Science.gov

Sample records for coupled plasma mass

  1. Laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Durrant, S.F.

    1996-07-01

    Laser ablation for solid sample introduction to inductively coupled plasma mass spectrometry for bulk and spatially-resolved elemental analysis is briefly reviewed. {copyright} {ital 1996 American Institute of Physics.}

  2. Laser Ablation Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Hutchinson, Robert W.; McLachlin, Katherine M.; Riquelme, Paloma; Haarer, Jan; Broichhausen, Christiane; Ritter, Uwe; Geissler, Edward K.; Hutchinson, James A.

    2015-01-01

    ABSTRACT New analytical techniques for multiparametric characterisation of individual cells are likely to reveal important information about the heterogeneity of immunological responses at the single-cell level. In this proof-of-principle study, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied to the problem of concurrently detecting 24 lineage and activation markers expressed by human leucocytes. This approach was sufficiently sensitive and specific to identify subpopulations of isolated T, B, and natural killer cells. Leucocyte subsets were also accurately detected within unfractionated peripheral blood mononuclear cells preparations. Accordingly, we judge LA-ICP-MS to be a suitable method for assessing expression of multiple tissue antigens in solid-phase biological specimens, such as tissue sections, cytospins, or cells grown on slides. These results augur well for future development of LA-ICP-MS–based bioimaging instruments for general users. PMID:27500232

  3. Ion deposition by inductively coupled plasma mass spectrometry

    SciTech Connect

    Hu, K.; Houk, R.S.

    1996-03-01

    An atmospheric pressure inductively coupled plasma (ICP) is used with a quadrupole mass spectrometer (MS) for ion deposition. The deposited element is introduced as a nebulized aqueous solution. Modifications to the ICP-MS device allow generation and deposition of a mass-resolved beam of {sup 165}Ho{sup +} at 5{times}10{sup 12} ions s{sup {minus}1}. The ICP is a universal, multielement ion source that can potentially be used for applications such as deposition of mixtures of widely varying stoichiometry or of alternating layers of different elements. {copyright} {ital 1996 American Vacuum Society}

  4. Fission Yield Measurements by Inductively Coupled Plasma Mass-Spectrometry

    SciTech Connect

    Irina Glagolenko; Bruce Hilton; Jeffrey Giglio; Daniel Cummings; Karl Grimm; Richard McKnight

    2009-11-01

    Correct prediction of the fission products inventory in irradiated nuclear fuels is essential for accurate estimation of fuel burnup, establishing proper requirements for spent fuel transportation and storage, materials accountability and nuclear forensics. Such prediction is impossible without accurate knowledge of neutron induced fission yields. Unfortunately, the accuracy of the fission yields reported in the ENDF/B-VII.0 library is not uniform across all of the data and much of the improvement is desired for certain isotopes and fission products. We discuss our measurements of cumulative fission yields in nuclear fuels irradiated in thermal and fast reactor spectra using Inductively Coupled Plasma Mass Spectrometry.

  5. Inductively Coupled Plasma Zoom-Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dennis, Elise A.; Ray, Steven J.; Enke, Christie G.; Hieftje, Gary M.

    2016-03-01

    A zoom-time-of-flight mass spectrometer has been coupled to an inductively coupled plasma (ICP) ionization source. Zoom-time-of-flight mass spectrometry (zoom-TOFMS) combines two complementary types of velocity-based mass separation. Specifically, zoom-TOFMS alternates between conventional, constant-energy acceleration (CEA) TOFMS and energy-focused, constant-momentum acceleration (CMA) (zoom) TOFMS. The CMA mode provides a mass-resolution enhancement of 1.5-1.7× over CEA-TOFMS in the current, 35-cm ICP-zoom-TOFMS instrument geometry. The maximum resolving power (full-width at half-maximum) for the ICP-zoom-TOFMS instrument is 1200 for CEA-TOFMS and 1900 for CMA-TOFMS. The CMA mode yields detection limits of between 0.02 and 0.8 ppt, depending upon the repetition rate and integration time—compared with single ppt detection limits for CEA-TOFMS. Isotope-ratio precision is shot-noise limited at approximately 0.2% relative-standard deviation (RSD) for both CEA- and CMA-TOFMS at a 10 kHz repetition rate and an integration time of 3-5 min. When the repetition rate is increased to 43.5 kHz for CMA, the shot-noise limited, zoom-mode isotope-ratio precision is improved to 0.09% RSD for the same integration time.

  6. CAPILLARY ELECTROPHORESIS COUPLED ON-LINE WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY FOR ELEMENTAL SPECIATION

    EPA Science Inventory

    A novel interface to connect a capillary electrophoresis (CE) system with an inductively coupled plasma mass spectrometric (ICPMS) detector is reported here. The interface was built using a direct injection nebulizer (DIN) system. In this interface, the CE capillary was placed co...

  7. Inductively Coupled Plasma Mass Spectrometry Uranium Error Propagation

    SciTech Connect

    Hickman, D P; Maclean, S; Shepley, D; Shaw, R K

    2001-07-01

    The Hazards Control Department at Lawrence Livermore National Laboratory (LLNL) uses Inductively Coupled Plasma Mass Spectrometer (ICP/MS) technology to analyze uranium in urine. The ICP/MS used by the Hazards Control Department is a Perkin-Elmer Elan 6000 ICP/MS. The Department of Energy Laboratory Accreditation Program requires that the total error be assessed for bioassay measurements. A previous evaluation of the errors associated with the ICP/MS measurement of uranium demonstrated a {+-} 9.6% error in the range of 0.01 to 0.02 {micro}g/l. However, the propagation of total error for concentrations above and below this level have heretofore been undetermined. This document is an evaluation of the errors associated with the current LLNL ICP/MS method for a more expanded range of uranium concentrations.

  8. Matrix effects in inductively coupled plasma mass spectrometry

    SciTech Connect

    Chen, Xiaoshan

    1995-07-07

    The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the {open_quotes}Fassel{close_quotes} TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage of ICP-MS, and enhances the level of metal oxide ions. Because the extent of the clogging increases with the time, the signal drifts down. Even at the very early stage of the development of ICP-MS, matrix effects had been observed. Houk et al. found out that the ICP-MS was not tolerant to solutions containing significant amounts of dissolved solids.

  9. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    DOE PAGESBeta

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-03-02

    We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10-5 to 10-11. Free molecular heat and mass transfer theory was

  10. Aerosol detection efficiency in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubbard, Joshua A.; Zigmond, Joseph A.

    2016-05-01

    An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but

  11. Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Watling, R. John; Herbert, Hugh K.; Delev, Dianne; Abell, Ian D.

    1994-02-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to the characterization of the trace element composition "fingerprint" of selected gold samples from Western Australia and South Africa. By comparison of the elemental associations it is possible to relate gold to a specific mineralizing event, mine or bullion sample. This methodology facilitates identification of the provenance of stolen gold or gold used in salting activities. In this latter case, it is common for gold from a number of sources to be used in the salting process. Consequently, gold in the prospect being salted will not come from a single source and identification of multiple sources for this gold will establish that salting has occurred. Preliminary results also indicate that specific elemental associations could be used to identify the country of origin of gold. The technique has already been applied in 17 cases involving gold theft in Western Australia, where it is estimated that up to 2% of gold production is "relocated" each year as a result of criminal activities.

  12. Uranium quantification in semen by inductively coupled plasma mass spectrometry.

    PubMed

    Todorov, Todor I; Ejnik, John W; Guandalini, Gustavo; Xu, Hanna; Hoover, Dennis; Anderson, Larry; Squibb, Katherine; McDiarmid, Melissa A; Centeno, Jose A

    2013-01-01

    In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4-7% RSD and spike recoveries were 97-100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n=10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans' semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments. PMID:22944582

  13. Imaging mass spectrometry in biological tissues by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Becker, J S; Becker, J Su; Zoriy, M V; Dobrowolska, J; Matucsh, A

    2007-01-01

    Of all the inorganic mass spectrometric techniques, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) plays a key role as a powerful and sensitive microanalytical technique enabling multi- element trace analysis and isotope ratio measurements at trace and ultratrace level. LA-ICP-MS was used to produce images of detailed regionally-specific element distribution in 20 microm thin sections of different parts of the human brain. The quantitative determination of copper, zinc, lead and uranium distribution in thin slices of human brain samples was performed using matrix-matched laboratory standards via external calibration procedures. Imaging mass spectrometry provides new information on the spatially inhomogeneous element distribution in thin sections of human tissues, for example, of different brain regions (the insular region) or brain tumor tissues. The detection limits obtained for Cu, Zn, Pb and U were in the ng g(-1) range. Possible strategies of LA-ICP-MS in brain research and life sciences include the elemental imaging of thin slices of brain tissue or applications in proteome analysis by combination with matrix-assisted laser desorption/ionization MS to study phospho- and metal- containing proteins will be discussed. PMID:17885277

  14. New Applications of Inductively Coupled Plasma-Mass Spectrometry in the Nuclear Industry

    SciTech Connect

    Rob Henry; Dagmar Koller; Phil Marriott

    1998-12-31

    Inductively coupled plasma mass spectrometry (ICP-MS) complements the traditional methods of quantitation of radioactive isotopes. Because of the favorable ionization potential of most actinides and their daughter products, the argon plasma provides a rich, stable source of ions, which are introduced through a plasma-mass spectrometer interface into the mass spectrometer for isotopic separation. Samples are normally introduced in solution, although direct solids analysis has also been achieved using laser ablation of the sample into the argon plasma. Since 1983, improvements in ICP-MS sensitivity have resulted in correspondingly lower mass detection capability. This development has in turn expanded the number of isotopes accessible to measurement at the levels required in the nuclear industry.

  15. Determination of Arsenic in Sinus Wash and Tap Water by Inductively Coupled Plasma-Mass Spectrometry

    ERIC Educational Resources Information Center

    Donnell, Anna M.; Nahan, Keaton; Holloway, Dawone; Vonderheide, Anne P.

    2016-01-01

    Arsenic is a toxic element to which humans are primarily exposed through food and water; it occurs as a result of human activities and naturally from the earth's crust. An experiment was developed for a senior level analytical laboratory utilizing an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) for the analysis of arsenic in household…

  16. ULTRASONIC NEBULIZATION AND ARSENIC VALENCE STATE CONSIDERATIONS PRIOR TO DETERMINATION VIA INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    EPA Science Inventory

    An ultrasonic nebulizer (USN) was utilized as a sample introduction device for an inductively coupled plasma mass spectrometer in an attempt to increase the sensitivity for As. The USN produced a valence state response difference for As. The As response was suppressed approximate...

  17. DETERMINATION OF BROMATE IN DRINKING WATERS BY ION CHROMATOGRAPHY WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Bromate is a disinfection by-product in drinking water, formed during the ozonation of source water containing bromide. An inductively coupled plasma mass spectrometer is combined with an ion chromatograph for the analysis of bromate in drinking waters. Three chromatographic colu...

  18. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, Steven D.

    1996-06-11

    A method and apparatus for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization.

  19. Iron-Isotopic Fractionation Studies Using Multiple Collector Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Zhang, C.; Barling, J.; Roe, J. E.; Nealson, K. H.

    1999-01-01

    The importance of Fe biogeochemistry has stimulated interest in Fe isotope fractionation. Recent studies using thermal ionization mass spectrometry (TIMS) and a "double spike" demonstrate the existence of biogenic Fe isotope effects. Here, we assess the utility of multiple-collector inductively-coupled plasma mass spectrometry(MC-ICP-MS) with a desolvating sample introduction system for Fe isotope studies, and present data on Fe biominerals produced by a thermophilic bacterium. Additional information is contained in the original extended abstract.

  20. Evaluation of Inductively Couple Plasma-time-of-Flight Mass Spectrometry for Laser Ablation Analyses

    SciTech Connect

    S.J. Bajic; D.B. Aeschliman; D.P. Baldwin; R.S. Houk

    2003-09-30

    The purpose of this trip to LECO Corporation was to test the non-matrix matched calibration method and the principal component analysis (PCA) method on a laser ablation-inductively coupled plasma-time of flight mass spectrometry (LA-ICP-TOFMS) system. An LA-ICP-TOFMS system allows for multielement single-shot analysis as well as spatial analysis on small samples, because the TOFMS acquires an entire mass spectrum for all ions extracted simultaneously from the ICP. The TOFMS system differs from the double-focusing mass spectrometer, on which the above methods were developed, by having lower sensitivity and lower mass resolution.

  1. MICROSCALE FLOW INJECTION AND MICROBORE HIGH-PERFORMANCE LIQUID CHROMATORGRAPHY COUPLED WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY VIA A HIGH-EFFICIENCY NEBULIZER

    EPA Science Inventory

    A high-effeciency nebulizer has been used for coupling microscale flow injection and microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry (ICPMS). The microscale flow injection system was configured to minimize band broadening between...

  2. Inductively coupled plasma mass spectrometry for stable isotope metabolic tracer studies of living systems

    SciTech Connect

    Luong, E.

    1999-05-10

    This dissertation focuses on the development of methods for stable isotope metabolic tracer studies in living systems using inductively coupled plasma single and dual quadrupole mass spectrometers. Sub-nanogram per gram levels of molybdenum (Mo) from human blood plasma are isolated by the use of anion exchange alumina microcolumns. Million-fold more concentrated spectral and matrix interferences such as sodium, chloride, sulfate, phosphate, etc. in the blood constituents are removed from the analyte. The recovery of Mo from the alumina column is 82 {+-} 5% (n = 5). Isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS) is utilized for the quantitative ultra-trace concentration determination of Mo in bovine and human blood samples. The average Mo concentration in reference bovine serum determined by this method is 10.2 {+-} 0.4 ng/g, while the certified value is 11.5 {+-} 1.1 ng/g (95% confidence interval). The Mo concentration of one pool of human blood plasma from two healthy male donors is 0.5 {+-} 0.1 ng/g. The inductively coupled plasma twin quadrupole mass spectrometer (ICP-TQMS) is used to measure the carbon isotope ratio from non-volatile organic compounds and bio-organic molecules to assess the ability as an alternative analytical method to gas chromatography combustion isotope ratio mass spectrometry (GC-combustion-IRMS). Trytophan, myoglobin, and {beta}-cyclodextrin are chosen for the study, initial observation of spectral interference of {sup 13}C{sup +} with {sup 12}C{sup 1}H{sup +} comes from the incomplete dissociation of myoglobin and/or {beta}-cyclodextrin.

  3. Reduction of plyatomic ion interferences in indictively coupled plasma mass spectrometry with cryogenic desolvation

    SciTech Connect

    Alves, L.C.

    1993-09-01

    A desolvation scheme for introducing aqueous and organic samples into an argon inductively coupled plasma is described; the aerosol generated by nebulizer is heated (+140 C) and cooled ({minus}80 C) repeatedly, and the dried aerosol is then injected into the mass spectrometer. Polyatomic ions are greatly suppressed. This scheme was validated with analysis of seawater and urine reference samples. Finally, the removal of organic solvents by cryogenic desolvation was studied.

  4. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy

    DOEpatents

    Braymen, S.D.

    1996-06-11

    A method and apparatus are disclosed for in situ addition calibration of an inductively coupled plasma atomic emission spectrometer or mass spectrometer using a precision gas metering valve to introduce a volatile calibration gas of an element of interest directly into an aerosol particle stream. The present in situ calibration technique is suitable for various remote, on-site sampling systems such as laser ablation or nebulization. 5 figs.

  5. Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drugs

    NASA Astrophysics Data System (ADS)

    Ossipov, K.; Seregina, I. F.; Bolshov, M. A.

    2016-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in the analysis of biological samples (whole blood, serum, blood plasma, urine, tissues, etc.) and pharmaceutical drugs. The shortcomings of this method related to spectral and non-spectral interferences are manifested in full measure in determination of the target analytes in these complex samples strongly differing in composition. The spectral interferences are caused by similarity of masses of the target component and sample matrix components. Non-spectral interferences are related to the influence of sample matrix components on the physicochemical processes taking place during formation and transportation of liquid sample aerosols into the plasma, on the value and spatial distribution of plasma temperature and on the transmission of the ion beam from the interface to mass spectrometer detector. The review is devoted to analysis of different mechanisms of appearance of non-spectral interferences and to ways for their minimization or elimination. Special attention is paid to the techniques of biological sample preparation, which largely determine the mechanisms of the influence of sample composition on the results of element determination. The ways of lowering non-spectral interferences by instrumental parameter tuning and application of internal standards are considered. The bibliography includes 189 references.

  6. Thin-layer chromatography combined with diode laser thermal vaporization inductively coupled plasma mass spectrometry.

    PubMed

    Bednařík, Antonín; Tomalová, Iva; Kanický, Viktor; Preisler, Jan

    2014-10-17

    Here we present a novel coupling of thin-layer chromatography (TLC) to diode laser thermal vaporization inductively coupled plasma mass spectrometry (DLTV ICP MS). DLTV is a new technique of aerosol generation which uses a diode laser to induce pyrolysis of a substrate. In this case the cellulose stationary phase on aluminum-backed TLC sheets overprinted with black ink to absorb laser light. The experimental arrangement relies on economic instrumentation: an 808-nm 1.2-W continuous-wave infrared diode laser attached to a syringe pump serving as the movable stage. Using a glass tubular cell, the entire length of a TLC separation channel is scanned. The 8-cm long lanes were scanned in ∼35 s. The TLC - DLTV ICP MS coupling is demonstrated on the separation of four cobalamins (hydroxo-; adenosyl-; cyano-; and methylcobalamin) with limits of detection ∼2 pg and repeatability ∼15% for each individual species. PMID:25193171

  7. Chemical recoveries of technetium-99 for various procedures using inductively coupled plasma-mass spectrometry

    SciTech Connect

    Ihsanullah; East, B.W.

    1993-12-31

    The procedure for the determination of {sup 99}Tc inductively coupled plasma-mass spectrometry (ICP-MS) was based on the modification of a variety of available separation techniques. Standard Ru and Rh solutions were used for checking decontaminations and instrument response respectively. Technetium-99 and {sup 95m}Tc tracers were applied as yield monitors using ICP-MS and gamma-ray spectrometry respectively. Percent recoveries are reported for a variety of radiochemical separation procedures for water (58-83%), seaweed (10-76%), and for soil matrices (19-79%).

  8. Determination of trace metals in marine biological reference materials by inductively coupled plasma mass spectrometry

    SciTech Connect

    Beauchemin, D.; McLaren, J.W.; Willie, S.N.; Berman, S.S.

    1988-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) was used for the analysis of two marine biological reference materials (dogfish liver tissue (DOLT-1) and dogfish muscle tissue (DORM-1)). The materials were put into solution by digestion in a nitric acid/hydrogen peroxide mixture. Thirteen elements (Na, Mg, Cr, Fe, Mn, Co, Ni, Cu, Zn, As, Cd, Hg, and Pb) were then determined. Accurate results were obtained by standard additions or isotope dilution techniques for all of these elements in DORM-1 and for all but Cr in DOLT-1.

  9. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry

    SciTech Connect

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-11-13

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO{sup +} ions also yield signal spikes, but these MO{sup +} spikes generally occur at different times from their atomic ion counterparts.

  10. Production date determination of uranium-oxide materials by inductively coupled plasma mass spectrometry.

    PubMed

    Varga, Zsolt; Surányi, Gergely

    2007-09-01

    The paper describes analytical methods developed for the production date determination of uranium-based nuclear materials by the measurement of 230Th/234U isotope ratio. An improved sample preparation method for the destructive analysis involving extraction chromatographic separation with TEVA resin was applied prior to the measurement by isotope dilution inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The results obtained were compared with the direct, quasi-non-destructive measurement using laser ablation ICP-SFMS technique for age determination. The advantages and limitations of both methods are discussed. PMID:17765059

  11. Elemental Bioimaging by Means of Fast Scanning Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wehe, Christoph A.; Thyssen, Georgina M.; Herdering, Christina; Raj, Indra; Ciarimboli, Giuliano; Sperling, Michael; Karst, Uwe

    2015-08-01

    One of the most common setups for elemental bioimaging, the hyphenation of a laser ablation (LA) system and an inductively coupled plasma mass spectrometer (ICP-MS), was expanded by adding full scan mass spectrometric information as another dimension of information. While most studies deal with the analysis of typically not more than up to 10 isotopes per scan cycle, a fast scanning quadrupole mass analyzer was utilized to record the full mass spectrum of interest in this work. Mass-to-charge ratios from 6 to 250 were observed within one cycle. Besides the x- and y-position on the ablated sample and the intensity, the m/z-ratio served as fourth variable for each pixel of the obtained data, closing thereby the gap between "inorganic" and "organic" mass spectrometric imaging techniques. The benefits of this approach include an improved control of interferences, the discovery of unexpected elemental distributions, the possibility to plot isotopic ratios, and to integrate the intensities of a certain number of mass channels recorded for each isotope, thus virtually increasing sensitivity. The respective data are presented for dried droplets as well as embedded animal and human tissue slices. Limits of detection were calculated and found to be in accordance with counting statistics. A dedicated software macro was developed for data manipulation prior to common evaluation and image creation.

  12. Elemental Bioimaging by Means of Fast Scanning Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.

    PubMed

    Wehe, Christoph A; Thyssen, Georgina M; Herdering, Christina; Raj, Indra; Ciarimboli, Giuliano; Sperling, Michael; Karst, Uwe

    2015-08-01

    One of the most common setups for elemental bioimaging, the hyphenation of a laser ablation (LA) system and an inductively coupled plasma mass spectrometer (ICP-MS), was expanded by adding full scan mass spectrometric information as another dimension of information. While most studies deal with the analysis of typically not more than up to 10 isotopes per scan cycle, a fast scanning quadrupole mass analyzer was utilized to record the full mass spectrum of interest in this work. Mass-to-charge ratios from 6 to 250 were observed within one cycle. Besides the x- and y-position on the ablated sample and the intensity, the m/z-ratio served as fourth variable for each pixel of the obtained data, closing thereby the gap between "inorganic" and "organic" mass spectrometric imaging techniques. The benefits of this approach include an improved control of interferences, the discovery of unexpected elemental distributions, the possibility to plot isotopic ratios, and to integrate the intensities of a certain number of mass channels recorded for each isotope, thus virtually increasing sensitivity. The respective data are presented for dried droplets as well as embedded animal and human tissue slices. Limits of detection were calculated and found to be in accordance with counting statistics. A dedicated software macro was developed for data manipulation prior to common evaluation and image creation. PMID:25947196

  13. Laser ablation inductively coupled plasma mass spectrometry measurement of isotope ratios in depleted uranium contaminated soils.

    PubMed

    Seltzer, Michael D

    2003-09-01

    Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma. PMID:14611049

  14. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry

    SciTech Connect

    Peterson, Dominic S

    2008-01-01

    Trace levels of actinides have been separated on extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer (ICP-MS), which was coupled with the extraction chromatography system. In this study we compare 30 cm long, 4.6 mm ID columns to capillary columns (750 {micro}m ID) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ({sup 232}Th, {sup 238}U, {sup 237}Np, {sup 239}pU, {sup 241}Am). This work has application to rapid bioassay as well as for automated separations of actinide materials.

  15. Biomonitoring of hair samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)

    NASA Astrophysics Data System (ADS)

    Sela, H.; Karpas, Z.; Zoriy, M.; Pickhardt, C.; Becker, J. S.

    2007-03-01

    An analytical method for determining essential elements (Zn, Fe and Cu) and toxic elements (Cr, Pb and U) on single hair strands by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-SFMS) using a double focusing sector field mass spectrometer was developed. Results obtained directly using LA-ICP-SFMS of hair were compared with those measured by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) of solutions of digested hair samples and the analytical methods were found to agree well. Different quantification strategies for trace element determination in hair samples such as external calibration, standard addition and isotope dilution were compared and demonstrated for uranium. For uranium determination in powdered hair by LA-ICP-MS solution-based calibration was applied by coupling the laser ablation chamber to an ultrasonic nebulizer. The significance of single hair analysis by LA-ICP-SFMS was demonstrated by a case study of a person who changed living environment. Differences in the uranium content observed along the single hair strand correlated with the changes in the level of uranium in drinking water. The uranium concentration in a single hair decreased from 212 to 18 ng g-1 with a change in the uranium concentration in drinking water from 2000 to 30 ng l-1. In addition, measurements of uranium isotope ratios showed a natural isotopic composition throughout the whole period in the drinking water, as well as in the hair samples. This paper demonstrates the potential use of laser ablation ICP-MS to provide measurements on a single hair strand and its potential to become a very powerful tool in hair analysis for biological monitoring.

  16. Alleviation of overlap interferences for determination of potassium isotope ratios by inductively coupled plasma mass spectrometry

    SciTech Connect

    Jiang, S.J.; Houk, R.S.; Stevens, M.A.

    1988-06-01

    Positioning the sampling orifice relatively far from the load coil combined with use of low forward power and high aerosol gas flow rate causes the background mass spectrum to become dominated by NO/sup +/. Nearly all the Ar/sup +/ and ArH/sup +/ ions are suppressed under these conditions, which frees m/z 39 and 41 for potassium isotope ratio measurements. The precision is 0.3-0.9% relative standard deviation for potassium concentrations in the range 1-50 mg L/sup -1/. The determined ratios are approx. 9% higher than the accepted value and also vary with the concentration of sodium concomitant, so calibrations and chemical separations are desirable. These observations should permit use of inductively coupled plasma mass spectrometry for rapid isotope ratio determinations of potassium from biological organisms or water sources.

  17. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Jill Wisnewski Ferguson

    2006-08-09

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO{sup +}), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  18. [Analysis of Trace Inorganic Elements in Castor Oil by Inductively Coupled Plasma Mass Spectrometry].

    PubMed

    Li, Tan-ping; Xie, Hua-lin; Nie, Xi-du

    2015-10-01

    A method for the determination of Na, Mg, Si, P, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Hg and Pb in castor oil after direct dilution with ethanol by inductively coupled plasma mass spectrometry (ICP-MS) was established. The sample was diluted by ethanol before ICP-MS determination. The condensation and deposition of high concentrations of carbon in mass cone interface and ion lens, which will decrease the sensitivity of element analysis, were avoided effectively by introducing O2 to plasma. The mass spectral interferences were eliminated by octopole reaction system (ORS). The matrix effects were calibrated to using Sc, Ge, Rh and Ir as internal standard elements. Au standard solution, which could form amalgam alloy with Hg, was dropped to eliminate the memory effect of Hg. The results show that the correlation coefficient for analyte is no less than 0.999 5, the detection limits is in the range of 0.06 - 20.1 ng x L(-1), the recovery is in the range of 990.4% - 110.2%, and the RSD is less than 4.8%. This method was very fast, simple and accurate to simultaneously analyze multi-elements in castor oil. PMID:26904837

  19. Scandium analysis in silicon-containing minerals by inductively coupled plasma tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Whitty-Léveillé, Laurence; Drouin, Elisabeth; Constantin, Marc; Bazin, Claude; Larivière, Dominic

    2016-04-01

    This article reports on the development of a new method for the accurate and precise determination of the amount of scandium, Sc, in silicon-containing minerals, based on the use of tandem quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). The tandem quadrupole instrument enables new mass filtering configurations, which can reduce polyatomic interferences during the determination of Sc in mineral matrices. He and O2 were used and compared as collision and reaction gases for the removal of interferences at m/z 45 and 61. Using helium gas was ineffective to overcome all of the spectral interferences observed at m/z 45 and particularly for Si-based interferences. However, conversion of Sc+ ions into ScO+ ions (after bombardment with O2 in the octopole reaction system coupled with the use of the instrument in MS/MS mass-shift mode) provided interference-free conditions and sufficiently low limits of detection, down to 3 ng L- 1, to accurately detect Sc. The accuracy of the proposed methodology was assessed by analyzing five different reference materials (BX-N, OKA-2, NIM-L, SY-3 and GH).

  20. Measurement of the 135Cs half-life with accelerator mass spectrometry and inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    MacDonald, C. M.; Cornett, R. J.; Charles, C. R. J.; Zhao, X. L.; Kieser, W. E.

    2016-01-01

    The isotope 135Cs is quoted as having a half-life of 2.3 Myr. However, there are three published values ranging from 1.8 to 3 Myr. This research reviews previous measurements and reports a new measurement of the half-life using newly developed accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS) techniques along with β and γ radiometric analysis. The half-life was determined to be (1.6 ±0.6 ) ×106 yr by AMS and (1.3 ±0.2 ) ×106 yr by ICPMS with 95% confidence. The two values agree with each other but differ from the accepted value by ˜40 % .

  1. Determination of the rare-earth elements in geological materials by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.; Meier, A.L.; Crock, J.G.

    1987-01-01

    A method of analysis of geological materials for the determination of the rare-earth elements using the Inductively coupled plasma mass spectrometric technique (ICP-MS) has been developed. Instrumental parameters and factors affecting analytical results have been first studied and then optimized. Samples are analyzed directly following an acid digestion, without the need for separation or preconcentration with limits of detection of 2-11 ng/g, precision of ?? 2.5% relative standard deviation, and accuracy comparable to inductively coupled plasma emission spectrometry and instrumental neutron activation analysis. A commercially available ICP-MS instrument is used with modifications to the sample introduction system, torch, and sampler orifice to reduce the effects of high salt content of sample solutions prepared from geologic materials. Corrections for isobaric interferences from oxide ions and other diatomic and triatomic ions are made mathematically. Special internal standard procedures are used to compensate for drift in metahmetal oxide ratios and sensitivity. Reference standard values are used to verify the accuracy and utility of the method.

  2. Optimization of operating parameters for inductively coupled plasma mass spectrometry: A computational study

    NASA Astrophysics Data System (ADS)

    Aghaei, Maryam; Lindner, Helmut; Bogaerts, Annemie

    2012-10-01

    An inductively coupled plasma, connected to a mass spectrometer interface, is computationally investigated. The effect of pressure behind the sampler, injector gas flow rate, auxiliary gas flow rate, and applied power is studied. There seems to be an optimum range of injector gas flow rate for each setup which guaranties the presence and also a proper length of the central channel in the torch. Moreover, our modeling results show that for any specific purpose, it is possible to control that either only the central gas flow passes through the sampler orifice or that it is accompanied by the auxiliary gas flow. It was also found that depending on geometry, the variation of outgoing gas flow rate is much less than the variation of the injector gas flow rate and this causes a slightly higher pressure inside the torch. The general effect of increasing the applied power is a rise in the plasma temperature, which results in a higher ionization in the coil region. However, the negative effect is reducing the length of the cool central channel which is important to transfer the sample substances to the sampler. Using a proper applied power can enhance the efficiency of the system. Indeed, by changing the gas path lines, the power can control which flow (i.e., only from injector gas or also from the auxiliary gas) goes to the sampler orifice. Finally, as also reported from experiments in literature, the pressure behind the sampler has no dramatic effect on the plasma characteristics.

  3. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect

    Perdian, David C.

    2009-01-01

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  4. Comparison of thermal ionization mass spectrometry and Multiple Collector Inductively Coupled Plasma Mass Spectrometry for cesium isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Isnard, H.; Granet, M.; Caussignac, C.; Ducarme, E.; Nonell, A.; Tran, B.; Chartier, F.

    2009-11-01

    In the nuclear domain, precise and accurate isotopic composition determination of elements in spent nuclear fuels is mandatory to validate neutron calculation codes and for nuclear waste disposal. The present study presents the results obtained on Cs isotope ratio by mass spectrometric measurements. Natural cesium is monoisotopic ( 133Cs) whereas cesium in spent fuels has 4 isotopes ( 133Cs, 134Cs, 135Cs, and 137Cs). As no standard reference material is available to evaluate the accuracy of Cs isotopic measurements, a comparison of cesium isotopic composition in spent nuclear fuels has been performed between Thermal Ionization Mass Spectrometry (TIMS) and a new method involving Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) measurements. For TIMS measurements, isotopic fractionation has been evaluated by studying the behavior of cesium isotope ratios ( 133Cs/ 137Cs and 135Cs/ 137Cs) during the analyses. For MC-ICPMS measurements, the mass bias effects have been corrected with an external mass bias correction using elements (Eu and Sb) close to cesium masses. The results obtained by the two techniques show good agreement: relative difference on 133Cs/ 137Cs and 135Cs/ 137Cs ratios for two nuclear samples, analyzed after chemical separation, ranges from 0.2% to 0.5% depending on the choice of reference value for mass bias correction by MC-ICPMS. Finally the quantification of the 135Cs/ 238U ratio by the isotope dilution technique is presented in the case of a MOx (mixed oxide) spent fuel sample. Evaluation of the global uncertainties shows that this ratio could be defined at an uncertainty of 0.5% ( k = 2). The intercomparison between two independent mass spectrometric techniques is fundamental for the evaluation of uncertainty when no isotopic standard is available.

  5. Laser-ablation sampling for inductively coupled plasma distance-of-flight mass spectrometry

    SciTech Connect

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2015-01-01

    An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capable of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.

  6. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  7. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  8. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Makonnen, Yoseif; Beauchemin, Diane

    2015-01-01

    In industrial/commercial settings where operators often have minimal expertise in inductively coupled plasma (ICP) mass spectrometry (MS), there is a prevalent need for a response factor indicating robust plasma conditions, which is analogous to the Mg II/Mg I ratio in ICP optical emission spectrometry (OES), whereby a Mg II/Mg I ratio of 10 constitutes robust conditions. While minimizing the oxide ratio usually corresponds to robust conditions, there is no specific target value that is widely accepted as indicating robust conditions. Furthermore, tuning for low oxide ratios does not necessarily guarantee minimal matrix effects, as they really address polyatomic interferences. From experiments, conducted in parallel for both MS and OES, there were some element pairs of similar mass and very different ionization potential that were exploited for such a purpose, the rationale being that, if these elements were ionized to the same extent, then that could be indicative of a robust plasma. The Be II/Li I intensity ratio was directly related to the Mg II/Mg I ratio in OES. Moreover, the 9Be+/7Li+ ratio was inversely related to the CeO+/Ce+ and LaO+/La+ oxide ratios in MS. The effects of different matrices (i.e. 0.01-0.1 M Na) were also investigated and compared to a conventional argon plasma optimized for maximum sensitivity. The suppression effect of these matrices was significantly reduced, if not eliminated in the case of 0.01 M Na, when the 9Be+/7Li+ ratio was around 0.30 on the Varian 820 MS instrument. Moreover, a very similar ratio (0.28) increased robustness to the same extent on a completely different ICP-MS instrument (PerkinElmer NEXION). Much greater robustness was achieved using a mixed-gas plasma with nitrogen in the outer gas and either nitrogen or hydrogen as a sheathing gas, as the 9Be+/7Li+ ratio was then around 1.70. To the best of our knowledge, this is the first report on using a simple analyte intensity ratio, 9Be+/7Li+, to gauge plasma robustness.

