates for some model errors, is found to be important to obtaining better fits of the model to data and to improving forecasts.

  11. How much of the NAO monthly variability is from ocean-atmospheric coupling: results from an interactive ensemble climate model

    NASA Astrophysics Data System (ADS)

    Xin, Xiaoge; Xue, Wei; Zhang, Minghua; Li, Huimin; Zhang, Tao; Zhang, Jie

    2015-02-01

    The chaotic atmospheric circulations and the ocean-atmosphere coupling may both cause variations in the North Atlantic Oscillation (NAO). This study uses an interactive ensemble (IE) coupled model to study the contribution of the atmospheric noise and coupling to the monthly variability of the NAO. In the IE model, seven atmospheric general circulation model (AGCM) realizations with different initial states are coupled with a single realization of the land, ocean and ice component models. The chaotic noise from the atmosphere at the air-sea interface is therefore reduced. The time variances of monthly NAO index in the ensemble AGCM mean of the IE model is found to be about 20.1 % of that in the SC model. Therefore, more than 79.9 % of the simulated monthly variability of NAO is caused by atmospheric noise. The coupling between sea surface temperature (SST) and NAO is only found in regions south of about 40°N in the North Atlantic Ocean. The IE strategy highlighted the interaction between the NAO and the SST in the region (28°-38°N, 20°W-50°W) to the southeast of the Gulf Stream extension. While the ocean-atmosphere coupling explains <1/5th of the NAO variability in the IE model, it shows slightly larger persistence than the SC model, consistent with the hypothesis of a slower mode of variability from ocean-atmosphere coupling that has larger predictability than the variability driven by the atmosphere.

  12. Coupled Ocean-Atmosphere Loss of Refractory Marine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Keene, W. C.; Frossard, A. A.; Long, M. S.; Russell, L. M.; Maben, J. R.; Kinsey, J. D.; Tyssebotn, I. M.; Quinn, P.; Bates, T. S.

    2013-12-01

    Marine aerosol produced in the oceans from bursting bubbles and breaking waves is number dominated by submicron aerosol that are highly enriched in marine organic matter relative to seawater. Recent studies suggest that these organic-rich, submicron aerosol have a major impact on tropospheric chemistry and climate. It has been assumed this marine-derived aerosol organic matter is of recent origin stemming from biological activity in the photic zone. However, we deployed a marine aerosol generator on a recent cruise in the Sargasso Sea with seawater collected from 2500 m and showed that the aerosol generated from this seawater was enriched with organic matter to the same level as observed in surface Sargasso seawater, implying that the marine organic matter flux from the oceans into atmospheric aerosol is partly due to marine organic matter not of recent origin. We propose that marine aerosol production and subsequent physical and photochemical atmospheric evolution is the main process whereby old, refractory organic matter is removed from the oceans, thereby closing the carbon budget in the oceans and solving a long-standing conundrum regarding the removal mechanism for this organic matter in the sea. The implications of this study for couplings in the ocean-atmosphere cycling of organic matter will be discussed.

  13. Coupling submesoscale physics to seabirds behaviour at the ocean-atmosphere interface

    NASA Astrophysics Data System (ADS)

    De Monte, S.; Cotté, C.; d'Ovidio, F.; Lévy, M.; Le Corre, M.; Weimerskirch, H.

    2012-04-01

    During their journeys, seabirds are faced to environmental heterogeneity of the scale of tens of Kms in extension and of days in duration, that are induced in the open ocean by mesoscale and submesoscale turbulence. We combine tracking of frigatebirds in the Mozambique channel - available for the first time with 3-D resolution - and multisatellite-based nonlinear diagnostics to inquire how birds respond to the coupled ocean-atmosphere physics. Birds behaviour along their flight trajectory are categorized in 5 classes of vertical displacement, e.g. slow or fast descents, and are superimposed with the submesoscale structures obtained by a Lagrangian reanalysis or remote-sensing measures. We show that frigatebirds modify their behaviour at such scale over and outside transport and thermal fronts. We suggest that birds colocalization with structures generated by horizontal transport is a consequence of their quest for food (preferentially located on thermal fronts) but also for upward vertical wind. Our multidisciplinary method can be applied to forthcoming high-resolution animal tracking data and contribute to elucidate the response of marine ecosystems to environmental change.

  14. Instability of The Coupled Ocean-atmosphere System On Interdecadal Timescales

    NASA Astrophysics Data System (ADS)

    Te Raa, L. A.; Dijkstra, H. A.

    The stability of the coupled ocean-atmosphere system in a single-hemispheric basin is investigated in a three-dimensional primitive equation ocean model, which is cou- pled to an energy balance model for the atmosphere. Steady states are computed using techniques of numerical bifurcation theory, after which their stability is determined by solving the linear stability problem numerically. Sustained interdecadal oscillations arise through an instability of the flow if the atmospheric diffusivity is decreased. The pattern of the perturbation destabilizing the steady state follows from the linear stability analysis, so that a clear picture of the physical mechanism can be given. The oscillation appears to be driven by the ocean's thermohaline circulation, with an atmo- spheric response affecting only the stability properties. The phase difference between perturbation meridional and zonal buoyancy gradients in the ocean and the subsequent responses of the meridional and zonal overturning circulation are key elements in the oscillation. The oscillation is shown to be robust to more realistic continental geome- try and forcing conditions.

  15. A Coupled GCM Intercomparison Study of the South Pacific Convergence Zone

    NASA Astrophysics Data System (ADS)

    Behera, S. K.; Luo, J.; Takahashi, K.; Yamagata, T.

    2007-12-01

    The South Pacific Convergence Zone (SPCZ) is an important component of seasonal climate variations in the Southern Hemisphere. Though several associated processes are already discussed using observational data, the SPCZ is yet to be resolved properly in global general circulation models (GCMs). Particularly, the ocean- atmosphere coupled GCMs often fail to simulate the correct orientation and the zonal extent of the SPCZ. Most of these models replicate an east-west zonally oriented ITCZ similar to that in the Northern Hemisphere giving rise to the so-called double ITCZ problem. In this study simulation results from a variety of models are used to understand model biases in resolving the temporal and spatial distribution of the SPCZ. These models range from standalone atmospheric GCMs to the state of the art ocean-atmosphere coupled GCMs. It is found that the seasonal SPCZ in standalone atmospheric GCM results is better represented than that in the coupled GCM with an identical atmospheric component and a spatial resolution of about 100 km. The dry zone to the east of the SPCZ is not well-formed in coupled GCMs, particularly in austral summer when the SPCZ is pronounced. This is related to the model biases of the sea surface temperature, which is warmer in eastern Pacific in coupled GCM than the observation. The bias is not as clearly manifested in a spatially higher resolution coupled GCM in which the eastern Pacific SST is better simulated. The increase in model horizontal resolution helps in resolving the local air-sea interactions, the cross- equatorial winds and the local circulation cells. The dry zone is also improved in another experiment in which the improvement in model coupling physics improved the bias in equatorial cold tongue. It is also found that the SPCZ simulation is not improved by just increasing the vertical resolution in coupled GCM. This also imply that a proper representation of the boundary layer and the associated physics is more important

  16. Climate variability in a coupled GCM. Part II: The Indian Ocean and monsoon

    SciTech Connect

    Latif, M.; Sterl, A.; Assenbaum, M.; Junge, M.M.; Maier-Reimer, E.

    1994-10-01

    We have investigated the seasonal cycle and the interannual variability of the tropical Indian Ocean circulation and the Indian summer monsoon simulated by a coupled ocean-atmosphere general circulation model in a 26-year integration. Although the model exhibits significant climate drift, overall, the coupled GCM simulates realistically the seasonal changes in the tropical Indian Ocean and the onset and evolution of the Indian summer monsoon. The amplitudes of the seasonal changes, however, are underestimated. The coupled GCM also simulates considerable interannual variability in the tropical Indian Ocean circulation, which is partly related to the El Nino/Southern Oscillation phenomenon and the associated changes in the Walker circulation. Changes in the surface wind stress appear to be crucial in forcing interannual variations in the Indian Ocean SST. As in the Pacific Ocean, the net surface heat flux acts as a negative feedback on the SST anomalies. The interannual variability in monsoon rainfall, simulated by the coupled GCM, is only about half as strong as observed. The reason for this is that the simulated interannual variability in the Indian monsoon appears to be related to internal processes within the atmosphere only. In contrast, an investigation based on observations shows a clear lead-lag relationship between interannual variations in the monsoon rainfall and tropical Pacific SST anomalies. Furthermore, the atmospheric GCM also fails to reproduce this lead-lag relationship between monsoon rainfall and tropical Pacific SST when run in a stand-alone integration with observed SSTs prescribed during the period 1970-1988. These results indicate that important physical processes relating tropical Pacific SST to Indian monsoon rainfall are not adequately modeled in our atmospheric GCM. Monsoon rainfall predictions appear therefore premature. 24 refs., 13 figs, 2 tabs.

  17. North Atlantic interannual variability in a coupled ocean-atmosphere model

    SciTech Connect

    Delworth, T.L.

    1996-10-01

    The primary mode of sea surface temperature variability in the North Atlantic on interannual timescales during winter is examined in a coupled ocean-atmosphere model. The model, developed at the Geophysical Fluid Dynamics Laboratory, is global in domain with realistic geography and a seasonal cycle of insolation. Analyses performed on a 1000-year integration of this model show that this mode is characterized by zonal bands of SST anomalies in the North Atlantic and bears a distinct resemblance to observational results. The largest anomalies in the model are to the southeast of Newfoundland. The model SST variations appear to be related to a north-south dipole in the atmopsheric 500-mb geopotential height field, which resembles the North Atlantic oscillation and the Western Atlantic pattern. Analyses are presented that show that this mode of SST variability is primarily driven by perturbations to the surface heat fluxes, which are largely governed by atmospheric variability. Changes in model ocean circulation also contribute to this mode of variability but appear to be of secondary importance. Additional integrations are analyzed to examine the above conclusion. The same atmospheric model used in the above integration was coupled to a 50-m slab ocean and integrated for 500 years. The primary mode of SST variability in this model, in which there were no effects of ocean dynamics, resembles the primary mode from the coupled model, strengthening the conclusion that the surface fluxes are the primary mechanism generating this oceanic variability. One notable difference between the two models is related to the presence of deep vertical mixing at high latitudes in the model with a fully dynamic ocean. An additional 500-year integration of the atmospheric model with a prescribed seasonal cycle of SSTs lends further support to this conclusion. 46 refs., 14 figs.

  18. Primary reasoning behind the double ITCZ phenomenon in a coupled ocean-atmosphere general circulation model

    NASA Astrophysics Data System (ADS)

    Li, Jianglong; Zhang, Xuehong; Yu, Yongqiang; Dai, Fushan

    2004-12-01

    This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the first two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Pacific in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, affected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Pacific. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.

  19. Dynamics and predictability of a low-order wind-driven ocean-atmosphere coupled model

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane

    2014-04-01

    The dynamics of a low-order coupled wind-driven ocean-atmosphere system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus in J Atmos Sci 37:1157-1176, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini in J Phys Oceanogr 41:1585-1604, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear, while for periodic atmospheric solutions the double gyres emerge. In the present model domain setting context, this feature is related to the level of truncation of the atmospheric fields, as indicated by a preliminary analysis of the impact of higher wavenumber ("synoptic" scale) modes on the development of oceanic gyres. In the latter case, double gyres appear in the presence of a chaotic atmosphere. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov-Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on its attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial ( at 2 + bt 3 + ct 4) up to exponential-like evolutions. These features are explained

  20. Simulation of ENSO with a global atmospheric GCM coupled to a high-resolution, tropical Pacific ocean GCM

    SciTech Connect

    Philander, S.G.H.; Pacanowski, R.C.; Lau, N.C.; Nath, M.J. )

    1992-04-01

    A global atmospheric general circulation model (GCM) coupled to an oceanic GCM that is dynamically active only in the tropical Pacific simulates variability over a broad spectrum of frequencies. Of special interest is the simulation of a realistically irregular Southern Oscillation between warm El Nino and cold La Nino states with time scale of 5 years. The spatial structure is different in the eastern and western halves of the ocean basin. Sea surface temperature changes have their largest amplitude in the central and eastern tropical Pacific, but the low-frequency zonal wind fluctuations are displaced westward and are large over the western half of the basin. During El Nino the associated curl contributes to a pair of pronounced minima in thermocline depth, symmetrically about the equator in the west. In the east the deepening of the thermodine in response to the winds in the west has an approximate Gaussian shape centered on the equator. The low-frequency sea surface temperature and zonal wind anomalies wax and wane practically in place and in phase without significant zonal phase propagation. Thermocline depth variations have phase propagation, a property of the oceanic response to the quasi-periodic winds that force currents and excite a host of waves with periods near 5 years, This indicates that the ocean-atmosphere interactions that cause El Nino to develop at a certain time are countered and reversed by the delayed response of the ocean to earlier winds. Kelvin and Rossby waves cannot be identified in the low-frequency fluctuations of this model, but they are energetic at relatively short periods and are of vital importance to a quasi-resonant oceanic mode with a period near 7 months that is excited in the model. The similarities and differences between the results of this simulation and those with other models are discussed.

  1. Shortwave feedbacks and El Nino-Southern Oscillation: Forced ocean coupled ocean-atmosphere experiments

    NASA Technical Reports Server (NTRS)

    Waliser, Duane E.; Blanke, Bruno; Neelin, J. David; Gautier, C.

    1994-01-01

    Changes in tropical sea surface temperature (SST) can produce changes in cloudiness that modify incoming solar shortwave (SW) radiation, which in turn affects SST. The effects of this negative feedback on Pacific interannual variability are examined in forced ocean model and hybrid coupled ocean-atmosphere model simulations. Two empirical schemes are used to model the large-scale, low-frequency response of surface SW to SST anomalies. The first scheme attempts to account for the nonlocal nature of the atmospheric response to SST based patterns of covariability analyzed through singular value decomposition. In the observations the primary coupled mode of variability is composed of a SW anomaly in the central Pacific that covaries with anomalous SST in the eastern Pacific. This is applied in the model as a nonlocal feedback. The second scheme examines the effects of a purely local feedback with a spatially varying coefficient of magnitude chosen similar to the first scheme. In almost all cases the second scheme behaved similarly to the first, presumably because the correlation scale of SST is large enough for El Nino-Southern Oscillation (ENSO) dynamics that there is little sensitivity to the local approximation in the SW feedback. In simulations forced by time series of observed wind stress the SW feedback induced very minor SST damping. Results for a simpified heat budget analysis showed that while the SW feedback increased the local heat flux damping on SST, it also induced a mean shallowing of the mixed layer. The resulting changes in both the local mean vertical temperature gradient and the zonal velocity response to the wind stress acted to oppose the local heat flux damping effects. When the observed SW anomalies were applied to forced simulations, the simulated SST anomalies were modified as expected, and agreement with observed SST improved. In coupled simulations the SW feedbacks had greater impact than in the case of specified stress. The main effects were

  2. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    NASA Astrophysics Data System (ADS)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy; Zambon, Joseph B.; He, Ruoying

    The coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system was used to investigate atmosphere-ocean-wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  3. A 24-variable low-order coupled ocean-atmosphere model: OA-QG-WS v2

    NASA Astrophysics Data System (ADS)

    Vannitsem, S.; De Cruz, L.

    2014-04-01

    A new low-order coupled ocean-atmosphere model for midlatitudes is derived. It is based on quasi-geostrophic equations for both the ocean and the atmosphere, coupled through momentum transfer at the interface. The systematic reduction of the number of modes describing the dynamics leads to an atmospheric low-order component of 20 ordinary differential equations, already discussed in Reinhold and Pierrehumbert (1982), and an oceanic low-order component of four ordinary differential equations, as proposed by Pierini (2011). The coupling terms for both components are derived and all the coefficients of the ocean model are provided. Its dynamics is then briefly explored, through the analysis of its mean field, its variability and its instability properties. The wind-driven ocean displays a decadal variability induced by the atmospheric chaotic wind forcing. The chaotic behavior of the coupled system is highly sensitive to the ocean-atmosphere coupling for low values of the thermal forcing affecting the atmosphere (corresponding to a weakly chaotic coupled system). But it is less sensitive for large values of the thermal forcing (corresponding to a highly chaotic coupled system). In all the cases explored, the number of positive exponents is increasing with the coupling. Two codes in Fortran and Lua of the model integration are provided as Supplement.

  4. Parallel Computation of Ocean-Atmosphere-Wave Coupled Storm Surge Model

    NASA Astrophysics Data System (ADS)

    Kim, K.; Yamashita, T.

    2003-12-01

    Ocean-atmosphere interactions are very important in the formation and development of tropical storms. These interactions are dominant in exchanging heat, momentum, and moisture fluxes. Heat flux is usually computed using a bulk equation. In this equation air-sea interface supplies heat energy to the atmosphere and to the storm. Dynamical interaction is most often one way in which it is the atmosphere that drives the ocean. The winds transfer momentum to both ocean surface waves and ocean current. The wind wave makes an important role in the exchange of the quantities of motion, heat and a substance between the atmosphere and the ocean. Storm surges can be considered as the phenomena of mean sea-level changes, which are the result of the frictional stresses of strong winds blowing toward the land and causing the set level and the low atmospheric pressure at the centre of the cyclone can additionally raise the sea level. In addition to the rise in water level itself, another wave factor must be considered. A rise of mean sea level due to white-cap wave dissipation should be considered. In bounded bodies of water, such as small seas, wind driven sea level set up is much serious than inverted barometer effects, in which the effects of wind waves on wind-driven current play an important role. It is necessary to develop the coupled system of the full spectral third-generation wind-wave model (WAM or WAVEWATCH III), the meso-scale atmosphere model (MM5) and the coastal ocean model (POM) for simulating these physical interactions. As the component of coupled system is so heavy for personal usage, the parallel computing system should be developed. In this study, first, we developed the coupling system of the atmosphere model, ocean wave model and the coastal ocean model, in the Beowulf System, for the simulation of the storm surge. It was applied to the storm surge simulation caused by Typhoon Bart (T9918) in the Yatsushiro Sea. The atmosphere model and the ocean model have

  5. Impact of Precession On Monsoon Characteristics From Coupled Ocean Atmosphere Experiments

    NASA Astrophysics Data System (ADS)

    Braconnot, Pascale; Marti, Olivier

    Precession cycle modulates the seasonal distribution of the incoming solar radiation at the top of the atmosphere with a periodicity of about 23 kyr. Summer insolation is the largest for periods during which the Earth is near the perihelion of its orbit dur- ing summer. The associated continental warming favours the deepening of the sum- mer thermal low over the Northern Hemisphere continents and the inland advection of moist air from the tropical oceans, strengthening the monsoon activity. Different orbital configurations (precession) can lead to large June-July-August (summer) inso- lation forcing. Amongst these, the maximum insolation can occur between the vernal equinox and the summer solstice or between the summer solstice and the autumnal equinox. Using a fully coupled ocean-atmosphere model we investigate the response of the Indian and southeast monsoons to changes in precession and we explore the differences between periods where the monsoon activity is strong compared to the period of reference but the seasonal timing of the insolation forcing is different. Our aim is to determine if extreme phases in the seasonal forcing can lead to different signatures in the monsoon response. We focus on the Asian monsoon and on the at- mospheric and oceanic circulation in the Indian Ocean. Our results show that, even though the changes in the land-sea contrast that drives the monsoon flow follows quite well the differences in the insolation forcing, the regional distribution over the con- tinental regions affected by the monsoon and the ocean substantially varies from one simulation to the other. Large differences are found in the simulated surface temper- ature and salinity in the Indian Ocean. They are related to various feedbacks, where the changes in the hydrological cycle over the basin through precipitation, evapora- tion and river runoff play and important role. Our results strongly emphasize that the timing of the seasonal cycle need to be considered in

  6. An ENSO prediction approach based on ocean conditions and ocean-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-heng; Hu, Zeng-Zhen; Ding, Ruiqiang; Chen, Han-ching

    2016-05-01

    A simple statistical model for the El Niño-Southern Oscillation (ENSO) prediction is derived based on the evolution of the ocean heat condition and the oceanic Kelvin wave propagation associated with westerly wind events (WWEs) and easterly wind surges (EWSs) in the tropical Pacific. The multivariate linear regression model solely relies on the pentad thermocline depth anomaly evolution in 25 days along with the zonal surface wind modulation. It successfully hindcasts all ENSOs except for the 2000/01 La Niña, using the pentad (or monthly) mean tropical atmosphere ocean array data since 1994 with an averaged skill (measured by anomaly correlation) of 0.62 (or 0.67) with a 6-month lead. The exception is mainly due to the long-lasting cold sea surface temperature anomalies in the subtropics resulting from the strong 1998/99 La Niña, even though the tropical warm water volume (WWV) had rebounded and turned phases after 2000. We also note that the hindcast skill is comparable using pentad or monthly mean NCEP global ocean data assimilation system data for the same time period. The hindcast skill of the proposed statistical model is better than that based on the WWV index in terms of the monthly correlation, normalized RMSEs and ENSO occurrences, which suggest that including the evolution of the subsurface ocean temperature anomaly and the WWEs/EWSs in the central tropical Pacific can enhance the ability to predict ENSO. The hindcast skill is also comparable to the predictions using other dynamical and statistical models, indicating that these processes are the keys to ENSO development. The dynamics behind the statistical model are consistent with the physical processes of ENSO development as follows: the tropical WWV resulting from the interannually-varying meridional subtropical cell transport provides a sufficient heat source. When the seasonal phase lock of ocean-atmosphere coupling triggers the positive (negative) zonal wind anomaly in boreal summer and fall, an

  7. Oceanic control of multidecadal variability in an idealized coupled GCM

    NASA Astrophysics Data System (ADS)

    Jamet, Quentin; Huck, Thierry; Arzel, Olivier; Campin, Jean-Michel; de Verdière, Alain Colin

    2016-05-01

    Idealized ocean models are known to develop intrinsic multidecadal oscillations of the meridional overturning circulation (MOC). Here we explore the role of ocean-atmosphere interactions on this low-frequency variability. We use a coupled ocean-atmosphere model set up in a flat-bottom aquaplanet geometry with two meridional boundaries. The model is run at three different horizontal resolutions (4°, 2° and 1°) in both the ocean and atmosphere. At all resolutions, the MOC exhibits spontaneous variability on multidecadal timescales in the range 30-40 years, associated with the propagation of large-scale baroclinic Rossby waves across the Atlantic-like basin. The unstable region of growth of these waves through the long wave limit of baroclinic instability shifts from the eastern boundary at coarse resolution to the western boundary at higher resolution. Increasing the horizontal resolution enhances both intrinsic atmospheric variability and ocean-atmosphere interactions. In particular, the simulated atmospheric annular mode becomes significantly correlated to the MOC variability at 1° resolution. An ocean-only simulation conducted for this specific case underscores the disruptive but not essential influence of air-sea interactions on the low-frequency variability. This study demonstrates that an atmospheric annular mode leading MOC changes by about 2 years (as found at 1° resolution) does not imply that the low-frequency variability originates from air-sea interactions.

  8. Numerical simulation of Typhoon Muifa (2011) using a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system

    NASA Astrophysics Data System (ADS)

    Liu, Na; Ling, Tiejun; Wang, Hui; Zhang, Yunfei; Gao, Zhiyi; Wang, Yi

    2015-04-01

    The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa (2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.

  9. Structure and predictability of the El Nino/Southern Oscillation phenomenon in a coupled ocean-atmosphere general circulation model

    SciTech Connect

    Latif, M.; Sterl, A.; Maier-Reimer, E.; Junge, M.M. )

    1993-04-01

    The space-time structure and predictability of the El Nino/Southern Oscillation (ENSO) phenomenon was investigated. Two comprehensive datasets were analyzed by means of an advanced statistical method, one based on observational data and other on data derived from an extended-range integration performed with a coupled ocean atmosphere general circulation model. It is shown that a considerable portion of the ENSO related low-frequency climate variability in both datasets is associated with a cycle implies the possibility of climate predictions in the tropics up to lead times of about one year. This is shown by conducting an ensemble of predictions with our coupled general circulation model. For the first time a coupled model of this type was successfully applied to ENSO predictions. 34 refs., 6 figs.

  10. A Regional Coupled Model System to Examine Ocean-Atmosphere-Sea Ice, Ice Sheet and Permafrost Interactions in the Arctic: HIRHAM5 - HYCOM - CICE - PISM - GIPL

    NASA Astrophysics Data System (ADS)

    Christensen, J. H.; Mottram, R.; Langen, P. L.; Madsen, K. S.; Stendel, M.; Rodehacke, C. B.; Romanovsky, V. E.; Marchenko, S. S.

    2014-12-01

    We introduce a high resolution fully coupled regional model system that describes ocean, atmosphere and sea ice processes in the Arctic Ocean and North Atlantic and treats atmosphere / ocean / ice sheet interactions as well as land and sub-sea permafrost processes in an advanced semi-coupled form. The system has been developed using five existing model components: the high resolution regional climate model HIRHAM5, the regional ocean model HYCOM and the CICE model that describes sea ice dynamics, the PISM ice sheet model and the GIPL permafrost model. These models have been interactively coupled which enables us to perform experiments examining the relative importance of ocean and atmospheric forcing as well as internal dynamics, to explain the recent rapid decline of Arctic sea ice, recent changes in the Greenland ice sheet mass balance together with both land and sub-sea permafrost conditions. Analysis of the model results indicates the model can successfully reproduce the interannual and seasonal variability in sea ice extent, describe recent changes in the Greenland ice sheet surface mass balance as well as permafrost conditions around Greenland and possibly under the Arctic Ocean sea floor. This opens up the possibility of a range of process based experiments as well as simulations to project the future and study the past of Arctic sea ice that we plan to run using the EC-Earth GCM as boundary forcing. Examples, focusing on various coupling issues will be presented and the need for further refinements will be assessed by highlighting processes that appear to be essential to the interactions and hence possibly important at climate scales.

  11. Coupled Oceanic-Atmospheric Variability at Different Temporal Scales and U.S. Precipitation Characteristics

    NASA Astrophysics Data System (ADS)

    Goly, A.; Teegavarapu, R. S.

    2013-12-01

    A comprehensive examination of the influences of interdecadal, decadal and interannual oceanic-atmospheric oscillations on U.S. precipitation characteristics and extremes is carried out in this study. Four major oscillations affecting the precipitation patterns in the U.S. are evaluated within two phases (cool/negative and warm/positive phases) for each of the oscillations: El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO) and North Atlantic Oscillation (NAO). Nine extreme precipitation indices, Inter-Event Time Definition (IETD) parameters, dry and wet spell transitions and correlations are analyzed along with parametric statistical hypothesis tests to validate significant changes from one phase to another. The analysis is carried out for the entire continental U.S. at a spatial resolution of 0.125 degree for the period 1950-1999. Analyses confirm spatially non-uniform changes in the influence of the oscillations on precipitation characteristics along with temporal variations over major hydrological basins of the U.S.

  12. Role of the Ocean-Atmosphere interactions for the Atlantic Multidecadal Variability in an idealized coupled model

    NASA Astrophysics Data System (ADS)

    Jamet, Quentin; Huck, Thierry; de Verdière, Alain Colin; Arzel, Olivier; Campin, Jean-Michel

    2015-04-01

    The role of the ocean-atmosphere interactions in the multidecadal variability of the Atlantic Meridional Overturning Circulation (AMOC) is investigated in an idealized coupled configuration of the MIT General Circulation Model. The flat-bottom ocean, composed of an Atlantic-like small basin, a Pacific-like large basin, and an unblocked Antarctic-like circumpolar channel, is coupled to a global atmospheric model (SPEEDY). In order to better represent the atmospheric dynamics and its interactions with the ocean, three set-ups, with horizontal resolution of about 4°, 2° and 1° (at the equator) in both the ocean and atmosphere models, are compared. They show a linearly increasing North Atlantic Oscillation-like variability. At all resolutions, the AMOC undergoes a spontaneous variability on multidecadal time scales between 30-40 yr, with an additional higher frequency in the highest resolution set-up. The AMOC variability responds to temperature anomalies along the western boundary through the thermal wind relationship. These temperature anomalies result from the propagation of large-scale baroclinic Rossby waves across the small basin. The unstable region responsible for the growth of Rossby waves through baroclinic instability, diagnosed using a temperature variance budget, shifts from the eastern boundary at coarse resolution (4°) to the western boundary at higher resolution (2° and 1°). An earlier study, performed with the same coarse resolution set-up (4°), has shown that the AMOC does not participate to the growth of Rossby waves, but passively reacts to these waves. The AMOC being mainly connected to the western boundary dynamics, its role in setting large scale baroclinic Rossby waves might be different between the coarse resolution set-ups (4°) and the higher resolution set-ups (2° and 1°). The ocean-atmosphere interactions are strongly enhanced in the highest resolution set-up (1°), with the development of a significant correlation of about 0

  13. Finding the driver of local ocean-atmosphere coupling in reanalyses and CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Ruiz-Barradas, Alfredo; Kalnay, Eugenia; Peña, Malaquías; BozorgMagham, Amir E.; Motesharrei, Safa

    2016-06-01

    Identification of the driver of coupled anomalies in the climate system is of great importance for a better understanding of the system and for its use in predictive efforts with climate models. The present analysis examines the robustness of a physical method proposed three decades ago to identify coupled anomalies as of atmospheric or oceanic origin by analyzing 850 mb vorticity and sea surface temperature anomalies. The method is then used as a metric to assess the coupling in climate simulations and a 30-year hindcast from models of the CMIP5 project. Analysis of the frequency of coupled anomalies exceeding one standard deviation from uncoupled NCEP/NCAR and ERA-Interim and partially coupled CFSR reanalyses shows robustness in the main results: anomalies of oceanic origin arise inside the deep tropics and those of atmospheric origin outside of the tropics. Coupled anomalies occupy similar regions in the global oceans independently of the spatiotemporal resolution. Exclusion of phenomena like ENSO, NAO, or AMO has regional effects on the distribution and origin of coupled anomalies; the absence of ENSO decreases anomalies of oceanic origin and favors those of atmospheric origin. Coupled model simulations in general agree with the distribution of anomalies of atmospheric and oceanic origin from reanalyses. However, the lack of the feedback from the atmosphere to the ocean in the AMIP simulations reduces substantially the number of coupled anomalies of atmospheric origin and artificially increases it in the tropics while the number of those of oceanic origin outside the tropics is also augmented. Analysis of a single available 30-year hindcast surprisingly indicates that coupled anomalies are more similar to AMIP than to coupled simulations. Differences in the frequency of coupled anomalies between the AMIP simulations and the uncoupled reanalyses, and similarities between the uncoupled and partially coupled reanalyses, support the notion that the nature of the

  14. Sensitivity of Air-sea Exchange In A Regional Scale Coupled Ice/ocean/atmosphere Model

    NASA Astrophysics Data System (ADS)

    Schrum, C.; Hübner, U.; Jacob, D.; Podzun, R.

    The sub-systems ice, ocean and atmosphere are coupled on the global as well as the regional scale. However, regional coupled modeling is only in the beginning, full cou- pled models which are able to describe the interaction on the regional scale and the feedback mechanism are rare at the moment. For the North Sea and the Baltic Sea such a coupled model has been developed and exemplary integrated over a full seasonal cy- cle. By comparison of different regionalization studies the impact of the regional at- mospheric modeling and coupling on the air sea fluxes have been investigated. It was shown that the regionalization as well as the coupling show strong influence on the air/sea fluxes and thus on the oceanic conditions. Further problems in regional mod- eling like the description of storm track variability and its influence on the regional ocean model were identified.

  15. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model

    USGS Publications Warehouse

    Zambon, Joseph B.; He, Ruoying; Warner, John C.

    2014-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).

  16. A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies

    SciTech Connect

    Stocker, T.F.; Mysak, L.A. ); Wright, D.G. )

    1992-08-01

    A zonally averaged ocean model for the thermohaline circulation is coupled to a zonally averaged, one-layer energy balance model of the atmosphere to form a climate model for paleoclimate studies. The emphasis of the coupled model is on the ocean's thermohaline circulation in the Pacific, Atlantic, and Indian oceans. Under present-day conditions, the global conveyor belt is simulated. Latitude-depth structures of modeled temperature and salinity fields, as well as depth-integrated meridional transports of heat and freshwater, compare well with estimates from observations when wind stress is included. Ekman cells are present in the upper ocean and contribute substantially to the meridional fluxes at low latitudes.The atmospheric component of the coupled climate model consists of a classical balance model. When the two components are coupled after being spun up individually, the system remains steady. If intermittent convection is operating, the coupled model shows systematic deviations of the surface salinity, which may result in reversals of the thermohaline circulation. This climate drift can be inhibited by removing intermittent convection prior to coupling. The climate model is applied to investigate the effect of excess freshwater discharge into the North Atlantic, and the influence of the parameterization of precipitation is tested. The Atlantic thermohalinc flow is sensitive to anomalous freshwater input. Reversals of the deep circulation can occur in the Atlantic, leading to a state where deep water is formed only in the Southern Ocean. A feedback mechanism is identified that may also trigger the reversal of the Pacific thermobaline circulation yielding the inverse conveyor bell as an additional steady state. In total, four different stable equilibria of the coupled model were realized.

  17. Large-scale ocean-atmosphere interactions in a simplified coupled model of the midlatitude wintertime circulation

    NASA Technical Reports Server (NTRS)

    Miller, Arthur J.

    1992-01-01

    Midlatitude ocean-atmosphere interactions are studied in simulations from a simplified coupled model that includes synoptic-scale atmospheric variability, ocean current advection of SST, and air-sea heat exchange. Although theoretical dynamical ('identical twin') predictions using this model have shown that the SST anomalies in this model indeed influence the atmosphere, it is found here that standard cross correlation and empirical orthogonal function analyses of monthly mean model output yield the standard result, familiar from observational studies, that the atmosphere forces the ocean with little or no feedback. Therefore, these analyses are inconclusive and leave open the question of whether anomalous SST is influencing the atmosphere. In contrast, it is found that compositing strong warm events of model SST is a useful indicator of ocean forcing the atmosphere. Additional evidence is presented for oceanic influence on the atmosphere, namely, that ocean current advection appears to enhance the persistence of model SST anomalies through a feedback effect that is absent when only heat flux is allowed to influence SST anomaly evolution.

  18. CO/sub 2/-induced change in a coupled ocean-atmosphere model and its paleoclimatic implications

    SciTech Connect

    Manabe, S.; Bryan, K. Jr.

    1985-11-20

    The effect of large changes of atmospheric CO/sub 2/ was studied, using the coupled ocean-atmosphere model of Bryan et al. (1982), for derivation of six climatic equilibria (cases with 1/2 to 8 times the present CO/sub 2/ concentration). An increase of atmospheric CO/sub 2/ to the level of 8 times the normal concentration is accompanied by a decrease in the meridional gradient of surface air temperature (SAT) (the CO/sub 2/-induced increase of SAT is particularly large at high latitudes), with no changes in the intensity or the latitudinal placement of the atmospheric jet. The meridional density gradient of the ocean surface water changes little because of an increased in thermal expansion coefficient of seawater with increased temperature; thus, the intensity of thermohaline circulation does not diminish as expected. On the other hand, reduction of atmospheric CO/sub 2/ causes a dramatic change in the thermohaline circulation at half the normal CO/sub 2/ concentration, the sea water is held at the freezing point from pole down to 45 deg latitude because of the formation of sea ice.

  19. Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide

    SciTech Connect

    Manabe, S.; Stouffer, R.J. )

    1994-01-01

    To speculate on the future change of climate over several centuries, three 500-year integrations of a coupled ocean-atmosphere model were performed. In addition, to the standard integration in which the atmospheric concentration of carbon dioxide remains unchanged, two integrations are conducted. In one integration, the CO[sub 2] concentration increases by 1% yr[sup [minus]1] (compounded) until it reaches four times the initial value at the 140th year and remains unchanged thereafter. In another integration, the CO[sub 2] concentration also increases at the rate of 1% yr[sup [minus]1] until it reaches twice the initial value of the 70th year and remains unchanged thereafter. One of the most notable features of the CO[sub 2]-quadrupoling integration is the gradual disappearance of thermohaline circulations in most of the model oceans during the first 250-year period, leaving behind wind-driven cells. For example, thermohaline circulation nearly vanished in the North Atlantic during the first 200 years of the integration. In the Weddell and Ross seas, thermohaline circulation becomes weaker and shallower, thereby reducing the rate of bottom water formation and weakening the northward flow of bottom water in the Pacific and Atlantic oceans. The weakening or near disappearance of thermohaline circulation described above is attributable mainly to the capping of the model oceans by relatively fresh water in high latitudes where the excess of precipitation over evaporation increases markedly due to the enhanced poleward moisture transport in the warmer model troposphere.

  20. Double ITCZ in Coupled Ocean-Atmosphere Models: From CMIP3 to CMIP5

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxiao; Liu, Hailong; Zhang, Minghua

    2015-10-01

    Recent progress in reducing the double Intertropical Convergence Zone bias in coupled climate models is examined based on multimodel ensembles of historical climate simulations from Phase 3 and Phase 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). Biases common to CMIP3 and CMIP5 models include spurious precipitation maximum in the southeastern Pacific, warmer sea surface temperature (SST), weaker easterly, and stronger meridional wind divergences away from the equator relative to observations. It is found that there is virtually no improvement in all these measures from the CMIP3 ensemble to the CMIP5 ensemble models. The five best models in the two ensembles as measured by the spatial correlations are also assessed. No progress can be identified in the subensembles of the five best models from CMIP3 to CMIP5 even though more models participated in CMIP5; the biases of excessive precipitation and overestimated SST in southeastern Pacific are even worse in the CMIP5 models.

  1. Applying a fully nonlinear particle filter on a coupled ocean-atmosphere climate model

    NASA Astrophysics Data System (ADS)

    Browne, Philip; van Leeuwen, Peter Jan; Wilson, Simon

    2014-05-01

    It is a widely held assumption that particle filters are not applicable in high-dimensional systems due to filter degeneracy, commonly called the curse of dimensionality. This is only true of naive particle filters, and indeed it has been shown much more advanced methods perform particularly well on systems of dimension up to 216 ≡ 6.5 × 104. In this talk we will present results from using the equivalent weights particle filter in twin experiments with the global climate model HadCM3. These experiments have a number of notable features. Firstly the sheer size of model in use is substantially larger than has been previously achieved. The model has state dimension approximately 4 × 106 and approximately 4 × 104 observations per analysis step. This is 2 orders of magnitude more than has been achieved with a particle filter in the geosciences. Secondly, the use of a fully nonlinear data assimilation technique to initialise a climate model gives us the possibility to find non-Gaussian estimates for the current state of the climate. In doing so we may find that the same model may demonstrate multiple likely scenarios for forecasts on a multi-annular/decadal timescale. The experiments consider to assimilating artificial sea surface temperatures daily for several years. We will discuss how an ensemble based method for assimilation in a coupled system avoids issues faced by variational methods. Practical details of how the experiments were carried out, specifically the use of the EMPIRE data assimilation framework, will be discussed. The results from applying the nonlinear data assimilation method can always be improved through having a better representation of the model error covariance matrix. We will discuss the representation which we have used for this matrix, and in particular, how it was generated from the coupled system.

  2. On the use of ocean-atmosphere-wave models during an extreme CAO event: the importance of being coupled

    NASA Astrophysics Data System (ADS)

    Carniel, Sandro; Barbariol, Francesco; Benetazzo, Alvise; Bonaldo, Davide; Falcieri, Francesco M.; Miglietta, Mario M.; Ricchi, Antonio; Sclavo, Mauro

    2015-04-01

    During winter 2012 an extreme meteorological event stroke the whole Europe and particularly its central-southern sector. A strong and persistent spit of cold air coming from Siberian region (a Cold Air Outbreak, CAO) insisted on northern Italy and the Adriatic sea basin, leading to decreases in the sea temperatures up to 6 °C in less than two weeks, ice formation on the Venice lagoon and an exceptional snow fall in the Apennine region. In the sea the CAO was associated to a significant episode of dense water formation (DWF), a crucial phenomenon that heavily impacts the whole Adriatic Sea (from the sinking of water masses and associated ventilation of the northernmost shelf, to the flow along the western coast, until the flushing of southern Adriatic open slope and submarine canyons, with associated sediment transport and bottom reshaping). The extent of the DWF event in the Northern Adriatic sub-basin was estimated by means of coastal observatories, ad hoc measurements and, until now, results from existing one-way coupled atmosphere-ocean models. These are characterized by no SST feedback from the ocean to the atmosphere, and therefore by turbulent heat fluxes that may heavily reflect a non-consistent ocean state. The study proposes an investigation of the 2012 CAO using a fully coupled, three components, ocean-atmosphere-wave system (COAWST). Results highlight that, although the energy interplays between air and sea do not seem to significantly impact the wind forecasts, when providing heat fluxes that are consistent with the ocean temperature we find modified heat fluxes and air sea temperatures figures. Moreover, the consistent description of thermal exchanges adopted in the fully coupled model can affect the basin circulation, the quantification of dense water produced mass, and the description of its migration pathways and rates of off-shelf descent.

  3. An abrupt climate event in a coupled ocean-atmosphere simulation without external forcing.

    PubMed

    Hall, A; Stouffer, R J

    2001-01-11

    Temperature reconstructions from the North Atlantic region indicate frequent abrupt and severe climate fluctuations during the last glacial and Holocene periods. The driving forces for these events are unclear and coupled atmosphere-ocean models of global circulation have only simulated such events by inserting large amounts of fresh water into the northern North Atlantic Ocean. Here we report a drastic cooling event in a 15,000-yr simulation of global circulation with present-day climate conditions without the use of such external forcing. In our simulation, the annual average surface temperature near southern Greenland spontaneously fell 6-10 standard deviations below its mean value for a period of 30-40 yr. The event was triggered by a persistent northwesterly wind that transported large amounts of buoyant cold and fresh water into the northern North Atlantic Ocean. Oceanic convection shut down in response to this flow, concentrating the entire cooling of the northern North Atlantic by the colder atmosphere in the uppermost ocean layer. Given the similarity between our simulation and observed records of rapid cooling events, our results indicate that internal atmospheric variability alone could have generated the extreme climate disruptions in this region. PMID:11196636

  4. ENSO Simulation in Coupled Ocean-Atmosphere Models: Are the Current Models Better?

    SciTech Connect

    AchutaRao, K; Sperber, K R

    2005-04-29

    Maintaining a multi-model database over a generation or more of model development provides an important framework for assessing model improvement. Using control integrations, we compare the simulation of the El Nino/Southern Oscillation (ENSO), and its extratropical impact, in models developed for the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report with models developed in the late 1990's (the so-called Coupled Model Intercomparison Project-2 [CMIP2] models). The IPCC models tend to be more realistic in representing the frequency with which ENSO occurs, and they are better at locating enhanced temperature variability over the eastern Pacific Ocean. When compared with reanalyses, the IPCC models have larger pattern correlations of tropical surface air temperature than do the CMIP2 models during the boreal winter peak phase of El Nino. However, for sea-level pressure and precipitation rate anomalies, a clear separation in performance between the two vintages of models is not as apparent. The strongest improvement occurs for the modeling groups whose CMIP2 model tended to have the lowest pattern correlations with observations. This has been checked by subsampling the multi-century IPCC simulations in a manner to be consistent with the single 80-year time segment available from CMIP2. Our results suggest that multi-century integrations may be required to statistically assess model improvement of ENSO. The quality of the El Nino precipitation composite is directly related to the fidelity of the boreal winter precipitation climatology, highlighting the importance of reducing systematic model error. Over North America distinct improvement of El Nino forced boreal winter surface air temperature, sea-level pressure, and precipitation rate anomalies in the IPCC models occurs. This improvement, is directly proportional to the skill of the tropical El Nino forced precipitation anomalies.

  5. Investigating the life cycle of a polar low with the Coupled-Ocean-Atmosphere- Wave-Sediment Transport modeling system

    NASA Astrophysics Data System (ADS)

    adakudlu, muralidhar; Sobolowski, Stefan; Mayer, Stephanie

    2013-04-01

    A polar low that formed on 3 March 2008 over the Norwegian Sea is simulated using the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. COAWST is a high-resolution NWP system involving WRF, ROMS and SWAN models with a fully interactive ice module (CRIM) in ROMS. It can be run both in coupled and uncoupled modes and is a potential tool to study regional extremes and the associated air-sea- wave interactions. The objective of this study is to assess the importance of atmosphere-ocean coupling in simulating polar lows. The polar low under question provides an ideal platform to carry out such a study given the availability of measurements of its structure and full lifecycle. The observations were taken with dropsondes and wind lidar by the Norwegian IPY- THORPEX research mission. These observations show that the polar low had a sharp frontal structure below 700 hPa during the cyclogenesis phase. As the polar low grew, the associated circulation extended from ~ 700 hPa up to ~ 450 hPa. The maximum wind speed observed atlower-levels during the development was ~ 28 ms-1. Total surface fluxes rose from ~ 375 Wm-2 to ~ 580 Wm-2 during the growth stage suggesting an important role for air-sea interactions in contributing to the strength of the low. The lifetime of the low was quite long, ~ 2 days, relative to that of a normal polar low, which is usually less than 24 hours. In this work, two simulations are performed, one with a 2-way coupling between the atmosphere and the ocean, and the second with an atmosphere-only set-up. The simulations begin at 0000 UTC on 2 March 2008 and are run at a horizontal resolution of ~ 12 km. Initial and boundary conditions are obtained from the NCEP Climate Forecast System Reanalysis (CFSR). Parameters such as surface fluxes of sensible and latent heat, temperature, wind speed, surface pressure, precipitation, vertical temperature gradient are analysed and compared in the coupled and uncoupled simulations

  6. A regional ocean-atmosphere coupled model developed for CORDEX East Asia: assessment of Asian summer monsoon simulation

    NASA Astrophysics Data System (ADS)

    Zou, Liwei; Zhou, Tianjun

    2016-02-01

    In this study, a developed regional ocean-atmosphere coupled model FROALS was applied to the CORDEX East Asia domain. The performance of FROALS in the simulation of Asian summer monsoon during 1989-2010 was assessed using the metrics developed by the CLIVAR Asian-Australian Monsoon Panel Diagnostics Task Team. The results indicated that FROALS exhibited good performance in simulating Asian summer monsoon climatology. The simulated JJA mean SST biases were weaker than those of the CMIP5 multi-model ensemble mean (MMEM). The skill of FROALS approached that of CMIP5 MMEM in terms of the annual cycle of Asian summer monsoon. The simulated monsoon duration matched the observed counterpart well (with a spatial pattern correlation coefficient of 0.59). Some biases of CMIP5 MMEM were also found in FROALS, highlighting the importance of local forcing and model physics within the Asian monsoon domain. Corresponding to a strong East Asian summer monsoon, an anomalous anticyclone was found over western North Pacific in both observation and simulation. However, the simulated strength was weaker than the observed due to the responses to incorrect sea surface anomalies over the key regions. The model also accurately captured the spatial pattern of the intraseasonal variability variance and the extreme climate indices of Asian summer monsoons, although with larger amplitude. The results suggest that FROALS could be used as a dynamical downscaling tool nested within the global climate model with coarse resolution to develop high-resolution regional climate change projections over the CORDEX East Asia domain.

  7. Coupled Radiative-Dynamical GCM Simulations of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Showman, Adam P.; Fortney, J. J.; Lian, Y.; Marley, M. S.

    2007-10-01

    The stellar flux incident on hot Jupiters is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared lightcurve, spectra, albedo, and atmospheric composition. Recent Spitzer lightcurve observations show that on some hot Jupiters, including HD189733b and HD209458b, the circulation efficiently homogenizes the temperature, whereas other planets such as Ups And b may exhibit large day-night temperature differences. Moreover, Spitzer infrared photometry and spectra constrain the vertical temperature structure in the atmosphere, which may deviate strongly from radiative equilibrium. Several groups have investigated the atmospheric circulation with a variety of 2D and 3D models (Showman and Guillot 2002; Cho et al. 2003, 2006; Langton and Laughlin 2007; Cooper and Showman 2005, 2006; Dobbs-Dixon and Lin 2007). However, all of these models drive the dynamics with simplified heating/cooling schemes that preclude robust predictions for the 3D temperature patterns, spectra, and lightcurves. Here, we present the first simulations of cloud-free hot Jupiters from a 3D general circulation model (GCM) that couples the atmospheric dynamics to a realistic representation of radiative transfer. For the dynamics, we adopt the MITgcm, which is a state-of-the-art circulation model that solves the 3D primitive equations of meteorology. Our radiation model is that of Marley and McKay (1999), which solves the two-stream radiative-transfer equations using the correlated-k method for the opacities; this radiative-transfer model has been extensively applied to brown dwarfs and extrasolar planets by Marley, Fortney, and collaborators. By coupling these components, the GCM provides a much more realistic representation of the radiative-dynamical interaction than possible with previous models. Here, we will present simulations of HD209458b and HD189733b, compare the predicted temperatures, spectra, and lightcurves with existing data, and make

  8. Intrinsic Coupled Ocean-Atmosphere Modes of the Asian Summer Monsoon: A Re-assessment of Monsoon-ENSO Relationships

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Wu, H. T.

    2000-01-01

    Using global rainfall and sea surface temperature (SST) data for the past two decades (1979-1998), we have investigated the intrinsic modes of Asian summer monsoon (ASM) and ENSO co-variability. Three recurring ASM rainfall-SST coupled modes were identified. The first is a basin scale mode that features SST and rainfall variability over the entire tropics (including the ASM region), identifiable with those occurring during El Nino or La Nina. This mode is further characterized by a pronounced biennial variation in ASM rainfall and SST associated with fluctuations of the anomalous Walker circulation that occur during El Nino/La Nina transitions. The second mode comprises mixed regional and basin-scale rainfall and SST signals, with pronounced intraseasonal and interannual variabilities. This mode features a SST pattern associated with a developing La Nina, with a pronounced low level anticyclone in the subtropics of the western Pacific off the coast of East Asia. The third mode depicts an east-west rainfall and SST dipole across the southern equatorial Indian Ocean, most likely stemming from coupled ocean-atmosphere processes within the ASM region. This mode also possesses a decadal time scale and a linear trend, which are not associated with El Nino/La Nina variability. Possible causes of year-to-year rainfall variability over the ASM and sub-regions have been evaluated from a reconstruction of the observed rainfall from singular eigenvectors of the coupled modes. It is found that while basin-scale SST can account for portions of ASM rainfall variability during ENSO events (up to 60% in 1998), regional processes can accounts up to 20-25% of the rainfall variability in typical non-ENSO years. Stronger monsoon-ENSO relationship tends to occur in the boreal summer immediately preceding a pronounced La Nina, i.e., 1998, 1988 and 1983. Based on these results, we discuss the possible impacts of the ASM on ENSO variability via the west Pacific anticyclone and articulate a

  9. Modeling efforts to improve the Asian Summer Monsoon representation in a coupled ocean-atmosphere tropical-channel model

    NASA Astrophysics Data System (ADS)

    Samson, G.; Masson, S. G.; Durand, F.; Terray, P.; Berthet, S.; Jullien, S.

    2015-12-01

    The Asian Summer Monsoon (ASM) simulated over the 1989-2009 period with a new 0.75° coupled ocean-atmosphere tropical-channel (45°S-45°N) model based on WRF and NEMO models is presented. The model biases are comparable to those commonly found in coupled global coupled models (CGCMs): the Findlater jet is too weak, precipitations are underestimated over India while they are overestimated over South-East Asia and the Maritime Continent. The ASM onset is delayed by several weeks, an error which is also very common in current CGCMs. We show that land surface temperature errors are a major source of the ASM low-level circulation and rainfall biases in our model: a cold bias over the Middle-East region weakens the Findlater jet while a warm bias over India strengthens the monsoon circulation in the Bay of Bengal. To explore the origins of those biases and their relationship with the ASM, a series of sensitivity experiments is presented. First, we show that changing the land surface albedo representation in our model directly influences the ASM characteristics by reducing the cold bias in the Middle-East region. It improves the "heat low" representation, which has direct implication on the Findlater jet strength and precipitation over India. Furthermore, the ASM onset is shifted back by almost one month in agreement with observations. Second, a parameterization of the convective cloud-radiative feedback is introduced in the atmospheric model. It acts to reduce the warm bias present in convective regions such as India and favors the monsoon northward migration. As a consequence, the dry bias is reduced in this region. Finally, horizontal resolution is increased from 0.75° to 0.25° for both oceanic and atmospheric models to assess the sensitivity of the ASM biases to the model resolution. Large-scale model errors persist at higher resolution, but are significantly attenuated. Precipitation is improved in mountainous areas with strong orographic control, but also in

  10. A New Approach for Coupled GCM Sensitivity Studies

    NASA Astrophysics Data System (ADS)

    Kirtman, B. P.; Duane, G. S.

    2011-12-01

    A new multi-model approach for coupled GCM sensitivity studies is presented. The purpose of the sensitivity experiments is to understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold tongue minimum in the NCAR model is

  11. A comparison of surface air temperature variability in three 1000-Yr. coupled ocean-atmosphere model integrations

    SciTech Connect

    Stouffer, R.J.; Hegerl, G.; Tett, S.

    2000-02-01

    This study compares the variability of surface air temperature in three long coupled ocean-atmosphere general circulation model integrations. It is shown that the annual mean climatology of the surface air temperatures (SAT) in all three models is realistic and the linear trends over the 1,000-yr integrations are small over most areas of the globe. Second, although there are notable differences among the models, the models' SAT variability is fairly realistic on annual to decadal timescales, both in terms of the geographical distribution and of the global mean values. A notable exception is the poor simulation of observed tropical Pacific variability. In the HadCM2 model, the tropical variability is overestimated, while in the GFDL and HAM3L models, it is underestimated. Also, the ENSO-related spectral peak in the globally averaged observed SAT differs from that in any of the models. The relatively low resolution required to integrate models for long time periods inhibits the successful simulation of the variability in this region. On timescales longer than a few decades, the largest variance in the models is generally located near sea ice margins in high latitudes, which are also regions of deep oceanic convection and variability related to variations in the thermohaline circulation. However, the exact geographical location of these maxima varies from model to model. The preferred patterns of interdecadal variability that are common to all three coupled models can be isolated by computing empirical orthogonal functions (EOFs) of all model data simultaneously using the common EOF technique. A comparison of the variance each model associated with these common EOF patterns shows that the models generally agree on the most prominent patterns of variability. However, the amplitudes of the dominant models of variability differ to some extent between the models and between the models and observations. For example, two of the models have a mode with relatively large

  12. Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: Sensitivity to the rate of increase

    SciTech Connect

    Stouffer, R.J.

    1999-08-01

    The influence of differing rates of increase of the atmospheric CO{sub 2} concentration on the climatic response is investigated using a coupled ocean-atmosphere model. Five transient integrations are performed each using a different constant exponential rate of CO{sub 2} increase ranging from 4% yr{sup {minus}1} to 0.25% yr{sup {minus}1}. By the time of CO{sub 2} doubling, the surface air temperature response in all the transient integrations is locally more than 50% and globally more than 35% of the equilibrium response. The land-sea contrast in the warming, which is evident in the equilibrium results, is larger in all the transient experiments. The land-sea difference in the response increases with the rate of increase in atmospheric CO{sub 2} concentration. The thermohaline circulation (THC) weakens in response to increasing atmospheric CO{sub 2} concentration in all the transient integrations, confirming earlier work. The results also indicate that the slower the rate of increase, the larger the weakening of the THC by the time of doubling. Two of the transient experiments are continued beyond the time of CO{sub 2} doubling with the CO{sub 2} concentration maintained at that level. The amount of weakening of the THC after the CO{sub 2} stops increasing is smaller in the experiment with the slower rate of CO{sub 2} increase, indicating that the coupled system has more time to adjust to the forcing when the rate of CO{sub 2} increase is slower. After a period of slow overturning, the THC gradually recovers and eventually regains the intensity found in the control integration, so that the equilibrium THC is very similar in the control and doubled CO{sub 2} integrations. Considering only the sea level changes due to the thermal expansion of seawater, the integration with the slowest rate of increase in CO{sub 2} concentration has the largest globally averaged sea level rise by the time of CO{sub 2} doubling. However, only a relatively small fraction of the

  13. A bimodel climate response controlled by water vapor transport in a coupled ocean-atmosphere box model

    NASA Astrophysics Data System (ADS)

    Birchfield, G. Edward; Wang, Huaxiao; Wyant, Matthew

    1990-06-01

    The importance of the hydrological cycle as a controlling factor on the magnitude of the thermohaline circulation is illustrated in a simple one-hemisphere coupled ocean-atmosphere box model. The ocean model includes differential surface heating and evaporation, horizontal and vertical exchange of heat and salt between boxes, and a simply parameterized thermohaline circulation. Surface heat fluxes and evaporation are determined through the coupled ocean and energy balance atmosphere models which treat fluxes of long- and short-wave radiation and sensible and latent heat. Two parameters represent the most important physics: µ controls the magnitude of the thermohaline circulation; ɛ controls the strength of the hydrological cycle. For fixed µ, two regimes are distinguished. One, associated with small values of ɛ, has weak latitudinal water vapor transport in the atmosphere, a strong thermohaline circulation with sinking in high latitudes, upwelling in low latitudes, and strong latitudinal transport of heat by the ocean. The second regime for larger ɛ is characterized by strong latitudinal water vapor transport which, by reducing the surface salinity in high latitudes, shuts down the thermohaline circulation and has reduced ocean and net latitudinal heat transport. The bimodal response in the model is shown to be the consequence of a shift in the mechanism of supply of salt to the high-latitude surface ocean from predominantly thermohaline transport, a nonlinear process, to or from predominantly eddy mixing transport, a linear process. In climatological terms, the bimodality represents two distinct climate regimes, one with an active ocean meridional circulation and relatively warm ocean and atmosphere temperatures in high latitudes, and the other with a less active ocean circulation and an increased latitudinal temperature gradient in atmosphere and ocean. The regime with an active thermohaline circulation tends to be less stable than the other, exhibiting over

  14. Regional coupled ocean-atmosphere downscaling in the Southeast Pacific: impacts on upwelling, mesoscale air-sea fluxes, and ocean eddies

    NASA Astrophysics Data System (ADS)

    Putrasahan, Dian A.; Miller, Arthur J.; Seo, Hyodae

    2013-05-01

    Ocean-atmosphere coupling in the Humboldt Current System (HCS) of the Southeast Pacific is studied using the Scripps Coupled Ocean-atmosphere Regional (SCOAR) model, which is used to downscale the National Center for Environmental Prediction (NCEP) Reanalysis-2 (RA2) product for the period 2000-2007 at 20-km resolution. An interactive 2-D spatial smoother within the sea-surface temperature (SST)-flux coupler is invoked in a separate run to isolate the impact of the mesoscale (˜50-200 km, in the oceanic sense) SST field felt by the atmosphere in the fully coupled run. For the HCS, SCOAR produces seasonal wind stress and wind stress curl patterns that agree better with QuikSCAT winds than those from RA2. The SCOAR downscaled wind stress distribution has substantially different impacts on the magnitude and structure of wind-driven upwelling processes along the coast compared to RA2. Along coastal locations such as Arica and Taltal, SCOAR and RA2 produce seasonally opposite signs in the total wind-driven upwelling transport. At San Juan, SCOAR shows that upwelling is mainly due to coastal Ekman upwelling transport, while in RA2 upwelling is mostly attributed to Ekman pumping. Fully coupled SCOAR shows significant SST-wind stress coupling during fall and winter, while smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air-sea coupling in HCS. Coupling between SST, wind speed, and latent heat flux is incoherent in large-scale coupling and full coupling mode. In contrast, coupling between these three variables is clearly identified for oceanic mesoscales, which suggests that mesoscale SST affects latent heat directly through the bulk formulation, as well as indirectly through stability changes on the overlying atmosphere, which affects surface wind speeds. The SST-wind stress and SST-heat-flux couplings, however, fail to produce a strong change in the ocean eddy statistics. No rectified effects of ocean-atmosphere

  15. Future summer precipitation changes over CORDEX-East Asia domain downscaled by a regional ocean-atmosphere coupled model: A comparison to the stand-alone RCM

    NASA Astrophysics Data System (ADS)

    Zou, Liwei; Zhou, Tianjun

    2016-03-01

    Climate changes under the RCP8.5 scenario over the Coordinated Regional Downscaling Experiment (CORDEX)-East Asia domain downscaled by a regional ocean-atmosphere coupled model Flexible Regional Ocean-Atmosphere Land System (FROALS) are compared to those downscaled by the corresponding atmosphere-only regional climate model driven by a global climate system model. Changes in the mean and interannual variability of summer rainfall were discussed for the period of 2051-2070 with respect to the present-day period of 1986-2005. Followed by an enhanced western North Pacific subtropical high and an intensified East Asian summer monsoon, an increase in total rainfall over north China, the Korean Peninsula, and Japan but a decrease in total rainfall over southern China are observed in the FROALS projection. Homogeneous increases of extreme rainfall amounts were found over the CORDEX-East Asia domain. A predominant increase in the interannual variability was evident for both total rainfall and the extreme rainfall amount. The spatial patterns of the projected rainfall changes by FROALS were generally consistent with those from the driving global model at a broad scale due to similar projected circulation changes. In both models, the enhanced southerlies over east China increased the moisture divergences over southern China and enhanced the moisture advection over north China. However, the atmosphere-only regional climate model (RCM) exhibited responses to the underlying sea surface temperature (SST) warming anomalies that were too strong, which induced an anomalous cyclone over the north South China Sea, followed by increases (decreases) of total and extreme rainfall over southern China (central China). The differences of the projected changes in both rainfall and circulation between FROALS and the atmosphere-only RCM were partly affected by the differences in the projected SST changes. The results recommend the employment of a regional ocean-atmosphere coupled model in the

  16. Teleconnections of the Southern Oscillation in the tropical Atlantic sector in the OSU coupled upper ocean-atomosphere GCM

    SciTech Connect

    Hameed, S.; Meinster, A. ); Sperber, K.R. )

    1993-03-01

    The Oregon State University coupled upper ocean-atmosphere GCM has been shown to qualitatively simulate the Southern Oscillation. A composite analysis of the warm and cold events simulated in this 23-year integration has been performed. During the low phase of the Southern Oscillation, when warm anomalies occur in the eastern Pacific, the model simulates for the Atlantic region during March-May (1) a deficit of precipitation over the tropical South American continent, (2) Caribbean and Gulf of Mexico sea level pressure and sea surface temperature are in phase with the eastern Pacific anomalies, while those east of the Nordeste region are out of phase, and (3) northeast trade winds are anomalously weak and southwest trade winds are anomalously strong (as inferred from surface current anomalies). The anomalies in the oceanic processes are induced by perturbations in the atmospheric circulation over the Atlantic and are coupled to changes in the Walker circulation. During the high phase of the simulated Southern Oscillation, conditions in the atmosphere and ocean are essentially the reverse of the low phase. The model produces a response in the South American region during the opposing phases of the Southern Oscillation that is in general agreement with observations. The interannual variation of Nordeste rainfall is shown to be dominated by a few band-limited frequencies. These frequencies are found in the SST series of those regions of the Atlantic and Pacific oceans where strong correlations with Nordeste precipitation exist.

  17. Coupled Radiative-Dynamical GCM Simulations of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Showman, Adam P.; Fortney, J. J.; Lian, Y.; Marley, M. S.; Knutson, H. A.; Charbonneau, D.

    2008-09-01

    The stellar flux incident on hot Jupiters -- gas giants within 0.1 AU of their stars -- is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared lightcurves, spectrum, albedo, and atmospheric composition. Although several atmospheric-dynamics models of these objects have been published, all adopt simplified heating/cooling schemes that preclude robust predictions for the 3D temperature patterns, spectra, and lightcurves. Here, we present cloud-free simulations of hot Jupiters from the first 3D general circulation model (GCM) that couples the atmospheric dynamics to a realistic representation of radiative transfer. We emphasize HD189733b and HD209458b, which are the best observationally constrained hot Jupiters and which represent an interesting pair because one (HD209458b) appears to have a dayside stratosphere while the other (HD189733b) does not. Our simulations develop large day-night temperature contrasts and winds reaching speeds of several km/sec. A prograde equatorial jet forms with retrograde flows at higher latitudes, which leads to an eastward displacement of the hottest regions from the substellar point and coldest regions from the antistellar point. For HD189733b, our predicted lightcurves compare favorably with lightcurves observed at 8 and 24 microns with the Spitzer Space Telescope, including the modest day-night flux variation and offset of the flux peak from the time of secondary eclipse. The simulated temperatures decrease with altitude, leading to a spectrum dominated by absorption features. For HD209458b, inclusion of TiO and VO opacity leads to a dayside thermal inversion layer (stratosphere) where temperatures rise above 2000 K, consistent with suggestions offered to explain the observed secondary-eclipse spectrum. Interestingly, however, our 3D models do not match the observed spectrum, which suggests that our simulated stratosphere does not yet have the correct properties (e.g., altitude and

  18. Coupled ocean-atmosphere model system for studies of interannual-to-decadal climate variability over the North Pacific Basin and precipitation over the Southwestern United States

    SciTech Connect

    Lai, Chung-Chieng A.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The ultimate objective of this research project is to make understanding and predicting regional climate easier. The long-term goals of this project are (1) to construct a coupled ocean-atmosphere model (COAM) system, (2) use it to explore the interannual-to-decadal climate variability over the North Pacific Basin, and (3) determine climate effects on the precipitation over the Southwestern United States. During this project life, three major tasks were completed: (1) Mesoscale ocean and atmospheric model; (2) global-coupled ocean and atmospheric modeling: completed the coupling of LANL POP global ocean model with NCAR CCM2+ global atmospheric model; and (3) global nested-grid ocean modeling: designed the boundary interface for the nested-grid ocean models.

  19. Investigating the Influence of Atmospheric Changes on the Variability of the North Pacific Using a Fully Coupled GCM

    NASA Astrophysics Data System (ADS)

    Gomez, P.; Poulsen, C. J.; Stott, L. D.

    2004-12-01

    In this study we attempt to investigate whether changes in atmospheric concentrations in ozone and greenhouse gases (GHGs), including CO2, N2O, and methane, have an influence on decadal-scaled oceanic and atmospheric dynamics in the Northeast Pacific. Using a coupled ocean-atmosphere GCM (FOAM1.5) we simulate climatic conditions for the pre-industry and the present day while focusing on the North Pacific. We explore how the ozone hole over the Southern Hemisphere and increased concentrations in GHGs observed in the present day influence the Pacific (Inter)Decadal Oscillation (PDO) and the North Pacific High (NPH), two dominant modes of variability in the North Pacific. In each model we examine the spatial and temporal patterns of the NPH, sea-surface temperatures and salinities (SSTs, SSSs) as well as wind and ocean currents on the order of interannual to interdecadal time scales. We find that within these simulations the influence of the prescribed atmospheric perturbations is small. We observe that the present-day SST and SSS fields of the Northeast Pacific are similar in both model runs as well as sea level pressure. In both simulations the PDO dominates the patterns of variability in the North Pacific and does not appear to change either in character or expression as a result of the atmospheric perturbations. The atmospheric change caused by the rise in GHG concentrations and the decline in ozone is not prominent as a primary influence on the decadal scale variability within the Northeast Pacific.

  20. On Verifying Currents and Other Features in the Hawaiian Islands Region Using Fully Coupled Ocean/Atmosphere Mesoscale Prediction System Compared to Global Ocean Model and Ocean Observations

    NASA Astrophysics Data System (ADS)

    Jessen, P. G.; Chen, S.

    2014-12-01

    This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) coupled to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean currents in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream currents off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM current fields show some displacement of small features such as eddies. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.

  1. The impact of coastal phytoplankton blooms on ocean-atmosphere thermal energy exchange: Evidence from a two-way coupled numerical modeling system

    NASA Astrophysics Data System (ADS)

    Jolliff, Jason K.; Smith, Travis A.; Barron, Charlie N.; deRada, Sergio; Anderson, Stephanie C.; Gould, Richard W.; Arnone, Robert A.

    2012-12-01

    A set of sensitivity experiments are performed with a two-way coupled and nested ocean-atmosphere forecasting system in order to deconvolve how dense phytoplankton stocks in a coastal embayment may impact thermal energy exchange processes. Monterey Bay simulations parameterizing solar shortwave transparency in the surface ocean as an invariant oligotrophic oceanic water type estimate consistently colder sea surface temperature (SST) than simulations utilizing more realistic, spatially varying shortwave attenuation terms based on satellite estimates of surface algal pigment concentration. These SST differences lead to an ∼88% increase in the cumulative turbulent thermal energy transfer from the ocean to the atmosphere over the three month simulation period. The result is a warmer simulated atmospheric boundary layer with respective local air temperature differences approaching ∼2°C. This study suggests that the retention of shortwave solar flux by ocean flora may directly impact even short-term forecasts of coastal meteorological variables.

  2. Assimilation of MGS Data Into a Coupled GCM-Mesoscale Model of the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Rafkin, Scot C. R.; Haberle, Robert (Technical Monitor)

    2001-01-01

    The project sought to develop a coupled GCM-mesoscale model and to assimilate Mars Global Surveyor (MGS) data into the coupled model. To achieve the project goals, four specific research activities were proposed. These activities are reiterated for completeness and the progress in each of the activities is noted in future sections of this report.

  3. Simulation of ENSO-like phenomena with a low-resolution coupled GCM of the global ocean and atmosphere

    SciTech Connect

    Lau, Ngarcheung; Philander, S.G.H.; Nath, M.J. )

    1992-04-01

    A 140-year simulation of the ocean-atmosphere climate system has been performed by the GFDL Climate Dynamics Project using a low-resolution coupled general circulation model (GCM). The model was subjected to annually averaged insolation throughout the integration. This coupled system exhibits well-defined fluctuations in the tropical Pacific, with a preferred time scale of 3-4 years. The characteristics of these recurrent anomalies were examined by applying an extended empirical orthogonal function (EEOF) analysis to selected model variables. These results indicate that the simulated oscillations are accompanied by coherent changes in the atmospheric and oceanic circulation. The spatial patterns associated with the leading EEOF mode indicate that SST anomalies make their first appearance off the Peru-Ecuador coast and then migrate steadily westward, with an average transit time of 12-15 months. The arrival and eventual decay of SST fluctuations in the western Pacific is typically followed by the initiation of anomalies of the opposite polarity along the American coasts. The space-time evolution of various meteorological and oceanographic signals exhibits well-defined phase relationships with the SST perturbations. Some aspects of the model behavior during these warm and cold episodes are reminiscent of observed phenomena associated with the El Nino-Southern Oscillation (ENSO). Analysis of the climatological heat budget for the top ocean layer indicates a near balance between horizontal and vertical temperature advection by the time-mean flow, vertical diffusion, and heat input from the overlying atmosphere. The principal mechanisms associated with the simulated ENSO-like cycles were then studied by examining the local heat budget for the SST perturbations. The relative importance of various linear advective processes in the heat budget exhibits a notable dependence on geographical location and on the specific phase of the ENSO-like cycle.

  4. Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations

    NASA Astrophysics Data System (ADS)

    Zou, Liwei; Zhou, Tianjun; Peng, Dongdong

    2016-02-01

    The FROALS (flexible regional ocean-atmosphere-land system) model, a regional ocean-atmosphere coupled model, has been applied to the Coordinated Regional Downscaling Experiment (CORDEX) East Asia domain. Driven by historical simulations from a global climate system model, dynamical downscaling for the period from 1980 to 2005 has been conducted at a uniform horizontal resolution of 50 km. The impacts of regional air-sea couplings on the simulations of East Asian summer monsoon rainfall have been investigated, and comparisons have been made to corresponding simulations performed using a stand-alone regional climate model (RCM). The added value of the FROALS model with respect to the driving global climate model was evident in terms of both climatology and the interannual variability of summer rainfall over East China by the contributions of both the high horizontal resolution and the reasonably simulated convergence of the moisture fluxes. Compared with the stand-alone RCM simulations, the spatial pattern of the simulated low-level monsoon flow over East Asia and the western North Pacific was improved in the FROALS model due to its inclusion of regional air-sea coupling. The results indicated that the simulated sea surface temperature (SSTs) resulting from the regional air-sea coupling were lower than those derived directly from the driving global model over the western North Pacific north of 15°N. These colder SSTs had both positive and negative effects. On the one hand, they strengthened the western Pacific subtropical high, which improved the simulation of the summer monsoon circulation over East Asia. On the other hand, the colder SSTs suppressed surface evaporation and favored weaker local interannual variability in the SST, which led to less summer rainfall and weaker interannual rainfall variability over the Korean Peninsula and Japan. Overall, the reference simulation performed using the FROALS model is reasonable in terms of rainfall over the land area of

  5. A Fully Coupled GCM Study of a "Geoengineered World"

    NASA Astrophysics Data System (ADS)

    Lunt, D. J.; Ridgwell, A.; Valdes, P. J.

    2007-12-01

    Several schemes have been proposed with the explicit aim of modifying the future climate of the planet as a mitigation strategy in a response to anthropogenic global warming. A selection of these, including the placing of mirrors at the Lagrange point between the Earth and the Sun, and the injection of aerosols into the stratosphere, have at their heart the goal of effectively reducing the incoming solar radiation near the top of the atmosphere, to "balance" increased surface warming due to increased greenhouse gas concentrations. However, it is likely that an exact balance of the radiative forcing would be very difficult to obtain, due to differing spatial characteristics of the solar forcing applied (greatest at the equator and least at the poles) and that of long wave absorption (more equal over all latitudes), as well as differing temporal characteristics of the radiative forcings. In this study, we model the different climate expected in a "Geoengineered World", compared to the "Preindustrial World", if both have the same global annual mean surface temperature. We use the UK Met Office GCM, HadCM3L, and carry out 5 simulations: Pre-industrial, Doubled CO2, Quadrupled CO2, and 2 simulations in which the increased CO2 is balanced in the global annual mean by a reduction in incoming solar radiation. The "strength" of mirror/aerosol required is calculated using an iterative procedure, until balance is obtained. Our results indicate significant differences between the Geoengineered World and the Preindustrial World, despite near identical global annual mean surface temperatures. In particular, we obtain relatively large differences in surface temperature over mid-latitude continental regions, in particular North America, and significant changes in upwelling on the West African tropical coast. The drying of the American Mid-West, and impacts on Africa fisheries, are likely to have significant consequences for global and local food production.

  6. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    NASA Astrophysics Data System (ADS)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO). Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from Garcez Faria et al. (1998, 2000). Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction

  7. Interannual variability of the coupled tropical Pacific ocean - atmosphere system associated with the El Nino-southern oscillation

    SciTech Connect

    Zhang, Rong-Hua; Levitus, S.

    1997-06-01

    Upper-ocean temperature and surface marine meteorological observations are used to examine interannual variability of the coupled tropical Pacific climate system. The basinwide structure and evolution of meteorological and oceanographic fields associated with ENSO events are described using composites, empirical orthogonal functions, and a lagged correlation analysis. The analyses reveal well-defined spatial structures and coherent phase relations among various anomaly fields.

  8. A hybrid coupled model for the pacific ocean-atmosphere system. Part I: Description and basic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Rong-Hua

    2015-03-01

    A hybrid coupled model (HCM) is constructed for El Niño-Southern Oscillation (ENSO)-related modeling studies over almost the entire Pacific basin. An ocean general circulation model is coupled to a statistical atmospheric model for interannual wind stress anomalies to represent their dominant coupling with sea surface temperatures. In addition, various relevant forcing and feedback processes exist in the region and can affect ENSO in a significant way; their effects are simply represented using historical data and are incorporated into the HCM, including stochastic forcing of atmospheric winds, and feedbacks associated with freshwater flux, ocean biology-induced heating (OBH), and tropical instability waves (TIWs). In addition to its computational efficiency, the advantages of making use of such an HCM enable these related forcing and feedback processes to be represented individually or collectively, allowing their modulating effects on ENSO to be examined in a clean and clear way. In this paper, examples are given to illustrate the ability of the HCM to depict the mean ocean state, the circulation pathways connecting the subtropics and tropics in the western Pacific, and interannual variability associated with ENSO. As satellite data are taken to parameterize processes that are not explicitly represented in the HCM, this work also demonstrates an innovative method of using remotely sensed data for climate modeling. Further model applications related with ENSO modulations by extratropical influences and by various forcings and feedbacks will be presented in Part II of this study.

  9. Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. Part I: Control climate and flux adjustment

    SciTech Connect

    Murphy, J.M.

    1995-01-01

    This paper describes the initialization of an experiment to study the time-dependent response of a high-resolution global coupled ocean-atmosphere general circulation model to a gradual increase in carbon dioxide. The stability of the control integration with respect to climate drift is assessed, and aspects of the model climatology relevant to the simulation of climate change are discussed. The observed variation of oceanic temperature with latitude and depth is basically well simulated, although, in common with other ocean models, the main thermocline is too diffuse. Nevertheless, it is found that large heat and water flux adjustments must be added to the surface layer of the ocean in order to prevent the occurrence of unacceptable climate drift. The ocean model appears to achieve insufficient meridional heat transport, and this is supported by the pattern of the heat flux adjustment term, although errors in the simulated atmosphere-ocean heat flux also contribute to the latter. The application of the flux adjustments restricts climate drift during the 75-year control experiment. However, a gradual warming still occurs in the surface layers of the Southern Ocean because the flux adjustments are inserted as additive terms in this integration and cannot therefore be guaranteed to prevent climate drift completely. 68 refs., 29 figs., 1 tab.

  10. Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. Part II: Spatial and temporal structure of response

    SciTech Connect

    Murphy, J.M.; Mitchell, J.F.B.

    1995-01-01

    A high-resolution (2.75{degrees} lat x 3.75{degrees} long) coupled ocean-atmosphere model has been used to simulate the transient response of climate to a gradual increase in atmospheric carbon dioxide concentrations. Although the radiative forcing increases linearly, there is a delay of about 30 yr before the ocean warms appreciably. This {open_quotes}cold start{close_quotes} is, at least partly, an artifact of the experimental design. At the time of doubling (after 70 yr), the patterns of change are similar to those found in comparable studies of the equilibrium response, except in the high latitudes of the Southern Ocean and the North Atlantic, where the warming is considerably reduced. The mechanisms leading to this reduction are discussed. After two to three decades, the pattern of warming is well established. The warming over land is substantially larger than that over the sea, with a consequent lowering of surface pressure over the northern continents in summer. The patterns of changes in precipitation and soil moisture take longer to establish themselves, although locally there are consistent changes after the third decade. 55 refs., 30 figs., 6 tabs.

  11. Predictability of weather and climate in a coupled ocean-atmosphere model: A dynamical systems approach. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.

    1989-01-01

    A dynamical systems approach is used to quantify the instantaneous and time-averaged predictability of a low-order moist general circulation model. Specifically, the effects on predictability of incorporating an active ocean circulation, implementing annual solar forcing, and asynchronously coupling the ocean and atmosphere are evaluated. The predictability and structure of the model attractors is compared using the Lyapunov exponents, the local divergence rates, and the correlation, fractal, and Lyapunov dimensions. The Lyapunov exponents measure the average rate of growth of small perturbations on an attractor, while the local divergence rates quantify phase-spatial variations of predictability. These local rates are exploited to efficiently identify and distinguish subtle differences in predictability among attractors. In addition, the predictability of monthly averaged and yearly averaged states is investigated by using attractor reconstruction techniques.

  12. Roles of land surface albedo and horizontal resolution on the Indian summer monsoon biases in a coupled ocean-atmosphere tropical-channel model

    NASA Astrophysics Data System (ADS)

    Samson, Guillaume; Masson, Sébastien; Durand, Fabien; Terray, Pascal; Berthet, Sarah; Jullien, Swen

    2016-05-01

    The Indian summer monsoon (ISM) simulated over the 1989-2009 period with a new 0.75° ocean-atmosphere coupled tropical-channel model extending from 45°S to 45°N is presented. The model biases are comparable to those commonly found in coupled global climate models (CGCMs): the Findlater jet is too weak, precipitations are underestimated over India while they are overestimated over the southwestern Indian Ocean, South-East Asia and the Maritime Continent. The ISM onset is delayed by several weeks, an error which is also very common in current CGCMs. We show that land surface temperature errors are a major source of the ISM low-level circulation and rainfall biases in our model: a cold bias over the Middle-East (ME) region weakens the Findlater jet while a warm bias over India strengthens the monsoon circulation over the southern Bay of Bengal. A surface radiative heat budget analysis reveals that the cold bias is due to an overestimated albedo in this desertic ME region. Two new simulations using a satellite-observed land albedo show a significant and robust improvement in terms of ISM circulation and precipitation. Furthermore, the ISM onset is shifted back by 1 month and becomes in phase with observations. Finally, a supplementary set of simulations at 0.25°-resolution confirms the robustness of our results and shows an additional reduction of the warm and dry bias over India. These findings highlight the strong sensitivity of the simulated ISM rainfall and its onset timing to the surface land heating pattern and amplitude, especially in the ME region. It also illustrates the key-role of land surface processes and horizontal resolution for improving the ISM representation, and more generally the monsoons, in current CGCMs.

  13. On the use of a coupled ocean-atmosphere-wave model during an extreme cold air outbreak over the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Ricchi, Antonio; Miglietta, Mario Marcello; Falco, Pier Paolo; Benetazzo, Alvise; Bonaldo, Davide; Bergamasco, Andrea; Sclavo, Mauro; Carniel, Sandro

    2016-05-01

    An intense cold air outbreak affected the northern Adriatic Sea during winter 2012, determining an exceptional persistence of northeasterly Bora wind over the basin, which lasted for about 3 weeks. The cold air coming from the Balkans produced icing in the Venice lagoon and very intense snowfall in the Apennines Mountains and even near the coasts. In order to understand the importance and role of air-sea interactions for the evolution of the atmospheric fields, simulations with the Weather Research and Forecasting (WRF) model encompassing the whole period have been performed using sea surface temperature (SST) fields with an increasing level of complexity. Starting from a large-scale static sea temperature, the SST in the initial and boundary conditions has been progressively made more realistic. First, a more refined field, retrieved from a satellite radiometer was used; then, the same field was updated every 6 h. Next, the effect of including a simplified 1D ocean model reproducing the Oceanic Mixed Layer (OML) evolution has been tested. Finally, the potential improvements coming from a coupled description of atmosphere-ocean and atmosphere-ocean-waves interactions have been explored within the Coupled Ocean-Atmosphere-Wave Sediment Transport (COAWST) modeling system. Results highlight that the energy exchange between air and sea does not significantly impact the atmospheric fields, in particular 10 m wind and 2 m temperature, also because of the geography of the basin and the predominance of synoptic-scale flow in intense events of Bora, in the northern Adriatic. However, when sensible and latent heat fluxes, which are dependent on atmospheric and oceanic variables, are analyzed, the more realistic representation of SST drastically improves the model performances.

  14. Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. Part 3: Analysis of global-mean response using simple models

    SciTech Connect

    Murphy, J.M.

    1995-03-01

    The roles of surface, atmospheric, and oceanic feedbacks in controlling the global-mean transient response of a coupled ocean-atmosphere general circulation model (AOGCM) to increasing carbon dioxide are investigated. The analysis employs a four-box energy balance model (EBM) and an oceanic box-diffusion model (BDM) both tuned to the simulated general circulation model response. The land-sea contrast in the surface warming is explained almost entirely by the shortwave radiative feedbacks associated with changes in cloud and surface albedo. The oceanic thermal inertia delays the response; however, the initial delay is enhanced by increases in Anarctic sea-ice cover, which substantially reduce the effective climate sensitivity of the model in the first half of the 75-year experiment. When driven by the observed anthropogenic greenhouse forcing from the pre-industrial period to present day, the energy balance model overestimates the warming observed over land. However, inclusion of the direct forcing due to anthropogenic tropospheric sulphate aerosol eliminates the land/sea contrast in the response at 1990, leaving the simulated warming over land slightly below the observed value, although the rapid warming observed during the 1980s is well reproduced. The vertical penetration of the oceanic response is small below 1000 m. Within the top 1000 m the effective diffusivities are substantially enhanced by reduced convection and thermohaline overturning, driven by increased precipitation minus evaporation at high latitudes. These changes in ocean heat transport become significant after year 30, whereupon the effective oceanic heat capacity increases substantially, although this increase is partially offset by the effect of changes in the sea-ice margin.

  15. Transient Responses of a Coupled Ocean-Atmosphere Model to Gradual Changes of Atmospheric CO2. Part I. Annual Mean Response.

    NASA Astrophysics Data System (ADS)

    Manabe, S.; Stouffer, R. J.; Spelman, M. J.; Bryan, K.

    1991-08-01

    This study investigates the response of a climate model to a gradual increase or decrease of atmospheric carbon dioxide. The model is a general circulation model of the coupled atmosphere-ocean-land surface system with global geography and seasonal variation of insulation. To offset the bias of the coupled model toward settling into an unrealistic state, the fluxes of heat and water at the ocean-atmosphere interface are adjusted by amounts that vary with season and geography but do not change from one year to the next. Starting from a quasi-equilibrium climate, three numerical time integrations of the coupled model are performed with gradually increasing, constant, and gradually decreasing concentration of atmospheric carbon dioxide.It is noted that the simulated response of sea surface temperature is very slow over the northern North Atlantic and the Circumpolar Ocean of the Southern Hemisphere where vertical mixing of water penetrates very deeply. However, in most of the Northern Hemisphere and low latitudes of the Southern Hemisphere, the distribution of the change in surface air temperature of the model at the time of doubling (or halving) of atmospheric carbon dioxide resembles the equilibrium response of an atmospheric-mixed layer ocean model to CO2 doubling (or halving). For example, the rise of annual mean surface air temperature in response to the gradual increase of atmospheric carbon dioxide increases with latitudes in the Northern Hemisphere and is larger over continents than oceans.When the time-dependent response of the model oceans to the increase of atmospheric carbon dioxide is compared with the corresponding response to the CO2, reduction at an identical rate, the penetration of the cold anomaly in the latter case is significantly deeper than that of the warm anomaly in the former case. The lack of symmetry in the penetration depth of a thermal anomaly between the two cases is associated with the difference in static stability, which is due mainly

  16. A Coupled GCM-Cloud Resolving Modeling System to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, Jiundar; Atlas, Robert; Peters-Lidard, Christa; Hou, Arthur; Lin, Xin

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud resolving models (CRMs) agree with observations better than traditional single column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA Satellite and field campaign cloud related data sets can provide initial conditions as well as validation for both the MMF and CRMs. Also we have implemented a Land Information System (LIS that includes the CLM and NOAH land surface models into the MMF. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM) This modeling system has been applied and tested its performance for two different climate scenarios, El Nino (1998) and La Nina (1999). The coupled new modeling system produced more realistic propagation and intensity of tropical rainfall systems and intraseasonal oscillations, and diurnal variation of precipitation that are very difficult to forecast using even the state-of-the-art GCMs. In this talk I will present: (1) a brief review on GCE model and its applications on precipitation processes (both Microphysical and land processes) and (2) The Goddard MMF and the Major difference between two existing MMFs (CSU MMF and Goddard MMF) and preliminary results (the comparison with traditional GCMs).

  17. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional singlecolumn models in simulating various types of clouds and cloud systems from Merent geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloudscale model (termed a super-parameterization or multiscale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameteridon NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production nms will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  18. Coupled fvGCM-GCE Modeling System, TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2004-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to imiprove the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. I this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the Goddard research plan of using Weather Research Forecast (WRF) model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  19. Coupled fvGCM-GCE Modeling System: TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. In this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the GCE model on developing a global cloud simulator.

  20. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  1. Technical Report Series on Global Modeling and Data Assimilation. Volume 22; A Coupled Ocean-Atmosphere Radiative Model for Global Ocean Biogeochemical Models

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Suarez, Max J. (Editor)

    2002-01-01

    An ocean-atmosphere radiative model (OARM) evaluates irradiance availability and quality in the water column to support phytoplankton growth and drive ocean thermodynamics. An atmospheric component incorporates spectral and directional effects of clear and cloudy skies as a function of atmospheric optical constituents, and spectral reflectance across the air-sea interface. An oceanic component evaluates the propagation of spectral and directional irradiance through the water column as a function of water, five phytoplankton groups, and chromophoric dissolved organic matter. It tracks the direct and diffuse streams from the atmospheric component, and a third stream, upwelling diffuse irradiance. The atmospheric component of OARM was compared to data sources at the ocean surface with a coefficient of determination (r2) of 0.97 and a root mean square of 12.1%.

  2. A System of Conservative Regridding for Ice-Atmosphere Coupling in a General Circulation Model (GCM)

    NASA Technical Reports Server (NTRS)

    Fischer, R.; Nowicki, S.; Kelley, M.; Schmidt, G. A.

    2014-01-01

    The method of elevation classes, in which the ice surface model is run at multiple elevations within each grid cell, has proven to be a useful way for a low-resolution atmosphere inside a general circulation model (GCM) to produce high-resolution downscaled surface mass balance fields for use in one-way studies coupling atmospheres and ice flow models. Past uses of elevation classes have failed to conserve mass and energy because the transformation used to regrid to the atmosphere was inconsistent with the transformation used to downscale to the ice model. This would cause problems for two-way coupling. A strategy that resolves this conservation issue has been designed and is presented here. The approach identifies three grids between which data must be regridded and five transformations between those grids required by a typical coupled atmosphere-ice flow model. This paper develops a theoretical framework for the problem and shows how each of these transformations may be achieved in a consistent, conservative manner. These transformations are implemented in Glint2, a library used to couple atmosphere models with ice models. Source code and documentation are available for download. Confounding real-world issues are discussed, including the use of projections for ice modeling, how to handle dynamically changing ice geometry, and modifications required for finite element ice models.

  3. Impact of ocean-atmosphere coupling and high resolution on the simulation of medicanes over the Mediterranean Sea: multi-model analysis with Med-CORDEX and EURO-CORDEX runs

    NASA Astrophysics Data System (ADS)

    Gaertner, Miguel Angel; Jesús González-Alemán, Juan; Romera, Raquel; Domínguez, Marta; Gil, Victoria; Sánchez, Enrique; Gallardo, Clemente; Miglietta, Mario Marcelo; Walsh, Kevin; Sein, Dmitri; Somot, Samuel; dell'Aquila, Alessandro; Ahrens, Bodo; Colette, Augustin; Bastin, Sophie; Van Meijgaard, Erik; Nikulin, Grigory

    2016-04-01

    Medicanes are cyclones over the Mediterranean Sea having a tropical structure and a rather small size, for which the sea-atmosphere interaction plays a fundamental role. High resolution and ocean-atmosphere coupled RCM simulations performed in MedCORDEX and EURO-CORDEX projects are used to analyze the ability of RCMs to represent the observed characteristics of medicanes, and the impact of increasing resolution and using air-sea coupling on its simulation. An observational database based on satellite images combined with very high resolution simulations (Miglietta et al. 2013) is used as the reference for evaluating the simulations. The simulated medicanes do not coincide in general with the observed cases, so that the evaluation should be done in a statistical sense. The spatial distribution of medicanes is generally well simulated, while the monthly distribution reveals the difficulty of simulating the first medicanes appearing in September after the summer minimum. Large differences are found among models, supporting the use of multi-model ensembles. Interesting trade-offs are found for some models, as better values for intensity are associated to worse frequency values in one model, or relatively good values of frequency and intensity are obtained at the expense of a damped air-sea interaction in a model with spectral nudging. High resolution has a strong and positive impact on the frequency of simulated medicanes, while the effect on its intensity is less clear. Air-sea coupling reduces the medicane frequency, as could be expected due to a negative intensity feedback that is known for tropical cyclones. A preliminary analysis indicates that this feedback could depend on the oceanic mixed layer depth, increasing the interest of applying ocean-atmosphere coupled RCMs

  4. Effects of Mountain Uplift on East Asian Summer Climate Investigated by a Coupled Atmosphere Ocean GCM.

    NASA Astrophysics Data System (ADS)

    Kitoh, Akio

    2004-02-01

    To study the effects of progressive mountain uplift on East Asian summer climate, a series of coupled general circulation model (CGCM) experiments were performed. Eight different mountain heights were used: 0% (no mountain), 20%, 40%, 60%, 80%, 100% (control run), 120%, and 140%. The land sea distribution is the same for all experiments and mountain heights are varied uniformly over the entire globe.Systematic changes in precipitation pattern and circulation fields as well as sea surface temperature (SST) appeared with progressive mountain uplift. In summertime, precipitation area moves inland on the Asian continent with mountain uplift, while the Pacific subtropical anticyclone and associated trade winds become stronger. The mountain uplift resulted in an SST increase over the western tropical Pacific and the Maritime Continent and an SST decrease over the western Indian Ocean and the central subtropical Pacific. There is a drastic change in the East Asian circulations with the threshold value at the 60% mountain height. With the mountain height below 60%, the southwesterly monsoon flow from the Indian Ocean becomes strong by uplift and transports moisture toward East Asia, forming the baiu rainband. With higher mountain heights, intensified subtropical trade winds transport moisture from the Pacific into the Asian continent.In order to investigate how the SST change affected the results presented herein, additional experiments were performed with the same experimental design but with the atmospheric GCM (AGCM). A comparison between CGCM and AGCM experiments revealed that major features such as a shift in precipitation inland and an appearance of the baiu rainband by higher orography were reproduced similarly in both the AGCM and the CGCM. However, there was a qualitatively as well as quantitatively different feature. The anticyclonic circulation anomalies in the lower troposphere, which appeared by mountain uplift in the tropical western Pacific in the CGCM

  5. Coupling of a Simple 3-Layer Snow Model to GISS GCM

    NASA Astrophysics Data System (ADS)

    Aleinov, I.

    2001-12-01

    Appropriate simulation of the snow cover dynamics is an important issue for the General Circulation Models (GCMs). The presence of snow has a significant impact on ground albedo and on heat and moisture balance. A 3-layer snow model similar to the one proposed by Lynch-Stieglitz was developed with the purpose of using it inside the GCM developed in the NASA Goddard Institute for Space Studies (GISS). The water transport between the layers is modeled explicitly while the heat balance is computed implicitly between the snow layers and semi-implicitly on the surface. The processes of melting and refreezing and compactification of layers under the gravitational force are modeled appropriately. It was noticed that implicit computation of the heat transport can cause a significant under- or over-estimation of the incoming heat flux when the temperature of the upper snow layer is equal to 0 C. This may lead in particular to delayed snow melting in spring. To remedy this problem a special flux-control algorithm was added to the model, which checks computed flux for possible errors and if such are detected the heat transport is recomputed again with the appropriate corrections. The model was tested off-line with Sleepers River forcing data and exhibited a good agreement between simulated and observed quantities for snow depth, snow density and snow temperature. The model was then incorporated into the GISS GCM. Inside the GCM the model is driven completely by the data simulated by other parts of the GCM. The screening effect of the vegetation is introduced by means of masking depth. For a thin snowpack a fractional cover is implemented so that the total thickness of the the snow is never less then 10 cm (rather, the areal fraction of the snow cover decreases when it melts). The model was tested with 6 year long GCM speed-up runs. It proved to be stable and produced reasonable results for the global snow cover. In comparison to the old GISS GCM snow model (which was

  6. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999).

  7. Analysis of the Effects of SST and Model Resolutions on the Identification of the 1993 Superstorm Using an Ocean-Atmosphere Coupled Regional System

    NASA Astrophysics Data System (ADS)

    Aktas, D.; Velissariou, P.; Chassignet, E.; Bourassa, M. A.

    2014-12-01

    The non-tropical storm, the 12-14 March 1993 Superstorm, which called the Storm of the Century had a wide reaching effect on the Northern Gulf of Mexico region and the East Coast of the United States. Previous studies show that the initial development of the storm could not be simulated accurately enough to represent the intensity and the evolution of the storm over the Gulf of Mexico region. The aim of this study is to identify the effects of the air-sea fluxes, the sea surface temperature (SST) and the model resolution on determining the intensity and the track of the storm more accurately. To this end, the outputs from two-way coupled model runs were examined to analyze the storm characteristics. Model configurations have been set within a coupled system framework that includes the atmospheric model Weather Research & Forecasting Model (WRF) and the ocean model Regional Ocean Model (ROMS). Three WRF domains assigned 15 km, 5 km and ~1.6 km resolutions, respectively and an 8 km resolution ROMS domain were used in the coupled system. The initial and boundary conditions for WRF were extracted from the NCEP Climate Forecast System Reanalysis (CFSR) products and the Hybrid Coordinate Ocean Model (HYCOM) generated SSTs while, the conditions for ROMS were extracted from HYCOM. Comparisons were performed against NOAA buoys and GridSAT brightness temperatures. Minimum mean sea level pressure (MSLP), maximum wind speed and storm locations were examined. Time series for MSLP and wind speed were used to illustrate how air-sea interaction and resolution changes storm intensity along the track. The results showing the RMS differences on the storm location and intensity of the storm are also presented.

  8. On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean-atmosphere-land system

    SciTech Connect

    Ma, Hsi-Yen; Mechoso, C. R.; Xue, Yongkang; Xiao, Heng; Neelin, David; Ji, Xuan

    2013-11-15

    The impact of global tropical climate to perturbations in land surface processes (LSP) are evaluated using perturbations given by different LSP representations of continental-scale in a global climate model that includes atmosphere-ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes. The results demonstrate that LSP processes such as interactive soil moisture and vegetation biophysical processes have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific. To explore the mechanisms for such impact, different LSP representations are confined to selected continental-scale regions where strong interactions of climate-vegetation biophysical processes are present. We find that the largest impact is mainly from LSP perturbations over the tropical African continent. The impact is through anomalous convective heating in tropical Africa due to changes in the surface heat fluxes, which in turn affect basinwide teleconnections in the Pacific through equatorial wave dynamics. The modifications in the equatorial Pacific climate are further enhanced by strong air-sea coupling between surface wind stress and upwelling, as well as effect of ocean memory. Our results further suggest that correct representations of land surface processes, land use change and the associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty when performing future climate projections under different climate change scenarios.

  9. On the connection between continental-scale land surface processes and the tropical climate in a coupled ocean-atmosphere-land system

    NASA Astrophysics Data System (ADS)

    Ma, H.; Mechoso, C. R.; Xue, Y.; Xiao, H.; Neelin, J.; Ji, X.

    2013-12-01

    An evaluation is presented of the impact on tropical climate of continental-scale perturbations given by different representations of land surface processes (LSP) in a general circulation model that includes atmosphere-ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes. The results demonstrate that such perturbations have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific Ocean. To explore the mechanisms for such impact, model experiments are performed with different LSP representations confined to selected continental-scale regions where strong interactions of climate-vegetation biophysical processes are present. The largest impact found over the tropical Pacific is mainly from perturbations in the tropical African continent where convective heating anomalies associated with perturbed surface heat fluxes trigger global teleconnections through equatorial wave dynamics. In the equatorial Pacific, the remote impacts of the convection anomalies are further enhanced by strong air-sea coupling between surface wind stress and upwelling, as well as by the effects of ocean memory. LSP perturbations over South America and Asia-Australia have much weaker global impacts. The results further suggest that correct representations of LSP, land use change, and associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty of future climate projections with global climate models under various climate change scenarios. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA

  10. Assimilation of satellite color observations in a coupled ocean GCM-ecosystem model

    NASA Technical Reports Server (NTRS)

    Sarmiento, Jorge L.

    1992-01-01

    Monthly average coastal zone color scanner (CZCS) estimates of chlorophyll concentration were assimilated into an ocean global circulation model(GCM) containing a simple model of the pelagic ecosystem. The assimilation was performed in the simplest possible manner, to allow the assessment of whether there were major problems with the ecosystem model or with the assimilation procedure. The current ecosystem model performed well in some regions, but failed in others to assimilate chlorophyll estimates without disrupting important ecosystem properties. This experiment gave insight into those properties of the ecosystem model that must be changed to allow data assimilation to be generally successful, while raising other important issues about the assimilation procedure.

  11. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  12. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CFWs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999). In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  13. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  14. A Coupled fcGCM-GCE Modeling System: A 3D Cloud Resolving Model and a Regional Scale Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and ore sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicity calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A Brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), (3) A discussion on the Goddard WRF version (its developments and applications), and (4) The characteristics of the four-dimensional cloud data

  15. Centennial-to-millennial climate variability over the Great Plains in transient simulations of the Holocene with a coupled GCM

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Schwalb, A.; Zorita, E.

    2010-12-01

    Two simulations with the coupled Atmosphere-Ocean general circulation model ECHO-G for the period 7,000 years BP until present are investigated related to climatic variability over the central Great Plains. The first simulation is driven with changes in orbital forcing, the second simulation with additional variable solar and greenhouse gas forcing. The simulations have not been forced with an acceleration technique in order to take into account ocean-atmosphere interactions on longer time scales. The solar forced simulation has been used to investigate connections between changes in solar activity and the North America summer monsoon. The composite pattern between zonal winds at 850 hPa and changes in solar activity clearly shows that during periods with increased solar activity the northward flow and hence the North American monsoon is increased. The correlation pattern between the Pacific Decadal Oscillation (PDO) and summer precipitation over the Great Plains show significant correlations from inter-annual to multi-decadal time scales. Oceanic fingerprints between precipitation over the Great Plains and the North Atlantic and North Pacific Ocean, respectively, show distinct differences between winter and summer season. During northern winter the well known tripole pattern over the North Atlantic Ocean is evident while over the northeastern Pacific a negative SST anomaly is evident. During northern summer, precipitation variability over the Great Plains is strongly connected with tropical Pacific SSTs related to an El-Nino pattern. Our results therefore suggest that changes in solar activity are linked via indirect atmosphere-ocean coupling to climate variability over the Great Plains on longer time scales, mostly pronounced during northern summer. These changes occur on top of internal climate variability and therefore can exert amplifying and/or dampening effects on precipitation dynamics over the North America Great Plains.

  16. Earth's Climate: The Ocean-Atmosphere Interaction

    NASA Astrophysics Data System (ADS)

    Lifland, Jonathan

    2004-11-01

    A new AGU book, Earth's Climate: The Ocean-Atmosphere Interaction, edited by Chunzai Wang, Shang-Ping Xie, and James A. Carton, presents current observations, theories, and models of ocean-atmosphere interaction that helps shape climate and its variations over the global ocean. The book represents the climate community's first effort to summarize the modern science of ocean-atmosphere interaction and the roles that the interaction play in climate variability in the Pacific, Atlantic, and Indian Oceans as well as interactions across basins and between the tropics and extratropics. In this issue, Eos talks with lead editor Chunzai Wang. Wang is a research oceanographer at the Physical Oceanography Division of the National Oceanic and Atmospheric Administration's Atlantic Oceanographic and Meteorological Laboratory, in Miami, Florida.

  17. The Ocean-Atmosphere Hydrothermohaline Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Döös, Kristofer; Kjellsson, Joakim; Zika, Jan; Laliberté, Frédéric; Brodeau, Laurent

    2015-04-01

    The ocean thermohaline circulation is linked to the hydrothermal circulation of the atmosphere. The ocean thermohaline circulation is expressed in potential temperature-salinity space and comprises a tropical upper-ocean circulation, a global conveyor belt cell and an Antarctic Bottom Water cell. The atmospheric hydrothermal circulation in a potential temperature-specific humidity space unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. Superimposed, these thermohaline and hydrothermal stream functions reveal the possibility of a close connection between some parts of the water and air mass conversions. The exchange of heat and fresh water through the sea surface (precipiation-evaporation) and incoming solar radiation act to make near-surface air warm and moist while making surface water warmer and saltier as both air and water travel towards the Equator. In the tropics, air masses can undergo moist convection releasing latent heat by forming precipitation, thus acting to make warm surface water fresher. We propose that the Clausius-Clapeyron relationship for moist near-surface air acts like a lower bound for the atmospheric hydrothermal cell and an upper bound for the ocean thermohaline Conveyor-Belt cell. The analysis is made by combining and merging the overturning circulation of the ocean and atmosphere by relating the salinity of the ocean to the humidity of the atmosphere, where we set the heat and freshwater transports equal in the two stream functions By using simulations integrated with our Climate-Earth system model EC-Earth, we intend to produce the "hydrothermohaline" stream function of the coupled ocean-atmosphere overturning circulation in one single picture. We explore how the oceanic thermohaline Conveyor Belt can be linked to the global atmospheric hydrothermal circulation and if the water and air mass conversions in humidity-temperature-salinity space can be related and linked to each

  18. The effect of Arabian Sea optical properties on SST biases and the South Asian summer monsoon in a coupled GCM

    NASA Astrophysics Data System (ADS)

    Turner, A. G.; Joshi, M.; Robertson, E. S.; Woolnough, S. J.

    2012-08-01

    This study examines the effect of seasonally varying chlorophyll on the climate of the Arabian Sea and South Asian monsoon. The effect of such seasonality on the radiative properties of the upper ocean is often a missing process in coupled general circulation models and its large amplitude in the region makes it a pertinent choice for study to determine any impact on systematic biases in the mean and seasonality of the Arabian Sea. In this study we examine the effects of incorporating a seasonal cycle in chlorophyll due to phytoplankton blooms in the UK Met Office coupled atmosphere-ocean GCM HadCM3. This is achieved by performing experiments in which the optical properties of water in the Arabian Sea—a key signal of the semi-annual cycle of phytoplankton blooms in the region—are calculated from a chlorophyll climatology derived from Sea-viewing Wide Field-of-View Sensor (SeaWiFS) data. The SeaWiFS chlorophyll is prescribed in annual mean and seasonally-varying experiments. In response to the chlorophyll bloom in late spring, biases in mixed layer depth are reduced by up to 50% and the surface is warmed, leading to increases in monsoon rainfall during the onset period. However when the monsoons are fully established in boreal winter and summer and there are strong surface winds and a deep mixed layer, biases in the mixed layer depth are reduced but the surface undergoes cooling. The seasonality of the response of SST to chlorophyll is found to depend on the relative depth of the mixed layer to that of the anomalous penetration depth of solar fluxes. Thus the inclusion of the effects of chlorophyll on radiative properties of the upper ocean acts to reduce biases in mixed layer depth and increase seasonality in SST.

  19. On the Decadal Modes of Oscillation of an Idealized Ocean-atmosphere System

    NASA Technical Reports Server (NTRS)

    Mehta, Vikram M.

    1990-01-01

    Axially-symmetric, linear, free modes of global, primitive equation, ocean-atmosphere models are examined to see if they contain decadal (10 to 30 years) oscillation time scale modes. A two-layer ocean model and a two-level atmospheric model are linearized around axially-symmetric basic states containing mean meridional circulations in the ocean and the atmosphere. Uncoupled and coupled, axially-symmetric modes of oscillation of the ocean-atmosphere system are calculated. The main conclusion is that linearized, uncoupled and coupled, ocean-atmosphere systems can contain axially-symmetric, free modes of variability on decadal time scales. These results have important implications for externally-forced decadal climate variability.

  20. Evolution dynamics of tropical ocean-atmosphere annual cycle variability

    SciTech Connect

    Nigam, S.; Chao, Y.

    1996-12-01

    The structure of ocean-atmosphere annual cycle variability is extracted from the revised Comprehensive Ocean-Atmosphere Data Set SSTs, surface winds, and the latent heat (LH) and net shortwave (SW) surface fluxes using the covariance-based rotated principal component analysis method. The coupled annual cycle variability is concisely described using two modes that are in temporal quadrature. The first, peaking in June/July (and December/January), represents monsoonal flow onto Indochina, Central America, and western Africa. The second mode peaks in September/October and March/April when it represents the extreme phases of the SST annual cycle in the eastern oceans. Analysis of the surface momentum balance in the Pacific cold tongue core shows the equatorial flow, and in particular the zonal wind, to be dynamically consistent with the SST gradient during both the cold tongue`s nascent (June/July) and mature (September/October) phases; the dynamical consistency improves when the impact of nearsurface static stability variation on horizontal momentum dissipation is also considered. Evolution structure of the extracted annual cycle, moreover, shows the easterly wind tendency to lead SST cooling in the off-coastal zone. Taken together, these findings suggest that the Pacific cold tongue westward expansion results from local interaction of the zonal wind and zonal SST gradient, as encapsulated in the proposed {open_quotes}westward expansion hypothesis{close_quotes} - a simple analytic model of which is also presented. 29 refs., 10 figs.

  1. Mechanisms of internally generated decadal-to-multidecadal variability of SST in the Atlantic Ocean in a coupled GCM

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Schneider, Edwin K.; Wu, Zhiwei

    2016-03-01

    Mechanisms of the internally generated decadal-to-multidecadal variability of SST in the Atlantic Ocean are investigated in a long control simulation of the Community Climate System Model version 3 with constant external forcing. The interactive ensemble (IE) coupling strategy, with an ensemble of atmospheric GCMs (AGCM) coupled to an ocean model, a sea-ice model and a land model, is used to diagnose the roles of various processes in the coupled GCM (CGCM). The noise components of heat flux, wind stress and fresh water flux of the control simulation, determined from the CGCM surface fluxes by subtracting the SST-forced surface fluxes, estimated as the ensemble mean of AGCM simulations, are applied at the ocean surface of the IE in different regions and in different combinations. The IE simulations demonstrate that the climate variability in the control simulation is predominantly forced by noise. The local noise forcing is found to be responsible for the SST variability in the Atlantic Ocean, with noise heat flux and noise wind stress playing a critical role. The control run Atlantic multidecadal variability (AMV) index is decomposed into interannual, decadal and multidecadal modes based on the ensemble empirical mode decomposition. The AMV multidecadal mode, a combination of 50- and 100-year modes, is examined in detail. The North Atlantic Oscillation (NAO) pattern in the atmosphere, dominated by the noise component, forces the multidecadal mode through noise heat flux and noise wind stress. The noise wind stress forcing on the multidecadal mode is associated with ocean dynamics, including gyre adjustment and the Atlantic Meridional Overturning Circulation (AMOC). The AMV decadal mode is also found to be related to noise NAO forcing. The associated ocean dynamics are connected with both noise heat flux and noise wind stress, but the AMOC related to the decadal mode is more likely to be forced by noise heat flux. For both multidecadal and decadal modes, the

  2. Coupling the WAM wave model to EC-Earth GCM: Will it reduce the Southern Ocean bias?

    NASA Astrophysics Data System (ADS)

    de Vries, Hylke

    2015-04-01

    In an attempt to accelerate progress on the reduction of the well-known ocean SST bias in the Southern Ocean (SO), research has been undertaken to include the WAM wave-model in to the EC-Earth GCM. EC-Earth v3.1 is based on the ECMWF IFS atmosphere model and uses NEMO to describe the ocean circulation. The SST bias in EC-Earth, as in many other coupled GCMs, is predominantly a summer problem. In that season mixed layer depths are shallow because strong radiative forcing leads to strong vertical temperature stratification. Realistic sea states and surface wave breaking will feedback on to the upper layers of the oceanic circulation, for example through enhanced vertical mixing. Without actual sea state information, NEMO relies on certain parameterizations that involve atmospheric surface windstress. However, during a "growing"/"decaying" sea state, the net stress entering the ocean is lower/higher than the atmospheric wind stress. Without real-time information of the sea state, ocean models such as NEMO can only assume a sea-state in equilibrium with the wind at all times, a situation which is rather rare. We present first results of the effect of including surface ocean waves (WAM) into EC-Earth. If only IFS-WAM interaction is included, effects on the SO bias are limited. The small changes in the wind patterns (and thereby windstress), induced by the wave-induced modified drag-coefficients, are clearly not large enough to substantially modify the SST pattern. If WAM-NEMO interactions are included as well the changes are more substantial (as they modify the vertical mixing), but not necessarily everywhere in the right direction regarding the SST bias.

  3. The Modular Arbitrary-Order Ocean-Atmosphere Model of the RMIB: MAOOAM

    NASA Astrophysics Data System (ADS)

    De Cruz, Lesley; Demaeyer, Jonathan; Vannitsem, Stéphane

    2016-04-01

    The coupled ocean-atmosphere system exhibits a decadal variability at midlatitudes, which gives rise to the North-Atlantic Oscillation (NOA). The driving mechanism behind this variability has been the subject of much interest and debate in recent years. This conundrum was addressed using several low-order coupled ocean-atmosphere models for midlatitudes, with an increasing level of physical realism: OA-QG-WS v1 [1], v2 [2], and most recently, VDDG [3]. The VDDG-model was designed to capture the key dynamics of the coupled ocean-atmosphere system, featuring a two-layer atmosphere over a shallow-water ocean layer with passively advected temperature. It incorporates both frictional coupling and an energy balance scheme which accounts for radiative and heat fluxes between ocean and atmosphere. The spectral expansion was truncated at 10 atmospheric and 8 oceanic modes, and a coupled low-frequency variability was found. We present an extended version of the VDDG model, in which an arbitrary number of atmospheric and oceanic modes can be retained. The modularity of the new model version allows one to easily modify the model physics. Using this new model, named the "Modular Arbitrary-Order Ocean-Atmosphere Model" (MAOOAM), we analyse the dependence of the model dynamics on the truncation level of the spectral expansion. Indeed, previous studies have shown that spurious behaviour may exist in low-resolution models, which can be unveiled by a comparison with their high-resolution counterparts [4]. In particular, we assess the robustness of the coupled low-frequency variability when the number of modes is increased. References [1] Vannitsem, S.: Dynamics and predictability of a low-order wind-driven ocean-atmosphere coupled model, Climate dynamics, 42, 1981-1998, 2014. [2] Vannitsem, S. and De Cruz, L.: A 24-variable low-order coupled ocean-atmosphere model: OA-QG-WS v2, Geoscientific Model Development, 7, 649-662, 2014. [3] Vannitsem, S., Demaeyer, J., De Cruz, L., and Ghil

  4. A comparison of downscaled and raw GCM output: implications for climate change scenarios in the San Juan River basin, Colorado

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Hay, L. E.; Leavesley, G. H.

    1999-11-01

    The fundamental rationale for statistical downscaling is that the raw outputs of climate change experiments from General Circulation Models (GCMs) are an inadequate basis for assessing the effects of climate change on land-surface processes at regional scales. This is because the spatial resolution of GCMs is too coarse to resolve important sub-grid scale processes (most notably those pertaining to the hydrological cycle) and because GCM output is often unreliable at individual and sub-grid box scales. By establishing empirical relationships between grid-box scale circulation indices (such as atmospheric vorticity and divergence) and sub-grid scale surface predictands (such as precipitation), statistical downscaling has been proposed as a practical means of bridging this spatial difference. This study compared three sets of current and future rainfall-runoff scenarios. The scenarios were constructed using: (1) statistically downscaled GCM output; (2) raw GCM output; and (3) raw GCM output corrected for elevational biases. Atmospheric circulation indices and humidity variables were extracted from the output of the UK Meteorological Office coupled ocean-atmosphere GCM (HadCM2) in order to downscale daily precipitation and temperature series for the Animas River in the San Juan River basin, Colorado. Significant differences arose between the modelled snowpack and flow regimes of the three future climate scenarios. Overall, the raw GCM output suggests larger reductions in winter/spring snowpack and summer runoff than the downscaling, relative to current conditions. Further research is required to determine the generality of the water resource implications for other regions, GCM outputs and downscaled scenarios.

  5. Experimental study of ocean-atmosphere exchanges

    SciTech Connect

    Eymard, L.; Weill, A.; Planton, S.

    1994-12-31

    The SOFIA/ASTEX and SEMAPHORE campaigns were performed over open ocean, near the Azores, to study the ocean-atmosphere exchanges at the local and meso-scales, with a particular insight to the spatial variability of fluxes and related processes. In both cases, the experimental strategy involved two research aircraft and an oceanographic vessel, as well as surface buoys. SOFIA/ASTEX was more particularly devoted to the study of boundary layer and cloud properties, including microphysical and radiative aspects, in the framework of the international campaign ASTEX. SEMAPHORE was aimed at the analysis of surface fluxes and interactions with the upper ocean at the mesoscale. It included an important network of ocean circulation and thermal properties, from ships, current meter moorings, current drifters, and drifting buoys. The thermal front associated with the Azores current is an important feature of the ocean circulation and was particularly investigated. The analysis of data from meteorological satellites is also an important aspect of the two campaigns.

  6. A Comprehensive Ocean-Atmosphere Data Set.

    NASA Astrophysics Data System (ADS)

    Woodruff, Scott D.; Slutz, Ralph J.; Jenne, Roy L.; Steurer, Peter M.

    1987-10-01

    Development is described of a Comprehensive Ocean-Atmosphere Data Set (COADS)-the result of a cooperative project to collect global weather observations taken near the ocean's surface since 1854, primarily from merchant ships, into a compact and easily used data set. As background, a historical overview is given of how archiving of these marine data has evolved from 1854, when systematic recording of shipboard meteorological and oceanographic observations was first established as an international activity. Input data sets used for COADS are described, as well as the processing steps used to pack input data into compact binary formats and to apply quality controls for identification of suspect weather elements and duplicate marine reports. Seventy-million unique marine reports for 1854-1979 were output from initial processing. Further processing is described, which created statistical summaries for each month of each year of the period, using 2° latitude × 2° longitude boxes. Monthly summary products are available giving 14 statistics (such as the median and the mean) for each of eight observed variables (air and sea-surface temperatures, scalar and vector wind, pressure, humidity, and cloudiness), plus 11 derived variables. Examples of known temporal, spatial, and methodological inhomogeneities in marine data, and plans for periodic updates to COADS, including an update through 1986 scheduled for completion by early 1988, are presented.

  7. Comparisons of GCM and Observed Surface Wind Fields over the Tropical Indian and Pacific Oceans.

    NASA Astrophysics Data System (ADS)

    Graham, Nicholas E.; Barnett, Tim P.; Chervin, Robert M.; Schlesinger, Michael E.; Schlese, Ulrich

    1989-03-01

    Many of the processes that have important effects on both the climatological distribution and interannual variability of sea surface temperatures (SSTs) in the tropical oceans are greatly affected by the surface wind field. For this reason accurate simulation of the surface wind is a key factor governing the success of coupled tropical ocean-atmosphere models. This paper presents the results of two analyses that investigate the quality of wind fields produced by three general circulation models (GCMs) over the tropical Indian and Pacific oceans.The first analysis concerns the annual cycles of the tropical wind fields simulated by versions of the GCM at the Oregon State University (OSU), European Centre for Medium Range Forecasts (ECMWF), and National Center for Atmospheric Research (NCAR). These models have similar horizontal resolutions but vary widely in vertical resolution. The results show that although there are substantial differences in model performance, apparently related to differences in vertical resolution, there are also clear similarities in their behavior. Each GCM did best in major trade wind regions and somewhat poorly in convectively active areas with light winds. This finding suggests that the formulations governing the interactions between persistent convection and the circulation may limit model performance.A second analysis examines the response of the NCAR GCM, in terms of tropical Pacific wind stress, to prescribed SST anomalies over the period 1961-1972. It was found that the model response to SST anomalies associated with the El Niño/Southern Oscillation(ENSO) was distinct and in some respects resembled that of the real atmosphere. However, there were important discrepancies in the spatial configuration of the GCM field and in the amplitude of response of the GCM to the SST anomalies. An analysis of these discrepancies suggests that while the trapped equatorial Kelvin wave response of an ocean model coupled to this GCM would be

  8. Modeling oxygenation of an ocean-atmosphere system during the Late Ordovician-Devonian

    NASA Astrophysics Data System (ADS)

    Ozaki, K.

    2013-12-01

    Throughout the Earth's history, the redox state of surface environments, biogeochemical cycles, and biological innovation/extinction have been intimately related. Therefore, understanding the long-term (over millions of years) evolution of the redox state of an ocean-atmosphere system and its controlling factors is one of the fundamental topics of Earth Sciences. In particular, Early Paleozoic is marked by the prominent biological evolution/diversification events (Cambrian explosion and Great Ordovician Biodiversification Event), implying the causal linkage between ocean oxygenation and biological innovation. On the other hand, multiple lines of evidence (such as black shale deposition, low C/S ratio of buried sediments, low molybdenum isotopic value, and iron speciation data) suggest that ocean interior had been kept in low oxygen condition until the Devonian. Dahl et al. (2010) PNAS found an increase in molybdenum isotopic value from ~1.4‰ to ~2.0‰ between ~440 Ma and ~390 Ma, implying the oceanic redox transition to a well-oxygenated condition. It was proposed that this ocean oxygenation event correlates with the diversification of vascular land plants; an enhanced burial of terrigenous organic matter increases the oxygen supply rate to an ocean-atmosphere system. Although this hypothesis for a causal linkage between the diversification of land plants and oxidation event of an ocean-atmosphere system is intriguing, it remains unclear whether the radiation of land plant is necessary to cause such redox transition. Because oxygen is most likely regulated by a combination of several feedbacks in the Earth system, it is essential to evaluate the impact of plant diversification on the oxygenation state of an ocean-atmosphere system by use of a numerical model in which C-N-P-O-S coupled biogeochemical cycles between ocean-atmosphere-sediment systems are take into account. In this study, the paleoredox history of an ocean-atmosphere system during the Paleozoic is

  9. a Coupled GCM Comparison of Marine Isotope Stages 1, 5e, 11c and 31 IN Relation to Lake El'gygytgyn, NE Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R.; Melles, M.; Brigham-Grette, J.; Minyuk, P.

    2012-12-01

    The lack of scientific data concerning interglacials of the Pleistocene in the Arctic has been a major obstacle within the climate community. Study of the interglacials of Marine Isotope Stage(s) (MIS) 1, 5e, 11c and 31 in high latitudes is important to decoding Arctic sensitivity and providing us with a potential analogue for a future Arctic with climate change. Data from a sediment core recovered from Lake El'Gygytgyn in northeastern (NE) Russia gives a continuous, high-resolution record of the Arctic spanning the past 2.8 million years whilst recording these interglacials. The data was used to correlate simulated interglacial Arctic climate with Arctic climate derived from sediment core proxy studies. Here, we use a Global Circulation Model (GCM) with a coupled atmosphere and land-surface scheme complete with an interactive vegetation component to simulate marine isotope stages 1, 5e, 11c and 31 in the Arctic. GCM simulations of MIS 5e and 31 in the Arctic both show a warmer arctic climate that can be explained by high obliquity, high eccentricity, high CO2 (287 ppmv ,325 ppmv , respectively) and precession that aligns perihelion with boreal summer. Consequently, MIS 5e showed the greatest summer warming compared to the other interglacials and pre-industrial control. However, the distinctly higher values of mean temperature of the warmest month (MTWM) and annual precipitation during stage 11c cannot readily be explained by summer orbital forcings and greenhouse gas (GHG) concentrations. Montane forest is seen migrating northward in stages 1, 5e and 31 as the surface insolation increases and sea ice melts, whereas in 11c, the warmest of the interglacials, evergreen forest takes over and migrates pole ward toward the coast. Feedback from low albedo forest biome was studied and conclusions suggest the increase in temperature due to forest cover is insignificant in creating a significantly warm regional climate. The warming associated with a lack of a Greenland Ice

  10. Estimating annual precipitation for the Colorado River Basin using oceanic-atmospheric oscillations

    NASA Astrophysics Data System (ADS)

    Kalra, Ajay; Ahmad, Sajjad

    2012-06-01

    Estimating long-lead time precipitation under the stress of increased climatic variability is a challenging task in the field of hydrology. A modified Support Vector Machine (SVM) based framework is proposed to estimate annual precipitation using oceanic-atmospheric oscillations. Oceanic-atmospheric oscillations, consisting of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Niño-Southern Oscillation (ENSO) for a period of 1900-2008, are used to generate annual precipitation estimates with a 1 year lead time. The SVM model is applied to 17 climate divisions encompassing the Colorado River Basin in the western United States. The overall results revealed that the annual precipitation in the Colorado River Basin is significantly influenced by oceanic-atmospheric oscillations. The long-term precipitation predictions for the Upper Colorado River Basin can be successfully obtained using a combination of PDO, NAO, and AMO indices, whereas coupling AMO and ENSO results in improved precipitation predictions for the Lower Colorado River Basin. The results also show that the SVM model provides better precipitation estimates compared to the Artificial Neural Network and Multivariate Linear Regression models. The annual precipitation estimates obtained using the modified SVM modeling framework may assist water managers in statistically understanding the hydrologic response in relation to large scale climate patterns within the Colorado River Basin.

  11. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    NASA Astrophysics Data System (ADS)

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-01

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (˜10 W/m2) and longwave cloud forcing (˜5 W/m2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation is more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. The results may also be useful for helping to tune them.

  12. An Analysis of Precipitation Associated With the ITCZ in the CMIP5 AMIP and Historical-Coupled GCM Simulations: A Quantitative Assessment of Magnitude and Position

    NASA Astrophysics Data System (ADS)

    Stanfield, R.; Jiang, J. H.; Dong, X.; Xi, B.; Su, H.

    2014-12-01

    According to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5), the broad-scale features of precipitation as simulated by Phase 5 of the Coupled Model Intercomparison Project (CMIP5) are in modest agreement with observations, however, large systematic errors are found in the Tropics (IPCC AR5 Ch.9). This study provides a quantitative analysis of precipitation associated with the Intertropical Convergence Zone (ITCZ) over the equatorial northern Pacific. Results from 31 CMIP5 Atmospheric Model Intercomparison Project (AMIP) Global Circulation Model (GCM) runs and their historical ocean-coupled counterparts are compared with Global Precipitation Climatology Project (GPCP) and Tropical Rainfall Measuring Mission (TRMM) observations. Differences found between the GCMs and observations are quantitatively analyzed using two innovative feature-based approaches with the intent of separating these discrepancies in the precipitation fields into components of magnitude-based error due to parameterizations, and location-based error due to large scale dynamics. Results show widespread and varied results across all GCMs, with some models showing large under/over-simulation of precipitation magnitude while other models suffer from significant pole-ward or equator-ward position shift of the ITCZ. Linkage between these results with the models' deep/convective and shallow/stratiform parameterizations are discussed.

  13. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE PAGESBeta

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m2) and longwave cloud forcing (~5 W/m2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation is more faithfullymore » satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  14. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    SciTech Connect

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m2) and longwave cloud forcing (~5 W/m2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation is more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.

  15. Study of thermospheric and ionospheric tidal responses to the 2009 stratospheric sudden warming by an assimilative atmosphere-ionosphere coupled TIME-GCM with FORMOSAT-3/COSMIC observations

    NASA Astrophysics Data System (ADS)

    Lin, Jia-Ting; Liu, Hanli; Liu, Jann-Yenq; Lin, Charles C. H.; Chen, Chia-Hung; Chang, Loren; Chen, Wei-Han

    In this study, ionospheric peak densities obtained from radio occultation soundings of FORMOSAT-3/COSMIC are decomposed into their various constituent tidal components for studying the stratospheric sudden warming (SSW) effects on the tidal responses during the 2008/2009. The observations are further compared with the results from an atmosphere-ionosphere coupled model, TIME-GCM. The model assimilates MERRA 3D meteorological data between the lower-boundary (~30km) and 0.1h Pa (~62km) by a nudging method. The comparison shows general agreement in the major features of decrease of migrating tidal signatures (DW1, SW2 and TW3) in ionosphere around the growth phase of SSW, with phase/time shifts in the daily time of maximum around EIA and middle latitudes. Both the observation and simulation indicate a pronounced enhancement of the ionospheric SW2 signatures after the stratospheric temperature increase. The model suggest that the typical morning enhancement/afternoon reduction of electron density variation is mainly caused by modification of the ionospheric migrating tidal signatures. The model shows that the thermospheric SW2 tide variation is similar to ionosphere as well as the phase shift. These phases shift of migrating tides are highly related to the present of induced secondary planetary wave 1 in the E region.

  16. Arctic forcing of decadal variability in the tropical Pacific Ocean in a high-resolution global coupled GCM

    NASA Astrophysics Data System (ADS)

    Karnauskas, Kristopher B.

    2014-06-01

    The hypothesis that northern high-latitude atmospheric variability influences decadal variability in the tropical Pacific Ocean by modulating the wind jet blowing over the Gulf of Tehuantepec (GT) is examined using the high-resolution configuration of the MIROC 3.2 global coupled model. The model is shown to have acceptable skill in replicating the spatial pattern, strength, seasonality, and time scale of observed GT wind events. The decadal variability of the simulated GT winds in a 100-year control integration is driven by the Arctic Oscillation (AO). The regional impacts of the GT winds include strong sea surface cooling, increased salinity, and the generation of westward-propagating anticyclonic eddies, also consistent with observations. However, significant nonlocal effects also emerge in concert with the low-frequency variability of the GT winds, including anomalously low upper ocean heat content (OHC) in the central tropical Pacific Ocean. It is suggested that the mesoscale eddies generated by the wind stress curl signature of the GT winds, which propagate several thousand kilometers toward the central Pacific, contribute to this anomaly by strengthening the meridional overturning associated with the northern subtropical cell. A parallel mechanism for the decadal OHC variability is considered by examining the Ekman and Sverdrup transports inferred from the atmospheric circulation anomalies in the northern midlatitude Pacific directly associated with the AO.

  17. Contrasting Indian Ocean SST Variability With and Without ENSO Influence: A Coupled Atmosphere-Ocean GCM Study

    NASA Technical Reports Server (NTRS)

    Yu, Jin-Yi; Lau, K. M.

    2004-01-01

    In this study, we perform experiments with a coupled atmosphere-ocean general circulation model (CGCM) to examine ENSO's influence on the interannual sea surface temperature (SST) variability of the tropical Indian Ocean. The control experiment includes both the Indian and Pacific Oceans in the ocean model component of the CGCM (the Indo-Pacific Run). The anomaly experiment excludes ENSOs influence by including only the Indian Ocean while prescribing monthly-varying climatological SSTs for the Pacific Ocean (the Indian-Ocean Run). In the Indo-Pacific Run, an oscillatory mode of the Indian Ocean SST variability is identified by a multi-channel singular spectral analysis (MSSA). The oscillatory mode comprises two patterns that can be identified with the Indian Ocean Zonal Mode (IOZM) and a basin-wide warming/cooling mode respectively. In the model, the IOZM peaks about 3-5 months after ENSO reaches its maximum intensity. The basin mode peaks 8 months after the IOZM. The timing and associated SST patterns suggests that the IOZM is related to ENSO, and the basin- wide warming/cooling develops as a result of the decay of the IOZM spreading SST anomalies from western Indian Ocean to the eastern Indian Ocean. In contrast, in the Indian-Ocean Run, no oscillatory modes can be identified by the MSSA, even though the Indian Ocean SST variability is characterized by east-west SST contrast patterns similar to the IOZM. In both control and anomaly runs, IOZM-like SST variability appears to be associated with forcings from fluctuations of the Indian monsoon. Our modeling results suggest that the oscillatory feature of the IOZM is primarily forced by ENSO.