  9. Osmium isotopic ratio measurements by inductively coupled plasma source mass spectrometry

    SciTech Connect

    Russ, G.P. III; Bazan, J.M.; Date, A.R.

    1987-04-01

    The isotopic composition of nanogram quantities of osmium was measured by using an inductively coupled plasma source mass spectrometer. Sensitivity was enhanced a factor of approx.100 by the use of an osmium tetraoxide vapor generator rather than nebulization of solution. For samples less than or equal to5 ng, the ratios /sup 190/Os//sup 192/Os, /sup 189/Os//sup 192/Os, and /sup 188/Os//sup 192/Os were determined to better than +/- 0.5% (1sigma/sub m/) precision. For the minor isotopes, the ratios /sup 187/Os//sup 192/Os and /sup 186/Os//sup 192/Os were determined to +/-1%, and /sup 184/Os//sup 192/Os (4 x 10/sup -4/) was determined to approx.10%. Isotope ratios for common osmium are reported.

  10. Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Yin, Zhibin; Hang, Wei; Li, Bin; Huang, Benli

    2016-08-01

    A direct solid sampling technique has been developed based on a pulsed radio-frequency discharge (RFD) in mixture of N2 and Ar environment at atmospheric pressure. With an averaged input power of 65 W, a crater with the diameter of 80 μm and depth of 50 μm can be formed on sample surface after discharge for 1 min, suggesting the feasibility of the pulsed RFD for sampling nonconductive solids. Combined with inductively coupled plasma mass spectrometry (ICPMS), this technique allows to measure elemental composition of solids directly with relative standard deviation (RSD) of ~ 20%. Capability of quantitative analysis was demonstrated by the use of soil standards and artificial standards. Good calibration linearity and limits of detection (LODs) in range of 10- 8-10- 9 g/g were achieved for most elements.

  11. Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Taylor, H.E.; Garbarino, J.R.

    1988-01-01

    A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.

  12. Determination of elemental content off rocks by laser ablation inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Lichte, F.E.

    1995-01-01

    A new method of analysis for rocks and soils is presented using laser ablation inductively coupled plasma mass spectrometry. It is based on a lithium borate fusion and the free-running mode of a Nd/YAG laser. An Ar/N2 sample gas improves sensitivity 7 ?? for most elements. Sixty-three elements are characterized for the fusion, and 49 elements can be quantified. Internal standards and isotopic spikes ensure accurate results. Limits of detection are 0.01 ??g/g for many trace elements. Accuracy approaches 5% for all elements. A new quality assurance procedure is presented that uses fundamental parameters to test relative response factors for the calibration.

  13. Determination of mercury in fish samples by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liaw, Ming-Jyh; Jiang, Shiuh-Jen; Li, Yi-Ching

    1997-06-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to the determination of mercury in several fish samples. The effects of instrument operating conditions and slurry preparation on the ion signals are reported. Palladium was used as modifier to delay the vaporization of mercury in this study. As the vaporization behavior of mercury in fish slurry and aqueous solution is quite different, the standard addition method was used for the determination of mercury in reference materials. The detection limit of mercury estimated from the standard addition curve was in the range 0.002-0.004 μg g -1 for different samples. This method has been applied to the determination of mercury in dogfish muscle reference material (DORM-1 and DORM-2) and dogfish liver reference material (DOLT-1). Accuracy was better than 4% and precision was better than 7% with the USS-ETV-ICP-MS method.

  14. Stable isotope dilution analysis of hydrologic samples by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, H.E.

    1987-01-01

    Inductively coupled plasma mass spectrometry is employed in the determination of Ni, Cu, Sr, Cd, Ba, Ti, and Pb in nonsaline, natural water samples by stable isotope dilution analysis. Hydrologic samples were directly analyzed without any unusual pretreatment. Interference effects related to overlapping isobars, formation of metal oxide and multiply charged ions, and matrix composition were identified and suitable methods of correction evaluated. A comparability study snowed that single-element isotope dilution analysis was only marginally better than sequential multielement isotope dilution analysis. Accuracy and precision of the single-element method were determined on the basis of results obtained for standard reference materials. The instrumental technique was shown to be ideally suited for programs associated with certification of standard reference materials.

  15. Multielement analysis of deep-sea sediments by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xia, Ning; Wu, Zhaohui; Guo, Dongfa; Yao, De

    2008-05-01

    Marine sediments were dissolved by HNO3-HF-HClO4 in a sealed container at low pressure; HF was evaporated in an open container and salts were dissolved in HCl by heating, then transferred to 2% HNO3 solution. A total of 45 elements, including Li, Be, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Tl, Pb, Bi, Th and U, were measured by inductively coupled plasma mass spectrometry (ICP-MS). Conditions and sample experiments showed that this procedure defines a good experimental method which has the advantages of clear interference, easy operation and reliable results. The concentrations of the 45 elements could be used for resource exploration, environmental assessment and academic research.

  16. Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Veverková, Lenka; Hradilová, Šárka; Milde, David; Panáček, Aleš; Skopalová, Jana; Kvítek, Libor; Petrželová, Kamila; Zbořil, Radek

    2014-12-01

    This study examined recoveries of silver determination in animal tissues after wet digestion by inductively coupled plasma mass spectrometry. The composition of the mineralization mixture for microwave assisted digestion was optimized and the best recoveries were obtained for mineralization with HNO3 and addition of HCl promptly after digestion. The optimization was performed on model samples of chicken meat spiked with silver nanoparticles and a solution of ionic silver. Basic calculations of theoretical distribution of Ag among various silver-containing species were implemented and the results showed that most of the silver is in the form of soluble complexes AgCl2- and AgCl32 - for the optimized composition of the mineralization mixture. Three animal tissue certified reference materials were then analyzed to verify the trueness and precision of the results.

  17. Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry.

    PubMed

    Bua, Daniel Giuseppe; Annuario, Giovanni; Albergamo, Ambrogina; Cicero, Nicola; Dugo, Giacomo

    2016-09-01

    Objective of this study was to determine the content of Cd, Hg, As and Pb in common spices traded in the Italian market, using inductively coupled plasma-mass spectrometry (ICP-MS). The results were compared with the maximum limits established by the national Legislative Decree (LD) no. 107 implementing the Council Directive 88/388/EEC and by international organisations, such as Food and Agriculture Organization (FAO) and World Health Organization (WHO). Food safety for spices was assessed considering the tolerable weekly intake (TWI) and the provisional tolerable weekly intake (PTWI), respectively, for Cd and Hg and the 95% lower confidence limit of the benchmark dose of 1% extra risk (BMDL01) for As and Pb. Investigated elements in all samples were within the maximum limits as set by the national and international normative institutions. Nevertheless, the heavy metal content of some spices exceeded the PTWI, TWI and BMDL01, which needs attention when considering consumer's health. PMID:27074712

  18. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    SciTech Connect

    Saetveit, Nathan Joe

    2008-01-01

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 μg L-1 or better were found for P, Mn, Fe, Cu, and Zn in a 60 μL injection in a physiological saline matrix.

  19. Representative sampling using single-pulse laser ablation withinductively coupled plasma mass spectroscopy

    SciTech Connect

    Liu, Haichen; Mao, Xianglei; Russo, Richard E.

    2001-04-02

    Single pulse laser ablation sampling with inductively coupled plasma mass spectrometry (ICP-MS) was assessed for accurate chemical analysis. Elemental fractionation (e.g. Pb/U), the quantity of ablated mass (crater volume), ICP-MS intensity and the particle contribution (spike signal) during single pulse ablation of NIST 610 glass were investigated. Pb/U fractionation significantly changed between the first and second laser pulse and showed strong irradiance dependence. The Pb/U ratio obtained by the first pulse was usually higher than that of the second pulse, with the average value close to the representative level. Segregation during laser ablation is proposed to explain the composition change between the first and second pulse. Crater volume measurements showed that the second pulse produced significantly more ablated mass. A roll-off of the crater depth occurred at {approx}750 GW/cm{sup 2}. The absolute ICP-MS intensity from the second pulse showed no correlation with crater depth. Particle induced spikes on the transit signal showed irradiance and elemental species dependence.

  20. [Determination of Heavy Metal Elements in Diatomite Filter Aid by Inductively Coupled Plasma Mass Spectrometry].

    PubMed

    Nie, Xi-du; Fu, Liang

    2015-11-01

    This study established a method for determining Be, Cr, Ni, As, Cd, Sb, Sn, Tl, Hg and Pb, total 10 heavy metals in diatomite filter aid. The diatomite filter aid was digested by using the mixture acid of HNO₃ + HF+ H₃PO₄ in microwave system, 10 heavy metals elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). The interferences of mass spectrometry caused by the high silicon substrate were optimized, first the equipment parameters and isotopes of test metals were selected to eliminate these interferences, the methane was selected as reactant gas, and the mass spectral interferences were eliminated by dynamic reaction cell (DRC). Li, Sc, Y, In and Bi were selected as the internal standard elements to correct the interferences caused by matrix and the drift of sensitivity. The results show that the detection limits for analyte is in the range of 3.29-15.68 ng · L⁻¹, relative standard deviations (RSD) is less than 4.62%, and the recovery is in the range of 90.71%-107.22%. The current method has some advantages such as, high sensitivity, accurate, and precision, which can be used in diatomite filter aid quality control and safety estimations. PMID:26978934

  1. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry

    SciTech Connect

    Niu, Hongsen

    1995-02-10

    The fundamental and practical aspects are described for extracting ions from atmospheric pressure plasma sources into an analytical mass spectrometer. Methodologies and basic concepts of inductively coupled plasma mass spectrometry (ICP-MS) are emphasized in the discussion, including ion source, sampling interface, supersonic expansion, slumming process, ion optics and beam focusing, and vacuum considerations. Some new developments and innovative designs are introduced. The plasma extraction process in ICP-MS was investigated by Langmuir measurements in the region between the skimmer and first ion lens. Electron temperature (T{sub e}) is in the range 2000--11000 K and changes with probe position inside an aerosol gas flow. Electron density (n{sub e}) is in the range 10{sup 8}--10{sup 10} {sup {minus}cm }at the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} near the skimmer tip and drops abruptly to 10{sup 6}--10{sup 8} cm{sup {minus}3} downstream further behind the skimmer. Electron density in the beam leaving the skimmer also depends on water loading and on the presence and mass of matrix elements. Axially resolved distributions of electron number-density and electron temperature were obtained to characterize the ion beam at a variety of plasma operating conditions. The electron density dropped by a factor of 101 along the centerline between the sampler and skimmer cones in the first stage and continued to drop by factors of 10{sup 4}--10{sup 5} downstream of skimmer to the entrance of ion lens. The electron density in the beam expansion behind sampler cone exhibited a 1/z{sup 2} intensity fall-off (z is the axial position). An second beam expansion originated from the skimmer entrance, and the beam flow underwent with another 1/z{sup 2} fall-off behind the skimmer. Skimmer interactions play an important role in plasma extraction in the ICP-MS instrument.

  2. Recent developments in inductively coupled plasma source magnetic sector multiple collector mass spectrometry

    SciTech Connect

    Halliday, A.N.; Lee, Der-Chuen; Christensen, J.C.; Jones, C.E.; Hall, C.M.; Yi, Wen; Teagle, D.; Walder, A.J.; Freedman, P.A.

    1994-11-01

    This paper describes advances in isotopic measurements that have been made with an inductively coupled plasma source magnetic sector multiple collector mass spectrometer and presents results of new experiments aimed at further evaluating the instrument`s capability. It is shown using standard solutions that trace element ratios such as Rb/Sr can be measured precisely without isotope dilution by comparison with reference solutions of known composition. Similarly, using a new wide flight tube, Pb isotopic compositions and U/Pb ratios can be accurately measured simultaneously without isotope dilution. The effects of deliberately inducing changes in the running conditions (RF power) are shown to be significant for measuring trace element ratios but not for mass bias and interference corrected isotopic compositions. Finally, it is demonstrated that precise and accurate isotopic compositions of elements as refractory as W can be determined relatively easily by solution nebulization and even by direct laser ablation of complex silicates. Isobaric interferences in such experiments are negligible. These experiments serve to highlight the remarkable potential that this new field offers for hitherto difficult isotopic measurements in nuclear, earth, environmental and medical sciences. Isotopic measurements can be made that are reproducible at high precision through a range of running conditions, even in the presence of isobaric interferences. The ability to correct for mass discrimination accurately using a second element of similar mass, the very high sensitivity for elements that are otherwise difficult to ionize, the demonstrated capability for laser ablation work and the ability to measure through a wide mass range simultaneously give this instrument major advantages over other more traditional techniques of isotopic measurement.

  3. Inductively coupled plasma mass spectrometry applied to isotopic analysis of iron in human fecal matter

    SciTech Connect

    Ting, B.T.G.; Janghorbani, M.

    1986-06-01

    Inductively coupled plasma mass spectrometry combined with stable isotope dilution is applied to accurate isotopic analysis of human fecal matter for /sup 54/Fe and /sup 58/Fe. Argon plasma generated interferences are of minor concern. The interference from /sup 54/Cr can be corrected instrumentally, whereas /sup 58/Ni must be removed chemically. The ratio of the stable isotopes of interest can be measured routinely with a relative standard deviation of about 1%. The overall accuracy of the method for quantitative isotopic analyses is evaluated in Standard Reference Material (SRM) 1577a (Bovine Liver), fecal homogenate subsamples, and synthetic solutions of iron. For SRM 1577a, the respective comparisons are (..mu..g/g) 192.2 +/- 2.2 (present method) vs. 194 +/- 20 (certified value). For the fecal matrix, the present method yields (..mu..g/mL) 15.14 +/- 0.36 vs. 15.82 +/- 0.48 based on atomic absorption spectrophotometry. For an iron solution (250 ppm), replicate analyses yield the value of 245.4 +/- 1.5 ppm.

  4. Acid retardation method in analysis of strongly acidic solutions by inductively coupled plasma mass-spectrometry.

    PubMed

    Seregina, I F; Perevoznik, O A; Bolshov, M A

    2016-10-01

    Acid retardation on the sorbents as a technique for reduction of the acidity of the solutions prior to their analysis by inductively coupled plasma mass spectrometry was proposed and investigated. The proposed scheme provides substantial separation of the analytes and nitric acid, which allows direct introduction of the eluates in plasma without dilution. Two sorbents were examined - AV-17 anion-exchange resin and the Stirosorb 584 sorbent. Sorption and desorption of 38 elements on these sorbents were investigated. The efficiencies of the REEs' sorption on the anion-exchange and neutral sorbents were compared. The higher efficiency of the REEs and HNO3 separation was revealed for the neutral Stirosorb 584 sorbent. It was also found that most elements come out quantitatively of the column filled with the AV-17 resin after pumping 2-4mL of the solution. Wherein, the concentration of nitric acid decreased by 20 times. The anomalous behaviour of Ag, Pb, Th and U on the AV-17 resin was found. These analytes were eluted only after pumping 4 column volumes of deionized water. Na, K, Fe, Al and Li in concentrations within (50-1000mgL(-1)) range did not affect the recovery of REEs. The potential of ARM technique was demonstrate by the analysis of puriss. HNO3 and silverware. ARM enables to avoid dilution of highly acidic solutions prior to their introduction in ICP-MS. PMID:27474322

  5. Rapid determination of uranium isotopes in urine by inductively coupled plasma-mass spectrometry.

    PubMed

    Shi, Y; Dai, X; Collins, R; Kramer-Tremblay, S

    2011-08-01

    Following a radiological or nuclear emergency involving uranium exposure, rapid analytical methods are needed to analyze the concentration of uranium isotopes in human urine samples for early dose assessment. The inductively coupled plasma mass spectrometry (ICP-MS) technique, with its high sample throughput and high sensitivity, has advantages over alpha spectrometry for uranium urinalysis after minimum sample preparation. In this work, a rapid sample preparation method using an anion exchange chromatographic column was developed to separate uranium from the urine matrix. A high-resolution sector field ICP-MS instrument, coupled with a high sensitivity desolvation sample introduction inlet, was used to determine uranium isotopes in the samples. The method can analyze up to 24 urine samples in two hours with the limits of detection of 0.0014, 0.10, and 2.0 pg mL(-1) for (234)U, (235)U, and (238)U, respectively, which meet the requirement for isotopic analysis of uranium in a radiation emergency. PMID:21709502

  6. Determination of selenium urinary metabolites by high temperature liquid chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Terol, A; Ardini, F; Basso, A; Grotti, M

    2015-02-01

    The coupling of high temperature liquid chromatography (HTLC) and inductively coupled plasma mass spectrometry (ICPMS) for the determination of selenium metabolites in urine samples is reported for the first time. In order to achieve "ICPMS-friendly" chromatographic conditions, the retention on a graphite stationary phase of the major selenium urinary metabolites using only plain water with 2% methanol as the mobile phase was investigated. Under the optimal conditions (T=80°C, Ql=1.2 mL min(-1)), methyl 2-acetamido-2-deoxy-1-seleno-β-d-galactopyranoside (selenosugar 1), methyl 2-acetamido-2-deoxy-1-seleno-β-d-glucosopyranoside (selenosugar 2) and trimethylselenonium ion were efficiently separated in less than 7 min, without any interferences due to other common selenium species (selenite, selenate, selenocystine and selenomethionine) or detectable effect of the urine matrix. The limits of detection were 0.3-0.5 ng Se mL(-1), and the precision of the analytical procedure was better than 3% (RSD%, n=5). The HTLC-ICPMS method was applied to the analysis of urine samples from two volunteers before and after ingestion of Brazil nuts or selenium supplements. The developed procedure proved to be adequate for the analytical task, providing results consistent with previous studies. PMID:25582485

  7. Sulfur analysis by inductively coupled plasma-mass spectrometry: A review

    NASA Astrophysics Data System (ADS)

    Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I.

    2015-06-01

    In recent years the number of applications of sulfur (S) analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. In this article we describe in some depth the application of ICP-MS for S analysis with emphasis placed on the sulfur-specific detection by hyphenated techniques such as LC, GC, CE and LA coupled on-line to ICP-MS. The different approaches available for sulfur isotope ratio measurements by ICP-MS are also detailed. Particular attention has been paid to the quantification of peptides/proteins and the analysis of metallopeptides/metalloproteins via sulfur by LC-ICP-MS. Likewise, the speciation analysis of metal-based pharmaceuticals and metallodrugs and non-metal selective detection of pharmaceuticals via S are highlighted. Labeling procedures for metabolic applications are also included. Finally, the measurement of natural variations in S isotope composition with multicollector ICP-MS instruments is also covered in this review.

  8. Sulfur-based absolute quantification of proteins using isotope dilution inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Seok; Heun Kim, Sook; Jeong, Ji-Seon; Lee, Yong-Moon; Yim, Yong-Hyeon

    2015-10-01

    An element-based reductive approach provides an effective means of realizing International System of Units (SI) traceability for high-purity biological standards. Here, we develop an absolute protein quantification method using double isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS) combined with microwave-assisted acid digestion for the first time. We validated the method and applied it to certify the candidate protein certified reference material (CRM) of human growth hormone (hGH). The concentration of hGH was determined by analysing the total amount of sulfur in hGH. Next, the size-exclusion chromatography method was used with ICP-MS to characterize and quantify sulfur-containing impurities. By subtracting the contribution of sulfur-containing impurities from the total sulfur content in the hGH CRM, we obtained a SI-traceable certification value. The quantification result obtained with the present method based on sulfur analysis was in excellent agreement with the result determined via a well-established protein quantification method based on amino acid analysis using conventional acid hydrolysis combined with an ID liquid chromatography-tandem mass spectrometry. The element-based protein quantification method developed here can be generally used for SI-traceable absolute quantification of proteins, especially pure-protein standards.

  9. Highly sensitive immunoassay based on immunogold-silver amplification and inductively coupled plasma mass spectrometric detection.

    PubMed

    Liu, Rui; Liu, Xing; Tang, Yurong; Wu, Li; Hou, Xiandeng; Lv, Yi

    2011-03-15

    In this work, we demonstrated a highly sensitive inductively coupled plasma mass spectrometric (ICPMS) method for the determination of human carcinoembryonic antigen (CEA), which combined the inherent high sensitivity of elemental mass spectrometric measurement with the signal amplification of catalytic silver deposition on immunogold tags. The silver amplification procedure was easy to handle and required cheap reagents, and the sensitivity was greatly enhanced to 60-fold after a 15 min silver amplification procedure. The experimental conditions, including detection of gold and silver by ICPMS, immunoassay parameters, silver amplification parameters, analytical performance, and clinical serum samples analysis, were investigated. The ICPMS Ag signal intensity depends linearly on the logarithm of the concentration of human CEA over the range of 0.07-1000 ng mL(-1) with a limit of detection (LOD, 3σ) of 0.03 ng mL(-1) (i.e., 0.15 pM). The LOD of the proposed method is around 2 orders of magnitude lower than that by the widely used enzyme-linked immunosorbent assay (ELISA) and 1 order of magnitude lower than that by clinical routine chemiluminescence immunoassay (CLIA) or time-resolved fluoroimmunoassay (TRFIA) and conventional ICPMS immunoassay. The present strategy was applied to the determination of human CEA in clinical human serum samples, and the results were in good agreement with those obtained by chemiluminescence immunoassay. PMID:21348438

  10. Investigation of palladium and platinum levels in food by sector field inductively coupled plasma mass spectrometry.

    PubMed

    Frazzoli, Chiara; Cammarone, Roberta; Caroli, Sergio

    2007-05-01

    Over the last two decades, there has been increased concern regarding the impact of some noble metals, such as Pd and Pt, on human health. These elements pollute the environment due to their widespread use as catalytic converters and in medical applications. The risk they pose to human health and the environment is still controversial; however, literature data point to diet as an important source of uptake by the human body. Within this context, the total Pd and Pt content of several Italian food commodities has been investigated. A total of 90 samples, including flour products, vegetables and foodstuffs of animal origin (meat, milk and eggs), were collected and freeze-dried. Samples were analyzed by sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) after chopping or crushing followed by freeze-drying and microwave (MW)-assisted acid digestion in a Class-100 clean-room. A mathematical approach was adopted to correct the mass signals for still unresolved interference (mDeltam = 300, 10 000). The lowest and highest concentrations of Pt, i.e. 17 and 93 ng kg(-1) (dry weight, dw), were found in vegetables and flour products, respectively. The lowest Pd level (2830 ng kg(-1) dw) was found in eggs and the highest (47 800 ng kg(-1) dw) in vegetables. PMID:17487666

  11. Plutonium determination in seawater by inductively coupled plasma mass spectrometry: A review.

    PubMed

    Cao, Liguo; Bu, Wenting; Zheng, Jian; Pan, Shaoming; Wang, Zhongtang; Uchida, Shigeo

    2016-05-01

    Knowing the concentration and isotopic ratio of Pu in seawater is of critical importance for assessing Pu contamination and investigating oceanic processes. In recent decades, the concentration of (239+240)Pu in seawater, particularly for surface seawater, has presented an exponential decreasing trend with time; thus determination of Pu in seawater has become a challenge nowadays. Here, we have summarized and critically discussed a variety of reported analytical methods for Pu determination in seawater sample based on inductively coupled plasma mass spectrometry (ICP-MS) analytical technique for rapid ultra-trace detection of Pu. Generally, pretreatments for seawater sample include co-precipitation, valence adjustment and chemical separation and purification procedures, all of which are comprehensively reviewed. Overall, the selected anion-exchange, extraction resins and operation condition are important for decontamination of interference from matrix elements and achieving satisfactory chemical yields. In addition, other mass spectrometric and radiometric detections are briefly addressed and compared with the focus on assessing ICP-MS. Finally, we discuss some issues and prospects in determination and application of Pu isotopes in seawater samples for future research. PMID:26946007

  12. Direct solid sampling of fire assay beads by spark ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Van Hoven, R. L.; Nam, Sang-Ho; Montaser, Akbar; Doughten, M. W.; Dorrzapf, A. F.

    1995-06-01

    A spark-based, solid-sampling cell is described for inductively coupled plasma mass spectrometry (ICP-MS). The cell is devised for the direct sampling of gold and silver beads produced by the classical lead fire assay procedure. The sampler produces a solid aerosol composed of submicron-sized vapor condensates and small (< 2 μm) spherules. In contrast to solution nebulization, the mass spectrum for spark-ICP-MS is relatively free of interfering metal oxide, polyatomic, and multiply-charged ions. The measurement precision is 3% RSD for Pt, Pd, and Rh preconcentrated into fire assay beads, but is 6% RSD for Ir due to its heterogeneous distribution in a silver bead. Detection limits determined for Pt, Pd, Rh, and Ir in fire assay beads range from 0.6 μg/g (Pt) to 1.2 μg/g (Pd). Calibration curves for these elements are linear up to the highest concentration in the bead studied (2000 μg/g). The quantitative potential of the method is evaluated using the South African Reference Material (SARM-7) geologic standard.

  13. Characterization of natural water resources in Israel by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Halicz, L.; Becker, J. S.; Pickhardt, C.; Gavrieli, I.; Burg, A.; Nishri, A.; Platzner, I. T.

    2006-03-01

    Analytical procedures are applied for the determination of plutonium, uranium and strontium concentration, their isotope ratios and the analysis of rare earth elements (REE) at trace and ultratrace level in natural Israeli water resources with relatively high matrix content (Na = 20-150 mg L-1, Mg = 20-50 mg L-1 and Ca = 40-100 mg L-1) by inductively coupled plasma mass spectrometry (ICP-MS). To avoid matrix and clogging effects on the cones during mass spectrometric measurements and to analyze Pu and REE at extremely low concentration levels, separation procedures from matrices were applied. An extremely low Pu contamination of the Sea of Galilee was observed due to global nuclear fallout after the nuclear weapons test in the 1960s. The detection limit, for example, for 239Pu was found to be <10-19 g mL-1. For uranium a natural variation of the 234U/238U isotope ratios by a factor of up to 2 in comparison to the IUPAC table value was detected using ICP-MS. This paper discusses the application of double-focusing sector field ICP-MS with single and multiple ion collection as well as quadrupole-based ICP-MS (ICP-QMS) for the quantitative determination of REE, plutonium, uranium and strontium and their isotope ratios after analyte/matrix separation at trace and ultratrace levels in natural water.

  14. Studies of selenium and xenon in inductively coupled plasma mass spectrometry

    SciTech Connect

    Bricker, T.

    1994-07-27

    Since its development, inductively coupled plasma mass spectrometry (ICP-MS) has been a widely used analytical technique. ICP-MS offers low detection limits, easy determination of isotope ratios, and simple mass spectra from analyte elements. ICP-MS has been successfully employed for many applications including geological, environmental, biological, metallurgical, food, medical, and industrial. One specific application important to many areas of study involves elemental speciation by using ICP-MS as an element specific detector interfaced to liquid chromatography. Elemental speciation information is important and cannot be obtained by atomic spectrometric methods alone which measure only the total concentration of the element present. Part 1 of this study describes the speciation of selenium in human serum by size exclusion chromatography (SEC) and detection by ICP-MS. Although ICP-MS has been widely sued, room for improvement still exists. Difficulties in ICP-MS include noise in the background, matrix effects, clogging of the sampling orifice with deposited solids, and spectral interference caused by polyatomic ions. Previous work has shown that the addition of xenon into the central channel of the ICP decreases polyatomic ion levels. In Part 2 of this work, a fundamental study involving the measurement of the excitation temperature is carried out to further understand xenon`s role in the reduction of polyatomic ions. 155 refs.

  15. Determination of plutonium in urine: evaluation of electrothermal vaporization inductively coupled plasma mass spectroscopy

    SciTech Connect

    Pietrzak, R.; Kaplan, E.

    1996-11-01

    Mass spectroscopy has the distinct advantage of detecting atoms rather than radioactive decay products for nuclides of low specific activity. Electrothermal vaporization (ETV) is an efficient means of introducing small volumes of prepared samples into an inductively coupled mass spectrometer to achieve the lowest absolute detection limits. The operational characteristics and capabilities of electrothermal vaporization inductively coupled mass spectrometer mass spectroscopy were evaluated. We describe its application as a detection method for determining Pu in urine, in conjunction with a preliminary separation technique to avoid matrix suppression of the signal.

  16. Quantitative Characterization of Gold Nanoparticles by Coupling Thin Layer Chromatography with Laser Ablation Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Yan, Neng; Zhu, Zhenli; Jin, Lanlan; Guo, Wei; Gan, Yiqun; Hu, Shenghong

    2015-06-16

    Metal nanoparticles (NPs) determination has recently attracted considerable attention because of the continuing boom of nanotechnology. In this study, a novel method for separation and quantitative characterization of NPs in aqueous suspension was established by coupling thin layer chromatography (TLC) with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Gold nanoparticles (AuNPs) of various sizes were used as the model system. It was demonstrated that TLC not only allowed separation of gold nanoparticles from ionic gold species by using acetyl acetone/butyl alcohol/triethylamine (6:3:1, v/v) as the mobile phase, but it also achieved the separation of differently sized gold nanoparticles (13, 34, and 47 nm) by using phosphate buffer (0.2 M, pH = 6.8), Triton X-114 (0.4%, w/v), and EDTA (10 mM) as the mobile phase. Various experimental parameters that affecting TLC separation of AuNPs, such as the pH of the phosphate buffer, the coating of AuNPs, the concentrations of EDTA and Triton X-114, were investigated and optimized. It was found that separations of AuNPs by TLC displayed size dependent retention behavior with good reproducibility, and the retardation factors (R(f) value) increased linearly with decreasing nanoparticle size. The analytical performance of the present method was evaluated under optimized conditions. The limits of detection were in the tens of pg range, and repeatability (RSD, n = 7) was 6.3%, 5.9%, and 8.3% for 30 ng of 13 nm AuNPs, 34 nm AuNPs, and 47 nm AuNPs, respectively. The developed TLC-LA-ICP-MS method has also been applied to the analysis of spiked AuNPs in lake water, river water, and tap water samples. PMID:26005902

  17. Controlled Dissolution of Surface Layers for Elemental Analysis by Inductively Coupled Plasma-Mass Spectrometry

    SciTech Connect

    Susan Elizabeth Lorge

    2007-12-01

    Determining the composition of thin layers is increasingly important for a variety of industrial materials such as adhesives, coatings and microelectronics. Secondary ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), glow discharge optical emission spectroscopy (GDOES), glow discharge mass spectrometry (GDMS), and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are some of the techniques that are currently employed for the direct analysis of the sample surface. Although these techniques do not suffer from the contamination problems that often plague sample dissolution studies, they do require matrix matched standards for quantification. Often, these standards are not readily available. Despite the costs of clean hoods, Teflon pipette tips and bottles, and pure acids, partial sample dissolution is the primary method used in the semiconductor industry to quantify surface impurities. Specifically, vapor phase decomposition (VPD) coupled to ICP-MS or total reflection x-ray fluorescence (TXRF) provides elemental information from the top most surface layers at detection sensitivities in the 10{sup 7}-10{sup 10}atoms/cm{sup 2} range. The ability to quantify with standard solutions is a main advantage of these techniques. Li and Houk applied a VPD-like technique to steel. The signal ratio of trace element to matrix element was used for quantification. Although controlled dissolution concentrations determined for some of the dissolved elements agreed with the certified values, concentrations determined for refractory elements (Ti, Nb and Ta) were too low. LA-ICP-MS and scanning electron microscopy (SEM) measurements indicated that carbide grains distributed throughout the matrix were high in these refractory elements. These elements dissolved at a slower rate than the matrix element, Fe. If the analyte element is not removed at a rate similar to the matrix element a true representation of the

  18. Inductively coupled plasma-mass spectrometry: An emerging method for analysis of long-lived radionuclides

    SciTech Connect

    Ross, R.R.; Noyce, J.R.; Lardy, M.M.

    1993-12-31

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a relatively new technique that can analyze for most of the elements in the periodic table at parts per billion (ng/mL) to parts per trillion (pg/mL). Already in use several years for trace analysis of stable isotopes, ICP-MS is becoming a powerful, complementary method to the counting of decay radiations for the analysis of radionuclides. Most radionuclides with half-lives longer than approximately 1x10{sup 3} years can be quantitatively detected on ICP-MS instruments that have an electrothermal vaporization unit for the injection of sample aliquants. Radionuclides with half-lives greater than approximately 1x10{sup 4} years can be measured routinely with greater sensitivity and more quickly by ICP-MS than by radiation counting. Examples from the literature of applying ICP-MS to radionuclides are the bioassay of uranium in urine, measurement of {sup 237}Np in soil and silt, and analysis for {sup 99}Tc in sea water, seaweed, and marine sediment. This paper discusses the instrumentation, advantages and limitations, and present and potential applications of ICP-MS for radionuclide measurements.

  19. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, J. S.; Dietrich, R. C.; Matusch, A.; Pozebon, D.; Dressler, V. L.

    2008-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13C +, 33S + and 34S + within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13C + as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots.

  20. Inductively coupled plasma mass spectrometer with laser ablation metal ions release detection in the human mouth

    NASA Astrophysics Data System (ADS)

    Kueerova, Hana; Dostalova, Tatjana; Prochazkova, J.