  18. Impact of seas/lakes on polar meteorology of Titan: Simulation by a coupled GCM-Sea model

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya

    2009-12-01

    The detection of large hydrocarbon seas/lakes near the poles by the Cassini spacecraft raises the question as to whether and how polar seas affect the meteorology on Titan. The polar meteorology and methane hydrological cycle in the presence of seas are investigated by a three-dimensional atmospheric general circulation model coupled to a one-dimensional sea energy balance model considering the observed sea/lake geography. The sea composition has a large control on the seasonal evolution of seas, temperature and wind system in the polar region, particularly in the north where large seas are located. The surface of ethane-rich seas, which do not evaporate methane, undergo a large seasonal temperature variation and the sea surface is often warmer than the surrounding land surface. Land breeze in summer towards the seas causes a moisture convergence over the seas, which leads to enhanced summer precipitation in the sea area. On the other hand, methane-rich seas evaporate some methane and are therefore colder than the surroundings. This causes a sea breeze across the north pole in summer, which blows away the moisture from the polar region, so precipitation becomes scarce in the north polar region. The breeze can become stronger than the tidal wind. Sea evaporation peaks in winter, when the temperature and average methane mixing ratio in the planetary boundary layer become lowest. The sea level predominantly rises in summer by precipitation and retreats in winter by evaporation. The meteorology in the south polar region is less sensitive to the composition of the lakes because of the paucity and smallness of southern lakes. Lake-effect precipitation can occur either by moisture convergence by the breeze or humidity enhancement over the seas, but is more characteristic of warm seasons than of cold seasons.

  19. Multiple equilibria, natural variability, and climate transitions in an idealized ocean-atmosphere model

    SciTech Connect

    Saravanan, R.; McWilliams, J.C.

    1995-10-01

    An idealized coupled ocean-atmosphere is constructed to study climatic equilibria and variability. The model focuses on the role of large-scale fluid motions in the climate system. The atmospheric component is an eddy-resolving two-level global primitive equation model with simplified physical parameterizations. The oceanic component is a zonally averaged sector model of the thermohaline circulation. The two components exchange heat and freshwater fluxes synchonously. Coupled integrations are carried out over periods of several centuries to identify the equilibrium states of the ocean-atmosphere system. It is shown that there exist at least three types of equilibria, which are distinguished by whether they have upwelling or downwelling in the polar regions. Each oceanic circulation in the coupled model exhibits natural variability on interdecadal and longer timescales. The dominant interdecadal mode of variability is associated with the advection of oceanic temperature anomalies in the sinking regions. The sensitivity of the coupled model to climatic perturbations is studied. A rapid increase in the greenhouse gas concentrations leads to a collapse of the meridional overtuning in the ocean. Introduction of a large positive surface freshwater anomaly in the high latitudes leads to a temporary suppression of the sinking motion, followed by a rapid recovery, due primarily to the high latitude cooling associated with the reduction of oceanic heat transport. In this evolution, the secondary roles played by the atmospheric heat transport and moisture transport in destablizing the thermohaline circulation are compared, and the former is found to be dominant.

  20. Skill Assessment of a Spectral Ocean-Atmosphere Radiative Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson, W.; Casey, Nancy W.

    2009-01-01

    Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean- Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 microns) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference= 20.1 W/sq m (about 11%), bias=1.6 W/sq m (about 0.8%), regression slope= 1.01 and correlation coefficient= 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP 11), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS= 20.7 W/sq m; bias=-11.4 W/sq m, r=0.98) and ISLSCP II (RMS =25.2 W/sq m; bias= -13.8 W/sq m; r=0.97), but less well with NCEP (RMS =43.0 W/sq m ;bias=-22.6 W/sq m; x=0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (-1.8 mol photons /sq m/d, or about 5%), RMS (4.25 mol photons /sq m/d ' or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.

  1. Dynamical ocean-atmospheric drivers of floods and droughts

    NASA Astrophysics Data System (ADS)

    Perdigão, Rui A. P.; Hall, Julia

    2014-05-01

    The present study contributes to a better depiction and understanding of the "facial expression" of the Earth in terms of dynamical ocean-atmospheric processes associated to both floods and droughts. For this purpose, the study focuses on nonlinear dynamical and statistical analysis of ocean-atmospheric mechanisms contributing to hydrological extremes, broadening the analytical hydro-meteorological perspective of floods and hydrological droughts to driving mechanisms and feedbacks at the global scale. In doing so, the analysis of the climate-related causality of hydrological extremes is not limited to the synoptic situation in the region where the events take place. Rather, it goes further in the train of causality, peering into dynamical interactions between planetary-scale ocean and atmospheric processes that drive weather regimes and influence the antecedent and event conditions associated to hydrological extremes. In order to illustrate the approach, dynamical ocean-atmospheric drivers are investigated for a selection of floods and droughts. Despite occurring in different regions with different timings, common underlying mechanisms are identified for both kinds of hydrological extremes. For instance, several analysed events are seen to have resulted from a large-scale atmospheric situation consisting on standing planetary waves encircling the northern hemisphere. These correspond to wider vortices locked in phase, resulting in wider and more persistent synoptic weather patterns, i.e. with larger spatial and temporal coherence. A standing train of anticyclones and depressions thus encircled the mid and upper latitudes of the northern hemisphere. The stationary regime of planetary waves occurs when the mean eastward zonal flow decreases up to a point in which it no longer exceeds the westward phase propagation of the Rossby waves produced by the latitude-varying Coriolis effect. The ocean-atmospheric causes for this behaviour and consequences on hydrological

  2. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2011-06-01

    The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  3. Seasonal prediction of global sea level anomalies using an ocean-atmosphere dynamical model

    NASA Astrophysics Data System (ADS)

    Miles, Elaine R.; Spillman, Claire M.; Church, John A.; McIntosh, Peter C.

    2014-10-01

    Advanced warning of extreme sea level events is an invaluable tool for coastal communities, allowing the implementation of management policies and strategies to minimise loss of life and infrastructure damage. This study is an initial attempt to apply a dynamical coupled ocean-atmosphere model to the prediction of seasonal sea level anomalies (SLA) globally for up to 7 months in advance. We assess the ability of the Australian Bureau of Meteorology's operational seasonal dynamical forecast system, the Predictive Ocean Atmosphere Model for Australia (POAMA), to predict seasonal SLA, using gridded satellite altimeter observation-based analyses over the period 1993-2010 and model reanalysis over 1981-2010. Hindcasts from POAMA are based on a 33-member ensemble of seasonal forecasts that are initialised once per month for the period 1981-2010. Our results show POAMA demonstrates high skill in the equatorial Pacific basin and consistently exhibits more skill globally than a forecast based on persistence. Model predictability estimates indicate there is scope for improvement in the higher latitudes and in the Atlantic and Southern Oceans. Most characteristics of the asymmetric SLA fields generated by El-Nino/La Nina events are well represented by POAMA, although the forecast amplitude weakens with increasing lead-time.

  4. Quantifying predictability variations in a low-order ocean-atmosphere model - A dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.; Dutton, John A.

    1993-01-01

    The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.

  5. Comparison of GCM subgrid fluxes calculated using BATS and SiB schemes with a coupled land-atmosphere high-resolution model

    SciTech Connect

    Shen, Jinmei; Arritt, R.W.

    1996-12-31

    The importance of land-atmosphere interactions and biosphere in climate change studies has long been recognized, and several land-atmosphere interaction schemes have been developed. Among these, the Simple Biosphere scheme (SiB) of Sellers et al. and the Biosphere Atmosphere Transfer Scheme (BATS) of Dickinson et al. are two of the most widely known. The effects of GCM subgrid-scale inhomogeneities of surface properties in general circulation models also has received increasing attention in recent years. However, due to the complexity of land surface processes and the difficulty to prescribe the large number of parameters that determine atmospheric and soil interactions with vegetation, many previous studies and results seem to be contradictory. A GCM grid element typically represents an area of 10{sup 4}-10{sup 6} km{sup 2}. Within such an area, there exist variations of soil type, soil wetness, vegetation type, vegetation density and topography, as well as urban areas and water bodies. In this paper, we incorporate both BATS and SiB2 land surface process schemes into a nonhydrostatic, compressible version of AMBLE model (Atmospheric Model -- Boundary-Layer Emphasis), and compare the surface heat fluxes and mesoscale circulations calculated using the two schemes. 8 refs., 5 figs.

  6. Ocean-atmosphere-wave characterisation of a wind jet (Ebro shelf, NW Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Grifoll, Manel; Navarro, Jorge; Pallares, Elena; Ràfols, Laura; Espino, Manuel; Palomares, Ana

    2016-06-01

    In this contribution the wind jet dynamics in the northern margin of the Ebro River shelf (NW Mediterranean Sea) are investigated using coupled numerical models. The study area is characterised by persistent and energetic offshore winds during autumn and winter. During these seasons, a seaward wind jet usually develops in a ˜ 50 km wide band offshore. The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modelling system was implemented in the region with a set of downscaling meshes to obtain high-resolution meteo-oceanographic outputs. Wind, waves and water currents were compared with in situ observations and remote-sensing-derived products with an acceptable level of agreement. Focused on an intense offshore wind event, the modelled wind jet appears in a limited area offshore with strong spatial variability. The wave pattern during the wind jet is characterised by the development of bimodal directional spectra, and the ocean circulation tends to present well-defined two-layer flow in the shallower region (i.e. inner shelf). The outer shelf tends to be dominated by mesoscale dynamics such as the slope current. Due to the limited fetch length, ocean surface roughness considering sea state (wave-atmosphere coupling) modifies to a small extent the wind and significant wave height under severe cross-shelf wind events. However, the coupling effect in the wind resource assessment may be relevant due to the cubic relation between the wind intensity and power.

  7. Ocean-atmosphere interaction and the tropical climatology. Part I. The dangers of flux correction

    SciTech Connect

    Neelin, J.D.; Dijkstra, H.A.

    1995-05-01

    This sequence of papers examines the role of dynamical feedbacks between the ocean and the atmosphere in determining features of the tropical climatology. A stripped-down, intermediate, coupled ocean-atmosphere model is used to provide a prototype problem for the Pacific basin. Here the authors contrast the fully coupled case with the case where flux correction is used to construct the climatology. In the fully coupled case, the climatology is determined largely by feedback mechanisms within the ocean basin: winds driven by gradients of sea surface temperature (SST) within the basin interact with the ocean circulation to maintain SST gradients. For all realistic cases, these lead to a unique steady solution for the tropical climatology. In the flux-corrected case, the artificially constructed climatology becomes unstable at sufficiently large coupling, leading to multiple steady states as found in a number of coupled models. Using continuation methods, we show that there is a topological change in the bifurcation structure as flux correction is relaxed toward a fully coupled case; this change is characterized as an imperfection and must occur generically for all flux-corrected cases. The cold branch is steady solutions is governed by mechanisms similar to the fully coupled case. The warm branch, however, is spurious and disappears. The dynamics of this and consequences for coupled models are discussed. Multiple steady states can be ruled out as a mechanism for El Nino in favor of oscillatory mechanisms. The important role that coupled feedbacks are suggested to play in establishing tropical climatology is referred to as {open_quotes}the climatological version of the Bjerknes hypothesis.{close_quotes} 43 refs., 10 figs., 2 tabs.

  8. Ocean-atmosphere processes driving Indian summer monsoon biases in CFSv2 hindcasts

    NASA Astrophysics Data System (ADS)

    Narapusetty, Balachandrudu; Murtugudde, Raghu; Wang, Hui; Kumar, Arun

    2015-12-01

    This paper analyzes the role of the Indian Ocean (IO) and the atmosphere biases in generating and sustaining large-scale precipitation biases over Central India (CI) during the Indian summer monsoon (ISM) in the climate forecast system version 2 (CFSv2) hindcasts that are produced by initializing the system each month from January 1982 to March 2011. The CFSv2 hindcasts are characterized by a systematic dry monsoon bias over CI that deteriorate with forecast lead-times and coexist with a wet bias in the tropical IO suggesting a large-scale interplay between coupled ocean-atmosphere and land biases. The biases evolving from spring-initialized forecasts are analyzed in detail to understand the evolution of summer biases. The northward migration of the Inter Tropical Convergence Zone (ITCZ) that typically crosses the equator in the IO sector during April in nature is delayed in the hindcasts when the forecast system is initialized in early spring. Our analyses show that the delay in the ITCZ coexists with wind and SST biases and the associated processes project onto the seasonal evolution of the coupled ocean-atmosphere features. This delay in conjunction with the SST and the wind biases during late spring and early summer contributes to excessive precipitation over the ocean and leading to a deficit in rainfall over CI throughout the summer. Attribution of bias to a specific component in a coupled forecast system is particularly challenging as seemingly independent biases from one component affect the other components or are affected by their feedbacks. In the spring-initialized forecasts, the buildup of deeper thermocline in association with warmer SSTs due to the enhanced Ekman pumping in the southwest IO inhibits the otherwise typical northward propagation of ITCZ in the month of April. Beyond this deficiency in the forecasts, two key ocean-atmosphere coupled mechanisms are identified; one in the Arabian Sea, where a positive windstress curl bias in conjunction

  9. Developing a new Predictive Ocean Atmosphere Model for Australia (POAMA-3.0)

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaobing; Alves, Oscar; Okely, Patricia; Tseitkin, Faina; Marshall, Andrew; Luo, Jing-Jia; Hudson, Debra; Zhao, Maggie; Yin, Yonghong; Hendon, Harry

    2013-04-01

    The Predictive Ocean Atmosphere Model for Australia (POAMA) is a state-of-the-art intra-seasonal to seasonal forecast system based on a coupled climate model and ocean/atmosphere/land observations assimilation system. Several versions of the POAMA system have been developed over the past decade, including 1.0, 1.5, 2.0 and 2.4. The development of a new POAMA system, POAMA-3.0, is currently underway. The model components in POAMA-3.0 are totally different from its previous versions. The POAMA-3.0 model is based on ACCESS-1.3 coupled model (Australian Community Climate and Earth-System Simulator) developed at the Centre for Australian Weather and Climate Research (CAWCR). The ACCESS-1.3 model is comprised of the UK Met Office atmospheric model UM7.3, GFDL ocean model MOM4p1, Los Alamos sea ice model CICE4.1, the Australian land model CABLE1.8 and the CERFACS coupler OASIS3.25. The model configuration used for seasonal forecasting has some different configurations compared to the model used for the IPCC AR5 contributions in several aspects, such as an improved shortwave penetration scheme in the ocean model, enhanced entrainment and detrainment rates in deep convection, an improved cloud overlap scheme and better representation of the boundary layer in the atmospheric model. A 100-yr run is conducted and the model's biases and interannual variability are validated. At the current stage of POAMA-3.0 development, a simple data assimilation approach is applied to produce initial conditions for intra-seasonal/seasonal forecasts during the period of 1980-2010. The atmospheric model is nudged to ECMWF ERA-interim data and the ocean model is driven by the surface fluxes while the atmosphere is being nudged. Seasonal hindcasts are performed during the period 1982-2010 and each hindcast goes out to lead time of 5 months. The prediction skill for El Nino indices, Indian Ocean dipole, Madden-Julian Oscillation and Australian rainfall are evaluated. The retrospective results of

  10. Overview of the Sargasso Sea Ocean/Atmosphere Observatory

    NASA Astrophysics Data System (ADS)

    Hansell, D. A.

    2001-12-01

    International efforts to develop global scale ocean, atmosphere and climate observation systems will be aided by coordination of and access to existing observational efforts. In this light, the Sargasso Sea Ocean/Atmosphere Observatory (S2O2) has been formed to enhance the contributions of the many marine atmospheric, biogeochemical and hydrographic studies that are conducted in time series mode in the southwestern North Atlantic Ocean. S2O2 is an organization of ocean and atmosphere scientists with shared interests in improving our understanding of the functions, processes and interactions occurring in this region of the atmosphere/ocean. The elements making up S2O2 include time-series projects, technology development, modeling, and process studies. Our approach is to facilitate the advancements and synthesis of science in the region in order to answer interdisciplinary, higher level questions about this system. We seek to strengthen our individual science through improved linkages between S2O2 elements, and to make our data and knowledge available in a coordinated way to allied observatories and the larger earth science community via the WWW. The user community includes US national and international programs aimed at advancing our understanding of ocean and atmospheric processes through sustained observations, as well as those coastal observatories adjacent to the S2O2 zone of interest. A subset of the participating S2O2 elements (supported by the US National Science Foundation, the US National Oceanographic and Aeronautics Administration, the US National Atmospheric and Space Administration, and the Governments of Bermuda and Venezuela) include: the 47 year Hydrostation S (Panulirus) project; the 20 year Ocean Flux Program; the 12 year US JGOFS Bermuda Atlantic Time-series Study (BATS); the 20 year Bermuda atmospheric (formerly AEROCE) tower program; the 7 year, twice weekly ADCP and thermosalinograph survey between New Jersey and Bermuda; the 7 year Bermuda

  11. Ocean-Atmosphere-Land interactions and their consequences on the biogeochemical variability in Eastern Boundary Upwelling System

    NASA Astrophysics Data System (ADS)

    Renault, L.; McWilliams, J. C.; Deutsch, C.; Molemaker, M. J.

    2015-12-01

    Coastal winds and upwelling of deep water along Eastern Boundary Upwelling System (EBUS) yield some of the ocean's most productive ecosystems, but the effect of coastal wind shape and ocean-atmosphere interactions on regional Net Primary Production (NPP) is not well known. Here, we first show how the spatial and temporal variability of nearshore winds in EBUS is affected by orography, coastline shape, and air-sea interaction. Using regional atmospheric simulations over the US West Coast, we determine monthly characteristics of the wind drop-off, and show that when the mountain orography is combined with the coastline shape of a cape, it has the biggest influence on wind drop-off. Then, using a realistic ocean model of the California Current System, we show that the slackening of the winds near the coast has little effect on near-shore phytoplankton productivity, despite a large reduction in upwelling velocity. On a regional scale, the wind drop-off leads to a substantially higher NPP, especially when it occurs over a broad swath, even when the total upwelling rate remains the same. This partial decoupling of NPP from upwelling is effected by alongshore currents and the eddies they generate. When peak winds extend all the way to the coast, alongshore current shear is stronger, and a more energetic eddy field subducts nutrients offshore and out of the photic zone, reducing overall productivity. This causal sequence is supported by satellite remote sensing. Finally, using a interanual coupled simulation over the US West Coast, we show the ocean-atmosphere interactions can also reduce the eddy activity by pumping energy out from the eddies, reducing their amplitude and rotation speed, and leading to more realistic eddies characteristics. This may also reduce the eddy quenching and therefore increase the NPP. This complex ocean-atmosphere-land interactions imply that simple wind indices are incomplete predictors of productivity in EBUS.

  12. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2012-01-01

    The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. LOSCAR's configuration of ocean geometry is flexible and allows for easy switching between modern and paleo-versions. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  13. Ocean-atmosphere dynamics changes associated with prominent ocean surface turbulent heat fluxes trends during 1958-2013

    NASA Astrophysics Data System (ADS)

    Yang, Hu; Liu, Jiping; Lohmann, Gerrit; Shi, Xiaoxu; Hu, Yongyun; Chen, Xueen

    2016-03-01

    Three prominent features of ocean surface turbulent heat fluxes (THF) trends during 1958-2013 are identified based on the Objectively Analyzed air-sea Fluxes (OAFlux) data set. The associated ocean-atmosphere dynamics changes are further investigated based on the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. First, the THF are enhanced over the mid-latitude expansions of the subtropical western boundary currents (WBCs). An intensified oceanic heat transport, forced by stronger near-surface zonal wind, is likely to be the cause of such THF tendency. Second, the THF are reduced over the tropical eastern Pacific Ocean, which is primarily caused by the decreasing near-surface wind speed and sea surface temperature (SST), associated with a local coupled ocean-atmosphere cooling mode. Finally, the THF are reduced over the northern tropical Atlantic Ocean, which is attributed to the decreasing air-sea humidity and temperature differences as a result of the convergence of near-surface air and the divergence of ocean currents (upwelling).

  14. Dynamics and predictability of a low-order wind-driven ocean - atmosphere model

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane

    2013-04-01

    The dynamics of a low order coupled wind-driven Ocean-Atmosphere (OA) system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear. This feature is expected to be related with the specific domain choice over which the coupled system is defined. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov-Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on his attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial (at2 + bt3 + ct4) up to purely exponential evolutions. These features are explained and analyzed in the light of the recent findings on error growth (Nicolis et al, 2009). References Charney J G, Straus DM (1980) Form-Drag Instability, Multiple Equilibria and Propagating Planetary Waves in Baroclinic, Orographically Forced, Planetary Wave Systems. J Atmos Sci 37: 1157-1176. Nicolis C, Perdigao RAP, Vannitsem S (2009) Dynamics of

  15. Quantifying predictability variations in a low-order ocean-atmosphere model: A dynamical systems approach

    SciTech Connect

    Nese, J.M. ); Dutton, J.A. )

    1993-02-01

    A dynamical systems approach is used to quantify the predictability of weather and climatic states of a low-order, moist general circulation model. The effects on predictability of incorporating a simple oceanic circulation are evaluated. The predictability and structure of the model attractors are compared using Lyapunov exponents, local divergence rates, and the correlation and Lyapunov dimensions. Lyapunov exponents quantify global predictability by measuring the mean rate of growth of small perturbations on an attractor, while local divergence rates quantify temporal variations of this error growth rate and thus measure local, or instantaneous, predictability. Activating an oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10% while decreasing the variance of the largest local divergence rate by 20%. The correlation dimension of the attractor decreases slightly when an oceanic circulation is activated, while the Lyapunov dimension decreases more significantly because it depends directly on the Lyapunov exponents. The average predictability of annually averaged states is improved by 25% when an oceanic circulation develops, and the variance of the largest local divergence rate also decreases by 25%. One-third of the yearly averaged states have local error doubling times larger than 2 years. The dimensions of the attractors of the yearly averaged states are not significantly different than the dimensions of the attractors of the original model. The most important contribution of this article is the demonstration that the local divergence rates provide a concise quantification of the variations of predictability on attractors and an efficient basis for comparing their local predictability characteristics. Local divergence rates might be computed to provide a real-time estimate of local predictability to accompany an operational forecast.

  16. The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2

    NASA Astrophysics Data System (ADS)

    Bao, Qing; Lin, Pengfei; Zhou, Tianjun; Liu, Yimin; Yu, Yongqiang; Wu, Guoxiong; He, Bian; He, Jie; Li, Lijuan; Li, Jiandong; Li, Yangchun; Liu, Hailong; Qiao, Fangli; Song, Zhenya; Wang, Bin; Wang, Jun; Wang, Pengfei; Wang, Xiaocong; Wang, Zaizhi; Wu, Bo; Wu, Tongwen; Xu, Yongfu; Yu, Haiyang; Zhao, Wei; Zheng, Weipeng; Zhou, Linjiong

    2013-05-01

    The Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2) was used to simulate realistic climates and to study anthropogenic influences on climate change. Specifically, the FGOALS-s2 was integrated with Coupled Model Intercomparison Project Phase 5 (CMIP5) to conduct coordinated experiments that will provide valuable scientific information to climate research communities. The performances of FGOALS-s2 were assessed in simulating major climate phenomena, and documented both the strengths and weaknesses of the model. The results indicate that FGOALS-s2 successfully overcomes climate drift, and realistically models global and regional climate characteristics, including SST, precipitation, and atmospheric circulation. In particular, the model accurately captures annual and semi-annual SST cycles in the equatorial Pacific Ocean, and the main characteristic features of the Asian summer monsoon, which include a low-level southwestern jet and five monsoon rainfall centers. The simulated climate variability was further examined in terms of teleconnections, leading modes of global SST (namely, ENSO), Pacific Decadal Oscillations (PDO), and changes in 19th-20th century climate. The analysis demonstrates that FGOALS-s2 realistically simulates extra-tropical teleconnection patterns of large-scale climate, and irregular ENSO periods. The model gives fairly reasonable reconstructions of spatial patterns of PDO and global monsoon changes in the 20th century. However, because the indirect effects of aerosols are not included in the model, the simulated global temperature change during the period 1850-2005 is greater than the observed warming, by 0.6°C. Some other shortcomings of the model are also noted.

  17. The role of ocean-atmosphere interaction in shaping climate change in the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Nour-Eddine, Omrani; Keenlyside Noel, S.; Richard, Greatbatch

    2015-04-01

    Here, we present an analysis of North Atlantic ocean-atmosphere interaction in a warming climate, based on a long-term coupled general circulation model experiment forced by the RCP 8.5 (Representative Concentration Pathways 8.5) scenario. In addition to globally strongly increased SSTs as a direct response to the radiative forcing, the model run shows a distinct change of the local sea surface temperature (SST hereafter) pattern in the Gulf Stream region. This includes changes of the SST gradients in the region of the Gulf Stream SST front, likely as a response of the wind-driven part of the oceanic surface circulation. As a consequence of a massive slow-down of the Atlantic Meridional Overturning Circulation the northern North Atlantic furthermore shows a much weaker warming than the other oceans. The feedback of these changes on the atmosphere was studied in a set of sensitivity experiments based on the SST climatology of the coupled runs. The set consists of four runs: a control experiment based on the historical run, a run using the full SST from coupled RCP 8.5 run and two runs, where where we deconstructed the SST signal into a homogenous mean warming part and a local SST pattern change. In the region of the precipitation maximum in the historical run the future scenario shows an increase of absolute SSTs, but a a significant decrease in local precipitation. We show evidence that the local response in that region is connected to the (with respect to the historical run) weakened SST gradients rather than to the absolute SST. Consistently, the model shows enhanced precipitation north of this region, where the SST gradients are enhanced. The warming causes a decreased low-level convergence and upward motion in the region with reduced SST gradient. However, the signal restricts to the low and mid-troposphere and does not reach the higher model levels. There is little evidence for a large-scale response to the SST pattern changes in the Gulf Stream region

  18. The Somali current and the southwest monsoon: An ocean atmosphere instability

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1973-01-01

    The Somali current and the southwest monsoon are identified as arising from an ocean atmosphere instability which is associated with the low latitude variation of the Coriolis force. Data on the fall of isotherms, surface wind speed, ocean response to frictional force, and upwelling of cold water are discussed.

  19. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system

    NASA Astrophysics Data System (ADS)

    Fang, Jiabei; Yang, Xiu-Qun

    2015-12-01

    The structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean-atmosphere system are examined in this study, using the NCEP/NCAR atmospheric reanalysis, HadISST SST and Simple Ocean Data Assimilation data for 1960-2010. The midlatitude decadal anomalies associated with the Pacific Decadal Oscillation are identified, being characterized by an equivalent barotropic atmospheric low (high) pressure over a cold (warm) oceanic surface. Such a unique configuration of decadal anomalies can be maintained by an unstable ocean-atmosphere interaction mechanism in the midlatitudes, which is hypothesized as follows. Associated with a warm PDO phase, an initial midlatitude surface westerly anomaly accompanied with intensified Aleutian low tends to force a negative SST anomaly by increasing upward surface heat fluxes and driving southward Ekman current anomaly. The SST cooling tends to increase the meridional SST gradient, thus enhancing the subtropical oceanic front. As an adjustment of the atmospheric boundary layer to the enhanced oceanic front, the low-level atmospheric meridional temperature gradient and thus the low-level atmospheric baroclinicity tend to be strengthened, inducing more active transient eddy activities that increase transient eddy vorticity forcing. The vorticity forcing that dominates the total atmospheric forcing tends to produce an equivalent barotropic atmospheric low pressure north of the initial westerly anomaly, intensifying the initial anomalies of the midlatitude surface westerly and Aleutian low. Therefore, it is suggested that the midlatitude ocean-atmosphere interaction can provide a positive feedback mechanism for the development of initial anomaly, in which the oceanic front and the atmospheric transient eddy are the indispensable ingredients. Such a positive ocean-atmosphere feedback mechanism is fundamentally responsible for the observed decadal anomalies in the midlatitude North Pacific ocean-atmosphere

  20. The role of hydrological processes in ocean-atmosphere interactions

    SciTech Connect

    Webster, P.J.

    1994-11-01

    Earth is unique among the planets of the solar system in possessing a full hydrological cycle. The role of water in the evolution of planetary atmospheres is discussed. As the atmospheres of the planets developed and modified the early climates of the planets, only the climate trajectory of Earth intercepted the water phase transitions near the triplet point of water, thus allowing the full gamut of water forms to coexist. As a result, transitions between the water phases pervade the entire system and probably are responsible for the creation of a unique climate state. The interactions between the components of the climate system are enriched by the nonlinearity of the water phase transitions. The nonlinear character of the phase transitions of water suggests that the climate should be particularly sensitive to hydrological processes, especially in the tropics. Signatures of the nonlinearity are found in both the structures of the oceans and the atmosphere. Models of the ocean and atmospheric and oceanic data and models of the coupled system are used to perform systematic analyses of hydrological processes and their role in system interaction. The analysis is extended to consider the role of hydrological processes in the basic dynamics and thermodynamics of oceanic and atmospheric systems. The role hydrological processes play in determining the scale of the major atmospheric circulation patterns is investigated. Explanations are offered as to why large-scale convection in the tropical atmosphere is constrained to lie within the 28{degrees}C sea surface temperature contour and how hydrological processes are involved in interannual climate variability. The relative roles of thermal and haline forcing of the oceanic thermohaline circulation are discussed. Hydrological processes are considered in a global context by the development of a conceptual model of a simple planetary system. 94 refs., 38 figs., 5 tabs.

  1. The Impact of Cloud Seeding of Marine Stratocumulus on the Ocean Atmosphere System

    NASA Astrophysics Data System (ADS)

    Rasch, P. J.; Chen, C.; Latham, J.

    2007-12-01

    atmospheric circulations, and they are also areas of oceanic upwelling, and participate in the many aspects of upper ocean dynamical circulations, influencing for example, the source regions of the cold tongue of SSTs that extends into the central pacific, an area important for features like ENSO. In this study we will describe our preliminary findings about the consequences of geoengineering of marine stratus and stratocumulus to the ocean atmosphere system through simulations with slab ocean and fully coupled version of the NCAR Community Climate Sytem Model.

  2. Meridional thermal field of a coupled ocean-atmosphere system: a conceptual model

    NASA Astrophysics Data System (ADS)

    Ou, Hsien-Wang

    2006-05-01

    This paper constitutes the author's continuing effort in the construction of a minimal theory of the earth's climate. In an earlier paper published in the Journal of Climate in 2001, this author has derived the global-mean fields of an aquatic planet forced by the solar insolation, which provide the necessary constraints for the present derivation of the meridional thermal field. The model closure invokes maximized entropy production (MEP), a thermodynamic principle widely used in turbulence and climate studies. Based on differing convective regimes of the ocean and atmosphere, both fluids are first reduced two thermal masses with aligned fronts, consistent with a minimal description of the observed field. Subjected to natural bounds, a robust solution is then found, characterized by an ice-free ocean, near-freezing cold fluid masses, mid-latitude fronts, and comparable ocean and atmosphere heat transports. The presence of polar continents, however, sharply reduces the ocean heat transport outside the tropics, but leaves the thermal field largely unchanged. Given the limitation of an extremely crude model, the deduced thermal field nonetheless seems sensible, suggesting that the model has captured the physics for a minimal account of the observed field. Together with the above-mentioned paper, the model reinforces the pre-eminent role of the triple point of water in stabilizing the surface temperature - against changing external condition. Such internal control is made possible by the turbulent nature of the climate fluids, which necessitates a selection rule based on extremization.

  3. Numerical simulation of large-scale ocean-atmosphere coupling and the ocean's role in climate

    NASA Technical Reports Server (NTRS)

    Gates, W. L.

    1983-01-01

    The problem of reducing model generated sigma coordinate data to pressure levels is considered. A mass consistent scheme for performing budget analyses is proposed, wherein variables interpolated to a given pressure level are weighted according to the mass between a nominal pressure level above and either a nominal pressure level below or the Earth's surface, whichever is closer. The method is applied to the atmospheric energy cycle as simulated by the OSU two level atmospheric general circulation model. The results are more realistic than sigma coordinate analyses with respect to eddy decomposition, and are in agreement with the sigma coordinate evaluation of the numerical energy sink. Comparison with less sophisticated budget schemes indicates superiority locally, but not globally.

  4. Ocean-Atmosphere Coupling associated with Typhoons/ Hurricane and their impacts on marine ecosystem (Invited)

    NASA Astrophysics Data System (ADS)

    Tang, D. L.

    2010-12-01

    DanLing TANG South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou, China Phone (86) 13924282728; Fax/Tel: (86) 020 89023203 (off), 020 89023191 (Lab),Email,lingzistdl@126.com, Typhoon / hurricane activities and their impacts on environments have been strengthening in both intensity and spatial coverage, along with global changes in the past several decades; however, our knowledge about impact of typhoon on the marine ecosystem is very scarce. We have conducted a series studies in the South China Sea (SCS), investigating phytoplankton, sea surface temperature (SST), fishery data and related factors before, during, and after typhoon. Satellite remote sensing and in situ observation data obtained from research cruise were applied. Our study showed that typhoon can support nutrients to surface phytoplankton by inducing upwelling and vertical mixing, and typhoon rain can also nourish marine phytoplankton; both typhoon winds and rain can enhance production of marine phytoplankton. Slow-moving typhoon induced phytoplankton blooms of higher Chlorophyll-a (Chl-a), the strong typhoon induced phytoplankton blooms of a large area. We conservatively estimate that typhoon periods may account for 3.5% of the annual primary production in the oligotrophic SCS. It indicated that one typhoon may induce transport of nutrient-rich water from depth and from the coast to offshore regions, nourishing phytoplankton biomass. More observations confirmed that typhoon can induce cold eddy, and cold eddy can support eddy-shape phytoplankton bloom by upwelling. We have suggested a new index to evaluate typhoon impact on marine ecosystem and environment. This is the first time to report moving eddies and eddy-shape phytoplankton blooms associated with tropical cyclone, the relationship among tropical cyclone, cold eddy upwelling and eddy-shape phytoplankton bloom may give some viewpoint on the tropical cyclone's affection on the mesoscale circulation. Those studies may help better understand the mechanism of typhoon impacts on marine ecosystem, and the role of typhoon in the global environmental changes. The present research was supported by the following grants awarded to D.L.TANG: (1) National Natural Science Foundation of China (40976091, 40811140533) and Guangdong Natural Science Foundation, China (8351030101000002); (2) Chinese Academy of Sciences (kzcx2-yw-226 and LYQ200701);

  5. Rapid Climate Change Over The North Atlantic In A Coupled Ocean-atmosphere Model

    NASA Astrophysics Data System (ADS)

    Graham, N.

    An episode of rapid climate change is observed in a 300-year control integration of the National Centers for Atmospheric Research (NCAR) Climate System Model [CSM; Boville and Gent (1998), Journal of Climate, 11, 1115-1130 and articles in the same edition]. The changes are associated with the formation of sea ice over the Labrador sea and expansion into the North Atlantic south of Greenland. The sea ice expan- sion begins approximately 110 years into the simulation, and is accompanied by ma- jor changes in regional climate and more modest changes in the far field. Over the Labrador Sea winter surface temperature decline more than 10C in 8 years with total decreases of up to 15C. Over Greenland winter temperatures decrease by approxi- mately 6C, over the British Isles by 1C and over Northern Europe by approximately 0.75C. Changes in precipitation are less pronounced but are particularly clear (in- creases) over the British Isles. The cooling is also marked by changes in the winter circulation over the western North Atlantic, where sea level pressure rises of more than 10 hPa occurred markedly change the configuration of the Icelandic Low. Be- yond northern Europe associated climate changes are in some cases detectable but muted. The climate system recovers after approximately 90 years and over a period of about 10 years returns to a state similar to that of the initial 100 years. The causes of the rapid appearance of ice have not year been investigated, however summer SSTs in the Labrador Sea are cooling in the years prior to the appearance of winter sea ice suggesting that changes in ocean circulation may be involved. The rapid expansion of the sea ice once it began to appear suggests some degree of local positive feedback, possibly due to the lack of recovery of summer SSTs after the sea- sonal melting. The simulated climate shift shares features similar to those seen in the cooling episode of 8.2 kyrs ago [Alley, R.B. et al (1997), Geology, 25, 483-486; Von Grafenstein et al (1998), Climate Dynamics, 14, 73-81]. These results are particularly interesting because they allow the spatial scales and character of the impacts on the climate system to be characterized and because the changes arose from internal model dynamics rather than imposed changes.

  6. Coupled ocean-atmosphere loss of marine refractory dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Kieber, David J.; Keene, William C.; Frossard, Amanda A.; Long, Michael S.; Maben, John R.; Russell, Lynn M.; Kinsey, Joanna D.; Tyssebotn, Inger Marie B.; Quinn, Patricia K.; Bates, Timothy S.

    2016-03-01

    The oceans hold a massive quantity of organic carbon, nearly all of which is dissolved and more than 95% is refractory, cycling through the oceans several times before complete removal. The vast reservoir of refractory dissolved organic carbon (RDOC) is a critical component of the global carbon cycle that is relevant to our understanding of fundamental marine biogeochemical processes and the role of the oceans in climate change with respect to long-term storage and sequestration of atmospheric carbon dioxide. Here we show that RDOC includes surface-active organic matter that can be incorporated into primary marine aerosol produced by bursting bubbles at the sea surface. We propose that this process will deliver RDOC from the sea surface to the atmosphere wherein its photochemical oxidation corresponds to a potentially important and hitherto unknown removal mechanism for marine RDOC.

  7. Ocean-Atmosphere Heat Exchange: Limitations of Currently Available Datasets and Potential for Future Progress (Solicited Talk)

    NASA Astrophysics Data System (ADS)

    Josey, Simon

    2016-04-01

    The flux of heat between the ocean and the atmosphere is a key element of the global climate system, central to variations in the ocean heat budget and variations in surface temperature. Factors determining the heat exchange will be discussed using models and observations with an emphasis on the period 1990-2015. This period include changes associated with the potential warming hiatus and more recently the major El Nino event that developed in 2015. The ability of leading datasets to reliably estimate surface flux changes is limited by a number of factors and these will be discussed in the context of variations in other components of the climate system. Progress towards obtaining more reliable climatological estimates of the heat exchange will also be considered with reference to recent developments using residual techniques and ocean reanalyses in addition to atmospheric reanalysis, remote sensing and ship based datasets. In addition, use of surface meteorological fields to generate ocean model forcing will be examined together with recent developments using high resolution coupled ocean-atmosphere models. Finally, the potential for significant advances in regions of major uncertainty using the growing network of surface flux buoys will be discussed with a focus on two moorings now in place in the Southern Ocean.

  8. Decadal prediction of Colorado River streamflow anomalies using ocean-atmosphere teleconnections

    NASA Astrophysics Data System (ADS)

    Switanek, Matthew B.; Troch, Peter A.

    2011-12-01

    The Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO) time series are used to forecast a decade ahead streamflow anomalies in the upper Colorado River at Lee's Ferry. In the instrumental record, we obtain unusually high decadal forecast skill that is statistically significant at the 95% confidence level, suggesting strong ocean-atmosphere-land teleconnection. In order to test whether such teleconnection existed in the past, we compare the retrospective forecast skill to the skills obtained using the available ocean-atmosphere teleconnection and streamflow reconstructions derived from tree rings. We find much lower skill in the reconstructed record. Using frequency analysis, we show that the streamflow and sea surface temperature oscillations in the instrumental records all have dominant low frequency periodicities (>35 years) that explain much of the total variance. However, such dominant periodicities do not appear in the power spectra of the reconstructed records of AMO, PDO and streamflow. Given that these dominant low periodicities are likely responsible for the high prediction skill in the instrumental record, it remains uncertain whether reliable decadal streamflow predictions in the upper Colorado River basin will be possible in the years ahead.

  9. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data - HOAPS-3

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Fennig, K.; Klepp, C.; Bakan, S.; Graßl, H.; Schulz, J.

    2010-05-01

    The availability of microwave instruments on satellite platforms allows the retrieval of essential water cycle components at high quality for improved understanding and evaluation of water processes in climate modelling. HOAPS-3, the latest version of the satellite climatology "Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data" provides fields of turbulent heat fluxes, evaporation, precipitation, freshwater flux and related atmospheric variables over the global ice-free ocean. This paper describes the content, methodology and retrievals of the HOAPS climatology. A sophisticated processing chain, including all available Special Sensor Microwave Imager (SSM/I) instruments aboard the satellites of the Defense Meteorological Satellites Program (DMSP) and careful inter-sensor calibration, ensures a homogeneous time-series with dense data sampling and hence detailed information of the underlying weather situations. The completely reprocessed data set with a continuous time series from 1987 to 2005 contains neural network based algorithms for precipitation and wind speed and Advanced Very High Resolution Radiometer (AVHRR) based SST fields. Additionally, a new 85 GHz synthesis procedure for the defective SSM/I channels on DMSP F08 from 1989 on has been implemented. Freely available monthly and pentad means, twice daily composites and scan-based data make HOAPS-3 a versatile data set for studying ocean-atmosphere interaction on different temporal and spatial scales. HOAPS-3 data products are available via http://www.hoaps.org.

  10. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data - HOAPS-3

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Fennig, K.; Klepp, C.; Bakan, S.; Graßl, H.; Schulz, J.

    2010-09-01

    The availability of microwave instruments on satellite platforms allows the retrieval of essential water cycle components at high quality for improved understanding and evaluation of water processes in climate modelling. HOAPS-3, the latest version of the satellite climatology "Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data" provides fields of turbulent heat fluxes, evaporation, precipitation, freshwater flux and related atmospheric variables over the global ice-free ocean. This paper describes the content, methodology and retrievals of the HOAPS climatology. A sophisticated processing chain, including all available Special Sensor Microwave Imager (SSM/I) instruments aboard the satellites of the Defense Meteorological Satellites Program (DMSP) and careful inter-sensor calibration, ensures a homogeneous time-series with dense data sampling and hence detailed information of the underlying weather situations. The completely reprocessed data set with a continuous time series from 1987 to 2005 contains neural network based algorithms for precipitation and wind speed and Advanced Very High Resolution Radiometer (AVHRR) based SST fields. Additionally, a new 85 GHz synthesis procedure for the defective SSM/I channels on DMSP F08 from 1988 on has been implemented. Freely available monthly and pentad means, twice daily composites and scan-based data make HOAPS-3 a versatile data set for studying ocean-atmosphere interaction on different temporal and spatial scales. HOAPS-3 data products are available via http://www.hoaps.org.

  11. Impact of ice cover in the Arctic on ocean-atmosphere turbulent heat fluxes

    NASA Astrophysics Data System (ADS)

    Selivanova, J. V.; Tilinina, N. D.; Gulev, S. K.; Dobrolubov, S. A.

    2016-01-01

    The impact of spatiotemporal variability of the ice-covered area in the Arctic on the value and interannual dynamics of turbulent heat fluxes on the ocean-atmosphere border is considered. An expected inverse dependence of the heat fluxes integrated over the Arctic area and the area of ice is not detected. The largest interannual oscillations of heat fluxes from the ocean to the atmosphere are timed to the varying position of the ice edge and, to a lesser extent, are connected with total area of ice. The role of the marginal ice zone in oceanic heat transfer is analyzed. In particular, it is shown that while moving along the marginal zone from the ice-free surface to the surface with an ice concentration of 0.8, latent and sensible heat fluxes are reduced by a factor of 2.5-3.

  12. The Influence of Indian Ocean Atmospheric Circulation on Warm Pool Hydroclimate During the Holocene Epoch

    NASA Technical Reports Server (NTRS)

    Tierney, J.E.; Oppo, D. W.; LeGrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.

    2012-01-01

    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.

  13. Synchronized Dipole-Like Oscillations' Ocean-Atmosphere Interactions and Their Centennial-Scale Persistence

    NASA Astrophysics Data System (ADS)

    Reischmann, E.; Oh, J.; Rial, J. A.

    2014-12-01

    Dipole phenomenon in ocean-atmospheric variability, such as the Indian Ocean Dipole and the El Niño Southern oscillation, which are also often called teleconnections, have long been recognized as important influences on local climate. This study presents a multi-faceted analysis of several newly identified sea surface temperature dipole locations, located via the traditional empirical orthogonal function analysis, as well as cross correlation analysis, of sea surface data from just over the last century. We begin with the analysis of two dipole modes ranged over the high latitudes in the Southern Hemisphere (located in the South Pacific and South Indian Ocean). These dipole modes have inter-annual periodicity as well as seasonal modes, with clear impacts on local, continental precipitation. Specifically, this study shows synchronization of sea surface temperature dipoles, their interactions with sea level pressure and winds, and makes steps towards understanding the dynamics of their connections via deconvolution of their respective climate signals. In order to study these effects, we define an index representing the time evolution of each dipole mode to follow the teleconnections of the sea surface temperature dipole modes with respect to other variables. This also allows for comparison with known, major, climate indices, allowing us to establish the effects of these oscillations as well as demonstrate the uniqueness of our new dipoles from these overarching influences. This study provides a more in depth understanding of teleconnection ocean-atmosphere dynamics, their effects on their local climates and distant climates, as well as their persistence over the previous century.

  14. Ocean-atmosphere interaction in the seasonal to decadal variations of tropical Atlantic climate

    NASA Astrophysics Data System (ADS)

    Okumura, Yuko

    The tropical Atlantic ocean and atmosphere display distinct seasonal cycles with considerable year-to-year variations superimposed. The present study investigates processes and mechanisms important for tropical Atlantic climate and its variability, using numerical models and observational data, with an emphasis on ocean-atmosphere interaction. For the seasonal cycle, topics of particular interest are the rapid development of the monsoon-cold tongue complex in boreal summer and the oceanic response to the secondary acceleration of equatorial easterly winds in November; for interannual-to-decadal variability, they are the effect of the November thermocline shoaling on the equatorial zonal mode and the atmospheric response to the meridional sea surface temperature (SST) dipole mode. Atmospheric model experiments indicate that interaction between the equatorial cold tongue and the West African monsoon is essential for the rapid seasonal transition from boreal spring to summer. Mechanisms are identified for the summertime acceleration of equatorial easterly wind, which contributes to rapid equatorial cooling by forcing upwelling and thermocline shoaling. Analysis of high-resolution satellite/in-situ data reveals the equatorial SST change associated with the November easterly wind acceleration and thermocline shoaling. This overlooked climatic feature is further shown to give rise to a new mode of tropical Atlantic variability---Atlantic Nino II---which resembles the boreal summer zonal mode but peaks in November--December, and is statistically independent of the preceding summer events. Atlantic Nino II significantly affects interannual rainfall variations in the coastal Congo-Angola region, and evolves into the meridional mode in the following spring, affecting rainfall variations in northeast Brazil. It thus fills an important climate predictability gap in time, during the season for which the local variability was otherwise poorly understood. The atmospheric model

  15. Decadal variability of the Tropical Atlantic Ocean Surface Temperature in shipboard measurements and in a Global Ocean-Atmosphere model

    NASA Technical Reports Server (NTRS)

    Mehta, Vikram M.; Delworth, Thomas

    1995-01-01

    processes may be responsible for the choice of the decadal and multidecadal timescales. Finally, it must be emphasized that the GFDL coupled ocean-atmosphere model generates the decadal and multidecadal timescale variability without any externally applied force, solar or lunar, at those timescales.

  16. The relative role of ocean-atmosphere interaction and African easterly waves in the generation and development of Tropical cyclones in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Cabos, William; Sein, Dmitry; Hodges, Kevin; Jacob, Daniela

    2016-04-01

    We use the regionally coupled ocean - atmosphere model ROM and its atmospheric component REMO in standalone configuration in order to assess the relative role of ocean feedbacks and the African easterly waves in the simulation of tropical cyclonic activity in the Atlantic ocean. To this end, a number of coupled and uncoupled simulations forced by ERA-Interim boundary conditions have been carried out. In one set of simulations, the atmospheric domain includes the Northern Africa land masses, where the easterly waves are formed. In a second set of simulations, the easterly waves are taken from the ERA Interim reanalysis, as atmospheric domain excludes explicitly the African land masses. We study the statistics of modeled tracks of the tropical cyclones in the simulations. We found that the coupling has a strong impact on the number of tropical cyclones generated in the Northern Tropical Atlantic. In the coupled run it was close to the observations, while in the uncoupled runs the number of tropical cyclones was strongly overestimated. The coupling also influences the simulated position of the ITCZ.

  17. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    NASA Technical Reports Server (NTRS)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  18. Ocean-atmosphere forcing of summer streamflow drought in Great Britain

    NASA Astrophysics Data System (ADS)

    Kingston, D. G.; Fleig, A. K.; Tallaksen, L.; Hannah, D. M.

    2011-12-01

    Droughts are high impact events that have substantial implications for both human and natural systems. As such, improved understanding of the hydroclimatological processes involved in drought development is a major scientific imperative of direct practical relevance. To address this research need, this paper investigates the chain of processes linking antecedent ocean-atmosphere variation to summer streamflow drought in Great Britain. Analyses are structured around four drought regions (defined using hierarchical cluster analysis) for the period 1964-2001. Droughts are identified using a novel Regional Drought Area Index. Composite analysis of monthly sea surface temperatures (SSTs) that occur prior to drought onset reveals the occurrence of a horseshoe-shaped pattern of North Atlantic SST anomalies that is similar to the pattern of SST anomalies associated with the North Atlantic Oscillation (NAO). Patterns in geopotential height and wind fields prior to drought onset support the influence of the NAO on drought development, but also demonstrate that North Atlantic climate variation prior to drought occurrence is too complex to be described solely by indices of the NAO. In revealing new information on the chain of processes leading to the development of hydrological drought in Great Britain, this paper has the potential to inform drought forecasting research and so improve drought preparedness and management.

  19. AMS Observations over Coastal California from the Biological and Oceanic Atmospheric Study (BOAS)

    NASA Astrophysics Data System (ADS)

    Bates, K. H.; Coggon, M. M.; Hodas, N.; Negron, A.; Ortega, A. M.; Crosbie, E.; Sorooshian, A.; Nenes, A.; Flagan, R. C.; Seinfeld, J.

    2015-12-01

    In July 2015, fifteen research flights were conducted on a US Navy Twin Otter aircraft as part of the Biological and Oceanic Atmospheric Study (BOAS) campaign. The flights took place near the California coast at Monterey, to investigate the effects of sea surface temperature and algal blooms on oceanic particulate emissions, the diurnal mixing of urban pollution with other airmasses, and the impacts of biological aerosols on the California atmosphere. The aircraft's payload included an aerosol mass spectrometer (AMS), a differential mobility analyzer, a cloud condensation nuclei counter, a counterflow virtual impactor, a cloudwater collector, and two instruments designed to detect biological aerosols - a wideband integrated biological spectrometer and a SpinCon II - as well as a number of meteorology and aerosol probes, two condensation particle counters, and instruments to measure gas-phase CO, CO2, O3, and NOx. Here, we describe in depth the objectives and outcomes of BOAS and report preliminary results, primarily from the AMS. We detail the spatial characteristics and meteorological variability of speciated aerosol components over a strong and persistent bloom of Pseudo-Nitzschia, the harmful algae that cause 'red tide', and report newly identified AMS markers for biological particles. Finally, we compare these results with data collected during BOAS over urban, forested, and agricultural environments, and describe the mixing observed between oceanic and terrestrial airmasses.

  20. Upper Colorado River and Great Basin streamflow and snowpack forecasting using Pacific oceanic-atmospheric variability

    NASA Astrophysics Data System (ADS)

    Oubeidillah, Abdoul A.; Tootle, Glenn A.; Moser, Cody; Piechota, Thomas; Lamb, Kenneth

    2011-11-01

    SummaryWater managers in western U.S., including areas such as the State of Utah, are challenged with managing scarce resources and thus, rely heavily on forecasts to allocate and meet various water demands. The need for improved streamflow and snowpack forecast models in the Upper Colorado River and Great Basin is of the utmost importance. In this research, the use of oceanic and climatic variables as predictors to improve the long lead-time (three to nine months) forecast of streamflow and snowpack was investigated. Singular Value Decomposition (SVD) analysis was used to identify a region of Pacific Ocean SSTs and a region of 500 mbar geopotential height (Z 500) that were teleconnected with streamflow (and snowpack) in Upper Colorado River and Great Basin headwaters. The resulting Pacific Ocean SSTs and Z 500 regions were used to create indices that were then used as predictors in a non-parametric forecasting model. The majority of forecasts resulted in positive statistical skill, which indicated an improvement of the forecast over the climatology or no-skill forecast. The results indicated that derived indices from Pacific Ocean SSTs were better suited for long lead-time (six to nine month) forecasts of streamflow (and snowpack) while the derived indices from Z 500 improved short-lead time (3 month) forecasts. In all, the results of the forecast model indicated that incorporating Pacific oceanic-atmospheric climatic variability in forecast models can lead to improved forecasts for both streamflow and snowpack.

  1. Ocean-atmosphere forcing of centennial hydroclimatic variability in the Pacific Northwest

    USGS Publications Warehouse

    Steinman, Byron A.; Abbott, Mark B.; Mann, Michael E.; Ortiz, Joseph D.; Feng, Song; Pompeani, David P.; Stansell, Nathan D.; Anderson, Lesleigh; Finney, Bruce P.; Bird, Broxton W.

    2014-01-01

    Reconstructing centennial timescale hydroclimate variability during the late Holocene is critically important for understanding large-scale patterns of drought and their relationship with climate dynamics. We present sediment oxygen isotope records spanning the last two millennia from 10 lakes, as well as climate model simulations, indicating that the Little Ice Age was dry relative to the Medieval Climate Anomaly in much of the Pacific Northwest of North America. This pattern is consistent with observed associations between the El Niño Southern Oscillation (ENSO), the Northern Annular Mode and drought as well as with proxy-based reconstructions of Pacific ocean-atmosphere variations over the past 1000 years. The large amplitude of centennial variability indicated by the lake data suggests that regional hydroclimate is characterized by longer-term shifts in ENSO-like dynamics, and that an improved understanding of the centennial timescale relationship between external forcing and drought conditions is necessary for projecting future hydroclimatic conditions in western North America.

  2. Biogeochemical processes in the ocean and at the ocean-atmosphere interface

    NASA Astrophysics Data System (ADS)

    Saliot, A.

    2006-12-01

    The ocean can be considered as a chemical reactor, whose energy sources are the various matter inputs originating from the continent and the ocean. Among various elements, carbon plays a key role as it is involved in both inorganic form as CO{2} and organic forms such as compounds synthesized through photosynthesis. Thus, the ocean is presently an active actor in climate change and ocean-atmosphere exchange processes. This review will present some insights into: 1) schematic representations of the carbon cycle, with emphasis on CO{2} exchange between the ocean and the atmosphere and to the organic parts of this cycle, 2) concepts relative to the biological pump of CO{2}, with a detailed view on photosynthesis, 3) concepts leading to the existence of oceanic provinces and associated productivity for open sea and coastal areas, 4) addressing the question: what is the net efficiency of the biological pump of CO{2 }in terms of exportation of organic carbon and sequestration in sediments and 5) specific aspects on biogeochemical processes occurring at the boundary between the ocean and the atmosphere.

  3. Assessing the capability of EOS sensors in measuring ocean-atmosphere moisture exchange

    NASA Technical Reports Server (NTRS)

    Liu, W. T.

    1985-01-01

    As part of the Science Synergism Studies to identify interdisciplinary Scientific studies, which could be addressed by the Environmental Observing System (EOS), the techniques being developed to measure ocean-atmosphere moisture exchanges using satellite sensors were evaluated. Studies required to use sensors proposed for EOS were examined. A method has been developed to compute the moisture flux using the wind speed, sea surface temperature, and preciptable water measured by satellite sensors. It relies on a statistical model which predicts surface-level humidity from precipitable water. The Scanning Multichannel Microwave Radiometer (SMMR) measures all 3 parameters and was found to be sensitive to the annual cycle and large interannual variations such as the 1982 to 1983 El Nino. There are systematic differences between geophysical parameters measured by Nimbus/SMMR and in situ measurements. After quadratic trends and crosstalks were removed from the parameters through multivariate regressions, the latent heat fluxes computed from SMMR agree with those computed from ship reports to within 30 W/sq m. The poor quality of ship reports may be the cause of a portion of this scatter. Similar results are found using SEASAT/SMMR data. When the scatterometer winds were used instead of the SMMR winds, the difference between the satellite fluxes and the ship fluxes was reduced.

  4. The Mobile Buoy: An Autonomous Surface Vehicle for Integrated Ocean-Atmosphere Studies

    NASA Astrophysics Data System (ADS)

    Orton, P. M.; McGillis, W. R.; Moisan, J. R.; Higinbotham, J. R.; Schirtzinger, C.

    2009-05-01

    A solar-powered Autonomous Surface Vessel (ASV) called OASIS (Ocean-Atmosphere Sensor Integration System) has been developed that makes measurements spanning the ocean mixed layer and lower atmospheric surface layer. An OASIS ASV can be remotely commanded to act as a boat, drifter, or untethered buoy (when programmed to keep at a station). OASIS has performed cross-shelf transect surveys within the mid-Atlantic Bight (63 km), Gulf of Maine, and additional field tests to develop techniques to map harmful algal blooms. One example of the utility of the OASIS ASV is with carbon dioxide (CO2) fluxes - predicting future climate change will require that scientists understand what controls exchanges of carbon dioxide between the atmosphere and ocean interior. OASIS measurements from the Gulf of Maine transect included surface ocean CO2 partial pressures from 320 to 670 μatm, air-sea CO2 sea-to-air fluxes from -3.2 to +12.2 mmol m2 d-1, upper ocean currents (0-50 m depth), surface ocean fluorescence, temperature and salinity, and several additional measurements. We are also installing a cabled, autonomous ocean mixed- layer hydrographic profiling system for future deployments. The complete integration of atmosphere and ocean measurements onboard an autonomous navigating vehicle is a key advance for ocean observation technology and observational science programs. ASVs have great potential for ocean and climate studies, and can become a major component of earth observation systems in the coming decades.

  5. Upper Colorado River and Great Basin Streamflow and Snowpack Forecasting using Pacific Oceanic-Atmospheric Variability

    NASA Astrophysics Data System (ADS)

    Aziz, O. A.; Tootle, G. A.; Moser, C.; Piechota, T. C.; Lamb, K. W.; Kao, S.

    2011-12-01

    Water managers in western U.S., including areas such as the State of Utah, are challenged with managing scarce resources and thus, rely heavily on forecasts to allocate and meet various water demands. The need for improved streamflow and snowpack forecast models in the Upper Colorado River and Great Basin is of the utmost importance. In this research, the use of oceanic and climatic variables as predictors to improve the long lead-time (three to nine months) forecast of streamflow and snowpack was investigated. Singular Value Decomposition (SVD) analysis was used to identify a region of Pacific Ocean SSTs and a region of 500 mbar geopotential height (Z500) that were teleconnected with streamflow (and snowpack) in Upper Colorado River and Great Basin headwaters. The resulting Pacific Ocean SSTs and Z500 regions were used to create indices that were then used as predictors in a non-parametric forecasting model. The majority of forecasts resulted in positive statistical skill, which indicates an improvement over the climatology or no-skill forecast (i.e., ranking of events using the Weibull distribution). The results indicated that derived indices from Pacific Ocean SSTs were better suited for long lead-time (six to nine month) forecasts of streamflow (and snowpack) while the derived indices from Z500 improved short-lead time (3 month) forecasts. In all, the results of the forecast model indicated that incorporating Pacific oceanic-atmospheric climatic variability in forecast models can lead to improved forecasts for both streamflow and snowpack. This method will be applied and tested at several selected hydropower projects in the study area, and some preliminary results will be shown.

  6. Evaluating the relationship between oceanic-atmospheric indices and variability in the streamflow: A continental U.S. study

    NASA Astrophysics Data System (ADS)

    Sagarika, S.; Kalra, A.; Ahmad, S.

    2013-12-01

    Oceanic-atmospheric indices and variability has been found to influence the hydrological process. This study evaluates the possible influences of two indicators of oceanic-atmospheric variability i.e., sea surface temperatures (SSTs) and 500 mbar geopotential height (Z500) index on 864 unimpaired streamflows stations categorized according to hydrologic unit codes for a 60 year period from 1950 to 2010 in the continental United States. Singular Value Decomposition (SVD) is used to evaluate the spatio-temporal association between oceanic-atmospheric indices and streamflow. A lead-time approach of six months i.e., seasonal average of monthly SSTs and Z500 for April to September of previous year was used to obtain the temporal expansion series between the oceanic-atmospheric indicators and water year streamflow values. This was followed by an interdecadal-temporal evaluation of the Pacific and Atlantic Ocean based warm and cold phases of the Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO). This resulted in the identification of new regions of highly correlated SSTs and Z500 that may not be represented by conservative index regions of El Niño Southern Oscillation (ENSO), PDO, and AMO. Results showed the Pacific SSTs had strong correlations with the Midwest, southern South-Atlantic-Gulf and Pacific Northwest regions, where as the Atlantic SSTs showed strong correlations with New England, South-Atlantic-Gulf and Upper and Lower Colorado regions. The Pacific and Atlantic Z500 showed strong correlations with the Midwest, New England, Souris-Red-Rainy, Arkansas-White-Red, and Texas-Gulf regions. The PDO warm phase showed strong correlations with most of California, Upper and Lower Colorado, and South-Atlantic-Gulf regions; the PDO cold phases showed correlations with Pacific Northwest, eastern Ohio, and South-Atlantic-Gulf regions. The warm phase of AMO showed correlations with Midwest, Souris-Red-Rainy, Upper Mississippi, Arkansas

  7. Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures

    NASA Astrophysics Data System (ADS)

    Ackerley, Duncan; Dommenget, Dietmar

    2016-06-01

    General circulation models (GCMs) are valuable tools for understanding how the global ocean-atmosphere-land surface system interacts and are routinely evaluated relative to observational data sets. Conversely, observational data sets can also be used to constrain GCMs in order to identify systematic errors in their simulated climates. One such example is to prescribe sea surface temperatures (SSTs) such that 70 % of the Earth's surface temperature field is observationally constrained (known as an Atmospheric Model Intercomparison Project, AMIP, simulation). Nevertheless, in such simulations, land surface temperatures are typically allowed to vary freely, and therefore any errors that develop over the land may affect the global circulation. In this study therefore, a method for prescribing the land surface temperatures within a GCM (the Australian Community Climate and Earth System Simulator, ACCESS) is presented. Simulations with this prescribed land surface temperature model produce a mean climate state that is comparable to a simulation with freely varying land temperatures; for example, the diurnal cycle of tropical convection is maintained. The model is then developed further to incorporate a selection of "proof of concept" sensitivity experiments where the land surface temperatures are changed globally and regionally. The resulting changes to the global circulation in these sensitivity experiments are found to be consistent with other idealized model experiments described in the wider scientific literature. Finally, a list of other potential applications is described at the end of the study to highlight the usefulness of such a model to the scientific community.

  8. OASIS: Ocean-Atmosphere-Sea-Ice-Snowpack Interactions in Polar Regions

    NASA Astrophysics Data System (ADS)

    Bottenheim, J. W.; Abbatt, J.; Beine, H.; Berg, T.; Bigg, K.; Domine, F.; Leck, C.; Lindberg, S.; Matrai, P.; MacDonald, R.; McConnell, J.; Platt, U.; Raspopov, O.; Shepson, P.; Shumilov, O.; Stutz, J.; Wolff, E.

    2004-05-01

    While Polar regions encompass a large part of the globe, little attention has been paid to the interactions between the atmosphere and its extensive snow-covered surfaces. Recent discoveries in the Arctic and Antarctic show that the top ten centimeters of snow is not simply a white blanket but in fact is a surprisingly reactive medium for chemical reactions in the troposphere. It has been concluded that interlinked physical, chemical, and biological mechanisms, fueled by the sun and occurring in the snow, are responsible for depletion of tropospheric ozone and gaseous mercury. At the same time production of highly reactive compounds (e.g. formaldehyde, nitrogen dioxide) has been observed at the snow surface. Air-snow interactions also have an impact on the chemical composition of the snow and hence the nature and amounts of material released in terrestrial/marine ecosystems during the melting of seasonal snow-packs. Many details of these possibly naturally occurring processes are yet to be discovered. For decades humans have added waste products including acidic particles (sulphates) and toxic contaminants such as gaseous mercury and POPs (persistent organic pollutants) to the otherwise pristine snow surface. Virtually nothing is known about transformations of these contaminants in the snowpack, making it impossible to assess the risk to the polar environment, including humans. This is especially disconcerting when considering that climate change will undoubtedly alter the nature of these transformations involving snow, ice, atmosphere, ocean, and, ultimately, biota. To address these topics an interdisciplinary group of scientists from North America, Europe and Japan is developing a set of coordinated research activities under the banner of the IGBP programs IGAC and SOLAS. The program of Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) interactions has been established with a mission statement aimed at determining the impact of OASIS chemical exchange on tropospheric

  9. Decadal trends of ocean and land carbon fluxes from a regional joint ocean-atmosphere inversion

    NASA Astrophysics Data System (ADS)

    Steinkamp, K.; Gruber, N.

    2015-12-01

    From 1980 until 2010, the combined CO2 sink strengths of ocean and land increased by nearly 50% (-0.55 Pg C yr-1 decade-1), but the spatial distribution of this trend is not well known. We address this by performing a joint cyclostationary ocean-atmosphere inversion for the three decades 1980-1989, 1990-1999, and 2000-2008, using only carbon data from the ocean and atmosphere as constraints, i.e., without applying any prior information about the land fluxes. We find that in the inversion, most of the 30 year sink trend stems from the ocean (-0.44 Pg C yr-1 decade-1). The contribution of the terrestrial biosphere is commensurably smaller but has more decadal variability. First, the land sink strength intensified in the 1990s by 0.4 (±0.3) Pg C yr-1 compared to the 1980s but then weakened slightly by 0.2 (±0.4) Pg C yr-1 in the 2000s. The different land regions contributed very variedly to these global trends. While the northern extratropical land acted as an increasing carbon sink throughout the examined period primarily driven by boreal regions, the tropical land is estimated to have acted as an increasing source of CO2, with source magnitude and trend dominated by enhanced release in tropical America during the Amazon mean wet season. This pattern is largely unchanged if the oceanic inversion constraint, which is based on a stationary ocean circulation, is replaced by an estimate based on simulation results from an ocean biogeochemical general circulation model that includes year-to-year variability in the air-sea CO2 fluxes and also has a trend (-0.07 Pg C yr-1 decade-1) that is at the very low end of current estimates. However, the land/ocean partitioning of the trend contribution is adjusted accordingly. Oceanic carbon data has a major impact on carbon exchange for all tropical regions and southern Africa but also for observationally better constrained regions in North America and temperate Asia. The European trend exhibits a strong sensitivity to the choice

  10. Using oceanic-atmospheric oscillations for long lead-time streamflow forecasting in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Kalra, A.; Ahmad, S.

    2007-12-01

    In the recent past, oceanic-atmospheric oscillations have been used successfully for long lead-time streamflow forecasting. Herein, we present a data-driven model, Support Vector Machine (SVM) for the long lead-time streamflow forecast incorporating oceanic-atmospheric oscillations. The SVM is based on Statistical Learning Theory that uses a hypothesis space of linear functions based on Kernel approach and can be used to predict a quantity forward in time based on training that uses past data. The principal strength of SVM lies in minimizing the empirical classification error and maximizing the geometric margin by solving inverse problems. The SVMs are considered superior to the Artificial Neural Networks (ANNs) due to the tendency of formulating a quadratic optimization problem which ensures a global optimum that is found missing in the traditional ANN approach. The SVM model was applied to four unimpaired gages in the Upper Colorado River Basin (UCRB). The streamflow data for the selected gages was used from 1906¡§C2004. Annual oceanic-atmospheric indexes comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Nino-Southern Oscillations (ENSO) for a period of 1906¡§C2001 were used to generate streamflow volumes for three years ahead. The SVM model was trained with 86 years of data (1906¡§C1991) and tested for 10 years of data (1992-2001). The testing criteria used for the model effectiveness was based on correlation coefficient r, root means square error (RMSE) and nash sutcliffe efficiency coefficient e. Predictions during the testing phase showed a good agreement with measured streamflow volumes for the selected gages in UCRB. Rigorous sensitivity analysis was performed to evaluate the effect of individual oscillation. The results indicated a strong signal for NAO and ENSO indexes as compared to PDO and AMO indexes for the long lead-time streamflow forecast. The oceanic-atmospheric

  11. An error model for GCM precipitation and temperature simulations

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Woldemeskel, F.; Mehrotra, R.; Sivakumar, B.

    2012-04-01

    Water resources assessments for future climates require meaningful simulations of likely precipitation and evaporation for simulation of flow and derived quantities of interest. The current approach for making such assessments involve using simulations from one or a handful of General Circulation Models (GCMs), for usually one assumed future greenhouse gas emission scenario, deriving associated flows and the planning or design attributes required, and using these as the basis of any planning or design that is needed. An assumption that is implicit in this approach is that the single or multiple simulations being considered are representative of what is likely to occur in the future. Is this a reasonable assumption to make and use in designing future water resources infrastructure? Is the uncertainty in the simulations captured through this process a real reflection of the likely uncertainty, even though a handful of GCMs are considered? Can one, instead, develop a measure of this uncertainty for a given GCM simulation for all variables in space and time, and use this information as the basis of water resources planning (similar to using "input uncertainty" in rainfall-runoff modelling)? These are some of the questions we address in course of this presentation. We present here a new basis for assigning a measure of uncertainty to GCM simulations of precipitation and temperature. Unlike other alternatives which assess overall GCM uncertainty, our approach leads to a unique measure of uncertainty in the variable of interest for each simulated value in space and time. We refer to this as an error model of GCM precipitation and temperature simulations, to allow a complete assessment of the merits or demerits associated with future infrastructure options being considered, or mitigation plans being devised. The presented error model quantifies the error variance of GCM monthly precipitation and temperature, and reports it as the Square Root Error Variance (SREV

  12. GATA3 inhibits GCM1 activity and trophoblast cell invasion.

    PubMed

    Chiu, Yueh Ho; Chen, Hungwen

    2016-01-01

    Development of human placenta involves the invasion of trophoblast cells from anchoring villi into the maternal decidua. Placental transcription factor GCM1 regulates trophoblast cell invasion via transcriptional activation of HtrA4 gene, which encodes a serine protease enzyme. The GATA3 transcription factor regulates trophoblast cell differentiation and is highly expressed in invasive murine trophoblast giant cells. The regulation of trophoblastic invasion by GCM1 may involve novel cellular factors. Here we show that GATA3 interacts with GCM1 and inhibits its activity to suppress trophoblastic invasion. Immunohistochemistry demonstrates that GATA3 and GCM1 are coexpressed in villous cytotrophoblast cells, syncytiotrophoblast layer, and extravillous trophoblast cells of human placenta. Interestingly, GATA3 interacts with GCM1, but not the GCM2 homologue, through the DNA-binding domain and first transcriptional activation domain in GCM1 and the transcriptional activation domains and zinc finger 1 domain in GATA3. While GATA3 did not affect DNA-binding activity of GCM1, it suppressed transcriptional activity of GCM1 and therefore HtrA4 promoter activity. Correspondingly, GATA3 knockdown elevated HtrA4 expression in BeWo and JEG-3 trophoblast cell lines and enhanced the invasion activities of both lines. This study uncovered a new GATA3 function in placenta as a negative regulator of GCM1 activity and trophoblastic invasion. PMID:26899996

  13. GATA3 inhibits GCM1 activity and trophoblast cell invasion

    PubMed Central

    Chiu, Yueh Ho; Chen, Hungwen

    2016-01-01

    Development of human placenta involves the invasion of trophoblast cells from anchoring villi into the maternal decidua. Placental transcription factor GCM1 regulates trophoblast cell invasion via transcriptional activation of HtrA4 gene, which encodes a serine protease enzyme. The GATA3 transcription factor regulates trophoblast cell differentiation and is highly expressed in invasive murine trophoblast giant cells. The regulation of trophoblastic invasion by GCM1 may involve novel cellular factors. Here we show that GATA3 interacts with GCM1 and inhibits its activity to suppress trophoblastic invasion. Immunohistochemistry demonstrates that GATA3 and GCM1 are coexpressed in villous cytotrophoblast cells, syncytiotrophoblast layer, and extravillous trophoblast cells of human placenta. Interestingly, GATA3 interacts with GCM1, but not the GCM2 homologue, through the DNA-binding domain and first transcriptional activation domain in GCM1 and the transcriptional activation domains and zinc finger 1 domain in GATA3. While GATA3 did not affect DNA-binding activity of GCM1, it suppressed transcriptional activity of GCM1 and therefore HtrA4 promoter activity. Correspondingly, GATA3 knockdown elevated HtrA4 expression in BeWo and JEG-3 trophoblast cell lines and enhanced the invasion activities of both lines. This study uncovered a new GATA3 function in placenta as a negative regulator of GCM1 activity and trophoblastic invasion. PMID:26899996

  14. Lagged effects of the Mistral wind on heavy precipitation through ocean-atmosphere coupling in the region of Valencia (Spain)

    NASA Astrophysics Data System (ADS)

    Berthou, Ségolène; Mailler, Sylvain; Drobinski, Philippe; Arsouze, Thomas; Bastin, Sophie; Béranger, Karine; Lebeaupin Brossier, Cindy

    2016-05-01

    The region of Valencia in Spain has historically been affected by heavy precipitation events (HPEs). These HPEs are known to be modulated by the sea surface temperature (SST) of the Balearic Sea. Using an atmosphere-ocean regional climate model, we show that more than 70 % of the HPEs in the region of Valencia present a SST cooling larger than the monthly trend in the Northwestern Mediterranean before the HPEs. This is linked to the breaking of a Rossby wave preceding the HPEs: a ridge-trough pattern at mid-levels centered over western France associated with a low-level depression in the Gulf of Genoa precedes the generation of a cut-off low over southern Spain with a surface depression over the Alboran Sea in the lee of the Atlas. This latter situation is favourable to the advection of warm and moist air towards the Mediterranean Spanish coast, possibly leading to HPEs. The depression in the Gulf of Genoa generates intense northerly (Mistral) to northwesterly (Tramontane/Cierzo) winds. In most cases, these intense winds trigger entrainment at the bottom of the oceanic mixed layer which is a mechanism explaining part of the SST cooling in most cases. Our study suggests that the SST cooling due to this strong wind regime then persists until the HPEs and reduces the precipitation intensity.

  15. Latest results of the LMD Venus GCM

    NASA Astrophysics Data System (ADS)

    Lebonnois, S.; Marcq, E.; Lott, F.

    2012-12-01

    The LMD Venus General Circulation Model (GCM), under development since 2005, models the circulation in Venus atmosphere (from the surface up to roughly 100 km), in particular the superrotation feature. The temperature structure is computed using a specific radiative transfer module based on net-exchange matrix formulation. Since the publication of the GCM details (Lebonnois et al, JGR 115, 2010, doi:10.1029/2009JE003458), some improvements were done, especially for the boundary layer scheme that affects the exchange of angular momentum between atmosphere and surface. Surprising impact of initial conditions on the steady-state zonal winds is also discussed. Passive tracers, tuned to mimic CO and OCS distributions, have also been added to the model to simulate the latitudinal distributions induced by transport. In this presentation, comparisons between our latest simulations and available observations from Venus Express (winds, temperature fields, CO and OCS distributions) are detailed: zonal and meridional wind distributions in the cloud region and above, thermal tide features in winds and temperature near the cloud-top, CO and OCS latitudinal profiles below the clouds. These comparisons help constrain the meridional circulation and its impact on trace species distributions, the chemical relaxation timescale of the same trace species as well as the thermal tides and their role in the angular momentum budget and in the superrotation mechanism. The impact on the zonal wind field of gravity waves that may be generated near the surface is currently investigated with a new parametrisation. These gravity waves have been suggested as a significant contributor in the angular momentum budget and superrotation mechanism (Hou and Farrell, J. Atmos. Sci. 44, pp.1049-1061, 1987, doi:10.1175/1520-0469(1987)044<1049:SIBCLA>2.0.CO;2). This parametrisation and its first results are presented here.

  16. Sensitivity of the Tropical Ocean-Atmosphere to Seasonal and Long-Term Climate Forcing

    NASA Technical Reports Server (NTRS)

    Kim, K.-M.; Lau, K.-M.

    1999-01-01

    Since the pioneer works of Bjerknes (1966,1969) many studies have been conducted to understand the El Nino and Southern Oscillation (ENSO) phenomenon. These studies have led to a basic understanding of the dynamics of El Nino. Central to the couple dynamics of ENSO is the delayed action oscillator theory (Suarez and Schopf 1988), which successfully describes the cyclic feature of El Nino. While the oscillatory feature of El Nino is reasonably well understood, the irregularity of El Nino, the effect of monsoon on ENSO, and the response of coupled system to the global warming are still under debate. In the present study, we attempt to provide some theoretical understanding of possible impacts of seasonal cycle, monsoon, and climate changes on ENSO using intermediate coupled model.

  17. An ocean-atmosphere climate simulation with an embedded cloud resolving model

    NASA Astrophysics Data System (ADS)

    Stan, Cristiana; Khairoutdinov, Marat; DeMott, Charlotte A.; Krishnamurthy, V.; Straus, David M.; Randall, David A.; Kinter, James L.; Shukla, J.

    2010-01-01

    Mean climate and intraseasonal to interannual variability of two versions of the Community Climate System Model (CCSM) coupled atmosphere-ocean general circulation model (CGCM) are analyzed. The first version is the standard CCSM, in which cloud effects on the large-scale circulation are represented via parameterizations. The second version includes “super-parameterization” (SP) of convective processes by replacing parameterized cloud processes with a two-dimensional (2D) cloud-process resolving model (CRM) at each CGCM grid column. The SP-CCSM improves several shortcomings of the CCSM simulation, including mean precipitation patterns, equatorial SST cold tongue structure and associated double intertropical convergence zone (ITCZ), the Asian monsoon, periodicity of the El Niño-Southern Oscillation, and the intraseasonal Madden-Julian Oscillation. These improvements were obtained without the retuning of the coupled model, which is surprising in view of previous experience with other coupled models.

  18. Collaborative project. Ocean-atmosphere interaction from meso- to planetary-scale. Mechanics, parameterization, and variability

    SciTech Connect

    Saravanan, Ramalingam; Small, Justin

    2015-12-01

    Most climate models are currently run with grid spacings of around 100km, which, with today’s computing power, allows for long (up to 1000 year) simulations, or ensembles of simulations to explore climate change and variability. However this grid spacing does not resolve important components of the weather/climate system such as atmospheric fronts and mesoscale systems, and ocean boundary currents and eddies. The overall aim of this project has been to look at the effect of these small-scale features on the weather/climate system using a suite of high and low resolution climate models, idealized models and observations. High-resolution global coupled integrations using CAM/CESM were carried out at NCAR by the lead PI. At TAMU, we have complemented the work at NCAR by analyzing datasets from the high-resolution (28km) CESM integrations (Small et al., 2014) as well as very high resolution (9km, 3km) runs using a coupled regional climate (CRCM) carried out locally. The main tasks carried out were: 1. Analysis of surface wind in observations and high-resolution CAM/CCSM simulations 2. Development of a feature-tracking algorithm for studying midlatitude air-sea interaction by following oceanic mesoscale eddies and creating composites of the atmospheric response overlying the eddies. 3. Applying the Lagrangian analysis technique in the Gulf Stream region to compare data from observational reanalyses, global CESM coupled simulations, 9km regional coupled simulations and 3km convection-resolving regional coupled simulations. Our main findings are that oceanic mesoscale eddies influence not just the atmospheric boundary layer above them, but also the lower portions of the free troposphere above the boundary layer. Such a vertical response could have implications for a remote influence of Gulf Stream oceanic eddies on North Atlantic weather patterns through modulation of the storm track, similar to what has been noted in the North Pacific. The coarse resolution

  19. An error model for GCM precipitation and temperature simulations for future (warmer) climate

    NASA Astrophysics Data System (ADS)

    Sivakumar, B.; Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.

    2013-12-01

    Water resources assessments for future climates require meaningful simulations of likely precipitation and evaporation for simulation of flow and derived quantities of interest. Future climate projections using Global Climate Models (GCMs) are commonly used to assess the impacts of global climate change on hydrology and water resources. The reliability of such assessments, however, is questionable due to the various uncertainties present in GCM simulations, such as those associated with model structure, scenario, and initial condition. We present here a new basis for assigning a measure of uncertainty to GCM simulations of precipitation and temperature. Unlike other alternatives which assess overall GCM uncertainty, our approach leads to a unique measure of uncertainty in the variable of interest for each simulated value in space and time. We refer to this as an error model of GCM precipitation and temperature simulations. This is done through estimation of an uncertainty metric, called square root of error variance (SREV), and it involves the following steps: (1) Interpolating GCM outputs to a common spatial grid; (2) Converting the interpolated GCM outputs to percentiles; (3) Estimating SREV for each percentile; and (4) Transforming SREV estimates to time series. The SREV is derived taking into account the model structural, the emission scenario, and the initial condition uncertainty of the simulated value, the full error model being formulated using six GCMs (from the Coupled Model Inter-comparison Project phase 3 (CMIP3) multi-model dataset); three emission scenarios (B1, A1B and A2) and three ensemble runs, with a total of 54 time series representing the period 2001 to 2099. The results reveal that model uncertainty is the main source of error followed by scenario uncertainty. For precipitation, total uncertainty is larger in the tropical region close to the equator and reduces towards the north and south poles. The opposite is true for temperature where

  20. A review of the Southern Oscillation - Oceanic-atmospheric circulation changes and related rainfall anomalies

    NASA Technical Reports Server (NTRS)

    Kousky, V. E.; Kagano, M. T.; Cavalcanti, I. F. A.

    1984-01-01

    The region of South America is emphasized in the present consideration of the Southern Oscillation (SO) oceanic and atmospheric circulation changes. The persistence of climate anomalies associated with El Nino-SO events is due to strong atmosphere-ocean coupling. Once initiated, the SO follows a certain sequence of events with clearly defined effects on tropical and subtropical rainfall. Excessive rainfall related to the SO in the central and eastern Pacific, Peru, Ecuador, and southern Brazil, are complemented by drought in Australia, Indonesia, India, West Africa, and northeast Brazil. El Nino-SO events are also associated with dramatic changes in the tropospheric flow pattern over a broad area of both hemispheres.

  1. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Nino-Southern Oscillation

    SciTech Connect

    Jin, F.F.

    1996-10-04

    The tropical Pacific basin allows strong feedbacks among the trade winds, equatorial zonal sea surface temperature contrast, and upper ocean heat content. Coupled atmosphere-ocean dynamics produce both the strong Pacific cold tongue climate state and the El Nino-Southern Oscillation phenomenon. A simple paradigm of the tropical climate system is presented, capturing the basic physics of these two important aspects of the tropic Pacific and basic features of the climate states of the Atlantic and Indian ocean basins. 21 refs., 3 figs.

  2. Information content of downscaled GCM precipitation variables for crop simulations

    NASA Astrophysics Data System (ADS)

    Ines, A. V. M.; Mishra, A. K.

    2015-12-01

    A simple statistical downscaling procedure for transforming daily global climate model (GCM) rainfall was applied at the local scale in Katumani, Kenya. We corrected the rainfall frequency bias of the GCM by truncating its daily rainfall cumulative distribution into the station's distribution using a wet-day threshold. Then, we corrected the GCM's rainfall intensity bias by mapping its truncated rainfall distribution into the station's truncated distribution. Additional tailoring was made to the bias corrected GCM rainfall by linking it with a stochastic disaggregation scheme based on a conditional stochastic weather generator to correct the temporal structure inherent with daily GCM rainfall. Results of the simple and hybridized GCM downscaled precipitation variables (total, probability of occurrence, intensity and dry spell length) were linked with a crop model. An objective evaluation of the tailored GCM data was done using entropy. This study is useful for the identification of the most suitable downscaling technique, as well as the most effective precipitation variables for forecasting crop yields.

  3. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  4. The role of ocean-atmosphere interactions in tropical cooling during the last glacial maximum

    PubMed

    Bush; Philander

    1998-02-27

    A simulation with a coupled atmosphere-ocean general circulation model configured for the Last Glacial Maximum delivered a tropical climate that is much cooler than that produced by atmosphere-only models. The main reason is a decrease in tropical sea surface temperatures, up to 6 degrees C in the western tropical Pacific, which occurs because of two processes. The trade winds induce equatorial upwelling and zonal advection of cold water that further intensify the trade winds, and an exchange of water occurs between the tropical and extratropical Pacific in which the poleward surface flow is balanced by equatorward flow of cold water in the thermocline. Simulated tropical temperature depressions are of the same magnitude as those that have been proposed from recent proxy data. PMID:9478892

  5. Thermal structure of Venus upper atmosphere by a self-consistent ground-to-thermosphere GCM

    NASA Astrophysics Data System (ADS)

    Gilli, G.; Lebonnois, S.; Gonzalez-Galindo, F.; Lopez-Valverde, M. A.; Stolzenbach, A.; Lefevre, F.

    2015-10-01

    We present here the thermal structure of the upper atmosphere of Venus predicted by a full self-consistent Venus General Circulation Model (GCM). The Venus GCM developed at Laboratoire de Meteorologie Dynamique (LMD) [1] is currently operational up to 150 km and it is one of the leading models in the community. Recent improvements (i.e the inclusion of physical processes relevant in the upper atmosphere, the coupling with a photochemical model) contributed to a better understanding of the upper mesosphere/lower thermosphere of Venus. Our aim is to describe the role of radiative, photochemical and dynamical effects in the observed thermal structure of those upper layers,and to evaluate the impact of current parameterisations and theoretical uncertainties on the temperature fields. Several sensitivity tests will be performed to understand the data-model discrepancies and to improve the comparison.

  6. Flying the TRMM Satellite in a GCM

    NASA Technical Reports Server (NTRS)

    Lin, Xin; Fowler, Laura D.; Randall, David A.

    2001-01-01

    By incorporating the Tropical Rainfall Measurement Mission (TRMM) satellite orbital information into the Colorado State University General Circulation Model (CSU GCM), we are able to 'fly' a satellite in the GCM, and sample the simulated atmosphere in the same way as the TRMM sensors sample the real atmosphere. The TRMM-sampled statistics for precipitation and radiative fluxes at annual, intraseasonal, monthly-mean and seasonal-mean diurnal time scales are evaluated by comparing the satellite-sampled against fully-sampled simulated atmospheres. The sampling rates of the TRMM sensors are significantly affected by the sensors' swath widths. The TRMM Microwave Imager (TMI) and the Visible Infrared Scanner (VIRS) sample each 2.25 x 2.25 degree grid box in the Tropics and subtropics about once per day, but at a different local time every day, while the Precipitation Radar (PR) and the Clouds and the Earth's Radiant Energy System (CERES) sensor visit each grid box about once every three days and twice per day, respectively. Besides inadequate samplings resulting from sensors' swath widths, there is a large, systematic diurnal undersampling associated with TRMM's orbital geometry for grid boxes away from the Equator. When only one month of TRMM data are used, this diurnal undersampling can lead to more daytime samples relative to nighttime samples in one hemisphere, and more nighttime samples relative to daytime samples in the other hemisphere. The resulting sampling biases (3-6 W m(exp-2)) are very pronounced in outgoing longwave radiation (OLR) over the subtropical land masses. The sampling errors in OLR monthly- and seasonal-means are less than 8 W m(exp-2) (5%) for each 2.25 x 2.25 degree grid box. The OLR monthly- and seasonal-means are not sensitive to diurnal undersamplings associated with the TRMM orbits and sensors' swath widths. However, this is not the case for total precipitation. Diurnal undersampling could produce errors as large as 20% in the Tropics and 40

  7. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of

  8. Relative roles of land- and ocean-atmosphere interactions in Asian-Pacific thermal contrast variability at the precessional band.

    PubMed

    Wang, Yue; Jian, ZhiMin; Zhao, Ping; Xiao, Dong; Chen, JunMing

    2016-01-01

    In a 250-kyr transient simulation of the Community Earth System Model (CESM), we identified a precessional forced seesaw of the summer middle-upper tropospheric eddy temperature between Asia and the North Pacific as the paleo-APO (Asian-Pacific oscillation). The paleo-APO variability is out of phase with the precession parameter. Corresponding to a positive paleo-APO phase, both the subtropical anticyclonic circulation over the North Pacific and the East Asian summer monsoon (EASM) strengthen. Summer anomalous sea surface temperature shows a western cold-eastern warm pattern over the extratropical North Pacific and a zonal positive-negative-positive pattern over the tropical Pacific. The variations in the simulated paleo-APO and East Asian southerly wind at the precessional band agree well with the geological proxies at the Dongge, Sanbao, Linzhu, and Hulu caves in China, which also implies that these proxies may well reflect the variability in the southerly wind over East Asia. Sensitivity experiments further reveal that the reduced precession parameter may enhance the positive paleo-APO phase and the associated EASM because of the response of the land-atmosphere interactions to the precessional insolation changes. The effect of the ocean-atmosphere interactions on the paleo-APO is secondary. PMID:27381940

  9. Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change

    SciTech Connect

    Groecke, D.R.; Hesselbo, S.P.; Jenkyns, H.C.

    1999-02-01

    The carbon-isotope composition of fossil wood fragments, collected through a biostratigraphically well-constructed Aptian (Lower Cretaceous) shallow-marine siliciclastic succession on the Isle of Wight, southern Britain, shows distinct variations with time. The results indicate that the stratigraphic signature of {delta}{sup 13}C{sub wood} through the Aptian was influenced primarily by fluctuations in the isotopic composition of CO{sub 2} in the global ocean-atmosphere system, as registered in marine carbonates elsewhere, and was not governed by local paleoenvironmental and/or paleoecological factors. Negative and positive excursions in {delta}{sup 13}C{sub wood} through the lower Aptian occur in phase with inferred transgressions and regressions, respectively -- a pattern that contrasts with that observed in many previous studies for different time intervals. The relationship between {delta}{sup 13}C variations and relative sea-level change is tentatively interpreted as a response to various climatic and eustatic factors, relating to rapid sea-floor spreading, thermal uplift of ocean floor, emplacement of plateaus, volcanic CO{sub 2} emissions, weathering, and sedimentary rate.

  10. Relative roles of land- and ocean-atmosphere interactions in Asian-Pacific thermal contrast variability at the precessional band

    PubMed Central

    Wang, Yue; Jian, ZhiMin; Zhao, Ping; Xiao, Dong; Chen, JunMing

    2016-01-01

    In a 250-kyr transient simulation of the Community Earth System Model (CESM), we identified a precessional forced seesaw of the summer middle-upper tropospheric eddy temperature between Asia and the North Pacific as the paleo-APO (Asian-Pacific oscillation). The paleo-APO variability is out of phase with the precession parameter. Corresponding to a positive paleo-APO phase, both the subtropical anticyclonic circulation over the North Pacific and the East Asian summer monsoon (EASM) strengthen. Summer anomalous sea surface temperature shows a western cold-eastern warm pattern over the extratropical North Pacific and a zonal positive-negative-positive pattern over the tropical Pacific. The variations in the simulated paleo-APO and East Asian southerly wind at the precessional band agree well with the geological proxies at the Dongge, Sanbao, Linzhu, and Hulu caves in China, which also implies that these proxies may well reflect the variability in the southerly wind over East Asia. Sensitivity experiments further reveal that the reduced precession parameter may enhance the positive paleo-APO phase and the associated EASM because of the response of the land-atmosphere interactions to the precessional insolation changes. The effect of the ocean-atmosphere interactions on the paleo-APO is secondary. PMID:27381940

  11. Relative roles of land- and ocean-atmosphere interactions in Asian-Pacific thermal contrast variability at the precessional band

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Jian, Zhimin; Zhao, Ping; Xiao, Dong; Chen, Junming

    2016-07-01

    In a 250-kyr transient simulation of the Community Earth System Model (CESM), we identified a precessional forced seesaw of the summer middle-upper tropospheric eddy temperature between Asia and the North Pacific as the paleo-APO (Asian-Pacific oscillation). The paleo-APO variability is out of phase with the precession parameter. Corresponding to a positive paleo-APO phase, both the subtropical anticyclonic circulation over the North Pacific and the East Asian summer monsoon (EASM) strengthen. Summer anomalous sea surface temperature shows a western cold-eastern warm pattern over the extratropical North Pacific and a zonal positive-negative-positive pattern over the tropical Pacific. The variations in the simulated paleo-APO and East Asian southerly wind at the precessional band agree well with the geological proxies at the Dongge, Sanbao, Linzhu, and Hulu caves in China, which also implies that these proxies may well reflect the variability in the southerly wind over East Asia. Sensitivity experiments further reveal that the reduced precession parameter may enhance the positive paleo-APO phase and the associated EASM because of the response of the land-atmosphere interactions to the precessional insolation changes. The effect of the ocean-atmosphere interactions on the paleo-APO is secondary.

  12. Tidal Signals In GOCE Measurements And Time-GCM

    NASA Astrophysics Data System (ADS)

    Hausler, K.; Hagan, M. E.; Lu, G.; Doornbos, E.; Bruinsma, S.; Forbes, J. M.

    2013-12-01

    In this paper we investigate tidal signatures in GOCE measurements during 15-24 November 2009 and complementary simulations with the Thermosphere-Ionosphere- Mesosphere-Electrodynamics General Circulation Model (TIME-GCM). The TIME-GCM simulations are driven by inputs that represent the prevailing solar and geomagnetic conditions along with tidal and planetary waves applied at the lower boundary (ca. 30km). For this pilot study, the resultant TIME-GCM densities are analyzed in two ways: 1) we use results along the GOCE orbital track, to calculate ascending/descending orbit longitude- latitude density difference and sum maps for direct comparison with the GOCE diagnostics, and 2) we conduct a complete analysis of TIME-GCM results to unambiguously characterize the simulated atmospheric tides and to attribute the observed longitude variations to specific tidal components. TIME-GCM captures some but not all of the observed longitudinal variability. The good data- model agreement for wave-2, wave-3, and wave-4 suggests that thermospheric impacts can be attributed to the DE1, DE2, DE3, S0, SE1, and SE2 tides. Discrepancies between TIME-GCM and GOCE results are most prominent in the wave-1 variations, and suggest that further refinement of the lower boundary forcing is necessary before we extend our analysis and interpretation to densities associated with the remainder of the GOCE mission.

  13. From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact

    PubMed Central

    Baron, Christian; Sultan, Benjamin; Balme, Maud; Sarr, Benoit; Traore, Seydou; Lebel, Thierry; Janicot, Serge; Dingkuhn, Michael

    2005-01-01

    General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N–17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to

  14. Multi-model GCM ensemble simulations of idealized tropical cyclones

    NASA Astrophysics Data System (ADS)

    Reed, K. A.; Jablonowski, C.; Ullrich, P. A.; Kent, J.; Lauritzen, P. H.; Taylor, M.; Nair, R.

    2013-12-01

    As General Circulation Models (GCMs) are now capable of running operationally at higher horizontal resolutions than ever before, such models have become a tool of choice for the evaluation of tropical cyclones in current and future climate conditions. GCM horizontal resolutions in the range between 10-50 km are now computationally achievable for seasonal or multi-year simulations and there is growing confidence that high-resolution global models provide reliable representations of many characteristics of tropical storms. However, model design choices are an important source of uncertainty. This is widely documented for physical parameterization suites, but it is less recognized for the dynamical component of models and the physics-dynamics coupling. The study offers a first look into these structural uncertainties. This study focuses on dynamical core model intercomparisons. In particular, it looks at the results of the Dynamical Core Model Intercomparison Project (DCMIP) that took place at the National Center for Atmospheric Research (NCAR) in August 2012. The analysis is focused on the evaluation of an idealized tropical storm and uncertainties triggered by the choice of model dynamical core formulation in various global models. These models include the four dynamical cores available in NCAR's Community Atmosphere Model (Finite-Volume (FV), Spectral-Element (SE) and the Eulerian and semi-Lagrangian spectral transform dynamical cores), the NOAA model FIM, the model ICON (Max-Planck Institute and German Weather Service), GFDL's FV3 model on the cubed-sphere grid, ECMWF's Integrated Forecasting System (IFS) and the model PUMA from the University of Hamburg.

  15. Ocean-atmospheric linkages

    NASA Technical Reports Server (NTRS)

    Rintoul, Stephen R.

    1992-01-01

    This chapter focuses on the role of the ocean in the global carbon cycle on the time scale of decades to centuries. The input rate of CO2 to the atmosphere due to fossil fuel burning and deforestation has continued to increase over the last century. To balance the global carbon budget, a sink is required whose magnitude is changing on similar time scales. We have sought to identify aspects of the ocean system that are capable of responding on decadal time scales, to examine our present ability to model such changes, and to pinpoint ways in which this ability could be improved. Many other important aspects of the ocean's role in global change are not addressed, including the importance of oceanic heat transport and thermal inertia to the climate system, biogeochemical cycling of elements other than carbon, and the importance of the ocean as a source or sink of trace gases.

  16. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  17. The Bisa GEM-Mars GCM

    NASA Astrophysics Data System (ADS)

    Neary, Lori; Daerden, Frank

    2013-04-01

    GEM-Mars is a three-dimensional general circulation model of the Mars atmosphere extending from the surface to approximately 170 km based on the latest version of the GEM (Global Environmental Mesoscale) model, the operational data assimilation and weather forecasting system for Canada [Côté et al., 1998]. The dynamical core is an implicit two-time-level semi-Lagrangian scheme on an Arakawa C-grid with a terrain-following, log-hydrostatic-pressure vertical coordinate discretized on a Charney-Phillips grid. The model has both a hydrostatic and non-hydrostatic formulation, providing a single platform for simulations on a variety of horizontal scales. The model code is fully parallelized using OMP and MPI. The GCM includes the relevant physical processes such as CO2 condensation, planetary boundary layer mixing, gravity wave drag and surface parameterizations. A simple water cycle, basic gas-phase chemistry and passive tracers are also included in the model. Because of the vertical extent of the model, UV heating, non-LTE effects and molecular diffusion are also included. Dust is prescribed using the MGS scenario for total opacities and a Conrath profile shape. In the dust radiative transfer code, dust optical properties are based on the Wolff et al [2006, 2009] data. Temperatures in the lower and middle atmosphere have been evaluated using TES [Smith, 2004] and MCS [Kleinbohl et al. 2009] data. Winds and atmospheric circulation (mass stream functions) have been compared with the literature and show a good correspondence to other Mars GCMs. In parallel, active lifting and settling of size-distributed dust has also been implemented. The soil model has been improved to better match surface and near-surface temperatures from the Viking Landers, Phoenix [Davy et al. 2010], and TES. Near-surface winds and friction velocities have been compared with the literature and show reasonable performance. Condensation of CO2 in surface ice has been validated using CO2 ice mass

  18. New Planetary Energy Balance, Ocean-Atmosphere Interaction and their Effects on Extreme Events in North Atlantic

    NASA Astrophysics Data System (ADS)

    Karrouk, Mohammed-Said

    2016-04-01

    Global warming has now reached the energetic phase of H2O's return to the ground after the saturation of the atmosphere in evaporation since the 80s and 90s of the last century, which were characterized by severe droughts, mainly in Africa. This phase is the result of the accumulation of thermal energy exchanges in the Earth-Ocean-Atmosphere system that resulted in the thrust reversal of the energy balance toward the poles. This situation is characterized by a new thermal distribution: above the ocean, the situation is more in surplus compared to the mainland, or even opposite when the balance is negative on the land, and in the atmosphere, warm thermal advection easily reach the North Pole (planetary crests), as well as cold advection push deep into North Africa and the Gulf of Mexico (planetary valleys). This "New Ground Energy Balance" establishes a "New Meridian Atmospheric Circulation (MAC)" with an undulating character throughout the year, including the winter characterized by intense latitudinal very active energy exchanges between the surplus areas (tropical) and the deficit (polar) on the one hand, and the atmosphere, the ocean and the continent on the other. The excess radiation balance increases the potential evaporation of the atmosphere and provides a new geographical distribution of H2O worldwide: the excess water vapor is easily converted by cold advection (polar vortex) to heavy rains that cause floods or snow storms that paralyze the normal functioning of human activities, which creates many difficulties for users and leaves damage and casualties, but ensures water availability missing since a long time in many parts of the world, in Africa, Europe and America. The new thermal distribution reorganizes the geography of atmospheric pressure: the ocean energy concentration is transmitted directly to the atmosphere, and the excess torque is pushed northward. The Azores anticyclone is strengthened and is a global lock by the Atlantic ridge at Greenland

  19. Develop Plan for Analysis of the Effluent from GCM Production.

    SciTech Connect

    Nenoff, Tina M.; Mowry, Curtis D.

    2015-08-24

    This milestone is focused on developing a plan for the analysis of the effluent from the Sandia low temperature sintering Bi-Si-Zn oxide glass composite material (GCM) waste form for the long term storage of iodine and its capture materials.

  20. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  1. Snow complexity representation and GCM climate

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Viterbo, Pedro; Miranda, Pedro M. A.; Balsamo, Gianpaolo

    2010-05-01

    Accurate simulations of the snow cover strongly impact on the quality of weather and climate predictions as the solar radiation absorption at land-atmosphere interface is modified by a factor up to 4 in response to snow presence (albedo effect). In Northern latitudes and Mountainous regions snow acts also as an important energy and water reservoir and a correct representation of snow mass and snow density is crucial for temperature predictions at all time-scales, with direct consequences for soil hydrology (thermal insulation effect). Three different complexity snow schemes implemented in the ECMWF land surface scheme HTESSEL are tested within the EC-EARTH framework. The snow schemes are: 1) OLD, the original HTESSEL single bulk layer snow scheme (same as in the ERA-40 and ERA-Interim reanalysis); 2) OPER, a new snow scheme in operations since September 2009, with a liquid water reservoir and revised formulations of snow density, fractional cover and snow albedo; and 3) ML3, a multi-layer version of OPER. All three snow schemes in HTESSEL are energy- and mass- balance models. The multi-layer snow scheme, ML3, was validated in offline mode covering several spatial and temporal scales: (i) site simulations for several observation locations from the Snow Models intercomparison project-2 (SnowMip2) and (ii) global simulations driven by the meteorological forcing from the Global Soil Wetness Project-2 (GSWP2) and the ECMWF ERA-Interim re-analysis. On point locations ML3 improve snow mass simulations, while on a global scale the impacts are residual pointing to the need of coupled atmosphere simulations. The 3 schemes are compared in the framework of the atmospheric model of EC-EARTH, based on the current seasonal forecast system of ECMWF. The standard configuration runs at T159 horizontal spectral resolution with 62 vertical levels. Three member ensembles of 30 years (1979-2008) simulations, with prescribed SSTs and sea ice, were performed for each of the snow schemes

  2. Coral Evidence for Abrupt Changes in Ocean-Atmosphere Dynamics in the SW Pacific since 1565 AD

    NASA Astrophysics Data System (ADS)

    Hendy, E. J.; Gagan, M. K.; McCulloch, M. T.; Lough, J. M.

    2004-12-01

    A coral-based multi-tracer approach can give an overview of the whole tropical ocean-atmosphere system. Key indicators are sea surface temperature (SST), which sets climate boundary conditions, sea surface salinity (SSS), which provides a measure of energy transfer through the evaporation-precipitation balance, and river runoff, which can establish the strength and variability of precipitation. We present palaeoenvironmental records from eight massive { \\it Porites} coral colonies, spanning 120 to 420 years of continuous growth, collected from the central Great Barrier Reef, Australia. Stable isotopes (\\delta18O and \\delta13C), Sr/Ca, U/Ca, and Ba/Ca ratios were measured in 5-year increments and a record of annual UV luminescence was developed. By replicating the measurements between colonies we demonstrate how faithfully corals record changes in their environment over decadal-to-centennial timescales, constructing composite records in a manner analogous to dendroclimatology and confidence intervals for each proxy. The competing environmental influences affecting a number of tracers can be distinguished by comparison between the SST-tracers (Sr/Ca, U/Ca, \\delta18O), the freshwater flux tracers (\\Delta\\delta18O, Ba/Ca and luminescence) and tracers of water mass characteristics (\\delta18O, \\delta13C, and \\Delta14C). The coral palaeothermometers Sr/Ca and U/Ca ratios, measured in tandem with \\delta18O, allow the separation of SST changes from changes in seawater \\delta18O, thereby resolving SSS. The composite Sr/Ca and U/Ca are in excellent agreement back to 1565, and capture the 20th century warming trend, up to the 1980s when the cores were collected. The most remarkable feature of the 420-year record is that SSTs were consistently as warm as the second half of the 20th century from the early 18th and through most of the 19th centuries. Changes in the evaporation-precipitation balance dominate the \\delta18O record. A striking 0.2\\permil\\ shift from the

  3. Assessment of CMIP5 GCM daily predictor variables for statistical downscaling

    NASA Astrophysics Data System (ADS)

    Mpelasoka, F. S.; Charles, S.; Chiew, F. H.; Fu, G.; Beecham, S.

    2012-04-01

    Assessment of CMIP5 GCM daily predictor variables for statistical downscaling To support adaptation to climate change in the water resource sector in South Australia, downscaled climate projections are being constructed within the Goyder Institute for Water Research - a 5-year multi-million dollar collaborative research partnership between the Government of South Australia, CSIRO and the university sector. Statistical downscaling is a robust approach providing a link between observed (re-analysis) large-scale atmospheric variables (predictors) and local or regional surface climate variables such as daily station rainfall. When applied to outputs of Global Climate Models (GCMs), the credibility of statistically downscaled future projections is dependent on the ability of GCMs to reproduce the re-analysis data statistics for the current climate. The main objective of this study is thus to assess daily predictor variables simulated by phase Five of Coupled Model Inter-comparison Project (CMIP5) GCMs, while acknowledging that an optimal measure of overall GCM performance does not exist and the usefulness of any assessment approach varies with the intended application. Here we assess GCMs by comparing cumulative probability density functions of predictor variables against the re-analysis data using the Kolmogorov test metric. Historical daily data simulations from 12 GCMs (BCC-csm1, CanESM2, CSIRO-Mk3.6.0, GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, IPSL-CM5A-MR, MIROC4h, MIROC-ESM-CHEM, MPI-ESM-LR, MRI-CGCM3, and NorESM1-M) for the period 1961-2005 are used. The variables assessed include specific/relative humidity, winds, geopotential heights at different atmospheric levels and sea-level pressure over the Australian region (7-45oS, 100-160oE). We present a summary of results for the South Australia region quantifying the ability of these GCMs in reproducing the mean state and the relative frequency of extremes for these predictors. The complexity and challenges in GCM

  4. Investigating TIME-GCM Atmospheric Tides for Different Lower Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Haeusler, K.; Hagan, M. E.; Lu, G.; Forbes, J. M.; Zhang, X.; Doornbos, E.

    2013-12-01

    It has been recently established that atmospheric tides generated in the lower atmosphere significantly influence the geospace environment. In order to extend our knowledge of the various coupling mechanisms between the different atmospheric layers, we rely on model simulations. Currently there exist two versions of the Global Scale Wave Model (GSWM), i.e. GSWM02 and GSWM09, which are used as a lower boundary (ca. 30 km) condition for the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) and account for the upward propagating atmospheric tides that are generated in the troposphere and lower stratosphere. In this paper we explore the various TIME-GCM upper atmospheric tidal responses for different lower boundary conditions and compare the model diagnostics with tidal results from satellite missions such as TIMED, CHAMP, and GOCE. We also quantify the differences between results associated with GSWM02 and GSWM09 forcing and results of TIMEGCM simulations using Modern-Era Retrospective Analysis for Research and Application (MERRA) data as a lower boundary condition.

  5. Studies of African wave disturbances with the GISS GCM

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Hall, Timothy M.

    1994-01-01

    Simulations made with the general circulation model of the NASA/Goddard Institute for Space Studies (GISS GCM) run at 4 deg latitude by 5 deg longitude horizontal resolution are analyzed to determine the model's representation of African wave disturbances. Waves detected in the model's lower troposphere over northern Africa during the summer monsoon season exhibit realistic wavelengths of about 2200 km. However, power spectra of the meridional wind show that the waves propagate westward too slowly, with periods of 5-10 days, about twice the observed values. This sluggishness is most pronounced during August, consistent with simulated 600-mb zonal winds that are only about half the observed speeds of the midtropospheric jet. The modeled wave amplitudes are strongest over West Africa during the first half of the summer but decrease dramatically by September, contrary to observational evidence. Maximum amplitudes occur at realistic latitudes, 12 deg - 20 deg N, but not as observed near the Atlantic coast. Spectral analyses suggest some wave modulation of precipitation in the 5-8 day band, and compositing shows that precipitation is slightly enhanced east of the wave trough, coincident with southerly winds. Extrema of low-level convergence west of the wave troughs, coinciding with northerly winds, were not preferred areas for simulated precipitation, probably because of the drying effect of this advection, as waves were generally north of the humid zone. The documentation of African wave disturbances in the GISS GCM is a first step toward considering wave influences in future GCM studies of Sahel drought.

  6. Chemistry-Climate Interactions in the GISS GCM. Part 1; Tropospheric Chemistry Model Description and Evaluation

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Grenfell, J. Lee; Rind, David; Price, Colin; Grewe, Volker; Hansen, James E. (Technical Monitor)

    2001-01-01

    A tropospheric chemistry module has been developed for use within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to study interactions between chemistry and climate change. The model uses a simplified chemistry scheme based on CO-NOx-CH4 chemistry, and also includes a parameterization for emissions of isoprene, the most important non-methane hydrocarbon. The model reproduces present day annual cycles and mean distributions of key trace gases fairly well, based on extensive comparisons with available observations. Examining the simulated change between present day and pre-industrial conditions, we find that the model has a similar response to that seen in other simulations. It shows a 45% increase in the global tropospheric ozone burden, within the 25% - 57% range seen in other studies. Annual average zonal mean ozone increases by more than 125% at Northern Hemisphere middle latitudes near the surface. Comparison of model runs that allow the calculated ozone to interact with the GCM's radiation and meteorology with those that do not shows only minor differences for ozone. The common usage of ozone fields that are not calculated interactively seems to be adequate to simulate both the present day and the pre-industrial ozone distributions. However, use of coupled chemistry does alter the change in tropospheric oxidation capacity, enlarging the overall decrease in OH concentrations from the pre-industrial to the present by about 10% (-5.3% global annual average in uncoupled mode, -5.9% in coupled mode). This indicates that there may be systematic biases in the simulation of the pre-industrial to present day decrease in the oxidation capacity of the troposphere (though a 10% difference is well within the total uncertainty). Global annual average radiative forcing from pre-industrial to present day ozone change is 0.32 W/sq m. The forcing seems to be increased by about 10% when the chemistry is coupled to the GCM. Forcing values greater

  7. Modeling of Sub-Grid Heterogeneity and its Impact on GCM Global Radiation Balance

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew; Cairns, B.; Rossow, W. B.

    1999-01-01

    The spatial and temporal variability of high, low, and mid-level clouds is obtained from ISCCP D1 data. Monthly mean global maps of the observed cloud variability are used to re-scale GCM prognostic cloud optical depths and radiative parameters via the Monte Carlo cloud heterogeneity parameterization that utilizes the existing plane-parallel GCM radiative transfer model to compute radiative fluxes for inhomogeneous cloud distributions. The GCM radiative fluxes at TOA and the ground surface are then compared to ERBE and GEBA results. These comparisons show that including sub-grid cloud variability in the GCM radiative model improves agreement between the GCM radiative energy budget components and observations,

  8. A review of recent research on improvement of physical parameterizations in the GLA GCM

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.

    1990-01-01

    A systematic assessment of the effect of a series of improvements in physical parameterizations of the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) are summarized. The implementation of the Simple Biosphere Model (SiB) in the GCM is followed by a comparison of SiB GCM simulations with that of the earlier slab soil hydrology GCM (SSH-GCM) simulations. In the Sahelian context, the biogeophysical component of desertification was analyzed for SiB-GCM simulations. Cumulus parameterization is found to be the primary determinant of the organization of the simulated tropical rainfall of the GLA GCM using Arakawa-Schubert cumulus parameterization. A comparison of model simulations with station data revealed excessive shortwave radiation accompanied by excessive drying and heating to the land. The perpetual July simulations with and without interactive soil moisture shows that 30 to 40 day oscillations may be a natural mode of the simulated earth atmosphere system.

  9. GCM Simulations of the Tropical Hydrogen Distribution Observed by Mars Odyssey

    NASA Technical Reports Server (NTRS)

    Mischna, M. A.; Richardson, M. I.

    2005-01-01

    The age and nature of the tropical hydrogen deposits on Mars remain uncertain. Competing theories suggest that the deposits are composed of either ancient, hydrated minerals or recently emplaced water ice. We use the GFDL Mars GCM with a fully coupled atmosphere-regolith water cycle to explore which of these hypotheses is best supported by model results. Such a conclusion can be drawn from the resultant trends in subsurface ice evolution during various obliquity and polar cap conditions. Our results suggest that the tropical hydrogen distribution is best explained by recent emplacement of ice through either exposure of the south polar ice cap or by burial of tropical surface ice from the most recent high obliquity excursions.

  10. Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing.

    PubMed

    Chami, M; Santer, R; Dilligeard, E

    2001-05-20

    A radiative transfer code termed OSOA for the ocean-atmosphere system that is able to predict the total and the polarized signals has been developed. The successive-orders-of-scattering method is used. The air-water interface is modeled as a planar mirror. Four components grouped by their optical properties, pure seawater, phytoplankton, nonchlorophyllose matter, and yellow substances, are included in the water column. Models are validated through comparisons with standard models. The numerical accuracy of the method is better than 2%; high computational efficiency is maintained. The model is used to study the influence of polarization on the detection of suspended matter. Polarizing properties of hydrosols are discussed: phytoplankton cells exhibit weak polarization and small inorganic particles, which are strong backscatterers, contribute appreciably to the polarized signal. Therefore the use of the polarized signal to extract the sediment signature promises good results. Also, polarized radiance could improve characterization of aerosols when open ocean waters are treated. PMID:18357248

  11. A GCM study on the mechanism of seasonal abrupt changes

    NASA Astrophysics Data System (ADS)

    Wang, Huijun; Zeng, Qingcun

    1994-02-01

    In this paper the observational studies and some related dynamical and numerical researches on seasonal abrupt changes were reviewed first. Then a speculation that the seasonal variation of insolation and the nonlinear dynamic interaction account for the abrupt changes was put forward and was asserted by a set of GCM sensitivity experiments. The results show that the abrupt changes would exist in case that all the earth surface was grass land and there was no topography. However, many factors may have influences on the abrupt changes. Hence this phenomenon is quite complicated and needs further investigations.

  12. MOS correction of GCM- and RCM-simulated daily precipitation

    NASA Astrophysics Data System (ADS)

    Eden, Jonathan; Widmann, Martin; Wong, Geraldine; Maraun, Douglas; Vrac, Mathieu; Kent, Thomas

    2013-04-01

    Understanding long-term changes in daily precipitation characteristics, particularly those associated with extreme events, is an important component of climate change science and impact assessment. Estimates of such changes are required at local scales where impacts are most keenly felt. However, the limited spatial resolution of General Circulation Models (GCMs) makes direct estimates of future daily precipitation unrealistic. A popular downscaling approach is to use GCMs to drive high-resolution Regional Climate Models (RCMs). Whilst able to simulate precipitation characteristics at smaller scales, RCMs do not represent local variables and remain limited by systematic errors and biases. It is possible to apply statistical corrections, known as Model Output Statistics (MOS), to RCM-simulated precipitation. The simplest form of MOS (including bias correction) follows a 'distribution-wise' approach in which the statistical link is derived between long-term distributions of simulated and observed variables. However, more sophisticated MOS methods may be performed 'event-wise' using, for example, multiple linear regression to derive links between simulated and observed sequences of day-to-day weather. This approach requires a fitting period in which the simulated temporal evolution of large-scale weather states matches that of the real world and is thus limited to either reanalysis-driven RCMs or nudged GCM simulations. It is unclear to what extent MOS can be used to correct daily precipitation directly from GCMs, thus removing the computationally challenging RCM step from the downscaling process. Here, we present and cross-validate a stochastic, event-wise MOS method for both GCM- and RCM-simulated precipitation. A 'mixture' model, combining gamma and generalised Pareto distributions, is used to represent the complete (extreme and non-extreme) precipitation distribution. This is combined with a vector generalised linear model (VGLM) in order to estimate the

  13. Long Lead-Time Forecasting of Snowpack and Precipitation in the Upper Snake River Basin using Pacific Oceanic-Atmospheric Variability

    NASA Astrophysics Data System (ADS)

    Anderson, S.; Tootle, G.; Parkinson, S.; Holbrook, P.; Blestrud, D.

    2012-12-01

    Water managers and planners in the western United States are challenged with managing resources for various uses, including hydropower. Hydropower is especially important throughout the Upper Snake River Basin, where a series of hydropower projects provide a low cost renewable energy source to the region. These hydropower projects include several dams that are managed by Idaho Power Company (IPC). Planners and managers rely heavily on forecasts of snowpack and precipitation to plan for hydropower availability and the need for other generation sources. There is a pressing need for improved snowpack and precipitation forecast models in the Upper Snake River Basin. This research investigates the ability of Pacific oceanic-atmospheric data and climatic variables to provide skillful long lead-time (three to nine months) forecasts of snowpack and precipitation, and examines the benefits of segregating the warm and cold phases of the Pacific Decadal Oscillation (PDO) to reduce the temperature variability within the target dataset. Singular value decomposition (SVD) was used to identify regions of Pacific Ocean sea surface temperatures (SST) and 500mbar geopotential heights (Z500) for various lead times (three, six, and nine months) that were teleconnected with snowpack and precipitation stations in Upper Snake River Basin headwaters. The identified Pacific Ocean SST and Z500 regions were used to create indices that became predictors in a non-parametric forecasting model. The majority of forecasts resulted in positive statistical skill, which indicated an improvement of the forecast over the climatology forecast (no-skill forecast). The results from the forecasts models indicated that derived indices from the SVD analysis resulted in improved forecast skill when compared to forecasts using established climate indices. Segregation of the cold phase PDO years resulted in the identification of different regions in the Pacific Ocean and vastly improved skill for the nine month

  14. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    USGS Publications Warehouse

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).

  15. Initialization and Predictability of a Coupled ENSO Forecast Model

    NASA Technical Reports Server (NTRS)

    Chen, Dake; Zebiak, Stephen E.; Cane, Mark A.; Busalacchi, Antonio J.

    1997-01-01

    The skill of a coupled ocean-atmosphere model in predicting ENSO has recently been improved using a new initialization procedure in which initial conditions are obtained from the coupled model, nudged toward observations of wind stress. The previous procedure involved direct insertion of wind stress observations, ignoring model feedback from ocean to atmosphere. The success of the new scheme is attributed to its explicit consideration of ocean-atmosphere coupling and the associated reduction of "initialization shock" and random noise. The so-called spring predictability barrier is eliminated, suggesting that such a barrier is not intrinsic to the real climate system. Initial attempts to generalize the nudging procedure to include SST were not successful; possible explanations are offered. In all experiments forecast skill is found to be much higher for the 1980s than for the 1970s and 1990s, suggesting decadal variations in predictability.

  16. Weather Regimes in the Pacific from a GCM.

    NASA Astrophysics Data System (ADS)

    Haines, K.; Hannachi, A.

    1995-07-01

    Weather regimes have been sought by examining the 500-mb streamfunction of the UGAMP GCM run for 10 yr at T42 resolution with perpetual January forcing. Five-day low-pass EOFs provide a low-order phase space in which to study dynamical aspects of the variability. The PNA pattern shows up as the first EOF over the Northern Hemisphere representing 12% of the variance, rising to 18.5% for Pacific-area-only EOFs.Within the phase space of three to five EOFs, two local minima of the area-averaged tendency (based on rotational velocity advection) are found. These two flow patterns both have a smaller implied tendency than the climatology and lie in the ±PNA regions of the phase space. It is suggested that these patterns may be acting as `fixed points' within the atmospheric attractor, encouraging persistent flows and the formation of weather regimes. These dynamical attracting points are compared with a more conventional means of identifying weather regimes using a statistical maximum likelihood analysis of all model states during the 10-yr GCM run. This analysis also indicates two preferred classes, separate from the climatology, in the ±PNA regions of phase space. These classes tend to be nearer the climatology than the dynamical states but have similar appearance otherwise.Finally the role of low-frequency transients are examined to improve the dynamical interpretation of the regime centers. The method is first demonstrated for the extended Lorenz model of Molteni et al. The fixed points of the GCM attractor are assumed to be steady solutions to the 500-mb vorticity equation in the absence of contributions from transient eddies. The eddy contributions to the climatological vorticity budget are first determined, and then the deviations from the climatology that could provide similar contributions to the budget are found. Again two states in the ±PNA regions of phase space are found to satisfy the above conditions. The authors speculate that the attractors themselves

  17. Modeling Studies of the Effects of Tropical Rainfall on Ocean-Atmosphere Interactions and Oceanic Hydrological Cycle

    NASA Technical Reports Server (NTRS)

    Chen, Dake

    2000-01-01

    This research project is a joint effort of UMD/JCESS, NASA/GSFC, NOAA/PMEL and LDEO, with UMD/JCESS being the leader and LDEO being responsible for coupled modeling. Although the project as a whole is for three years, the LDEO part was terminated at the end of the second year because of a shift of focus. The detailed description of the whole project and the effort made at LDEO have been given in the two joint annual reports and the two annual reports from LDEO. Here we only provide a brief summary of what we have done here at LDEO and a list of publications that resulted partly from this project.

  18. Do GCM's Predict the Climate.... Or the Low Frequency Weather?

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.; Varon, D.; Schertzer, D. J.

    2011-12-01

    Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500- 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT ≈ ΔtH the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale. At longer scales Δt >τw (≈ 10 days) they change sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime the spectrum is a relatively flat "plateau", it's variability is that of the usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, again H>0, the variability again increases with scale. This is the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, "climate states", as fluctuations at scale τc and "climate change" as the fluctuations at longer periods >τc). We show that the intermediate regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched, only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by weather cascade models, but also by control runs (i.e. without climate forcing) of GCM's (including IPSL and ECHAM GCM's). In order for GCM's to go beyond simply

  19. Ocean-Atmosphere interaction observed from comparison of the ENSO signatures in the time series of J2 and the Earth's spin rate

    NASA Astrophysics Data System (ADS)

    Fernandez, L.; Fang, M.; Zang, X.; Zheng, D.; Hager, B. H.; Wunsch, C.; Ding, X.

    2003-12-01

    Significant interannual variations have been observed from the multi-satillite SLR solutions of the Earth's oblateness, known as the J2 time series, by the Texas CSR group (Cheng & Tapley, submitted) with a time span from 1975 to the present, as well as by our independent analysis of the Godard series (courtesy of Ben Chao for the data) with a time span from 1979 to the present. These variations are closely related to the ENSO events as evidenced by their apparent correlation, not perfect though, with the Southern Oscillation Index. Our preliminary analysis shows that the ENSO signature in the atmospheric circulation is not adequate to account for up to 50% of the interannuals in the J2 series. In contrast, the atmosphere contributes better than 80% of the observed time variation of the Earth's rotation rate i.e. the length of day (LOD) at the ENSO time scale, mostly from the thermally driven eastward wind fields (e.g. Zheng et al, 2003). We normalize the LOD and J2 series by making the maxima in both data sets units, and make a comparison. A strong correlation is found between the LOD and J2. It is apparently due to a common cause from the ENSO. At the same time, noticeable differences are observed, especially with the phases. These differences are ultimately attributed to the ocean-atmosphere interaction during the ENSO events. As a preliminary study, we calculate the oceanic contribution to the interannuals of LOD and J2 by running a high-resolution state-of-art self-consistent and volume conserving ocean numerical model with realistic atmospheric forcing. A simple model for the ocean-atmospheric interaction will be employed to calculate the changes in the wind and pressure fields. Solid Earth deformation induced by the bottom pressure change is also considered in the modeling. Correlation analysis are conducted between the "fully model" ENSO driven LOD and J2. Comparisons between the observed and modeled correltions will be presented.

  20. Collaborative project. Ocean-atmosphere interaction from meso-to planetary-scale. Mechanisms, parameterization, and variability

    SciTech Connect

    Small, Richard; Bryan, Frank; Tribbia, Joseph; Park, Sungsu; Dennis, John; Saravanan, R.; Schneider, Niklas; Kwon, Young-Oh

    2015-06-11

    This project aims to improve long term global climate simulations by resolving ocean mesoscale activity and the corresponding response in the atmosphere. The main computational objectives are; i) to perform and assess Community Earth System Model (CESM) simulations with the new Community Atmospheric Model (CAM) spectral element dynamical core; ii) use static mesh refinement to focus on oceanic fronts; iii) develop a new Earth System Modeling tool to investigate the atmospheric response to fronts by selectively filtering surface flux fields in the CESM coupler. The climate research objectives are 1) to improve the coupling of ocean fronts and the atmospheric boundary layer via investigations of dependency on model resolution and stability functions: 2) to understand and simulate the ensuing tropospheric response that has recently been documented in observations: and 3) to investigate the relationship of ocean frontal variability to low frequency climate variability and the accompanying storm tracks and extremes in high resolution simulations. This is a collaborative multi-institution project consisting of computational scientists, climate scientists and climate model developers. It specifically aims at DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  1. The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP)

    NASA Astrophysics Data System (ADS)

    Chepfer, H.; Bony, S.; Winker, D.; Cesana, G.; Dufresne, J. L.; Minnis, P.; Stubenrauch, C. J.; Zeng, S.

    2010-01-01

    This article presents the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP) designed to evaluate the cloudiness simulated by general circulation models (GCMs). For this purpose, Cloud-Aerosol Lidar with Orthogonal Polarization L1 data are processed following the same steps as in a lidar simulator used to diagnose the model cloud cover that CALIPSO would observe from space if the satellite was flying above an atmosphere similar to that predicted by the GCM. Instantaneous profiles of the lidar scattering ratio (SR) are first computed at the highest horizontal resolution of the data but at the vertical resolution typical of current GCMs, and then cloud diagnostics are inferred from these profiles: vertical distribution of cloud fraction, horizontal distribution of low, middle, high, and total cloud fractions, instantaneous SR profiles, and SR histograms as a function of height. Results are presented for different seasons (January-March 2007-2008 and June-August 2006-2008), and their sensitivity to parameters of the lidar simulator is investigated. It is shown that the choice of the vertical resolution and of the SR threshold value used for cloud detection can modify the cloud fraction by up to 0.20, particularly in the shallow cumulus regions. The tropical marine low-level cloud fraction is larger during nighttime (by up to 0.15) than during daytime. The histograms of SR characterize the cloud types encountered in different regions. The GOCCP high-level cloud amount is similar to that from the TIROS Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). The low-level and middle-level cloud fractions are larger than those derived from passive remote sensing (International Satellite Cloud Climatology Project, Moderate-Resolution Imaging Spectroradiometer-Cloud and Earth Radiant Energy System Polarization and Directionality of Earth Reflectances, TOVS Path B, AIRS-Laboratoire de M

  2. THOR: an open-source exo-GCM

    NASA Astrophysics Data System (ADS)

    Grosheintz, Luc; Mendonça, João; Käppeli, Roger; Lukas Grimm, Simon; Mishra, Siddhartha; Heng, Kevin

    2015-12-01

    In this talk, I will present THOR, the first fully conservative, GPU-accelerated exo-GCM (general circulation model) on a nearly uniform, global grid that treats shocks and is non-hydrostatic. THOR will be freely available to the community as a standard tool.Unlike most GCMs THOR solves the full, non-hydrostatic Euler equations instead of the primitive equations. The equations are solved on a global three-dimensional icosahedral grid by a second order Finite Volume Method (FVM). Icosahedral grids are nearly uniform refinements of an icosahedron. We've implemented three different versions of this grid. FVM conserves the prognostic variables (density, momentum and energy) exactly and doesn't require a diffusion term (artificial viscosity) in the Euler equations to stabilize our solver. Historically FVM was designed to treat discontinuities correctly. Hence it excels at resolving shocks, including those present in hot exoplanetary atmospheres.Atmospheres are generally in near hydrostatic equilibrium. We therefore implement a well-balancing technique recently developed at the ETH Zurich. This well-balancing ensures that our FVM maintains hydrostatic equilibrium to machine precision. Better yet, it is able to resolve pressure perturbations from this equilibrium as small as one part in 100'000. It is important to realize that these perturbations are significantly smaller than the truncation error of the same scheme without well-balancing. If during the course of the simulation (due to forcing) the atmosphere becomes non-hydrostatic, our solver continues to function correctly.THOR just passed an important mile stone. We've implemented the explicit part of the solver. The explicit solver is useful to study instabilities or local problems on relatively short time scales. I'll show some nice properties of the explicit THOR. An explicit solver is not appropriate for climate study because the time step is limited by the sound speed. Therefore, we are working on the first fully

  3. Tropical Sensitivity of a Coupled Model to Specified ISCCP Low Clouds.

    NASA Astrophysics Data System (ADS)

    Gordon, C. T.; Rosati, A.; Gudgel, R.