    2002-06-01

    Presence of more dental alloys in oral cavity often causes pathological symptoms. Due to various and multi-faced symptomatology, they tend to be a source of significant problems not only for the patient but also for the dentist. Metal ions released from alloys can cause subjective and objective symptoms in mouth. The aim of this study was detection of metal elements presence in saliva. There were 4 groups of examined persons: with intact teeth (15 individuals) with metallic restorations, pathological currents 5-30 (mu) A, multi-faced subjective symptomatology and uncharacteristic objective diagnosis (32 patients), with metallic restorations and no subjective symptoms (14 persons) and with metallic restorations, without pathological currents and with problems related to galvanism (13 patients). Presence of 14 metal elements was checked by inductively coupled plasma mass spectrometer with laser ablation. Nd:YAG laser detector was used. There were significant differences in content of silver, gold and mercury between persons with intact teeth and other three groups. There were no differences found between subjects with and without galvanic currents, and presence of subjective and objective symptoms.

  1. Determination of metals in marine species by microwave digestion and inductively coupled plasma mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Yang, Karl X.; Swami, Kamal

    2007-10-01

    A microwave digestion method suitable for determination of multiple elements in marine species was developed, with the use of cold vapor atomic spectrometry for the detection of Hg, and inductively coupled plasma mass spectrometry for all of the other elements. An optimized reagent mixture composed of 2 ml of HNO 3, 2 ml of H 2O 2 and 0.3 ml of HF used in microwave digestion of about 0.15 g (dry weight) of sample was found to give the best overall recoveries of metals in two standard reference materials. In the oyster tissue standard reference material (SRM 1566b), recoveries of Na, Al, K, V, Co, Zn, Se, Sr, Ag, Cd, Ni, and Pb were between 90% and 110%; Mg, Mn, Fe, Cu, As, and Ba recoveries were between 85% and 90%; Hg recovery was 81%; and Ca recovery was 64%. In a dogfish certified reference material (DORM-2), the recoveries of Al, Cr, Mn, Se, and Hg were between 90% and 110%; Ni, Cu, Zn, and As recoveries were about 85%; and Fe recovery was 112%. Method detection limits of the elements were established. Metal concentrations in flounder, scup, and blue crab samples collected from coastal locations around Long Island and in the Hudson River estuary were determined.

  2. Determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Baker, S. A.; Miller-Ihli, N. J.

    2000-12-01

    The determination of cobalamins using capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) was investigated. Both capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) modes of operation were studied. The optimal separation of four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5'-deoxyadenosylcobalamin) and a potentially harmful corrinoid analogue (cobinamide dicyanide) was obtained using CZE at a pH of 2.5. Both 20 mM phosphate and 20 mM formate buffers were used with success, although the formate buffer provided improved resolution. The CZE-ICP-MS method was used to quantify cyanocobalamin in a vitamin supplement and the analytical results were in good agreement (±5%) with values obtained by ICP-MS for total Co levels. The solution detection limits for cobalamins using CZE-ICP-MS were approximately 50 ng/ml. MEKC was found to be useful for the screening of vitamin preparations because it provided a rapid means of distinguishing cyanocobalamin (the form most commonly used in vitamin preparations) from free cobalt. The separation of free cobalt and cyanocobalamin using MEKC was achieved in less than 10 min.

  3. Determination of long-lived actinides in soil leachates by inductively coupled plasma: Mass spectrometry

    SciTech Connect

    Crain, J.S.; Smith, L.L.; Yaeger, J.S.; Alvarado, J.A.

    1994-06-01

    Inductively coupled plasma -- mass spectrometry (ICP-MS) was used to concurrently determine multiple long-lived (t{sub 1/2} > 10{sup 4} y) actinide isotopes in soil samples. Ultrasonic nebulization was found to maximize instrument sensitivity. Instrument detection limits for actinides in solution ranged from 50 mBq L{sup {minus}1} ({sup 239}Pu) to 2 {mu}Bq L{sup {minus}1} ({sup 235}U) Hydride adducts of {sup 232}Th and {sup 238}U interfered with the determinations of {sup 233}U and {sup 239} Pu; thus, extraction chromatography was, used to eliminate the sample matrix, concentrate the analytes, and separate uranium from the other actinides. Alpha spectrometric determinations of {sup 230}Th, {sup 239}Pu, and the {sup 234}U/{sup 238}U activity ratio in soil leachates compared well with ICP-MS determinations; however, there were some small systematic differences (ca. 10%) between ICP-MS and a-spectrometric determinations of {sup 234}U and {sup 238}U activities.

  4. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    SciTech Connect

    Ebert, Christopher Hysjulien

    2012-01-01

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

  5. Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry.

    PubMed

    Fong, Bonnie Mei Wah; Siu, Tak Shing; Lee, Joseph Sai Kit; Tam, Sidney

    2007-06-01

    The conventional method for the determination of mercury in clinical samples is cold vapor atomic absorption spectrometry. Sample digestion or pretreatment require large sample volume and long sample preparation time. The inductively coupled plasma mass spectrometry (ICP-MS) method developed in this study requires only 100 microL of sample with practically no preparation, except for dilution with diluent. Significant savings in sample volumes, reagents, technician time, and analysis time are realized. Among different types of diluents, the one containing acid, tert-butanol, and potassium dichromate gave the best results to remove the mercury memory effect. The interassay precisions for whole blood and urine were < 5% and < 8%, respectively, and the intra-assay precisions were < 3% and < 7%, respectively. The lower limits of detection were 0.13, 0.17, and 0.26 microg/L for aqueous standard, urine, and whole blood, respectively. The developed ICP-MS method correlated well with the atomic absorption method and can offer an alternative to the atomic absorption method for mercury analysis with less sample volume requirement as well as shorter analysis time. PMID:17579973

  6. Determination of metals in Brazilian soils by inductively coupled plasma mass spectrometry.

    PubMed

    de Carvalho, Rui M; dos Santos, Jéssica A; Silva, Jessee A S; do Prado, Thiago G; da Fonseca, Adriel Ferreira; Chaves, Eduardo S; Frescura, Vera L A

    2015-08-01

    The concentration of metals in Brazilian soil under no-tillage (NT) and an area under native vegetation (NV) was determined by inductively coupled plasma mass spectrometry. The applied method was based on microwave-assisted acid digestion using HNO3, HCl, H2O2, and HF. The accuracy of the method was evaluated by analyzing two certified reference materials (BCR-142 and RS-3). The relative standard deviation for all target elements was below 8% indicating an adequate precision and the limit of detection ranged from 0.03 μg g(-1) (Cd) to 24.0 μg g(-1) (Fe). The concentrations of Al, As, Ba, Cd, Cu, Fe, Mg, Mn, Ni, Pb, Sr, and Zn in the different layers (0-10, 10-20, 20-40, and 40-60 cm) were determined in two types of soils, located in Paraná State in Brazil. The soil layers analysis revealed a different behavior of metals concentrations in soil samples under NT and NV. The obtained results showed a clear impact of anthropogenic action with respect to specific metals due to many years of uncontrolled application rates of limestone and phosphate fertilizers. PMID:26220781

  7. Using inductively coupled plasma-mass spectrometry for calibration transfer between environmental CRMs.

    PubMed

    Turk, G C; Yu, L L; Salit, M L; Guthrie, W F

    2001-06-01

    Multielement analyses of environmental reference materials have been performed using existing certified reference materials (CRMs) as calibration standards for inductively coupled plasma-mass spectrometry. The analyses have been performed using a high-performance methodology that results in comparison measurement uncertainties that are significantly less than the uncertainties of the certified values of the calibration CRM. Consequently, the determined values have uncertainties that are very nearly equivalent to the uncertainties of the calibration CRM. Several uses of this calibration transfer are proposed, including, re-certification measurements of replacement CRMs, establishing traceability of one CRM to another, and demonstrating the equivalence of two CRMs. RM 8704, a river sediment, was analyzed using SRM 2704, Buffalo River Sediment, as the calibration standard. SRM 1632c, Trace Elements in Bituminous Coal, which is a replacement for SRM 1632b, was analyzed using SRM 1632b as the standard. SRM 1635, Trace Elements in Subbituminous Coal, was also analyzed using SRM 1632b as the standard. PMID:11451248

  8. Inductively coupled plasma mass spectrometry determination of metals in honeybee venom.

    PubMed

    Kokot, Zenon J; Matysiak, Jan

    2008-11-01

    Inductively coupled plasma mass spectrometry (ICP-MS) technique was used to analyze the contamination of selected 20 metals in 32 samples of honeybee venom and to demonstrate differences in the content of these elements. Among the analyzed metal microelements (Al, Co, Cu, Zn, Mn, Mo, B, V, Sr and Ni), macro-elements (Ca, Mg, K and Na) and toxic metals (As, Ba, Pb, Cd, Sb and Cr) were identified. The presented results showed that the metal levels in honeybee venom are much lower than the tolerable upper intake levels for the elements. Also the toxic metal contamination is much lower than the permissible levels for drugs established by the United States Pharmacopeia and the European Pharmacopeia. As opposed to the pharmacopeial tests for metals, a multi-element ICP-MS method has been developed. In order to confirm data obtained, the following steps and parameters were taken into account for the validation of the method: calibration verification, recovery, accuracy, precision, detection limit (LOD), quantitation limit (LOQ), spectral and matrix interference and comparison between ICP-MS and GFAAS (graphite furnace atomic absorption spectrometry) for Mn. All steps of validation proved the accuracy of the results. This is most likely the first study in which the metal content in honeybee venom was evaluated by ICP-MS. PMID:18617350

  9. Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Todorov, T.I.; Xu, H.; Ejnik, J.W.; Mullick, F.G.; Squibb, K.; McDiarmid, M.A.; Centeno, J.A.

    2009-01-01

    In this study we report depleted uranium (DU) analysis in whole blood samples. Internal exposure to DU causes increased uranium levels as well as change in the uranium isotopic composition in blood specimen. For identification of DU exposure we used the 235U/238U ratio in blood samples, which ranges from 0.00725 for natural uranium to 0.002 for depleted uranium. Uranium quantification and isotopic composition analysis were performed by inductively coupled plasma mass spectrometry. For method validation we used eight spiked blood samples with known uranium concentrations and isotopic composition. The detection limit for quantification was determined to be 4 ng L-1 uranium in whole blood. The data reproduced within 1-5% RSD and an accuracy of 1-4%. In order to achieve a 235U/238U ratio range of 0.00698-0.00752% with 99.7% confidence limit a minimum whole blood uranium concentration of 60 ng L??1 was required. An additional 10 samples from a cohort of veterans exposed to DU in Gulf War I were analyzed with no knowledge of their medical history. The measured 235U/ 238U ratios in the blood samples were used to identify the presence or absence of DU exposure within this patient group. ?? 2009 The Royal Society of Chemistry.

  10. Determination of rare earth elements in environmental materials by inductively coupled plasma mass spectrometry

    SciTech Connect

    Panday, V.K.; Hoppstock, K.; Becker, J.S.; Dietze, H.J.

    1996-09-01

    Despite the fact that rare earth elements (REE) have found increasing use in modern technology only few data are available on their concentrations in biological and environmental samples. Inductively coupled plasma mass spectrometry (ICP-MS) has been employed to study the concentration of rare earth elements (REE) in various environmental materials (e.g., pine needles, mussel tissue, apple leaves) available from National Institute of Standards and Technology (NIST), the Bureau of European Communities (BCR), and the German Environmental Specimens Bank. After the decomposition of the environmental samples with HNO{sub 3}, the REE (present mostly in the ng/g-range) were separated from the matrix and simultaneously preconcentrated using liquid-liquid extraction with bis(2-ethyl hexyl)-ortho-phosphoric acid (HDEHP) in toluene as a selective reagent at pH = 2 and subsequent back extraction of the elements into the aqueous by 6M HNO{sub 3}. Recoveries of better 90% were obtained for almost all REE. A Perkin Elmer/Sciex ELAN 5000 ICP-MS and HR-ICP-MS ELEMENT from Finnigan MAT were used for quantitative analysis (by external calibration and ID-ICP-MS) of REE. The results of determination of REE concentrations agree well with the data available on some of these materials. Further supplement information on the contents of various REE in these materials.

  11. Studying Arsenite-Humic Acid Complexation Using Size Exclusion Chromatography-Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Liu, Guangliang; Cai, Yong

    2012-01-01

    Arsenic (As) can form complexes with dissolved organic matter (DOM), which affects the fate of arsenic in waste sites and natural environments. It remains a challenge to analyze DOM-bound As, in particular by using a direct chromatographic separation method. Size exclusion chromatography (SEC) hyphenated with UV spectrophotometer and inductively coupled plasma mass spectrometry (ICP-MS) was developed to characterize the complexation of arsenite (AsIII) with DOM. This SEC-UV-ICP-MS method is able to differentiate AsIII-DOM complexes from free As species and has the advantage of direct determination of both free and DOM-bound AsIII through mild separation. The suitability of this method for studying AsIII-DOM complexation was demonstrated by its application, in combination with the Scatchard plot and nonlinear regression of ligand binding model, for characterizing AsIII complexation with humic acid (HA) in the absence or presence of natural sand. The results suggest that, consistent with polyelectrolytic nature of HA, the AsIII-HA complexation should be accounted for by multiple classes of binding sites. By loosely classifying the binding sites into strong (S1) and weak (S2) sites, the apparent stability constants (Ks) of the resulting As-DOM complexes were calculated as log Ks1 = 6.5–7.1 while log Ks2 = 4.7–5.0. PMID:22664255

  12. Improving sensitivity for microchip electrophoresis interfaced with inductively coupled plasma mass spectrometry using parallel multichannel separation.

    PubMed

    Cheng, Heyong; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao; Ye, Meiying

    2016-08-26

    We reported sensitivity enhancement using multichannel parallel separation for microchip electrophoresis hyphenated with inductively coupled plasma mass spectrometry (MCE-ICP-MS) in this study. By using 2-20 array lanes for parallel separation, the sensitivity of the MCE-ICP-MS system was proportionally improved by 2-20 folds. No significantly adverse effect of parallel separation on column efficiency and resolution was observed. Rapid separation of Hg(2+) and methylmercuric (MeHg) ion within 36s under an electric field of 800Vcm(-1) was achieved in the 2-cm twenty-channels with a background electrolyte of 5mmolL(-1) borate buffer (pH 9.2). Detection limits of Hg(2+) and MeHg by the proposed system were decreased to 6.8-7.1ngL(-1). Good agreement between determined values and certified values of a certified reference fish was obtained with recoveries ranged between 94-98%. All results prove its advantages including high sensitivity, high efficiency and low operation cost, which are beneficial to routine analysis of metal speciation in environmental, biological and food fields. PMID:27488720

  13. Laser ablation inductively coupled plasma mass spectrometry imaging of metals in experimental and clinical Wilson's disease

    PubMed Central

    Boaru, Sorina Georgiana; Merle, Uta; Uerlings, Ricarda; Zimmermann, Astrid; Flechtenmacher, Christa; Willheim, Claudia; Eder, Elisabeth; Ferenci, Peter; Stremmel, Wolfgang; Weiskirchen, Ralf

    2015-01-01

    Wilson's disease is an autosomal recessive disorder in which the liver does not properly release copper into bile, resulting in prominent copper accumulation in various tissues. Affected patients suffer from hepatic disorders and severe neurological defects. Experimental studies in mutant mice in which the copper-transporting ATPase gene (Atp7b) is disrupted revealed a drastic, time-dependent accumulation of hepatic copper that is accompanied by formation of regenerative nodes resembling cirrhosis. Therefore, these mice represent an excellent exploratory model for Wilson's disease. However, the precise time course in hepatic copper accumulation and its impact on other trace metals within the liver is yet poorly understood. We have recently established novel laser ablation inductively coupled plasma mass spectrometry protocols allowing quantitative metal imaging in human and murine liver tissue with high sensitivity, spatial resolution, specificity and quantification ability. By use of these techniques, we here aimed to comparatively analyse hepatic metal content in wild-type and Atp7b deficient mice during ageing. We demonstrate that the age-dependent accumulation of hepatic copper is strictly associated with a simultaneous increase in iron and zinc, while the intrahepatic concentration and distribution of other metals or metalloids is not affected. The same findings were obtained in well-defined human liver samples that were obtained from patients suffering from Wilson's disease. We conclude that in Wilson's disease the imbalances of hepatic copper during ageing are closely correlated with alterations in intrahepatic iron and zinc content. PMID:25704483

  14. The potential of inductively coupled plasma-mass spectrometric detection for capillary electrophoretic analysis of pesticides.

    PubMed

    Wuilloud, Rodolfo G; Shah, Monika; Kannamkumarath, Sasi S; Altamirano, Jorgelina C

    2005-04-01

    In this work, the potential of inductively coupled plasma-mass spectrometry (ICP-MS) coupled to capillary electrophoresis (CE) to determine organophosphorus pesticides (OPPs) is demonstrated. Element specific detection of (31)P with ICP-MS is performed for the detection of OPPs. Three common OPPs, including glyphosate, glufosinate, and aminomethylphosphonic acid (AMPA), were analyzed by CE-ICP-MS to demonstrate its applicability for the analysis of OPPs. The advantages of using ICP-MS with respect to other common detectors, such as flame photometric detection (FPD), for CE analysis of OPPs are shown. Additionally, different CE separation conditions were studied to achieve complete baseline separation of the pesticide compounds in short migration times. Two CE buffer systems were evaluated for the separation of OPPs using ICP-MS detection. A buffer solution containing 40 mmol.L(-1) ammonium acetate at pH 9.0 and an applied voltage of +20 kV were finally selected leading to a separation time of 10.0 min. Both migration time and area relative standard deviations (%RSD) were evaluated and their respective values were in the intervals of 1.1-3.3% and 2.7-5.3%. Detection limits obtained with the CE-ICP-MS system were in the range of 0.11-0.19 mg.L(-1) (as compound) yielding an enhancement of 130- to 230-fold with respect to FPD. The proposed methodology was finally applied for the determination of the OPPs mentioned above in natural river water samples. PMID:15765486

  15. Multi-Collector Inductively Coupled Plasma Mass Spectrometer – Operational Performance Report

    SciTech Connect

    Matthew Watrous; Anthony Appelhans; Robert Hague; John Olson; Tracy Houghton

    2013-06-01

    The INL made an assessment of the commercially available inductively coupled plasma mass spectrometers (ICPMS) for actinide analysis; emphasizing low detection limits for plutonium. INL scientists subsequently determined if plutonium was present on a swipe, at a 10 million atom decision level. This report describes the evaluation of ICPMS instruments and the operational testing of a new process for the dissolution, separation and analysis via ICPMS of swipes for plutonium and uranium. The swipe dissolution, plutonium and uranium isolation, separation and purification are wet chemistry methods following established procedures. The ICPMS is a commercially available multi-collector magnetic sector mass spectrometer that utilizes five ion counting detectors operating simultaneously. The instrument includes a sample introduction system allowing for sample volumes of < 1 mL to be reproducibly injected into the instrument with minimal waste of the sample solution, while maximizing the useable signal. The performance of the instrument was measured using SRM 996 (244Pu spike) at concentrations of 12 parts per quadrillion (ppq, fg/mL) and with SRM 4350B Columbia River Sediment samples spiked onto swipes at the 10 million atom level. The measured limit of detection (LOD, defined as 3s) for 239Pu is 310,000 atoms based upon the instrument blank data. The limit of quantification (LOQ defined as 10 s) for 239Pu is 105,000 atoms. The measured limit of detection for 239Pu from the SRM 4350B spiked onto a swipe was 2.7 million atoms with the limit of quantification being 9.0 million atoms.

  16. Ion Energy Distribution Control Using Ion Mass Ratios in Inductively Coupled Plasmas With a Pulsed DC Bias on the Substrate

    NASA Astrophysics Data System (ADS)

    Logue, Michael D.; Kushner, Mark J.

    2012-10-01

    In many applications requiring energetic ion bombardment, such as plasma etching, gas mixtures containing several ion species are used. In cases where two ions have significantly different masses, it may be feasible to selectively control the ion energy distributions (IEDs) by preferentially extracting the lighter ion mass with a controllable energy. In this work, we investigate the possibility of using a pulsed DC substrate bias in an inductively coupled plasma (ICP) to obtain this control. Pulsing of the substrate bias in the afterglow of a pulsed ICP plasma should allow for shifting of the IED peak energy by an amount approximately equal to the applied bias. If short enough pulses are used it may be possible to obtain a higher flux at high energy of the lower mass ion compared to the higher mass ion. A computational investigation of IEDs in low pressure (a few to 100 mTorr) ICPs sustained in gas mixtures such as Ar/H2 or Xe/H2 (having large mass differences) was conducted as a proof of principle. The model is the Hybrid Plasma Equipment Model with which electron energy distributions (EEDs) and IEDs as a function of position and time are obtained using Monte Carlo simulations. We have found a selective ability to mass and energy discriminate ion fluxes when using sufficiently short bias pulses. Results from the model for plasmas densities, electron temperatures, EEDs and IEDs will be discussed.

  17. INDUCTIVELY COUPLED ARGON PLASMA AS AN ION SOURCE FOR MASS SPECTROMETRIC DETERMINATION OF TRACE ELEMENTS

    EPA Science Inventory

    Solution aerosols are injected into an inductively coupled argon plasma (ICP) to generate a relatively high number density of positive ions derived from elemental constituents. A small fraction of these ions is extracted through a sampling orifice into a differentially pumped vac...

  18. Investigations into the origins of polyatomic ions in inductively coupled plasma-mass spectrometry

    SciTech Connect

    McIntyre, Sally M.

    2010-01-01

    An inductively coupled plasma-mass spectrometer (ICP-MS) is an elemental analytical instrument capable of determining nearly all elements in the periodic table at limits of detection in the parts per quadrillion and with a linear analytical range over 8-10 orders of magnitude. Three concentric quartz tubes make up the plasma torch. Argon gas is spiraled through the outer tube and generates the plasma powered by a looped load coil operating at 27.1 or 40.6 MHz. The argon flow of the middle channel is used to keep the plasma above the innermost tube through which solid or aqueous sample is carried in a third argon stream. A sample is progressively desolvated, atomized and ionized. The torch is operated at atmospheric pressure. To reach the reduced pressures of mass spectrometers, ions are extracted through a series of two, approximately one millimeter wide, circular apertures set in water cooled metal cones. The space between the cones is evacuated to approximately one torr. The space behind the second cone is pumped down to, or near to, the pressure needed for the mass spectrometer (MS). The first cone, called the sampler, is placed directly in the plasma plume and its position is adjusted to the point where atomic ions are most abundant. The hot plasma gas expands through the sampler orifice and in this expansion is placed the second cone, called the skimmer. After the skimmer traditional MS designs are employed, i.e. quadrupoles, magnetic sectors, time-of-flight. ICP-MS is the leading trace element analysis technique. One of its weaknesses are polyatomic ions. This dissertation has added to the fundamental understanding of some of these polyatomic ions, their origins and behavior. Although mainly continuing the work of others, certain novel approaches have been introduced here. Chapter 2 includes the first reported efforts to include high temperature corrections to the partition functions of the polyatomic ions in ICP-MS. This and other objections to preceeding

  19. Documenting utility of paddlefish otoliths for quantification of metals using inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Long, James M.; Schaffler, James J.

    2013-01-01

    RATIONALE The otoliths of the inner ear of fishes record the environment of their surrounding water throughout their life. For paddlefish (Polyodon spathula), otoliths have not been routinely used by scientists since their detriments were outlined in the early 1940s. We sought to determine if paddlefish otoliths were useful for resolving elemental information contained within. METHODS Adult paddlefish were collected from two wild, self-sustaining populations in Oklahoma reservoirs in the Arkansas River basin. Juveniles were obtained from a hatchery in the Red River basin of Oklahoma. Otoliths were removed and laser ablation, inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify eight elements (Li, Mg, Mn, Rb, Sr, Y, Ba, and Pb) along the core and edge portions, which were analyzed for differences between otolith regions and among paddlefish sources. RESULTS Differences were found among samples for six of the eight elements examined. Otoliths from Red River basin paddlefish born in a hatchery had significantly lower amounts of Mg and Mn, but higher levels of Rb than otoliths from wild paddlefish in the Arkansas River basin. Concentrations of Y, Sr, and Ba were reduced on the edges of adult paddlefish from both reservoirs compared with the cores. CONCLUSIONS This research shows the utility of using an ICP-MS analysis of paddlefish otoliths. Future research that seeks to determine sources of paddlefish production, such as which reservoir tributaries are most important for reproduction or what proportion of the population is composed of wild versus hatchery-produced individuals, appears promising. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  20. Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis

    NASA Astrophysics Data System (ADS)

    Coedo, A. G.; Dorado, T.; Padilla, I.; Maibusch, R.; Kuss, H.-M.

    2000-02-01

    A commercial atomic absorption graphite furnace (AAGF), with a self-made adapter and valve system, was used as a slurry sampling cell for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The system was applied to the determination of As, Sn, Sb, Se, Te, Bi, Cd, V, Ti and Mo in steelmaking flue dusts. Experimental conditions with respect to ETV and ICP-MS operating parameters were optimized. Compared to aqueous solutions, slurry samples were found to present better analyte transport. Microgram amounts of Rh were used to reduce the difference in analyte response in sensitivity for aqueous solutions of the tested analytes. No such increasing effect was observed for slurry samples and aqueous standards. An added quantity of Rh acting as modifier/carrier resulted in an increase for the same analytes in matrix-slurry solutions, even the addition of an extra Rh quantity has resulted in a decrease in the signals. The effect of Triton X-100 (used as a dispersant agent) on analyte intensity and precision was also studied. External calibration from aqueous standards spiked with 100 μg ml -1 Rh was performed to quantified 0.010 g/100 ml slurry samples. Results are presented for a certified reference electrical arc furnace flue dust (EAF): CRM-876-1 (Bureau of Analysis Samples Ltd., Cleveland, UK), a reference sample of coke ashes X-3705 (from AG der Dillinger Hüttenwerke, Germany), and a representative sample of EAF flue dust from a Spanish steelmaking company (CENIM-1). For the two reference materials an acceptable agreement with certificate values was achieved, and the results for the CENIM sample matched with those obtained from conventional nebulization solution.

  1. Photochemical vapor generation of lead for inductively coupled plasma mass spectrometric detection

    NASA Astrophysics Data System (ADS)

    Duan, Hualing; Zhang, Ningning; Gong, Zhenbin; Li, Weifeng; Hang, Wei

    2016-06-01

    Photochemical vapor generation (PCVG) of lead was successfully achieved with a simplified and convenient system, in which only low molecular weight organic acid and a high-efficiency photochemical reactor were needed. The reactor was used to generate lead volatile species when a solution of lead containing a small amount of low molecular weight organic acid was pumped through. Several factors, including the concentration of acetic acid, the concentration of hydrochloride acid, and the irradiation time of UV light were optimized. Under the optimal conditions, including the addition of 0.90% (v/v) acetic acid and 0.03% (v/v) hydrochloride acid, and irradiation time of 28 s, intense and repeatable signal of lead volatile species was successfully obtained and identified with inductively coupled plasma mass spectrometry (ICPMS). In addition, the effects from inorganic anions and transition metal ions, including Cl-, NO3-, SO42 -, Cu2 +, Fe3 +, Co2 + and Ni2 +, were investigated, which suggests that their suppression to the PCVG of lead was in the order of Cl- < SO42 - < NO3- for anions and Ni2 +, Co2 + < Fe3 + < Cu2 + for transition metal ions. Under optimized conditions, relative standard derivation (RSD) of 4.4% was achieved from replicate measurements (n = 5) of a standard solution of 0.1 μg L- 1 lead. And, the limit of quantitation (LOQ, 10σ) of 0.012 μg L- 1 lead was obtained using this method and the method blank could be easily controlled down to 0.023 μg L- 1. To validate applicability of this method, it was also employed for the determination of lead in tap water, rain water and lake water.

  2. Multi-element analysis of compost by laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Jiménez, María S; Gómez, María T; Castillo, Juan R

    2007-05-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to multi-element determination in compost samples. Since compost is a heterogeneous mixture of organic and inorganic materials, the influence of sample heterogeneity on the accuracy and precision of analysis was investigated. Several parameters related to the following were studied: laser (energy, laser-beam diameter, preablation. rastering speed, carrier-gas flow rate), sample preparation (use of compacted pellets, grinding time, particle size, sample amount, length of hydraulic press treatment, position of line scan), and the ICP-MS system (quantitative versus semiquantitative analysis, matrix-matched standards and liquid standards calibration). The main causes of imprecision in sample preparation were determined to be particle size and grinding time. The effect of sample heterogeneity on precision was also evaluated by using different test samples (pellets). For Ni, Zn and Pb, the greatest contribution to the total relative standard deviation (R.S.D.) was related to analyte determination. For Mn and Cu, sample heterogeneity and analyte determination contributed equally to the total R.S.D., whereas for Cr, Co, Cd and Hg sample heterogeneity accounted for most of the total R.S.D. A comparison of semiquantitative and quantitative analysis modes showed that better precision and very good agreement with certified reference material was obtained with the latter, but semiquantitative analysis could be a practical alternative. Although accuracy of results was improved with matrix-matched standards calibration the use of standard addition calibration with aqueous standards could be another possibility. PMID:19071737

  3. Acquisition of a High-resolution Inductively Coupled Plasma Mass Spectrometer for Cosmochemical and Geochemical Research

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    The primary goal of our research in this program is to develop new techniques for the analysis of volatile trace elements in very small samples using inductively coupled plasma mass spectrometry (ICP-MS) in preparation for samples returned by the Stardust mission. The instrument that will serve as the basis of our experiments is the ELEMENT2 high-resolution ICP-MS. We have spent the past year designing the laboratory to house this instrument as well as space to store and prepare samples returned by the Stardust mission. Unfortunately, the location that we had initially selected for the instrument turned out to be insufficient for our needs. This was determined almost eight months into the first year of our funding cycle, after extensive work including the production of engineering drawings. However, during this time the Lunar and Planetary Laboratory was selected to lead Phoenix, the first Mars Scout mission. As a result of this award LPL purchased a new, 50,000 square foot building. We have acquired 1400 square feet of laboratory space in this new facility. Four-hundred square feet will be used for a class-100 clean room. This area is designated for storage and preparation of extraterrestrial materials. The additional 1000 square feet will house the ELEMENT2 ICP-MS and peripheral devices. This is an enormous amount of space for this instrument, but it provides plenty of room for expansion in the future. The ICP-MS and the clean room facilities have been purchased. The instrument has been delivered. The startup time for this instrument is relatively short and we expect to be collecting our first data by mid-summer.

  4. Determination of Pu in urine at ultratrace level by sector field inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, M. V.; Pickhardt, C.; Ostapczuk, P.; Hille, R.; Becker, J. S.

    2004-04-01

    A new analytical procedure has been developed for the determination of Pu in urine at the low ag ml-1 concentration level by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS). One liter of urine doped with 4 pg 242Pu was analyzed after co-precipitation with Ca3(PO4)2 followed by extraction chromatography on TEVA resin in order to enrich the Pu and remove uranium and matrix elements. Figures of merit of ICP-SFMS for the determination of Pu were studied using two nebulizers, PFA-100 and direct injection high-efficiency nebulizer (DIHEN), for solution introduction with uptake rates of 0.58 and 0.06 ml min-1, respectively. The sensitivity for Pu in ICP-SFMS was determined to be 2000 and 1380 MHz ppm-1 for the PFA-100 and DIHEN nebulizers, respectively. Due to the low solution uptake rate of DIHEN the absolute sensitivity was about seven times better and yielded 1380 counts fg-1 in comparison to 207 counts fg-1 measured with the PFA-100 nebulizer. Recovery using 242Pu tracer was about 70%. The limits of detection for 239Pu in 1 l of urine, based on an enrichment factor of 100 for PFA-100 nebulizer and 1000 for DIHEN, were 9×10-18 and 1.02×10-18 g ml-1, respectively. Measurements of 240Pu/239Pu isotopic ratio in synthetically prepared urine standard solution yielded a precision of 1.8 and 1.9% and accuracy of 1.5 and 1.8% for the PFA-100 and DIHEN nebulizers, respectively.

  5. Determination of minor elements in steelmaking flue dusts using laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2005-07-15

    Element determination in solid waste products from the steel industry usually involves the time-consuming step of preparing a solution of the solid. Laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to the analysis of Cr, Ni, Cu, As, Cd and Sn, elements of importance from the point of view of their impact on the environment, in electric arc furnace flue dust (EAFD). A simple method of sample preparation as pressed pellets using a mixture of cellulose and paraffin as binder material was applied. Calibration standards were prepared spiking multielement solution standards to a 1:1 ZnO+Fe(2)O(3) synthetic matrix. The wet powder was dried and mechanically homogenised. Quantitative analysis were based on external calibration using a set of matrix matched calibration standards with Rh as a internal standard. Results obtained using only one-point for calibration without matrix matched, needing less time for standardization and data processing, are also presented. Data are calculated for flue dust reference materials: CRM 876-1 (EAFD), AG-6203 (EAFD), AG-6201 (cupola dust) and AG-SX3705 (coke ashes), and for two representative electrical arc furnace flue dusts samples from Spanish steelmaking companies: MS-1 and MS-2. For the reference materials, an acceptable agreement with certificate values was achieved, and the results for the MS samples matched with those obtained from conventional nebulization solutions (CN). The analytical precision was found to be better than 7% R.S.D. both within a single pellet and between several pellets of the same sample for all the elements. PMID:18970147

  6. Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone.