    2000-07-01

    The seasonal cycle of SST observed in the eastern equatorial Pacific is poorly simulated by many ocean-atmosphere coupled GCMs. This deficiency may be partly due to an incorrect prediction of tropical marine stratocumulus (MSc). To explore this hypothesis, two basic multiyear simulations have been performed using a coupled GCM with seasonally varying solar radiation. The model's cloud prediction scheme, which underpredicts tropical marine stratocumulus, is used for all clouds in the control run. In contrast, in the `ISCCP' run, the climatological monthly mean low cloud fraction is specified over the open ocean, utilizing C2 data from the International Satellite Cloud Climatology Project (ISCCP). In this manner, the treatment of MSc clouds, including the annual cycle, is more realistic than in previous sensitivity studies.Robust surface and subsurface thermodynamical and dynamical responses to the specified MSc are found in the Tropics, especially near the equator. In the annual mean, the equatorial cold tongue extends farther west and intensifies, while the east-west SST gradient is enhanced. A double SST maximum flanking the cold tongue becomes asymmetric about the equator. The SST annual cycle in the eastern equatorial Pacific strengthens, and the equatorial SST seasonal anomalies migrate farther westward. MSc-induced local shortwave radiative cooling enhances dynamical cooling associated with the southeast trades. The surface meridional wind stress in the extreme eastern equatorial Pacific remains southerly all year, while the surface zonal wind stress and equatorial upwelling intensify, as does the seasonal cycle of evaporation, in better agreement with observation. Within the ocean, the thermocline steepens and the Equatorial Undercurrent intensifies. When the low clouds are entirely removed, the SST warms by about 5.5 K in the western and central tropical Pacific, relative to `ISCCP,' and the model's SST bias there reverses sign.ENSO-like interannual

  4. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Astrophysics Data System (ADS)

    Fast, Kelly Elizabeth; Kostiuk, T.; Hewagama, T.; Livengood, T. A.; Delgado, J. D.; Annen, J.; Lefèvre, F.

    2008-09-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars’ atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 μm with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawai'i on February 21-24 2008 UT at Ls=35°, on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60°N 112°W was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  5. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  6. Antarctic glacial geologic record and GCM modeling: A test

    SciTech Connect

    Elliot, D.H.; Bromwich, D.H.; Harwood, D.M.; Webb, P.

    1992-03-01

    A recent GCM (General Circulation Model) study of Antarctic glaciation by Oglesby concluded that (1) oceanic heat transport is relatively unimportant in the development and maintenance of Antarctic glaciation; (2) height and polar position, not the Antarctic Circumpolar Current, have led to thermal isolation; and (3) surface elevation may be crucial for glaciation. Model results are here evaluated against the Pliocene geologic record for Antarctica. The Sirius Group, widely distributed in the Transantarctic Mountains, contains diatom floras suggesting open marine conditions in interior East Antarctica as recently as about 3 m.y. ago. The Sirius deposits also contain a sparse fossil flora including Nothofagus wood, demonstrating snow-free conditions and elevated summer temperatures within 500 km of the South Pole. Based on fission track data and marine sediments, uplift rates for the Transantarctic Mountains are estimated to average 50-100 m m.y.-1 for the last 10 m.y., although rates may have been higher during the last 3 m.y. The continental interior is also most unlikely to have changed elevation by more than a few hundred meters in the last 3 m.y. If the dating of the Sirius is correct and uplift rates have not been an order of magnitude higher, then polar location and elevation cannot be primary controls on the formation and subsequent fluctuations of the ice sheet.

  7. African easterly wave activity in a variable resolution GCM

    NASA Astrophysics Data System (ADS)

    Moustaoui, M.; Royer, J.-F.; Chauvin, F.

    2002-03-01

    The role of large-scale conditions on African easterly waves' variability and associated rainfall is investigated in simulations with the variable resolution version of the Arpege-Climat General Circulation Model (GCM). Easterly waves are identified from the 850 hPa meridional winds. The simulated waves' characteristics and their frequency response are compared with that in the reanalyses of the European Center for Medium-range Weather Forecasts (ECMWF) during summer 1992. The zonal wavelength of the simulated waves increases toward the equator. This increase, found also in previous works, is explained by the increase in 850-hPa mean zonal winds toward the equator as a result of low-level monsoon flow. A pronounced seasonal variability indicating a late summer enhancement of wave activity and related precipitation is found in both simulations and reanalyses. This feature, which has been found from observation campaigns, is explained by the variability of the large-scale circulation, which gives favorable conditions for the penetration of the easterly waves into the moist layer in the late summer. A shift of the spectra towards low frequencies is found in the simulated waves when compared to the reanalysis. The shift is explained by the relatively weak westward winds within the African Easterly Jet in the model, which tend to generate waves with low phase speed and frequency. We suggest that the weakness of the winds in the jet is caused by the strong eastward monsoon flow in the model, which may be due to surface condition parameterizations.

  8. GCM simulated geopotential heights compared to GPS RO data

    NASA Astrophysics Data System (ADS)

    Molodtsov, S.; Kirilenko, A.; Olsen, D.

    2012-12-01

    Accurate, high-quality, global coverage data is required for global climate monitoring. It also provides possibility of additional validation of the general circulation models (GCMs). GPS Radio occultation (GPS RO) measurements have potential of becoming a new benchmark in data acquisition, providing new high-quality profiles of the parameters of the atmosphere, such as the temperature, water vapor pressure, and geopotential heights. In our study we use GPS RO data with a purpose to test global circulation models (GCMs). We study how climate change signal emerges in the GPS RO data and how these signals are reflected in GCM simulations. We use temperature and geopotential height profiles from 2001-2006 CHAMP and 2006-2011 COMIC acquisitions to validate the output from twelve IPCC AR4 GCMs run under A1B SRES scenario. We found that the 2001-2011 trends of the temperature and geopotential height derived from the IPCC AR4 GCMs show the same pattern with trends derived from GPS RO data - warming of the upper troposphere (UT) and cooling of the lower stratosphere (LS). There is some discrepancy between trends in lower troposphere (LT) between models and GPS RO data: some GCMs show decreasing temperature and geopotential height trends while the GPS RO trends are positive. The statistical analysis of these trends will be reported.

  9. GCM studies of the influence of vegetation on the general circulation: The role of albedo in modulating climate change. [GCM (general circulation model)

    SciTech Connect

    Dirmeyer, P.A.

    1992-01-01

    An atmospheric general circulation model (GCM) coupled to a simple biosphere model is used to examine the role of vegetation change on climate. Various biomes are substituted to simulate degradation of vegetation. It is found that albedo change plays a distinct role in the local decrease of rainfall. Changes in vegetation morphology and physiology do not cause catastrophic decreases in precipitation. Simulations of Amazon deforestation show that the climate response is very dependent on the amount of change in albedo between rainforest and degraded grass. Precipitation drops as albedo increases. The change in plant physiology decreases evapotranspiration, but moisture convergence increases to offset the drying. This compensation is a result of cloud feedback in this model, and does not occur when cloudiness is prescribed. Experiments with idealized boundary conditions show a similar dependence of rainfall on albedo in cases of tropical deforestation, subtropical desertification, and mid-latitude deforestation. In the topics, rainfall decreases over land only when reflectivity is increased, even when the rainforest is left intact. The monsoon precipitation of the subtropical experiment fails when savannah is replaced by high-albedo desert. When low-albedo desert is used, the decrease in summer rainfall is small. When mid-latitude forest is replaced by grassland, precipitation patterns shift, but net rainfall remains unchanged. Additional simulations of mid-latitude drought show that low soil moisture leads to moderate spring and summer droughts, but dry soil combined with dormant vegetation produces extremely severe droughts. Soil moisture deficits were more persistent when vegetation did not go dormant.

  10. The Nonlinear Response of the Equatorial Pacific Ocean-Atmosphere System to Periodic Variations in Insolation and its Association with the Abrupt Climate Transitions during the Quaternary.

    NASA Astrophysics Data System (ADS)

    Lopes, P. G.

    2015-12-01

    The evidences of climate changes during the Quaternary are abundant but the physical mechanisms behind the climate transitions are controversial. The theory of Milankovitch takes into account the periodic orbital variations and the solar radiation received by the Earth as the main explanation for the glacial-interglacial cycles. However, some gaps in the theory still remain. In this study, we propose elucidating some of these gaps by approaching the Equatorial Pacific Ocean as a large oscillator, capable of triggering climate changes in different temporal scales. A mathematical model representing El Ninõ-like phenomena, based on Duffing equation and modulated by the astronomical cycle of 100 ka, was used to simulate the variability of the equatorial Pacific climate system over the last 2 Ma. The physical configuration of the Pacific Ocean, expressed in the equation, explains the temporal limit of the glacial-interglacial cycles. According to the simulation results, consistent with paleoclimate records, the amplification of the effects of the gradual variation of the Earth's orbit eccentricity - another unclear question - is due to the feedback mechanism of the Pacific ocean-atmosphere system, which responds non-linearly to small variations in insolation forcing and determines the ENSO-like phase (warm or cold) at different time scales and different intensities. The approach proposed here takes into account that the abrupt transitions between the ENSO-like phases, and the consequent changes in the sea surface temperature (SST) along the Equatorial Pacific Ocean, produce reactions that act as secondary causes of the temperature fluctuations that result in a glaciation (or deglaciation) - as the drastic change on the rate of evaporation/precipitation around the globe, and the increase (or decrease) of the atmospheric CO2 absorption by the phytoplankton. The transitional behavior between the warm and the cold phases, according to the presented model, is enhanced as

  11. Geochemistry of coral from Papua New Guinea as a proxy for ENSO ocean-atmosphere interactions in the Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Ayliffe, Linda K.; Bird, Michael I.; Gagan, Michael K.; Isdale, Peter J.; Scott-Gagan, Heather; Parker, Bruce; Griffin, David; Nongkas, Michael; McCulloch, Malcolm T.

    2004-12-01

    A Porites sp. coral growing offshore from the Sepik and Ramu Rivers in equatorial northern Papua New Guinea has yielded an accurate 20-year history (1977-1996) of sea surface temperature (SST), river discharge, and wind-induced mixing of the upper water column. Depressions in average SSTs of about 0.5-1.0 °C (indicated by coral Sr/Ca) and markedly diminished freshwater runoff to the coastal ocean (indicated by coral δ18O, δ13C and UV fluorescence) are evident during the El Niño - Southern Oscillation (ENSO) events of 1982-1983, 1987 and 1991-1993. The perturbations recorded by the coral are in good agreement with changes in instrumental SST and river discharge/precipitation records, which are known to be diagnostic of the response of the Pacific Warm Pool ocean-atmosphere system to El Niño. Consideration of coastal ocean dynamics indicates that the establishment of northwest monsoon winds promotes mixing of near-surface waters to greater depths in the first quarter of most years, making the coral record sensitive to changes in the Asian-Australian monsoon cycle. Sudden cooling of SSTs by ˜1°C following westerly wind episodes, as indicated by the coral Sr/Ca, is consistent with greater mixing in the upper water column at these times. Furthermore, the coral UV fluorescence and oxygen isotope data indicate minimal contribution of river runoff to surface ocean waters at the beginning of most years, during the time of maximum discharge. This abrupt shift in flood-plume behaviour appears to reflect the duration and magnitude of northwest monsoon winds, which tend to disperse flood plume waters to a greater extent in the water column when wind-mixing is enhanced. Our results suggest that a multi-proxy geochemical approach to the production of long coral records should provide comprehensive reconstructions of tropical paleoclimate processes operating on interannual timescales.

  12. Simulation of monsoon intraseasonal oscillations in a coarse resolution aquaplanet GCM

    NASA Astrophysics Data System (ADS)

    Ravindran, A. M.; Khouider, B.; Majda, A.

    2014-12-01

    The skill of the global climate models (GCMs) to realistically simulate theMonsoon Intraseasonal Oscillations (MISOs) is related to the sensitivity of their convective parameterization schemes. Here, we show that by coupling a simple multicloud parameterization to a coarse resolution aquaplanet GCM,realistic MISOs can be simulated. We conduct three different simulations with a fixed non-homogeneous Sea-Surface Temperature (SST) mimicking the Indian Ocean/Western Pacific warm pool centered at the three latitudes 5°N,10°N and 15°N, respectively, to replicate the seasonal migration of the Tropical Convergence Zone (TCZ). This results in the generation of mean circulation resembling the monsoonal flow pattern in boreal summer. Successionof eastward propagating Madden-Julian Oscillation (MJO) disturbances with phase speed, amplitude and structure similar to summer MJOs are simulated when the WP is at 5°N. When the WP is located over 10°N, northward and eastward propagating MISOs are simulated. This case captures the meridional seesaw of convection between continental and oceanic TCZ observed during boreal summer over south Asia. Westward propagating Rossby-wave like disturbances are simulated when the WP is over 15°N congruous with the synoptic disturbances seen over the monsoon trough. The initiation of intraseasonal oscillations in the model can occur internally through organization of convective events above the WP associated with internal dynamics.

  13. Simulation of monsoon intraseasonal oscillations in a coarse-resolution aquaplanet GCM

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.; Khouider, Boualem; Majda, Andrew J.

    2014-08-01

    The skill of the global climate models (GCMs) to realistically simulate the monsoon intraseasonal oscillations (MISOs) is related to the sensitivity of their convective parameterization schemes. Here we show that by coupling a simple multicloud parameterization to a coarse-resolution aquaplanet GCM, realistic MISOs can be simulated. We conduct three different simulations with a fixed nonhomogeneous sea surface temperature mimicking the Indian Ocean/western Pacific warm pool (WP) centered at the three latitudes 5°N, 10°N, and 15°N, respectively, to replicate the seasonal migration of the Tropical Convergence Zone (TCZ). This results in the generation of mean circulation resembling the monsoonal flow pattern in boreal summer. Succession of eastward propagating Madden-Julian Oscillation (MJO) disturbances with phase speed, amplitude, and structure similar to summer MJOs are simulated when the WP is at 5°N. When the WP is located over 10°N, northward and eastward propagating MISOs are simulated. This case captures the meridional seesaw of convection between continental and oceanic TCZ observed during boreal summer over South Asia. Westward propagating Rossby wave-like disturbances are simulated when the WP is over 15°N congruous with the synoptic disturbances seen over the monsoon trough. The initiation of intraseasonal oscillations in the model can occur internally through organization of convective events above the WP associated with internal dynamics.

  14. A statistical study of the regional impact of deforestation on climate in the LMD GCM

    SciTech Connect

    Polcher, J.; Laval, K.

    1994-09-01

    The present study uses the general circulation model of the Laboratoire de Meteorologie Dynamique (LMD-GCM) coupled to the land-surface, vegetation model SECHIBA. The impact of deforestation on climate is discussed. Replacing tropical forests by degraded pastures changes albedo, the roughness length and the hydrological properties of the surface. The experiment was carried out over eleven years using the observed sea surface temperature from 1978 to 1988, which includes two major El Nino events. The discussion of the results in this study is limited to the regional impact of deforestation. The changes found for the surface fluxes in Amazonia, Africa, and Indonesia are examined in detail and compared in order to understand the impact on temperature. Special attention is paid to feedback mechanisms which compensate for the surface changes and to the statistical significant of these results within athe tropical variability of climate. It is shown that the relatively small regional impact of deforestation in this study is statistically significant and largely independent of the El Nino-Southern Oscillation phenomenon. 27 refs., 7 figs., 11 tabs.

  15. GCM simulations of Titan's middle and lower atmosphere and comparison to observations

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Lunine, Jonathan I.; Russell, Joellen L.

    2015-04-01

    Simulation results are presented from a new general circulation model (GCM) of Titan, the Titan Atmospheric Model (TAM), which couples the Flexible Modeling System (FMS) spectral dynamical core to a suite of external/sub-grid-scale physics. These include a new non-gray radiative transfer module that takes advantage of recent data from Cassini-Huygens, large-scale condensation and quasi-equilibrium moist convection schemes, a surface model with "bucket" hydrology, and boundary layer turbulent diffusion. The model produces a realistic temperature structure from the surface to the lower mesosphere, including a stratopause, as well as satisfactory superrotation. The latter is shown to depend on the dynamical core's ability to build up angular momentum from surface torques. Simulated latitudinal temperature contrasts are adequate, compared to observations, and polar temperature anomalies agree with observations. In the lower atmosphere, the insolation distribution is shown to strongly impact turbulent fluxes, and surface heating is maximum at mid-latitudes. Surface liquids are unstable at mid- and low-latitudes, and quickly migrate poleward. The simulated humidity profile and distribution of surface temperatures, compared to observations, corroborate the prevalence of dry conditions at low latitudes. Polar cloud activity is well represented, though the observed mid-latitude clouds remain somewhat puzzling, and some formation alternatives are suggested.

  16. The Origin of Systematic Errors in the GCM Simulation of ITCZ Precipitation

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Suarez, M. J.; Bacmeister, J. T.; Chen, B.; Takacs, L. L.

    2006-01-01

    Previous GCM studies have found that the systematic errors in the GCM simulation of the seasonal mean ITCZ intensity and location could be substantially corrected by adding suitable amount of rain re-evaporation or cumulus momentum transport. However, the reason(s) for these systematic errors and solutions has remained a puzzle. In this work the knowledge gained from previous studies of the ITCZ in an aqua-planet model with zonally uniform SST is applied to solve this puzzle. The solution is supported by further aqua-planet and full model experiments using the latest version of the Goddard Earth Observing System GCM.

  17. Smagorinsky-type diffusion in a high-resolution GCM

    NASA Astrophysics Data System (ADS)

    Schaefer-Rolffs, Urs; Becker, Erich

    2013-04-01

    The parametrization of the (horizontal) momentum diffusion is a paramount component of a Global Circulation Model (GCM). Aside from friction in the boundary layer, a relevant fraction of kinetic energy is dissipated in the free atmosphere, and it is known that a linear harmonic turbulence model is not sufficient to obtain a reasonable simulation of the kinetic energy spectrum. Therefore, often empirical hyper-diffusion schemes are employed, regardless of disadvantages like the violation of energy conservation and the second law of thermodynamics. At IAP we have developed an improved parametrization of the horizontal diffusion that is based on Smagorinsky's nonlinear and energy conservation formulation. This approach is extended by the dynamic Smagorinsky model (DSM) of M. Germano. In this new scheme, the mixing length is no longer a prescribed parameter but calculated dynamically from the resolved flow such as to preserve scale invariance for the horizontal energy cascade. The so-called Germano identity is solved by a tensor norm ansatz which yields a positive definite frictional heating. We present results from an investigation using the DSM as a parametrization of horizontal diffusion in a high-resolution version of the Kühlungborn Mechanistic general Circulation Model (KMCM) with spectral truncation at horizontal wavenumber 330. The DSM calculates the Smagorinsky parameter cS independent from the resolution scale. We find that this method yields an energy spectrum that exhibits a pronounced transition from a synoptic -3 to a mesoscale -5-3 slope at wavenumbers around 50. At the highest wavenumber end, a behaviour similar to that often obtained by tuning the hyper-diffusion is achieved self-consistently. This result is very sensitive to the explicit choice of the test filter in the DSM.

  18. Contributions to the implementation of the Arakawa-Schubert cumulus parameterization in the GLA GCM. [GCM (general circulation model)

    SciTech Connect

    Sud, Y.C.; Chao, W.C.; Walker, G.K. )

    1991-07-01

    Several integrations were made with a coarse version of the GLA GCM, which has the Arakawa-Schubert cumulus parameterization, predicted fractional cloud cover, and a parameterization of evaporation of falling rainfall. All model simulation experiments started from ECMWF analysis for 15 December 1982 and were integrated until 31 January 1983 using climatological boundary conditions. The first ten days of model integrations show that the model-simulated tropics dries and warms as a result of excessive precipitation. Three types of model development-cum-analysis studies were made with the cumulus scheme. First, the Critical Cloud Work Function (CCWF) dataset for different sigma layers were reworked using the Cloud Work Function (CWF) database of lord et al. as representative of time-average CWF and not the actual CCWF values as in the Arakawa-Schubert implementation of cumulus convection. The experiments with the new CCWF dataset helped to delineate influence of changing CCWF on model simulations. Larger values of CCWF partially alleviated the problem of excessive heating and drying during spinup and sharpened the tropical ITCZ (Intertropical Convergence Zone). Second, by comparing two simulations, one with and one without cumulus convection, the role of cumulus convection in maintaining observed tropical rainfall and 850 mb easterly winds is clarified. Third, relations between cloud radii and cumulus entrainment parameter, [lambda], realistic upper and lower bounds on [lambda] were obtained. This improvement had a great impact on the time evolution of tropical temperature and humidity simulation. It also suppressed excessive rainfall during spinup. Finally, by invoking [lambda][sub min] = 0.0002 m[sup [minus]1] (R[sub max] = 1.00 km) another simulation was made. In this simulation, not only the excessive initial rainfall was virtually eliminated, but a more realistic vertical distribution of specific humidity in the tropics was produced. 22 refs., 29 figs., 3 tabs.

  19. Impact of global warming on the Asian winter monsoon in a coupled GCM

    NASA Astrophysics Data System (ADS)

    Hu, Zeng-Zhen; Bengtsson, Lennart; Arpe, Klaus

    2000-02-01

    The Asian winter monsoon (AWM) response to the global warming was investigated through a long-term integration of the transient greenhouse warming with the ECHAM4/OPYC3 CGCM. The physics of the response was studied through analyses of the impact of the global warming on the variations of the ocean and land contrast near the ground in the Asian and western Pacific region and the east Asian trough and jet stream in the middle and upper troposphere. Forcing of transient eddy activity on the zonal circulation over the Asian and western Pacific region was also analyzed. It is found that in the global warming scenario the winter northeasterlies along the Pacific coast of the Eurasian continent weaken systematically and significantly, and intensity of the AWM reduces evidently, but the AWM variances on the interannual and interdecadal scales are not affected much by the global warming. It is suggested that the global warming makes the climate over the most part of Asia to be milder with enhanced moisture in winter. In the global warming scenario the contrasts of the sea level pressure and the near-surface temperature between the Asian continent and the Pacific Ocean become significantly smaller, northward and eastward shifts and weakening of the east Asian trough and jet stream in the middle and upper troposphere are found. As a consequence, the cold air in the AWM originating from the east Asian trough and high latitudes is less powerful. In addition, feedback of the transient activity also makes a considerable contribution to the higher-latitude shift of the jet stream over the North Pacific in the global warming scenario.

  20. What can we learn from simulating Stratospheric Sudden Warming periods with the Thermosphere-Ionosphere-Mesosphere-Electrodynamics GCM?

    NASA Astrophysics Data System (ADS)

    Maute, A. I.; Hagan, M. E.; Roble, R. G.; Richmond, A. D.; Yudin, V. A.; Liu, H.; Goncharenko, L. P.; Burns, A. G.; Maruyama, N.

    2013-12-01

    The ionosphere-thermosphere system is not only influenced from geospace but also by meteorological variability. Ionospheric observations of GPS TEC during the current solar cycle have shown that the meteorological variability is important during solar minimum, but also can have significant ionospheric effects during solar medium to maximum conditions. Numerical models can be used to help understand the mechanisms that couple the lower and upper atmosphere over the solar cycle. Numerical modelers invoke different methods to simulate realistic, specified events of meteorological variability, e.g. specify the lower boundary forcing, nudge the middle atmosphere, data assimilation. To study the vertical coupling, we first need to assess the numerical models and the various methods used to simulate realistic events with respect to the dynamics of the mesosphere-lower thermosphere (MLT) region, the electrodynamics, and the ionosphere. This study focuses on Stratospheric Sudden Warming (SSW) periods since these are associated with a strongly disturbed middle atmosphere which can have effects up to the ionosphere. We will use the NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation model (TIME-GCM) to examine several recent SSW periods, e.g. 2009, 2012, and 2013. The SSW period in TIME-GCM will be specified in three different ways: 1. using reanalysis data to specify the lower boundary; 2. nudging the neutral atmosphere (temperature and winds) with the Whole Atmosphere Community Climate Model (WACCM)/Goddard Earth Observing System Model, Version 5 (GEOS-5) results; 3. nudging the background atmosphere (temperature and winds) with WACCM/GEOS5 results. The different forcing methods will be evaluated for the SSW periods with respect to the dynamics of the MLT region, the low latitude vertical drift changes, and the ionospheric effects for the different SSW periods. With the help of ionospheric data at different longitudinal sectors it will be possible to

  1. Effects of Cloud-Microphysics on Tropical Atmospheric Hydrologic Processes in the GEOS GCM

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Wu, H. T.; Sud, Y. C.; Walker, G. K.

    2004-01-01

    The sensitivity of tropical atmospheric hydrologic processes to cloud-microphysics is investigated using the NASA GEOS GCM. Results show that a faster autoconversion - rate produces more warm rain and less clouds at all levels. Fewer clouds enhances longwave cooling and reduces shortwave heating in the upper troposphere, while more warm rain produces increased condensation heating in the lower troposphere. This vertical heating differential destablizes the tropical atmosphere, producing a positive feedback resulting in more rain over the tropics. The feedback is maintained via a two-cell secondary circulation. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the melting/freezing, with rising motion in the warm rain region connected to descending motion in the cold rain region. The upper cell is found above the freezing/melting level, with longwave-induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. The tropical large scale circulation is found to be very sensitive to the radiative-dynamic effects induced by changes in autoconversion rate. Reduced cloud-radiation processes feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden and Julian Oscillations (MJO). Conversely,-a slower autconversion rate, with increased cloud radiation produces MJO's with more realistic westward propagating transients, resembling a supercloud cluster structure. Results suggests that warm rain and associated low and mid level clouds, i.e., cumulus congestus, may play a critical role in regulating the time-intervals of deep convections and hence the fundamental time scales of the MJO.

  2. Realistic initiation and dynamics of the Madden-Julian Oscillation in a coarse resolution aquaplanet GCM

    NASA Astrophysics Data System (ADS)

    Ajayamohan, R. S.; Khouider, Boualem; Majda, Andrew J.

    2013-12-01

    The main mechanisms for the initiation and propagation of the Madden-Julian Oscillation (MJO) are still widely debated. The capacity of operational global climate models (GCMs) to correctly simulate the MJO is hindered by the inadequacy of the underlying cumulus parameterizations. Here we show that a coarse resolution GCM, coupled to a simple multicloud model parameterization mimicking the observed dynamics and physical structure of organized tropical convection, simulates the MJO in an idealized setting of an aquaplanet without ocean dynamics. We impose a fixed nonhomogeneous sea-surface temperature replicating the Indian Ocean/Western Pacific warm pool. This results in a succession of MJOs with realistic phase speed, amplitude, and physical structure. Each MJO event is initiated at a somewhat random location over the warm pool and dies sometimes near the eastern boundary of the warm pool and sometimes at a random location way beyond the warm pool. Also occasionally the MJO events stall at the center of maximum heating. This is reminiscent of the fact that in nature some MJOs stall over the maritime continent while others reach the central Pacific Ocean and beyond. The initiation mechanism in the model is believed to be a combination of persistent intermittent convective events interacting with observed large-scale flow patterns and internal tropical dynamics. The large-scale flow patterns are associated with planetary-scale dry Kelvin waves that are triggered by preceding MJO events and circle the globe, while congestus cloud decks on the flanks of the warm pool are believed to force Rossby gyres which then funnel moisture toward the equatorial region.

  3. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  4. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  5. The Tropical Upper Troposphere and Lower Stratosphere in the GEOS-2 GCM

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Takacs, L.; Molod, A.; Nebuda, S.; Chen, M.; Rood, R.; Read, W. L.; Fiorino, M.

    1999-01-01

    The structure of the tropical upper troposphere and lower stratosphere in the GEOS-2 General Circulation Model (GCM) is discussed. The emphasis of this study is on the reality of monthly-mean temperature and water vapor distributions in the model, compared to reasonable observational estimates. It is shown that although the zonal-mean temperature is in good agreement with observations, the GCM supports an excessive zonal asymmetry near the tropopause compared to the ECMWF Reanalyses. In reality there is a QBO-related variability in the zonally averaged lower stratospheric temperature which is not captured by the model. The observed upper tropospheric temperature and humidity fields show variations related to those in the sea surface temperature, which are not incorporated in the GCM; nevertheless, there is some interannual variability in the GCM, indicating a component arising from internal processes. The model is too moist in the middle troposphere (500 hPa) but too dry in the upper troposphere, suggesting that there is too little vertical transport or too much drying in the GCM. Transport into the stratosphere shows a pronounced annual cycle, with drier air entering the tropical stratosphere when the tropopause is coldest in northern winter; while the alternating dry and moist air masses can be traced ascending through the tropical lower stratosphere, the progression of the anomalies is too rapid.

  6. Simulation of heavy rainfall events over Indian region: a benchmark skill with a GCM

    NASA Astrophysics Data System (ADS)

    Goswami, Prashant; Kantha Rao, B.

    2015-10-01

    Extreme rainfall events (ERE) contribute a significant component of the Indian summer monsoon rainfall. Thus an important requirement for regional climate simulations is to attain desirable quality and reliability in simulating the extreme rainfall events. While the global circulation model (GCM) with coarse resolution are not preferred for simulation of extreme events, it is expected that the global domain in a GCM would allow better representation of scale interactions, resulting in adequate skill in simulating localized events in spite of lower resolution. At the same time, a GCM with skill in simulation of extreme events will provide a more reliable tool for seamless prediction. The present work provides an assessment of a GCM for simulating 40 ERE that occurred over India during 1998-2013. It is found that, expectedly, the GCM forecasts underestimate the observed (TRMM) rainfall in most cases, but not always. Somewhat surprisingly, the forecasts of location are quite accurate in spite of low resolution (~50 km). An interesting result is that the highest skill of the forecasts is realized at 48 h lead rather than at 24 or 96 h lead. Diagnostics of dynamical fields like convergence shows that the forecasts can capture contrasting features on pre-event, event and post-event days. The forecast configuration used is similar to one that has been used for long-range monsoon forecasting and tropical cyclones in earlier studies; the present results on ERE forecasting, therefore, provide an indication for the potential application of the model for seamless prediction.

  7. An improved standardization procedure to remove systematic low frequency variability biases in GCM simulations

    NASA Astrophysics Data System (ADS)

    Mehrotra, Rajeshwar; Sharma, Ashish

    2012-12-01

    The quality of the absolute estimates of general circulation models (GCMs) calls into question the direct use of GCM outputs for climate change impact assessment studies, particularly at regional scales. Statistical correction of GCM output is often necessary when significant systematic biasesoccur between the modeled output and observations. A common procedure is to correct the GCM output by removing the systematic biases in low-order moments relative to observations or to reanalysis data at daily, monthly, or seasonal timescales. In this paper, we present an extension of a recently published nested bias correction (NBC) technique to correct for the low- as well as higher-order moments biases in the GCM-derived variables across selected multiple time-scales. The proposed recursive nested bias correction (RNBC) approach offers an improved basis for applying bias correction at multiple timescales over the original NBC procedure. The method ensures that the bias-corrected series exhibits improvements that are consistently spread over all of the timescales considered. Different variations of the approach starting from the standard NBC to the more complex recursive alternatives are tested to assess their impacts on a range of GCM-simulated atmospheric variables of interest in downscaling applications related to hydrology and water resources. Results of the study suggest that three to five iteration RNBCs are the most effective in removing distributional and persistence related biases across the timescales considered.

  8. Polycomb Controls Gliogenesis by Regulating the Transient Expression of the Gcm/Glide Fate Determinant

    PubMed Central

    Diebold, Celine; Van de Bor, Véronique; Schuettengruber, Bernd; González, Inma; Busturia, Ana; Cavalli, Giacomo; Giangrande, Angela

    2012-01-01

    The Gcm/Glide transcription factor is transiently expressed and required in the Drosophila nervous system. Threshold Gcm/Glide levels control the glial versus neuronal fate choice, and its perdurance triggers excessive gliogenesis, showing that its tight and dynamic regulation ensures the proper balance between neurons and glia. Here, we present a genetic screen for potential gcm/glide interactors and identify genes encoding chromatin factors of the Trithorax and of the Polycomb groups. These proteins maintain the heritable epigenetic state, among others, of HOX genes throughout development, but their regulatory role on transiently expressed genes remains elusive. Here we show that Polycomb negatively affects Gcm/Glide autoregulation, a positive feedback loop that allows timely accumulation of Gcm/Glide threshold levels. Such temporal fine-tuning of gene expression tightly controls gliogenesis. This work performed at the levels of individual cells reveals an undescribed mode of Polycomb action in the modulation of transiently expressed fate determinants and hence in the acquisition of specific cell identity in the nervous system. PMID:23300465

  9. STOIC: An Assessment of Coupled Model Climatology and Variability in Tropical Ocean Regions

    SciTech Connect

    Davey, M.K.; Sperber, K.R.; Huddleston, M

    2000-08-30

    The tropics are regions of strong ocean-atmosphere interaction on seasonal and interannual timescales, so a good representation of observed tropical behavior is a desirable objective for coupled ocean-atmosphere general circulation models (CGCMs). To broaden and update previous assessments (Mechoso et al. 1995, Neelin et al. 1992), two complementary projects were initiated by the CLIVAR Working Group on Seasonal to Interannual Prediction (WGSIP): the El Nino Simulation Intercomparison Project (ENSIP, by Mojib Latif) and STOIC (Study of Tropical Oceans In Coupled models). The aim was to compare models against observations to identify common weaknesses and strengths. Results from ENSIP concentrating on the equatorial Pacific have been described by Latif et al. (2000), hereafter ENSIP2000. A detailed report on STOIC is available via anonymous ftp at email.meto.gov.uk/pub/cr/ ''stoic'' and is summarized in Davey et al. (2000). The STOIC analyses extend beyond the equatorial Pacific, to examine behavior in all three tropical ocean regions.

  10. Ensemble Predictions of Future Snowfall Scenarios in the Karakorum and Hindu-Kush Mountains Using Downscaled GCM Data

    NASA Astrophysics Data System (ADS)

    Mosier, T. M.; Hill, D. F.; Sharp, K. V.

    2014-12-01

    Climate change is affecting the seasonality and mass of snow, and impacting the water resources of hundreds of millions of people who depend on streamflow originating in High Asia. Global climate model (GCM) outputs are the primary forcing data used to investigate future projections of changes in snow and glacier processes; however, these processes occur at a much finer spatial scale than the resolution of current GCMs. To facilitate studying the cryosphere in High Asia, we developed a software package to downscale monthly GCM data to 30-arcseconds for any global land area. Using this downscaling package, we produce an ensemble of downscaled GCM data from 2020-2100, corresponding to representative concentration pathways (RCPs) 4.5 and 8.5. We then use these data to model changes to snowfall in the Karakorum and Hindu Kush (KHK) region, which is located in High Asia. The ensemble mean of these data predict that total annual snowfall in 2095 will decrease by 22% under RCP 4.5 and 46% under RCP 8.5, relative to 1950-2000 climatological values. For both scenarios, the changes in snowfall are dependent on elevation, with the maximum decreases in snowfall occurring at approximately 2,300 m. While total snowfall decreases, an interesting feature of snowfall change for the RCP 8.5 scenario is that the ensemble mean projection shows an increase in snowfall for elevations between 3,000- 5,000 m relative to historic values. These fine-scale spatial, temporal, and elevation-dependent patterns of changes in projected snowfall significantly affect the energy balance of the snowpack, in turn affecting timing of melt and discharge. Therefore, our work can be coupled with a glacio-hydrological model to assess effects of these snowfall patterns on other processes or compared to existing model results to assess treatment of snow processes in the existing model. Our method is designed to downscale climate data for any global land area, allowing for the production of these fine

  11. Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections

    NASA Astrophysics Data System (ADS)

    Wakazuki, Y.; Rasmussen, R.

    2015-12-01

    A dynamical downscaling method for probabilistic regional-scale climate change projections was developed to cover the inherent uncertainty associated with multiple general circulation model (GCM) climate simulations. The climatological increments estimated by GCM results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding them to reanalysis data. The incremental handling of GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. For the probabilistic analysis, three values of a climatological variable simulated by RCMs for a mode were analyzed under an assumption of linear response to the multiple modal perturbations.

  12. A Variable Resolution Gcm Simulation of The Impact of Future Land-use Changes On African Climate

    NASA Astrophysics Data System (ADS)

    Maynard, K.; Royer, J. F.; Chauvin, F.

    Simulations with atmospheric general circulation models (GCM) have generally shown a significant impact of large-scale anthropogenic changes in land cover, on the regional surface climate, particularly for the case of massive tropical deforesta- tion. However these simulations have usually been performed with idealized land- surface changes, and with horizontal resolutions of several hundred kilometers, which does not allow to represent in detail the geographical variations of the land surface processes and their possible feedbacks. To achieve a higher spatial resolution over a selected region, a variable resolution version of the ARPEGE-Climat model, with a zooming technique based on a conformal transformation of the sphere, has been ap- plied to time-slice simulations allowing to reach a resolution of about 100 km over Africa. For the validation of the model a control simulation for the current climate has been performed using a new vegetation database based on satellite data. A time-slice simulation for the middle of the 21-rst century has been performed using the SST anomaly patterns from a coupled atmosphere-ocean transient climate simulation per- formed with a lower resolution version of the ARPEGE-Climat under the conditions of the SRES-B2 scenario of IPCC. In order to specify realistic land cover changes the results of the integrated impact assessment model IMAGE 2.2 from RIVM (Bilthoven) have been used to compute land surface properties on a 0.5 grid over the conti- nents. The impact on the African monsoon of the expected land surface changes in a greenhouse-warmed climate simulated by the high resolution GCM will be illustrated and discussed in this presentation.

  13. Use of Ocean Remote Sensing Data to Enhance Predictions with a Coupled General Circulation Model

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.

    1999-01-01

    Surface height, sea surface temperature and surface wind observations from satellites have given a detailed time sequence of the initiation and evolution of the 1997/98 El Nino. The data have beet complementary to the subsurface TAO moored data in their spatial resolution and extent. The impact of satellite observations on seasonal prediction in the tropical Pacific using a coupled ocean-atmosphere general circulation model will be presented.

  14. North Atlantic and Arctic Ocean Climate Change in Pliocene Simulations Using the GISS ModelE2-R GCM

    NASA Astrophysics Data System (ADS)

    Chandler, M. A.; Sohl, L. E.; Jonas, J.; Kelley, M.; Rind, D.

    2013-12-01

    As part of the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2, twelve research groups simulated the middle Pliocene climate using fully coupled versions of their ocean-atmosphere GCMs. Under the conditions prescribed by PlioMIP Experiment 2 (especially 25 meters of sea level rise, 405 ppm CO2, and reduced ice sheets) most coupled GCMs still underestimate ocean temperatures in the North Atlantic and Arctic Ocean regions. The GISS ModelE (AR5-version) originally produced the coolest results in these regions out of all the Pliocene simulations, with a greatly decreased AMOC and colder temperatures than modern in a large portion of the North Atlantic. However, improvements in the formulation of mesoscale mixing in the GISS ModelE, which have been incorporated in a more recent model update, led to significant changes in the simulation of the Pliocene (Chandler et al., 2013), including a warmer North Atlantic ocean, decreased Arctic sea ice, increased Atlantic meridional overturning circulation (AMOC) relative to the control run, and generally a more favorable comparison to proxy data. Despite these results, the relative role of the various forcings and the numerous boundary condition changes was not analyzed. Zhang et al. (2013) did show that the increase in ocean heat transport is small compared to the change in the AMOC and was not likely to be the direct cause of the North Atlantic warming. Furthermore, using a subset of the PlioMIP models they showed that the role of ocean heat flux in the models, in general, is not strongly correlated to either the strengthening of the Pliocene AMOC or the warming of the North Atlantic. We have now run a series of sensitivity tests with the newer version of the GISS model and will discuss the relative effects of Pliocene CO2, ice sheets (Greenland and Antarctica separately), orbit, vegetation and the change in the mesoscale mixing parameterization as a means of better understanding the role of various factors that

  15. La Plata basin precipitation variability in spring: role of remote SST forcing as simulated by GCM experiments

    NASA Astrophysics Data System (ADS)

    Cherchi, Annalisa; Carril, Andrea F.; Menéndez, Claudio G.; Zamboni, Laura

    2014-01-01

    An ensemble of nine experiments with the same interannually varying sea surface temperature (SST), as boundary forcing, and different initial conditions is used to investigate the role of tropical oceans in modulating precipitation variability in the region of La Plata Basin (LPB). The results from the ensemble are compared with a twentieth-century experiment performed with a coupled ocean-atmosphere model, sharing the same atmospheric component. A rotated empirical orthogonal functions analysis of South America precipitation shows that the dominant mode of variability in spring is realistically captured in both experiments. Its principal component (RPC1) correlated with global SST and atmospheric fields identifies the pattern related to El Niño Southern Oscillation and its large-scale teleconnections. Overall the pattern is well simulated in the tropical southern Pacific Ocean, mainly in the ensemble, but it is absent or too weak in other oceanic areas. The coupled model experiment shows a more realistic correlation in the subtropical South Atlantic where air-sea interactions contribute to the relationship between LPB precipitation and SST. The correspondence between model and data is much improved when the composite analysis of SST and atmospheric fields is done over the ensemble members having an RPC1 in agreement with the observations: the improvement relies on avoiding climate noise by averaging only over members that are statistically similar. Furthermore, the result suggests the presence of a high level of uncertainty due to internal atmospheric variability. The analysis of some individual years selected from the model and data RPC1 comparison reveals interesting differences among rainy springs in LPB. For example, 1982, which corresponds to a strong El Niño year, represents a clean case with a distinct wave train propagating from the central Pacific and merging with another one from the eastern tropical south Indian Ocean. The year 2003 is an example of a

  16. La Plata basin precipitation variability in spring: role of remote SST forcing as simulated by GCM experiments

    NASA Astrophysics Data System (ADS)

    Cherchi, Annalisa; Carril, Andrea F.; Menéndez, Claudio G.; Zamboni, Laura

    2013-04-01

    An ensemble of nine experiments with the same interannually varying sea surface temperature (SST), as boundary forcing, and different initial conditions is used to investigate the role of tropical oceans in modulating precipitation variability in the region of La Plata Basin (LPB). The results from the ensemble are compared with a twentieth-century experiment performed with a coupled ocean-atmosphere model, sharing the same atmospheric component. A rotated empirical orthogonal functions analysis of South America precipitation shows that the dominant mode of variability in spring is realistically captured in both experiments. Its principal component (RPC1) correlated with global SST and atmospheric fields identifies the pattern related to El Niño Southern Oscillation and its large-scale teleconnections. Overall the pattern is well simulated in the tropical southern Pacific Ocean, mainly in the ensemble, but it is absent or too weak in other oceanic areas. The coupled model experiment shows a more realistic correlation in the subtropical South Atlantic where air-sea interactions contribute to the relationship between LPB precipitation and SST. The correspondence between model and data is much improved when the composite analysis of SST and atmospheric fields is done over the ensemble members having an RPC1 in agreement with the observations: the improvement relies on avoiding climate noise by averaging only over members that are statistically similar. Furthermore, the result suggests the presence of a high level of uncertainty due to internal atmospheric variability. The analysis of some individual years selected from the model and data RPC1 comparison reveals interesting differences among rainy springs in LPB. For example, 1982, which corresponds to a strong El Niño year, represents a clean case with a distinct wave train propagating from the central Pacific and merging with another one from the eastern tropical south Indian Ocean. The year 2003 is an example of a

  17. Regional Climate Simulation with a Variable Resolution Stretched Grid GCM: The Regional Down-Scaling Effects

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Suarez, Max; Sawyer, William; Govindaraju, Ravi C.

    1999-01-01

    The results obtained with the variable resolution stretched grid (SG) GEOS GCM (Goddard Earth Observing System General Circulation Models) are discussed, with the emphasis on the regional down-scaling effects and their dependence on the stretched grid design and parameters. A variable resolution SG-GCM and SG-DAS using a global stretched grid with fine resolution over an area of interest, is a viable new approach to REGIONAL and subregional CLIMATE studies and applications. The stretched grid approach is an ideal tool for representing regional to global scale interactions. It is an alternative to the widely used nested grid approach introduced a decade ago as a pioneering step in regional climate modeling. The GEOS SG-GCM is used for simulations of the anomalous U.S. climate events of 1988 drought and 1993 flood, with enhanced regional resolution. The height low level jet, precipitation and other diagnostic patterns are successfully simulated and show the efficient down-scaling over the area of interest the U.S. An imitation of the nested grid approach is performed using the developed SG-DAS (Data Assimilation System) that incorporates the SG-GCM. The SG-DAS is run with withholding data over the area of interest. The design immitates the nested grid framework with boundary conditions provided from analyses. No boundary condition buffer is needed for the case due to the global domain of integration used for the SG-GCM and SG-DAS. The experiments based on the newly developed versions of the GEOS SG-GCM and SG-DAS, with finer 0.5 degree (and higher) regional resolution, are briefly discussed. The major aspects of parallelization of the SG-GCM code are outlined. The KEY OBJECTIVES of the study are: 1) obtaining an efficient DOWN-SCALING over the area of interest with fine and very fine resolution; 2) providing CONSISTENT interactions between regional and global scales including the consistent representation of regional ENERGY and WATER BALANCES; 3) providing a high

  18. How to Factor GCM Uncertainty in Assessing Changes to Reservoir Storage Capacity for Future (Warmer) Climates?

    NASA Astrophysics Data System (ADS)

    Woldemeskel, F. M.; Sharma, A.; Sivakumar, B.; Mehrotra, R.

    2013-12-01

    Whether or not the existing storage capacity of reservoirs is sufficient to meet future water demands is a question of great interest to water managers and policy makers. Among other factors, uncertainties in GCM projections make accurate estimation of future water availability and reservoir storage requirements extremely complicated. Projections of variables using GCMs (e.g. temperature, precipitation) are highly uncertain due to inaccuracies in the climate model structure, greenhouse gas emission scenarios, and initial conditions (or ensemble runs) used. The present study proposes a new method to quantify the uncertainties (or standard errors) of GCM projections and their influence on the estimation of reservoir storage. The GCM standard errors are estimated through the following four steps: (i) interpolating multiple GCM outputs to a common spatial grid; (ii) converting the interpolated GCM outputs to percentiles; (iii) estimating standard error for model, scenario, initial condition and total uncertainty for each percentile; and (iv) transforming standard error estimates to time series. By assuming an additive error model and conditioning on these standard errors, thousands of rainfall and temperature realizations are obtained for a selected GCM and scenario. The temperature realizations are used to estimate evaporation realizations, which are then used as input (together with rainfall) to rainfall-runoff model for estimating streamflow. Finally, the streamflow realizations are used to quantify reservoir storage requirements with its associated uncertainties using reservoir behavior analysis. The proposed method is tested for the case of the Warragamba dam reservoir system that supplies more than 80% of water to Sydney, Australia. The results suggest that uncertainties in reservoir storage capacity will be significantly large for the future period than that for the historical period. Comparison of the effects of rainfall and evaporation uncertainty suggests

  19. CMIP5/AMIP GCM simulations of East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Feng, Jinming; Wei, Ting; Dong, Wenjie; Wu, Qizhong; Wang, Yongli

    2014-07-01

    The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region. To understand the ability of AGCMs in capturing the major features of EASM, 10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP), which used observational SST and sea ice to drive AGCMs during the period 1979-2008, were evaluated by comparing with observations and AMIP II simulations. The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation, and shows the best skill in EASM simulation, better than the AMIP II MME. As for the Meiyu/Changma/Baiyu rainbelt, the intensity of rainfall is underestimated in all the models. The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group I models, and by a too strong and west-extended WPSH as well as westerly winds in group II models. Considerable systematic errors exist in the simulated seasonal migration of rainfall, and the notable northward jumps and rainfall persistence remain a challenge for all the models. However, the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).

  20. Determine Minimum Silver Flake Addition to GCM for Iodine Loaded AgZ

    SciTech Connect

    Garino, Terry J.; Nenoff, Tina M.; Rodriguez, Mark A.

    2014-04-01

    The minimum amount of silver flake required to prevent loss of I{sub 2} during sintering in air for a SNL Glass Composite Material (GCM) Waste Form containing AgI-MOR (ORNL, 8.7 wt%) was determined to be 1.1 wt% Ag. The final GCM composition prior to sintering was 20 wt% AgI-MOR, 1.1 wt% Ag, and 80 wt% Bi-Si oxide glass. The amount of silver flake needed to suppress iodine loss was determined using thermo gravimetric analysis with mass spectroscopic off-gas analysis. These studies found that the ratio of silver to AgI-MOR required is lower in the presence of the glass than without it. Therefore an additional benefit of the GCM is that it serves to inhibit some iodine loss during processing. Alternatively, heating the AgI-MOR in inert atmosphere instead of air allowed for densified GCM formation without I{sub 2} loss, and no necessity for the addition of Ag. The cause of this behavior is found to be related to the oxidation of the metallic Ag to Ag{sup +} when heated to above ~300{degrees}C in air. Heating rate, iodine loading levels and atmosphere are the important variables that determine AgI migration and results suggest that AgI may be completely incorporated into the mordenite structure by the 550{degrees}C sintering temperature.

  1. Development of useful climate scenarios at regional scales using GCM outputs

    SciTech Connect

    Werner, P.C.

    1997-12-31

    If climate changes are expected, their regional impacts are of special interest. Up to now (and in the near future) global climate models have been unable to deliver applicable results to describe the climate situation within a selected region (IPCC, 1995). That is why the description of the climate development in such an area must be realised by another possibility of creating meteorological data. Of importance besides is that the consistency in space and time and also between all meteorological parameters is not infracted. The used method proceeds on the assumption that the large scale changes of several meteorological parameters for a defined region calculated by a GCM can be regarded as correct as regards their tendencies. Based on such an assumption, long-term observed time series are prepared by statistical methods in such a way that they reflect the GCM-calculated changes by a scenario. The advantage of this method lies in the reduction of the defects of the GCM to a minimum. Simultaneously the consistency between the meteorological parameters can be ensured. A disadvantage is the missing physical connection between the GCM results and the given scenario. This method was applied successfully to develop several climate scenarios for a limited area (state Brandenburg) in Germany.

  2. Sensitivity of CO2 Simulation in a GCM to the Convective Transport Algorithms

    NASA Technical Reports Server (NTRS)

    Zhu, Z.; Pawson, S.; Collatz, G. J.; Gregg, W. W.; Kawa, S. R.; Baker, D.; Ott, L.

    2014-01-01

    Convection plays an important role in the transport of heat, moisture and trace gases. In this study, we simulated CO2 concentrations with an atmospheric general circulation model (GCM). Three different convective transport algorithms were used. One is a modified Arakawa-Shubert scheme that was native to the GCM; two others used in two off-line chemical transport models (CTMs) were added to the GCM here for comparison purposes. Advanced CO2 surfaced fluxes were used for the simulations. The results were compared to a large quantity of CO2 observation data. We find that the simulation results are sensitive to the convective transport algorithms. Overall, the three simulations are quite realistic and similar to each other in the remote marine regions, but are significantly different in some land regions with strong fluxes such as Amazon and Siberia during the convection seasons. Large biases against CO2 measurements are found in these regions in the control run, which uses the original GCM. The simulation with the simple diffusive algorithm is better. The difference of the two simulations is related to the very different convective transport speed.

  3. Pluto's Atmosphere and Surface Ices as Simulated by the PlutoWRF GCM

    NASA Astrophysics Data System (ADS)

    Toigo, A. D.; French, R. G.; Gierasch, P. J.; Richardson, M. I.; Guzewich, S.

    2013-12-01

    The PlutoWRF general circulation model (GCM) was built to examine the large-scale structure and dynamics of the atmosphere, the nature and propagation of waves within the atmosphere, and the exchanges of volatiles between the atmosphere and the surface. We seek to provide an comprehensive framework for the study of the increasingly rich observational data sets (including stellar occultations of the atmosphere) and to provide context and analysis of observations from the New Horizons mission. The PlutoWRF GCM is based on the planetary adaptation of the NCAR Weather Research and Forecasting (WRF) model. It is a compressible, nonhydrostatic model where we have added physics to treat radiative transfer following Zhu et al. (2013), a bulk nitrogen cycle including condensation of surface ice, and cycles of additional trace volatile species. Existing subsurface heat diffusion, surface layer exchange and boundary layer mixing schemes have been adapted to Pluto. Boundary conditions for initial ice distribution and surface pressure are taken from energy balance and non-GCM volatile transport models constrained by observations. In this work we focus on the performance of the PlutoWRF GCM compared with our linear tidal model (Toigo et al., 2010), and will examine the generation and propagation of large-scale gravity waves associated with diurnal sublimation and condensation.

  4. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, B. C.

    1991-01-01

    A new diagnostic tool is developed for examining relationships between the synoptic scale circulation and regional temperature distributions in GCMs. The 4 x 5 deg GISS GCM is shown to produce accurate simulations of the variance in the synoptic scale sea level pressure distribution over the U.S. An analysis of the observational data set from the National Meteorological Center (NMC) also shows a strong relationship between the synoptic circulation and grid point temperatures. This relationship is demonstrated by deriving transfer functions between a time-series of circulation parameters and temperatures at individual grid points. The circulation parameters are derived using rotated principal components analysis, and the temperature transfer functions are based on multivariate polynomial regression models. The application of these transfer functions to the GCM circulation indicates that there is considerable spatial bias present in the GCM temperature distributions. The transfer functions are also used to indicate the possible changes in U.S. regional temperatures that could result from differences in synoptic scale circulation between a 1XCO2 and a 2xCO2 climate, using a doubled CO2 version of the same GISS GCM.

  5. Parameter Optimization in an atmospheric GCM using the Simultaneous Perturbation Stochastic Approximation (SPSA) technique

    NASA Astrophysics Data System (ADS)

    Agarwal, Reema; Köhl, Armin; Stammer, Detlef

    2013-04-01

    We present an application of a multivariate parameter optimization technique to a global primitive equation Atmospheric GCM. The technique is based upon the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, in which gradients of the objective function are approximated. This technique has some advantages over other optimization procedures (such as Green's function or the Adjoint methods) like robustness to noise in the objective function and ability to find the actual minimum in case of multiple minima. Another useful feature of the technique is its simplicity and cost effectiveness. The atmospheric GCM used is the coarse resolution PLAnet SIMulator (PLASIM). In order to identify the parameters to be used in the optimization procedure, a series of sensitivity experiments with 12 different parameters was performed and subsequently 5 parameters related to cloud radiation parameterization to which the GCM was highly sensitive were finally selected. The optimization technique is applied and the selected parameters were simultaneously tuned and tested for a period of 1-year GCM integrations. The performance of the technique is judged by the behavior of model's cost function, which includes temperature, precipitation, humidity and flux contributions. The method is found to be useful for reducing the model's cost function against both identical twin data as well as ECMWF ERA-40 reanalysis data.

  6. Continental radiative-convective equilibrium experiments in a single column model (LMDZ5B GCM)

    NASA Astrophysics Data System (ADS)

    Rochetin, N.; Gentine, P.; Lintner, B. R.; Sobel, A. H.; Findell, K. L.

    2013-12-01

    The radiative-convective instability results both from (i) the average net cooling experienced by the Earth's atmosphere (~ 110 W/m?) and (ii) from the equivalent warming of the Earth's surface. Ultimately, this drives the Earth atmosphere to a radiative-convective equilibrium (RCE) state, in a sense that, at the global scale, surface fluxes and radiative cooling compensate each other. Since the convection time scale (i.e. some hours) is much shorter than the radiation one (i.e. about 40 days), the resulting global temperature lapse rate is generally closer to the moist adiabat than to the dry adiabat. This is especially true over the tropics, where moist convection is in near-equilibrium. The RCE is then often used as a common approximation of the tropical mean state. It has been extensively used over oceans in SCMs (Single Column Models), as well as in CRMs (Cloud Resolving Models), to investigate the tropical moist convection sensitivity (i) to boundary conditions (e.g. SST, surface wind, drag coefficient, etc...) and (ii) to atmospheric conditions (e.g. radiative cooling, wind shear, tropospheric humidity, etc...). Nevertheless, to our knowledge the present study is the first one investigating the RCE over a continental surface. Indeed, in the present study, the single column version of the LMDZ GCM (LMDZ5B, from the Laboratoire de Meteorologie Dynamique) is ran to RCE, with a coupled land surface both in terms of temperature and moisture. This continental RCE demonstrates very different sensitivity compared to its oceanic counterpart in particular because of the large- amplitude heat flux diurnal cycle, which is shown to strongly impact the equilibrium state. Sensitivity studies (i) to solar forcing (latitude) (ii) to total water content, and (iii) to the initial conditions are performed to study the different equilibrium states, with a particular focus on the role of clouds. We also performed a bifurcation diagram. Low-level clouds and fog are shown to be key

  7. Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations

    SciTech Connect

    Wu, Xiaoqing

    2014-02-25

    The works supported by this ASR project lay the solid foundation for improving the parameterization of convection and clouds in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and ARM observations to produce thermodynamically and dynamically consistent multi-year cloud and radiative properties; improve the GCM simulations of convection, clouds and radiative heating rate and fluxes using the ARM observations and CRM simulations; and understand the seasonal and annual variation of cloud systems and their impacts on climate mean state and variability. We conducted multi-year simulations over the ARM SGP site using the CRM with multi-year ARM forcing data. The statistics of cloud and radiative properties from the long-term CRM simulations were compared and validated with the ARM measurements and value added products (VAP). We evaluated the multi-year climate simulations produced by the GCM with the modified convection scheme. We used multi-year ARM observations and CRM simulations to validate and further improve the trigger condition and revised closure assumption in NCAR GCM simulations that demonstrate the improvement of climate mean state and variability. We combined the improved convection scheme with the mosaic treatment of subgrid cloud distributions in the radiation scheme of the GCM. The mosaic treatment of cloud distributions has been implemented in the GCM with the original convection scheme and enables the use of more realistic cloud amounts as well as cloud water contents in producing net radiative fluxes closer to observations. A physics-based latent heat (LH) retrieval algorithm was developed by parameterizing the physical linkages of observed hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water.

  8. On Simulating the Mid-western-us Drought of 1988 with a GCM

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Mocko, D. M.; Lau, William K.-M.; Atlas, R.

    2002-01-01

    The primary cause of the midwestern North American drought in the summer of 1988 has been identified to be the La Nina SST anomalies. Yet with the SST anomalies prescribed, this drought has not been simulated satisfactorily by any general circulation model. Seven simulation-experiments, each containing an ensemble of 4-sets of simulations, were conducted with the GEOS GCM for both 1987 and 1988. All simulations started from January 1 and continued through the end of August. In the first baseline case, Case 1, only the SST anomalies and some vegetation parameters were prescribed, while everything else (such as soil moisture, snow-cover, and clouds) was interactive. The GCM did produce some of the circulation features of a drought over North America, but they could only be identified on the planetary scales. The 1988 minus 1987 precipitation differences show that the GCM was successful in simulating reduced precipitation in the mid-west, but the accompanying circulation anomalies were not well simulated, leading one to infer that the GCM has simulated the drought for the wrong reason. To isolate the causes for this unremarkable circulation, analyzed winds and soil moisture were prescribed in Case 2 and Case 3 as continuous updates by direct replacement of the GCM-predicted fields. These cases show that a large number of simulation biases emanate from wind biases that are carried into the North American region from surroundings regions. Inclusion of soil moisture also helps to ameliorate the strong feedback, perhaps even stronger than that of the real atmosphere, between soil moisture and precipitation. Case 2 simulated one type of surface temperature anomaly pattern, whereas Case 3 with the prescribed soil moisture produced another.

  9. Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation

    NASA Astrophysics Data System (ADS)

    Sluka, Travis C.; Penny, Stephen G.; Kalnay, Eugenia; Miyoshi, Takemasa

    2016-01-01

    The local ensemble transform Kalman filter (LETKF) is used to develop a strongly coupled data assimilation (DA) system for an intermediate complexity ocean-atmosphere coupled model. Strongly coupled DA uses the cross-domain error covariance from a coupled-model background ensemble to allow observations in one domain to directly impact the state of the other domain during the analysis update. This method is compared to weakly coupled DA in which the coupled model is used for the background, but the cross-domain error covariance is not utilized. We perform an observing system simulation experiment with atmospheric observations only. Strongly coupled DA reduces the ocean analysis errors compared to weakly coupled DA, and the higher accuracy of the ocean also improves the atmosphere. The LETKF system design presented should allow for easy implementation of strongly coupled DA with other types of coupled models.

  10. A study of the effect of synoptic scale processes in GCM modelling

    NASA Technical Reports Server (NTRS)

    Herman, Gerald F.

    1989-01-01

    Research was conducted to help modeling groups at NASA to develop better weather forecasting and general circulation models (GCM) for activities relating to the meteorological uses of satellite data. The focus was on the physical processes that were being simulated by models: radiative effects and latent heat release associated with clouds; orographic influences; and heat transfer at the ocean and ice surfaces. An attempt was made to deduce the role of diabatic heating in North Atlantic cyclogenesis and in the global heat budget. Inferences were made in four studies: heat budget statistics from GCM assimilations; dynamics of north Atlantic cyclones; Cage-type energy budget calculations; and grid scale cloud formation. Mechanisms that were responsible for the variability and structure of the atmospheric on a hemispheric scale were studied by a hybrid of statistical analysis and theoretical modeling. Variability and structure are both related to synoptic scale processes through baroclinic and barotropic energy transformations.

  11. Sensitivity of Gcm Inm Ras To The Change of Humidity Advection Scheme

    NASA Astrophysics Data System (ADS)

    Kostrykin, S. V.

    We study the influence of change the numerical scheme used for humidity advection in the GCM INM RAS on the model results. The previously used advection scheme of the second order ­ leap-frog was changed on the semi-lagrangian cip scheme of the third order. It has shown that the last scheme has excelent numerical properties among other common semi-lagrangian schemes dealing with precise advection of sharp gra- dients. The numerical expriments with GCM has shown that the main changes in the humidity and temperature fields has happend near tropopause. More closeness of the model fields obtained with new advection of humidity to the NCAR/NCEP reanalyses fields are shown.

  12. A Stretched-grid Gcm and Data Assimilation System: Sturegional Climate Eventsdying Anomalous

    NASA Astrophysics Data System (ADS)

    Fox-Rabinovitz, M.

    The GEOS (Goddard Earth Observing System) stretched-grid (SG) GCM and the GEOS SG-DAS have been developed and thoroughly tested over the last few years. The model and system are used for regional climate experiments for seasonal, an- nual, and multiyear time scales. The talk includes the following discussions. - For the major anomalous regional climate events of 1998 the 13 months long (November- 1997 - December-1998) SG-GCM simulation and SG-DAS assimilation are produced using the new SG-design with multiple (four) areas of interest. It allows us the ana- lyze the events over the following areas/regions of interest (one at each global quad- rant): U.S./Northern Mexico, the El-Nino/Brazil area, India-China, and Eastern Indian Ocean/Australia. Also the hurricanes and typhoons for the areas and their vicinities are produced with the GEOS SG-DAS. - Regional resolution for both SG-GCM and SG-DAS is 50 km. The maximum grid interval is less than 3 degrees. The moderate stretching is used. It allows us to produce realistic global circulation characteristics that are necessary for an adequate representation of consistent interactions between regional and global scales. The efficient down-scaling to mesoscales is obtained for both the SG-model and system. They are capable of reproducing regional mesoscale patterns and diagnostics that are not produced by coarser uniform resolution runs (with the same amount of global grid points). - The simulated and assimilated anomalous regional climate events of 1998 include: the April-June flooding in the Midwest and Northeast and the drought in the Southern U.S.; the December-1997 - May-1998 Mex- ican drought; the Indian summer monsoon; the severe summer flooding in China; and anomalous precipitation over Australia. The above event simulations captured the ma- jor anomalies at medium and mesoscale resolution. - The impact of fine regional res- olution is discussed in terms of subregional monsoonal precipitation and low-level-jet (LLJ

  13. Evaluation of a GCM subgrid cloud-radiation interaction parameterization using cloud-resolving model simulations

    NASA Astrophysics Data System (ADS)

    Liang, Xin-Zhong; Wu, Xiaoqing

    2005-03-01

    The mosaic approach of Liang and Wang (1997) for the general circulation model (GCM) parameterization of subgrid cloud-radiation interactions is evaluated against the validated cloud-resolving model (CRM) simulation of the Atmospheric Radiation Measurement (ARM) intensive observation period (IOP, June 22-July 17, 1997) at the Southern Great Plains (SGP) site. The CRM-generated cloud statistics determines the required characteristic structure differences between three primary cloud genera (convective, anvil and stratiform). It is demonstrated that the mosaic approach with the CRM cloud statistics well simulates the CRM domain-averaged radiative quantities. The result indicates that the mosaic approach of the cloud overlap based on the cloud genera differing in formation mechanisms and of the optical inhomogeneity by cloud water path scaling can capture, respectively, the dominant effects of the cloud geometric association and optical property variability within a GCM grid.

  14. GCM Simulation of the Large-Scale North American Monsoon Including Water Vapor Tracer Diagnostics

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)

    2002-01-01

    The geographic sources of water for the large scale North American monsoon in a GCM (General Circulation Model) are diagnosed using passive constituent tracers of regional water sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American Monsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of monsoonal precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.

  15. GCM Simulation of the Large-scale North American Monsoon Including Water Vapor Tracer Diagnostics

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Walker, Gregory; Schubert, Siegfried D.; Sud, Yogesh; Atlas, Robert M. (Technical Monitor)

    2001-01-01

    The geographic sources of water for the large-scale North American monsoon in a GCM are diagnosed using passive constituent tracers of regional water'sources (Water Vapor Tracers, WVT). The NASA Data Assimilation Office Finite Volume (FV) GCM was used to produce a 10-year simulation (1984 through 1993) including observed sea surface temperature. Regional and global WVT sources were defined to delineate the surface origin of water for precipitation in and around the North American i'vionsoon. The evolution of the mean annual cycle and the interannual variations of the monsoonal circulation will be discussed. Of special concern are the relative contributions of the local source (precipitation recycling) and remote sources of water vapor to the annual cycle and the interannual variation of warm season precipitation. The relationships between soil water, surface evaporation, precipitation and precipitation recycling will be evaluated.