    PubMed

    Bellis, David J; Hetter, Katherine M; Jones, Joseph; Amarasiriwardena, Dula; Parsons, Patrick J

    2006-01-01

    Lead accumulates in bone over many years or decades. Accordingly, the study of lead in bone is important in determining the fate of ingested lead, the potential for remobilization, and for the application of bone lead measurements as a biomarker of lead exposure. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure the spatial distribution of lead in bone on the micrometer scale. In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards and/or reference materials for calibration and validation purposes. Here we describe the application of pressed pellets prepared from New York State Department of Health candidate Reference Materials for Lead in Bone (levels 1 through 4), to provide a linear calibration for (208)Pb/(43)Ca in the concentration range <1 to 30 μg g(-1). The limit of detection was estimated as 0.2 μg g(-1). The measured lead values for pelletized NIST SRM 1486 Bone Meal and SRM 1400 Bone Ash were in good agreement with certified reference values. Using this approach, we quantitatively measured the spatial distribution of lead in a cross-section of goat metacarpal from a lead-dosed animal. The lead content was spatially variable in the range of 2 to 30 μg g(-1) with a complex distribution. In some sections, lead appeared to be enriched in the center of the bone relative to peripheral areas, indicating preferential accumulation in trabecular (spongy) rather than cortical bone. In addition, there were discrete areas of lead enrichment, or hot spots, of 100 to 200 μm in width. PMID:22833692

  7. Calibration of laser ablation inductively coupled plasma mass spectrometry for quantitative measurements of lead in bone

    PubMed Central

    Bellis, David J.; Hetter, Katherine M.; Jones, Joseph; Amarasiriwardena, Dula

    2012-01-01

    Summary Lead accumulates in bone over many years or decades. Accordingly, the study of lead in bone is important in determining the fate of ingested lead, the potential for remobilization, and for the application of bone lead measurements as a biomarker of lead exposure. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure the spatial distribution of lead in bone on the micrometer scale. In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards and/or reference materials for calibration and validation purposes. Here we describe the application of pressed pellets prepared from New York State Department of Health candidate Reference Materials for Lead in Bone (levels 1 through 4), to provide a linear calibration for 208Pb/43Ca in the concentration range <1 to 30 μg g−1. The limit of detection was estimated as 0.2 μg g−1. The measured lead values for pelletized NIST SRM 1486 Bone Meal and SRM 1400 Bone Ash were in good agreement with certified reference values. Using this approach, we quantitatively measured the spatial distribution of lead in a cross-section of goat metacarpal from a lead-dosed animal. The lead content was spatially variable in the range of 2 to 30 μg g−1 with a complex distribution. In some sections, lead appeared to be enriched in the center of the bone relative to peripheral areas, indicating preferential accumulation in trabecular (spongy) rather than cortical bone. In addition, there were discrete areas of lead enrichment, or hot spots, of 100 to 200 μm in width. PMID:22833692

  8. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    NASA Astrophysics Data System (ADS)

    Arnquist, Isaac J.; Holcombe, James A.

    2012-10-01

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (Kapp) and intrinsic (Kint) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu2 + for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu2 + and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu2 + can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu2 + ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data Kapp and Kint were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log Kapp values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log Kint values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log Kint at pH 9.53 was in good agreement with literature values obtained from alternative methods, Kint at pH 7.93 was about 2.5 × larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the "intrinsic" binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at pH 7.93 in order to determine the effect of a denaturant on metal binding. Results for both log

  9. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry - Critical review

    NASA Astrophysics Data System (ADS)

    Bings, N. H.; Orlandini von Niessen, J. O.; Schaper, J. N.

    2014-10-01

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally suited

  10. Fractionation analysis of manganese in Turkish hazelnuts (Corylus avellana L.) by inductively coupled plasma-mass spectrometry.

    PubMed

    Erdemir, Umran Seven; Gucer, Seref

    2014-11-01

    In this study, an analytical fractionation scheme based on water, diethyl ether, n-hexane, and methanol extractions has been developed to identify manganese-bound fractions. Additionally, in vitro simulated gastric and intestinal digestion, n-octanol extraction, and activated carbon adsorption were used to interpret the manganese-bound structures in hazelnuts in terms of bioaccessibility. The total content of manganese in the samples was determined by inductively coupled plasma-mass spectrometry after microwave-assisted digestion, and additional validation was performed using atomic absorption spectroscopy. Water fractions were further evaluated by high-performance liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry for the identification of water-soluble manganese fractions in hazelnut samples. The limits of detection and quantification were 3.6 and 12.0 μg L(-1), respectively, based on peak height. PMID:25310841

  11. Determination of arsenic in gold by flow injection inductively coupled plasma mass spectrometry with matrix removal by reductive precipitation

    NASA Astrophysics Data System (ADS)

    Becotte-Haigh, Paul; Tyson, Julian F.; Denoyer, Eric; Hinds, Michael W.

    1996-12-01

    Arsenic was determined in gold by flow injection hydride generation inductively coupled plasma-mass spectrometry following a batch mode reductive precipitation removal of the interfering gold matrix. A solution of potassium iodide, L-ascorbic acid, and hydrochloric acid was used as the reluctant. The recovery of gold by precipitation and filtration was 99 ± 3%. The detection limit for arsenic in gold was 55 ng g -1 in the solid. The concentration of arsenic that was determined in the Royal Canadian Mint gold sample FAU-10 was 29.7 μg g -1 in the solid; this value was indistinguishable, with 95% confidence, from values determined at the Royal Canadian Mint by graphite furnace atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry. The standard deviation for four replicate determinations of the arsenic in FAU-10 was 0.972 μg g -1 in the solid.

  12. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    USGS Publications Warehouse

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  13. {sup 99}Tc bioassay by inductively coupled plasma mass spectrometry (ICP-MS)

    SciTech Connect

    Lewis, L.A.

    1998-05-01

    A means of analyzing {sup 99}Tc in urine by inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Historically, {sup 99}Tc analysis was based on the radiometric detection of the 293 keV E{sub Max} beta decay product by liquid scintillation or gas flow proportional counting. In a urine matrix, the analysis of{sup 99}Tc is plagued with many difficulties using conventional radiometric methods. Difficulties originate during chemical separation due to the volatile nature of Tc{sub 2}O{sub 7} or during radiation detection due to color or chemical quenching. A separation scheme for {sup 99}Tc detection by ICP-MS is given and is proven to be a sensitive and robust analytical alternative. A comparison of methods using radiometric and mass quantitation of {sup 99}Tc has been conducted in water, artificial urine, and real urine matrices at activity levels between 700 and 2,200 dpm/L. Liquid scintillation results based on an external standard quench correction and a quench curve correction method are compared to results obtained by ICP-MS. Each method produced accurate results, however the precision of the ICP-MS results is superior to that of liquid scintillation results. Limits of detection (LOD) for ICP-MS and liquid scintillation detection are 14.67 and 203.4 dpm/L, respectively, in a real urine matrix. In order to determine the basis for the increased precision of the ICP-MS results, the detection sensitivity for each method is derived and measured. The detection sensitivity for the {sup 99}Tc isotope by ICP-MS is 2.175 x 10{sup {minus}7} {+-} 8.990 x 10{sup {minus}9} and by liquid scintillation is 7.434 x 10{sup {minus}14} {+-} 7.461 x 10{sup {minus}15}. A difference by seven orders of magnitude between the two detection systems allows ICP-MS samples to be analyzed for a period of 15 s compared to 3,600 s by liquid scintillation counting with a lower LOD.

  14. Lead geochronology of zircon by LaserProbe-inductively coupled plasma mass spectrometry (LP-ICPMS)

    NASA Astrophysics Data System (ADS)

    Feng, Rui; Machado, Nuno; Ludden, John

    1993-07-01

    LaserProbe-inductively coupled plasma mass spectrometry (LP-ICPMS) provides a sensitive, fast, and simple means to determine 207Pb /206Pb ages in single zircon grains. A Nd:YAG laser is used to irradiate the zircon surface and leaves a cylindrical pit of 30-60 μm, from which the vaporised materials are transported by argon gas to a Fisons-VG PQII+ ICPMS for analysis. No zircon abrasion, cleaning nor chemical separation procedures are required. The accuracy and the limitation of the method were evaluated by analyzing twenty-one zircon samples ranging in age from 2.7 Ga to 1.0 Ga, which have also been dated by the conventional U-Pb thermal ionization mass spectrometry technique (TIMS). The LP-ICPMS 207Pb /206Pb ages for zircons with grain size > 60 μm and 207Pb concentration > 3 ppm are within 1% of the TIMS ages. Smaller zircons (≤60 μm) and those with 207Pb concentration < 2 ppm yield inaccurate ages. Operating the LP-ICPMS at conditions that give a compromise between the ideal spatial resolution and instrument sensitivity, the limits of detection were found to be 0.2 ppm for 206Pb, 207Pb, and 208Pb. The precision of the 207Pb /206Pb ratio is generally 0.5-6% (1σ) from each sampling pit and is strongly dependent on the lead concentration. However, the precision for the average of the mean ratios from different pits in one grain or several grains of the same population are generally <1.5% (1σ). The results presented here demonstrate that the LP-ICPMS can be used to determine 207Pb /206Pb ages of zircons and that reliable ages can be obtained from high quality, limpid zircons with a simple Pb-loss history. Uses of the technique include screening of zircon populations from different rocks in areas of poorly known age relationships and provenance studies of detrital zircons from ancient and modern sedimentary sequences. Other applications include the study of growth zones and of inherited components in complex zircon populations. In comparison with the SHRIMP

  15. [Determination of trace elements in sika bone powder by inductively coupled plasma mass spectrometry with microwave digestion].

    PubMed

    Liu, Yan-Ming; Chen, Zhi-Yong; Han, Jin-Tu; Wang, Hui; Wang, Zhi-Wen

    2006-05-01

    Contents of trace elements in sika bone powder were determined with microwave digestion and inductively coupled plasma mass spectrometry. Under the optimum conditions, the detection limits (3sigma, n = 11) are in the range of 0. 000 6-1. 498 ng x mL(-1) with relative standard deviations of 1.7%-6.8%. The recoveries are between 91% and 109%. The analytical results of national certified reference demonstrated the applicability of the proposed method. PMID:16883876

  16. Optimization of determination of platinum group elements in airborne particulate matter by inductively coupled plasma mass spectrometry.

    PubMed

    Bujdoš, Marek; Hagarová, Ingrid; Matúš, Peter; Canecká, Lucia; Kubová, Jana

    2012-03-01

    Determination of automotive traffic-emitted platinum group metals (PGM) by inductively coupled plasma quadrupole mass spectrometry (ICP-MS) was optimized. The interferences from Sr, Cu, Pb, Y, Cd, Zr and Hf were evaluated using model solutions. Plasma radiofrequency (RF) power and nebulizer gas flow were optimized for 103Rh, 105Pd, 108Pd and 195Pt. Two standard reference materials were analyzed: SARM-7 Platinum ore and BCR-723 Road dust. The optimized procedure was used to analyze samples of airborne particulate matter collected in the urban site with heavy automotive traffic in the centre of Bratislava, Slovakia. PMID:24061181

  17. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.

    PubMed

    Cleveland, Danielle; Stchur, Peter; Hou, Xiandeng; Yang, Karl X; Zhou, Jack; Michel, Robert G

    2005-12-01

    It has been shown that an increase in sensitivity and selectivity of detection of an analyte can be achieved by tuning the ablation laser wavelength to match that of a resonant gas-phase transition of that analyte. This has been termed resonant laser ablation (RLA). For a pulsed tunable nanosecond laser, the data presented here illustrate the resonant enhancement effect in pure copper and aluminum samples, chromium oxide thin films, and for trace molybdenum in stainless steel samples, and indicate two main characteristics of the RLA phenomenon. The first is that there is an increase in the number of atoms ablated from the surface. The second is that the bandwidth of the wavelength dependence of the ablation is on the order of 1 nm. The effect was found to be virtually identical whether the atoms were detected by use of a microwave-induced plasma with atomic emission detection, by an inductively coupled plasma with mass spectrometric detection, or by observation of the number of laser pulses required to penetrate through thin films. The data indicate that a distinct ablation laser wavelength dependence exists, probably initiated via resonant radiation trapping, and accompanied by collisional broadening. Desorption contributions through radiation trapping are substantiated by changes in crater morphology as a function of wavelength and by the relatively broad linewidth of the ablation laser wavelength scans, compared to gas-phase excitation spectra. Also, other experiments with thin films demonstrate the existence of a distinct laser-material interaction and suggest that a combination of desorption induced by electronic transition (DIET) with resonant radiation trapping could assist in the enhancement of desorption yields. These results were obtained by a detailed inspection of the effect of the wavelength of the ablation laser over a narrow range of energy densities that lie between the threshold of laser-induced desorption of species and the usual analytical

  18. Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry

    SciTech Connect

    Vacri, M. L. di; Nisi, S.; Balata, M.

    2013-08-08

    The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Level Assay) of the LNGS underground lab using HPGe detectors.

  19. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Hirata, Takafumi; Kon, Yoshiaki

    2008-03-01

    A laser ablation-inductively coupled plasma-mass spectrometric (LA-ICPMS) technique utilizing a titanium-sapphire (TiS) femtosecond laser (fs-laser) has been developed for elemental and isotopic analysis. The signal intensity profile, depth of the ablation pit and level of elemental fractionation were investigated in order to evaluate the analytical capability of the present fs-laser ablation-ICPMS technique. The signal intensity profile of (57)Fe, obtained from iron sulfide (FeS(2)), demonstrated that the resulting signal intensity of (57)Fe achieved by the fs-laser ablation was almost 4-times higher than that obtained by ArF excimer laser ablation under a similar energy fluence (5 J/cm(2)). In fs-laser ablation, there is no significant difference in a depth of the ablation pit between glass and zircon material, while in ArF laser ablation, the resulting crater depth on the zircon crystal was almost half the level than that obtained for glass material. Both the thermal-induced and particle size-related elemental fractionations, which have been thought to be main sources of analytical error in the LA-ICPMS analysis, were measured on a Harvard 91500 zircon crystal. The resulting fractionation indexes on the (206)Pb/(238)U (f(Pb/U)) and (238)U/(232)Th (f(U/Th)) ratios obtained by the present fs-laser ablation system were significantly smaller than those obtained by a conventional ArF excimer laser ablation system, demonstrative of smaller elemental fractionation. Using the present fs-laser ablation technique, the time profile of the signal intensity of (56)Fe and the isotopic ratios ((57)Fe/(54)Fe and (56)Fe/(54)Fe) have been measured on a natural pyrite (FeS(2)) sample. Repeatability in signal intensity of (56)Fe achieved by the fs-laser ablation system was significantly better than that obtained by ArF excimer laser ablation. Moreover, the resulting precision in (57)Fe/(54)Fe and (56)Fe/(54)Fe ratio measurements could be improved by the fs-laser ablation system

  20. Langmuir Probe and Mass Spectroscopic Measurements in Inductively Coupled CF4 Plasmas

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Sharma, Surendra; Cruden, B. A.; Meyyappan, M.

    2001-01-01

    Abstract Electron and ion energy distribution functions and other plasma parameters such as plasma potential (V(sub p)) , electron temperature (T(sub e)), and electron and ion number densities (n (sub e) and n(sub i)) in low pressure CF4 plasmas have been measured. The experiments were conducted in a GEC cell using an inductively coupled plasma (ICP) device powered by a 13.56 MHz radio-frequency (rf) power source. The measurements were made at 300 W of input rf power at 10, 30 and 50 mTorr gas pressures. Langmuir probe measurements suggest that n(sub e), n(sub i) and V(sub p) remain constant over 60% of the central electrode area, beyond which they decrease. Within the limits of experimental error (+/- 0.25 eV), T(sub e) remains nearly constant over the electrode area. T(sub e) and V(sub p) increase with a decrease in pressure. n(sub e) and n(sub i) are not affected as significantly as T(sub e) or V(sub p) by variation in the gas pressure. The electron energy distribution function (EEDF) measurements indicate a highly non-Maxwellian plasma. CF3+ is the most dominant ion product of the plasma, followed by CF2+ and CF+. The concentrations of CF2+ and CF+ are much larger than that is possible from direct electron impact ionization of the parent gas. The cross-section data suggest that the direct electron impact ionization of fragment neutrals and negative ion production by electron attachment may be responsible for increase of the minor ions.

  1. Determination of Rare Earth Elements in Green River Shale By Inductively Coupled Plasma Mass Spectrometry Using a Desolvating Nebulizer System

    NASA Astrophysics Data System (ADS)

    Smith, F.; Clarke, D.; Moody, S.

    2014-12-01

    In this work, inductively coupled plasma mass spectrometry (ICP-MS) is applied to a geological sample for the determination of rare earth elements (REEs) using a specialized nebulizer system. The low flow desolvating nebulizer has been shown to decrease metal oxide formation which leads to a reduction in mass spectral interferences. Traditional nebulizers and spray chambers may be suitable for similar sample types, but reduction of water vapor loading to the plasma can improve REE detection limits for quadrupole-based ICP-MS. The Green River formation holds the largest oil shale deposits in the world and understanding the elemental composition of these samples is important in its study. A certified reference material, USGS Green River Shale (SGR-1), was microwave digested prior to analysis, and recoveries of REEs compared to historical values are discussed.

  2. Gas and liquid chromatography with inductively coupled plasma mass spectrometry detection for environmental speciation analysis — advances and limitations

    NASA Astrophysics Data System (ADS)

    Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard

    2000-07-01

    Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.

  3. Time-resolved inductively coupled plasma mass spectrometry measurements with individual, monodisperse drop sample introduction.

    PubMed

    Dziewatkoski, M P; Daniels, L B; Olesik, J W

    1996-04-01

    Individual ion clouds, each produced in the ICP from a single drop of sample, were monitored using time-resolved mass spectrometry and optical emission spectrometry simultaneously. The widths of the ion clouds in the plasma as a function of distance from the point of initial desolvated particle vaporization in the ICP were estimated. The Li(+) cloud width (full width at halfmaximum) varied from 85 to 272 μs at 3 and 10 mm from the apparent vaporization point, respectively. The Sr(+) cloud width varied from 97 to 142 μs at 5 and 10 mm from the apparent vaporization point, respectively. The delays between optical and mass spectrometry signals were used to measure gas velocities in the ICP. The velocity data could then be used to convert ion cloud peak widths in time to cloud sizes in the ICP. Li(+) clouds varied from 2.1 to 6.6 mm (full width at half-maximum) and Sr(+) clouds varied from 2.4 to 3.5 mm at the locations specified above. Diffusion coefficients were estimated from experimental data to be 88, 44, and 24 cm(2)/s for Li(+), Mg(+), and Sr(+), respectively. The flight time of ions from the sampling orifice of the mass spectrometer to the detector were mass dependent and varied from 13 to 21 μs for Mg(+) to 93 to 115 μs for Pb(+). PMID:21619140

  4. Quantitative determination of mass-resolved ion densities in H{sub 2}-Ar inductively coupled radio frequency plasmas

    SciTech Connect

    Sode, M.; Schwarz-Selinger, T.; Jacob, W.

    2013-03-07

    Inductively coupled H{sub 2}-Ar plasmas are characterized by an energy-dispersive mass spectrometer (plasma monitor), a retarding field analyzer, optical emission spectroscopy, and a Langmuir probe. A procedure is presented that allows determining quantitatively the absolute ion densities of Ar{sup +}, H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}, and ArH{sup +} from the plasma monitor raw signals. The calibration procedure considers the energy and mass-dependent transmission of the plasma monitor. It is shown that an additional diagnostic like a Langmuir probe or a retarding field analyzer is necessary to derive absolute fluxes with the plasma monitor. The conversion from fluxes into densities is based on a sheath and density profile model. Measurements were conducted for a total gas pressure of 1.0 Pa. For pure H{sub 2} plasmas, the dominant ion is H{sub 3}{sup +}. For mixed H{sub 2}-Ar plasmas, the ArH{sup +} molecular ion is the most dominant ion species in a wide parameter range. The electron density, n{sub e}, is around 3 Multiplication-Sign 10{sup 16} m{sup -3} and the electron temperature, T{sub e}, decreases from 5 to 3 eV with increasing Ar content. The dissociation degree was measured by actinometry. It is around 1.7% nearly independent on Ar content. The gas temperature, estimated by the rotational distribution of the Q-branch lines of the H{sub 2} Fulcher-{alpha} diagonal band (v Prime =v Double-Prime =2) is estimated to (540 {+-} 50) K.

  5. Characterization of a Second-generation Focal-plane Camera Coupled to an Inductively Coupled Plasma Mattauch-Herzog Geometry Mass Spectrograph

    SciTech Connect

    Schilling, G D.; Andrade, Francisco J.; Barnes, James H.; Sperline, Roger P.; Denton, M BONNER.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2006-07-01

    A second-generation Faraday-strip array detector has been coupled to an inductively coupled plasma Mattauch- Herzog geometry mass spectrograph, thereby offering simultaneous acquisition of a range of mass-to-charge ratios. The second-generation device incorporates narrower, more closely spaced collectors than the earlier system. Furthermore, the new camera can acquire signal on all collectors at a frequency greater than 2 kHz and has the ability to independently adjust the gain level of each collector. Each collector can also be reset independently. With these improvements, limits of detection in the hundreds of picograms per liter for metals in solution have been obtained. Some additional features, such as a broader linear dynamic range (over 7 orders of magnitude), greater resolving power (up to 600), and improved isotope ratio accuracy were attained. In addition, isotope ratio precision as low as 0.018% RSD was achieved.

  6. Coupling of a gas chromatograph to a simultaneous-detection inductively coupled plasma mass spectrograph for speciation of organohalide and organometallic compounds

    SciTech Connect

    Barnes, James H.; Schilling, G; Sperline, Roger; Denton, M Bonner B.; Young, Erick T.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2004-06-01

    A gas chromatograph (GC) has been coupled to an inductively coupled plasma Mattauch-Herzog geometry mass spectrograph (ICP-MHMS) equipped with a novel detector array. In its current state of development the detector array, termed the focal plan camera (FPC), permits the simultaneous monitoring of up to 15 m/z values. A heated line was used to transfer the capillary-column effluent from the GC to the ICP torch, though due to instrument operating conditions, the transfer line was terminated 50 mm ahead of the ICP torch. Minimal tailing was observed, with the most severe effect seen for high-boiling analytes. With the coupling, absolute limits of detection are in the tens to hundreds of femtogram regime for organometallic species and in the single pictogram regime for halogenated hydrocarbons.

  7. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.; Novotny, Karel; Malina, Radomir; Prokes, Lubomir; Hrdlicka, Ales; Vaculovic, Tomas; Nyvltova Fisakova, Miriam; Svoboda, Jiri; Kanicky, Viktor; Laserna, Javier J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

  8. Development and evaluation of high resolution quadrupole mass analyzer and an inductively coupled plasma-Mach disk

    SciTech Connect

    Amad, Ma'an Hazem

    1999-12-10

    By definition a plasma is an electrically conducting gaseous mixture containing a significant concentration of cations and electrons. The Inductively Coupled Plasma (ICP) is an electrodeless discharge in a gas at atmospheric pressure. This discharge is an excellent one for vaporizing, atomizing, and ionizing elements. The early development of the ICP began in 1942 by Babat and then by Reed in the early 1960s. This was then followed by the pioneering work of Fassel and coworkers in the late 1960s. Commercial ICP spectrometers were introduced in the mid 1970s. A major breakthrough in the area of ICP took place in the early 1980s when the ICP was shown to be an excellent ion source for mass spectrometry.

  9. Perspectives on Geospace Plasma Coupling

    SciTech Connect

    Baker, Daniel N.

    2011-01-04

    There are a large variety of fascinating and instructive aspects to examining the coupling of mass and energy from the solar wind into the Earth's magnetosphere. Past research has suggested that magnetic reconnection (in a fluid sense) on the day-side magnetopause plays the key role in controlling the energy coupling. However, both linear and nonlinear coupling processes involving kinetic effects have been suggested through various types of innovative data analysis. Analysis and modeling results have also indicated a prominent role for multi-scale processes of plasma coupling. Examples include evidence of control by solar wind turbulence in the coupling sequence and localized (finite gyroradius) effects in dayside plasma transport. In this paper we describe several solar wind-magnetosphere coupling scenarios. We particularly emphasize the study of solar wind driving of magnetospheric substorm, and related geomagnetic disturbances.

  10. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect

    Leach, J.

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  11. Cobalamin speciation using reversed-phase micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2004-06-01

    Micro-high-performance liquid chromatography interfaced to inductively coupled plasma mass spectrometry was optimized for the determination and separation of a mixture of cobalt containing species. Four cobalamin species (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5'-deoxyadenosylcobalamin) representing the various forms of vitamin B12 as well as the harmful corrinoid analogue cobinamide dicyanide were separated using reversed-phase microcapillary chromatography with columns containing C18 packing material with a 2-μm particle size. Selection of organic solvents for the separation took into consideration compatibility with the inductively coupled plasma mass spectrometer being used for element specific detection. Optimized method conditions included use of a methanol gradient and make-up solution for the nebulizer. Some issues associated with dead volume were overcome by the extension of the gradient program. The total analysis time was 52 min. The column-to-column variability was evaluated and was found to be very reasonable (9% RSD on average), confirming that this method is rugged and that the technology should be easily transferred to other laboratories.

  12. Determination of hexavalent chromium in traditional Chinese medicines by high-performance liquid chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Li, Peng; Li, Li-Min; Xia, Jing; Cao, Shuai; Hu, Xin; Lian, Hong-Zhen; Ji, Shen

    2015-12-01

    An analytical method that combined high-performance liquid chromatography with inductively coupled plasma mass spectrometry has been developed for the determination of hexavalent chromium in traditional Chinese medicines. Hexavalent chromium was extracted using the alkaline solution. The parameters such as the concentration of alkaline and the extraction temperature have been optimized to minimize the interconversion between trivalent chromium and hexavalent chromium. The extracted hexavalent chromium was separated on a weak anion exchange column in isocratic mode, followed by inductively coupled plasma mass spectrometry determination. To obtain a better chromatographic resolution and sensitivity, 75 mM NH4 NO3 at pH 7 was selected as the mobile phase. The linearity of the proposed method was investigated in the range of 0.2-5.0 μg L(-1) (r(2) = 0.9999) for hexavalent chromium. The limits of detection and quantitation are 0.1 and 0.3 μg L(-1) , respectively. The developed method was successfully applied to the determination of hexavalent chromium in Chloriti lapis and Lumbricus with satisfactory recoveries of 95.8-112.8%. PMID:26541101

  13. Controlled dissolution of silicon dioxide layers for depth resolved multielement analysis by inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lorge, Susan E.; Houk, R. S.

    2009-11-01

    Dissolution procedures were developed to control the number of surface layers removed, in an attempt to achieve depth resolved analysis by inductively coupled plasma-mass spectrometry (ICP-MS). NIST 612 glass was chosen because it is a homogeneous material with many elements at interesting concentrations, ~ 50 ppm. Varying dissolution time and HF concentration resulted in the reproducible removal of SiO 2 layers as thin as 70 Å deep. Dissolved trace metals were determined after dilution by inductively coupled plasma-mass spectrometry (ICP-MS) with a magnetic sector instrument. The amount removed was determined from the concentration of a major element, Ca. With the exception of Zn, trace metal concentrations agreed reasonably well with their certified values for removal depths of 500, 300 and 150 Å. Zinc concentration was significantly high in all dissolutions indicating either a contamination problem or that Zn is removed at a faster rate than Ca. For the dissolutions that removed 70 Å of SiO 2, Cr, Mn, Co, Sr, Cd, Ce, Dy, Er, Yb and U recovery results agreed with their certified values (~ 50 ppm); Ti, As, Mo, Ba, and Th could not be determined because net intensities were below 3 σ of the blank; and measured concentrations for Cu, Pb and Zn were well above the certified values.

  14. Methyl mercury in nail clippings in relation to fish consumption analysis with gas chromatography coupled to inductively coupled plasma mass spectrometry: a first orientation.

    PubMed

    Krystek, Petra; Favaro, Paulo; Bode, Peter; Ritsema, Rob

    2012-08-15

    For the identification of human exposure to one of the most toxic compounds, which is methyl mercury (MeHg(+)), fingernail clippings were selected as the matrix of interest. Within this pilot study, six samples from different origins and from people with different food consumption patterns were chosen. Species-analysis of MeHg(+) was performed according to the following procedure: dissolution of the sample material in tetramethylammonium hydroxide (TMAH), derivatisation of MeHg(+) with sodium tetraethylborate (NaBEt(4)), extraction into iso-octane and measurement with gas chromatography hyphenated to inductively coupled plasma mass spectrometry (GC-ICPMS) for the quantification MeHg(+). PMID:22841050

  15. Comparing Theory and Experiment for Analyte Transport in the First Vacuum Stage of the Inductively Coupled Plasma Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Zachreson, Matthew R.

    The inductively coupled plasma mass spectrometer (ICP-MS) has been used in laboratories for many years. The majority of the improvements to the instrument have been done empirically through trial and error. A few fluid models have been made, which have given a general description of the flow through the mass spectrometer interface. However, due to long mean free path effects and other factors, it is very difficult to simulate the flow details well enough to predict how changing the interface design will change the formation of the ion beam. Towards this end, Spencer et al. developed FENIX, a direct simulation Monte Carlo algorithm capable of modeling this transitional flow through the mass spectrometer interface, the transitional flow from disorganized plasma to focused ion beam. Their previous work describes how FENIX simulates the neutral ion flow. While understanding the argon flow is essential to understanding the ICP-MS, the true goal is to improve its analyte detection capabilities. In this work, we develop a model for adding analyte to FENIX and compare it to previously collected experimental data. We also calculate how much ambipolar fields, plasma sheaths, and electron-ion recombination affect the ion beam formation. We find that behind the sampling interface there is no evidence of turbulent mixing. The behavior of the analyte seems to be described simply by convection and diffusion. Also, ambipolar field effects are small and do not significantly affect ion beam formation between the sampler and skimmer cones. We also find that the plasma sheath that forms around the sampling cone does not significantly affect the analyte flow downstream from the skimmer. However, it does thermally insulate the electrons from the sampling cone, which reduces ion-electron recombination. We also develop a model for electron-ion recombination. By comparing it to experimental data, we find that significant amounts of electron-ion recombination occurs just downstream from the

  16. Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Regelous, Marcel; Turner, Simon P; Elliott, Tim R; Rostami, Kia; Hawkesworth, Chris J

    2004-07-01

    We describe a new method for the chemical separation and analysis of Pa in silicate rock samples by isotope dilution. Our new technique has the following advantages over previous methods: (a) The initial separation of Pa from the rock matrix is carried out using anionic exchange resin and HCl-HF mixtures, avoiding the need to remove F(-) quantitatively from the sample solution prior to this step, (b) Efficient ionization of Pa is achieved using a multicollector inductively coupled plasma mass spectrometer, so that smaller sample sizes and shorter measurement times are required, compared to previous methods using thermal ionization mass spectrometry or alpha spectrometry. (c) Plasma ionization requires less efficient separation of the high field strength elements from Pa, thus reducing reagent volumes, blanks, and sample preparation times. Instrumental mass fractionation can be corrected for using admixed U of known isotopic composition. Using this method, Pa concentrations can be measured to a precision of approximately 0.5% and an accuracy of approximately 1% using only a few tens of femtograms of Pa. PMID:15228328

  17. Rapid identification and analysis of airborne plutonium using a combination of alpha spectroscopy and inductively coupled plasma mass spectrometry.

    PubMed

    Farmer, Dennis E; Steed, Amber C; Sobus, Jon; Stetzenbach, Klaus; Lindley, Kaz; Hodge, Vernon F

    2003-10-01

    Recent wildland fires near two U.S. nuclear facilities point to a need to rapidly identify the presence of airborne plutonium during incidents involving the potential release of radioactive materials. Laboratory turn-around times also need to be shortened for critical samples collected in the earliest stages of radiological emergencies. This note discusses preliminary investigations designed to address both these problems. The methods under review are same day high-resolution alpha spectroscopy to screen air filter samples for the presence of plutonium and inductively coupled plasma mass spectrometry to perform sensitive plutonium analyses. Thus far, using modified alpha spectroscopy techniques, it has been possible to reliably identify the approximately 5.2 MeV emission of 239Pu on surrogate samples (air filters artificially spiked with plutonium after collection) even though the primary alpha-particle emissions of plutonium are, as expected, superimposed against a natural alpha radiation background dominated by short-lived radon and thoron progeny (approximately 6-9 MeV). Several processing methods were tested to prepare samples for analysis and shorten laboratory turn-around time. The most promising technique was acid-leaching of air filter samples using a commercial open-vessel microwave digestion system. Samples prepared in this way were analyzed by both alpha spectroscopy (as a thin-layer iron hydroxide co-precipitate) and inductively coupled plasma mass spectrometry. The detection levels achieved for 239Pu--approximately 1 mBq m(-3) for alpha spectroscopy screening, and, < 0.1 mBq m(-3) for inductively coupled plasma mass spectrometry analysis--are consistent with derived emergency response levels based on EPA's Protective Action Guides, and samples can be evaluated in 36 to 72 h. Further, if samples can be returned to a fixed-laboratory and processed immediately, results from mass spectrometry could be available in as little as 24 h. When fully implemented

  18. Distance-of-Flight Mass Spectrometry with IonCCD Detection and an Inductively Coupled Plasma Source

    NASA Astrophysics Data System (ADS)

    Dennis, Elise A.; Ray, Steven J.; Enke, Christie G.; Gundlach-Graham, Alexander W.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2016-03-01

    Distance-of-flight mass spectrometry (DOFMS) is demonstrated for the first time with a commercially available ion detector—the IonCCD camera. Because DOFMS is a velocity-based MS technique that provides spatially dispersive, simultaneous mass spectrometry, a position-sensitive ion detector is needed for mass-spectral collection. The IonCCD camera is a 5.1-cm long, 1-D array that is capable of simultaneous, multichannel ion detection along a focal plane, which makes it an attractive option for DOFMS. In the current study, the IonCCD camera is evaluated for DOFMS with an inductively coupled plasma (ICP) ionization source over a relatively short field-free mass-separation distance of 25.3-30.4 cm. The combination of ICP-DOFMS and the IonCCD detector results in a mass-spectral resolving power (FWHM) of approximately 900 and isotope-ratio precision equivalent to or slightly better than current ICP-TOFMS systems. The measured isotope-ratio precision in % relative standard deviation (%RSD) was ≥0.008%RSD for nonconsecutive isotopes at 10-ppm concentration (near the ion-signal saturation point) and ≥0.02%RSD for all isotopes at 1-ppm. Results of DOFMS with the IonCCD camera are also compared with those of two previously characterized detection setups.