  16. Equatorial superrotation in a slowly rotating GCM - Implications for Titan and Venus

    NASA Astrophysics Data System (ADS)

    del Genio, A. D.; Zhou, W.; Eichler, T. P.

    1993-01-01

    The GISS GCM is used here to examine the hypothesis that equatorial superrotation on slowly rotating planets is sensitive to the nature of the vertical radiative heating profile and can exist in the absence of diurnally varying forcing. The general circulation, diabatic heating, and thermal structure produced in the experiments are described and the heat and angular momentum budgets and energy cycles are analyzed to understand the factors conducive to equatorial superrotation. The implications of the results for future planetary missions are addressed.

  17. Impact of snow cover on inter-annual variability of the NH winter circulation in an ensemble GCM simulation forced by satellite observations

    NASA Astrophysics Data System (ADS)

    Orsolini, Y.; Kvamsto, N.; Balsamo, G.

    2009-09-01

    The impact of land boundary conditions on predictability from the seasonal to decadal time-scale and on the forcing atmospheric teleconnections is now the focus of renewed attention. In order to investigate the impact of the terrestrial cryosphere on the northern hemisphere winter circulation, we have performed a suite of ensemble simulations with the Meteo-France ARPEGE Climat (V3) GCM, spanning two decades (1979-2000), to attribute circulation anomalies to changes in snow cover extent. Observed snow cover derived from satellite data has been retrieved from the NISDC, and nudged weekly into the GCM. Control simulations with prognostic snow variables have been also performed. Anomalous snow cover extend over Eastern Eurasia is linked with anomalous circulation over the northern Pacific, in particular over the Aleutian sector, and this impacts also the North Atlantic in late winter. We find that nudging of realistic snow cover considerably improves the hindcast and the representation of the Aleutian-Icelandic Low Seesaw in the model. We also discuss new coupled AOGCM ensemble forecasts aimed at better understanding the role of snow cover variability over Eurasia onto winter climate.

  18. Interannual variability and predictability of African easterly waves in a GCM

    NASA Astrophysics Data System (ADS)

    Chauvin, Fabrice; Royer, Jean-François; Douville, Hervé

    2005-04-01

    The interannual variability of African Easterly Waves (AEWs) is assessed with the help of spatio-temporal spectral analysis (STSA) and complex empirical orthogonal functions methods applied to the results of ten-member multiyear ensemble simulations. Two sets of experiments were conducted with the Météo-France ARPEGE-Climat GCM, one with interactive soil moisture (control), and the other with soil moisture relaxed towards climatological monthly means calculated from the control. Composites of Soudano-Sahelian AEWs were constructed and associated physical processes and dynamics were studied in the frame of the waves. It is shown that the model is able to simulate realistically some interannual variability in the AEWs, and that this dynamical aspect of the West African climate is potentially predictable (i.e. signal can be extracted from boundary conditions relatively to internal error of the GCM), especially along the moist Guinean coast. Compared with ECMWF 15-year reanalysis (ERA15), the maximum activity of AEWs is located too far to the South and is somewhat too zonal, but the main characteristics of the waves are well represented. The major impact of soil moisture relaxation in the GCM experiments is to reduce the seasonal potential predictability of AEWs over land by enhancing their internal variability.

  19. Winter polar warming in the Martian middle atmosphere: recent observations and Mars-WRF GCM simulations.

    NASA Astrophysics Data System (ADS)

    McDunn, Tamara; Bougher, Stephen; Mischna, Michael; Nelli, Steven

    Winter Polar Warming (WPW) has previously been observed in the Martian atmosphere at both lower and upper altitudes. This phenomenon is an important indicator of the structure of the global circulation on Mars. Therefore, reproducing observed WPW trends is a meaningful validation of a general circulation model (GCM). Accordingly, simulating lower-and upper-atmosphere WPW has been a focus of several modeling efforts to-date. In this talk we show evidence from modern datasets (MRO/MCS, MEx/SPICAM, MGS/Accelerometer, and MRO/Accelerometer) of WPW at middle altitudes. We then explore the capacity of the Mars-WRF GCM to capture the observed signatures of middle-altitude WPW. The Mars-WRF GCM has recently been updated to account for NLTE CO2 15-µm cooling and near-IR heating effects above ˜ 80 km. This allows the model to now operate up to altitudes of ˜ 120 km, which permits simultaneous investigation of WPW at lower, middle, and upper altitudes with one self-consistent model.

  20. Regional Climate Simulation with a Variable Resolution Stretch Grid GCM: The 1998 Summer Drought

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael; Stein, Uri; Takacs, Lawrence; Govindaraju, Ravi; Suarez, Max

    1999-01-01

    The variable resolution stretched grid(SG) GCM based on the Goddard Earth Observing System (GEOS) GCM, has been developed and tested in a regional climate simulation mode. The GEOS SG-GCM is used for simulation of the 1988 summer drought over the U.S. Midwest. Within the stretched grid, the region of interest with a uniform about 60 km resolution is a rectangle over the U.S. Outside the region, the grid intervals increase or stretch with a constant stretching factor (as a geometric progression). The results of two-month simulation for the anomalous climate event of the U.S. drought of 1988, are validated against data analysis fields and diagnostics. The event has been chosen by the Project to Inter-compare Regional Climate Simulations(PIRCS). The efficient regional down-scaling as well as the positive impact of fine regional resolution, are obtained. More specifically, the precipitation, 500 hPa, and low-level jet patterns and characteristics are well represented in the simulation. The SG-concept appeared to be a promising candidate for regional and subregional climate studies and applications.

  1. Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Sharma, D.; Das Gupta, A.; Babel, M. S.

    2007-01-01

    Global Climate Models (GCMs) precipitation scenarios are often characterized by biases and coarse resolution that limit their direct application for basin level hydrological modeling. Bias-correction and spatial disaggregation methods are employed to improve the quality of ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping River Basin in Thailand. Bias-correction method, based on gamma-gamma transformation, is applied to improve the frequency and amount of raw GCM precipitation at the grid nodes. Spatial disaggregation model parameters (β,σ2), based on multiplicative random cascade theory, are estimated using Mandelbrot-Kahane-Peyriere (MKP) function at q=1 for each month. Bias-correction method exhibits ability of reducing biases from the frequency and amount when compared with the computed frequency and amount at grid nodes based on spatially interpolated observed rainfall data. Spatial disaggregation model satisfactorily reproduces the observed trend and variation of average rainfall amount except during heavy rainfall events with certain degree of spatial and temporal variations. Finally, the hydrologic model, HEC-HMS, is applied to simulate the observed runoff for upper Ping River Basin based on the modified GCM precipitation scenarios and the raw GCM precipitation. Precipitation scenario developed with bias-correction and disaggregation provides an improved reproduction of basin level runoff observations.

  2. Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Sharma, D.; Das Gupta, A.; Babel, M. S.

    2007-06-01

    Global Climate Models (GCMs) precipitation scenarios are often characterized by biases and coarse resolution that limit their direct application for basin level hydrological modeling. Bias-correction and spatial disaggregation methods are employed to improve the quality of ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping River Basin in Thailand. Bias-correction method, based on gamma-gamma transformation, is applied to improve the frequency and amount of raw GCM precipitation at the grid nodes. Spatial disaggregation model parameters (β,σ2), based on multiplicative random cascade theory, are estimated using Mandelbrot-Kahane-Peyriere (MKP) function at q=1 for each month. Bias-correction method exhibits ability of reducing biases from the frequency and amount when compared with the computed frequency and amount at grid nodes based on spatially interpolated observed rainfall data. Spatial disaggregation model satisfactorily reproduces the observed trend and variation of average rainfall amount except during heavy rainfall events with certain degree of spatial and temporal variations. Finally, the hydrologic model, HEC-HMS, is applied to simulate the observed runoff for upper Ping River Basin based on the modified GCM precipitation scenarios and the raw GCM precipitation. Precipitation scenario developed with bias-correction and disaggregation provides an improved reproduction of basin level runoff observations.

  3. Influence of Physics Parameterizations and Ocean Coupling on Simulations of Tropical Cyclones using a Regional Climate Model (WRF) and a Coupled Modeling System (COAWST)

    NASA Astrophysics Data System (ADS)

    Mooney, P.; Mulligan, F. J.; Bruyere, C. L.; Bonnlander, B.

    2014-12-01

    We examine the influence of physics parameterizations and ocean coupling on the ability of the Weather Research and Forecasting (WRF) model to simulate the storm track and intensity of 2011 storms Irene and Ophelia. Of the physics parameterizations investigated - cumulus parameterizations, planetary boundary layer, microphysics, radiation, and land surface models - cumulus parameterizations have the greatest impact on WRF's ability to reproduce the two storms, particularly storm intensity. We also investigated the influence of coupling the Regional Ocean Modelling System (ROMS) to the WRF model. This was achieved using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system which couples ROMS to WRF using the Model Coupling Toolkit (MCT). Simulated storm intensity and track are modified as a result of coupling ROMS to WRF, but coupling will not compensate for a poor initial parameterization selection.

  4. Comparison of stochastic MOS corrections for GCM and RCM simulated precipitation

    NASA Astrophysics Data System (ADS)

    Widmann, Martin; Eden, Jonathan; Maraun, Douglas; Vrac, Mathieu

    2014-05-01

    In order to assess to what extent regional climate models (RCMs) yield better representations of climatic states than general circulation models (GCMs) the output of the two model types is usually directly compared with observations and the value added through RCMs has been clearly demonstrated. RCM output is often bias-corrected and in some cases bias correction methods can also be applied to GCMs. The question thus arises what the added value of RCMs in this setup is, i.e. whether bias-corrected RCMs perform better than bias-corrected GCMs. Here we present some first results from such a comparison. We used a stochastic Model Output Statistics (MOS) method, which can be seen as a general version of bias correction, to estimate daily precipitation at 465 UK stations between 1961-2000 using simulated precipitation from the RACMO2 and CCLM RCMs and from the ECHAM5 GCM as predictors. The MOS method uses logistic regression to model rainfall occurrence and a Gamma distribution for the wet-day distribution. All model parameters are made linearly dependent on the predictors, i.e. the simulated precipitation. The fitting and validation of the statistical model requires the daily, large-scale weather states in the RCM and GCM to represent the actual, historic weather situation. For the RCMs this is achieved by using simulations driven by reanalysis data; RACMO2 is just driven at the boundaries, whereas in CCLM the circulation within the model domain is additionally kept close to the reanalysis through spectral nudging. For the GCM we have used a simulation nudged towards ERA40. The model validation is done in a cross-validation setup and is based on Brier scores for occurrence and quantile scores for the estimated probability distributions. The comparison of the validation skills for the two RCM cases shows some improved skill if spectral nudging is used, indicating that on daily timescales RCMs can generate internal variability that needs to be kept in mind when designing

  5. Impact of atmospheric convectively coupled equatorial Kelvin waves on upper ocean variability

    NASA Astrophysics Data System (ADS)

    Baranowski, Dariusz B.; Flatau, Maria K.; Flatau, Piotr J.; Matthews, Adrian J.

    2016-03-01

    Convectively coupled Kelvin waves (CCKWs) are atmospheric weather systems that propagate eastward along the equatorial wave guide with phase speeds between 11 and 14 m s-1. They are an important constituent of the convective envelope of the Madden-Julian oscillation (MJO), for which ocean-atmosphere interactions play a vital role. Hence, ocean-atmosphere interactions within CCKWs may be important for MJO development and prediction and for tropical climate, in general. Although the atmospheric structure of CCKWs has been well studied, their impact on the underlying ocean is unknown. In this paper, the ocean-atmosphere interactions in CCKWs are investigated by a case study from November 2011 during the CINDY/DYNAMO field experiment, using in situ oceanographic measurements from an ocean glider. The analysis is then extended to a 15 year period using precipitation data from the Tropical Rainfall Measuring Mission and surface fluxes from the TropFlux analysis. A methodology is developed to calculate trajectories of CCKWs. CCKW events are strongly controlled by the MJO, with twice as many CCKWs observed during the convectively active phase of the MJO compared to the suppressed phase. Coherent ocean-atmosphere interaction is observed during the passage of a CCKW, which lasts approximately 4 days at any given longitude. Surface wind speed and latent heat flux are enhanced, leading to a transient suppression of the diurnal cycle of sea surface temperature (SST) and a sustained decrease in bulk SST of 0.1°C. Given that a typical composite mean MJO SST anomaly is of the order of 0.3°C, and more than one CCKW can occur during the active phase of a single MJO event, the oceanographic impact of CCKWs is of major importance to the MJO cycle.

  6. El Nino-southern oscillation: A coupled response to the greenhouse effect?

    SciTech Connect

    Sun, De-Zheng

    1997-11-01

    The purpose of this article to elucidate the link between the El Nino-Southern Oscillation (ENSO) and radiative forcing (of which the greenhouse effect is a major part). A unified theory for the tropical Pacific climate is developed by considering the response of the coupled ocean-atmosphere to a changing radiative forcing. The hypothesis is that both the zonal surface sea temperature (SST) gradients and ENSO are a coupled response to the strong radiative heating or the tropical warmth. Owing to ocean-atmosphere interaction, the stronger the radiative heating, the larger the zonal SST gradients. When the SST gradients exceed a critical value, however, the ocean-atmosphere interaction in the cold-tongue region is too strong for the coupled system to hold steady. Consequently, the coupled system enters an oscillatory state. These coupled dynamics are examined in a simple mathematical model whose behavior is consistent with the hypothesis. With a linear temperature profile throughout the depth of subsurface ocean, the model predicts that both the magnitude and period of the oscillation increase with increases in radiative forcing or the greenhouse effect. The increase in the magnitude of the oscillation largely comes from an enhancement of the magnitude of the cold anomalies, while the increase in the period mostly comes from a prolonged duration of the warm events. With a profile in which the lapse rate decreases with depth, the sensitivity is more moderate. The simplicity of the model prevents a quantitative simulation of the sensitivity of ENSO to increases in the greenhouse effect, but qualitatively the model results support the empirical interpretation of the prolonged duration of the 1990-1995 ENSO event. 5 refs., 7 figs.

  7. Ocean-Atmosphere Environments of Antarctic-Region Cold-Air Mesocyclones: Evaluation of Reanalyses for Contrasting Adjacent 10-Day Periods ("Macro-Weather") in Winter.

    NASA Astrophysics Data System (ADS)

    Carleton, A. M.; Auger, J.; Birkel, S. D.; Maasch, K. A.; Mayewski, P. A.; Claud, C.

    2015-12-01

    Mesoscale cyclones in cold-air outbreaks (mesocyclones) feature in the weather and climate of the Antarctic (e.g., Ross Sea) and sub-antarctic (Drake Passage). They adversely impact field operations, and influence snowfall, the ice-sheet mass balance, and sea-air energy fluxes. Although individual mesocyclones are poorly represented on reanalyses, these datasets robustly depict the upper-ocean and troposphere environments in which multiple mesocyclones typically form. A spatial metric of mesocyclone activity—the Meso-Cyclogenesis Potential (MCP)—used ERA-40 anomaly fields of: sea surface temperature (SST) minus marine air temperature (MAT), near-surface winds, 500 hPa air temperature, and the sea-ice edge location. MCP maps composited by teleconnection phases for 1979-2001, broadly correspond to short-period satellite "climatologies" of mesocyclones. Here, we assess 3 reanalysis datasets (CFSR, ERA-I and MERRA) for their reliably to depict MCP patterns on weekly to sub-monthly periods marked by strong regional shifts in mesocyclone activity (frequencies, track densities) occurring during a La Niña winter: June 21-30, 1999 (SE Indian Ocean) and September 1-10, 1999 (Ross Sea sector). All reanalyses depict the marked variations in upper ocean and atmosphere variables between adjacent 10-day periods. Slight differences may owe to model resolution or internal components (land surface, coupled ocean models), and/or how the observations are assimilated. For June 21-30, positive SST-MAT, southerly winds, proximity to the ice edge, and negative T500, accompany increased meso-cyclogenesis. However, for September 1-10, surface forcing does not explain frequent comma cloud "polar lows" north-east of the Ross Sea. Inclusion of the upper-level diffluence (e.g., from Z300 field) in the MCP metric, better depicts the observed mesocyclone activity. MCP patterns on these "macro-weather" time scales appear relatively insensitive to the choice of reanalysis.

  8. Comparison of RCM and GCM projections of boreal summer precipitation over Africa

    NASA Astrophysics Data System (ADS)

    Saini, Roop; Wang, Guiling; Yu, Miao; Kim, Jeehee

    2015-05-01

    To provide input data for the potential future climate change impact assessment at regional levels, dynamic downscaling of global climate models (GCMs) climate using regional climate models (RCMs) is frequently utilized. It is important to understand how the climate change signal is modified in the RCM driven by GCM so that the simulated results can be accurately interpreted. This study compares the performance of a RCM and four driving GCMs in simulating precipitation over Africa and investigate how dynamically downscaled present and future climate from the regional model RegCM4.1 driven with four GCMs differ from those of the GCMs. In general, RegCM4.1 has a lower summer (June-August) precipitation bias than the driving GCMs, increasing our confidence in their future projections. Despite uncertainty in future projections, RegCM4.1 shows decreased precipitation over Sahel regardless of which GCM is used to drive the RCM. RegCM4.1 shows an increased interannual variability of summer precipitation over Gulf of Guinea and Central Africa as compared to GCMs in both present-day climate and projected future climate scenarios. The mean annual cycle of precipitation differs between RCM and the driving GCM, in particular during the West African Monsoon (WAM). The WAM onset, peak, and retreat phases are more clearly defined in the RegCM4.1 than the four driving GCMs, where the WAM rainband shifts more southward. This paper highlights the uncertainties in dynamical downscaling for climate prediction, which are due to the inconsistencies in the physical packages between RCM and GCMs.

  9. Consensus between GCM climate change projections with empirical downscaling: precipitation downscaling over South Africa

    NASA Astrophysics Data System (ADS)

    Hewitson, B. C.; Crane, R. G.

    2006-08-01

    This paper discusses issues that surround the development of empirical downscaling techniques as context for presenting a new approach based on self-organizing maps (SOMs). The technique is applied to the downscaling of daily precipitation over South Africa. SOMs are used to characterize the state of the atmosphere on a localized domain surrounding each target location on the basis of NCEP 6-hourly reanalysis data from 1979 to 2002, and using surface and 700-hPa u and v wind vectors, specific and relative humidities, and surface temperature. Each unique atmospheric state is associated with an observed precipitation probability density function (PDF). Future climate states are derived from three global climate models (GCMs): HadAM3, ECHAM4.5, CSIRO Mk2. In each case, the GCM data are mapped to the NCEP SOMs for each target location and a precipitation value is drawn at random from the associated precipitation PDF. The downscaling approach combines the advantages of a direct transfer function and a stochastic weather generator, and provides an indication of the strength of the regional versus stochastic forcing, as well as a measure of stationarity in the atmosphere-precipitation relationship.The methodology is applied to South Africa. The downscaling reveals a similarity in the projected climate change between the models. Each GCM projects similar changes in atmospheric state and they converge on a downscaled solution that points to increased summer rainfall in the interior and the eastern part of the country, and a decrease in winter rainfall in the Western Cape. The actual GCM precipitation projections from the three models show large areas of intermodel disagreement, suggesting that the model differences may be due to their precipitation parameterization schemes, rather than to basic disagreements in their projections of the changing atmospheric state over South Africa.

  10. A comparison between observed and GCM-simulated summer monsoon characteristics over China

    SciTech Connect

    Samel, A.N.; Wang, Wei-Chyung,; Shaowu Wang,

    1995-06-01

    Observed rainfall over China and sea level pressure over Eurasia, two parameters that are closely associated with the east Asian summer monsoon, are compared with those simulated in a general circulation model (GCM). Observations are for the period 1951-1990 and include two datasets: a 160-station rainfall archive for China and a gridded sea level pressure record for Eurasia. The GCM dataset contains output from a 40-yr simulation with a mixed-layer ocean and greenhouse gas concentrations prescribed at 1990 levels. In both observations and the model simulation, empirical orthogonal function (EOF) analysis identifies two rainfall regions, the Yangtze River valley and southeast China, where interannual variability is large but relatively homogeneous. The locations of the model regions, however, are systematically shifted several degrees to the west. For each observed and model region, area-averaged summer rainfall anomalies are used to develop a 40-yr intensity index time series. Correlations between the regional indices and sea level pressure indicate that intensity values are influenced by the interaction of several circulation features. Observed rainfall intensifies over the Yangtze River valley when interactions between the Siberian high, subtropical high, and monsoon low cause the temperature gradient across the Mei-Yu front to increase. These interactions are accurately reproduced in the model simulation. Observed intensity over southeast China increases when the monsoon low moves to the north while GCM rainfall intensifies when the monsoon low deepens over southeast China and sea level pressure increases over the Tibetan Plateau. 16 refs., 7 figs., 1 tab.

  11. Sensitivity of the equilibrium surface temperature of a GCM to systematic changes in atmospheric carbon dioxide

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Saltzman, Barry

    1990-01-01

    The equilibrium response of surface temperature to atmospheric CO2 concentration, for six values between 100 and 1000 ppm, is calculated from a series of GCM experiments. This response is nonlinear, showing greater sensitivity for lower values of CO2 than for the higher values. It is suggested that changes in CO2 concentration of a given magnitude (e.g., 100 ppm) played a larger role in the Pleistocene ice-age-type temperature variations than in causing global temperature changes due to anthropogenic increases.

  12. Simulating the Midwestern U.S. Drought of 1988 with a GCM.

    NASA Astrophysics Data System (ADS)

    Sud, Y. C.; Mocko, D. M.; Lau, K.-M.; Atlas, R.

    2003-12-01

    Past studies have suggested that the drought of the summer of 1988 over the midwestern United States may have been caused by sea surface temperature (SST) anomalies, an evolving stationary circulation, a soil-moisture feedback on circulation and rainfall, or even by remote forcings. The relative importance of various contributing factors is investigated in this paper through the use of Goddard Earth Observing System (GEOS) GCM simulations. Seven different experiments, each containing an ensemble of four simulations, were conducted with the GCM. For each experiment, the GCM was integrated through the summers of 1987 and 1988 starting from an analyzed atmosphere in early January of each year. In the baseline case, only the SST anomalies and climatological vegetation parameters were prescribed, while everything else (such as soil moisture, snow cover, and clouds) was interactive. The precipitation differences (1988 minus 1987) show that the GCM was successful in simulating reduced precipitation in 1988, but the accompanying low-level circulation anomalies in the Midwest were not well simulated. To isolate the influence of the model’s climate drift, analyzed winds and analyzed soil moisture were prescribed globally as continuous updates (in isolation or jointly). The results show that remotely advected wind biases (emanating from potential errors in the model’s dynamics and physics) are the primary cause of circulation biases over North America. Inclusion of soil moisture helps to improve the simulation as well as to reaffirm the strong feedback between soil moisture and precipitation. In a case with both updated winds and soil moisture, the model produces more realistic evapotranspiration and precipitation differences. An additional case also used soil moisture and winds updates, but only outside North America. Its simulation is very similar to that of the case with globally updated winds and soil moisture, which suggests that North American simulation errors

  13. Downscaling local extreme temperature changes in south-eastern Australia from the CSIRO Mark2 GCM

    NASA Astrophysics Data System (ADS)

    Schubert, Sascha

    1998-11-01

    Climate impact studies crucially rely on climate change information at high spatial and temporal resolutions. Since the most developed tools for estimating future climate change - the general circulation models (GCMs) - still operate on rather coarse spatial scales, their output has to be downscaled in order to provide the needed high resolution input for climate impact models.In this study, a perfect prognosis approach is employed to downscale daily local temperature extremes at several stations in south-eastern Australia from synoptic scale atmospheric circulation fields. The statistical model combines principal component analysis and linear multiple regression and is suitable to explain a considerable part of both short and long frequency variations of local temperature extremes. Using simulated and observed daily data the regional to local performance of the Mark2 GCM, developed by the Commonwealth Scientific and Industrial Research Organisation (CSIRO), was validated over the Australian region. While the regional temperature extremes simulated under present-day climate conditions are in general agreement with the observed climate, there are highly significant differences on the local scale. The observed daily synoptic scale atmospheric circulation, however, is well reproduced by the GCM. This supports the idea of using these reliably simulated climatic parameters to estimate the changes in local temperature extremes under altered global climate conditions.The downscaling model was applied to synoptic scale atmospheric circulation fields generated by the CSIRO Mark2 GCM under 1×CO2 and 2×CO2 conditions. Compared to the extreme temperature changes simulated by the GCM directly, the downscaled variations are much weaker. Several sources of uncertainty might be causing these differences. Firstly, the statistical model is stationary. Therefore, it is not capable of including changes in the relationships between circulation and local temperature which are likely

  14. Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila

    PubMed Central

    Cattenoz, Pierre B.; Popkova, Anna; Southall, Tony D.; Aiello, Giuseppe; Brand, Andrea H.; Giangrande, Angela

    2016-01-01

    High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain–containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades. PMID:26567182

  15. Rescue of the skeletal phenotype in CasR-deficient mice by transfer onto the Gcm2 null background

    PubMed Central

    Tu, Qisheng; Pi, Min; Karsenty, Gerard; Simpson, Leigh; Liu, Shiguang; Quarles, L. Darryl

    2003-01-01

    To understand the role of the calcium-sensing receptor (CasR) in the skeleton, we used a genetic approach to ablate parathyroid glands and remove the confounding effects of elevated parathyroid hormone (PTH) in CasR-deficient mice. CasR deficiency was transferred onto the glial cells missing 2–deficient (Gcm2-deficient) background by intercrossing CasR- and Gcm2-deficient mice. Superimposed Gcm2 deficiency rescued the perinatal lethality in CasR-deficient mice in association with ablation of the parathyroid glands and correction of the severe hyperparathyroidism. In addition, the double homozygous CasR- and Gcm2-deficient mice demonstrated healing of the abnormal mineralization of cartilage and bone associated with CasR deficiency, indicating that rickets and osteomalacia in CasR-deficient mice are not due to an independent function of CasR in bone and cartilage but to the effect of severe hyperparathyroidism in the neonate. Analysis of the skeleton of 6-week-old homozygous CasR- and Gcm2-deficient mice also failed to identify any essential, nonredundant role for CasR in regulating chondrogenesis or osteogenesis, but further studies are needed to establish the function of CasR in the skeleton. In contrast, concomitant Gcm2 and CasR deficiency failed to rescue the hypocalciuria in CasR-deficient mice, consistent with direct regulation of urinary calcium excretion by CasR in the kidney. Double Gcm2- and CasR-deficient mice provide an important model for evaluating the extraparathyroid functions of CasR. PMID:12671052

  16. Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila.

    PubMed

    Cattenoz, Pierre B; Popkova, Anna; Southall, Tony D; Aiello, Giuseppe; Brand, Andrea H; Giangrande, Angela

    2016-01-01

    High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades. PMID:26567182

  17. Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea

    USGS Publications Warehouse

    Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin

    2012-01-01

    The coastal areas of the North-Western Mediterranean Sea are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant air-sea interactions, strong winds and large sea-state can have catastrophic consequences in the coastal areas. To investigate these air-sea interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean Sea that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant sea surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as air-sea and air-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.

  18. First Analysis Of A Coupled Mediterranean - Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Somot, S.; Sevault, F.; Béranger, K.; Déqué, M.; Crépon, M.

    A regional coupled ocean-atmosphere model has been developed to study the climate of the Mediterranean Region in a joint research between Météo-France-CNRM and CNRS-IPSL. This model is based on a variable resolution version of the global spectral AGCM Arpège-Climat with an horizontal grid mesh of 50 km over the mediterranean area and a limited area version of the OGCM OPA with an horizontal grid mesh of 10 km. The two models are coupled with the OASIS coupler developed by CERFACS. Outside the Mediterranean Sea, the sea surface temperature is prescribed from interannual observed data. A ten year coupled simulation has been done without relaxation nor correction. Sea- sonal averages as well as interannual variability have been compared with available observations and with uncoupled simulations.

  19. A GCM investigation of impact of aerosols on the precipitation in Amazon during the dry to wet transition

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Liou, K. N.; Jiang, J. H.; Fu, R.; Lu, Sarah; Xue, Y.

    2016-06-01

    The climatic effects of aerosols on the precipitation over the Amazon during the dry to wet transition period have been investigated using an atmospheric general circulation model, NCEP/AGCM, and the aerosol climatology data. We found increased instability during the dry season and delayed wet season onset with aerosols included in the model simulation, leading to the delay of the maximum precipitation over the Amazon by about half a month. In particular, our GCM simulations show that surface solar flux is reduced in the Amazon due to the absorption and scattering of the solar radiation by aerosols, leading to decreased surface temperature. Reduced surface solar flux is balanced by decreases in both surface sensible heat and latent heat fluxes. During the wet season, the subtropical system over the Amazon has a shallower convection. With the inclusion of aerosols in the simulation, precipitation in the rainy season over the Amazon decreases in the major rainfall band, which partially corrects the overestimate of the simulated precipitation in that region. The reduced surface temperature by aerosols is also coupled with a warming in the middle troposphere, leading to increased atmosphere stability and moisture divergence over the Amazon. However, during the dry season when the convective system is stronger over the Amazon, rainfall increases in that region due to the warming of the air over the upper troposphere produced by biomass burning aerosols, which produces an anomalous upward motion and a convergence of moisture flux over the Amazon and draws the moisture and precipitation further inland. Therefore, aerosol effects on precipitation depend on the large-scale atmospheric stability, resulting in their different roles over the Amazon during the dry and wet seasons.

  20. The Global Atmospheric Angular Momentum Under Varying Thermal and Orographic Forcing, Simulated In A Simple Gcm

    NASA Astrophysics Data System (ADS)

    Stenzel, O.; von Storch, J.

    This work investigates the impacts of various large-scale thermal and orographic forc- ing on the global AAM. The investigation is based on numerical experiments with a simple GCM, PUMA (Portable University Model of the Atmosphere). The non-linear hydrodynamics of the atmosphere are represented in PUMA in the same way as in a standard GCM, but the latitude-dependent radiative forcing is strongly simplified and expressed as a Newtonian cooling. By modifying the restoration temperature field, the large-scale thermal forcing of the atmosphere can be easily controlled. A series of numerical experiments are carried out using different restoration tempera- ture fields and orographies. The restoration temperature fields are zonally symmetric and have different meridional gradients. It is found that the global AAM increases with increasing meridional gradient in the thermal forcing. The increase in the AAM is characterized by a change in circulation regime in the mid- and high-latitudes: The structure of the transients changes from a zonal wavenumber six to three, and the num- ber of cells in the meridional circulation reduces from three to two with a diminishing polar cell.

  1. The Role of the GEM-Mars GCM within CROSS DRIVE

    NASA Astrophysics Data System (ADS)

    Neary, Lori; Daerden, Frank; Viscardy, Sebastien; Carine Vandaele, Ann

    2015-04-01

    CROSS DRIVE: "Collaborative Rover Operations and Planetary Science Analysis System based on Distributed Remote and Interactive Virtual Environments" The main purpose of the CROSS DRIVE FP7 project is to develop new methods and systems for collaborative scientific visualisation and data analysis, and space mission planning and operation. The developed tools and techniques will allow scientists to work together with each other's data and tools, but also to do so between missions. The project will provide technological solutions to coordinate central storage, processing and 3D visualization strategies in collaborative immersive virtual environments, to support space data analysis. A special focus is given to the preparation of the ExoMars 2016 TGO and 2018 rover missions. As a part of this project, the atmospheric model data from the GEM-Mars GCM will be utilized and integrated into the collaborative workspace to provide winds, pressure and other atmospheric properties on a global scale. The model data will be available for comparisons with the observations included in the system. We will provide a brief overview of the project and present the function of the GCM model data within it. Along with this, we will discuss recent efforts to enhance the performance of the model and the application of it to current science questions.

  2. Stationary eddies in the Mars general circulation as simulated by the NASA-Ames GCM

    NASA Technical Reports Server (NTRS)

    Barnes, J. R.; Pollack, J. B.; Haberle, Robert M.

    1993-01-01

    Quasistationary eddies are prominent in a large set of simulations of the Mars general circulation performed with the NASA-Ames GCM. Various spacecraft observations have at least hinted at the existence of such eddies in the Mars atmosphere. The GCM stationary eddies appear to be forced primarily by the large Mars topography, and (to a much lesser degree) by spatial variations in the surface albedo and thermal inertia. The stationary eddy circulations exhibit largest amplitudes at high altitudes (above 30-40 km) in the winter extratropical regions. In these regions they are of planetary scale, characterized largely by zonal wavenumbers 1 and 2. Southern Hemisphere winter appears to be dominated by a very strong wave 1 pattern, with both waves 1 and 2 being prominent in the Northern Hemisphere winter regime. This difference seems to be basically understandable in terms of differences in the topography in the two hemispheres. The stationary eddies in the northern winter extratropics are found to increase in amplitude with dust loading. This behavior appears to be at least partly associated with changes in the structure of the zonal-mean flow that favor a greater response to wave 1 topographic forcing. There are also strong stationary eddy circulations in the tropics and in the summer hemisphere. The eddies in the summer subtropics and extratropics arc substantially stronger in southern summer than in northern summer. The summer hemisphere stationary circulations are relatively shallow and are characterized by smaller zonal scales than those in the winter extratropics.

  3. A Two-Habit Ice Cloud Optical Property Parameterization for GCM Application

    NASA Technical Reports Server (NTRS)

    Yi, Bingqi; Yang, Ping; Minnis, Patrick; Loeb, Norman; Kato, Seiji

    2014-01-01

    We present a novel ice cloud optical property parameterization based on a two-habit ice cloud model that has been proved to be optimal for remote sensing applications. The two-habit ice model is developed with state-of-the-art numerical methods for light scattering property calculations involving individual columns and column aggregates with the habit fractions constrained by in-situ measurements from various field campaigns. Band-averaged bulk ice cloud optical properties including the single-scattering albedo, the mass extinction/absorption coefficients, and the asymmetry factor are parameterized as functions of the effective particle diameter for the spectral bands involved in the broadband radiative transfer models. Compared with other parameterization schemes, the two-habit scheme generally has lower asymmetry factor values (around 0.75 at the visible wavelengths). The two-habit parameterization scheme was widely tested with the broadband radiative transfer models (i.e. Rapid Radiative Transfer Model, GCM version) and global circulation models (GCMs, i.e. Community Atmosphere Model, version 5). Global ice cloud radiative effects at the top of the atmosphere are also analyzed from the GCM simulation using the two-habit parameterization scheme in comparison with CERES satellite observations.

  4. An evaluation of the effects of cloud parameterization in the R42L9 GCM

    NASA Astrophysics Data System (ADS)

    Wu, Tongwen; Wang, Zaizhi; Liu, Yimin; Yu, Rucong; Wu, Guoxiong

    2004-04-01

    Cloud is one of the uncertainty factors influencing the performance of a general circulation model (GCM). Recently, the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP) has developed a new version of a GCM (R42L9). In this work, roles of cloud parameterization in the R42L9 are evaluated through a comparison between two 20-year simulations using different cloud schemes. One scheme is that the cloud in the model is diagnosed from relative humidity and vertical velocity, and the other one is that diagnostic cloud is replaced by retrieved cloud amount from the International Satellite Cloud Climatology Project (ISCCP), combined with the amounts of high-, middle-, and low-cloud and heights of the cloud base and top from the NCEP. The boreal winter and summer seasonal means, as well as the annual mean, of the simulated top-of-atmosphere shortwave radiative flux, surface energy fluxes, and precipitation are analyzed in comparison with the observational estimates and NCEP reanalysis data. The results show that the scheme of diagnostic cloud parameterization greatly contributes to model biases of radiative budget and precipitation. When our derived cloud fractions are used to replace the diagnostic cloud amount, the top-of-atmosphere and surface radiation fields are better estimated as well as the spatial pattern of precipitation. The simulations of the regional precipitation, especially over the equatorial Indian Ocean in winter and the Asia-western Pacific region in summer, are obviously improved.

  5. Comparisons Between TIME-GCM/MERRA Simulations and LEO Satellite Observations

    NASA Astrophysics Data System (ADS)

    Hagan, M. E.; Haeusler, K.; Forbes, J. M.; Zhang, X.; Doornbos, E.; Bruinsma, S.; Lu, G.

    2014-12-01

    We report on yearlong National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulations where we utilize the recently developed lower boundary condition based on 3-hourly MERRA (Modern-Era Retrospective Analysis for Research and Application) reanalysis data to account for tropospheric waves and tides propagating upward into the model domain. The solar and geomagnetic forcing is based on prevailing geophysical conditions. The simulations show a strong day-to-day variability in the upper thermospheric neutral temperature tidal fields, which is smoothed out quickly when averaging is applied over several days, e.g. up to 50% DE3 amplitude reduction for a 10-day average. This is an important result with respect to tidal diagnostics from satellite observations where averaging over multiple days is inevitable. In order to assess TIME-GCM performance we compare the simulations with measurements from the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites.

  6. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, Bruce

    1990-01-01

    Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.

  7. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  8. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  9. Climate change in the Iberian Upwelling System: a numerical study using GCM downscaling

    NASA Astrophysics Data System (ADS)

    Cordeiro Pires, Ana; Nolasco, Rita; Rocha, Alfredo; Ramos, Alexandre M.; Dubert, Jesus

    2015-10-01

    The present work aims at evaluating the impacts of a climate change scenario on the hydrography and dynamics of the Iberian Upwelling System. Using regional ocean model configurations, the study domain is forced with three different sets of surface fields: a climatological dataset to provide the control run; a dataset obtained from averaging several global climate models (GCM) that integrate the Intergovernmental Panel for Climate Change (IPCC) models used in climate scenarios, for the same period as the climatological dataset; and this same dataset but for a future period, retrieved from the IPCC A2 climate scenario. After ascertaining that the ocean run forced with the GCM dataset for the present compared reasonably well with the climatologically forced run, the results for the future run (relative to the respective present run) show a general temperature increase (from +0.5 to +3 °C) and salinity decrease (from -0.1 to -0.3), particularly in the upper 100-200 m, although these differences depend strongly on season and distance to the coast. There is also strengthening of the SST cross-shore gradient associated to upwelling, which causes narrowing and shallowing of the upwelling jet. This effect is contrary to the meridional wind stress intensification that is also observed, which would tend to strengthen the upwelling jet.

  10. Changes in Extreme Events: from GCM Output to Social, Economic and Ecological Impacts

    NASA Astrophysics Data System (ADS)

    Tebaldi, C.; Meehl, G. A.

    2006-12-01

    Extreme events can deeply affect social and natural systems. The current generation of global climate model is producing information that can be directly used to characterize future changes in extreme events, and through a further step their impacts, despite their still relatively coarse resolution. It is important to define extreme indicators consistently with what we expect GCM to be able to represent reliably. We use two examples from our work, heat waves and frost days, that well describe different aspects of the analysis of extremes from GCM output. Frost days are "mild extremes" and their definition and computation is straightforward. GCMs can represent them accurately and display a strong consistent signal of change. The impacts of these changes will be extremely relevant for ecosystems and agriculture. Heat waves do not have a standard definition. On the basis of historical episodes we isolate characteristics that were responsible for the worst effects on human health, for example, and analyze these characteristics in model simulations, validating the model's historical simulations. The changes in these characteristics can then be easily translated in expected differential impacts on public health. Work in progress goes in the direction of better characterization of "heat waves" taking into account jointly a set of variables like maximum and minimum temperatures and humidity, better addressing the biological vulnerabilities of the populations at risk.

  11. Conductivities consistent with Birkeland currents in the AMPERE-driven TIE-GCM

    NASA Astrophysics Data System (ADS)

    Marsal, S.

    2015-09-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) satellite mission has offered for the first time global snapshots of the geomagnetic field-aligned currents with unprecedented space and time resolution, thus providing an opportunity to feed an acknowledged first-principles model of the Earth's upper atmosphere such as the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model (NCAR TIE-GCM). In the first step, Marsal et al. (2012) used AMPERE data in the current continuity equation between the magnetosphere and the ionosphere to drive the TIE-GCM electrodynamics. In the present work, ionospheric conductivities have been made consistent with enhanced upward field-aligned currents, which are assumed to correspond to electrons plunging as a result of downward acceleration by electric fields built up along the geomagnetic field lines. The resulting conductance distribution is reasonably commensurate with an independent model that has tried to quantify the ionizing effect of precipitating particles onto the auroral ionosphere. On the other hand, comparison of geomagnetic observatory data with the ground magnetic variations output by the model only shows a modest improvement with respect to our previous approach.

  12. GCM (general circulation model)-data intercomparison: The good news and the bad

    SciTech Connect

    Grotch, S.L.

    1990-09-01

    General circulation models (GCMs) are being actively used to assess possible climate change due to increasing greenhouse gas concentrations. Because such simulations provide detailed climatic predictions at a wide range of scales, they are of particular interest to those making regional assessments of climatic change. It is especially important that workers using the results of such simulations be aware of some of the limitations of these results. In this study some of the positive results from these model simulations will be shown and some of the deficiencies will also be highlighted. Following an introductory section describing the nature of GCM climate simulations the issue of the spatial scales of such simulations is examined. A comparison of the results of seven GCM simulations of the current climate and the predictions of these models for the changes due to a doubling of CO{sub 2} will be discussed. In these intercomparisons, the spatial scale over which the results are compared varies from global to zonal (longitudinally averaged at a given latitude) to individual slices through the data along specified latitudes or longitudes. Finally, the dangers and pitfalls of relying on simple averages will be highlighted. 19 refs., 9 figs., 1 tab.

  13. Correcting for systematic biases in GCM simulations in the frequency domain

    NASA Astrophysics Data System (ADS)

    Nguyen, Ha; Mehrotra, Rajeshwar; Sharma, Ashish

    2016-07-01

    Bias correction is considered as a critical post-processing step to remove systematic errors and improve the quality of General Circulation Model (GCM) simulations before their use in climate change impact assessment applications. A majority of the bias correction approaches correct for biases either at a single time scale or at multiple pre-specified time scales. An inappropriate or insufficient selection of time scales may lead to improper or sub-optimal bias corrected outputs, especially when persistence attributes across a range of scales are of interest. In this paper, we present a new bias correction approach that works in the frequency space and is independent of specific time scales. The approach is named as frequency-based bias correction (FBC). The usefulness of the approach is demonstrated by applying it to the monthly rainfall simulations of MIROC5 GCM over Australia and comparing the results with two other approaches, namely, empirical quantile mapping and recursive nesting bias correction, in cross validation. The comparison is based on the reproduction of various observed distribution and persistence attributes. Cross-validation results indicate that the proposed approach shows similar performance in terms of reproducing the first- and second-order moments of observed precipitation time series, however, outperforms with regard to persistence attributes. The approach shows high potential for use in downscaling and other climate change impact assessment studies, especially for the planning and design of hydrologic systems that are sensitive to the characterisation of persistence in the hydrologic time series.

  14. Climate change in the Iberian Upwelling System: a numerical study using GCM downscaling

    NASA Astrophysics Data System (ADS)

    Cordeiro Pires, Ana; Nolasco, Rita; Rocha, Alfredo; Ramos, Alexandre M.; Dubert, Jesus

    2016-07-01

    The present work aims at evaluating the impacts of a climate change scenario on the hydrography and dynamics of the Iberian Upwelling System. Using regional ocean model configurations, the study domain is forced with three different sets of surface fields: a climatological dataset to provide the control run; a dataset obtained from averaging several global climate models (GCM) that integrate the Intergovernmental Panel for Climate Change (IPCC) models used in climate scenarios, for the same period as the climatological dataset; and this same dataset but for a future period, retrieved from the IPCC A2 climate scenario. After ascertaining that the ocean run forced with the GCM dataset for the present compared reasonably well with the climatologically forced run, the results for the future run (relative to the respective present run) show a general temperature increase (from +0.5 to +3 °C) and salinity decrease (from -0.1 to -0.3), particularly in the upper 100-200 m, although these differences depend strongly on season and distance to the coast. There is also strengthening of the SST cross-shore gradient associated to upwelling, which causes narrowing and shallowing of the upwelling jet. This effect is contrary to the meridional wind stress intensification that is also observed, which would tend to strengthen the upwelling jet.

  15. Atmosphere-ocean coupled processes in the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    DeMott, Charlotte A.; Klingaman, Nicholas P.; Woolnough, Steven J.

    2015-12-01

    The Madden-Julian oscillation (MJO) is a convectively coupled 30-70 day (intraseasonal) tropical atmospheric mode that drives variations in global weather but which is poorly simulated in most atmospheric general circulation models. Over the past two decades, field campaigns and modeling experiments have suggested that tropical atmosphere-ocean interactions may sustain or amplify the pattern of enhanced and suppressed atmospheric convection that defines the MJO and encourage its eastward propagation through the Indian and Pacific Oceans. New observations collected during the past decade have advanced our understanding of the ocean response to atmospheric MJO forcing and the resulting intraseasonal sea surface temperature fluctuations. Numerous modeling studies have revealed a considerable impact of the mean state on MJO ocean-atmosphere coupled processes, as well as the importance of resolving the diurnal cycle of atmosphere-upper ocean interactions. New diagnostic methods provide insight to atmospheric variability and physical processes associated with the MJO but offer limited insight on the role of ocean feedbacks. Consequently, uncertainty remains concerning the role of the ocean in MJO theory. Our understanding of how atmosphere-ocean coupled processes affect the MJO can be improved by collecting observations in poorly sampled regions of MJO activity, assessing oceanic and atmospheric drivers of surface fluxes, improving the representation of upper ocean mixing in coupled model simulations, designing model experiments that minimize mean state differences, and developing diagnostic tools to evaluate the nature and role of coupled ocean-atmosphere processes over the MJO cycle.

  16. Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM

    NASA Astrophysics Data System (ADS)

    Gao, X.; Shi, Y.; Song, R.; Giorgi, F.; Wang, Y.; Zhang, D.

    2008-08-01

    Multi-decadal high resolution climate change simulations over East Asia are performed using the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model, RegCM3, nested within the NASA/NCAR global model FvGCM. Two sets of simulations are conducted at 20-km grid spacing for present day and future climate (IPCC A2 scenario). The mean precipitation change during the monsoon season (May to September) over China is analyzed and intercompared between the RegCM and FvGCM. Simulation of the present day precipitation by the RegCM shows a better performance than that of the driving FvGCM in terms of both spatial pattern and amount. The main improvement of the RegCM is the removal of an artificial precipitation center over the eastern edge of the Tibetan Plateau simulated by the FvGCM. The FvGCM simulates a predominant increase of precipitation over the region, whereas the RegCM shows extended areas of decrease. The causes of these differences are investigated and explained in terms of the different topographical forcing on circulation and moisture flux in the two models. We also find that the RegCM-simulated changes are in better agreement with observed precipitation trends over East Asia. It is suggested that high resolution models are needed to better investigate future climate projections over China and East Asia.

  17. Comparison of boundary conditions from Global Chemistry Model (GCM) for regional air quality application

    NASA Astrophysics Data System (ADS)

    Lam, Yun Fat; Cheung, Hung Ming; Fu, Joshua; Huang, Kan

    2015-04-01

    Applying Global Chemistry Model (GCM) for regional Boundary Conditions (BC) has become a common practice to account for long-range transport of air pollutants in the regional air quality modeling. The limited domain model such as CMAQ and CAMx requires a global BC to prescribe the real-time chemical flux at the boundary grids, in order to give a realistic estimate of boundary impacts. Several GCMs have become available recently for use in regional air quality studies. In this study, three GCM models (i.e., GEOS-chem, CHASER and IFS-CB05 MACC provided by Seoul National University, Nagoya University and ECWMF, respectively) for the year of 2010 were applied in CMAQ for the East Asia domain under the framework of Model Inter-comparison Study Asia Phase III (MISC-Asia III) and task force on Hemispheric Transport of Air Pollution (HTAP) jointed experiments. Model performance evaluations on vertical profile and spatial distribution of O3 and PM2.5 have been made on those three models to better understand the model uncertainties from the boundary conditions. Individual analyses on various mega-cities (i.e., Hong Kong, Guangzhou, Taipei, Chongqing, Shanghai, Beijing, Tianjin, Seoul and Tokyo) were also performed. Our analysis found that the monthly estimates of O3 for CHASER were a bit higher than GEOS-Chem and IFS-CB05 MACC, particularly in the northern part of China in the winter and spring, while the monthly averages of PM2.5 in GEOS-Chem were the lowest among the three models. The hourly maximum values of PM2.5 from those three models (GEOS-Chem, CHASER and IFS-CB05 MACC are 450, 321, 331 μg/m3, while the maximum O3 are 158, 212, 380 ppbv, respectively. Cross-comparison of CMAQ results from the 45 km resolution were also made to investigate the boundary impacts from the global GCMs. The results presented here provide insight on how global GCM selection influences the regional air quality simulation in East Asia.

  18. The Role of Continental-scale Landmass in Monsoons-A GCM Investigation

    NASA Technical Reports Server (NTRS)

    Chao, Winston

    2008-01-01

    It was argued by Chao and Chen (2001) that land-sea thermal contrast on the continental scale is not a necessary condition for monsoons and that a monsoon is an ITCZ that have moved into the subtropics in its annual cycle of latitudinal movement. Chao and Chen supported their contention by GCM experiments in which they replaced landmass by ocean and were able to generate monsoons. However, land-sea thermal contrast does exist and must play a role in monsoonal rainfall distribution. Land-sea thermal contrast is one facet of continental-scale landmass. The other important characteristic of landmass is its topography. In this article the roles of landmass in monsoonal rainfall distribution and in middle latitude storm tracks are examined through GCM experiments. Comparison of a set of two GCM experiments in which the sea surface temperature (SST) from observations is prescribed from observations with and without a six-month delay reveals the role of Land-sea thermal contrast. Another set of experiments, which repeats the first set but with topography of all landmass reduced to zero, reveals the role of topography of landmass. These experiments confirm that land-sea thermal contrast is not a necessary condition for monsoons and that a monsoon should be viewed as an ITCZ displaced into the subtropics, instead of a continent-sized giant sea breeze. However, land-sea thermal contrast does have influence on the distribution of monsoonal rainfall. The temperature rise over south Asia as the season moves into summer helps the Asian monsoon to start early. However, this role is not the same as that of the land-sea thermal contrast as in the conventional explanation for the cause of monsoon. The heated landmass in summer contributes to the displacement of ITCZ into the subtropics. Also, the heated landmass in summer, by drawing moisture toward itself, limits the range of the summer storm tracks in the middle latitude oceans. On the ether hand, in winter the landmass does not

  19. The Impact of ENSO on Atmospheric Intraseasonal Variability as Inferred from Observations and GCM Simulations.

    NASA Astrophysics Data System (ADS)

    Tam, Chi-Yung; Lau, Ngar-Cheung

    2005-06-01

    The impact of the El Niño-Southern Oscillation (ENSO) on the atmospheric intraseasonal variability in the North Pacific is assessed, with emphasis on how ENSO modulates midlatitude circulation anomalies associated with the Madden-Julian oscillation (MJO) in the Tropics and the westward-traveling patterns (WTP) in high latitudes. The database for this study consists of the output of a general circulation model (GCM) experiment subjected to temporally varying sea surface temperature (SST) forcing in the tropical Pacific, and observational reanalysis products.Diagnosis of the GCM experiment indicates a key region in the North Pacific over which the year-to-year variation of intraseasonal activity is sensitive to the SST conditions in the Tropics. In both the simulated and observed atmospheres, the development phase of the dominant circulation anomaly in this region is characterized by incoming wave activity from northeast Asia and the subtropical western Pacific. Southeastward dispersion from the North Pacific to North America can be found in later phases of the life cycle of the anomaly. The spatial pattern of this recurrent extratropical anomaly contains regional features that are similar to those appearing in composite charts for prominent episodes of the MJO and the WTP.Both the GCM and reanalysis data indicate that the amplitude of intraseasonal variability near the key region, as well as incoming wave activity in the western Pacific and dispersion to the western United States, are enhanced in cold ENSO events as compared to warm events. Similar modulations of the MJO-related circulation patterns in the extratropics by ENSO forcing are discernible in the model simulation. It is inferred from these findings that ENSO can influence the North Pacific intraseasonal activity through its effects on the evolution of convective anomalies in the tropical western Pacific. On the other hand, there is little modification by ENSO of the circulation features associated with

  20. Insights into the early Eocene hydrological cycle from an ensemble of atmosphere-ocean GCM simulations

    NASA Astrophysics Data System (ADS)

    Carmichael, M. J.; Lunt, D. J.; Huber, M.; Heinemann, M.; Kiehl, J.; LeGrande, A.; Loptson, C. A.; Roberts, C. D.; Sagoo, N.; Shields, C.; Valdes, P. J.; Winguth, A.; Winguth, C.; Pancost, R. D.

    2015-07-01

    Recent studies, utilising a range of proxies, indicate that a significant perturbation to global hydrology occurred at the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma). An enhanced hydrological cycle for the warm early Eocene is also suggested to have played a key role in maintaining high-latitude warmth during this interval. However, comparisons of proxy data to General Circulation Model (GCM) simulated hydrology are limited and inter-model variability remains poorly characterised, despite significant differences in simulated surface temperatures. In this work, we undertake an intercomparison of GCM-derived precipitation and P-E distributions within the EoMIP ensemble (Lunt et al., 2012), which includes previously-published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure and precipitation relevant parameterisation schemes. We show that an intensified hydrological cycle, manifested in enhanced global precipitation and evaporation rates, is simulated for all Eocene simulations relative to preindustrial. This is primarily due to elevated atmospheric paleo-CO2, although the effects of differences in paleogeography/ice sheets are also of importance in some models. For a given CO2 level, globally-averaged precipitation rates vary widely between models, largely arising from different simulated surface air temperatures. Models with a similar global sensitivity of precipitation rate to temperature (dP/dT) display different regional precipitation responses for a given temperature change. Regions that are particularly sensitive to model choice include the South Pacific, tropical Africa and the Peri-Tethys, which may represent targets for future proxy acquisition. A comparison of early and middle Eocene leaf-fossil-derived precipitation estimates with the GCM output illustrates that a number of GCMs underestimate precipitation rates at high latitudes. Models which warm these regions, either via elevated CO2 or by varying

  1. Insights into the early Eocene hydrological cycle from an ensemble of atmosphere-ocean GCM simulations

    NASA Astrophysics Data System (ADS)

    Carmichael, Matthew; Lunt, Daniel; Pancost, Richard

    2015-04-01

    Recent studies utilising a range of geochemical proxies have indicated that a significant perturbation to global hydrology occurred at the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma). An enhanced hydrological cycle for the warm early Eocene is also suggested to have played a key role in maintaining high-latitude warmth during this interval. Comparisons of proxy data to General Circulation Model (GCM) simulated hydrology have not widely been made however, and inter-model variability remains poorly characterised despite significant differences in simulated surface temperatures. In this work, we address this by undertaking an intercomparison of GCM-derived precipitation distributions within the EoMIP ensemble (Lunt et al., 2012), which includes previously-published early Eocene simulations performed using five GCMs differing in boundary conditions, model structure and precipitation-relevant parameterisation schemes. We show that an intensified hydrological cycle is simulated for all Eocene simulations relative to preindustrial. This is primarily due to elevated atmospheric paleo-CO2, although the effects of differences in paleogeography/ice sheets are also of importance in some models. For a given CO2 level, globally-averaged precipitation rates vary widely between models, largely as a result of different climate sensitivities (dT/dCO2) and differing parameterisation schemes. Despite this, models with similar global precipitation sensitivities (dP/dT) display different regional responses for a given temperature change. Regions which are particularly model sensitive include the South Pacific, tropical Africa and the Tethys and may represent targets for future proxy acquisition. A comparison of leaf-fossil-derived precipitation estimates with GCM data illustrates that models tend to unanimously underestimate early Eocene precipitation rates at high latitudes. Models which warm these regions via elevated CO2 or by utilising alternative parameterisations are most

  2. The Ashima/MIT Mars GCM and argon in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Lian, Yuan; Richardson, Mark I.; Newman, Claire E.; Lee, Christopher; Toigo, Anthony D.; Mischna, Michael A.; Campin, Jean-Michel

    2012-04-01

    We investigate the ability of modern general circulation models (GCMs) to simulate transport in the martian atmosphere using measurements of argon as a proxy for the transport processes. Argon provides the simplest measure of transport as it is a noble gas with no sinks or sources on seasonal timescales. Variations in argon result solely from 'freeze distillation', as the atmosphere condenses at the winter poles, and from atmospheric transport. Comparison of all previously published models when rescaled to a common definition of the argon enhancement factor (EF) suggest that models generally do a poor job in predicting the peak enhancement in southern winter over the winter pole - the time when the capability of the model transport approaches are most severely tested. Despite observed peak EF values of ˜6, previously published model predictions peaked at EF values of only 2-3. We introduce a new GCM that provides a better treatment of mass conservation within the dynamical core, includes more sophisticated tracer transport approaches, and utilizes a cube-sphere grid structure thus avoiding the grid-point convergence problem at the pole that exists for most current Mars GCMs. We describe this model - the Ashima Research/Massachusetts Institute of Technology Mars General Circulation Model (Ashima/MIT Mars GCM) and use it to demonstrate the significant sensitivity of peak EF to the choices of transport approach for both tracers and heat. We obtain a peak EF of 4.75 which, while over 50% higher than any prior model, remains well short of the observed value. We show that the polar EF value in winter is primarily determined by the competition between two processes: (1) mean meridional import of lower-latitude air not enriched in argon and (2) the leakage of enriched argon out of the polar column by eddies in the lowest atmospheric levels. We suggest possibilities for improving GCM representation of the CO2 cycle and the general circulation that may further improve the

  3. Climate change signal over the Alpine region - sensitivity to GCM selection

    NASA Astrophysics Data System (ADS)

    Zubler, Elias M.; Fischer, Andreas M.; Liniger, Mark A.

    2015-04-01

    The use of multi-model ensembles has become a common and widely accepted practice to evaluate climate change signals and various aspects of the associated uncertainties. However, for regional analysis of climate change, it is not always feasible to use all of the available model simulations. Some models do not sufficiently represent processes that are important for a particular region, or they lack crucial topographic details to represent the corresponding climate in a realistic manner. When relying on regional climate model projections, a GCM selection is implicitly done, as not all of the available GCM simulations are being dynamically downscaled. Specifically, within EURO-CORDEX, more than 30 RCM simulations and more than 10 GCMs are provided for the strongest emission scenario RCP8.5 from the CMIP5 ensemble. Simulations with other emission scenarios are also provided. However, many RCMs in EURO-CORDEX are driven by one of only five of the available GCMs (CNRM-CM5, MPI-ESM, HadGEM, IPSL and EC-EARTH). It was shown previously that in particular RCM temperature responses tend to cluster according to their driving GCM. Therefore, it is important to better understand the relation among the GCMs. In multi-model ensembles as large as CMIP5, in which models tend to correlate due to their similar origin, model selection or weighting becomes an important issue. This study evaluates the distribution of climate change signals in the CMIP5 ensemble for temperature and precipitation over the Greater Alpine region and shows that different methods of model selection considerably influences the resulting temperature spread in the climate change signals at the end of the century relative to 1980-2009: excluding those GCMs with a poor representation of Alpine climate leads to a spread-difference of more than 1°C compared to a choice where all models are included and given the same weight. Furthermore, it is highlighted that the largest amount of spread can be retained with a

  4. Regional Climate Simulation of the Anomalous Events of 1998 using a Stretched-Grid GCM with Multiple Areas of Interest

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, M. S.; Takacs, L. L.; Govindaraju, R. C.; Atlas, Robert (Technical Monitor)

    2002-01-01

    The GEOS (Goddard Earth Observing System) stretched-grid (SG) GCM developed and thoroughly tested over the last few years, is used for simulating the major anomalous regional climate events of 1998. The anomalous regional climate events are simulated simultaneously during the 13 months long (November-1997 - December-1998) SG-GCM simulation due to using the new SG-design with multiple (four) areas of interest. The following areas/regions of interest (one at each global quadrant) are implemented: U.S./Northern Mexico, the El-Nino/Brazil area, India-China, and Eastern Indian Ocean/Australia.

  5. Coast-ocean-atmosphere-ocean mesoscale interaction

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Chou, S. H.

    1982-01-01

    In the case of cold air outbreaks, the combination of the coastal shape and the sea surface temperature (SST) pattern have a profound effect in establishing a low level mesoscale atmospheric circulation as a result of differential heating due to both variations in overwater path length and the SST. A convergence (or divergence) line then forms along a line exactly downwind of the major bend in the coastline. All this is consistent with the structure of the cloud patterns seen in a high resolution Landsat picture of the cloud streets and the major features are simulated well with a boundary layer model. The dominant convergence line is marked by notably larger clouds. To its east the convective roll clouds grow downstream in accord with the deepening of the boundary layer. To its west (i.e., coastal side) where the induced pressure field forces a strong westerly component in the boundary layer, the wind shear across the inversion gives rise to Kelvin-Helmholtz waves and billow clouds whose orientation is perpendicular to the shear vector and to the major convergence line. The induced mesoscale circulation will feedback on the ocean by intensifying the wind generated ocean wave growth and altering their orientation. Coastal cyclogenesis is due in large part not only to the fluxes of heat and moisture from the ocean, but particularly to the differential heating and moistening of the boundary layer air when the air trajectories pass over a well defined pattern of SST.

  6. Ocean-Atmosphere Interaction in Climate Changes

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1999-01-01

    The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface temperature anomalies with the cyclonic wind anomalies toward the coast. The results led to a new study which identifies decadal ocean variations in the Northeast Pacific. Three studies of oceanic responses to wind forcing caused by the seasonal change of monsoons, the passage of a typhoon, and the 1997 El Nino, were successfully conducted. Besides wind forcing, we continue to examine new techniques for estimating thermal and hydrologic fluxes, through the inverse ocean mixed-layer model, through divergence of atmospheric water transport, and by direct retrieval from radiances observed by microwave radiometers. Greenhouse warming has been linked to water vapor measured by two spaceborne sensors in two studies. In the first study, strong baroclinicity and deep convection were found to transport water vapor to the upper atmosphere and increase greenhouse trapping over the storm tracks of the North Pacific and Atlantic. In another study, the annual cycle of greenhouse warming were related to sea surface temperature (SST) and integrated water vapor, and the latitudinal dependence of the magnitudes and phases of the annual cycles were compared.

  7. Ocean-Atmosphere Interactions During Cyclone Nargis

    NASA Astrophysics Data System (ADS)

    McPhaden, Michael J.; Foltz, Gregory R.; Lee, Tony; Murty, V. S. N.; Ravichandran, M.; Vecchi, Gabriel A.; Vialard, Jerome; Wiggert, Jerry D.; Yu, Lisan

    2009-02-01

    Cyclone Nargis (Figure 1a) made landfall in Myanmar (formerly Burma) on 2 May 2008 with sustained winds of approximately 210 kilometers per hour, equivalent to a category 3-4 hurricane. In addition, Nargis brought approximately 600 millimeters of rain and a storm surge of 3-4 meters to the low-lying and densely populated Irrawaddy River delta. In its wake, the storm left an estimated 130,000 dead or missing and more than $10 billion in economic losses. It was the worst natural disaster to strike the Indian Ocean region since the 26 December 2004 tsunami and the worst recorded natural disaster ever to affect Myanmar.

  8. Regional Climate Simulation Experiments with a Variable Resolution Stretched Grid GCM

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.; Stein, Uri; Govindaraju, Ravi C.

    1999-01-01

    The variable resolution stretched grid (SG) version of the Goddard Earth Observing System (GEOS) GCM has been recently developed and tested in a regional climate simulation mode. The SG-approach is an alternative to the widely used nested grid approach introduced a decade ago as a pioneering step to regional climate modeling. The region of interest with a uniform about 60 km resolution used in experiments is a rectangle over the U.S. The results of one annual as well as two-month simulations for the anomalous climate event of the U.S. drought of 1988, are validated against data analysis fields and diagnostics. The efficient regional down-scaling as well as the positive impact of fine regional resolution, are obtained. The SG-concept appeared to be a promising candidate for regional and subregional climate studies and applications.

  9. EdGCM: Research Tools for Training the Climate Change Generation

    NASA Astrophysics Data System (ADS)

    Chandler, M. A.; Sohl, L. E.; Zhou, J.; Sieber, R.

    2011-12-01

    Climate scientists employ complex computer simulations of the Earth's physical systems to prepare climate change forecasts, study the physical mechanisms of climate, and to test scientific hypotheses and computer parameterizations. The Intergovernmental Panel on Climate Change 4th Assessment Report (2007) demonstrates unequivocally that policy makers rely heavily on such Global Climate Models (GCMs) to assess the impacts of potential economic and emissions scenarios. However, true climate modeling capabilities are not disseminated to the majority of world governments or U.S. researchers - let alone to the educators who will be training the students who are about to be presented with a world full of climate change stakeholders. The goal is not entirely quixotic; in fact, by the mid-1990's prominent climate scientists were predicting with certainty that schools and politicians would "soon" be running GCMs on laptops [Randall, 1996]. For a variety of reasons this goal was never achieved (nor even really attempted). However, around the same time NASA and the National Science Foundation supported a small pilot project at Columbia University to show the potential of putting sophisticated computer climate models - not just "demos" or "toy models" - into the hands of non-specialists. The Educational Global Climate Modeling Project (EdGCM) gave users access to a real global climate model and provided them with the opportunity to experience the details of climate model setup, model operation, post-processing and scientific visualization. EdGCM was designed for use in both research and education - it is a full-blown research GCM, but the ultimate goal is to develop a capability to embed these crucial technologies across disciplines, networks, platforms, and even across academia and industry. With this capability in place we can begin training the skilled workforce that is necessary to deal with the multitude of climate impacts that will occur over the coming decades. To

  10. Treatment of LW and SW Radiative Processes in a Climate GCM

    NASA Astrophysics Data System (ADS)

    Lacis, A. A.; Oinas, V.

    2010-12-01

    Of the physical processes that convert, transport, and redistribute energy within the climate system, radiation is by far the fastest. Radiation is also the best understood of these physical processes and therefore the most amenable for accurate parameterization. As an illustrative example, we describe the radiative modeling treatment of the LW and SW radiation in the GISS ModelE climate GCM and its comparison to LBL calculated heating and cooling rates, including radiative forcing sensitivity. We also compare and analyze the spectral and height dependence of he radiative forcing sensitivity for the principal greenhouse gases based on 1-D LBL radiative/convective equilibrium calculations. We also describe the ModelE LW flux parameterization to account for multiple scattering effects for LW TOA and BOA fluxes, and the laboratory based parameterization scheme for modeling the relative humidity dependence of aerosol radiative properties for hygroscopic aerosol species.

  11. Climatology and variability of the Indonesian Throughflow in an eddy-permitting oceanic GCM

    NASA Astrophysics Data System (ADS)

    Liu, Hailong; Li, Wei; Zhang, Xuehong

    2005-07-01

    A quasi-global eddy permitting oceanic GCM, LICOM1.0, is run with the forcing of ERA40 daily wind stress from 1958 to 2001. The modelled Indonesian Throughflow (ITF) is reasonable in the aspects of both its water source and major pathways. Compared with the observation, the simulated annual mean and seasonal cycle of the ITF transport are fairly realistic. The interannual variation of the tropical Pacific Ocean plays a more important role in the interannual variability of the ITF transport. The relationship between the ITF and the Indian Ocean Dipole (IOD) also reflects the influence of ENSO. However, the relationship between the ITF transport and the interannual anomalies in the Pacific and Indian Oceans vary with time. During some years, (e.g., 1994), the effect of a strong IOD on the ITF transport is more than that from ENSO.

  12. Windblown sand on Mars: The effect of saltation threshold on drift potentials derived from Mars GCM

    NASA Technical Reports Server (NTRS)

    Xu, P.; Greeley, R.; Williams, S.; Pollack, J. B.

    1994-01-01

    The rate at which the wind can redistribute sedimentary material is an important part of any planet's sedimentologic cycle, particularly for Mars, where the competing effects of other gradational processes are less than on Earth. The aeolian drift potential (DP) is a measure of the amount of material capable of being moved through a unit length by the wind for a given period of time. DP is a useful measure of the potential redistribution rate of windblown material on regional scales. The Martian aeolian DP was calculated from laboratory studies of sand movement conducted at Martian atmospheric densities and from surface stress, temperature, and pressure values for that region as determined from the Mars General (Atmospheric) Circulation Model (GCM) developed at the NASA/Ames Research Center. In our simulations for Mars, DP changes in both magnitude (as expected) and direction if the saltation threshold is altered.

  13. On long-term persistence in GCM rainfall simulations: Implications for water resources planning and design

    NASA Astrophysics Data System (ADS)

    Johnson, F.; Sharma, A.

    2012-04-01

    It is well known that GCM precipitation simulations for future climates leave a lot to be desired, as a result of which various strategies have been developed to assist with water resources planning and design. While it is accepted that the simulated precipitation exhibits significant variability across alternate GCMs (leading to a 6% Variable Convergence Score compared to much higher values for other surface atmospheric variables (Johnson and Sharma, 2009)), something less well appreciated is the significant biases and uncertainty GCMs exhibit in their representation of long-term persistence in rainfall. We present here an assessment of the extent of this problem, and some recently developed solutions that allow users to post-process GCM rainfall to allow a more meaningful representation of persistence, leading to future rainfall that is viable for water resources applications where low-frequency variability is important. Our presented approach consists of (a) working with the GCMs that are better able to simulate long-term persistence in their simulations of precipitation and other hydrologically relevant variables (Johnson et al., 2011), and then (b) post-processing the simulations using a recently published Nested Bias Correction (NBC) procedure (Johnson and Sharma, 2012, 2011), that attempts to modify current climate simulations such that their measured lag-dependence attributes at a range of time-scales are reproduced in an un-biased manner post-transformation. Assuming the same post-processing model applies for future climates, this results in future simulations that exhibit long periods of highs and lows so noticeable in historical rainfall (and not so noticeable in raw GCM simulations of the future). The Nested Bias Correction is "Nested" as the correction happens progressively from finer to coarser time scales, the correction involving modulating order one and two moment and persistence attributes, aggregating the corrected series to the next coarser time

  14. Weather Regimes in the Pacific from a GCM. Part II: Dynamics and Stability.

    NASA Astrophysics Data System (ADS)

    Hannachi, A.

    1997-05-01

    The Pacific weather regimes found by Haines and Hannachi from a GCM perpetual January 10-year run, identified as ±Pacific-North American (PNA), are examined for stability both within a model-derived EOF phase space and the full phase space for the 500-mb flow level. The authors also examine the behavior of the 500-mb streamfunction tendency based on the barotropic vorticity equation model projected onto the EOF phase space. Normal mode and nonnormal mode analysis of these regimes are performed. It is shown in particular that the +PNA state is less stable than the PNA, which can explain previous results concerning the greater robustness in finding the PNA state as a fixed point in the attractor. Of particular interest is the local character of the +PNA regime, which indicates fast growth rates within the EOF phase space of the order 3-4 days.

  15. Developing a global mixed-canopy, height-variable vegetation structure dataset for estimating global vegetation albedo and biomass in the NASA Ent Terrestrial Biosphere Model and GISS GCM

    NASA Astrophysics Data System (ADS)

    Montes, C.; Kiang, N. Y.; Yang, W.; Ni-Meister, W.; Schaaf, C.; Aleinov, I. D.; Jonas, J.; Zhao, F. A.; Yao, T.; Wang, Z.; Sun, Q.

    2015-12-01

    Processes determining biosphere-atmosphere coupling are strongly influenced by vegetation structure. Thus, ecosystem carbon sequestration and evapotranspiration affecting global carbon and water balances will depend upon the spatial extent of vegetation, its vertical structure, and its physiological variability. To represent this globally, Dynamic Global Vegetation Models (DGVMs) coupled to General Circulation Models (GCMs) make use of satellite and/or model-based vegetation classifications often composed by homogeneous communities. This work aims at developing a new Global Vegetation Structure Dataset (GVSD) by incorporating varying vegetation heights for mixed plant communities to be used as input to the Ent Terrestrial Biosphere Model (TBM), the DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. Information sources include the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014) along with the Global Data Sets of Vegetation Leaf Area Index (LAI)3g (Zhu et al. 2013). Further PFT partitioning is performed according to a climate classification utilizing the Climate Research Unit (CRU) and the NOAA Global Precipitation Climatology Centre (GPCC) data. Final products are a GVSD consisting of mixed plant communities (e.g. mixed forests, savannas, mixed PFTs) following the Ecosystem Demography model (Moorcroft et al., 2001) approach represented by multi-cohort community patches at the sub-grid level of the GCM, which are ensembles of identical individuals whose differences are represented by PFTs, canopy height, density and vegetation structure sensitivity to allometric parameters. To assess the sensitivity of the GISS GCM to vegetation structure, we produce a range of estimates of Ent TBM biomass and plant

  16. Developing a global mixed-canopy, height-variable vegetation structure dataset for estimating global vegetation albedo by a clumped canopy radiative transfer scheme in the NASA Ent Terrestrial Biosphere Model and GISS GCM

    NASA Astrophysics Data System (ADS)

    Montes, Carlo; Kiang, Nancy Y.; Ni-Meister, Wenge; Yang, Wenze; Schaaf, Crystal; Aleinov, Igor; Jonas, Jeffrey A.; Zhao, Feng; Yao, Tian; Wang, Zhuosen; Sun, Qingsong; Carrer, Dominique

    2016-04-01

    Processes determining biosphere-atmosphere coupling are strongly influenced by vegetation structure. Thus, ecosystem carbon sequestration and evapotranspiration affecting global carbon and water balances will depend upon the spatial extent of vegetation, its vertical structure, and its physiological variability. To represent this globally, Dynamic Global Vegetation Models (DGVMs) coupled to General Circulation Models (GCMs) make use of satellite and/or model-based vegetation classifications often composed by homogeneous communities. This work aims at developing a new Global Vegetation Structure Dataset (GVSD) by incorporating varying vegetation heights for mixed plant communities to be used as boundary conditions to the Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010) incorporated into the NASA Ent Terrestrial Biosphere Model (TBM), the DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. Information sources about land surface and vegetation characteristics obtained from a number of earth observation platforms and algorithms include the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), along with vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three widely used Leaf Area Index (LAI) products are compared as input to the GVSD and ACTS forcing in terms of vegetation albedo: Global Data Sets of Vegetation (LAI)3g (Zhu et al. 2013), Beijing Normal University LAI (Yuan et al., 2011), and MODIS MOD15A2H product (Yang et al., 2006). Further PFT partitioning is performed according to a climate classification utilizing the Climate Research Unit (CRU; Harris et al., 2013) and the NOAA Global Precipitation Climatology Centre (GPCC; Scheider et al., 2014) data. Final

  17. Longwave Band-by-band Cloud Radiative Effect and its Application in GCM Evaluation

    NASA Technical Reports Server (NTRS)

    Huang, Xianglei; Cole, Jason N. S.; He, Fei; Potter, Gerald L.; Oreopoulos, Lazaros; Lee, Dongmin; Suarez, Max; Loeb, Norman G.

    2012-01-01

    The cloud radiative effect (CRE) of each longwave (LW) absorption band of a GCM fs radiation code is uniquely valuable for GCM evaluation because (1) comparing band-by-band CRE avoids the compensating biases in the broadband CRE comparison and (2) the fractional contribution of each band to the LW broadband CRE (f(sub CRE)) is sensitive to cloud top height but largely insensitive to cloud fraction, presenting thus a diagnostic metric to separate the two macroscopic properties of clouds. Recent studies led by the first author have established methods to derive such band ]by ]band quantities from collocated AIRS and CERES observations. We present here a study that compares the observed band-by-band CRE over the tropical oceans with those simulated by three different atmospheric GCMs (GFDL AM2, NASA GEOS-5, and CCCma CanAM4) forced by observed SST. The models agree with observation on the annual ]mean LW broadband CRE over the tropical oceans within +/-1W/sq m. However, the differences among these three GCMs in some bands can be as large as or even larger than +/-1W/sq m. Observed seasonal cycles of f(sub CRE) in major bands are shown to be consistent with the seasonal cycle of cloud top pressure for both the amplitude and the phase. However, while the three simulated seasonal cycles of f(sub CRE) agree with observations on the phase, the amplitudes are underestimated. Simulated interannual anomalies from GFDL AM2 and CCCma CanAM4 are in phase with observed anomalies. The spatial distribution of f(sub CRE) highlights the discrepancies between models and observation over the low-cloud regions and the compensating biases from different bands.

  18. Enhancing the resolution of sea ice in a global ocean GCM

    NASA Astrophysics Data System (ADS)

    Stössel, Achim; Kim, Joong-Tae

    Open water in sea ice, such as leads and polynyas, has a considerable impact on the long-term global deep-ocean properties and circulation. Its representation in ocean general circulation models (GCMs) that are designed for studies of the long-term thermohaline circulation, however, bears large uncertainties. Here, an attempt has been made to reduce such uncertainties by enhancing the resolution of the sea-ice component, while keeping the ocean component at coarse resolution to preserve the necessary efficiency of the GCM. In this study, the higher-resolved sea-ice component has been restricted to the Southern Ocean. Compared to the original model, the new version yields more detailed structures, such as a more detailed representation of coastal polynyas, a realistically sharp ice edge, and an overall enhanced lead fraction. The latter gives rise to a somewhat enhanced rate of Antarctic Bottom Water formation through enhanced near-boundary convection, which is reflected in slightly cooler and fresher global deep-ocean properties and a reduced Antarctic Circumpolar Current as a result of reduced open-ocean convection. Sensitivity studies reveal that it is not the overall enhanced lead fraction but rather the coastal katabatic winds that lead to this behaviour of the higher-resolution model. Artifacts resulting from the coarse-grid coastline were minimized in a separate model version where fine surface grid cells of fast ice were introduced following the fine-grid land/ice-shelf—sea-ice/ocean boundary of satellite-derived microwave data. This study represents an intermediate step toward resolving the sea-ice component of a global coarse-resolution ocean GCM on a scale of about 30 km.

  19. Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea

    NASA Astrophysics Data System (ADS)

    Bae, Deg-Hyo; Jung, Il-Won; Lettenmaier, Dennis P.

    2011-04-01

    SummaryThis study attempts to analyze the effects of hydrological models and potential evapotranspiration (PET) computation methods on climate change impact assessment of water resources by using Intergovernmental Panel on Climate Change (IPCC) Forth Assessment Report (AR4) General Circulation Model (GCM) simulations. Three semi-distributed hydrological models (PRMS, SLURP and SWAT) and seven different PET computation methods (Hamon and Jensen-Haise methods for PRMS, Penman-Monteith, Granger and Spittlehous-Black for SLURP, Penman-Monteith, Priestley-Taylor and Hargreaves for SWAT) are used for comparing differences of response to climate change in the Chungju Dam basin, Korea. For future climate change projections, the 13 GCM outputs with three greenhouse gas (GHG) emission scenarios are downscaled for the regional-scale hydrological model inputs by using a stochastic weather generator, WXGEN. Our results show that the hydrological models and PET methods can induce major differences in runoff change under the same climate change simulations, and that those differences are greater for 2071-2100 than for 2011-2040. The different sensitivities of PET methods to climate simulations greatly increase the range of projected runoff changes. Additionally, the differences in modeled runoff changes are smaller for the wet period (May-October) than for the dry period (November-April). This result indicates that the runoff projections for the dry season could be highly uncertain due to hydrologic models and PET methods, indicating that more caution will be needed to assess future changes in the risk of low flows and droughts.

  20. Simulation of Anomalous Regional Climate Events with a Variable Resolution Stretched Grid GCM

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.

    1999-01-01

    The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.

  1. From GCM Output to Local Hydrologic and Ecological Impacts: Integrating Climate Change Projections into Conservation Lands

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.; Micheli, L.; Flint, L. E.; Flint, A. L.; Thorne, J. H.

    2014-12-01

    Assessment of climate change resilience, vulnerability, and adaptation options require downscaling of GCM outputs to local scales, and conversion of temperature and precipitation forcings into hydrologic and ecological responses. Recent work in the San Francisco Bay Area, and California demonstrate a practical approach to this process. First, climate futures (GCM x Emissions Scenario) are screened using cluster analysis for seasonal precipitation and temperature, to select a tractable subset of projections that still represent the range of climate projections. Second, monthly climate projections are downscaled to 270m and the Basin Characterization Model (BCM) applied, to generate fine-scale recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) accounting for soils, bedrock geology, topography, and local climate. Third, annual time-series are used to derive 30-year climatologies and recurrence intervals of extreme events (including multi-year droughts) at the scale of small watersheds and conservation parcels/networks. We take a "scenario-neutral" approach where thresholds are defined for system "failure," such as water supply shortfalls or drought mortality/vegetation transitions, and the time-window for hitting those thresholds is evaluated across all selected climate projections. San Francisco Bay Area examples include drought thresholds (CWD) for specific vegetation-types that identify leading/trailing edges and local refugia, evaluation of hydrologic resources (recharge and runoff) provided by conservation lands, and productivity of rangelands (AET). BCM outputs for multiple futures are becoming available to resource managers through on-line data extraction tools. This approach has wide applicability to numerous resource management issues.

  2. GCM Simulations of Neoproterozoic "Snowball Earth" Conditions: Implications for the Environmental Limits on Terrestrial Metazoans and Their Extraterrestrial Analogues

    NASA Technical Reports Server (NTRS)

    Sohl, L. E.; Chandler, M. A.

    2001-01-01

    The Neoproterozoic Snowball Earth intervals provide excellent opportunities to examine the environmental limits on terrestrial metazoans. A series of GCM simulations was run in order to quantify climatic conditions during these intervals. Additional information is contained in the original extended abstract.

  3. Comparison of a very-fine-resolution GCM with RCM dynamical downscaling in simulating climate in China

    NASA Astrophysics Data System (ADS)

    Guo, Donglin; Wang, Huijun

    2016-05-01

    Regional climate simulation can generally be improved by using an RCM nested within a coarser-resolution GCM. However, whether or not it can also be improved by the direct use of a state-of-the-art GCM with very fine resolution, close to that of an RCM, and, if so, which is the better approach, are open questions. These questions are important for understanding and using these two kinds of simulation approaches, but have not yet been investigated. Accordingly, the present reported work compared simulation results over China from a very-fine-resolution GCM (VFRGCM) and from RCM dynamical downscaling. The results showed that: (1) The VFRGCM reproduces the climatologies and trends of both air temperature and precipitation, as well as inter-monthly variations of air temperature in terms of spatial pattern and amount, closer to observations than the coarse-resolution version of the GCM. This is not the case, however, for the inter-monthly variations of precipitation. (2) The VFRGCM captures the climatology, trend, and inter-monthly variation of air temperature, as well as the trend in precipitation, more reasonably than the RCM dynamical downscaling method. (3) The RCM dynamical downscaling method performs better than the VFRGCM in terms of the climatology and inter-monthly variation of precipitation. Overall, the results suggest that VFRGCMs possess great potential with regard to their application in climate simulation in the future, and the RCM dynamical downscaling method is still dominant in terms of regional precipitation simulation.

  4. A 12-year (1987-1998) Ensemble Simulation of the US Climate with a Variable Resolution Stretched Grid GCM

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.

    2002-01-01

    The variable-resolution stretched-grid (SG) GEOS (Goddard Earth Observing System) GCM has been used for limited ensemble integrations with a relatively coarse, 60 to 100 km, regional resolution over the U.S. The experiments have been run for the 12-year period, 1987-1998, that includes the recent ENSO cycles. Initial conditions 1-2 days apart are used for ensemble members. The goal of the experiments is analyzing the long-term SG-GCM ensemble integrations in terms of their potential in reducing the uncertainties of regional climate simulation while producing realistic mesoscales. The ensemble integration results are analyzed for both prognostic and diagnostic fields. A special attention is devoted to analyzing the variability of precipitation over the U.S. The internal variability of the SG-GCM has been assessed. The ensemble means appear to be closer to the verifying analyses than the individual ensemble members. The ensemble means capture realistic mesoscale patterns, especially those of induced by orography. Two ENSO cycles have been analyzed in terms their impact on the U.S. climate, especially on precipitation. The ability of the SG-GCM simulations to produce regional climate anomalies has been confirmed. However, the optimal size of the ensembles depending on fine regional resolution used, is still to be determined. The SG-GCM ensemble simulations are performed as a preparation or a preliminary stage for the international SGMIP (Stretched-Grid Model Intercomparison Project) that is under way with participation of the major centers and groups employing the SG-approach for regional climate modeling.

  5. Comparison of a coupled atmosphere-ocean (WRF-ROMS) model with an atmosphere only model (WRF) of two North Atlantic hurricanes

    NASA Astrophysics Data System (ADS)

    Mooney, P.; Mulligan, F. J.; Bruyere, C. L.; Bonnlander, B.

    2013-12-01

    We investigate the ability of a coupled regional atmosphere-ocean modeling system to simulate two extreme events in the North Atlantic. In this study we use the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST; Warner et al., 2010) modeling system with only the atmosphere and ocean models activated. COAWST couples the atmosphere model (Weather Research and Forecasting model; WRF) to the ocean model (Regional Ocean Modeling System; ROMS) with the Model Coupling Toolkit. Results from the coupled system are compared with atmosphere only simulations of North Atlantic storms to evaluate the performance of the coupled modeling system. Two extreme events (Hurricane Katia and Hurricane Irene) were chosen to assess the level of improvement (or otherwise) arising from coupling WRF with ROMS. These two hurricanes involve different dynamics and present different challenges to the modeling system. Modelled storm tracks, storm intensities and sea surface temperatures are compared with observations to appraise the coupled modeling system's simulation of these two extreme events.

  6. AIRS Observations Based Evaluation of Relative Climate Feedback Strengths on a GCM Grid-Scale

    NASA Astrophysics Data System (ADS)

    Molnar, G. I.; Susskind, J.

    2012-12-01

    Climate feedback strengths, especially those associated with moist processes, still have a rather wide range in GCMs, the primary tools to predict future climate changes associated with man's ever increasing influences on our planet. Here, we make use of the first 10 years of AIRS observations to evaluate interrelationships/correlations of atmospheric moist parameter anomalies computed from AIRS Version 5 Level-3 products, and demonstrate their usefulness to assess relative feedback strengths. Although one may argue about the possible usability of shorter-term, observed climate parameter anomalies for estimating the strength of various (mostly moist processes related) feedbacks, recent works, in particular analyses by Dessler [2008, 2010], have demonstrated their usefulness in assessing global water vapor and cloud feedbacks. First, we create AIRS-observed monthly anomaly time-series (ATs) of outgoing longwave radiation, water vapor, clouds and temperature profile over a 10-year long (Sept. 2002 through Aug. 2012) period using 1x1 degree resolution (a common GCM grid-scale). Next, we evaluate the interrelationships of ATs of the above parameters with the corresponding 1x1 degree, as well as global surface temperature ATs. The latter provides insight comparable with more traditional climate feedback definitions (e. g., Zelinka and Hartmann, 2012) whilst the former is related to a new definition of "local (in surface temperature too) feedback strengths" on a GCM grid-scale. Comparing the correlation maps generated provides valuable new information on the spatial distribution of relative climate feedback strengths. We argue that for GCMs to be trusted for predicting longer-term climate variability, they should be able to reproduce these observed relationships/metrics as closely as possible. For this time period the main climate "forcing" was associated with the El Niño/La Niña variability (e. g., Dessler, 2010), so these assessments may not be descriptive of longer

  7. Toward a Simple Probabilistic GCM Emulator for Integrated Assessment of Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Sue Wing, I.; Tebaldi, C.; Nychka, D. W.; Winkler, J.

    2014-12-01

    Climate emulators can bridge spatial scales in integrated assessment in ways that allow us to take advantage of the evolving understanding of the impacts of climate change. The spatial scales at which climate impacts occur are much finer than those of the "damage functions" in integrated assessment models (IAMs), which incorporate reduced form climate models to project changes in global mean temperature, and estimate aggregate damages directly from that. Advancing the state of IA modeling requires methods to generate—in a flexible and computationally efficient manner—future changes in climate variables at the geographic scales at which individual impact endpoints can be resolved. The state of the art uses outputs of global climate models (GCMs) forced by warming scenarios to drive impact calculations. However, downstream integrated assessments are perforce "locked-in" to the particular GCM x warming scenario combinations that generated the meteorological fields of interest—it is not possible assess risk due to the absence of probabilities over warming scenarios or model uncertainty. The availability of reduced-form models which can efficiently simulate the envelope of the response of multiple GCMs to a given amount of warming provides us with capability to create probabilistic projections of fine-scale of meteorological changes conditional on global mean temperature change to drive impact calculations in ways that permit risk assessments. This presentation documents a prototype probabilistic climate emulator for use as a GCM diagnostic tool and a driver of climate change impact assessments. We use a regression-based approach to construct multi-model global patterns for changes in temperature and precipitation from the CMIP3 archive. Crucially, regression residuals are used to derive a spatial covariance function of the model- and scenario-dependent deviations from the average pattern. By sampling from this manifold we can rapidly generate many realizations of

  8. The Impact of Sea Ice Concentration Accuracies on Climate Model Simulations with the GISS GCM

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Rind, David; Healy, Richard J.; Martinson, Douglas G.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Goddard Institute for Space Studies global climate model (GISS GCM) is used to examine the sensitivity of the simulated climate to sea ice concentration specifications in the type of simulation done in the Atmospheric Modeling Intercomparison Project (AMIP), with specified oceanic boundary conditions. Results show that sea ice concentration uncertainties of +/- 7% can affect simulated regional temperatures by more than 6 C, and biases in sea ice concentrations of +7% and -7% alter simulated annually averaged global surface air temperatures by -0.10 C and +0.17 C, respectively, over those in the control simulation. The resulting 0.27 C difference in simulated annual global surface air temperatures is reduced by a third, to 0.18 C, when considering instead biases of +4% and -4%. More broadly, least-squares fits through the temperature results of 17 simulations with ice concentration input changes ranging from increases of 50% versus the control simulation to decreases of 50% yield a yearly average global impact of 0.0107 C warming for every 1% ice concentration decrease, i.e., 1.07 C warming for the full +50% to -50% range. Regionally and on a monthly average basis, the differences can be far greater, especially in the polar regions, where wintertime contrasts between the +50% and -50% cases can exceed 30 C. However, few statistically significant effects are found outside the polar latitudes, and temperature effects over the non-polar oceans tend to be under 1 C, due in part to the specification of an unvarying annual cycle of sea surface temperatures. The +/- 7% and 14% results provide bounds on the impact (on GISS GCM simulations making use of satellite data) of satellite-derived ice concentration inaccuracies, +/- 7% being the current estimated average accuracy of satellite retrievals and +/- 4% being the anticipated improved average accuracy for upcoming satellite instruments. Results show that the impact on simulated temperatures of imposed ice concentration

  9. New Concepts for Refinement of Cumulus Parameterization in GCM's the Arakawa-Schubert Framework

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Lau, William (Technical Monitor)

    2002-01-01

    Several state-of-the-art models including the one employed in this study use the Arakawa-Schubert framework for moist convection, and Sundqvist formulation of stratiform. clouds, for moist physics, in-cloud condensation, and precipitation. Despite a variety of cloud parameterization methodologies developed by several modelers including the authors, most of the parameterized cloud-models have similar deficiencies. These consist of: (a) not enough shallow clouds, (b) too many deep clouds; (c) several layers of clouds in a vertically demoralized model as opposed to only a few levels of observed clouds, and (d) higher than normal incidence of double ITCZ (Inter-tropical Convergence Zone). Even after several upgrades consisting of a sophisticated cloud-microphysics and sub-grid scale orographic precipitation into the Data Assimilation Office (DAO)'s atmospheric model (called GEOS-2 GCM) at two different resolutions, we found that the above deficiencies remained persistent. The two empirical solutions often used to counter the aforestated deficiencies consist of a) diffusion of moisture and heat within the lower troposphere to artificially force the shallow clouds; and b) arbitrarily invoke evaporation of in-cloud water for low-level clouds. Even though helpful, these implementations lack a strong physical rationale. Our research shows that two missing physical conditions can ameliorate the aforestated cloud-parameterization deficiencies. First, requiring an ascending cloud airmass to be saturated at its starting point will not only make the cloud instantly buoyant all through its ascent, but also provide the essential work function (buoyancy energy) that would promote more shallow clouds. Second, we argue that training clouds that are unstable to a finite vertical displacement, even if neutrally buoyant in their ambient environment, must continue to rise and entrain causing evaporation of in-cloud water. These concepts have not been invoked in any of the cloud

  10. An analysis of strong wind events simulated in a GCM near Casey in the Antarctic

    SciTech Connect

    Murphy, B.F.; Simmonds, I. )

    1993-02-01

    Strong wind events occurring near Casey (Antarctica) in a long July GCM simulation have been studied to determine the relative roles played by the synoptic situation and the katabatic flow in producing these episodes. It has been found that the events are associated with strong katabatic and strong gradient flow operating together. Both components are found to increase threefold on average for these strong winds, and although the geostrophic flow is the stronger, it rarely produces strong winds without katabatic flow becoming stronger than it is in the mean. The two wind components do not flow in the same direction; indeed, there is some cancellation between them, since katabatic flow acts in a predominant downslope direction, while the geostrophic wind acts across slope. The stronger geostrophic flow is associated with higher-than-average pressures over the continent and the approach of a strong cyclonic system toward the coast and a blocking system downstream. The anomalous synoptic patterns leading up to the occasions display a strong wavenumber 4 structure. The very strong katabatic flow appears to be related to the production of a supply of cold air inland from Casey by the stronger-than-average surface temperature inversions inland a few days before the strong winds occur. The acceleration of this negatively buoyant air mass down the steep, ice-sheet escarpment results in strong katabatic flow near the coast. 24 refs., 11 figs.

  11. Cloud Simulations in Response to Turbulence Parameterizations in the GISS Model E GCM

    NASA Technical Reports Server (NTRS)

    Yao, Mao-Sung; Cheng, Ye

    2013-01-01

    The response of cloud simulations to turbulence parameterizations is studied systematically using the GISS general circulation model (GCM) E2 employed in the Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report (AR5).Without the turbulence parameterization, the relative humidity (RH) and the low cloud cover peak unrealistically close to the surface; with the dry convection or with only the local turbulence parameterization, these two quantities improve their vertical structures, but the vertical transport of water vapor is still weak in the planetary boundary layers (PBLs); with both local and nonlocal turbulence parameterizations, the RH and low cloud cover have better vertical structures in all latitudes due to more significant vertical transport of water vapor in the PBL. The study also compares the cloud and radiation climatologies obtained from an experiment using a newer version of turbulence parameterization being developed at GISS with those obtained from the AR5 version. This newer scheme differs from the AR5 version in computing nonlocal transports, turbulent length scale, and PBL height and shows significant improvements in cloud and radiation simulations, especially over the subtropical eastern oceans and the southern oceans. The diagnosed PBL heights appear to correlate well with the low cloud distribution over oceans. This suggests that a cloud-producing scheme needs to be constructed in a framework that also takes the turbulence into consideration.

  12. GCM sensitivity to 1982 - 1983 equatorial Pacific sea surface temperature anomalies

    NASA Technical Reports Server (NTRS)

    Fennessy, M. J.; Marx, L.; Shukla, J.

    1984-01-01

    The response of the GLAS climate model to the much larger 1982-83 sea surface temperatures (SST) anomalies is discussed. Two separate 75 day experiments (control and anomaly simulation pairs) were started from observed initial conditions on 16 Dec. 1982 and initial conditions on 16 Dec. 1979 taken from a 2 year model control run after one year of simulation, respectively. The January control and anomaly SST fields used in both experiments are given. Notable is the greatly extended region of very warm (approximately equal to 29 C) SST water in the anomaly simulation. The January SST anomaly field is representative of the other months of the experiments, all of which had a much larger region of very warm SST in the anomaly simulation than in the previously noted general circulation model studies. The model used is an improved version of the GLAS B-grid GCM used by Shukla and Wallace (1983). The most important physical change in the model is the inclusion of the surface flux parameterization of Deardorff (1972) as modified by Randall (1976). An important improvement in the model simulations is the removal of the climate drift towards unrealistically high temperatures in the tropics, which was moted by Shukla and Wallace (1983).

  13. Global ocean circulation and equator-pole heat transport as a function of ocean GCM resolution

    SciTech Connect

    Covey, C.

    1994-06-01

    To determine whether resolution of smaller scales is necessary to simulate large-scale ocean climate correctly, I examine results from a global ocean GCM run with horizontal grid spacings spanning a range from coarse resolutions traditionally used in climate modeling to nearly the highest resolution attained with today`s computers. The experiments include four cases employing 4{degrees}, 2{degrees}, 1{degrees} and 1/2{degrees} spacing in latitude and longitude, which were run with minimal differences among them, i.e., in a controlled experiment. Two additional cases-1/2{degrees} spacing with a more scale-selective sub-gridscale mixing of heat and momentum, and approximate 1/4{degrees} spacing-are also included. The 1/4{degrees} run resolves most of the observed mesoscale eddy energy in the ocean. Several artificial constraints on the model tend to minimize differences among the different resolution cases. Nevertheless, for quantities of interest to global climate studies,the simulations show significant changes as resolution increases.

  14. Complete Initial Scoping Tests on the Incorporation of Novel Loaded Iodine Getters into GCM.

    SciTech Connect

    Nenoff, Tina M.; Garino, Terry J.; Croes, Kenneth James

    2015-08-18

    This study encompasses initial scoping tests on the incorporation of a novel iodine loaded getter material into the Sandia developed low temperature sintering glass ceramic material (GCM) waste form. In particular, we studied the PNNL Ag-I-Aerogel. Optical microscopy indicates inhomogenous samples based on particle sizes and variations in color (AgI vs Ag/AgO on silica). TGA/MS data when heated in air indicates loss of iodine and organics (CO2) between 250-450°C a total of ~15wt% loss, with additional / small iodine loss when during 550°C hold for 1 hr. TGA/MS data when heated in N2 indicates less organic and slightly less iodine loss below 550°C, with no loss of iodine in 550°C 1 hour hold. Furthermore, a substantial mass loss of sulfur containing compounds is observed (m/e of 34 and 36) between 150 – 550°C in both air and N2 sintering atmospheres. In an effort to capture iodine lost to volatilization during heating (at temps below glass sintering temperature of 550°C), we added 5 wt% Ag flake to the AgIaerogel. Resulting data indicates the iodine is retained with the addition of the Ag flake, resulting in only a small iodine loss (< 1wt%) at ~350°C. No method of curtailing loss of sulfur containing compounds due to heating was successful in this scoping study.

  15. GCM simulations of volcanic aerosol forcing. I - Climate changes induced by steady-state perturbations

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Rind, David; Lacis, Andrew; Hansen, James E.; Sato, Makiko; Ruedy, Reto

    1993-01-01

    The response of the climate system to a temporally and spatially constant amount of volcanic particles is simulated using a general circulation model (GCM). The optical depth of the aerosols is chosen so as to produce approximately the same amount of forcing as results from doubling the present CO2 content of the atmosphere and from the boundary conditions associated with the peak of the last ice age. The climate changes produced by long-term volcanic aerosol forcing are obtained by differencing this simulation and one made for the present climate with no volcanic aerosol forcing. The simulations indicate that a significant cooling of the troposphere and surface can occur at times of closely spaced multiple sulfur-rich volcanic explosions that span time scales of decades to centuries. The steady-state climate response to volcanic forcing includes a large expansion of sea ice, especially in the Southern Hemisphere; a resultant large increase in surface and planetary albedo at high latitudes; and sizable changes in the annually and zonally averaged air temperature.

  16. Refinement, Validation and Application of Cloud-Radiation Parameterization in a GCM

    SciTech Connect

    Dr. Graeme L. Stephens

    2009-04-30

    The research performed under this award was conducted along 3 related fronts: (1) Refinement and assessment of parameterizations of sub-grid scale radiative transport in GCMs. (2) Diagnostic studies that use ARM observations of clouds and convection in an effort to understand the effects of moist convection on its environment, including how convection influences clouds and radiation. This aspect focuses on developing and testing methodologies designed to use ARM data more effectively for use in atmospheric models, both at the cloud resolving model scale and the global climate model scale. (3) Use (1) and (2) in combination with both models and observations of varying complexity to study key radiation feedback Our work toward these objectives thus involved three corresponding efforts. First, novel diagnostic techniques were developed and applied to ARM observations to understand and characterize the effects of moist convection on the dynamical and thermodynamical environment in which it occurs. Second, an in house GCM radiative transfer algorithm (BUGSrad) was employed along with an optimal estimation cloud retrieval algorithm to evaluate the ability to reproduce cloudy-sky radiative flux observations. Assessments using a range of GCMs with various moist convective parameterizations to evaluate the fidelity with which the parameterizations reproduce key observable features of the environment were also started in the final year of this award. The third study area involved the study of cloud radiation feedbacks and we examined these in both cloud resolving and global climate models.

  17. Performance of Goddard Earth Observing System GCM Column Radiation Models under Heterogeneous Cloud Conditions

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Chou, M.-D.; Khairoutdinov, M.; Barker, H. W.; Cahalan, R. F.

    2003-01-01

    We test the performance of the shortwave (SW) and longwave (LW) Column Radiation Models (CORAMs) of Chou and collaborators with heterogeneous cloud fields from a global single-day dataset produced by NCAR's Community Atmospheric Model with a 2-D CRM installed in each gridbox. The original SW version of the CORAM performs quite well compared to reference Independent Column Approximation (ICA) calculations for boundary fluxes, largely due to the success of a combined overlap and cloud scaling parameterization scheme. The absolute magnitude of errors relative to ICA are even smaller for the LW CORAM which applies similar overlap. The vertical distribution of heating and cooling within the atmosphere is also simulated quite well with daily-averaged zonal errors always below 0.3 K/d for SW heating rates and 0.6 K/d for LW cooling rates. The SW CORAM's performance improves by introducing a scheme that accounts for cloud inhomogeneity. These results suggest that previous studies demonstrating the inaccuracy of plane-parallel models may have unfairly focused on worst scenario cases, and that current radiative transfer algorithms of General Circulation Models (GCMs) may be more capable than previously thought in estimating realistic spatial and temporal averages of radiative fluxes, as long as they are provided with correct mean cloud profiles. However, even if the errors of the particular CORAMs are small, they seem to be systematic, and the impact of the biases can be fully assessed only with GCM climate simulations.

  18. Prognostic precipitation with three liquid water classes in the ECHAM5-HAM GCM

    NASA Astrophysics Data System (ADS)

    Sant, V.; Posselt, R.; Lohmann, U.

    2015-08-01

    A new parameterization with three prognostic liquid water classes was implemented into the general circulation model (GCM) ECHAM5 with the aerosol module HAM in order to improve the global representation of rain formation in marine stratiform clouds. The additionally introduced drizzle class improves the physical representation of the droplet spectrum and, more importantly, improves the microphysical processes relevant for precipitation formation compared to the standard parameterization. In order to avoid a mismatch of the liquid and ice phase, a prognostic treatment of snow has been introduced too. This has a significant effect on the amount and altitude of ice clouds, which in turn affects not only the in- and outgoing radiation but also the parameterized collection rates. With the introduction of a prognostic precipitation scheme, a more realistic representation of both liquid and ice phase large-scale precipitation is achieved compared to a diagnostic treatment. An encouraging finding is that with the prognostic treatment the increase of the liquid water path in response to anthropogenic aerosols is reduced by about 25 %. Although the total net radiative forcing is decreased from -1.3±0.3 to -1.6±0.3 W m-2 from the control to the prognostic model version, the difference is within the interannual variability. Altogether the results suggest that the treatment of precipitation in global circulation models has not only a significant influence on the phase of clouds and their conversion rates, but also hints towards uncertainties related to a prognostic precipitation scheme.

  19. Impact of the ongoing Amazonian deforestation on local precipitation: A GCM simulation study

    NASA Technical Reports Server (NTRS)

    Walker, G. K.; Sud, Y. C.; Atlas, R.

    1995-01-01

    Numerical simulation experiments were conducted to delineate the influence of in situ deforestation data on episodic rainfall by comparing two ensembles of five 5-day integrations performed with a recent version of the Goddard Laboratory for Atmospheres General Circulation Model (GCM) that has a simple biosphere model (SiB). The first set, called control cases, used the standard SiB vegetation cover (comprising 12 biomes) and assumed a fully forested Amazonia, while the second set, called deforestation cases, distinguished the partially deforested regions of Amazonia as savanna. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both sets of integrations. The differential analyses of these five cases show the following local effects of deforestation. (1) A discernible decrease in evapotranspiration of about 0.80 mm/d (roughly 18%) that is quite robust in the averages for 1-, 2-, and 5-day forecasts. (2) A decrease in precipitation of about 1.18 mm/d (roughly 8%) that begins to emerge even in 1-2 day averages and exhibits complex evolution that extends downstream with the winds. (3) A significant decrease in the surface drag force (as a consequence of reduced surface roughness of deforested regions) that, in turn, affects the dynamical structure of moisture convergence and circulation. The surface winds increase significantly during the first day, and thereafter the increase is well maintained even in the 2- and 5-day averages.

  20. Southern Ocean zonal asymmetries in mixed layer depth variability in the NEMO GCM

    NASA Astrophysics Data System (ADS)

    Sonnewald, Maike; Ferrari, Raffaele; Nurser, George

    2015-04-01

    The mixed layer facilitates the conversation between the ocean and atmosphere. It is a crucial feature for biological and chemical processes, and a key feature for ocean models to capture. Here, we investigate the mixed layer depth both in a coarse (1°), an eddy permitting (1/4°) and an eddy-resolving (1/12°) version of the NEMO general circulation model (GCM). We highlight the model's skill, comparing model data with available observational datasets, with focus on the zonal asymmetry in the Southern Ocean. We find that NEMO is largely in agreement with Argo measurements within observational error. We assess the buoyancy forcing in the respective areas, as well as the role of advection. Using the one-dimensional Price-Weller-Pinkel (PWP) model we show that advective processes are key to the initial deepening through setting the autumn stratification. Heat flux is then key to restratification, particular in the deep regions. We also assess the contribution of the Ekman buoyancy flux.

  1. A stochastic model for tropical cyclone tracks based on Reanalysis data and GCM output

    NASA Astrophysics Data System (ADS)

    Ito, K.; Nakano, S.; Ueno, G.

    2014-12-01

    In the present study, we try to express probability distribution of tropical cyclone (TC) trajectories estimated on the basis of GCM output. The TC tracks are mainly controlled by the atmospheric circulation such as the trade winds and the Westerlies as well as are influenced to move northward by the Beta effect. The TC tracks, which calculated with trajectory analysis, would thus correspond to the movement of TCs due to the atmospheric circulation. Comparing the result of the trajectory analysis from reanalysis data with the Best Track (BT) of TC in the present climate, the structure of the trajectory seems to be similar to the BT. However, here is a significant problem for the calculation of a trajectory in the reanalysis wind field because there are many rotation elements including TCs in the reanalysis data. We assume that a TC would move along the steering current and the rotations would not have a great influence on the direction of moving. We are designing a state-space model based on the trajectory analysis and put an adjustment parameter for the moving vector. Here, a simple track generation model is developed. This model has a possibility to gain the probability distributions of calculated TC tracks by fitting to the BT using data assimilation. This work was conducted under the framework of the "Development of Basic Technology for Risk Information on Climate Change" supported by the SOUSEI Program of the Ministry of Education, Culture, Sports, Science, and Technology.

  2. Monsoons and Their Response to Climate Change in Idealized GCM Experiments

    NASA Astrophysics Data System (ADS)

    Laraia, A.; Bordoni, S.

    2014-12-01

    Monsoons are prominent features of the tropical and subtropical atmospheric circulation, affecting 60% of the world's population (Wang 2006) and sustaining rapidly growing economies. Understanding how monsoons will change with changing climate is of pressing societal importance, and yet remains a challenge: Numerous studies have explored the impact of global warming on monsoons, but many questions remain unanswered. In this study, we perform experiments with an idealized General Circulation Model (GCM) to investigate the response of an idealized monsoon to climate change. We focus on two idealized continental geometries, an Africa-like continent stretching from pole to pole with a fixed longitudinal width, and an Asia-like continent that spans all longitudes north of 10°N. The climate is varied by perturbing the atmospheric longwave absorber, in analogy to changes in greenhouse gas concentrations. We use the moist static energy, moisture and zonal momentum budgets (e.g., Chou et al. 2001, Bordoni and Schneider 2008) to interpret the simulated changes in monsoon onset, circulation strength and precipitation. Each budget is decomposed into mean, stationary and transient eddy fluxes, to explore the relative role of these circulations in the maintenance of the monsoonal precipitation. We specifically focus on how the distribution, both spatially and temporally, of precipitation changes as the climate is varied in the two different continental configurations.

  3. The development and validation of a simple snow model for the GISS GCM

    NASA Technical Reports Server (NTRS)

    Lynch-Stieglitz, Marc

    1994-01-01

    Five years of meteorological and hydrological data from a typical New England watershed where winter snow cover is significant were used to drive and validate two off-line land surface schemes suitable for use in the Goddard Institute for Space Studies (GISS) general circulation model (GCM): a baseline scheme that does not model the physics of a snowpack and therefore, neglects the insulating properties of snow cover; and a modified scheme in which a three-layer snowpack is modeled. Comparing baseline model results with validation data reveals several model deficiencies. Surface radiation temperatures could not adequately be modeled and the ground froze to unreasonable depths. Furthermore, because of ground cooling resulting from large surface heat fluxes to the atmosphere from the uninsulated surface, deeper model layers did not unfreeze until midsummer. As such, the normal hydrologic processes of runoff, ground water infiltration, and movement, etc., are compromised for a good part of the year. With the inclusion of a simple three-layer snow model into the baseline model, not only are the ground and surface radiation temperatures adequately modeled but all the features of snowpack ripening that characterize pack growth/ablation are simulated.

  4. GCM Simulation of the Large-scale North American Monsoon Including Water Vapor Tracer Diagnostics

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Sud, Yogesh; Walker, Gregory K.

    2002-01-01

    In this study, we have applied GCM water vapor tracers (WVT) to simulate the North American water cycle. WVTs allow quantitative computation of the geographical source of water for precipitation that occurs anywhere in the model simulation. This can be used to isolate the impact that local surface evaporation has on precipitation, compared to advection and convection. A 15 year 1 deg, 1.25 deg. simulation has been performed with 11 global and 11 North American regional WVTs. Figure 1 shows the source regions of the North American WVTs. When water evaporates from one of these predefined regions, its mass is used as the source for a distinct prognostic variable in the model. This prognostic variable allows the water to be transported and removed (precipitated) from the system in an identical way that occurs to the prognostic specific humidity. Details of the model are outlined by Bosilovich and Schubert (2002) and Bosilovich (2002). Here, we present results pertaining to the onset of the simulated North American monsoon.

  5. Low-Frequency Variability in a GCM: Three-Dimensional Flow Regimes and Their Dynamics.

    NASA Astrophysics Data System (ADS)

    Hannachi, A.

    1997-06-01

    . They found, within the 500-mb EOF phase space, two local minima of area-averaged -tendency (based on barotropic vorticity dynamics), which were identified as ±Pacific-North America (PNA). In this work, the author demands that both the flow and its tendency be within the phase space spanned by the 3D EOFs. The streamfunction tendency is computed from the two-level quasigeostrophic potential vorticity equation and projected onto the EOF phase space. This projection produces a finite dynamical system whose singular points are identified as the quasi-stationary states. Two blocking solutions and one zonal solution are found over the Pacific. The first blocking solution is closer to the west coast of North America than the other blocking, which is shifted slightly westward and has a larger scale, rather similar to the +PNA pattern, indicating that blocking over the Pacific may have two phases in the model. Further investigation of the GCM trajectory within the EOF phase space using a mixture analysis shows the existence of realistic three-dimensional weather regimes similar to the singular points. The same solutions were found when the transient eddy contributions to the climatological quasigeostrophic potential vorticity budget were included. It is also shown that this extended technique allows a direct study of the stability of these quasi-stationary states and helps in drawing transition pictures and determining the transition times between them.

  6. Comparison of TIE-GCM ΣO/N2 Column Ratios with Measurements of the SSUSI Instrument

    NASA Astrophysics Data System (ADS)

    Sutton, E. K.; Lin, C. S.; Cable, S. B.

    2012-12-01

    The column-integrated ratio of atomic oxygen to molecular nitrogen (ΣO/N2) in the thermosphere is currently monitored during the daytime by several satellite instruments. Among these is the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) currently operational on DMSP F-16, -17, and -18, and scheduled for two additional launches in upcoming years. These measurements constitute a significant portion of all data currently available for characterizing the thermosphere. With this in mind, we present a comparison of these measurements with the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) in an effort to illuminate the discrepancies between measured and modeled behavior. Based on the insights gained from this study, we offer a method for adjusting the energy and forcing inputs of TIE-GCM in an effort to achieve improved agreement.

  7. Ensemble formulation of surface fluxes and improvement in evapotranspiration and cloud parameterizations in a GCM. [General Circulation Model

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Smith, W. E.

    1984-01-01

    The influence of some modifications to the parameters of the current general circulation model (GCM) is investigated. The aim of the modifications was to eliminate strong occasional bursts of oscillations in planetary boundary layer (PBL) fluxes. Smoothly varying bulk aerodynamic friction and heat transport coefficients were found by ensemble averaging of the PBL fluxes in the current GCM. A comparison was performed of the simulations of the modified model and the unmodified model. The comparison showed that the surface fluxes and cloudiness in the modified model simulations were much more accurate. The planetary albedo in the model was also realistic. Weaknesses persisted in the models positioning of the Inter-tropical convergence zone (ICTZ) and in the temperature estimates for polar regions. A second simulation of the model following reparametrization of the cloud data showed improved results and these are described in detail.

  8. Evolution of the Antarctic polar vortex in spring: Response of a GCM to a prescribed Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Boville, B. A.; Kiehl, J. T.; Briegleb, B. P.

    1988-01-01

    The possible effect of the Antartic ozone hole on the evolution of the polar vortex during late winter and spring using a general circulation model (GCM) is examined. The GCM is a version of the NCAR Community Climate Model whose domain extends from the surface to the mesosphere and is similar to that described on Boville and Randel (1986). Ozone is not a predicted variable in the model. A zonally averaged ozone distribution is specified as a function of latitude, pressure and month for the radiation parameterization. Rather that explicitly address reasons for the formation of the ozone hole, researchers postulate its existence and ask what effect it has on the subsequent evolution of the vortex. The evolution of the model when an ozone hole is imposed is then discussed.

  9. The earth's radiation budget and its relation to atmospheric hydrology. III - Comparison of observations over the oceans with a GCM

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Randall, David A.; Wittmeyer, Ian L.; Dazlich, Donald A.; Tjemkes, Stephen

    1993-01-01

    The ability of the Colorado State University general circulation model (GCM) to simulate interactions between the hydrological cycle and the radiative processes on earth was examined by comparing various sensitivity relationships established by the model with those observed on earth, and the observed and calculated seasonal cycles of the greenhouse effect and cloud radiative forcing. Results showed that, although the GCM model used was able to simulate well some aspects of the observed sensitivities, there were many serious quantitative differences, including problems in the simulation of the column vapor in the tropics and an excessively strong clear-sky greenhouse effect in the mid-latitudes. These differences led to an underestimation by the model of the sensitivity of the clear-sky greenhouse to changes in sea surface temperature.

  10. A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): Equinox solar cycle minimum simulations (30-500 km)

    SciTech Connect

    Roble, R.G.; Ridley, E.C.

    1994-03-15

    A new simulation model of the mesosphere, thermosphere, and ionosphere with coupled electrodynamics has been developed and used to calculate the global circulation, temperature and compositional structure between 30-500 km for equinox, solar cycle minimum, geomagnetic quiet conditions. The model incorporates all of the features of the NCAR thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM) but the lower boundary has been extended downward from 97 to 30 km (10 mb) and it includes the physical and chemical processes appropriate for the mesosphere and upper stratosphere. The first simulation used Rayleigh friction to represent gravity wave drag in the middle atmosphere and although it was able to close the mesospheric jets it severely damped the diurnal tide. Reduced Rayleigh friction allowed the tide to penetrate to thermospheric heights but did not close the jets. A gravity wave parameterization developed by Fritts and Lu allows both features to exist simultaneously with the structure of tides and mean flow dependent upon the strength of the gravity wave source. The model calculates a changing dynamic structure with the mean flow and diurnal tide dominant in the mesosphere, the in-situ generated semi-diurnal tide dominating the lower thermosphere and an in-situ generated diurnal tide in the upper thermosphere. The results also show considerable interaction between dynamics and composition, especially atomic oxygen between 85 and 120 km. 31 refs., 3 figs.

  11. Understanding the Propagation of GCM and Downscaling Uncertainty for Projecting Crop Yield: A Nationwide Analysis over India

    NASA Astrophysics Data System (ADS)

    Sharma, T.; Murari, H. V.; H, V.; Karmakar, S.; Ghosh, S.; Soora, N. K.

    2015-12-01

    General Circulation Models (GCM) play an important role in assessing the impacts of climate change at global scale; however, coarser resolution limits their direct application at regional scale. To understand the climate variability at regional scale, different downscaling techniques (such as dynamical and statistical) have been developed which use the GCM outputs as boundary condition to produce finer resolution climate projections. Although, both dynamical and statistical downscaling techniques have proven to be able to capture the climate variability at regional scale; there are certain uncertainties lying in their projections especially for a region like India which have complex terrain and climatic pattern. Here, the uncertainties, resulting from the use of multiple GCM and downscaling models, are quantified with the assessment of impacts on regional crop yield. Two crop models with different complexity-Decision Support System for Agro-technology Transfer (DSSAT) and Infocrop, are used, forced by dynamically (CORDEX, COordinated Regional climate Downscaling EXperiment) and statistically (Kannan and Ghosh, 2011; Salvi et al., 2013) downscaled data derived from multiple GCM's. Advantage of these crop models is their ability to capture complexity of Indian condition. Yields of major crops in India, such as, rice, wheat and maize have been considered in the crop model and the impacts of climate change are assessed on their yields. The uncertainties in projected crop yields are also quantified, which must be incorporated for deriving vulnerability and risk maps for crop-climate assessments. This may further help to determine different crop management practices in order to reduce adverse impacts of climate change in future.

  12. Global catalogue of microorganisms (gcm): a comprehensive database and information retrieval, analysis, and visualization system for microbial resources

    PubMed Central

    2013-01-01

    Background Throughout the long history of industrial and academic research, many microbes have been isolated, characterized and preserved (whenever possible) in culture collections. With the steady accumulation in observational data of biodiversity as well as microbial sequencing data, bio-resource centers have to function as data and information repositories to serve academia, industry, and regulators on behalf of and for the general public. Hence, the World Data Centre for Microorganisms (WDCM) started to take its responsibility for constructing an effective information environment that would promote and sustain microbial research data activities, and bridge the gaps currently present within and outside the microbiology communities. Description Strain catalogue information was collected from collections by online submission. We developed tools for automatic extraction of strain numbers and species names from various sources, including Genbank, Pubmed, and SwissProt. These new tools connect strain catalogue information with the corresponding nucleotide and protein sequences, as well as to genome sequence and references citing a particular strain. All information has been processed and compiled in order to create a comprehensive database of microbial resources, and was named Global Catalogue of Microorganisms (GCM). The current version of GCM contains information of over 273,933 strains, which includes 43,436bacterial, fungal and archaea species from 52 collections in 25 countries and regions. A number of online analysis and statistical tools have been integrated, together with advanced search functions, which should greatly facilitate the exploration of the content of GCM. Conclusion A comprehensive dynamic database of microbial resources has been created, which unveils the resources preserved in culture collections especially for those whose informatics infrastructures are still under development, which should foster cumulative research, facilitating the

  13. Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ.

    SciTech Connect

    Nenoff, Tina M.; Garino, Terry J.; Croes, Kenneth James; Rodriguez, Mark A.

    2015-07-01

    Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

  14. Importance of Winds and Soil Moistures to the US Summertime Drought of 1988: A GCM Simulation Study

    NASA Technical Reports Server (NTRS)

    Mocko, David M.; Sud, Y. C.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The climate version of NASA's GEOS 2 GCM did not simulate a realistic 1988 summertime drought in the central United States (Mocko et al., 1999). Despite several new upgrades to the model's parameterizations, as well as finer grid spacing from 4x5 degrees to 2x2.5 degrees, no significant improvements were noted in the model's simulation of the U.S. drought.

  15. Scaling and stochastic cascade properties of NEMO oceanic simulations and their potential value for GCM evaluation and downscaling

    NASA Astrophysics Data System (ADS)

    Verrier, Sébastien; Crépon, Michel; Thiria, Sylvie

    2014-09-01

    Spectral scaling properties have already been evidenced on oceanic numerical simulations and have been subject to several interpretations. They can be used to evaluate classical turbulence theories that predict scaling with specific exponents and to evaluate the quality of GCM outputs from a statistical and multiscale point of view. However, a more complete framework based on multifractal cascades is able to generalize the classical but restrictive second-order spectral framework to other moment orders, providing an accurate description of probability distributions of the fields at multiple scales. The predictions of this formalism still needed systematic verification in oceanic GCM while they have been confirmed recently for their atmospheric counterparts by several papers. The present paper is devoted to a systematic analysis of several oceanic fields produced by the NEMO oceanic GCM. Attention is focused to regional, idealized configurations that permit to evaluate the NEMO engine core from a scaling point of view regardless of limitations involved by land masks. Based on classical multifractal analysis tools, multifractal properties were evidenced for several oceanic state variables (sea surface temperature and salinity, velocity components, etc.). While first-order structure functions estimated a different nonconservativity parameter H in two scaling ranges, the multiorder statistics of turbulent fluxes were scaling over almost the whole available scaling range. This multifractal scaling was then parameterized with the help of the universal multifractal framework, providing parameters that are coherent with existing empirical literature. Finally, we argue that the knowledge of these properties may be useful for oceanographers. The framework seems very well suited for the statistical evaluation of OGCM outputs. Moreover, it also provides practical solutions to simulate subpixel variability stochastically for GCM downscaling purposes. As an independent

  16. Coupled interactions of organized deep convection over the tropical western pacific

    SciTech Connect

    Hong, X.; Raman, S.

    1996-04-01

    The relationship between sea surface temperature (SST) and deep convection is complex. In general, deep convection occurs more frequently and with more intensity as SSTs become higher. This theory assumes that the atmospheric stability is sufficiently reduced to allow the onset of moist convection. However, the amount and intensity of convection observed tends to decrease with increasing SST because very warm SSTs. A reason for such decrease is the enhancements to surface fluxes of heat and moisture out of the ocean surface because of the vertical overturning associated with deep convection. Early studies used the radiative-convective models of the atmosphere to examine the role of the convective exchange of heat and moisture in maintaining the vertical temperature profile. In this paper we use a Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to simulate a squall line over a tropical ocean global atmosphere/coupled ocean atmosphere response experiment (TOGA/COARE) area and to investigate how the ocean cooling mechanisms associated with organized deep convection act to limit tropical SSTs.

  17. Multi-GCM Projections of Global Drought Conditions With Use of the Palmer Drought Indices

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Svoboda, M.; Trnka, M.; Hayes, M.; Wilhite, D.; Zalud, Z.

    2007-12-01

    We use two Palmer Drought Indices (the PDSI and Z-index) to assess the drought conditions in future climates as projected by seven Global Climate Models (GCMs). Both indices are based on precipitation and temperature data (this makes them more suitable for climate change impact studies compared to the Standardized Precipitation Index, which is based only on precipitation) and the available water content of the soil. In contrast to the PDSI, the Z-index does not account for any persistence within the climate; rather, it characterizes the immediate (for a given week or month) conditions. The indices are calculated by computer programs available from the National Drought Mitigation Center and the Computer Science and Engineering Department, both located at the University of Nebraska-Lincoln. To allow for the assessment of climate change impacts, we modified the original computer code: the indices (which we named "relative" drought indices) are now calibrated using the present climate weather series and then applied to the future climate weather series. The resultant time series thus displays the drought conditions in terms of the present climate. The relative drought indices are applied to gridded (whole globe) GCM-simulated surface monthly weather series (available from the IPCC database), and the available water content is based on soil- texture-based water holding capacity global data developed by Webb et al. (1993, Global Biogeochem. Cycles 7: 97-108). The indices are calibrated with 1991-2020 period (considered to be the present climate) and then applied to two future periods: 2031-2060 and 2060-2099. To quantify impacts of climate change on the drought conditions, we analyze shifts in the grid-specific means of the drought indices and in the frequency of months belonging to drought spells. The drought spell is defined here as continuous periods in which the index does not exceed -1, and falls below -3 for at least one month. Results obtained by single GCMs

  18. Impacts Of Radiatively-Active Aerosols On Mars’ Current Climate: Simulation Results With The NASA ARC Mars GCM

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jeffery L.; Kahre, M. A.; Haberle, R. M.; Montmessin, F.; Herin, B.; Laamoumi, F.; Wilson, R. J.; Schaeffer, J.

    2010-10-01

    Recent upgrades to the NASA Ames Research Center (ARC) Mars general circulation model (GCM) include a fundamentally new and modernized radiative transfer package which permits radiative effects and interactions of suspended atmospheric aerosols (e.g., water ice clouds, water vapor, dust, and their mutual interactions) to influence the net diabatic heating rate within the atmosphere. Such aerosols are critically important in determining the nature of atmospheric thermal structure and hence the overall climate of the planet. Our Mars GCM simulations indicate that radiatively-active water ice clouds profoundly affect the seasonal and annual mean climate in a variety of ways. In particular, preliminary results suggest that the bulk thermal structure and resultant (i.e., balanced) circulation patterns are strongly modified near the surface and aloft. Generally speaking, we find a bulk warming of the atmosphere in upper layers, a cooling of the atmosphere in the lower and near-surface regions, and, increases in the mean pole-to-equator temperature contrasts (i.e., stronger mean polar vortices). A variety of results from our baseline and control simulations (i.e., where the radiative/physical effects are examined in isolation and when combined) will be presented. Comparisons with MGS/TES and MRO/MCS measurements indicate better agreement between the model's simulated climate compared to that observed. Using a state-of-the-art Mars GCM, these results highlight important effects radiatively-active aerosols have on physical and dynamical processes active in the current climate of Mars.

  19. Supporting New Missions by Observing Simulation Experiments in WACCM-X/GEOS-5 and TIME-GCM: Initial Design, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Yudin, V. A.; England, S.; Liu, H.; Solomon, S. C.; Immel, T. J.; Maute, A. I.; Burns, A. G.; Foster, B.; Wu, Q.; Goncharenko, L. P.

    2013-12-01

    We examine the capability of novel configurations of community models, WACCM-X and TIME-GCM, to support current and forthcoming space-borne missions to monitor the dynamics and composition of the Mesosphere-Thermosphere-Ionosphere (MTI) system. In these configurations the lower atmosphere of WACCM-X is constrained by operational analyses and/or short-term forecasts provided by the Goddard Earth Observing System (GEOS-5) of Global Modeling and Assimilation Office at NASA/GSFC. With the terrestrial weather of GEOS-5 and updated model physics the simulations in the MTI are capable to reproduce observed signatures of the perturbed wave dynamics and ion-neutral coupling during recent stratospheric warming events, short-term, annual and year-to-year variability of prevailing flows, planetary waves, tides, and composition. These 'terrestrial-weather' driven simulations with day-to-day variable solar and geomagnetic inputs can provide background state (first guess) and error statistics for the inverse algorithms of new NASA missions, ICON and GOLD at locations and time of observations in the MTI region. With two different viewing geometries (sun-synchronous and geostationary) of instruments, ICON and GOLD will provide complimentary global observations of temperature, winds and constituents to constrain the first-principle forecast models. This paper will discuss initial design of Observing Simulation Experiments (OSE) in WACCM-X/GEOS-5 and TIME-GCM. As recognized, OSE represent an excellent learning tool for designing and evaluating observing capabilities of novel sensors. They can guide on how to integrate/combine information from different instruments. The choice of assimilation schemes, forecast and observational errors will be discussed along with challenges and perspectives to constrain fast-varying tidal dynamics and their effects in models by combination of sun-synchronous and geostationary observations of ICON and GOLD. We will also discuss how correlative space

  20. Diagnosing Warm Season Precipitation Over the GCIP Region from a GCM and Reanalysis

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert; Marshall, Susan; Roads, John; Robertson, Franklin R.

    2000-01-01

    A 45 year simulation using a global general circulation model (GCM), the National Center for Atmospheric Research (NCAR) Community Climate Model v.3 (CCM3), forced with observed sea surface temperatures (SST), and 39 years of global National Centers for Environmental Prediction (NCEP) reanalyses were analyzed to determine Mississippi River basin warm season (May, June, July or MJJ) wet and dry year composites in the water and energy budgets. Years that have increased MJJ soil moisture over the GEWEX (Global Water and Energy Experiment) Continental Interior Project (GCIP) region also have high precipitation, lower surface temperature, decreased Bowen ratio, and reduced 500 hPa geopotential height (essentially reduced MJJ ridging). The reverse is true for years that have reduced MJJ soil moisture. Wet years are also accompanied by a general increase in moisture transport from the Gulf of Mexico into the central U.S. There is some indication (though weaker) that soil moisture may then affect precipitation and other quantities and be affected in turn by 500 hPa geopotential heights. The correlations are somewhat low, however, demonstrating the difficulty in providing definitive physical links between the remote and local effects. Analysis of two individual years with an extreme wet event (1993) and an extreme dry event (1988) yields the same general relationships as with the wet and dry composites. The composites from this study are currently serving as the basis for a series of experiments aimed at determining the predictability of the land surface and remote SST on the Mississippi River basin and other large-scale river basins.

  1. GCM Studies on the Interactions Between Photosynthesis and Climate at Diurnal to Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Collatz, G. James; Bounoua, Lahouari; Sellers, Piers; Los, Sietse; Randall, David; Berry, Joseph; Tucker, Compton J.