  19. Distance-of-Flight Mass Spectrometry with IonCCD Detection and an Inductively Coupled Plasma Source.

    PubMed

    Dennis, Elise A; Ray, Steven J; Enke, Christie G; Gundlach-Graham, Alexander W; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M

    2016-03-01

    Distance-of-flight mass spectrometry (DOFMS) is demonstrated for the first time with a commercially available ion detector-the IonCCD camera. Because DOFMS is a velocity-based MS technique that provides spatially dispersive, simultaneous mass spectrometry, a position-sensitive ion detector is needed for mass-spectral collection. The IonCCD camera is a 5.1-cm long, 1-D array that is capable of simultaneous, multichannel ion detection along a focal plane, which makes it an attractive option for DOFMS. In the current study, the IonCCD camera is evaluated for DOFMS with an inductively coupled plasma (ICP) ionization source over a relatively short field-free mass-separation distance of 25.3-30.4 cm. The combination of ICP-DOFMS and the IonCCD detector results in a mass-spectral resolving power (FWHM) of approximately 900 and isotope-ratio precision equivalent to or slightly better than current ICP-TOFMS systems. The measured isotope-ratio precision in % relative standard deviation (%RSD) was ≥0.008%RSD for nonconsecutive isotopes at 10-ppm concentration (near the ion-signal saturation point) and ≥0.02%RSD for all isotopes at 1-ppm. Results of DOFMS with the IonCCD camera are also compared with those of two previously characterized detection setups. Graphical Abstract ᅟ. PMID:26552388

  20. Matrix effects of calcium on high-precision sulfur isotope measurement by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2016-05-01

    Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water. PMID:26946020

  1. Determination of 90Sr and Pu isotopes in contaminated groundwater samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, Miroslav V.; Ostapczuk, Peter; Halicz, Ludwik; Hille, Ralf; Becker, J. Sabine

    2005-04-01

    A sensitive analytical method for determining the artificial radionuclides 90Sr, 239Pu and 240Pu at the ultratrace level in groundwater samples from the Semipalatinsk Test Site area in Kazakhstan by double-focusing sector field inductively coupled plasma mass spectrometry (ICP-SFMS) was developed. In order to avoid possible isobaric interferences at m/z 90 for 90Sr determination (e.g. 90Zr+, 40Ar50Cr+, 36Ar54Fe+, 58Ni16O2+, 180Hf2+, etc.), the measurements were performed at medium mass resolution under cold plasma conditions. Pu was separated from uranium by means of extraction chromatography using Eichrom TEVA resin with a recovery of 83%. The limits of detection for 90Sr, 239Pu and 240Pu in water samples were determined as 11, 0.12 and 0.1 fg ml-1, respectively. Concentrations of 90Sr and 239Pu in contaminated groundwater samples ranged from 18 to 32 and from 28 to 856 fg ml-1, respectively. The 240Pu/239Pu isotopic ratio in groundwater samples was measured as 0.17. This isotope ratio indicates that the most probable source of contamination of the investigated groundwater samples was the nuclear weapons tests at the Semipalatinsk Test Site conducted by the USSR in the 1960s.

  2. Iodine speciation in dog foods and treats by high performance liquid chromatography with inductively coupled plasma mass spectrometry detection.

    PubMed

    Wilson, Robert A; Yanes, Enrique G; Kemppainen, Robert J

    2016-06-01

    An analytical method for determination of the iodine species 3-monoiodotyrosine (MIT), iodide, 3,5-diiodotyrosine (DIT), 3,5-diiodothyronine (3, 5-T2), 3,5,3'-triiodothyronine (T3), and thyroxine (T4) in dog foods and treats is reported. Iodine speciation was carried out using a HPLC method capable of both anion-exchange and reversed-phase retention coupled with inductively coupled plasma mass spectrometry detection (LC-ICP-MS). The method was evaluated by the analysis of the iodine species concentrations in twelve dog foods and treats following enzymatic digestion. The concentrations of MIT, iodide, DIT, T3, and T4 in the samples ranged from 0.64-59.5μg/g, 0.86-4.05μg/g, mass spectrometry (LC-MS/MS) to cross-validate the results obtained by LC-ICP-MS. Both methods were in good agreement for the concentrations of DIT, T3, and T4. PMID:27107244

  3. Inductively Coupled Plasma/Mass Spectrometric Isotopic Determination of Nuclear Wastes Sources Associated with Hanford Tank Leaks

    SciTech Connect

    Evans, John C.; Dresel, P. Evan; Farmer, Orville T.

    2007-11-01

    The subsurface distribution of a nuclear waste tank leak on the U.S. Department of Energy’s Hanford Site was sampled by slant drilling techniques in order to characterize the chemical and radiological characteristics of the leaked material and assess geochemical transport properties of hazardous constituents. Sediment core samples recovered from the borehole were subjected to distilled water and acid leaching procedures with the resulting leachates analyzed for isotopic and chemical signatures. High-sensitivity inductively coupled plasma/mass spectrometry (ICP/MS) techniques were used for determination of isotopic ratios for Cs, I, Mo. Analysis of the isotopic patterns of I and Mo combined with associated chemical data showed evidence for at least two separate intrusions of nuclear waste into the subsurface. Isotopic data for Cs was inconclusive with respect to a source attribution signature.

  4. Identification of gunshot residues in fabric targets using sector field inductively coupled plasma mass spectrometry technique and ternary graphs.

    PubMed

    Freitas, João Carlos D; Sarkis, Jorge E Souza; Negrini Neto, Osvaldo; Viebig, Sônia Bocamino

    2012-03-01

    During criminal investigations involving firearms, the detection of gunshot residues (GSRs) is one of the most important evidences. In the present study, a new method to identify trace evidences of GSRs, deposited around the bullet entrance hole, in different types of fabrics used as targets, is described. The experiments were carried out using a 0.38-inch caliber revolver, and 9-mm and 0.40-inch caliber pistols. Testimonies of 2.25 cm(2) of the fabrics were cut around the bullet entrance and digested with 10% nitric acid. Antimony, barium, and lead were analyzed in the remaining solution using a sector field inductively coupled plasma mass spectrometer. The concentrations of the elements were detected at levels up to few microgram per square centimeter. The use of ternary graphics allowed us to identify specific patterns of distribution for blank samples and the clear distinction between the revolver and pistols used. PMID:22074259

  5. Intelligent Analysis of Samples by Semiquantitative Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Technique: A Review.

    PubMed

    Krzciuk, Karina

    2016-07-01

    Inductively coupled plasma-mass spectrometry (ICP-MS) is a popular and routine analytical method that has been used for determination of trace elements since the 1980s. It provides fast quantitative analysis and allows the determination of more than 70 elements with good accuracy and very low detection limits, but requires an intricate calibration procedure. In analyses of samples for which very low detection limits are not required a semiquantitative ICP-MS analysis mode can be used. This approach is more time- and cost-effective, and it uses a simple calibration procedure. This article presents a critical review of the semiquantitative (SQ) mode of ICP-MS and describes current and future applications of SQ analysis. PMID:26517237

  6. Determination of organomercury in biological reference materials by inductively coupled plasma mass spectrometry using flow injection analysis

    SciTech Connect

    Beauchemin, D.; Siu, K.W.; Berman, S.S.

    1988-12-01

    Inductively coupled plasma mass spectrometry was used for the determination of organomercury in two marine biological standard reference materials for trace metals (dogfish muscle tissue DORM-1 and lobster hepatopancreas TORT-1). In most parts of this study, the organomercury was extracted as the chloride from the material with toluene and back extracted into an aqueous medium of cysteine acetate. Since the final extracts contained more than 4% sodium, isotope dilution and flow injection analysis were used to respectively counter the effect of concomitant elements and avoid clogging the interface. Comparison of results with gas chromatography shows that the only significant organomercury is methyl-mercury. At least 93% of mercury in DORM-1 and 39% of mercury in TORT-1 exist as methylmercury.

  7. Determination of bromine and tin compounds in plastics using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    İzgi, Belgin; Kayar, Murat

    2015-07-01

    The polybrominated flame retardants and organotin compounds were screened in terms of bromine and tin content using laser ablation inductively coupled plasma mass spectrometry in plastics. The calibration standards were prepared using the fused-disk technique, and all samples were investigated under optimal conditions. Using a central composite experimental design, laser parameters, laser energy, pulse rate, scan rate and spot size were identified. The detection limits of the method were 1000 mgkg(-1) and 1600 mgkg(-1) for bromide and tin, whereas the relative standard deviation (%) values of the analysis were 9% and 6% (n=3) for ERM EC681k with 770 ± 70 mgkg(-1) Br and 86 ± 6 mgkg(-1) Sn respectively, and 106-115% of Br and 102-104% of Sn were observed for the tetrabromobisphenol A and butyltin trichloride spike plastics, respectively. PMID:25882416

  8. Simplified sample preparation procedure for measuring isotope-enriched methylmercury by gas chromatography and inductively coupled plasma mass spectrometry.

    PubMed

    Avramescu, Mary-Luyza; Zhu, Joy; Yumvihoze, Emmanuel; Hintelmann, Holger; Fortin, Danielle; Lean, David R S

    2010-06-01

    Many procedures have been developed to measure the concentration of monomethylmercury (MeHg) from different sample matrices, and the use of stable isotopes of mercury now provides opportunities to determine its formation and degradation rates. Here, a modified procedure for measuring mercury isotopes in sediment samples that uses acid leaching-ion exchange-thiosulfate extraction (TSE) to isolate and purify the methylated mercury from the matrix is proposed. The latter is followed by aqueous-phase ethylation, purge and trap on Tenax, gas chromatography separation of ethylated mercury compounds, and inductively coupled plasma mass spectrometry detection. The new TSE procedure bridges together two well-known methods, the acid-leaching and distillation-derivatization procedures, offering the advantages of artifact-free formation of the first, and low detection limits and the possibility of quantification of individual isotopes of mercury of the second. The modified procedure retains the derivatization, purge and trap, and gas chromatography and inductively coupled plasma mass spectrometry (GC-ICP-MS) detection steps from the distillation-derivatization procedure, and eliminates the distillation step, which is not only laborious but also expensive, due to the high cost of installation and time-consuming cleaning process. Major advantages of the TSE procedure proposed include the extraction and analysis of a large number of samples in a short time, excellent analyte recoveries, and the lack of artifact formation. Sediment certified reference materials (CRMs), BCR 580 and IAEA 405, were used to test the TSE procedure accuracy. Recoveries between 94 to 106% and 95 to 96% were obtained for CRMs and spiked samples (Milli-Q(R) water), respectively. Comparisons among thiosulfate extraction, distillation, and acid-leaching procedures have shown good agreement of methylmercury values. PMID:20821567

  9. Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates.

    PubMed

    Tan, Jiaojie; Liu, Jingyu; Li, Mingdong; El Hadri, Hind; Hackley, Vincent A; Zachariah, Michael R

    2016-09-01

    The novel hyphenation of electrospray-differential mobility analysis with single particle inductively coupled plasma mass spectrometry (ES-DMA-spICPMS) was demonstrated with the capacity for real-time size, mass, and concentration measurement of nanoparticles (NPs) on a particle-to-particle basis. In this proof-of-concept study, the feasibility of this technique was validated through both concentration and mass calibration using NIST gold NP reference materials. A detection limit of 10(5) NPs mL(-1) was determined under current experimental conditions, which is about 4 orders of magnitude lower in comparison to that of a traditional ES-DMA setup using a condensation particle counter as detector. Furthermore, independent and simultaneous quantification of both size and mass of NPs provides information regarding NP aggregation states. Two demonstrative applications include gold NP mixtures with a broad size range (30-100 nm), and aggregated gold NPs with a primary size of 40 nm. Finally, this technique was shown to be potentially useful for real-world samples with high ionic background due to its ability to remove dissolved ions yielding a cleaner background. Overall, we demonstrate the capacity of this new hyphenated technique for (1) clearly resolving NP populations from a mixture containing a broad size range; (2) accurately measuring a linear relationship, which should inherently exist between mobility size and one-third power of ICPMS mass for spherical NPs; (3) quantifying the early stage propagation of NP aggregation with well-characterized oligomers; and (4) differentiating aggregated NPs and nonaggregated states based on the "apparent density" derived from both DMA size and spICPMS mass. PMID:27479448

  10. Determination of trace rare earth elements in gadolinium aluminate by inductively coupled plasma time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Deb, S. B.; Nagar, B. K.; Saxena, M. K.

    An analytical methodology was developed for the precise quantification of ten trace rare earth elements (REEs), namely, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Tm, in gadolinium aluminate (GdAlO3) employing an ultrasonic nebulizer (USN)-desolvating device based inductively coupled plasma mass spectrometry (ICP-MS). A microwave digestion procedure was optimized for digesting 100 mg of the refractory oxide using a mixture of sulphuric acid (H2SO4), phosphoric acid (H3PO4) and water (H2O) with 1400 W power, 10 min ramp and 60 min hold time. An USN-desolvating sample introduction system was employed to enhance analyte sensitivities by minimizing their oxide ion formation in the plasma. Studies on the effect of various matrix concentrations on the analyte intensities revealed that precise quantification of the analytes was possible with matrix level of 250 mg L- 1. The possibility of using indium as an internal standard was explored and applied to correct for matrix effect and variation in analyte sensitivity under plasma operating conditions. Individual oxide ion formation yields were determined in matrix matched solution and employed for correcting polyatomic interferences of light REE (LREE) oxide ions on the intensities of middle and heavy rare earth elements (MREEs and HREEs). Recoveries of ≥ 90% were achieved for the analytes employing standard addition technique. Three real samples were analyzed for traces of REEs by the proposed method and cross validated for Eu and Nd by isotope dilution mass spectrometry (IDMS). The results show no significant difference in the values at 95% confidence level. The expanded uncertainty (coverage factor 1σ) in the determination of trace REEs in the samples were found to be between 3 and 8%. The instrument detection limits (IDLs) and the method detection limits (MDLs) for the ten REEs lie in the ranges 1-5 ng L- 1 and 7-64 μg kg- 1 respectively.

  11. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

    PubMed

    Bandura, Dmitry R; Baranov, Vladimir I; Ornatsky, Olga I; Antonov, Alexei; Kinach, Robert; Lou, Xudong; Pavlov, Serguei; Vorobiev, Sergey; Dick, John E; Tanner, Scott D

    2009-08-15

    A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions (<3% cerium oxide ratio). At mass resolution (full width at half-maximum) M/DeltaM > 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When <15 elemental tags are used, a higher sensitivity mode at lower resolution (M/DeltaM > 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia

  12. Analysis of phosphorus herbicides by ion-pairing reversed-phase liquid chromatography coupled to inductively coupled plasma mass spectrometry with octapole reaction cell.

    PubMed

    Sadi, Baki B M; Vonderheide, Anne P; Caruso, Joseph A

    2004-09-24

    A reversed phase ion-pairing high performance liquid chromatographic (RPIP-HPLC) method is developed for the separation of two phosphorus herbicides, Glufosinate and Glyphosate as well as Aminomethylphosphonic acid (AMPA), the major metabolite of Glyphosate. Tetrabutylammonium hydroxide is used as the ion-pairing reagent in conjunction with an ammonium acetate/acetic acid buffering system at pH 4.7. An inductively coupled plasma mass spectrometer (ICP-MS) is coupled to the chromatographic system to detect the herbicides at m/z = 31P. Historically, phosphorus has been recognized as one of the elements difficult to analyze in argon plasma. This is due to its relatively high ionization potential (10.5 eV) as well as the inherent presence of the polyatomic interferences 14N16O1H+ and 15N16O+ overlapping its only isotope at m/z = 31. An octapole reaction cell is utilized to minimize the isobaric polyatomic interferences and to obtain the highest signal-to-background ratio. Detection limits were found to be in the low ppt range (25-32 ng/l). The developed method is successfully applied to the analysis of water samples collected from the Ohio River and spiked with a standard compounds at a level of 20 microg/l. PMID:15503930

  13. Determination of heavy metals by inductively coupled plasma mass spectrometry after on-line separation and preconcentration

    NASA Astrophysics Data System (ADS)

    Dressler, Valderi L.; Pozebon, Dirce; Curtius, Adilson J.

    1998-10-01

    A method for the determination of Cu, As, Se, Cd, In, Hg, Tl, Pb and Bi in waters and in biological materials by inductively coupled plasma mass spectrometry, after an on-line separation, is described. The matrix separation and analyte preconcentration is accomplished by retention of the analytes complexed with the ammonium salt of O,O-diethyl dithiophosphoric acid in a HNO 3 solution on C 18 immobilized on silica in a minicolumn. Methanol, as eluent, is introduced in the conventional pneumatic nebulizer of the instrument. In order to use the best compromise conditions, concerning the ligand and acid concentrations, the analytes were determined in two separate groups. The enrichment factors were in the range from 5 to 61, depending on the analyte. The limits of detection varied from 0.43 ng L -1 for Bi to 33 ng L -1 for Cu. The sample consumption is only 2.3 mL for each group and the sampling frequency is 21 h -1. The accuracy was tested by analysing five certified reference materials: water, riverine water, urine, bovine muscle and bovine liver. The agreement between obtained and certified concentrations was very good, except for As. The relatively small volume of methanol, used as eluent, minimizes the problems produced by the introduction of organic solvent into the plasma.

  14. Role of laser ablation-inductively coupled plasma-mass spectrometry in cultural heritage research: a review.

    PubMed

    Giussani, Barbara; Monticelli, Damiano; Rampazzi, Laura

    2009-03-01

    Cultural heritage represents a bridge between the contemporary society and the past populations, and a strong collaboration between archaeologists, art historians and analysts may lead to the decryption of the information hidden in an ancient object. Quantitative elemental compositional data play a key role in solving questions concerning dating, provenance, technology, use and the relationship of ancient cultures with the environment. Nevertheless, the scientific investigation of an artifact should be carried out complying with some important constraints: above all the analyses should be as little destructive as possible and performed directly on the object to preserve its integrity. Laser ablation sampling coupled to inductively coupled plasma-mass spectrometry (LA-ICP-MS) fulfils these requirements exhibiting comparably strong analytical performance in trace element determination. This review intends to show through the applications found in the literature how valuable is the contribution of LA-ICP-MS in the investigation of ancient materials such as obsidian, glass, pottery, human remains, written heritage, metal objects and miscellaneous stone materials. The main issues related to cultural heritage investigation are introduced, followed by a brief description of the features of this technique. An overview of the exploitation of LA-ICP-MS is then presented. Finally, advantages and drawbacks of this technique are critically discussed: the fit for purpose and prospects of the use of LA-ICP-MS are presented. PMID:19200475

  15. Determination of arsenic species in Solanum Lyratum Thunb using capillary electrophoresis with inductively coupled plasma mass spectrometry.

    PubMed

    Shuai, Pei-Yu; Yang, Xiao-Jun; Qiu, Zong-Qing; Wu, Xiao-Hui; Zhu, Xi; Pokhrel, Ganga Raj; Fu, Yu-Ying; Ye, Hui-Min; Lin, Wen-Xiong; Yang, Gui-Di

    2016-08-01

    A simple and highly efficient interface to couple capillary electrophoresis with inductively coupled plasma mass spectrometry by a microflow polyfluoroalkoxy nebulizer and a quadruple ion deflector was developed in this study. By using this interface, six arsenic species, including arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, and arsenocholine, were baseline-separated and determined in a single run within 11 min under the optimized separation conditions. The instrumental detection limit was in the range of 0.02-0.06 ng/mL for the six arsenic compounds. Repeatability expressed as the relative standard deviation (n = 5) of both migration time and peak area were better than 2.5 and 4.3% for six arsenic compounds. The proposed method, combined with a closed-vessel microwave-assisted extraction procedure, was successfully applied for the determination of arsenic species in the Solanum Lyratum Thunb samples from Anhui province in China with the relative standard deviations (n = 5) ≤4%, method detection limits of 0.2-0.6 ng As/g and a recovery of 98-104%. The experimental results showed that arsenobetaine was the main speciation of arsenic in the Solanum Lyratum Thunb samples from different provinces in China, with a concentration of 0.42-1.30 μg/g. PMID:27378629

  16. Determination of long-lived beta emitters in nuclear waste by inductively coupled plasma-mass spectrometry

    SciTech Connect

    Bienvenu, P.G.; Brochard, E.A.; Excoffier, E.A.

    1998-12-31

    Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) constitutes a very attractive alternative to radiochemical techniques for the determination of long-lived radionuclides considered critical for the safety of nuclear waste repositories. By measuring isotopic abundance instead of ionizing radiation, it is shown that ICP-MS should exhibit lower detection limits than liquid scintillation counting for the measurement of {beta} emitters with half-lives longer than {approximately} 10{sup 4} years. However, a specific preparative chemistry is generally required prior to measurement in order to separate the analyte from major radioactive contaminants and potentially interfering isotopes. Original methods have recently developed for the determination of three long-lived {beta} emitters: {sup 93}Zr, {sup 107}Pd and {sup 135}Cs in radioactive waste are described in this paper. The procedures involve various separative measurement strategies, such as liquid-liquid extraction, chromatographic separation as well as electrothermal vaporization coupled with ICP-MS. The performances are discussed in terms of selectivity and detection capabilities.

  17. The determination of tungsten, molybdenum, and phosphorus oxyanions by high performance liquid chromatography inductively coupled plasma mass spectrometery.

    PubMed

    Bednar, A J; Mirecki, J E; Inouye, L S; Winfield, L E; Larson, S L; Ringelberg, D B

    2007-07-31

    The toxic properties of tungsten compounds have recently been brought to the forefront with clusters of human cancer cases, such as in Fallon, NV. Such instances have made the determination of tungsten in natural water supplies vitally important. Tungsten exists in most environmental matrices as the soluble and mobile tungstate anion, although it can polymerize with itself and other anions, such as molybdate and phosphate. Because the geochemical and toxicological properties of these polymer species will vary from the monomeric tungstate parent, determination of tungstate speciation is as critical as determination of total dissolved tungsten concentration. Use of chromatographic separations, followed by element-specific detection is a proven technology for elemental speciation. In the present work, anion exchange chromatography has been coupled to inductively coupled plasma mass spectrometry to determine tungstate, molybdate, and phosphate species at the sub-microg l(-1) and microg l(-1) levels. The method provides quantitative determination of these species in about 10 min with the capability to simultaneously determine other oxyanion species. The method has been applied to groundwater and extracts of soils amended with tungsten powder. The water soluble tungsten in 1-h deionized water extracts after six months of soil aging was >15 mg l(-1), however, only approximately 50% of the tungsten was present as monomeric tungstate. PMID:19071839

  18. Use of a parallel path nebulizer for capillary-based microseparation techniques coupled with an inductively coupled plasma mass spectrometer for speciation measurements

    NASA Astrophysics Data System (ADS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2004-06-01

    A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5' deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min.

  19. Precise ruthenium fission product isotopic analysis using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS)

    SciTech Connect

    Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.; Farmer, Orville T.

    2006-05-09

    99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samples and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.

  20. Investigations on the direct introduction of cigarette smoke for trace elements analysis by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chang, Michael J.; Naworal, John D.; Walker, Kathleen; Connell, Chris T.

    2003-11-01

    Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates.

  1. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.

  2. High-precision measurement of variations in calcium isotope ratios in urine by multiple collector inductively coupled plasma mass spectrometry

    USGS Publications Warehouse

    Morgan, J.L.L.; Gordon, G.W.; Arrua, R.C.; Skulan, J.L.; Anbar, A.D.; Bullen, T.D.

    2011-01-01

    We describe a new chemical separation method to isolate Ca from other matrix elements in biological samples, developed with the long-term goal of making high-precision measurement of natural stable Ca isotope variations a clinically applicable tool to assess bone mineral balance. A new two-column procedure utilizing HBr achieves the purity required to accurately and precisely measure two Ca isotope ratios (44Ca/42Ca and 44Ca/43Ca) on a Neptune multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS) in urine. Purification requirements for Sr, Ti, and K (Ca/Sr > 10000; Ca/Ti > 10000000; and Ca/K > 10) were determined by addition of these elements to Ca standards of known isotopic composition. Accuracy was determined by (1) comparing Ca isotope results for samples and standards to published data obtained using thermal ionization mass spectrometry (TIMS), (2) adding a Ca standard of known isotopic composition to a urine sample purified of Ca, and (3) analyzing mixtures of urine samples and standards in varying proportions. The accuracy and precision of δ44/42Ca measurements of purified samples containing 25 μg of Ca can be determined with typical errors less than ±0.2‰ (2σ).

  3. Determination of 237Np and Pu isotopes in large soil samples by inductively coupled plasma mass spectrometry.

    PubMed

    Maxwell, Sherrod L; Culligan, Brian K; Jones, Vernon D; Nichols, Sheldon T; Bernard, Maureen A; Noyes, Gary W

    2010-12-01

    A new method for the determination of (237)Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of (237)Np and Pu isotopes by ICP-MS. (238)U can interfere with (239)Pu measurement by ICP-MS as (238)UH(+) mass overlap and (237)Np via (238)U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1×10(6). Alpha spectrometry can also be applied so that the shorter-lived (238)Pu isotope can be measured successfully. (239) Pu, (242)Pu and (237)Np were measured by ICP-MS, while (236)Pu and (238)Pu were measured by alpha spectrometry. PMID:21056724

  4. RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY

    SciTech Connect

    Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

    2010-06-23

    A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

  5. Quantitative analysis of gold nanoparticles in single cells by laser ablation inductively coupled plasma-mass spectrometry.

    PubMed

    Wang, Meng; Zheng, Ling-Na; Wang, Bing; Chen, Han-Qing; Zhao, Yu-Liang; Chai, Zhi-Fang; Reid, Helen J; Sharp, Barry L; Feng, Wei-Yue

    2014-10-21

    Single cell analysis has become an important field of research in recent years reflecting the heterogeneity of cellular responses in biological systems. Here, we demonstrate a new method, based on laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), which can quantify in situ gold nanoparticles (Au NPs) in single cells. Dried residues of picoliter droplets ejected by a commercial inkjet printer were used to simulate matrix-matched calibration standards. The gold mass in single cells exposed to 100 nM NIST Au NPs (Reference material 8012, 30 nm) for 4 h showed a log-normal distribution, ranging from 1.7 to 72 fg Au per cell, which approximately corresponds to 9 to 370 Au NPs per cell. The average result from 70 single cells (15 ± 13 fg Au per cell) was in good agreement with the result from an aqua regia digest solution of 1.2 × 10(6) cells (18 ± 1 fg Au per cell). The limit of quantification was 1.7 fg Au. This paper demonstrates the great potential of LA-ICPMS for single cell analysis and the beneficial study of biological responses to metal drugs or NPs at the single cell level. PMID:25225851

  6. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-03-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.

  7. Direct and Sensitive Detection of CWA Simulants by Active Capillary Plasma Ionization Coupled to a Handheld Ion Trap Mass Spectrometer.

    PubMed

    Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

    2016-07-01

    An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m(3) to 6.3 μg/m(3). Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection. Graphical Abstract ᅟ. PMID:27020924

  8. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    PubMed

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-01

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. PMID:25440666

  9. DETERMINATION OF 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    SciTech Connect

    Maxwell, S.

    2010-07-26

    A new method for the determination of {sup 237}Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of {sup 237}Np and Pu isotopes by ICP-MS. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via {sup 238}U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1 x 10{sup 6}. Alpha spectrometry can also be applied so that the shorter-lived {sup 238}Pu isotope can be measured successfully. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu and {sup 238}Pu were measured by alpha spectrometry.

  10. First inductively coupled plasma-distance-of-flight mass spectrometer: instrument performance with a microchannel plate/phosphor imaging detector

    SciTech Connect

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2013-09-01

    Here we describe the first combination of a Distance-of-Flight Mass Spectrometry (DOFMS) instrument and an inductively coupled plasma (ICP) ion source. DOFMS is a velocity-based MS technique in which ions of a range of mass-to-charge (m/z) values are detected simultaneously along the length of a spatially selective detector. As a relative of time-of-flight (TOF) MS, DOFMS leverages benefits fromboth TOFMS and spatially dispersive MS. The simultaneous detection of groups of m/z values improves dynamic range by spreading ion signal across many detector elements and reduces correlated noise by signal ratioing. To ascertain the performance characteristics of the ICP-DOFMS instrument, we have employed a microchannel-plate/phosphor detection assembly with a scientific CCD to capture images of the phosphor plate. With this simple (and commercially available) detection scheme, elemental detection limits from 2–30 ng L*1 and a linear dynamic range of 5 orders of magnitude (10–106 ng L1) have been demonstrated. Additionally, a competitive isotope-ratio precision of 0.1% RSD has been achieved with only a 6 s signal integration period. In addition to first figures of merit, this paper outlines technical considerations for the design of the ICP-DOFMS.

  11. Submicrometer Imaging by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry via Signal and Image Deconvolution Approaches.

    PubMed

    Van Malderen, Stijn J M; van Elteren, Johannes T; Vanhaecke, Frank

    2015-06-16

    In this work, pre- and postacquisition procedures for enhancing the lateral resolution of laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) in two- and three-dimensional (2D, 3D) nuclide distribution mapping beyond the laser beam waist are described. 2D images were constructed by projecting a rectangular grid of discrete LA positions, arranged at interspacings smaller than the dimensions of the laser beam waist, onto the sample surface, thus oversampling the region of interest and producing a 2D image convolved in the spatial domain. The pulse response peaks of a low-dispersion LA cell were isolated via signal deconvolution of the transient mass analyzer response. A 3D stack of 2D images was deconvolved by an iterative Richardson-Lucy algorithm with Total Variance regularization, enabling submicrometer image fidelity, demonstrated in the analysis of trace level features in corroded glass. A point spread function (PSF) could be derived from topography maps of single pulse craters from atomic force microscopy. This experimental PSF allows the approach to take into account the laser beam shape, beam aberrations, and the laser-solid interaction, which in turn enhances the spatial resolution of the reconstructed volume. PMID:25975805

  12. Evaluation of number concentration quantification by single-particle inductively coupled plasma mass spectrometry: microsecond vs. millisecond dwell times.

    PubMed

    Abad-Álvaro, Isabel; Peña-Vázquez, Elena; Bolea, Eduardo; Bermejo-Barrera, Pilar; Castillo, Juan R; Laborda, Francisco

    2016-07-01

    The quality of the quantitative information in single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) depends directly on the number concentration of the nanoparticles in the sample analyzed, which is proportional to the flux of nanoparticles through the plasma. Particle number concentrations must be selected in accordance with the data acquisition frequency, to control the precision from counting statistics and the bias, which is produced by the occurrence of multiple-particle events recorded as single-particle events. With quadrupole mass spectrometers, the frequency of data acquisition is directly controlled by the dwell time. The effect of dwell times from milli- to microseconds (10 ms, 5 ms, 100 μs, and 50 μs) on the quality of the quantitative data has been studied. Working with dwell times in the millisecond range, precision figures about 5 % were achieved, whereas using microsecond dwell times, the suitable fluxes of nanoparticles are higher and precision was reduced down to 1 %; this was independent of the dwell time selected. Moreover, due to the lower occurrence of multiple-nanoparticle events, linear ranges are wider when dwell times equal to or shorter than 100 μs are used. A calculation tool is provided to determine the optimal concentration for any instrument or experimental conditions selected. On the other hand, the use of dwell times in the microsecond range reduces significantly the contribution of the background and/or the presence of dissolved species, in comparison with the use of millisecond dwell times. Although the use of dwell times equal to or shorter than 100 μs offers improved performance working in single-particle mode, the use of conventional dwell times (3-10 ms) should not be discarded, once their limitations are known. PMID:27086011

  13. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles.

    PubMed

    Pergantis, Spiros A; Jones-Lepp, Tammy L; Heithmar, Edward M

    2012-08-01

    Nanoparticle (NP) determination has recently gained considerable interest since a growing number of engineered NPs are being used in commercial products. As a result, their potential to enter the environment and biological systems is increasing. In this study, we report on the development of a hyphenated analytical technique for the detection and characterization of metal-containing NPs, i.e., their metal mass fraction, size, and number concentration. Hydrodynamic chromatography (HDC), suitable for sizing NPs within the range of 5 to 300 nm, was coupled online to inductively coupled plasma mass spectrometry (ICPMS), providing for an extremely selective and sensitive analytical tool for the detection of NPs. However, a serious drawback when operating the ICPMS in its conventional mode is that it does not provide data regarding NP number concentrations and, thus, any information about the metal mass fraction of individual NPs. To address this limitation, we developed single particle (SP) ICPMS coupled online to HDC as an analytical approach suitable for simultaneously determining NP size, NP number concentration, and NP metal content. Gold (Au) NPs of various sizes were used as the model system. To achieve such characterization metrics, three calibrations were required and used to convert ICPMS signal spikes into NPs injected, NP retention time on the HDC column to NP size, and ions detected per signal spike or per NP to metal content in each NP. Two calibration experiments were required in order to make all three calibrations. Also, contour plots were constructed in order to provide for a convenient and most informative viewing of this data. An example of this novel analytical approach was demonstrated for the analysis of Au NPs that had been spiked into drinking water at the ng Au L(-1) level. The described technique gave limits of detection for 60 nm Au NPs of approximately 2.2 ng Au L(-1) or expressed in terms of NP number concentrations of 600 Au NPs mL(-1

  14. Applications of inductively coupled plasma-mass spectrometry in environmental radiochemistry

    USGS Publications Warehouse

    Grain, J.S.

    1996-01-01

    The state of the art in ICP-MS is now such that there are few discernible differences between radiochemical and mass spectrometric determinations of longlived radionuclides. Indeed, ICP-MS may provide better (more sensitive) data for many radionuclides, depending upon how one wishes to define "long-lived." In lowlevel determinations, sample preparation remains an important part of the analytical procedure, even with ICP-MS, but the speed and isotopic selectivity of the mass spectrometer appear to offer distinct procedural advantages over radiochemical techniques. Therefore, "radioanalytical" ICP-MS applications should continue to grow, especially in the area of radiation protection, but further research (on efficient sample introduction, for example) and method development may be required to get ICP-MS "off the ground" in the geochemical research areas that have traditionally been supported by radiochemistry.