    1998-01-01

    Transpiration, a major component of total evaporation from vegetated surfaces, is an unavoidable consequence of photosynthetic carbon fixation. Because of limiting soil moisture and competition for solar radiation plants invest most of their fixed carbon into structural and hydraulic functions (roots and stems) and solar radiation absorption (leaves). These investments permit individuals to overshadow competitors and provide for transport of water from the soil to the leaves where photosynthesis and transpiration occur. Often low soil moisture or high evaporative demand limit the supply of water to leaves reducing photosynthesis and thus transpiration. The absorption of solar radiation for photosynthesis and dissipation of this energy via radiation, heat, mass and momentum fluxes represents the link between photosynthesis and climate. Recognition of these relationships has led to the development of hydro/energy balance models that are based on the physiological ecology of photosynthesis. We discuss an approach to study vegetation-climate interactions using photosynthesis-centric models embedded in a GCM. The rate at which a vegetated area transpires and photosynthesizes is determined by the physiological state of the vegetation, its amount and its type. The latter two are specified from global satellite data collected since 1982. Climate simulations have been carried out to study how this simulated climate system responds to changes in radiative forcing, physiological capacity, atmospheric CO2, vegetation type and variable vegetation cover observed from satellites during the 1980's. Results from these studies reveal significant feedbacks between the vegetation activity and climate. For example, vegetation cover and physiological activity increases cause the total latent heat flux and precipitation to increase while mean and maximum air temperatures decrease. The reverse occurs if cover or activity'decreases. In general climate response of a particular region was

  2. Global modeling with GEOS-5 from 50-km to 1-km with a single unified GCM

    NASA Astrophysics Data System (ADS)

    Putman, William; Suarez, Max; Molod, Andrea; Barahona, Donifan

    2015-04-01

    The Goddard Earth Observing System model (GEOS-5) of the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center is uniquely designed to adapt to increasing resolution. This supports application of GEOS-5 for decadal scale climate simulation and reanalysis with a horizontal resolution of 50-kilometers (km), high-resolution numerical weather prediction at 25- to 14-km, and global mesoscale modeling at resolutions of 7- to 1.5-km. Resolution-aware parameterizations and dynamics support this diverse portfolio of applications within a single unified GEOS-5 GCM code-base. We will discuss the adaptation of physics parameterizations with increasing resolution. This includes the role of deep convective parameterization, the move to an improved two-moment microphysics scheme, the need for shallow convective parameterization, and the role of non-hydrostatic dynamics and implicit/explicit damping. Parameterization and dynamics evaluation are explored not only in global integrations with GEOS-5 but with radiative convective equilibrium tests that permit the rapid exploration of high-resolution simulations in a smaller doubly periodic Cartesian domain. Simulation results will highlight intercomparisons of model biases in cloud forcing and precipitation from the 30-year 50-km MERRA-2 reanalysis, 50- to 25-km free-running AMIP simulations, a 2-year 7-km global mesoscale simulation, and monthly global simulations at 3.5-km. A global 1.5-km simulation with GEOS-5 highlights our pursuit of truly convection permitting global simulations with GEOS-5. The tuning evaluation for this simulation using doubly periodic radiative convective equilibrium experiments will be discussed.

  3. Grid-based performance evaluation of GCM-RCM combinations for rainfall reproduction

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Kahya, Ercan

    2016-03-01

    Prior to hydrological assessment of climate change at catchment scale, an applied methodology is necessary to evaluate the performance of climate models available for a given catchment. This study presents a grid-based performance evaluation approach as well as an intercomparison framework to evaluate the uncertainty of climate models for rainfall reproduction. For this purpose, we used outputs of two general circulation models (GCMs), namely ECHAM5 and CCSM3, downscaled by a regional climate model (RCM), namely RegCM3, over ten small to mid-size catchments in Rize Province, Turkey. To this end, five rainfall-borne climatic statistics are computed from the outputs of ECHAM5-RegCM3 and CCSM3-RegCM3 combinations in order to compare with those of observations in the province for the reference period 1961-1990. Performance of each combination is tested by means of scatter diagram, bias, mean absolute bias, root mean squared error, and model performance index (MPI) measures. Our results indicated that ECHAM5-RegCM3 overestimates the total monthly rainfall observations whereas CCSM3-RegCM3 tends to underestimate. In terms of maximum monthly and annual maximum rainfall reproduction, ECHAM5-RegCM3 shows higher performance than CCSM3-RegCM3, particularly in the coastland areas. In contrast, CCSM3-RegCM3 outperforms ECHAM5-RegCM3 in reproducing the number of rainy days, especially in the inland areas. The results also revealed that if a GCM-RCM combination performs well for a portion (statistic) of a catchment, it is not necessarily appropriate for the other portions (statistics). Moreover, the MPI measure demonstrated the superiority of ECHAM5-RegCM3 to CCSM3-RegCM3 up to 33 % excelling for annual rainfall reproduction in Rize Province.

  4. Lunar tidal effects during the 2013 stratospheric sudden warming as simulated by the TIME-GCM

    NASA Astrophysics Data System (ADS)

    Maute, A. I.; Forbes, J. M.; Zhang, X.; Fejer, B. G.; Yudin, V. A.; Pedatella, N. M.

    2015-12-01

    Stratospheric Sudden Warmings (SSW) are associated with strong planetary wave activity in the winterpolar stratosphere which result in a very disturbed middle atmosphere. The changes in the middle atmospherealter the propagation conditions and the nonlinear interactions of waves and tides, and result in SSW signals in the upper atmosphere in e.g., neutral winds, electric fields, ionospheric currents and plasma distribution. The upper atmosphere changes can be significant at low-latitudes even during medium solar flux conditions. Observationsalso reveal a strong lunar signal during SSW periods in the low latitude vertical drifts and in ionospheric quantities. Forbes and Zhang [2012] demonstrated that during the 2009 SSW period the Pekeris resonance peak of the atmosphere was altered such that the M2 and N2 lunar tidal componentsgot amplified. This study focuses on the effect of the lunar tidal forcing on the thermosphere-ionosphere system during theJanuary 2013 SSW period. We employthe NCAR Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM)with a nudging scheme using the Whole-Atmosphere-Community-Climate-Model-Extended (WACCM-X)/Goddard Earth Observing System Model, Version 5 (GEOS5) results to simulate the effects of meteorological forcing on the upper atmosphere. Additionally lunar tidal forcingis included at the lower boundary of the model. To delineate the lunar tidal effects a base simulation without lunar forcingis employed. Interestingly, Jicamarca observations of that period reveal a suppression of the daytime vertical drift before and after the drift enhancement due the SSW. The simulation suggests that the modulation of the vertical driftmay be caused by the interplay of the migrating solar and lunar semidiurnal tide, and therefore can only be reproduced by the inclusion of both lunar and solar tidal forcings in the model. In this presentation the changes due to the lunar tidal forcing will be quantified, and compared

  5. Diagnosing warm season precipitation over the GCIP region from a GCM and reanalysis

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.; Marshall, Susan; Roads, John O.; Robertson, Franklin R.

    2001-02-01

    A 45-year simulation using a global general circulation model (GCM), the National Center for Atmospheric Research (NCAR) Community Climate Model version 3 (CCM3), forced with observed sea surface temperatures (SST), and 39 years of global National Centers for Environmental Prediction (NCEP) reanalyses were analyzed to determine Mississippi River basin warm season (May, June, July or MJJ) wet and dry year composites in the water and energy budgets. Years that have increased MJJ soil moisture over the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) region also have high precipitation, lower surface temperature, decreased Bowen ratio, and reduced 500-hPa geopotential height (essentially reduced MJJ ridging). The reverse is true for years that have reduced MJJ soil moisture. Wet years are also accompanied by a general increase in moisture transport from the Gulf of Mexico into the central United States. There is some indication (though weaker) that soil moisture may then affect precipitation and other quantities and be affected in turn by 500-hPa geopotential heights. The correlations are somewhat low, however, demonstrating the difficulty in providing definitive physical links between the remote and local effects. Analysis of two individual years with an extreme wet event (1993) and an extreme dry event (1988) yields the same general relationships as with the wet and dry composites. The composites from this study are currently serving as the basis for a series of experiments aimed at determining the predictability of the land surface and remote SST on the Mississippi River basin and other large-scale river basins.

  6. Allowing for Horizontally Heterogeneous Clouds and Generalized Overlap in an Atmospheric GCM

    NASA Technical Reports Server (NTRS)

    Lee, D.; Oreopoulos, L.; Suarez, M.

    2011-01-01

    While fully accounting for 3D effects in Global Climate Models (GCMs) appears not realistic at the present time for a variety of reasons such as computational cost and unavailability of 3D cloud structure in the models, incorporation in radiation schemes of subgrid cloud variability described by one-point statistics is now considered feasible and is being actively pursued. This development has gained momentum once it was demonstrated that CPU-intensive spectrally explicit Independent Column Approximation (lCA) can be substituted by stochastic Monte Carlo ICA (McICA) calculations where spectral integration is accomplished in a manner that produces relatively benign random noise. The McICA approach has been implemented in Goddard's GEOS-5 atmospheric GCM as part of the implementation of the RRTMG radiation package. GEOS-5 with McICA and RRTMG can handle horizontally variable clouds which can be set via a cloud generator to arbitrarily overlap within the full spectrum of maximum and random both in terms of cloud fraction and layer condensate distributions. In our presentation we will show radiative and other impacts of the combined horizontal and vertical cloud variability on multi-year simulations of an otherwise untuned GEOS-5 with fixed SSTs. Introducing cloud horizontal heterogeneity without changing the mean amounts of condensate reduces reflected solar and increases thermal radiation to space, but disproportionate changes may increase the radiative imbalance at TOA. The net radiation at TOA can be modulated by allowing the parameters of the generalized overlap and heterogeneity scheme to vary, a dependence whose behavior we will discuss. The sensitivity of the cloud radiative forcing to the parameters of cloud horizontal heterogeneity and comparisons of CERES-derived forcing will be shown.

  7. Biogeophysical consequences of a tropical deforestation scenario: A GCM simulation study

    SciTech Connect

    Sud, Y.C.; Lau, W.K.M.; Walker, G.K.

    1996-12-01

    Two 3-year (1979-1982) integrations were carried out with a version of the GLA GCM that contains the Simple Biosphere Model (SiB) for simulating land-atmosphere interactions. The control case used the usual SiB vegetation cover (comprising 12 vegetation types), while its twin, the deforestation case, imposed a scenario in which all tropical rainforests were entirely replaced by grassland. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both integrations. An intercomparison of the integrations shows that tropical: deforestation decreases evapotranspiration and increases land surface outgoing longwave radiation and sensible heat flux, thereby warming and drying the planetary boundary layer. This happens despite the reduced absorption of solar radiation due to higher surface albedo of the deforested land. Produces significant and robust local as well as global climate changes. The local effect includes significant changes (mostly reductions) in precipitation and diabatic heating, while the large-scale effect is to weaken the Hadley circulation but invigorate the southern Ferrel cell, drawing larger air mass from the indirect polar cells. Decreases the surface stress (drag force) owing to reduced surface roughness of deforested land, which in turn intensifies winds in the planetary boundary layer, thereby affecting the dynamic structure of moisture convergence. The simulated surface winds are about 70% stronger and are accompanied by significant changes in the power spectrum of the annual cycle of surface and PBL winds and precipitation. Our results broadly confirm several findings of recent tropical deforestation simulation experiments. In addition, some global-scale climatic influences of deforestation not identified in earlier studies are delineated. 57 refs., 10 figs., 3 tabs.

  8. Impact of the ongoing Amazonian deforestation on local precipitation: A GCM simulation study

    SciTech Connect

    Walker, G.K.; Sud, Y.C.; Atlas, R.

    1995-03-01

    Numerical simulation experiments were conducted to delineate the influence of in situ deforestation data on episodic rainfall by comparing two ensembles of five 5-day integrations performed with a recent version of the Goddard Laboratory for Atmospheres GCM that has a simple biosphere model (SiB). The first set, called control cases, used the standard SiB vegetation cover (comprising 12 biomes) and assumed a fully forested Amazonia, while the second set, called deforestation cases, distinguished the partially deforested regions of Amazonia as savanna. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both sets of integrations. The differential analyses of these five cases show the following local effects of deforestation. (1) A discernible decrease in evapotranspiration of about 0.80 mm d{sup {minus}1} (roughly 18%) that is quite robust in the averages for 1-, 2-, and 5-day forecasts. (2) A decrease in precipitation of about 1.18 mm d{sup {minus}1} (roughly 8%) that begins to emerge even in 1-2-day averages and exhibits complex evolution that extends downstream with the winds. A larger decrease in precipitation as compared to evapotranspiration produces some drying and warming. The precipitation differences are consistent with the decrease in atmospheric moisture flux convergence and are consistent with earlier simulation studies of local climate change due to large-scale deforestation. (3) A significant decrease in the surface drag force (as a consequence of reduced surface roughness of deforested regions) that, in turn, affects the dynamical structure of moisture convergence and circulation. The surface winds increase significantly during the first day, and thereafter the increase is well maintained even in the 2- and 5-day averages. 34 refs., 9 figs., 2 tabs.

  9. Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss?

    NASA Astrophysics Data System (ADS)

    Deser, Clara; Sun, Lantao; Tomas, Robert A.; Screen, James

    2016-03-01

    The question of whether ocean coupling matters for the extratropical Northern Hemisphere atmospheric response to projected late 21st century Arctic sea ice loss is addressed using a series of experiments with Community Climate System Model version 4 at 1° spatial resolution under different configurations of the ocean model component: no interactive ocean, thermodynamic slab ocean, and full-depth (dynamic plus thermodynamic) ocean. Ocean-atmosphere coupling magnifies the response to Arctic sea ice loss but does not change its overall structure; however, a slab ocean is inadequate for inferring the role of oceanic feedbacks. The westerly winds along the poleward flank of the eddy-driven jet weaken in response to Arctic sea ice loss, accompanied by a smaller-magnitude strengthening on the equatorward side, with largest amplitudes in winter. Dynamical and thermodynamic oceanic feedbacks amplify this response by approximately 50%. Air temperature, precipitation, and sea level pressure responses also show sensitivity to the degree of ocean coupling.

  10. Iodine confinement into metal-organic frameworks (MOFs)-low temperature sintering glasses to form novel glass composite material (GCM) alternative waste forms.

    SciTech Connect

    Nenoff, Tina Maria; Garino, Terry J.; Sava, Dorina Florentina

    2010-11-01

    The safe handling of reprocessed fuel addresses several scientific goals, especially when considering the capture and long-term storage of volatile radionuclides that are necessary during this process. Despite not being a major component of the off-gas, radioiodine (I{sub 2}) is particularly challenging, because it is a highly mobile gas and {sup 129}I is a long-lived radionuclide (1.57 x 10{sup 7} years). Therefore, its capture and sequestration is of great interest on a societal level. Herein, we explore novel routes toward the effective capture and storage of iodine. In particular, we report on the novel use of a new class of porous solid-state functional materials (metal-organic frameworks, MOFs), as high-capacity adsorbents of molecular iodine. We further describe the formation of novel glass-composite material (GCM) waste forms from the mixing and sintering of the I{sub 2}-containing MOFs with Bi-Zn-O low-temperature sintering glasses and silver metal flakes. Our findings indicate that, upon sintering, a uniform monolith is formed, with no evidence of iodine loss; iodine is sequestered during the heating process by the in situ formation of AgI. Detailed materials characterization analysis is presented for the GCMs. This includes powder X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS), thermal analysis (thermogravimetric analysis (TGA)), and chemical durability tests including aqueous leach studies (product consistency test (PCT)), with X-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS) of the PCT leachate.

  11. The Effect of Atmosphere-Ocean-Wave Interactions and Model Resolution on Hurricane Katrina in a Coupled Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Patricola, C. M.; Chang, P.; Saravanan, R.; Montuoro, R.

    2012-04-01

    The sensitivity of simulated strength, track, and structure of Hurricane Katrina to atmospheric model resolution, cumulus parameterization, and initialization time, as well as mesoscale ocean-atmosphere interactions with and without small-scale ocean-wave effect, are investigated with a fully coupled regional climate model. The atmosphere, ocean, and wave components are represented by the Weather Research and Forecasting Model (WRF), Regional Ocean Modeling System (ROMS), and Simulating WAves Nearshore (SWAN) model. Uncoupled atmosphere-only simulations with horizontal resolutions of 1, 3, 9, and 27 km show that while the simulated cyclone track is highly sensitive to initialization time, its dependence on model resolution is relatively weak. Using NCEP/CFSR reanalysis as initial and boundary conditions, WRF, even at low resolution, is able to track Katrina accurately for 3 days before it made landfall on August 29, 2005. Katrina's strength, however, is much more difficult to reproduce and exhibits a strong dependence on model resolution. At its lowest resolution (27 km), WRF is only capable of simulating a maximum strength of Category 2 storm. Even at 1 km resolution, the simulated Katrina only reaches Category 4 storm intensity. Further WRF experiments with and without cumulus parameterization reveal minor changes in strength. None of the WRF-only simulations capture the observed rapid intensification of Katrina to Category 5 when it passed over a warm Loop-Current eddy (LCE) in the Gulf of Mexico, suggesting that mesoscale ocean-atmosphere interactions involving LCEs may play a crucial role in Katrina's rapid intensification. Coupled atmosphere-ocean simulations are designed and carried out to investigate hurricane Katrina-LCE interactions with and without considering small-scale ocean wave processes in order to fully understand the dynamical ocean-atmosphere processes in the observed rapid cyclone intensification.

  12. Comparisons of model simulations of climate variability with data, Task 2

    SciTech Connect

    Not Available

    1990-01-01

    Significant progress has been made in our investigations aimed at diagnosing low frequency variations of climate in General Circulation Models. We have analyzed three versions of the Oregon State University General Circulation Model (OSU GCM). These are: (1) the Slab Model in which the ocean is treated as a static heat reservoir of fixed depth, (2) the coupled upper ocean-atmosphere model in which the ocean dynamics are calculated in two layers of variable depths representing the mixed layers and the thermocline; this model is referred to OSU2 in the following discussion, and (3) the coupled full ocean-atmosphere model in which the ocean is represented by six layers of variable depth; this model is referred to as OSU6 GCM in the discussion.

  13. Comparisons of model simulations of climate variability with data, Task 2. [Progress report

    SciTech Connect

    Not Available

    1990-12-31

    Significant progress has been made in our investigations aimed at diagnosing low frequency variations of climate in General Circulation Models. We have analyzed three versions of the Oregon State University General Circulation Model (OSU GCM). These are: (1) the Slab Model in which the ocean is treated as a static heat reservoir of fixed depth, (2) the coupled upper ocean-atmosphere model in which the ocean dynamics are calculated in two layers of variable depths representing the mixed layers and the thermocline; this model is referred to OSU2 in the following discussion, and (3) the coupled full ocean-atmosphere model in which the ocean is represented by six layers of variable depth; this model is referred to as OSU6 GCM in the discussion.

  14. Satellite Remote Sensing of Tropical Precipitation and Ice Clouds for GCM Verification

    NASA Technical Reports Server (NTRS)

    Evans, K. Franklin

    2001-01-01

    This project, supported by the NASA New Investigator Program, has primarily been funding a graduate student, Darren McKague. Since August 1999 Darren has been working part time at Raytheon, while continuing his PhD research. Darren is planning to finish his thesis work in May 2001, thus some of the work described here is ongoing. The proposed research was to use GOES visible and infrared imager data and SSM/I microwave data to obtain joint distributions of cirrus cloud ice mass and precipitation for a study region in the Eastern Tropical Pacific. These joint distributions of cirrus cloud and rainfall were to be compared to those from the CSU general circulation model to evaluate the cloud microphysical amd cumulus parameterizations in the GCM. Existing algorithms were to be used for the retrieval of cloud ice water path from GOES (Minnis) and rainfall from SSM/I (Wilheit). A theoretical study using radiative transfer models and realistic variations in cloud and precipitation profiles was to be used to estimate the retrieval errors. Due to the unavailability of the GOES satellite cloud retrieval algorithm from Dr. Minnis (a co-PI), there was a change in the approach and emphasis of the project. The new approach was to develop a completely new type of remote sensing algorithm - one to directly retrieve joint probability density functions (pdf's) of cloud properties from multi-dimensional histograms of satellite radiances. The usual approach is to retrieve individual pixels of variables (i.e. cloud optical depth), and then aggregate the information. Only statistical information is actually needed, however, and so a more direct method is desirable. We developed forward radiative transfer models for the SSM/I and GOES channels, originally for testing the retrieval algorithms. The visible and near infrared ice scattering information is obtained from geometric ray tracing of fractal ice crystals (Andreas Macke), while the mid-infrared and microwave scattering is computed

  15. Investigations of Variability on Multi-Year Timescales in a Venus Atmosphere GCM

    NASA Astrophysics Data System (ADS)

    Parish, H. F.; Schubert, G.; Covey, C. C.; Grossman, A.; Lebonnois, S.

    2010-12-01

    We have developed a Venus atmosphere general circulation model (GCM) based on the NCAR CAM Earth climate model. In our simulations we use a simpified thermal relaxation scheme, similar to that used in other Venus GCMs, and linear friction at the lower boundary, with a sponge layer in the upper levels to prevent possible reflection from the upper boundary. We use a high resolution of around 1 degree by 1 degree in latitude and longitude, which allows us to simulate variations on small spatial scales which may be important in Venus' atmosphere. We generate superrotation with mean zonal wind magnitudes comparable with those observed using probes, and around 50 to 60 percent of those measured using cloud-tracking techniques. We find periodic variations in the magnitude of the zonal winds in our simulations at cloud top heights and below, with a timescale of around 10 years. We also find a vacillation cycle in our results, in which the westward winds at cloud level alternate between mid latitude zonal jets and a single equatorial maximum. Analysis of angular momentum transport within our simulations suggests that there is no single simple Hadley cell circulation that transports angular momentum between the surface and cloud levels, but that there is a more complex flow below around 40 km altitude. Observations of Venus' cloud top winds suggest there may be variations in the zonal wind structure over multi-year timescales. Measurements of the atmosphere above the cloud tops also show changes in carbon monoxide content and temperature with timescales of around 10 years. Variations with timescales of tens of years have also been found in the sulphur dioxide content above the clouds within observations over a time interval of 40 years. The origin of the observed multi-year variations is not well known, but it is possible that they could be related to periodic changes in atmospheric dynamics. We investigate the nature of the 10 year oscillations we find in our simulations in

  16. Simple but accurate GCM-free approach for quantifying anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Lovejoy, S.

    2014-12-01

    We are so used to analysing the climate with the help of giant computer models (GCM's) that it is easy to get the impression that they are indispensable. Yet anthropogenic warming is so large (roughly 0.9oC) that it turns out that it is straightforward to quantify it with more empirically based methodologies that can be readily understood by the layperson. The key is to use the CO2 forcing as a linear surrogate for all the anthropogenic effects from 1880 to the present (implicitly including all effects due to Greenhouse Gases, aerosols and land use changes). To a good approximation, double the economic activity, double the effects. The relationship between the forcing and global mean temperature is extremely linear as can be seen graphically and understood without fancy statistics, [Lovejoy, 2014a] (see the attached figure and http://www.physics.mcgill.ca/~gang/Lovejoy.htm). To an excellent approximation, the deviations from the linear forcing - temperature relation can be interpreted as the natural variability. For example, this direct - yet accurate approach makes it graphically obvious that the "pause" or "hiatus" in the warming since 1998 is simply a natural cooling event that has roughly offset the anthropogenic warming [Lovejoy, 2014b]. Rather than trying to prove that the warming is anthropogenic, with a little extra work (and some nonlinear geophysics theory and pre-industrial multiproxies) we can disprove the competing theory that it is natural. This approach leads to the estimate that the probability of the industrial scale warming being a giant natural fluctuation is ≈0.1%: it can be dismissed. This destroys the last climate skeptic argument - that the models are wrong and the warming is natural. It finally allows for a closure of the debate. In this talk we argue that this new, direct, simple, intuitive approach provides an indispensable tool for communicating - and convincing - the public of both the reality and the amplitude of anthropogenic warming

  17. Recent interdecadal variations in the tropical atmosphere: Evidence and idealized GCM simulations

    NASA Astrophysics Data System (ADS)

    Gong, Xiaofeng

    In this research, the interdecadal atmosphere-ocean variability is further investigated from a different perspective, with an eye toward shedding light on the tropical Pacific. A large spatial boreal winter SST anomaly structure is found over the central and eastern Pacific on the decadal time scale. The temporal variation of such signature exhibits a notable interdecadal change, with an evident basic state jump from negative to positive anomaly about the long-term mean in the 1976/77 winter. Associated with this SST variation, the tropical height and circulation also experiences a similar interdecadal variation. In the spatial patterns of the leading geopotential height PC modes from the NCEP/NCAR reanalysis data, the dominant feature is a tropical-wide height change structure through the entire troposphere, with the most significant change in the upper tropospheric layer. The temporal fluctuation of this height mode shows a strikingly consistent trend and sudden jump in the 1976/77 winter with the SST interdecadal trend. Prior to the 1976/77 winter, the tropical height field is in negative anomalous time period and it reverses after the 1976/77 winter. A series of model integrations, forced with different SST perturbations over the tropical central and eastern Pacific, has been performed using the ECHAM4 GCM in an attempt to simulate the spatial patterns in tropical atmospheric interdecadal variability and investigate the physical processes and mechanisms responsible for the formation and maintenance of these spatial changes. The resultant height changes from the idealized simulations show large similarities to the patterns found in the reanalysis. Cumulus convection and atmospheric heat transport are found to be the two key physical processes which are largely responsible for the tropical-wide height increase, especially in the upper tropospheric layer. Due to the anomalous SST increase over the central Pacific and eastern Pacific, more latent heat is released

  18. Dynamical Downscaling of GCM Simulations: Toward the Improvement of Forecast Bias over California

    SciTech Connect

    Chin, H S

    2008-09-24

    The effects of climate change will mostly be felt on local to regional scales. However, global climate models (GCMs) are unable to produce reliable climate information on the scale needed to assess regional climate-change impacts and variability as a result of coarse grid resolution and inadequate model physics though their capability is improving. Therefore, dynamical and statistical downscaling (SD) methods have become popular methods for filling the gap between global and local-to-regional climate applications. Recent inter-comparison studies of these downscaling techniques show that both downscaling methods have similar skill in simulating the mean and variability of present climate conditions while they show significant differences for future climate conditions (Leung et al., 2003). One difficulty with the SD method is that it relies on predictor-predict and relationships, which may not hold in future climate conditions. In addition, it is now commonly accepted that the dynamical downscaling with the regional climate model (RCM) is more skillful at the resolving orographic climate effect than the driving coarser-grid GCM simulations. To assess the possible societal impacts of climate changes, many RCMs have been developed and used to provide a better projection of future regional-scale climates for guiding policies in economy, ecosystem, water supply, agriculture, human health, and air quality (Giorgi et al., 1994; Leung and Ghan, 1999; Leung et al., 2003; Liang et al., 2004; Kim, 2004; Duffy et al., 2006). Although many regional climate features, such as seasonal mean and extreme precipitation have been successfully captured in these RCMs, obvious biases of simulated precipitation remain, particularly the winter wet bias commonly seen in mountain regions of the Western United States. The importance of regional climate research over California is not only because California has the largest population in the nation, but California has one of the most

  19. A Coupled Atmosphere-Ocean-Wave Modeling System

    NASA Astrophysics Data System (ADS)

    Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.

    2012-12-01

    A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.

  20. The Impacts of an Observationally-Based Cloud Fraction and Condensate Overlap Parameterization on a GCM's Cloud Radiative Effect

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle

    2011-01-01

    It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.

  1. CBaM : A calibration, bridging and merging method for post-processing GCM forecasts of meteorological variables

    NASA Astrophysics Data System (ADS)

    Schepen, A.; Wang, Q. J.; Robertson, D. E.

    2014-12-01

    A calibration, bridging and merging (CBaM) method has been developed to post-process outputs from general circulation models (GCMs) for seasonal forecasting of climate variables. An overview of the methodology and a summary of applications will be given. Post-processing of GCM forecasts is often necessary for the outputs to be more informative. CBaM attempts to maximise the value of GCM outputs by not only post-processing the variable of interest (calibration), but also using other available outputs such as sea surface temperatures to generate forecasts (bridging). Merging forecasts from calibration and bridging models leads to the opportunity to improve forecasting skill for some regions and time periods. In CBaM, separate calibration and bridging models are established using a Bayesian joint probability modelling approach. The models generate forecasts in the form of ensembles. Forecasts from multiple calibration and bridging models are merged using Bayesian model averaging. Ensemble time series forecasts are produced by sequencing ensemble members using the Schaake Shuffle. Results to date are presented for a number of applications. The method is applied to produce gridded rainfall forecasts for Australia and China, using outputs from single or multiple GCMs. It is also applied to produce monthly forecasts of catchment rainfall for up to 12 months in advance. Monthly forecasts of catchment rainfall are used in a hydrological model to forecast streamflow for up to 12 months. CBaM forecasts are shown to extract skill from the atmospheric and oceanic modules of the GCM, and are also shown to be reliable. Work is in progress to apply CBaM to forecasts of other climate variables, including temperature, and to combine forecasts from multiple GCMs, including the ECMWF System 4 and NCEP CFSv2 models.

  2. The spontaneous emergence of coherent vortices and alternating hot-and-cold latitude bands in an idealized GCM

    NASA Astrophysics Data System (ADS)

    Chai, J.; Vallis, G. K.

    2013-12-01

    Three-dimensional simulations of the atmospheric flow on giant planets using a primitive equation dry GCM show that long-lived coherent vortices can spontaneously emerge and they play an important role in creating alternating hot-and-cold latitude bands, which correlate with the jets. The GCM uses idealized Held-Suarez physics: the forcing is a linear relaxation of temperature field to a prescribed temperature profile, which decreases monotonically poleward and represents differential radiation; the dissipation is a linear damping of momentum near the surface. The vortices have very distinct vertical structures. For anticyclonic vortices, they have warm cores near the surface and cold cores near the upper atmosphere, caused by a strong downdraft in anticyclones. The cyclonic vortices are the reverse as the anticyclones, but they are weaker in agreement with the preference for anticyclones in shallow water models. The anticyclonic and cyclonic vortices have different preferred latitude bands, organizing themselves into having the same sign of vorticity as the jets. The anticyclonic vortices prefer the 'zones' (jets with anticyclonic wind shear) and therefore make the 'zones' warmer than the surrounding 'belts' (jets with cyclonic wind shear) near the surface. Energy spectrum analysis shows that the large vortices are driven by inverse energy cascade from smaller vortices, and these large vortices are converting eddy kinetic energy into potential energy. This tendency is also observed for shallow water decaying turbulence and we provide it an explanation based on the invariants of the shallow water system. Additional simulations using a more comprehensive GCM with parameters relevant for Jupiter show similar behavior. Typical instantaneous temperature field near the surface (975 mb) together with wind field at upper atmosphere (250 mb) . Only wind vector at the place where the magnitude of relative vorticity is larger than 10e(-5)/s is shown. The color of the wind

  3. Sensitivity of Global Modeling Initiative CTM predictions of Antarctic ozone recovery to GCM and DAS generated meteorological fields

    SciTech Connect

    Rotman, D; Bergmann, D

    2003-12-04

    We use the Global Modeling Initiative chemistry and transport model to simulate the evolution of stratospheric ozone between 1995 and 2030, using boundary conditions consistent with the recent World Meteorological Organization ozone assessment. We compare the Antarctic ozone recovery predictions of two simulations, one driven by meteorological data from a general circulation model (GCM), the other using the output of a data assimilation system (DAS), to examine the sensitivity of Antarctic ozone recovery predictions to the characteristic dynamical differences between GCM and DAS-generated meteorological data. Although the age of air in the Antarctic lower stratosphere differs by a factor of 2 between the simulations, we find little sensitivity of the 1995-2030 Antarctic ozone recovery between 350 K and 650 K to the differing meteorological fields, particularly when the recovery is specified in mixing ratio units. Relative changes are smaller in the DAS-driven simulation compared to the GCM-driven simulation due to a surplus of Antarctic ozone in the DAS-driven simulation which is not consistent with observations. The peak ozone change between 1995 and 2030 in both simulations is {approx}20% lower than photochemical expectations, indicating that changes in ozone transport at 450 K between 1995 and 2030 constitute a small negative feedback. Total winter/spring ozone loss during the base year (1995) of both simulations and the rate of ozone loss during August and September is somewhat weaker than observed. This appears to be due to underestimates of Antarctic Cl{sub y} at the 450 K potential temperature level.

  4. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Time-series for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel; Iredell, Lena

    2010-01-01

    The ROBUST nature (biases are not as important as previous GCM-evaluations suggest) of the AIRS-observations-generated ARC-maps and ATs as well as their interrelations suggest that they could be a useful tool to select CGCMs which may be considered the reliable, i.e., to be trusted even for longer-term climate drift/change predictions (even on the regional scale). Get monthly gridded CGCM time-series of atmospheric variables coinciding with the timeframe of the AIRS analyses for at least 5-6 years and do the actual evaluations of ARC-maps and ATs for the coinciding time periods.

  5. Insights into mid-latitude storm track dynamics from simulations with an idealized dry GCM

    NASA Astrophysics Data System (ADS)

    Mbengue, C. O.; Schneider, T.

    2012-12-01

    The mid-latitude storm tracks play an important role in balancing the earth's heat and momentum budget. They have a significant human impact through precipitation and adverse weather conditions; thus, the storm track response to changing climatic conditions is of great interest. In this study, we investigate the climatological response of the mid-latitude storm tracks to varying mean global temperature and convective static stability, using an idealized dry GCM. We demonstrate storm track migration in response to changes in global-mean surface temperatures without modifying the surface pole-equator temperature contrast or including moisture-related effects. The results help interpret the findings of previous global warming studies in which the mid-latitude storm tracks migrate poleward with increasing mean global temperatures. In our study, the storm track position is found to be particularly sensitive to changes in tropical static stability and tropopause height and their effect on the Hadley circulation. The mechanisms driving the dynamics of the mid-latitude storm tracks have been elusive. However, making use of the simplified framework employed in this study, which lends itself to dynamical decompositions, we have been able to improve upon some existing theories on storm track dynamics in dry atmospheres, as well as make additional observations. Previous studies into dry atmospheric dynamics have shown a linear scaling between eddy kinetic energy, a robust measure of the level of storminess, and the mean available potential energy (MAPE). This scaling is utilized in a decomposition that shows that the dominant quantity in storm track dynamics is the meridional gradient of the potential temperature—a measure of baroclinicity. This observation leads us to look for dynamical mechanisms that, on average, dictate the location of regions of elevated baroclinicity. Some credible explanations include the effects on mid-latitude isentropic slopes through a raising or

  6. Storm track response to climate change: Insights from simulations using an idealized dry GCM.

    NASA Astrophysics Data System (ADS)

    Mbengue, Cheikh; Schneider, Tapio

    2013-04-01

    The midlatitude storm tracks, where the most intense extratropical cyclones are found, are an important fixture in the general circulation. They are instrumental in balancing the Earth's heat, momentum, and moisture budgets and are responsible for the weather and climatic patterns over large regions of the Earth's surface. As a result, the midlatitude storm tracks are the subject of a considerable amount of scientific research to understand their response to global warming. This has produced the robust result showing that the storm tracks migrate poleward with global warming. However, the dynamical mechanisms responsible for this migration remain unclear. Our work seeks to broaden understanding of the dynamical mechanisms responsible for storm track migration. Competing mechanisms present in the comprehensive climate models often used to study storm track dynamics make it difficult to determine the primary mechanisms responsible for storm track migration. We are thus prompted to study storm track dynamics from a simplified and idealized framework, which enables the decoupling of mean temperature effects from the effects of static stability and of tropical from extratropical effects. Using a statistically zonally symmetric, dry general circulation model (GCM), we conduct a series of numerical simulations to help understand the storm track response to global mean temperatures and to the tropical convective static stability, which we can vary independently. We define storm tracks as regions of zonally and temporally averaged maxima of barotropic eddy kinetic energy (EKE). This storm track definition also allows us to use previously found scalings between the magnitude of bulk measures of mean available potential energy (MAPE) and EKE, to decompose MAPE, and to obtain some mechanistic understanding of the storm track response in our simulations. These simulations provide several insights, which enable us to extend upon existing theories on the mechanisms driving the

  7. Sequencing and Analysis of the Pseudomonas fluorescens GcM5-1A Genome: A Pathogen Living in the Surface Coat of Bursaphelenchus xylophilus.

    PubMed

    Feng, Kai; Li, Ronggui; Chen, Yingnan; Zhao, Boguang; Yin, Tongming

    2015-01-01

    It is known that several bacteria are adherent to the surface coat of pine wood nematode (Bursaphelenchus xylophilus), but their function and role in the pathogenesis of pine wilt disease remains debatable. The Pseudomonas fluorescens GcM5-1A is a bacterium isolated from the surface coat of pine wood nematodes. In previous studies, GcM5-1A was evident in connection with the pathogenicity of pine wilt disease. In this study, we report the de novo sequencing of the GcM5-1A genome. A 600-Mb collection of high-quality reads was obtained and assembled into sequence contigs spanning a 6.01-Mb length. Sequence annotation predicted 5,413 open reading frames, of which 2,988 were homologous to genes in the other four sequenced P. fluorescens isolates (SBW25, WH6, Pf0-1 and Pf-5) and 1,137 were unique to GcM5-1A. Phylogenetic studies and genome comparison revealed that GcM5-1A is more closely related to SBW25 and WH6 isolates than to Pf0-1 and Pf-5 isolates. Towards study of pathogenesis, we identified 79 candidate virulence factors in the genome of GcM5-1A, including the Alg, Fl, Waa gene families, and genes coding the major pathogenic protein fliC. In addition, genes for a complete T3SS system were identified in the genome of GcM5-1A. Such systems have proved to play a critical role in subverting and colonizing the host organisms of many gram-negative pathogenic bacteria. Although the functions of the candidate virulence factors need yet to be deciphered experimentally, the availability of this genome provides a basic platform to obtain informative clues to be addressed in future studies by the pine wilt disease research community. PMID:26517369

  8. Sequencing and Analysis of the Pseudomonas fluorescens GcM5-1A Genome: A Pathogen Living in the Surface Coat of Bursaphelenchus xylophilus

    PubMed Central

    Chen, Yingnan; Zhao, Boguang; Yin, Tongming

    2015-01-01

    It is known that several bacteria are adherent to the surface coat of pine wood nematode (Bursaphelenchus xylophilus), but their function and role in the pathogenesis of pine wilt disease remains debatable. The Pseudomonas fluorescens GcM5-1A is a bacterium isolated from the surface coat of pine wood nematodes. In previous studies, GcM5-1A was evident in connection with the pathogenicity of pine wilt disease. In this study, we report the de novo sequencing of the GcM5-1A genome. A 600-Mb collection of high-quality reads was obtained and assembled into sequence contigs spanning a 6.01-Mb length. Sequence annotation predicted 5,413 open reading frames, of which 2,988 were homologous to genes in the other four sequenced P. fluorescens isolates (SBW25, WH6, Pf0-1 and Pf-5) and 1,137 were unique to GcM5-1A. Phylogenetic studies and genome comparison revealed that GcM5-1A is more closely related to SBW25 and WH6 isolates than to Pf0-1 and Pf-5 isolates. Towards study of pathogenesis, we identified 79 candidate virulence factors in the genome of GcM5-1A, including the Alg, Fl, Waa gene families, and genes coding the major pathogenic protein fliC. In addition, genes for a complete T3SS system were identified in the genome of GcM5-1A. Such systems have proved to play a critical role in subverting and colonizing the host organisms of many gram-negative pathogenic bacteria. Although the functions of the candidate virulence factors need yet to be deciphered experimentally, the availability of this genome provides a basic platform to obtain informative clues to be addressed in future studies by the pine wilt disease research community. PMID:26517369

  9. An adaptive information technology for the operative diagnostics of the tropical cyclones; solar-terrestrial coupling mechanisms

    NASA Astrophysics Data System (ADS)

    Krapivin, Vladimir F.; Soldatov, Vladimir Yu.; Varotsos, Costas A.; Cracknell, Arthur P.

    2012-11-01

    The tools of sequential analysis and percolation theory are herewith used to study the transition processes in the coupled ocean-atmosphere system. To accomplish this aim the recently proposed instability indicator for the detection of the characteristics of the state for this system, is utilized. In more detail, the case of the transition processes for Baltic Sea assessed by the Beaufort Scale is examined by investigating the efficiency of the afore-mentioned indicator.We show that the crucial parameter is not the energy source, like the solar radiation, but the energy conversion. Numerical experiments conducted herewith showed that such an indicator facilitates the monitoring of the variability and direction of transition processes in the oceans, and is capable to predict a remarkable change of the ocean-atmosphere system states. It is finally shown that the combination of sequential and cluster analysis with the percolation procedure allows for the detection of a tropical hurricane up to three days in advance of its start. The tool presented may also be applied to the development of relevant indicators for the predictions of magnetosphere-ionosphere-thermosphere coupling and the solar wind-magnetosphere interactions. Finally, future problems on the subject are discussed.

  10. A GCM Study of Responses of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.

    2009-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0

  11. Air-sea coupling in the Hawaiian Archipelago

    NASA Astrophysics Data System (ADS)

    Souza, J. M.; Powell, B.; Mattheus, D.

    2014-12-01

    A coupled numerical model is used to investigate the ocean-atmosphere interaction in the lee of the Hawaiian archipelago. The wind curl generated by the island blocking of the trade winds is known to give rise to ocean eddies; however, the impact of the sea surface temperature (SST) and velocity fronts associated with these eddies on the atmosphere is less understood. The main coupling mechanisms are: (i) changes in the near-surface stability and surface stress, (ii) vertical transfer of momentum from higher atmospheric levels to the ocean surface due to an increase of the turbulence in the boundary layer, (iii) secondary circulations associated with perturbations in the surface atmospheric pressure over the SST fronts, and (iv) the impact of the oceanic eddy currents on the net momentum transferred between the atmosphere and the ocean. To assess the relative contribution from each process, a coupled simulation between the Regional Ocean Modeling System (ROMS) and the Weather Research and Forecasting (WRF) models is conducted for the main Hawaiian Islands. The impact of the coupling, the perturbation of the mean wind pattern, and the different spatial scales involved in the air-sea exchanges of momentum and heat are explored.

  12. Evaluating GCM land surface hydrology parameterizations by computing river discharges using a runoff routing model: Application to the Mississippi basin

    NASA Technical Reports Server (NTRS)

    Liston, G. E.; Sud, Y. C.; Wood, E. F.

    1994-01-01

    To relate general circulation model (GCM) hydrologic output to readily available river hydrographic data, a runoff routing scheme that routes gridded runoffs through regional- or continental-scale river drainage basins is developed. By following the basin overland flow paths, the routing model generates river discharge hydrographs that can be compared to observed river discharges, thus allowing an analysis of the GCM representation of monthly, seasonal, and annual water balances over large regions. The runoff routing model consists of two linear reservoirs, a surface reservoir and a groundwater reservoir, which store and transport water. The water transport mechanisms operating within these two reservoirs are differentiated by their time scales; the groundwater reservoir transports water much more slowly than the surface reservior. The groundwater reservior feeds the corresponding surface store, and the surface stores are connected via the river network. The routing model is implemented over the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project Mississippi River basin on a rectangular grid of 2 deg X 2.5 deg. Two land surface hydrology parameterizations provide the gridded runoff data required to run the runoff routing scheme: the variable infiltration capacity model, and the soil moisture component of the simple biosphere model. These parameterizations are driven with 4 deg X 5 deg gridded climatological potential evapotranspiration and 1979 First Global Atmospheric Research Program (GARP) Global Experiment precipitation. These investigations have quantified the importance of physically realistic soil moisture holding capacities, evaporation parameters, and runoff mechanisms in land surface hydrology formulations.

  13. Madden-Julian Variability in Coupled Models

    SciTech Connect

    Sperber, K R; Gualdi, S; Li, W; Slingo, J M

    2001-12-12

    The Madden-Julian Oscillation (MJO) is a dominant mode of tropical variability (Madden and Julian 1971, 1972). It is manifested on a timescale of {approx}30-70 days through large-scale circulation anomalies which occur in conjunction with eastward propagating convective anomalies over the eastern hemisphere. Recent evidence has suggested that an interactive ocean may be important for the simulation of the Madden-Julian Oscillation (Flatau et al. 1997, Sperber et al. 1997, Waliser et al. 1999, Inness et al. 2002). As part of an initiative to the CLIVAR Working Group on Coupled Modeling, we examine ocean-atmosphere GCMs to ascertain the degree to which they can represent the 4-dimensional space-time structure of the MJO. The eastward propagation of convection is also examined with respect to the surface fluxes and SST, and we compare and contrast the behavior over the Indian Ocean and the western Pacific. Importantly, the results are interpreted with respect to systematic error of the mean state.

  14. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere

    NASA Astrophysics Data System (ADS)

    Todd Clancy, R.; Sandor, Brad J.; García-Muñoz, Antonio; Lefèvre, Franck; Smith, Michael D.; Wolff, Michael J.; Montmessin, Franck; Murchie, Scott L.; Nair, Hari

    2013-09-01

    de Météorologie Dynamique) photochemical GCM (global climate model), employing detailed photochemistry (e.g. Lefèvre, F., Lebonnois, S., Montmessin, F., Forget, F. [2004]. J. Geophys. Res. (Planets) 109, E07004. http://dx.doi.org/10.1029/2004JE002268) and energy transfer processes (excitation and quenching) developed for Mars Meinel OH band nightglow by García Muñoz et al. (García Muñoz, A., McConnell, J.C., McDade, I.C., Melo, S.M.L. [2005]. Icarus 176, 75-95). Modeled versus observed OH emission behavior agrees within measurement uncertainties with the assumptions of a Bates-Nicolet (H + O3) source for excited OH production, and ‘collisional-cascade’ quenching of the OH vibrational population by CO2. ‘Sudden-death’ quenching of excited OH by CO2 leads to 100× less OH emission than observed. The combined agreement between LMD GCM simulated and CRISM observed O2(1Δg) and Meinel OH polar nightglow behaviors represents a significant demonstration of the LMD model capability to couple odd oxygen and hydrogen photochemistry and transport by the Mars global circulation in a realistic fashion.

  15. First detection of Mars atmospheric hydroxyl: CRISM Near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere

    NASA Astrophysics Data System (ADS)

    Clancy, R. Todd; Sandor, Brad J.; García-Muñoz, Antonio; Lefèvre, Franck; Smith, Michael D.; Wolff, Michael J.; Montmessin, Franck; Murchie, Scott L.; Nair, Hari

    2013-09-01

    de Météorologie Dynamique) photochemical GCM (global climate model), employing detailed photochemistry (e.g. Lefèvre, F., Lebonnois, S., Montmessin, F., Forget, F. [2004]. J. Geophys. Res. (Planets) 109, E07004. http://dx.doi.org/10.1029/2004JE002268) and energy transfer processes (excitation and quenching) developed for Mars Meinel OH band nightglow by García Muñoz et al. (García Muñoz, A., McConnell, J.C., McDade, I.C., Melo, S.M.L. [2005]. Icarus 176, 75-95). Modeled versus observed OH emission behavior agrees within measurement uncertainties with the assumptions of a Bates-Nicolet (H + O3) source for excited OH production, and 'collisional-cascade' quenching of the OH vibrational population by CO2. 'Sudden-death' quenching of excited OH by CO2 leads to 100× less OH emission than observed. The combined agreement between LMD GCM simulated and CRISM observed O2(1Δg) and Meinel OH polar nightglow behaviors represents a significant demonstration of the LMD model capability to couple odd oxygen and hydrogen photochemistry and transport by the Mars global circulation in a realistic fashion.

  16. Sensitivity of the Climate to Changes in Solar Irradiance, Orbital Forcing and Greenhouse Gases During the Maunder Minimum From a Suite of GCM Experiments

    NASA Astrophysics Data System (ADS)

    Waple, A. M.; DeConto, R. M.; Bradley, R. S.

    2002-05-01

    Equilibrium model experiments have been run with the GENESIS AGCM version 2.0 (Pollard and Thompson 1995b) to examine sensitivity of the climate to a variety of possible forcing scenarios during the Maunder Minimum (~1675), present-day and ~2050AD. Solar irradiance, orbital forcing and greenhouse gases were incrementally added in a suite of experiments to determine the relative effects of each individual forcing as well as the combined response. If solar irradiance is reduced to Maunder Minimum-estimated values (maintaining present-day greenhouse gases and orbital forcing), globally averaged temperature is cooler than present, as expected, and though the GCM does not have a coupled ocean, it does have a coupled sea-ice model and sea-ice feedbacks dominate the high-latitude response pattern. Especially large near-surface temperature responses are seen in the areas of Greenland and the Weddell Sea. Naturally, the sea-ice feedback leads to a marked seasonality of response, but there are substantial differences in the seasonal response in the tropics as well as at high latitudes. The model results indicate that a shift in the ITCZ position contributes to this temperature difference as well as substantial precipitation changes. Consistent with a cooler climate, precipitation is also moderately reduced relative to present. In addition, an increase in the meridionality of circulation, which has been suggested as a more persistent pattern of circulation for the Little Ice Age (eg. Wanner 1994), is evident when solar irradiance is reduced to estimated Maunder Minimum values in these model experiments. During all three model time-periods, including the Maunder Minimum, orbital forcing plays a larger role than expected, especially at high-latitudes. The forcing is of the opposite sign to that induced by solar variability over this time-frame, therefore moderately tempers the effect of lower solar irradiance during the Maunder Minimum. Greenhouse gases also play a large role

  17. Climate Simulations based on a different-grid nested and coupled model

    NASA Astrophysics Data System (ADS)

    Li, Dan; Ji, Jinjun; Li, Yinpeng

    2002-05-01

    An atmosphere-vegetation interaction model (A VIM) has been coupled with a nine-layer General Cir-culation Model (GCM) of Institute of Atmospheic Physics/State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (IAP/LASG), which is rhomboidally truncated at zonal wave number 15, to simulate global climatic mean states. A VIM is a model having inter-feedback between land surface processes and eco-physiological processes on land. As the first step to couple land with atmosphere completely, the physiological processes are fixed and only the physical part (generally named the SVAT (soil-vegetation-atmosphere-transfer scheme) model) of AVIM is nested into IAP/LASG L9R15 GCM. The ocean part of GCM is prescribed and its monthly sea surface temperature (SST) is the climatic mean value. With respect to the low resolution of GCM, i.e., each grid cell having lon-gitude 7.5° and latitude 4.5°, the vegetation is given a high resolution of 1.5° by 1.5° to nest and couple the fine grid cells of land with the coarse grid cells of atmosphere. The coupling model has been integrated for 15 years and its last ten-year mean of outputs was chosen for analysis. Compared with observed data and NCEP reanalysis, the coupled model simulates the main characteris-tics of global atmospheric circulation and the fields of temperature and moisture. In particular, the simu-lated precipitation and surface air temperature have sound results. The work creates a solid base on coupling climate models with the biosphere.

  18. Downward Wave Coupling Changes in Response to Future Climate Change, Two Way Atmosphere/Ocean Coupling and QBO

    NASA Astrophysics Data System (ADS)

    Wellyanto Lubis, Sandro; Matthes, Katja; Harnik, Nili; Omrani, Nour-Eddine

    2014-05-01

    Wave reflection in the stratosphere can impact the troposphere via a well-defined, high latitude meridional waveguide that is bounded above by a vertical reflecting surface. Such wave reflection is known as downward wave coupling (DWC). Recent studies have shown that stratospheric ozone affects DWC, affecting wave propagation and subsequent wave-mean flow interaction in the Southern Hemisphere. However the factors controlling DWC in the Northern Hemisphere are still unclear. There is new evidence that the frequency of Major Stratospheric Warming (MSW) is significantly influenced by the QBO and two-way ocean/ atmosphere interaction. However the resulting impact on DWC has thus far not been investigated. Here we examine the impact of future climate change, two way atmosphere/ ocean coupling, and the QBO on wave geometry and DWC using different CESM-WACCM model experiments. A transient simulation of present and future climate (1955-2099), with green house gases (GHG) and ozone depleting substances (ODS) following the RCP 8.5 scenario, shows the largest reduction in the DWC over last few decades of the simulation. This reduction is associated with an absence of the vertical reflecting surface and statistically insignificant downward wave reflection. Comparison to an experiment with GHG/ODS fixed at 1960s levels, shows no indication of DWC-changes. The lack of a DWC response is associated with insignificant changes of the background wind states, whose vertical structure directly impacts the DWC. The comparison of this experiment with simulations with and without QBO nudging shows that the QBO strengthens the DWC. This can be explained by the fact that our nonQBO simulation has a permanent, strong QBO-like east phase, which dampens the DWC. Comparison of experiments with dynamically-coupled and fixed SSTs shows that the background zonal wind is strengthened significantly when the ocean/atmosphere interaction is removed. However, no apparent strengthening of DWC is seen

  19. A GCM simulation study of the influence of Saharan evapotranspiration and surface-albedo anomalies on July circulation and rainfall

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Molod, A.

    1988-01-01

    The influence of surface albedo and evapotranspiration anomalies that could result from the hypothetical semiarid vegetation over North Africa on its July circulation and rainfall is examined using the Goddard Laboratory for Atmospheres GCM. It is shown that increased soil moisture and its dependent evapotranspiration produces a cooler and moister PBL over North Africa that is able to support enhanced moist convection and rainfall in Sahel and southern Sahara. It is found that lower surface albedo yields even higher moist static energy in the PBL and enhances the local moist convection and rainfall. Modifying the rain-evaporation parameterization in the model produces changes in the hydrological cycle and rainfall anomalies in distant regions. The effects of different falling rain parameterizations are discussed.

  20. Relating Regime Structure to Probability Distribution and Preferred Structure of Small Errors in a Large Atmospheric GCM

    NASA Astrophysics Data System (ADS)

    Straus, D. M.

    2007-12-01

    The probability distribution (pdf) of errors is followed in identical twin studies using the COLA T63 AGCM, integrated with observed SST for 15 recent winters. 30 integrations per winter (for 15 winters) are available with initial errors that are extremely small. The evolution of the pdf is tested for multi-modality, and the results interpreted in terms of clusters / regimes found in: (a) the set of 15x30 integrations mentioned, and (b) a larger ensemble of 55x15 integrations made with the same GCM using the same SSTs. The mapping of pdf evolution and clusters is also carried out for each winter separately, using the clusters found in the 55-member ensemble for the same winter alone. This technique yields information on the change in regimes caused by different boundary forcing (Straus and Molteni, 2004; Straus, Corti and Molteni, 2006). Analysis of the growing errors in terms of baroclinic and barotropic components allows for interpretation of the corresponding instabilities.

  1. The Aggregate Representation of Terrestrial Land Covers Within Global Climate Models (GCM)

    NASA Technical Reports Server (NTRS)

    Shuttleworth, W. James; Sorooshian, Soroosh

    1996-01-01

    This project had four initial objectives: (1) to create a realistic coupled surface-atmosphere model to investigate the aggregate description of heterogeneous surfaces; (2) to develop a simple heuristic model of surface-atmosphere interactions; (3) using the above models, to test aggregation rules for a variety of realistic cover and meteorological conditions; and (4) to reconcile biosphere-atmosphere transfer scheme (BATS) land covers with those that can be recognized from space; Our progress in meeting these objectives can be summarized as follows. Objective 1: The first objective was achieved in the first year of the project by coupling the Biosphere-Atmosphere Transfer Scheme (BATS) with a proven two-dimensional model of the atmospheric boundary layer. The resulting model, BATS-ABL, is described in detail in a Masters thesis and reported in a paper in the Journal of Hydrology Objective 2: The potential value of the heuristic model was re-evaluated early in the project and a decision was made to focus subsequent research around modeling studies with the BATS-ABL model. The value of using such coupled surface-atmosphere models in this research area was further confirmed by the success of the Tucson Aggregation Workshop. Objective 3: There was excellent progress in using the BATS-ABL model to test aggregation rules for a variety of realistic covers. The foci of attention have been the site of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE) in Kansas and one of the study sites of the Anglo-Brazilian Amazonian Climate Observational Study (ABRACOS) near the city of Manaus, Amazonas, Brazil. These two sites were selected because of the ready availability of relevant field data to validate and initiate the BATS-ABL model. The results of these tests are given in a Masters thesis, and reported in two papers. Objective 4: Progress far exceeded original expectations not only in reconciling BATS land covers with those that can be

  2. The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony G.; Chen, Yonghua; Kim, Daehyun; Yao, Mao-Sung

    2013-01-01

    The relationship between convective penetration depth and tropospheric humidity is central to recent theories of the Madden-Julian oscillation (MJO). It has been suggested that general circulation models (GCMs) poorly simulate the MJO because they fail to gradually moisten the troposphere by shallow convection and simulate a slow transition to deep convection. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed to document the variability of convection depth and its relation to water vapor during the MJO transition from shallow to deep convection and to constrain GCM cumulus parameterizations. Composites of cloud occurrence for 10MJO events show the following anticipatedMJO cloud structure: shallow and congestus clouds in advance of the peak, deep clouds near the peak, and upper-level anvils after the peak. Cirrus clouds are also frequent in advance of the peak. The Advanced Microwave Scanning Radiometer for EarthObserving System (EOS) (AMSR-E) columnwater vapor (CWV) increases by;5 mmduring the shallow- deep transition phase, consistent with the idea of moisture preconditioning. Echo-top height of clouds rooted in the boundary layer increases sharply with CWV, with large variability in depth when CWV is between;46 and 68 mm. International Satellite Cloud Climatology Project cloud classifications reproduce these climatological relationships but correctly identify congestus-dominated scenes only about half the time. A version of the Goddard Institute for Space Studies Model E2 (GISS-E2) GCM with strengthened entrainment and rain evaporation that produces MJO-like variability also reproduces the shallow-deep convection transition, including the large variability of cloud-top height at intermediate CWV values. The variability is due to small grid-scale relative humidity and lapse rate anomalies for similar values of CWV. 1.

  3. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States

    USGS Publications Warehouse

    Hay, L.E.; Wilby, R.L.; Leavesley, G.H.

    2000-01-01

    Simulated daily precipitation, temperature, and runoff time series were compared in three mountainous basins in the United States: (1) the Animas River basin in Colorado, (2) the East Fork of the Carson River basin in Nevada and California, and (3) the Cle Elum River basin in Washington State. Two methods of climate scenario generation were compared: delta change and statistical downscaling. The delta change method uses differences between simulated current and future climate conditions from the Hadley Centre for Climate Prediction and Research (HadCM2) General Circulation Model (GCM) added to observed time series of climate variables. A statistical downscaling (SDS) model was developed for each basin using station data and output from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis regridded to the scale of HadCM2. The SDS model was then used to simulate local climate variables using HadCM2 output for current and future conditions. Surface climate variables from each scenario were used in a precipitation-runoff model. Results from this study show that, in the basins tested, a precipitation-runoff model can simulate realistic runoff series for current conditions using statistically downscaled NCEP output. But, use of downscaled HadCM2 output for current or future climate assessments are questionable because the GCM does not produce accurate estimates of the surface variables needed for runoff in these regions. Given the uncertainties in the GCMs ability to simulate current conditions based on either the delta change or downscaling approaches, future climate assessments based on either of these approaches must be treated with caution.

  4. Incorporation of New Convective Ice Microphysics into the NASA GISS GCM and Impacts on Cloud Ice Water Path (IWP) Simulation

    NASA Technical Reports Server (NTRS)

    Elsaesser, Greg; Del Genio, Anthony

    2015-01-01

    The CMIP5 configurations of the GISS Model-E2 GCM simulated a mid- and high latitude ice IWP that decreased by 50 relative to that simulated for CMIP3 (Jiang et al. 2012; JGR). Tropical IWP increased by 15 in CMIP5. While the tropical IWP was still within the published upper-bounds of IWP uncertainty derived using NASA A-Train satellite observations, it was found that the upper troposphere (200 mb) ice water content (IWC) exceeded the published upper-bound by a factor of 2. This was largely driven by IWC in deep-convecting regions of the tropics.Recent advances in the model-E2 convective parameterization have been found to have a substantial impact on tropical IWC. These advances include the development of both a cold pool parameterization (Del Genio et al. 2015) and new convective ice parameterization. In this presentation, we focus on the new parameterization of convective cloud ice that was developed using data from the NASA TC4 Mission. Ice particle terminal velocity formulations now include information from a number of NASA field campaigns. The new parameterization predicts both an ice water mass weighted-average particle diameter and a particle cross sectional area weighted-average size diameter as a function of temperature and ice water content. By assuming a gamma-distribution functional form for the particle size distribution, these two diameter estimates are all that are needed to explicitly predict the distribution of ice particles as a function of particle diameter.GCM simulations with the improved convective parameterization yield a 50 decrease in upper tropospheric IWC, bringing the tropical and global mean IWP climatologies into even closer agreement with the A-Train satellite observation best estimates.

  5. Paleo-Permafrost Distribution Downscaled in South America: Examination of the GCM-based maps with the observations

    NASA Astrophysics Data System (ADS)

    Saito, K.; Trombotto, D.; Bigelow, N. H.; Marchenko, S. S.; Romanovsky, V. E.; Walsh, J. E.; Hendricks, A.; Yoshikawa, K.

    2013-12-01

    In this paper, we show our attempt to compare the potential regional frozen ground distribution in South America for the present-day, mid-Holocene and the Last Glacial Maximum (LGM), downscaled from the outputs of the sets of global climate model (GCM)s, participating in recent Paleoclimate Model Intercomparison Project (PMIP2 and PMIP3). Due to relatively small portion of the terrestrial areas compared to that of the Northern Hemisphere, the frozen ground distribution in the Southern Hemisphere has not been intensively surveyed and/or mapped, except for the Andes. This scale and recognition gap is one of the reasons why the GCM results have not been widely used in investigations and applications in geography or geomorphology, although field surveys in these disciplines have intensively been conducted in the middle latitude in South America, from the Andes through Patagonia to Tierra del Fuego, to evidence the periglacial processes and to determine the distribution, and their change, in the Quaternary. The PMIP2 downscaled regional maps successfully showed the likely presence of frozen ground, such as permafrost in the Andes for 0ka, whereas the original coarse-resolution global maps failed. However, it still showed insufficient and/or incorrect classifications, e.g., lowland in Patagonia and Tierra del Fuego that are not underlain by permafrost today but were in 21ka, failed to produce the LGM permafrost. The mid-latitude mountains with the Pleistocene permafrost evidence, such as Extra-Andean Mountains and Ventania, also failed to be reproduced. This discrepancy in the PMIP2 products is likely due to the regional warm bias in South America, in contrast to the cool bias on hemispheric scales, which has been improved in PMIP3 products.

  6. GCM Simulations of Tropical Ice Accumulations: Implications for Cold-based Glaciers

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Montmessin, F.; Forget, F.; Levrard, B.; Head, J. W., III; Laskar, J.

    2004-01-01

    Each of the three Tharsis Montes shield volcanoes on Mars has fan-shaped deposits on their flanks. A detailed analysis of the multiple facies of the Arsia Mons deposits, coupled with field observations of polar glaciers in Antarctica, shows that they are consistent with deposition from cold-based mountain glaciers. Key features of these glaciers are: (1) they formed only on the western flank of each volcano, (2) enough ice accumulated to cause them to flow but without basal melting, (3) there were multiple advances and retreats, (4) the last major glaciation was more than several million years ago, (5) the areal extent of the deposits they left behind decreases northward, (6) together the deposits range in elevation from a low of 1.5 to a high of 8.5 km, and (7) there are no signs that significant accumulation is occurring today.

  7. Relationships of Upper Tropospheric Water Vapor, Clouds and SST: MLS Observations, ECMWF Analyses and GCM Simulations

    NASA Technical Reports Server (NTRS)

    Su, Hui; Waliser, Duane E.; Jiang, Jonathan H.; Li, Jui-lin; Read, William G.; Waters, Joe W.; Tompkins, Adrian M.

    2006-01-01

    The relationships of upper tropospheric water vapor (UTWV), cloud ice and sea surface temperature (SST) are examined in the annual cycles of ECMWF analyses and simulations from 15 atmosphere-ocean coupled models which were contributed to the IPCC AR4. The results are compared with the observed relationships based on UTWV and cloud ice measurements from MLS on Aura. It is shown that the ECMWF analyses produce positive correlations between UTWV, cloud ice and SST, similar to the MLS data. The rate of the increase of cloud ice and UTWV with SST is about 30% larger than that for MLS. For the IPCC simulations, the relationships between UTWV, cloud ice and SST are qualitatively captured. However, the magnitudes of the simulated cloud ice show a considerable disagreement between models, by nearly a factor of 10. The amplitudes of the approximate linear relations between UTWV, cloud ice and SST vary by a factor up to 4.

  8. Sensitivity of a GCM simulation to inclusion of inland water surfaces

    SciTech Connect

    Bonan, G.B.

    1995-11-01

    A land surface model that includes a subgrid parameterization for inland water (lake, swamp, marsh) was coupled to a modified version of the NCAR CCM2. The coupled model was run for 5 yr with and without inland water subgrid points to determine the importance of inland water for global climate simulation. In July, the inclusion of these water bodies