  15. THE DEVELOPMENT OF IODINE BASED IMPINGER SOLUTIONS FOR THE EFFICIENT CAPTURE OF HG USING DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Inductively coupled plasma mass spectrometry (ICP/MS) with direct injection nebulization (DIN) was used to evaluate novel impinger solution compositions capable of capturing elemental mercury (Hgo) in EPA Method 5 type sampling. An iodine based impinger solutoin proved to be ver...

  16. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry.

    PubMed

    Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H

    2011-04-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images. PMID:21355549

  17. Determination of rare earth element in carbonate using laser-ablation inductively-coupled plasma mass spectrometry: an examination of the influence of the matrix on laser-ablation inductively-coupled plasma mass spectrometry analysis.

    PubMed

    Tanaka, Kazuya; Takahashi, Yoshio; Shimizu, Hiroshi

    2007-02-01

    In this study, we examined the influence of the matrix on rare earth element (REE) analyses of carbonate with laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) using carbonate and NIST glass standards. A UV 213 nm Nd:YAG laser system was coupled to an ICP-MS. Laser-ablation was carried out in both He and Ar atmospheres to investigate the influence of ablation gas on the analytical results. A small amount of N2 gas was added to the carrier gas to enhance the signal intensities. Synthetic CaCO3 standards, doped with REEs, as well as NIST glasses (NIST SRM 610 and 612) were used as calibration standards. Carbonatite, which is composed of pure calcite, was analyzed as carbonate samples. The degree of the influence of the matrix on the results was evaluated by comparing the results, which were calibrated by the synthetic CaCO3 and NIST glass standards. With laser-ablation in a He atmosphere, the differences between the results calibrated by the synthetic CaCO3 and NIST glass standards were less than 10% across the REE series, except for those of La which were 25%. In contrast, for the measurements made in an Ar atmosphere, the results calibrated by the synthetic CaCO3 and NIST glass standards differed by 25-40%. It was demonstrated that the LA-ICP-MS system can provide quantitative analysis of REE concentrations in carbonate samples using non matrix-matched standards of NIST glasses. PMID:17386560

  18. Ultra-Sensitive Elemental Analysis Using Plasmas 5.Speciation of Arsenic Compounds in Biological Samples by High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry System

    NASA Astrophysics Data System (ADS)

    Kaise, Toshikazu

    Arsenic originating from the lithosphere is widely distributed in the environment. Many arsenicals in the environment are in organic and methylated species. These arsenic compounds in drinking water or food products of marine origin are absorbed in human digestive tracts, metabolized in the human body, and excreted viatheurine. Because arsenic shows varying biological a spects depending on its chemical species, the biological characteristics of arsenic must be determined. It is thought that some metabolic pathways for arsenic and some arsenic circulation exist in aqueous ecosystems. In this paper, the current status of the speciation analysis of arsenic by HPLC/ICP-MS (High Performance Liquid Chromatography-Inductively Coupled Plasma Mass spectrometry) in environmental and biological samples is summarized using recent data.

  19. Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry.

    PubMed

    Gray, Evan P; Coleman, Jessica G; Bednar, Anthony J; Kennedy, Alan J; Ranville, James F; Higgins, Christopher P

    2013-12-17

    Expanded use of engineered nanoparticles (ENPs) in consumer products increases the potential for environmental release and unintended biological exposures. As a result, measurement techniques are needed to accurately quantify ENP size, mass, and particle number distributions in biological matrices. This work combines single particle inductively coupled plasma mass spectrometry (spICPMS) with tissue extraction to quantify and characterize metallic ENPs in environmentally relevant biological tissues for the first time. ENPs were extracted from tissues via alkaline digestion using tetramethylammonium hydroxide (TMAH). Method development was performed using ground beef and was verified in Daphnia magna and Lumbriculus variegatus . ENPs investigated include 100 and 60 nm Au and Ag stabilized by polyvynylpyrrolidone (PVP). Mass- and number-based recovery of spiked Au and Ag ENPs was high (83-121%) from all tissues tested. Additional experiments suggested ENP mixtures (60 and 100 nm Ag ENPs) could be extracted and quantitatively analyzed. Biological exposures were also conducted to verify the applicability of the method for aquatic organisms. Size distributions and particle number concentrations were determined for ENPs extracted from D. magna exposed to 98 μg/L 100 nm Au and 4.8 μg/L 100 nm Ag ENPs. The D. magna nanoparticulate body burden for Au ENP uptake was 613 ± 230 μg/kgww, while the measured nanoparticulate body burden for D. magna exposed to Ag ENPs was 59 ± 52 μg/kgww. Notably, the particle size distributions determined from D. magna tissues suggested minimal shifts in the size distributions of ENPs accumulated, as compared to the exposure media. PMID:24218983

  20. Multielemental analysis in small amounts of environmental reference materials with inductively coupled plasma mass spectrometry.

    PubMed

    Dombovári, J; Becker, J S; Dietze, H J

    2000-07-01

    The lowest possible sample weight for performing multielemental trace element analysis on environmental and biological samples by ICP-MS has been investigated. The certified reference materials Bovine Liver NIST SRM 1577b, Human Hair NCS DC 73347 and Oriental Tobacco Leaves CTA-OTL-1 were applied at sample weights (1, 5, 20 and 50 mg aliquots, n = 10) which were significantly lower than those recommended with most recoveries in the range of 95-110%. Samples were digested in a mixture of nitric acid, hydrogen peroxide and hydrogen fluoride by closed-vessel microwave digestion. Multielemental analysis was performed with an optimized ICP-QMS method. Aqueous standard solutions were applied for external calibration with rhodium as the internal standard element. The detection limits varied between 0.02-0.38 microg/g for Li, Na, Cr, Mn, Ni, Cu, Zn, Sr, Cd, Ba and Pb, and up to 1.92 microg/g for Mg, Al, Ca, Fe and Ni. Digested human plasma samples were spiked with multielemental solution (0.5-10 microg/L) to test the analytical method and the recoveries were 95-105% for most analytes. Our results show that in the case of homogeneous SRMs it is possible to use them in very low amounts (1-5 mg) for method development and quality control. PMID:11227466

  1. Determination of actinides in environmental and biological samples using high-performance chelation ion chromatography coupled to sector-field inductively coupled plasma mass spectrometry.

    PubMed

    Truscott, J B; Jones, P; Fairman, B E; Evans, E H

    2001-08-31

    High-performance chelation ion chromatography, using a neutral polystyrene substrate dynamically loaded with 0.1 mM dipicolinic acid, coupled with sector-field inductively coupled plasma mass spectrometry has been successfully used for the separation of the actinides thorium, uranium, americium, neptunium and plutonium. Using this column it was possible to separate the various actinides from each other and from a complex sample matrix. In particular, it was possible to separate plutonium and uranium to facilitate the detection of the former free of spectral interference. The column also exhibited some selectivity for different oxidation states of Np, Pu and U. Two oxidation states each for plutonium and neptunium were found, tentatively identified as Np(V) and Pu(III) eluting at the solvent front, and Np(IV) and Pu(IV) eluting much later. Detection limits were 12, 8, and 4 fg for 237Np, 239Pu, and 241Am, respectively, for a 0.5 ml injection. The system was successfully used for the determination of 239Pu in NIST 4251 Human Lung and 4353 Rocky Flats Soil, with results of 570+/-29 and 2939+/-226 fg g(-1), respectively, compared with a certified range of 227-951 fg g(-1) for the former and a value of 3307+/-248 fg g(-1) for the latter. PMID:11589474

  2. Speciation of chromium and its distribution in tea leaves and tea infusion using titanium dioxide nanotubes packed microcolumn coupled with inductively coupled plasma mass spectrometry.

    PubMed

    Chen, Shizhong; Zhu, Shengping; He, Yuanyuan; Lu, Dengbo

    2014-05-01

    Titanium dioxide nanotubes (TDNTs) were used as a solid phase extraction adsorbent for chromium species by a packed microcolumn coupled with inductively coupled plasma mass spectrometry (ICP-MS), including total, suspended and soluble chromium as well as Cr(III) and Cr(VI) in tea leaves and tea infusion. The experimental results indicated that Cr(III) was quantitatively retained on TDNTs in the pH range of 5.0-8.0, while Cr(VI) remained in the solution. The total chromium was determined after reducing Cr(VI) to Cr(III). The concentration of Cr(VI) is calculated by the difference between total chromium and Cr(III). Under optimal conditions, the detection limits of this method were 0.0075ngmL(-1) for Cr(III). The relative standard deviation was 3.8% (n=9, c=1.0ngmL(-1)). This method was applied for the analysis of the speciation of chromium and its distribution and content in tea leaves, tea infusion and a certified reference material of tea leaves with satisfactory results. PMID:24360447

  3. Electrothermal vaporization coupled with inductively coupled plasma array-detector mass spectrometry for the multielement analysis of Al2O3 ceramic powders

    SciTech Connect

    Peschel, Birgit U.; Andrade, Francisco J.; Wetzel, William C.; Schilling, G D.; Hieftje, Gary M.; Broekaert, Jose AC; Sperline, Roger; Denton, M BONNER.; Barinaga, Charles J.; Koppenaal, David W.

    2006-01-01

    An electrothermal vaporization (ETV) system useful for the analysis of solutions and slurries has been coupled with a sector-field inductively coupled plasma mass spectrometer (ICP-MS) equipped with an array detector. The ability of this instrument to record the transient signals produced in ETV-ICP-MS is demonstrated. Detection limits for Mn, Fe, Co, Ni, Cu, Zn and Ga are in the range of 4-60 pg ?L-1 for aqueous solutions and in the low ?g g-1 range for the analysis of 10 mg mL-1 slurries of Al2O3 powders. The dynamic ranges measured for Fe, Cu and Ga spanned 3-5 orders of magnitude when the detector was operated in the low-gain mode and appear to be limited by the ETV system. Trace amounts of Fe, Cu and Ga could be directly determined in Al2O3 powders at the 2-270 ?g g-1 level without the use of thermochemical reagents. The results well agree with literature values for Fe, whereas deviations of 30-50% at the 2-90 ?g g-1 level for Cu and Ga were found.

  4. Cooking strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Clérouin, Jean

    2015-09-01

    We present the orbital-free method for dense plasmas which allows for efficient variable ionisation molecular dynamics. This approach is a literal application of density functional theory where the use of orbitals is bypassed by a semi-classical estimation of the electron kinetic energy through the Thomas-Fermi theory. Thanks to a coherent definition of ionisation, we evidence a particular regime in which the static structure no longer depends on the temperature: the Γ-plateau. With the help of the well-known Thomas-Fermi scaling laws, we derive the conditions required to obtain a plasma at a given value of the coupling parameter and deduce useful fits. Static and dynamical properties are predicted as well as a a simple equation of state valid on the Γ-plateau. We show that the one component plasma model can be helpful to describe the correlations in real systems.

  5. Evaluation of a 512-Channel Faraday-Strip Array Detector Coupled to an Inductively Coupled Plasma Mattauch-Herzog Mass Spectrograph

    SciTech Connect

    Schilling, G. D.; Ray, Steven J.; Rubinshtein, Arnon A.; Felton, Jermey; Sperline, Roger P.; Denton, Bonner M.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2009-07-01

    A 512-channel Faraday-strip array detector has been developed and fitted to a Mattauch-Herzog geometry mass spectrograph for the simultaneous acquisition of multiple mass-to-charge values. Several advantages are realized by using simultaneous detection methods, including higher duty cycles, removal of correlated noise, and multianalyte transient analyses independent of spectral skew. The new 512-channel version offers narrower, more closely spaced pixels, providing improved spectral peak sampling and resolution. In addition, the electronics in the amplification stage of the new detector array incorporate a sample-and-hold feature that enables truly simultaneous interrogation of all 512 channels. While sensitivity and linear dynamic range remain impressive for this Faraday-based detector system, limits of detection and isotope ratio data have suffered slightly from leaky p-n junctions produced during the manufacture of the semiconductor-based amplification and readout stages. This paper describes the new 512-channel detector array, the current dominant noise sources, and the figures of merit for the device as pertaining to inductively coupled plasma ionization.

  6. Quantitative determination of the anticancer agent tubeimoside I in rat plasma by liquid chromatography coupled with mass spectrometry.

    PubMed

    Liang, Ming-Jin; Zhang, Wei-Dong; Zhang, Chuan; Liu, Run-Hui; Shen, Yun-Heng; Li, Hui-Liang; Wang, Xiao-Lin; Wang, Xiang-Wei; Zhu, Jian-Bao; Chen, Chun-Lin

    2007-01-01

    Tubeimoside I is an important component isolated from Bolbostemma paniculatum. Tubeimoside I has been demonstrated to possess many pharmacological activities, including anti-inflammatory, antitumor, and antitumor-promoting effects. The purpose of the present study was to examine in vivo pharmacokinetics and bioavailability of tubeimoside I in rats by using a liquid chromatography coupled with mass spectrometry quantitative detection method (LC/MS). The plasma samples were deproteinated, evaporated and reconstituted in 100 microl methanol prior to analysis. The separation was performed by Waters Symmetry C18 reversed-phase column (3.5 microm, 150 mm x 2.1mm, Waters Inc., USA) and a SB-C18 guard column (5 microm, 20 mm x 4.0mm). The mobile phase was a mixture of acetonitrile and water containing 5 microM NaAc (60:40, v/v). The method was validated within the concentration range 20-5000 ng/ml, and the calibration curves were linear with correlation coefficients >0.999. The lowest limit of quantitation (LLOQ) for tubeimoside I was 20 ng/ml in 0.1 ml rat plasma. The intra-assay accuracy and precision ranged from 92.4 to 104.9% and from 5.8 to 10.5%, respectively, while inter-assay accuracy and precision ranged from 94.2 to 95.0% and from 5.1 to 8.8%, respectively. The method was further applied to assess pharmacokinetics and oral bioavailability of tubeimoside I after intravenous and oral administration to rats. The oral bioavailability of tubeimoside I is only 0.23%, which indicates that tubeimoside I has poor absorption or undergoes acid-induced degradation. Practical utility of this new LC/MS method was confirmed in pilot pharmacokinetic studies in rats following both intravenous and oral administration. PMID:16931181

  7. Parallel path nebulizer: Critical parameters for use with microseparation techniques combined with inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yanes, Enrique G.; Miller-Ihli, Nancy J.

    2005-04-01

    Four different, low flow parallel path Mira Mist CE nebulizers were evaluated and compared in support of an ongoing project related to the use of microseparation techniques interfaced to inductively coupled plasma mass spectrometry for the quantification of cobalamin species (Vitamin B12). For the characterization of the different Mira Mist CE nebulizers, the nebulizer orientation as well as the effect of methanol on analytical response was the focus of the study. The position of the gas outlet on the nebulizer which consistently provided the maximum signal was when it was rotated to the 11 o'clock position when the nebulizer is viewed end-on. With this orientation the increased signal may be explained by the fact that the cone angle of the aerosol is such that the largest percentage of the aerosol is directed to the center of the spray chamber and consequently into the plasma. To characterize the nebulizer's performance, the signal response of a multielement solution containing elements with a variety of ionization potentials was used. The selection of elements with varying ionization energies and degrees of ionization was essential for a better understanding of observed increases in signal enhancement when methanol was used. Two different phenomena contribute to signal enhancement when using methanol: the first is improved transport efficiency and the second is the "carbon enhancement effect". The net result was that as much as a 30-fold increase in signal was observed for As and Mg when using a make-up solution of 20% methanol at a 15 μL/min flow rate which is equivalent to a net volume of 3 μL/min of pure methanol.

  8. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1. PMID:16496054

  9. Determination of total chlorine and bromine in solid wastes by sintering and inductively coupled plasma-sector field mass spectrometry

    SciTech Connect

    Osterlund, Helene Rodushkin, Ilia; Ylinenjaervi, Karin; Baxter, Douglas C.

    2009-04-15

    A sample preparation method based on sintering, followed by analysis by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) for the simultaneous determination of chloride and bromide in diverse and mixed solid wastes, has been evaluated. Samples and reference materials of known composition were mixed with a sintering agent containing Na{sub 2}CO{sub 3} and ZnO and placed in an oven at 560 deg. C for 1 h. After cooling, the residues were leached with water prior to a cation-exchange assisted clean-up. Alternatively, a simple microwave-assisted digestion using only nitric acid was applied for comparison. Thereafter the samples were prepared for quantitative analysis by ICP-SFMS. The sintering method was evaluated by analysis of certified reference materials (CRMs) and by comparison with US EPA Method 5050 and ion chromatography with good agreement. Median RSDs for the sintering method were determined to 10% for both chlorine and bromine, and median recovery to 96% and 97%, respectively. Limits of detection (LODs) were 200 mg/kg for chlorine and 20 mg/kg for bromine. It was concluded that the sintering method is suitable for chlorine and bromine determination in several matrices like sewage sludge, plastics, and edible waste, as well as for waste mixtures. The sintering method was also applied for determination of other elements present in anionic forms, such as sulfur, arsenic, selenium and iodine.

  10. Inductively coupled plasma mass-spectrometric determination of platinum in excretion products of client-owned pet dogs.

    PubMed

    Janssens, T; Brouwers, E E M; de Vos, J P; de Vries, N; Schellens, J H M; Beijnen, J H

    2015-06-01

    Residues of antineoplastic drugs in canine excretion products may represent exposure risks to veterinary personnel, owners of pet dogs and other animal care-takers. The aim of this study was to measure the extent and duration of platinum (Pt) excretion in pet dogs treated with carboplatin. Samples were collected before and up to 21 days after administration of carboplatin. We used validated, ultra-sensitive, inductively coupled plasma-mass spectrometry assays to measure Pt in canine urine, faeces, saliva, sebum and cerumen. Results showed that urine is the major route of elimination of Pt in dogs. In addition, excretion occurs via faeces and saliva, with the highest amounts eliminated during the first 5 days. The amount of excreted Pt decreased over time but was still quantifiable at 21 days after administration of carboplatin. In conclusion, increased Pt levels were found in all measured excretion products up to 21 days after administration of carboplatin to pet dogs, with urine as the main route of excretion. These findings may be used to further adapt current veterinary guidelines on safe handling of antineoplastic drugs and treated animals. PMID:23714139

  11. Visualizing fossilization using laser ablation-inductively coupled plasma-mass spectrometry maps of trace elements in Late Cretaceous bones

    USGS Publications Warehouse

    Koenig, A.E.; Rogers, R.R.; Trueman, C.N.

    2009-01-01

    Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.

  12. Tracking traces of transition metals present in concrete mixtures by inductively-coupled plasma mass spectrometry studies.

    PubMed

    Bassioni, Ghada; Pillay, Alvin E; El Kadi, Mirella; Fegali, Fadi; Fok, Sai Cheong; Stephen, Sasi

    2010-01-01

    Transition metals can have a significant impact in research related to the dosage optimization of superplasticizers. It is known that the presence of transition metals can influence such doses, and the application of a contemporary instrumental method to obtain the profiles of subsisting transition elements in concrete mixtures would be useful. In this work, inductively-coupled plasma mass spectrometry (ICP-MS) is investigated as a possible tool to track traces of transition metals in concrete mixtures. Depth profiling using ICP-MS on proofed and unproofed concrete shows the presence of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn at trace intensities in the bulk of the samples under investigation. The study demonstrates that the transition metals present in the concrete sample are largely a part of the cement composition and, to a minor degree, a result of exposure to the seawater after curing. The coated concrete samples have a metal distribution pattern similar to the uncoated samples, but slight differences in intensity bear testimony to the very low levels that originate from the exposure to seawater. While X-ray diffraction fails to detect these traces of metals, ICP-MS is successful in detecting ultra-trace intensities to parts per trillion. This method is not only a useful application to track traces of transition metals in concrete, but also provides information to estimate the pore size distribution in a given sample by very simple means. PMID:21173466

  13. Application of Inductively Coupled Plasma Mass Spectrometry to the determination of uranium isotope ratios in individual particles for nuclear safeguards

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao Zhi; Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo

    2007-10-01

    The capability of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of uranium isotope ratios in individual particles was determined. For this purpose, we developed an experimental procedure including single particle transfer with a manipulator, chemical dissolution and isotope ratio analysis, and applied to the analysis of individual uranium particles in certified reference materials (NBL CRM U050 and U350). As the result, the 235U/ 238U isotope ratio for the particle with the diameter between 0.5 and 3.9 μm was successfully determined with the deviation from the certified ratio within 1.8%. The relative standard deviation (R.S.D.) of the 235U/ 238U isotope ratio was within 4.2%. Although the analysis of 234U/ 238U and 236U/ 238U isotope ratios gave the results with inferior precision, the R.S.D. within 20% was possible for the measurement of the particle with the diameter more than 2.1 μm. The developed procedure was successfully applied to the analysis of a simulated environmental sample prepared from a mixture of indoor dust (NIST SRM 2583) and uranium particles (NBL CRM U050, U350 and U950a). From the results, the proposed procedure was found to be an alternative analytical tool for nuclear safeguards.

  14. Inductively coupled plasma-mass spectrometric method for the determination of dissolved trace elements in natural water

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, Howard E.

    1996-01-01

    An inductively coupled plasma-mass spectrometry method was developed for the determination of dissolved Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sr, Tl, U, V, and Zn in natural waters. Detection limits are generally in the 50-100 picogram per milliliter (pg/mL) range, with the exception of As which is in the 1 microgram per liter (ug/L) range. Interferences associated with spectral overlap from concomitant isotopes or molecular ions and sample matrix composition have been identified. Procedures for interference correction and reduction related to isotope selection, instrumental operating conditions, and mathematical data processing techniques are described. Internal standards are used to minimize instrumental drift. The average analytical precision attainable for 5 times the detection limit is about 16 percent. The accuracy of the method was tested using a series of U.S. Geological Survey Standard Reference Water Standards (SWRS), National Research Council Canada Riverine Water Standard, and National Institute of Standards and Technology (NIST) Trace Elements in Water Standards. Average accuracies range from 90 to 110 percent of the published mean values.

  15. Rapid determination of (237)Np and plutonium isotopes in urine by inductively-coupled plasma mass spectrometry and alpha spectrometry.

    PubMed

    Maxwell, Sherrod L; Culligan, Brian K; Jones, Vernon D; Nichols, Sheldon T; Noyes, Gary W; Bernard, Maureen A

    2011-08-01

    A new rapid separation method was developed for the measurement of plutonium and neptunium in urine samples by inductively-coupled plasma mass spectrometry (ICP-MS) and/or alpha spectrometry with enhanced uranium removal. This method allows separation and preconcentration of plutonium and neptunium in urine samples using stacked extraction chromatography cartridges and vacuum box flow rates to facilitate rapid separations. There is an increasing need to develop faster analytical methods for emergency response samples. There is also enormous benefit to having rapid bioassay methods in the event that a nuclear worker has an uptake (puncture wound, etc.) to assess the magnitude of the uptake and guide efforts to mitigate dose (e.g., tissue excision and chelation therapy). This new method focuses only on the rapid separation of plutonium and neptunium with enhanced removal of uranium. For ICP-MS, purified solutions must have low salt content and low concentration of uranium due to spectral interference of (238)U(1)H(+) on m/z 239. Uranium removal using this method is enhanced by loading plutonium and neptunium initially onto TEVA resin, then moving plutonium to DGA resin where additional purification from uranium is performed with a decontamination factor of almost 1×10(5). If UTEVA resin is added to the separation scheme, a decontamination factor of ~3 × 10(6) can be achieved. PMID:21709507

  16. Influence of sample matrix components on the selection of calibration strategies in electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fonseca, R. W.; Miller-Ihli, N. J.

    1996-11-01

    Quantification of both digested and slurry samples were studied using ultrasonic slurry electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS). The results of external calibration using aqueous standards, method of additions, and In as an internal standard were compared. The elements studied include: Mn, Ni and Cu and the materials analyzed include: NIST SRM 1548 total diet and SRM 1549 milk powder. Palladium was used as a physical carrier and oxygen ashing was used to remove the organic part of the slurry matrix. Different degrees of matrix suppression effects were observed when different skimmer cones were employed. Aging of the skimmer cone and consequent loss of its original circular symmetry and decrease in orifice size resulted in differences in sampling of the ion beam and changes in the degree of matrix effects were observed as the skimmer cone was rotated. The presence of matrix suppression effects is evidenced by strong suppressions in the Ar 2, C and analyte signals. When matrix suppression effects were present, the method of external calibration provided low recoveries (average accuracy 73 ± 12%), therefore it was necessary to use the method of additions to compensate for these problems, providing an average accuracy of 108 ± 13%. When matrix effects were absent, the external calibration method resulted in an average accuracy of 101 ± 16%.

  17. Provenance determination of oriental porcelain using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    PubMed

    Bartle, Emma K; Watling, R John

    2007-03-01

    The sale of fraudulent oriental ceramics constitutes a large proportion of the illegal artifact and antique trade and threatens to undermine the legitimate international market. The sophistication and skill of forgers has reached a level where, using traditional appraisal by eye and hand, even the most experienced specialist is often unable to distinguish between a genuine and fraudulent piece. In addition, current provenancing techniques such as energy-dispersive X-ray fluorescence (EDXRF) spectrometry and thermoluminescence (TL) dating can result in significant damage to the artifact itself. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), a relatively nondestructive analytical technique, has been used for the provenance determination of materials based on geographical origin. The technique requires the production of a laser crater, c. 100 microm in diameter, which is essentially invisible to the naked eye. Debris from this crater is analyzed using ICP-MS, with the results forming the basis of the provenance establishment protocol. Chinese, Japanese, and English porcelain shards have been analyzed using this protocol and generic isotopic distribution patterns have been produced that enable the provenance establishment of porcelain artifacts to their country of production. Minor variations between elemental fingerprints of artifacts produced in the same country also indicate that it may be possible to further provenance oriental ceramics to a specific production region or kiln site. PMID:17316230

  18. A provenance study of iron archaeological artefacts by Inductively Coupled Plasma-Mass Spectrometry multi-elemental analysis

    NASA Astrophysics Data System (ADS)

    Desaulty, Anne-Marie; Mariet, Clarisse; Dillmann, Philippe; Joron, Jean Louis; Fluzin, Philippe

    2008-11-01

    Raw materials and wastes (i.e. ore, slag and laitier) from ironmaking archaeological sites have been analyzed in order to understand the behavior of the trace elements in the ancient ironmaking processes and to find the significant-most elements to characterize an iron making region. The ICP-MS (Inductively Coupled Plasma Mass Spectrometry) appears to be an excellent technique for this type of studies. The comparison between the ICP-MS results obtained with the Standard Addition method and the INAA (Instrumental Neutron Activation Analyses) results proved that Sc, Co, (Ni), Rb, Cs, Ba, La, Ce, Sm, Eu, Yb, Hf, Th, U contents in the ores, slag and laitiers, and Co and Ni contents in the cast iron can be successfully determined by ICP-MS after wet acid digestion (low detection limits, good sensitivity and precision). By using significant trace element pairs (Yb/Ce, Ce/Th, La/Sc, U/Th, Nb/Y) present in the ores, laitiers and slag, it is possible to discriminate different French ironmaking regions as the Pays de Bray, Lorraine and Pays d'Ouche. These results open the way to further studies on the provenance of iron objects. The comparison between the ICP-MS results obtained with the Standard Calibration Curves method and the INAA results shows that matrices rich in iron, affect the ICP-MS analyses by suppressing the analytes signal. Further studies are necessary to improve understanding matrix effects.

  19. Determination of plutonium in seawater using co-precipitation and inductively coupled plasma mass spectrometry with ultrasonic nebulisation

    NASA Astrophysics Data System (ADS)

    Eroglu, Ahmet E.; McLeod, Cameron W.; Leonard, Kinson S.; McCubbin, David

    1998-08-01

    A flow injection-inductively coupled plasma-mass spectrometric (FI-ICP-MS) procedure, utilising ultrasonic nebulisation with membrane desolvation (USN/MD), has been developed for the determination of plutonium (Pu) in seawater at fg l -1 concentration levels. Seawater samples (1 l), after filtration, were subjected to co-precipitation with NdF 3, followed by ion exchange to enrich Pu and to reject seawater matrix ions and co-existing uranium. The seawater concentrate (1.0 ml) was then analysed by FI-ICP-MS. The limit of detection for 239Pu in seawater based on an enrichment factor of 1000 was 5 fg l -1, and precision at the 0.80 pg l -1 level was 12% RSD. Accuracy was verified via recovery experiments, and by comparing survey data for the Irish Sea with that derived by standard methodology based on co-precipitation and α-spectrometry. Concentrations for dissolved 239Puand240Pu in the Irish Sea were in the range of 0.267-0.941 pg l -1 (0.614-2.164 mBq l -1) and 0.051-0.196 pg l -1 (0.428-1.646 mBq l -1), respectively.

  20. Determination of total and isotopic uranium and total thorium in soils by inductively coupled plasma-mass spectrometry

    SciTech Connect

    Bolin, R.N.

    1995-12-31

    Inductively coupled plasma-mass spectrometry (ICP-MS), using standard sample introduction by peristaltic pumping, is presented as a method to determine total and isotopic uranium ({sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U) and thorium ({sup 232}Th) in soil samples. Initial sample preparation consists of oven drying to determine moisture content, and grinding and mixing the soil to make it homogeneous. This is followed by a nitric/hydrofluoric acid digestion to bring the uranium into solution. Bismuth ({sup 209}Bi) is added prior to digestion to monitor for losses due to sample preparation and analysis. An addition digestion, using nitric/perchloric acid is performed if the total thorium concentration is required on the sample. The uranium and thorium content of this solution and the {sup 235}U/{sup 238}U ratio are measured on an initial pass through the ICP-MS. The total uranium measurement is based on the {sup 238}U isotope measurement with correction for the presence of the U isotopes. To determine the concentration of the less abundant {sup 234}U and {sup 236}U isotopes, the digestate is further concentrated by using a solid phase extraction column (TRU.Spec by EiChrom Industries, Inc.) before a second pass through the ICP-MS.

  1. Development and validation of an inductively coupled plasma mass spectrometry method for quantification of levothyroxine in dissolution studies.

    PubMed

    Pabla, Dimple; Akhlaghi, Fatemeh; Ahmed, Aftab; Zia, Hossein

    2008-04-01

    A simple, sensitive and reproducible inductively coupled plasma mass spectrometry (ICP-MS) method for the direct determination of levothyroxine (T4), based on the analysis of iodide content, in aqueous media was developed. The sample preparation consisted of addition of antimony, as the internal standard, and dilution with a 0.5% ammonia solution. The analytes were quantified at m/z 126.90 and 120.90 for iodide and antimony, respectively. The assay was linear in the concentration range of 0.1-50 ng/mL for iodide and 0.3-100 ng/mL for T4. The method was precise and accurate with lower limits of quantification (LLOQs) of 0.1 ng/mL for iodide and 0.3 ng/mL for T4. The inter-day accuracy was >94% for both analytes and the coefficient of variation (%CV) was less than 5%. The method has successfully been used for dissolution studies of T4 formulations and holds immense promise as a simple, precise and sensitive analytical technique for T4 concentration determination in in vitro studies. PMID:18320549

  2. Analysis of Mineral and Heavy Metal Content of Some Commercial Fruit Juices by Inductively Coupled Plasma Mass Spectrometry

    PubMed Central

    Dehelean, Adriana; Magdas, Dana Alina

    2013-01-01

    The presence of potentially toxic elements and compounds in foodstuffs is of intense public interest and thus requires rapid and accurate methods to determine the levels of these contaminants. Inductively coupled plasma mass spectrometry is a powerful tool for the determination of metals and nonmetals in fruit juices. In this study, 21 commercial fruit juices (apple, peach, apricot, orange, kiwi, pear, pineapple, and multifruit) present on Romanian market were investigated from the heavy metals and mineral content point of view by ICP-MS. Our obtained results were compared with those reported in literature and also with the maximum admissible limit in drinking water by USEPA and WHO. For Mn the obtained values exceeded the limits imposed by these international organizations. Co, Cu, Zn, As, and Cd concentrations were below the acceptable limit for drinking water for all samples while the concentrations of Ni and Pb exceeded the limits imposed by USEPA and WHO for some fruit juices. The results obtained in this study are comparable to those found in the literature. PMID:24453811

  3. Analysis of mineral and heavy metal content of some commercial fruit juices by inductively coupled plasma mass spectrometry.

    PubMed

    Dehelean, Adriana; Magdas, Dana Alina

    2013-01-01

    The presence of potentially toxic elements and compounds in foodstuffs is of intense public interest and thus requires rapid and accurate methods to determine the levels of these contaminants. Inductively coupled plasma mass spectrometry is a powerful tool for the determination of metals and nonmetals in fruit juices. In this study, 21 commercial fruit juices (apple, peach, apricot, orange, kiwi, pear, pineapple, and multifruit) present on Romanian market were investigated from the heavy metals and mineral content point of view by ICP-MS. Our obtained results were compared with those reported in literature and also with the maximum admissible limit in drinking water by USEPA and WHO. For Mn the obtained values exceeded the limits imposed by these international organizations. Co, Cu, Zn, As, and Cd concentrations were below the acceptable limit for drinking water for all samples while the concentrations of Ni and Pb exceeded the limits imposed by USEPA and WHO for some fruit juices. The results obtained in this study are comparable to those found in the literature. PMID:24453811

  4. Multielemental analysis in vegetable edible oils by inductively coupled plasma mass spectrometry after solubilisation with tetramethylammonium hydroxide.

    PubMed

    Savio, Marianela; Ortiz, María S; Almeida, César A; Olsina, Roberto A; Martinez, Luis D; Gil, Raúl A

    2014-09-15

    Trace metals have negative effects on the oxidative stability of edible oils and they are important because of possibility for oils characterisation. A single-step procedure for trace elemental analysis of edible oils is presented. To this aim, a solubilisation with tetramethylammonium hydroxide (TMAH) was assayed prior to inductively coupled plasma mass spectrometry detection. Small amounts of TMAH were used, resulting in high elemental concentrations. This method was applied to edible oils commercially available in Argentine. Elements present in small amounts (Cu, Ge, Mn, Mo, Ni, Sb, Sr, Ti, and V) were determined in olive, corn, almond and sunflower oils. The limits of detection were between 0.004 μg g(-1) for Mn and Sr, and 0.32 μg g(-1) for Sb. Principal components analysis was used to correlate the content of trace metals with the type of oils. The two first principal components retained 91.6% of the variability of the system. This is a relatively simple and safe procedure, and could be an attractive alternative for quality control, traceability and routine analysis of edible oils. PMID:24767078

  5. Rapid and sensitive determination of tellurium in soil and plant samples by sector-field inductively coupled plasma mass spectrometry.

    PubMed

    Yang, Guosheng; Zheng, Jian; Tagami, Keiko; Uchida, Shigeo

    2013-11-15

    In this work, we report a rapid and highly sensitive analytical method for the determination of tellurium in soil and plant samples using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS). Soil and plant samples were digested using Aqua regia. After appropriate dilution, Te in soil and plant samples was directly analyzed without any separation and preconcentration. This simple sample preparation approach avoided to a maximum extent any contamination and loss of Te prior to the analysis. The developed analytical method was validated by the analysis of soil/sediment and plant reference materials. Satisfactory detection limits of 0.17 ng g(-1) for soil and 0.02 ng g(-1) for plant samples were achieved, which meant that the developed method was applicable to studying the soil-to-plant transfer factor of Te. Our work represents for the first time that data on the soil-to-plant transfer factor of Te were obtained for Japanese samples which can be used for the estimation of internal radiation dose of radioactive tellurium due to the Fukushima Daiichi Nuclear Power Plant accident. PMID:24148390

  6. A rugged and transferable method for determining blood cadmium, mercury, and lead with inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    McShane, William J.; Pappas, R. Steven; Wilson-McElprang, Veronica; Paschal, Dan

    2008-06-01

    A simple, high-throughput method for determining total cadmium, mercury, and lead in blood in cases of suspected exposure, using inductively coupled plasma-mass spectrometry (ICP-MS), has been developed and validated. One part matrix-matched standards, blanks, or aliquots of blood specimens were diluted with 49 parts of a solution containing 0.25% (w/w) tetramethylammonium hydroxide; 0.05% v/v Triton X-100 (blood cell membranes and protein solubilization); 0.01% (w/v) ammonium pyrolidinedithiocarbamate (mercury memory effect prevention and oxidation state stabilization, solubilization by complexation of all three metals); 1% v/v isopropanol (signal enhancement); and 10 μg/L iridium (internal standard). Thus the final dilution factor is 1 + 49. The method provides the basis for the determination of total cadmium, mercury, and lead for assessment of environmental, occupational, accidental ingestion or elevated exposures from other means. Approximately 80 specimens, including blanks, calibration standards, and quality control materials can be processed in an 8-h day. The method has been evaluated by examining reference materials from the National Institute of Standards and Technology, as well as by participation in six rounds of proficiency testing intercomparisons led by the Wadsworth Center of the New York State Department of Health. This method was developed for the purpose of increasing U.S. emergency response laboratory capacity. To this end, 33 U.S. state, and 1 district health department laboratories have validated this method in their own laboratories.

  7. Characterization of a Sealed Americium-Beryllium (AmBe) Source by Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect

    James Sommers; Marcos Jimenez; Mary Adamic; Jeffrey Giglio; Kevin Carney

    2009-12-01

    Two Americium-Beryllium neutron sources were dismantled, sampled (sub-sampled) and analyzed via inductively coupled plasma mass spectrometry (ICP-MS). Characteristics such as “age” since purification, actinide content, trace metal content and inter and intra source composition were determined. The “age” since purification of the two sources was determined to be 25.0 and 25.4 years, respectively. The systematic errors in the “age” determination were ± 4 % 2s. The amount and isotopic composition of U and Pu varied substantially between the sub-samples of Source 2 (n=8). This may be due to the physical means of sub-sampling or the way the source was manufactured. Source 1 was much more consistent in terms of content and isotopic composition (n=3 sub-samples). The Be-Am ratio varied greatly between the two sources. Source 1 had an Am-Be ratio of 6.3 ± 52 % (1s). Source 2 had an Am-Be ratio of 9.81 ± 3.5 % (1s). In addition, the trace element content between the samples varied greatly. Significant differences were determined between Source 1 and 2 for Sc, Sr, Y, Zr, Mo, Ba and W.

  8. Unambiguous characterization of gunshot residue particles using scanning laser ablation and inductively coupled plasma-mass spectrometry.

    PubMed

    Abrego, Zuriñe; Ugarte, Ana; Unceta, Nora; Fernández-Isla, Alberto; Goicolea, M Aranzazu; Barrio, Ramón J

    2012-03-01

    A new method based on scanning laser ablation and inductively coupled plasma-mass spectrometry (LA-ICPMS) for the detection and identification of gunshot residue (GSR) particles from firearms discharges has been developed. Tape lifts were used to collect inorganic residues from skin surfaces. The laser ablation pattern and ICPMS conditions were optimized for the detection of metals present in GSR, such as (121)Sb, (137)Ba, and (208)Pb. Other isotopes ((27)Al, (29)Si, (31)P, (33)S, (35)Cl, (39)K, (44)Ca, (57)Fe, (60)Ni, (63)Cu, (66)Zn, and (118)Sn) were monitored during the ICPMS analyses to obtain additional information to possibly classify the GSR particles as either characteristic of GSR or consistent with GSR. In experiments with real samples, different firearms, calibers, and ammunitions were used. The performed method evaluation confirms that the developed methodology can be used as an alternative to the standard scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) technique, with the significant advantage of drastically reducing the analysis time to less than 66 min. PMID:22304477

  9. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma-mass spectrometry

    PubMed Central

    Pace, Heather E.; Rogers, Nicola J.; Jarolimek, Chad; Coleman, Victoria A.; Higgins, Christopher P.; Ranville, James F.

    2011-01-01

    Currently there are few ideal methods for the characterization of nanoparticles in complex, environmental samples, leading to significant gaps in toxicity and exposure assessments of nanomaterials. Single particle-inductively coupled plasma-mass spectrometry (spICP-MS) is an emerging technique that can both size and count metal-containing nanoparticles. A major benefit of the spICP-MS method is its ability to characterize nanoparticles at concentrations relevant to the environment. This paper presents a practical guide on how to count and size nanoparticles using spICP-MS. Different methods are investigated for measuring transport efficiency (i.e. nebulization efficiency), an important term in the spICP-MS calculations. In addition, an alternative protocol is provided for determining particle size that broadens the applicability of the technique to all types of inorganic nanoparticles. Initial comparison, using well-characterized, monodisperse silver nanoparticles, showed the importance of having an accurate transport efficiency value when determining particle number concentration and, if using the newly presented protocol, particle size. Ultimately, the goal of this paper is to provide improvements to nanometrology by further developing this technique for the characterization of metal-containing nanoparticles. PMID:22074486

  10. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    PubMed Central

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2015-01-01

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation. PMID:26640294

  11. Speciation of vanadium in oilsand coke and bacterial culture by high performance liquid chromatography inductively coupled plasma mass spectrometry.

    PubMed

    Li, X Sherry; Glasauer, Susan; Le, X Chris

    2007-10-17

    A simple and sensitive method for the speciation of vanadium(III), (IV), and (V) was developed by using high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICPMS). The EDTA-complexed vanadium species were separated on a strong anion exchange column with an eluent containing 2 mM EDTA, 3% acetonitrile, and 80 mM ammonium bicarbonate at pH 6. Each analysis was complete in 5 min. The detection limits were 0.6, 0.7 and 1.0 microg L(-1) for V(III), V(IV), and V(V), respectively. The method was applied to coke pore water samples from an oilsand processing/upgrading site in Fort McMurray, Alberta, Canada and to Shewanella putrefaciens CN32 bacterial cultures incubated with V(V). In the coke pore water samples, V(IV) and V(V) were found to be the major species. For the first time, V(III) was detected in the bacterial cultures incubated with V(V). PMID:17936102

  12. The effect of ultrafast laser wavelength on ablation properties and implications on sample introduction in inductively coupled plasma mass spectrometry

    SciTech Connect

    LaHaye, N. L.; Harilal, S. S.; Diwakar, P. K.; Hassanein, A.; Kulkarni, P.

    2013-07-14

    We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation.

  13. Measurements of gunshot residues by sector field inductively coupled plasma mass spectrometry--further studies with pistols.

    PubMed

    Sarkis, Jorge E Souza; Neto, Osvaldo N; Viebig, Sônia; Durrant, Steven F

    2007-10-01

    The most popular handgun in Brazil is the single round-barrel caliber 0.38 revolver. In recent years, however, owing to the modernization of police arms and their availability on the legal and illicit markets, pistols have become increasingly popular and currently represent about 20% of police seizures. In a previous paper we presented a novel collection method for gunshot residues (GSR) using a sampling procedure based on ethylenediamine-tetraacetic acid (EDTA) solution as a complexing agent on moistened swabs with subsequent detection using sector field-high resolution-inductively coupled plasma-mass spectrometry (SF-HR-ICP-MS). In the present paper, we discuss the capability of this methodology to identify antimony (Sb), barium (Ba) and lead (Pb) on the hands of volunteers after shot tests with 9 mm and 0.40 in. caliber pistols. Two types of munitions were tested: 9 mm Taurus and clean range. The use of a technique with high sensitivity, such as SF-HR-ICP-MS, permits the identification of low concentrations (less than 1 microg/L) of metals in firearm residue and constitutes a powerful tool in forensic science. We also discuss the importance of the sampling procedure, including collection from a different body part than the gun hand of the suspect. Comparison of the analytical data obtained allows clear discrimination between samples from the hands of shooters and non-shooters. PMID:17254727

  14. High performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry for V and Ni quantification as tetrapyrroles

    NASA Astrophysics Data System (ADS)

    Duyck, Christiane Béatrice; Saint'Pierre, Tatiana Dillenburg; Miekeley, Norbert; da Fonseca, Teresa Cristina Oliveira; Szatmari, Peter

    2011-05-01

    A method was developed for the determination of V and Ni as tetrapyrroles by High Performance Liquid Chromatography hyphenated to Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS) using reversed phase and elution gradient. Chlorinated solvents and tetrahydrofuran were investigated as regard to separation time and ICP-MS detection efficiencies. The final elution gradient program started from pure methanol to a mixture of 20:80 (v/v) chloroform:methanol. External quantification of V and Ni with inorganic standards by flow injection ICP-MS, used online with HPLC, resulted in 95% of recoveries. The Limits of Detection for V during methanol elution and for Ni during the 20% chloroform gradient elution were evaluated by their minimum detectable concentrations, which were, respectively, 5 μg L - 1 and 8 μg L - 1 . The methodology was applied to polar and resin fractions separated from a Brazilian crude oil and a sediment extract from an oil-polluted area in the Guanabara Bay, Rio de Janeiro, Brazil. Vanadium as tetrapyrroles represented the totality of V content in the polar fraction, whereas Ni was in different polar forms in the resin and sediment extract.

  15. Measurement of airborne gunshot particles in a ballistics laboratory by sector field inductively coupled plasma mass spectrometry.

    PubMed

    Diaz, Ernesto; Sarkis, Jorge E Souza; Viebig, Sônia; Saldiva, Paulo

    2012-01-10

    The present study aimed determines lead (Pb), antimony (Sb) and barium (Ba) as the major elements present in GSR in the environmental air of the Ballistics Laboratory of the São Paulo Criminalistics Institute (I.C.-S.P.), São Paulo, SP, Brazil. Micro environmental monitors (mini samplers) were located at selected places. The PM(2.5) fraction of this airborne was collected in, previously weighted filters, and analyzed by sector field inductively coupled plasma mass spectrometer (SF-HR-ICP-MS). The higher values of the airborne lead, antimony and barium, were found at the firing range (lead (Pb): 58.9 μg/m(3); barium (Ba): 6.9 μg/m(3); antimony (Sb): 7.3 μg/m(3)). The mean value of the airborne in this room during 6 monitored days was Pb: 23.1 μg/m(3); Ba: 2.2 μg/m(3); Sb: 1.5 μg/m(3). In the water tank room, the air did not show levels above the limits of concern. In general the airborne lead changed from day to day, but the barium and antimony remained constant. Despite of that, the obtained values suggest that the workers may be exposed to airborne lead concentration that can result in an unhealthy environment and could increase the risk of chronic intoxication. PMID:21831549

  16. Sample Preparation Problem Solving for Inductively Coupled Plasma-Mass Spectrometry with Liquid Introduction Systems I. Solubility, Chelation, and Memory Effects

    PubMed Central

    Pappas, R. Steven

    2015-01-01

    This tutorial was adapted from the first half of a course presented at the 7th International Conference on Sector Field Inductively Coupled Plasma Mass Spectrometry in 2008 and the 2012 Winter Conference on Plasma Spectrochemistry on sample preparation for liquid introduction systems. Liquid introduction in general and flow injection specifically are the most widely used sample introduction methods for inductively coupled plasma-mass spectrometry. Nevertheless, problems persist in determination of analytes that are commonly investigated, as well as in specialty applications for those seldom considered by most analysts. Understanding the chemistry that is common to different groups of analytes permits the development of successful approaches to rinse-out and elimination of memory effects. This understanding also equips the analyst for development of successful elemental analytical approaches in the face of a broad spectrum of matrices and other analytical challenges, whether the sample is solid or liquid. PMID:26321788

  17. Automated in situ trace element analysis of silicate materials by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Chen, Z; Canil, D; Longerich, H P

    2000-09-01

    This paper describes the automated in situ trace element analysis of solid materials by laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS). A compact computer-controlled solid state Nd:YAG Merchantek EO UV laser ablation (LA) system has been coupled with the high sensitivity VG PQII S ICP-MS. A two-directional communication was interfaced in-house between the ICP-MS and the LA via serial RS-232 port. Each LA-ICP-MS analysis at a defined point includes a 60 s pre-ablation delay, a 60 s ablation, and a 90 s flush delay. The execution of each defined time setting by LA was corresponding to the ICP-MS data acquisition allowing samples to be run in automated cycle sequences like solution auto-sampler ICP-MS analysis. Each analytical cycle consists of four standards, one control reference material, and 15 samples, and requires about 70 min. Data produced by Time Resolved Analysis (TRA) from ICP-MS were later reduced off-line by in-house written software. Twenty-two trace elements from four reference materials (NIST SRM 613, and fused glass chips of BCR-2, SY-4, and G-2) were determined by the automated LA-ICP-MS method. NIST SRM 610 or NIST SRM 613 was used as an external calibration standard, and Ca as an internal standard to correct for drift, differences in transport efficiency and sampling yield. Except for Zr and Hf in G-2, relative standard deviations for all other elements are less than 10%. Results compare well with the data reported from literature with average limits of detection from 1 ng x g(-1) to 455 ng x g(-1) and less than 100 ng x g(-1) for most trace elements. PMID:11220835

  18. Imaging of Cu, Zn, Pb and U in human brain tumor resections by laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zoriy, M. V.; Dehnhardt, M.; Reifenberger, G.; Zilles, K.; Becker, J. S.

    2006-11-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to produce images of element distribution in 20 [mu]m thin tissue sections of primary human brain tumors (glioblastoma multiforme--GBM) and adjacent non-neoplastic brain tissue. The sample surface was scanned (raster area ~1 cm2) with a focused laser beam (wavelength 266 nm, diameter of laser crater 50 [mu]m, and laser power density 1 x 109 W cm-2). The laser ablation system was coupled to a double-focusing sector field ICP-SFMS. Ion intensities of 63Cu+, 64Zn+, 208Pb+, and 238U+ were measured by LA-ICP-MS within the tumor area and the surrounding region invaded by GBM as well as in control tissue. The quantitative determination of copper, zinc, lead and uranium distribution in brain tissues by LA-ICP-MS was performed using prepared matrix-matched laboratory standards doped with these elements of interest. The limits of detection (LODs) obtained for Cu and Zn were 0.34 and 0.14 [mu]g g-1, respectively, while LODs of 12.5 and 6.9 ng g-1 were determined for Pb and U. The concentration and distribution of selected elements are compared between the control tissues and regions affected by GBM. A correlation was found between LA-ICP-MS and receptor-autoradiographic results. As receptor-autoradiographic techniques, a labeling for A1AR and the pBR was employed. Regarding the A1AR, we used the specific A1 adenosine receptor (A1AR)-ligand, 3H-CPFPX [3H-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine], which has been shown to specifically label the invasive zone around GBMs. The peripheral benzodiazepine receptor was labeled with 3H-Pk11195 [3H-1-(2-chlorphenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carboxamide].

  19. Quasi ?non-destructive? laser ablation-inductively coupled plasma-mass spectrometry fingerprinting of sapphires

    NASA Astrophysics Data System (ADS)

    Guillong, M.; Günther, D.

    2001-07-01

    A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for 'quasi' non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97-99% of Al 2O 3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm -2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20-120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g -1 range and were better for heavier elements (mass >85), being in the 0.1 μg g -1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and

  20. Iodine determination in food by inductively coupled plasma mass spectrometry after digestion by microwave-induced combustion.

    PubMed

    Mesko, Márcia F; Mello, Paola A; Bizzi, Cezar A; Dressler, Valderi L; Knapp, Guenter; Flores, Erico M M

    2010-09-01

    Iodine determination in food samples was performed by inductively coupled plasma mass spectrometry (ICP-MS) after digestion by microwave-induced combustion (MIC). Sample masses up to 500 mg of bovine liver, corn starch, milk powder, or wheat flour were completely combusted using the MIC system. Ammonium nitrate (6 mol l(-1) solution, 50 μl) was used as an aid for ignition and vessels were charged with 15 bar of O(2). The use of H(2)O, 0.9 mmol l(-1) H(2)O(2), 10 to 50 mmol l(-1) (NH(4))(2)CO(3) and 56 mmol l(-1) tetramethylammonium hydroxide was investigated as absorbing solutions, as well as the suitability of performing a reflux step after the combustion process. Digestion of food samples by pressurized microwave-assisted acid digestion, microwave-assisted extraction and conventional extraction of iodine in alkaline solution were also evaluated. Iodine recoveries higher than 99% were obtained using MIC and 50 mmol l(-1) (NH(4))(2)CO(3) or 56 mmol l(-1) tetramethylammonium hydroxide as absorbing solution and with 5 min for the reflux step. Accuracy was evaluated using certified reference materials (bovine muscle, corn bran, and milk powder) and agreement better than 97% was obtained. The limit of quantification by MIC and further ICP-MS determination was 0.002 µg g(-1). Blanks were always low and no memory effects were observed. Digestion by MIC allowed the processing of up to eight samples by each run in 25 min with high efficiency of digestion (residual carbon content lower than 1%) providing a suitable medium for further iodine determination by ICP-MS. PMID:20464381

  1. High temperature liquid chromatography-inductively coupled plasma mass spectrometry for the determination of arsenosugars in biological samples.

    PubMed

    Terol, Amanda; Ardini, Francisco; Grotti, Marco; Todolí, José Luis

    2012-11-01

    The potential of high temperature liquid chromatography (HTLC) with detection by inductively coupled plasma mass spectrometry (ICP-MS) for the determination of arsenosugars in marine organisms was examined for the first time. The retention behavior of four naturally occurring dimethylarsinoylribosides was studied on a graphite column using plain water as mobile phase. An aqueous solution of pH 8, ionic strength 13.8mM and containing 2% (v/v) of methanol, along with a column temperature of 120°C and a liquid flow rate of 1.0 mL/min, were selected as the optimal conditions, as they allowed the separation of the four arsenosugars in less than 18 min, without any interferences due to other common arsenic species (arsenite, arsenate, dimethylarsinate, methylarsonate and arsenobetaine). The run time could be further decreased to 12 min by working at 1.5 mL/min, although with a 3-4 times loss of sensitivity. The procedural limits of detection were 0.03-0.04 μg As/g dry mass, and the precision of the procedure ranged from 4% for arsenosugar glycerol to 18% for arsenosugar sulfate (RSD%, n=5). The developed method was applied to a number of representative biological samples, such as algae and crustaceans, providing results consistent with previous studies. In the red algae samples, the most of extracted arsenic was as arsenosugars (81-97%), mainly arsenosugar phosphate (56-94%). On the other hand, lower concentrations of these compounds were found in the crustacean, accounting for about 15% of the extracted arsenic. PMID:22995196

  2. Determination of rare earth impurities in high purity samarium oxide using inductively coupled plasma mass spectrometry after extraction chromatographic separation

    NASA Astrophysics Data System (ADS)

    Zhang, Xinquan; Liu, Jinglei; Yi, Yong; Liu, Yonglin; Li, Xiang; Su, Yaqin; Lin, Ping

    2007-01-01

    A method for the determination of trace of 14 rare earth elements (REEs) as impurities in high purity samarium oxide (Sm2O3) using inductively coupled plasma mass spectrometry (ICP-MS) was described. Analytes, such as La, Ce, Pr, Nd, Eu, Gd, Tb, Lu and Y were measured without Sm matrix separation because of no interference problems occurring that could affect the analysis of these elements. On the other hand, analytes, such as Dy, Ho, Er, Tm and Yb were carried out after Sm matrix being eliminated completely by means of 2-ethylhexyl hydrogen-ethylhexy phosphonate (EHEHP) extraction chromatographic separation. The inherent problem associated with matrix-induced suppression was effectively compensated with spiking In as internal standard element and the mass spectra isobaric interferences of atomic and molecular ions arose from Sm matrix had been overcome after the removal of Sm matrix. The limits of quantitations (LOQ) for 14 REEs impurities were from 0.01 to 0.07 [mu]g g-1 together with the recoveries of spiking sample of 14 REEs were found to be in the range of 85-110% and the proposed method precision was less than 5%. A synthetic standard Sm2O3 sample with well-known 14 REEs concentrations was prepared and analysed in order to prove the accuracy and precision of the proposed method together with another high purity Sm2O3 was also measured using ICP-MS. The methodology had been found to be suitable for the determination of trace of 14 REEs in 99.999-99.9999% high purity Sm2O3.

  3. Rapid and Accurate U-Th Dating of Ancient Carbonates using Inductively Coupled Plasma-Quadrupole Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Douville, Eric; Sallé, Eline; Frank, Norbert; Eisele, Markus; Pons-Branchu, Edwige; Ayrault, Sophie

    2010-05-01

    Here, the potential for rapid and accurate U-Th dating technique of marine aragonite skeletons (deep-sea corals, Lophelia pertusa) and secondary calcite deposits (speleothems and stalagmites) has been explored using inductively-coupled plasma-quadrupole mass spectrometry (ICP-QMS). The analytical procedure includes a largely simplified chemical separation technique for uranium (U) and thorium (Th) using UTEVA resin. The developed technique permits simultaneous quantification of uranium [238U] and thorium [232Th] concentrations and their respective isotopic composition, required for U-series disequilibrium dating. Up to 50 U-Th dates per day can be achieved through ICP-QMS with 234U and 230Th reproducibility (2sigma) of 3-4 permil and 1 percent, respectively. The high sensitivity (> 300 000 cps/ppb) together with low background (<0.5 cps) on each mass between 228-236 amu allowed U-Th dating of ancient deep water corals (15-260 kyrs) and stalagmites (30-85 kyrs) at precision levels of less than 2%. Consequently, the combination of simplified chemistry using UTEVA with state-of-the-art ICP-QMS isotopic measurements that do not require a U-Th separation step now provides an extremely rapid and low-cost U-series dating technology. The level of precision is most convenient for numerous geochronological applications, such as the determination of climatic influences on ecosystem development and carbonate precipitation. As a first-example application we present ICP-QMS U-Th dates of North Atlantic deep-water coral fragments retrieved in the southeastern Porcupine Seabight (MD01-2463G, Mound Thérèse), indicating a purely interglacial growth of deep-water corals on so-called carbonate mounds over several climate cycles.

  4. Non-spectral interferences due to the presence of sulfuric acid in inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    García-Poyo, M. Carmen; Grindlay, Guillermo; Gras, Luis; de Loos-Vollebregt, Margaretha T. C.; Mora, Juan

    2015-03-01

    Results of a systematic study concerning non-spectral interferences from sulfuric acid containing matrices on a large number of elements in inductively coupled plasma-mass spectrometry (ICP-MS) are presented in this work. The signals obtained with sulfuric acid solutions of different concentrations (up to 5% w w- 1) have been compared with the corresponding signals for a 1% w w- 1- nitric acid solution at different experimental conditions (i.e., sample uptake rates, nebulizer gas flows and r.f. powers). The signals observed for 128Te+, 78Se+ and 75As+ were significantly higher when using sulfuric acid matrices (up to 2.2-fold for 128Te+ and 78Se+ and 1.8-fold for 75As+ in the presence of 5 w w-1 sulfuric acid) for the whole range of experimental conditions tested. This is in agreement with previously reported observations. The signal for 31P+ is also higher (1.1-fold) in the presence of sulfuric acid. The signal enhancements for 128Te+, 78Se+, 75As+ and 31P+ are explained in relation to an increase in the analyte ion population as a result of charge transfer reactions involving S+ species in the plasma. Theoretical data suggest that Os, Sb, Pt, Ir, Zn and Hg could also be involved in sulfur-based charge transfer reactions, but no experimental evidence has been found. The presence of sulfuric acid gives rise to lower ion signals (about 10-20% lower) for the other nuclides tested, thus indicating the negative matrix effect caused by changes in the amount of analyte loading of the plasma. The elemental composition of a certified low-density polyethylene sample (ERM-EC681K) was determined by ICP-MS after two different sample digestion procedures, one of them including sulfuric acid. Element concentrations were in agreement with the certified values, irrespective of the acids used for the digestion. These results demonstrate that the use of matrix-matched standards allows the accurate determination of the tested elements in a sulfuric acid matrix.

  5. HIGH RESOLUTION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ALLOWS RAPID ASSESSMENT OF IRON ABSORPTION IN INFANTS AND CHILDREN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable isotope absorption studies of iron have been limited by the high cost and limited availability of isotope ratio analysis using thermal ionization MS (TIMS). The development of high-resolution double focusing inductively coupled plasma MS (ICP-MS) may permit more cost-efficient sample analysis...

  6. Quantitative determination of DNA adducts using liquid chromatography/electrospray ionization mass spectrometry and liquid chromatography/high-resolution inductively coupled plasma mass spectrometry.

    PubMed

    Siethoff, C; Feldmann, I; Jakubowski, N; Linscheid, M

    1999-04-01

    The quantitative determination of nucleotides from DNA modified by styrene oxide is described using a combination of inductively coupled plasma high-resolution mass spectrometry (ICP-HRMS) and electrospray ionization mass spectrometry (ESI-MS), both interfaced to reversed-phase high-performance liquid chromatography (HPLC). LC/ICP-MS (resolution > 1500 to discriminate against 15N16O+ and 14N16OH+) was employed to determine quantitatively the content of modified nucleotides in standard solutions based on the signal of phosphorus; phosphoric acid served as an internal standard. By means of the standard addition technique the sensitivity of the LC/ESI-MS approach was subsequently determined. Since a comparison of UV, ICP and ESI-MS data suggested that in ESI-MS the ionization efficiency of the adducts is identical within the error limits, quantitative determination of all adducts is possible. For LC/ESI-MS with single ion monitoring, the detection limit for styrene oxide adducts of nucleotides was determined to be 20 pg absolute or 14 modified in 10(8) unmodified nucleotides in a 5 micrograms DNA sample, which comes close to the best methods available for the detection of chemical modifications in DNA. PMID:10226366

  7. Linearization of calibration curves by aerosol carrier effect of CCl 4 vapor in electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, Tibor; de Loos-Vollebregt, Margaretha T. C.

    2005-03-01

    Carbon tetrachloride vapor as gaseous phase modifier in a graphite furnace electrothermal vaporizer (GFETV) converts heavy volatile analyte forms to volatile and medium volatile chlorides and produces aerosol carrier effect, the latter being a less generally recognized benefit. However, the possible increase of polyatomic interferences in inductively coupled plasma mass spectrometry (GFETV-ICP-MS) by chlorine and carbon containing species due to CCl 4 vapor introduction has been discouraging with the use of low resolution, quadrupole type MS equipment. Being aware of this possible handicap, it was aimed at to investigate the feasibility of the use of this halogenating agent in ICP-MS with regard of possible hazards to the instrument, and also to explore the advantages under these specific conditions. With sample gas flow (inner gas flow) rate not higher than 900 ml min -1 Ar in the torch and 3 ml min -1 CCl 4 vapor flow rate in the furnace, the long-term stability of the instrument was ensured and the following benefits by the halocarbon were observed. The non-linearity error (defined in the text) of the calibration curves (signal versus mass functions) with matrix-free solution standards was 30-70% without, and 1-5% with CCl 4 vapor introduction, respectively, at 1 ng mass of Cu, Fe, Mn and Pb analytes. The sensitivity for these elements increased by 2-4-fold with chlorination, while the relative standard deviation (RSD) was essentially the same (2-5%) for the two cases in comparison. A vaporization temperature of 2650 °C was required for Cr in Ar atmosphere, while 2200 °C was sufficient in Ar + CCl 4 atmosphere to attain complete vaporization. Improvements in linear response and sensitivity were the highest for this least volatile element. The pyrolytic graphite layer inside the graphite tube was protected by the halocarbon, and tube life time was further increased by using traces of hydrocarbon vapor in the external sheath gas of the graphite furnace. Details

  8. Magnetic immunoassay coupled with inductively coupled plasma mass spectrometry for simultaneous quantification of alpha-fetoprotein and carcinoembryonic antigen in human serum

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Chen, Beibei; He, Man; Zhang, Yiwen; Xiao, Guangyang; Hu, Bin

    2015-04-01

    The absolute quantification of glycoproteins in complex biological samples is a challenge and of great significance. Herein, 4-mercaptophenylboronic acid functionalized magnetic beads were prepared to selectively capture glycoproteins, while antibody conjugated gold and silver nanoparticles were synthesized as element tags to label two different glycoproteins. Based on that, a new approach of magnetic immunoassay-inductively coupled plasma mass spectrometry (ICP-MS) was established for simultaneous quantitative analysis of glycoproteins. Taking biomarkers of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) as two model glycoproteins, experimental parameters involved in the immunoassay procedure were carefully optimized and analytical performance of the proposed method was evaluated. The limits of detection (LODs) for AFP and CEA were 0.086 μg L- 1 and 0.054 μg L- 1 with the relative standard deviations (RSDs, n = 7, c = 5 μg L- 1) of 6.5% and 6.2% for AFP and CEA, respectively. Linear range for both AFP and CEA was 0.2-50 μg L- 1. To validate the applicability of the proposed method, human serum samples were analyzed, and the obtained results were in good agreement with that obtained by the clinical chemiluminescence immunoassay. The developed method exhibited good selectivity and sensitivity for the simultaneous determination of AFP and CEA, and extended the applicability of metal nanoparticle tags based on ICP-MS methodology in multiple glycoprotein quantifications.

  9. Polymer monolithic capillary microextraction on-line coupled with inductively coupled plasma-mass spectrometry for the determination of trace Au and Pd in biological samples

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolan; He, Man; Chen, Beibei; Hu, Bin

    2014-11-01

    A novel method based on on-line polymer monolithic capillary microextraction (CME)-inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of trace Au and Pd in biological samples. For this purpose, poly(glycidyl methacrylate-ethylene dimethacrylate) monolith was prepared and functionalized with mercapto groups. The prepared monolith exhibited good selectivity to Au and Pd, and good resistance to strong acid with a long life span. Factors affecting the extraction efficiency of CME, such as sample acidity, sample flow rate, eluent conditions and coexisting ion interference were investigated in detail. Under the optimal conditions, the limits of detection (LODs, 3σ) were 5.9 ng L- 1 for Au and 8.3 ng L- 1 for Pd, and the relative standard deviations (RSDs, c = 50 ng L -1, n = 7) were 6.5% for Au and 1.1% for Pd, respectively. The developed method was successfully applied to the determination of Au and Pd in human urine and serum samples with the recovery in the range of 84-118% for spiked samples. The developed on-line polymer monolithic CME-ICP-MS method has the advantages of rapidity, simplicity, low sample/reagent consumption, high sensitivity and is suitable for the determination of trace Au and Pd in biological samples with limited amount available and complex matrix.

  10. Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency.

    PubMed

    Menéndez-Miranda, Mario; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo

    2015-11-27

    Hyphenation of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) is proposed as a powerful diagnostic tool for quantum dots bioconjugation studies. In particular, conjugation effectiveness between a "model" monoclonal IgG antibody (Ab) and CdSe/ZnS core-shell Quantum Dots (QDs), surface-coated with an amphiphilic polymer, has been monitored here by such hybrid AF4-ICP-MS technique. Experimental conditions have been optimized searching for a proper separation between the sought bioconjugates from the eventual free reagents excesses employed during the bioconjugation (QDs and antibodies). Composition and pH of the carrier have been found to be critical parameters to ensure an efficient separation while ensuring high species recovery from the AF4 channel. An ICP-MS equipped with a triple quadropole was selected as elemental detector to enable sensitive and reliable simultaneous quantification of the elemental constituents, including sulfur, of the nanoparticulated species and the antibody. The hyphenated technique used provided nanoparticle size-based separation, elemental detection, and composition analysis capabilities that turned out to be instrumental in order to investigate in depth the Ab-QDs bioconjugation process. Moreover, the analytical strategy here proposed allowed us not only to clearly identify the bioconjugation reaction products but also to quantify nanoparticle:antibodies bioconjugation efficiency. This is a key issue in future development of analytical and bioanalytical photoluminescent QDs applications. PMID:26493473

  11. Combined use of medium mass resolution and desolvation introduction system for accurate plutonium determination in the femtogram range by inductively coupled plasma-sector-field mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pointurier, Fabien; Pottin, Anne-Claire; Hémet, Philippe; Hubert, Amélie

    2011-03-01

    Formation of a polyatomic species made of an atom of a heavy element like lead, mercury or iridium, and atoms abundant in plasma (argon, nitrogen, oxygen, and hydrogen) when using an inductively coupled plasma-sector-field mass spectrometer (ICP-SFMS) may lead to false detection of femtograms (fg) of plutonium or bias in the measured concentrations. Mathematical corrections, based on the measurement of heavy element concentrations in the sample solutions and determination of the extents of formation of the polyatomic interferences, are efficient but time-consuming and degrade detection limits. We describe and discuss a new method based on the combination of, on the one hand, medium mass resolution (MR) of the ICP-SFMS to separate plutonium isotopes physically from interfering polyatomic species, and, on the other, use of a desolvation introduction system (DIS) to enhance sensitivity, thus partly compensating for the loss of transmission due to use of a higher resolution. Plutonium peaks are perfectly separated from the major interfering species (PbO 2, HgAr, and IrO 3) with a mass resolution of ~ 4000. The resulting nine-fold transmission loss is partly compensated by a five-fold increase in sensitivity obtained with the DIS and a lower background. The instrumental detection limits for plutonium isotopes, calculated for measurements of pure synthetic solutions, of the new method (known as MR-DIS method) and of the one currently used in the laboratory (LR method), based on a low mass resolution equal to 360, a microconcentric nebulizer and two in-line cooled spray chambers, are roughly equivalent, at around 0.2 fg ml - 1 . Regarding the measurement of real-life samples, the results obtained with both methods agree and the corresponding analytical detection limits for plutonium isotopes 239Pu, 240Pu and 241Pu are of a few fg·ml - 1 of sample solution, slightly lower with the MR-DIS method than with the current LR method. Although less sensitive than other plutonium

  12. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Sánchez-García, L; Bolea, E; Laborda, F; Cubel, C; Ferrer, P; Gianolio, D; da Silva, I; Castillo, J R

    2016-03-18

    Facing the lack of studies on characterization and quantification of cerium oxide nanoparticles (CeO2 NPs), whose consumption and release is greatly increasing, this work proposes a method for their sizing and quantification by Flow Field-flow Fractionation (FFFF) coupled to Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Two modalities of FFFF (Asymmetric Flow- and Hollow Fiber-Flow Field Flow Fractionation, AF4 and HF5, respectively) are compared, and their advantages and limitations discussed. Experimental conditions (carrier composition, pH, ionic strength, crossflow and carrier flow rates) are studied in detail in terms of NP separation, recovery, and repeatability. Size characterization of CeO2 NPs was addressed by different approaches. In the absence of feasible size standards of CeO2 NPs, suspensions of Ag, Au, and SiO2 NPs of known size were investigated. Ag and Au NPs failed to show a comparable behavior to that of the CeO2 NPs, whereas the use of SiO2 NPs provided size estimations in agreement to those predicted by the theory. The latter approach was thus used for characterizing the size of CeO2 NPs in a commercial suspension. Results were in adequate concordance with those achieved by transmission electron microscopy, X-ray diffraction and dynamic light scattering. The quantification of CeO2 NPs in the commercial suspension by AF4-ICP-MS required the use of a CeO2 NPs standards, since the use of ionic cerium resulted in low recoveries (99±9% vs. 73±7%, respectively). A limit of detection of 0.9μgL(-1) CeO2 corresponding to a number concentration of 1.8×1012L(-1) for NPs of 5nm was achieved for an injection volume of 100μL. PMID:26903472

  13. Towards silicon speciation in light petroleum products using gas chromatography coupled to inductively coupled plasma mass spectrometry equipped with a dynamic reaction cell

    NASA Astrophysics Data System (ADS)

    Chainet, Fabien; Lienemann, Charles-Philippe; Ponthus, Jeremie; Pécheyran, Christophe; Castro, Joaudimir; Tessier, Emmanuel; Donard, Olivier François Xavier

    2014-07-01

    Silicon speciation has recently gained interest in the oil and gas industry due to the significant poisoning problems caused by silicon on hydrotreatment catalysts. The poisoning effect clearly depends on the structure of the silicon species which must be determined and quantified. The hyphenation of gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) allows a specific detection to determine the retention times of all silicon species. The aim of this work is to determine the retention indices of unknown silicon species to allow their characterization by a multi-technical approach in order to access to their chemical structure. The optimization of the dynamic reaction cell (DRC) of the ICP-MS using hydrogen as reactant gas successfully demonstrated the resolution of the interferences (14N14N+ and 12C16O+) initially present on 28Si. The linearity was excellent for silicon compounds and instrumental detection limits ranged from 20 to 140 μg of Si/kg depending on the response of the silicon compounds. A continuous release of silicon in the torch was observed most likely due to the use of a torch and an injector which was made of quartz. A non-universal response for silicon was observed and it was clearly necessary to use response coefficients to quantify silicon compounds. Known silicon compounds such as cyclic siloxanes (D3-D16) coming from PDMS degradation were confirmed. Furthermore, more than 10 new silicon species never characterized before in petroleum products were highlighted in polydimethylsiloxane (PDMS) degradation samples produced under thermal cracking of hydrocarbons. These silicon species mainly consisted of linear and cyclic structures containing reactive functions such as ethoxy, peroxide and hydroxy groups which can be able to react with the alumina surface and hence, poison the catalyst. This characterization will further allow the development of innovative solutions such as trapping silicon compounds or

  14. Capabilities of mixed-mode liquid chromatography coupled to inductively coupled plasma mass spectrometry for the simultaneous speciation analysis of inorganic and organically-bound selenium.

    PubMed

    Peachey, Emma; Cook, Ken; Castles, Adrian; Hopley, Christopher; Goenaga-Infante, Heidi

    2009-10-16

    This work investigates for the first time the potential of mixed-mode (anion-exchange with reversed-phase) high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (ICP-MS) for the simultaneous retention and selective separation of a range of inorganic and organically-bound selenium (Se) species. Baseline separation and detection of selenocystine (SeCys(2)), Se-methyl-selenocysteine (SeMC), selenomethionine (SeMet), methylseleninic acid (MSA), selenite, gamma-glutamyl-methyl-selenocysteine (gamma-glutamyl-SeMC), and selenate in a Se standard mixture by mixed-mode HPLC-ICP-MS was achieved by switching between two citrate mobile phases of different pH and ionic strength within a single chromatographic run of 20 min. Limits of detection obtained for these Se species ranged from 80 ng kg(-1) (for SeMC) to 123 ng kg(-1) (for selenate). Using this approach as developed for selenium speciation, an adequate separation of inorganic and organic As compounds was also achieved. These include arsenite, arsenate, arsenobetaine (AsB) and dimethylarsenic acid (DMA), which may coexist with Se species in biological samples. Application of the newly proposed methodology to the investigation of the elemental species distribution in watercress (used as the model sample) after enzymatic hydrolysis or leaching in water by accelerated solvent extraction (ASE) was addressed. Only SeMet, SeMC and selenate could be tentatively identified in watercress extracts by mixed-mode HPLC-ICP-MS and retention time matching with standards. Recoveries (n=3) of these Se species from samples spiked with standards averaged 102% (for SeMC), 94.9% (for SeMet) and 98.3% (for selenate). Verification of the presence of SeMet and SeMC in an enzymatic watercress extract was achieved by on-line HPLC-ESI MS/MS in selected reaction monitoring (SRM) mode. PMID:19758595

  15. Ultra-trace determination of gold nanoparticles in environmental water by surfactant assisted dispersive liquid liquid microextraction coupled with electrothermal vaporization-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Ying; He, Man; Chen, Beibei; Hu, Bin

    2016-08-01

    A new method by coupling surfactant assisted dispersive liquid liquid microextraction (SA-DLLME) with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the analysis of gold nanoparticles (AuNPs) in environmental water samples. Effective separation of AuNPs from ionic gold species was achieved by using sodium thiosulphate as a complexing agent. Various experimental parameters affecting SA-DLLME of AuNPs, such as the organic solvent, organic solvent volume, pH of the sample, the kind of surfactant, surfactant concentration, vortex time, speed of centrifugation, centrifugation time, and different coating as well as sizes of AuNPs were investigated carefully. Furthermore, the interference of coexisting ions, dissolved organic matter (DOM) and other metal nanoparticles (NPs) were studied. Under the optimal conditions, a detection limit of 2.2 ng L- 1 and an enrichment factor of 152-fold was achieved for AuNPs, and the original morphology of the AuNPs could be maintained during the extraction process. The developed method was successfully applied for the analysis of AuNPs in environmental water samples, including tap water, the East Lake water, and the Yangtze River water, with recoveries in the range of 89.6-102%. Compared with the established methods for metal NPs analysis, the proposed method has the merits of simple and fast operation, low detection limit, high selectivity, good tolerance to the sample matrix and no digestion or dilution required. It provides an efficient quantification methodology for monitoring AuNPs' pollution in the environmental water and evaluating its toxicity.

  16. A lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform for identification of multiple liver cancer biomarkers in human plasma.

    PubMed

    Ahn, Yeong Hee; Shin, Park Min; Oh, Na Ree; Park, Gun Wook; Kim, Hoguen; Yoo, Jong Shin

    2012-09-18

    Aberrantly glycosylated proteins related to liver cancer progression were captured with specific lectin and identified from human plasma by multiple reaction monitoring (MRM) mass spectrometry as multiple biomarkers for hepatocellular carcinoma (HCC). The lectin fractionation for fucosylated protein glycoforms in human plasma was conducted with a fucose-specific aleuria aurantia lectin (AAL). Following tryptic digestion of the lectin-captured fraction, plasma samples from 30 control cases (including 10 healthy, 10 hepatitis B virus [HBV], and 10 cirrhosis cases) and 10 HCC cases were quantitatively analyzed by MRM to identify which glycoproteins are viable HCC biomarkers. A1AG1, AACT, A1AT, and CERU were found to be potent biomarkers to differentiate HCC plasma from control plasmas. The AUROC generated independently from these four biomarker candidates ranged from 0.73 to 0.92. However, the lectin-coupled MRM assay with multiple combinations of biomarker candidates is superior statistically to those generated from the individual candidates with AUROC more than 0.95, which can be an alternative to the immunoassay inevitably requiring tedious development of multiple antibodies against biomarker candidates to be verified. Eventually the lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform was found to be efficient to identify multiple biomarkers from human plasma according to cancer progression. PMID:22789673

  17. High precision and high accuracy isotopic measurement of uranium using lead and thorium calibration solutions by inductively coupled plasma-multiple collector-mass spectrometry

    SciTech Connect

    Bowen, I.; Walder, A.J.; Hodgson, T.; Parrish, R.R. |

    1998-12-31

    A novel method for the high accuracy and high precision measurement of uranium isotopic composition by Inductively Coupled Plasma-Multiple Collector-Mass Spectrometry is discussed. Uranium isotopic samples are spiked with either thorium or lead for use as internal calibration reference materials. This method eliminates the necessity to periodically measure uranium standards to correct for changing mass bias when samples are measured over long time periods. This technique has generated among the highest levels of analytical precision on both the major and minor isotopes of uranium. Sample throughput has also been demonstrated to exceed Thermal Ionization Mass Spectrometry by a factor of four to five.

  18. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  19. Determination of Mercury Content in a Shallow Firn Core from Summit, Greenland by Isotope Dilution Inductively Coupled Plasma Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mann, Jacqueline L.; Long, Stephen E.; Shuman, Christopher A.; Kelly, W. Robert

    2003-01-01

    The total mercury Hg content was determined in 6 cm sections of a near-surface 7 m firn core and in surrounding surface snow from Summit, Greenland (elevation: 3238 m, 72.58 N, 38.53 W) in May 2001 by isotope dilution cold-vapor inductively coupled plasma mass spectrometry (ID-CV-ICP-MS). The focus of this research was to evaluate the capability of the ID-CV-ICPMS technique for measuring trace levels of Hg typical of polar snow and firn. Highly enriched Hg-201 isotopic spike is added to approximately 10 ml melted core and thoroughly mixed. The Hg(+2) in the sample is reduced on line with tin (II) chloride (SnCl2) and the elemental Hg (Hg(0)) vapor pre-concentrated on to gold gauze using a commercial amalgam system. The Hg is then thermally desorbed and introduced into a quadrupole ICP-MS. The blank corrected Hg concentrations determined for all samples ranged from 0.25 ng/L to 1.74 ng/L (ppt) (average 0.59 ng/L plus or minus 0.28 ng/L) and fall within the range of those previously determined by Boutron et al., 1998 (less than or equal to 0.05 ng/L to 2.0 ng/L) for the Summit site. The average blank value was 0.19 ng/L plus or minus 0.045 ng/L (n=6). The Hg values specifically for the firn core range from 0.25 ng/L to 0.87 ng/L (average 0.51 ng/L plus or minus 0.13 ng/L) and show both values declining with time and larger variability in concentration in the top 1.8 m.

  20. Determination of trace elements in biological samples by inductively coupled plasma mass spectrometry with tetramethylammonium hydroxide solubilization at room temperature.

    PubMed

    Batista, Bruno Lemos; Grotto, Denise; Rodrigues, Jairo Lisboa; Souza, Vanessa Cristina de Oliveira; Barbosa, Fernando

    2009-07-30

    A simple method for sample preparation of biological samples for trace elements determination by inductively coupled plasma mass spectrometry (ICP-MS) is described. Prior to analysis, 75 mg of the biological samples were accurately weighed into (15 mL) conical tubes. Then, 1 mL of 50% (v/v) tetramethylammonium hydroxide (TMAH) solution was added to the samples, incubated at room temperature for 12 h and the volume made up to 10 mL with a solution containing 0.5% (v/v) HNO(3), 0.01% (v/v) Triton X-100 and 10 microg L(-1) of Rh. After preparation samples may be stored at -20 degrees C during 3 days until the analysis by ICP-MS. With these conditions, the use of the dynamic reaction cell was only mandatory for chromium determination. Method detection limits were 0.2145, 0.0020, 0.0051, 0.0017, 0.0027, 0.0189, 0.02, 0.5, 0.1, 0.0030, 0.0043, 0.0066, 0.0009, 0.020, 0.0043, 0.1794, 0.1 microg(-1) for Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Pb, Sb, Se, Sr, V and Zn, respectively. Validation data are provided based on the analysis of six certified reference materials (CRMs) purchased from the National Institute of Standards and Technology (NIST) and National Research Council Canada (NRCC). Additional validation was provided by the analysis of brain, kidney, liver and heart samples collected from rats and analyzed by the proposed method and by using microwave digestion. PMID:19523552

  1. Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination.

    PubMed

    Romarís-Hortas, Vanessa; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar

    2009-08-15

    The feasibility of microwave energy to assist the solubilisation of edible seaweed samples by tetramethylammonium hydroxide (TMAH) has been investigated to extract iodine and bromine. Inductively coupled plasma-mass spectrometry (ICP-MS) has been used as a multi-element detector. Variables affecting the microwave assisted extraction/solubilisation (temperature, TMAH volume, ramp time and hold time) were firstly screened by applying a fractional factorial design (2(5-1)+2), resolution V and 2 centre points. When extracting both halogens, results showed statistical significance (confidence interval of 95%) for TMAH volume and temperature, and also for the two order interaction between both variables. Therefore, these two variables were finally optimized by a 2(2)+star orthogonal central composite design with 5 centre points and 2 replicates, and optimum values of 200 degrees C and 10 mL for temperature and TMAH volume, respectively, were found. The extraction time (ramp and hold times) was found statistically non-significant, and values of 10 and 5 min were chosen for the ramp time and the hold time, respectively. This means a fast microwave heating cycle. Repeatability of the over-all procedure has been found to be 6% for both elements, while iodine and bromine concentrations of 24.6 and 19.9 ng g(-1), respectively, were established for the limit of detection. Accuracy of the method was assessed by analyzing the NIES-09 (Sargasso, Sargassum fulvellum) certified reference material (CRM) and the iodine and bromine concentrations found have been in good agreement with the indicative values for this CRM. Finally, the method was applied to several edible dried and canned seaweed samples. PMID:19576469

  2. Determination of trace impurities in high purity gold by inductively coupled plasma mass spectrometry with prior matrix removal by electrodeposition

    NASA Astrophysics Data System (ADS)

    Sun, Y. C.; Hsieh, C. H.; Lin, T. S.; Wen, J. C.

    2000-09-01

    A novel method for the determination of 11 trace impurities (Be, Mg, Cr, Mn, Ni, Cu, Zn, Ag, Pd, Sn and Pb) in high purity gold with a combination of electrochemical deposition separation and inductively coupled plasma mass spectrometric measurement was investigated. In the present study, an efficient separation procedure was developed to remove the gold matrix by the electrodepositon method on the basis of the difference in reduction potential of gold and the other trace impurities. The effects of deposition potential, deposition time and composition of the electrolyte on the separation efficiency were studied. According to our experimental results, most impurities, except for silver, can remain in the electrolyte and the interference from gold can be completely removed through the application of electrodeposition at suitable potential. To achieve simultaneous separation of silver from the gold matrix, a unique complexation reaction between silver ions and ammonia ions was successfully employed to alter the reduction potential of silver ion. By way of a suitable adjustment of the deposition potential and the composition of electrolytes, the spike recoveries of 11 interesting impurities were found to be in the range of 85-105%. The limit of detection (based on the 3-σ criterion) of these elements was 10 -1-10 -2 μg g -1. The applicability of the proposed method has also been validated by the analysis of high purity gold reference materials (FAU9 and FAU11, Royal Canadian Mint). Comparing with the certified values, the recoveries of interesting elements were found to be in the range of 82-118% through the use of proposed method.

  3. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils

    NASA Astrophysics Data System (ADS)

    Ivanov, Krasimir; Zaprjanova, Penka; Petkova, Milena; Stefanova, Violeta; Kmetov, Veselin; Georgieva, Deyana; Angelova, Violina

    2012-05-01

    The most widely used method for determination of total phosphorus in soils is perchloric acid digestion, followed by a colorimetric assay to measure the concentration of P in solution. The first part of this study compares an alternative digestion method, using aqua regia (ISO 11466 and EPA Method 3052), with perchloric acid digestion procedure, and also compares inductively coupled plasma mass spectroscopy (ICP-MS) with colorimetry for the measurement of P on the basis of five internationally certified standard soils and 20 real-life soils with widely different extractability of phosphorus. The phosphorus concentration was determined by means of the reduced phosphomolybdenum blue and ICP-MS. The relationship between methods has been examined statistically. Good agreement of the results from colorimetry and ICP-MS was established for all certified soils. The microwave-assisted digestion with aqua regia was comparable, both in precision and accuracy, with the hot plate aqua regia method. The phosphorus concentration found with the HF + HClO4 digestion method was in good agreement with the certified mean values, while the superiority in extracting phosphorus, when compared to other methods, was obvious. Soil testing for plant-available phosphorus in Bulgaria and many European countries is most commonly conducted using acid Ca-lactate extraction (Egner-Riehm test) and alkaline sodium bicarbonate extraction (BDS ISO 11263:2002), based on Olsen test, followed by a colorimetric assay to measure the concentration of P in solution. The second part of this study reports the differences between Egner-Riehm test and BDS ISO 11263:2002 measured colorimetrically and by ICP-MS. Fifty soils were selected from South Bulgaria to represent a wide range of soil properties. It was established that ICP-MS consistently yielded significantly higher P concentrations than the colorimetric method in both extraction tests, and the relative differences were greatest in soils with lower P

  4. Lead levels in fur of rats treated with inorganic lead measured by inductively coupled argon plasma mass spectrometry

    PubMed Central

    Lesage, François-Xavier; Deschamps, Frédèric; Millart, Hervé

    2010-01-01

    The aim of this study was to investigate the relationship between continuous lead exposure and the concentration of this metal in fur. The two main questions we wanted to answer were: 1) Are the fur lead concentrations different according to exposure level? 2) Is the kinetics of lead concentration linear in different compartments? For 12 weeks, 6 rats were force-fed with water containing lead acetate in the following quantities: 0.5 and 50 µg/day. Furs were sampled every two weeks. The lead content of the samples was measured by inductively coupled argon plasma mass spectrometry (ICP-MS). There was a statistical difference (p<0.0001) between fur lead concentration and the three groups (control, low level exposure and high level exposure), between fur lead concentration and time exposure (p<0.0001), and between fur lead concentration and each exposure group at different time exposure (p<0.0001). Thus the level exposure factor and the time exposure factor have an effect on fur lead concentration. Since the determination coefficients were weak for the two exposed groups (0.032 and 0.032), a linear correlation cannot be concluded. The kinetic curves of fur lead concentration are similar for all the exposition groups. Two peaks (at 2 and 8 weeks of exposure) were noted for the two exposed groups. This experimental study cannot conclude a linear relationship to exist between fur lead concentration and exposition duration. It highlights the lack of understanding of mechanisms involved in hair incorporation of metals and raises the question of a cyclic accumulation in hair. A better understanding of the kinetic incorporation of lead in body growths is required. PMID:21331176

  5. Analysis of laser-produced aerosols by inductively coupled plasma mass spectrometry: transport phenomena and elemental fractionation.

    PubMed

    Koch, J; Wälle, M; Dietiker, R; Günther, D

    2008-02-15

    The transport phenomena of laser-produced aerosols prior to analysis by inductively coupled plasma mass spectrometry (ICPMS) were examined. Aerosol particles were visualized over the cross section of a transport tube attached to the outlet of a conventional ablation cell by light scattering using a pulsed laser source. Experiments were carried out under laminar or turbulent in-cell flow conditions applying throughputs of up to 2.0 L/min and reveal the nature of aerosol transportation to strongly depend on both flow rate and carrier gas chosen. For instance, laser ablation (LA) using laminar in-cell flow and helium as aerosol carrier resulted in stationary but inhomogeneous dispersion patterns. In addition, aerosols appear to be separated into two coexisting phases consisting of (i) dispersed particles that accumulate at the boundary layer of several vortex channel flows randomly arranged along the tube axis and (ii) larger fragments moving inside. The occurrence of these fragments was found to affect the accuracy of Si-, Zn-, and Cd-specific ICPMS analyses of aerosols released by LA of silicate glass (SRM NIST610). Accuracy drifts of more than 10% were observed for helium flow rates of >1 L/min, most probably, due to preferential evaporation and diffusion losses of volatile constituents inside the ICP. The utilization of turbulent in-cell flow made the vortex channels collapse and resulted in an almost complete aerosol homogenization. In contrast, LA using argon as aerosol carrier generally yielded a higher degree of dispersion, which was nearly independent of the flow conditions applied. To illustrate the differences among laminar and turbulent in-cell flow, furthermore, the velocity field inside the ablation cell was simulated by computational fluid dynamics. PMID:18205331

  6. Determination of Hg and Pb in fuels by inductively coupled plasma mass spectrometry using flow injection chemical vapor generation.

    PubMed

    Chen, Feng-yi; Jiang, Shiuh-Jen

    2009-12-01

    An isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Hg and Pb in fuels using flow injection vapor generation (VG) as the sample introduction system. A simple and inexpensive in-situ nebulizer/vapor generator was employed in this study. An emulsion containing 10% v/v fuel, 2% m/v Triton X-100 and 1.0% m/v tartaric acid was injected into VG-ICP-MS system for the determination of Hg and Pb. Sodium borohydride was used for vapor generation. Since the sensitivities of Hg and Pb in emulsion and those in aqueous solution are quite different, isotope dilution and standard addition methods were used for the determination of Hg and Pb in selected fuel samples. The influences of vapor generation conditions and emulsion preparation on the ion signals are reported. This method has been applied for the determination of Hg and Pb in various fuel samples such as diesel, gasoline and engine oil obtained locally. The analytical results obtained by isotope dilution and standard addition methods were in good agreement with each other and also with those of digested samples analyzed by pneumatic nebulization ICP-MS. Under the optimum operating conditions, the detection limits obtained were 0.02 and 0.03 ng mL(-1) for Hg and Pb, respectively, in prepared emulsified solutions, corresponding to 0.2 and 0.3 ng mL(-1) of Hg and Pb, respectively, in the original fuel samples. PMID:20009337

  7. Analytical developments for the determination of monomethylmercury complexes with low molecular mass thiols by reverse phase liquid chromatography hyphenated to inductively coupled plasma mass spectrometry.

    PubMed

    Bouchet, Sylvain; Björn, Erik

    2014-04-25

    The behavior of monomethylmercury (MMHg) is markedly influenced by its distribution among complexes with low molecular mass (LMM) thiols but analytical methodologies dedicated to measure such complexes are very scarce up to date. In this work, we selected 15 LMM thiols often encountered in living organisms and/or in the environment and evaluated the separation of the 15 corresponding MMHg-thiol complexes by various high performance liquid chromatography (HPLC) columns. Two C18 (Phenomenex Synergi Hydro-RP and LunaC18(2)), two phenyl (Inertsil Ph 3 and 5μm) and one mixed-mode (Restek Ultra IBD) stationary phases were tested for their retention and resolution capacities of the various complexes. The objective was to find simple separation conditions with low organic contents in the mobile phase to provide optimal conditions for detection by inductively coupled plasma mass spectrometry (ICPMS). The 15 complexes were synthesized in solution and characterized by electrospray ionization-mass spectrometry (ESI-MS). The C18 columns tested were either not resolutive enough or too retentive. The 3μm phenyl stationary phase was able to resolve 10 out of the 15 complexes in less than 25min, under isocratic conditions. The mixed-mode column was especially effective at separating the most hydrophilic complexes (6 complexes out of the 15), corresponding to the main LMM thiols found in living organisms. The detection limits (DLs) for these two columns were in the low nanomolar range and overall slightly better for the phenyl column. The possibilities offered by such methodology were exemplified by monitoring the time-course concentrations of four MMHg-thiol complexes within a phytoplankton incubation containing MMHg in the presence of an excess of four added thiols. PMID:24657146

  8. Comparative proteome analyses of human plasma following in vivo lipopolysaccharide administration using multidimensional separations coupled with tandem mass spectrometry

    SciTech Connect

    Qian, Weijun; Jacobs, Jon M.; Camp, David G.; Monroe, Matthew E.; Moore, Ronald J.; Gritsenko, Marina A.; Calvano, Steven E.; Lowry, Stephen F.; Xiao, Wenzhong; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Smith, Richard D.

    2005-02-05

    There is significant interest in characterization of the human plasma proteome due to its potential for providing biomarkers applicable to clinical diagnosis and treatment and for gaining a better understanding of human diseases. We describe here a strategy for comparative proteome analyses of human plasma, which is applicable to biomarker identifications for various disease states. Multidimensional liquid chromatography-mass spectrometry has been applied to make comparative proteome analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Peptide peak areas and the number of peptide identifications for each protein were used to evaluate the reproducibility of LC-MS/MS and to compare relative changes in protein concentration between the samples following LPS treatment. A total of 1563 distinct plasma proteins were confidently identified with 26 proteins observed to be significantly increased in concentration following LPS administration, including several known inflammatory response or acute-phase mediators, and thus constitute potential biomarkers for inflammatory response.

  9. Sensitive redox speciation of iron, neptunium, and plutonium by capillary electrophoresis hyphenated to inductively coupled plasma sector field mass spectrometry.

    PubMed

    Graser, Carl-Heinrich; Banik, Nidhu Lal; Bender, Kerstin Anne; Lagos, Markus; Marquardt, Christian Michael; Marsac, Rémi; Montoya, Vanessa; Geckeis, Horst

    2015-10-01

    The long-term safety assessment for nuclear waste repositories requires a detailed understanding of actinide (geo)chemistry. Advanced analytical tools are required to gain insight into actinide speciation in a given system. The geochemical conditions in the vicinity of a nuclear repository control the redox state of radionuclides, which in turn has a strong impact on their mobility. Besides the long-lived radionuclides plutonium (Pu) and neptunium (Np), which are key elements in high level nuclear waste, iron (Fe) represents a main component in natural systems controlling redox-related geochemical processes. Measuring the oxidation state distribution for redox sensitive radionuclides and other metal ions is challenging at trace concentrations below the detection limit of most available spectroscopic methods (≥10(-6) M). Consequently, ultrasensitive new analytical techniques are required. Capillary electrophoresis (CE) is a suitable separation method for metal cations. CE hyphenated to inductively coupled plasma sector field mass spectrometry (CE-ICP-SF-MS) was used to measure the redox speciation of Pu (III, IV, V, VI), Np (IV, V, VI), and Fe (II, III) at concentrations lower than 10(-7) M. CE coupling and separation parameters such as sample gas pressure, make up flow rate, capillary position, auxiliary gas flow, as well as the electrolyte system were optimized to obtain the maximum sensitivity. We obtain detection limits of 10(-12) M for Np and Pu. The various oxidation state species of Pu and Np in different samples were separated by application of an acetate-based electrolyte system. The separation of Fe (II) and Fe (III) was investigated using different organic complexing ligands, EDTA, and o-phenanthroline. For the Fe redox system, a limit of detection of 10(-8) M was calculated. By applying this analytical system to sorption studies, we were able to underline previously published results for the sorption behavior of Np in highly diluted concentrations, and

  10. Inductively coupled helium plasma torch

    SciTech Connect

    Montaser, Akbar; Chan, Shi-Kit; Van Hoven, Raymond L.

    1989-01-01

    An inductively coupled plasma torch including a base member, a plasma tube and a threaded insert member within the plasma tube for directing the plasma gas in a tangential flow pattern. The design of the torch eliminates the need for a separate coolant gas tube. The torch can be readily assembled and disassembled with a high degree of alignment accuracy.

  11. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry

    PubMed Central

    Xiong, Xiaohong; Jiang, Tao; Qi, Wenhao; Zuo, Jun; Yang, Meiling; Fei, Qiang; Xiao, Saijin; Yu, Aimin; Zhu, Zhiqiang; Chen, Huanwen

    2015-01-01

    A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS2 procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%–122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS. PMID:26421013

  12. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry.

    PubMed

    Xiong, Xiaohong; Jiang, Tao; Qi, Wenhao; Zuo, Jun; Yang, Meiling; Fei, Qiang; Xiao, Saijin; Yu, Aimin; Zhu, Zhiqiang; Chen, Huanwen

    2015-01-01

    A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS(2) procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%-122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS. PMID:26421013

  13. High-Speed, Integrated Ablation Cell and Dual Concentric Injector Plasma Torch for Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Douglas, David N; Managh, Amy J; Reid, Helen J; Sharp, Barry L

    2015-11-17

    In recent years, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) has gained increasing importance for biological analysis, where ultratrace imaging at micrometer resolution is required. However, while undoubtedly a valuable research tool, the washout times and sensitivity of current technology have restricted its routine and clinical application. Long periods between sampling points are required to maintain adequate spatial resolution. Additionally, temporal signal dispersion reduces the signal-to-noise ratio, which is a particular concern when analyzing discrete samples, such as individual particles or cells. This paper describes a novel, two-volume laser ablation cell and integrated ICP torch designed to minimize aerosol dispersion for fast, efficient sample transport. The holistic design utilizes a short, continuous diameter fused silica conduit, which extends from the point of ablation, through the ICP torch, and into the base of the plasma. This arrangement removes the requirement for a dispersive component for argon addition, and helps to keep the sample on axis with the ICP cone orifice. Hence, deposition of sample on the cones is theoretically reduced with a resulting improvement in the absolute sensitivity (counts per unit mole). The system described here achieved washouts of 1.5, 3.2, and 4.9 ms for NIST 612 glass, at full width half, 10%, and 1% maximum, respectively, with an 8-14-fold improvement in absolute sensitivity, compared to a single volume ablation cell. To illustrate the benefits of this performance, the system was applied to a contemporary bioanalytical challenge, specifically the analysis of individual biological cells, demonstrating similar improvements in performance. PMID:26460246

  14. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  15. Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples.

    PubMed

    Ma, Shishuai; He, Man; Chen, Beibei; Deng, Wenchao; Zheng, Qi; Hu, Bin

    2016-01-01

    In this work, γ-mercaptopropyltrimethoxysilane (γ-MPTS) modified Fe3O4@SiO2 magnetic nanoparticles (MNPs) was successfully prepared, and characterized by Fourier transform infrared spectrometer (FT-IR), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM). The sorption performance of the prepared Fe3O4@SiO2@γ-MPTS MNPs towards methylmercury (CH3Hg(+)) and inorganic mercury (Hg(2+)) was investigated. It was found that CH3Hg(+) and Hg(2+) could be simultaneously retained on the prepared Fe3O4@SiO2@γ-MPTS MNPs, and the quantitative elution of CH3Hg(+) and total mercury (THg) was achieved by using 1.5 mol L(-1) HCl containing 0.01% and 3% thiourea (m/v), respectively. And the levels of Hg(2+) were obtained by subtracting CH3Hg(+) from THg. Based on the above facts, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the speciation of CH3Hg(+) and Hg(2+). Various experimental parameters affecting MSPE of CH3Hg(+) and Hg(2+) such as pH, eluent, sample volume, and co-existing ions have been studied. Under the optimized conditions, the limits of detection (LODs) for CH3Hg(+) and THg were 1.6 and 1.9 ng L(-1), respectively. The accuracy of the proposed method was validated by analysis of a Certified Reference Material NRCC DORM-2 dogfish muscle, and the determined values are in good agreement with the certified values. The proposed method has also been successfully applied for the speciation of CH3Hg(+) and Hg(2+) in environmental water and human hair samples. PMID:26695239

  16. Determination of methylmercury and inorganic mercury by coupling short-column ion chromatographic separation, on-line photocatalyst-assisted vapor generation, and inductively coupled plasma mass spectrometry.

    PubMed

    Chen, Kuan-ju; Hsu, I-hsiang; Sun, Yuh-chang

    2009-12-18

    We have combined short-column ion chromatographic separation and on-line photocatalyst-assisted vapor generation (VG) techniques with inductively coupled plasma mass spectrometry to develop a simple and sensitive hyphenated method for the determination of aqueous Hg(2+) and MeHg(+) species. The separation of Hg(2+) and MeHg(+) was accomplished on a cation-exchange guard column using a glutathione (GSH)-containing eluent. To achieve optimal chromatographic separation and signal intensities, we investigated the influence of several of the operating parameters of the chromatographic and photocatalyst-assisted VG systems. Under the optimized conditions of VG process, the shortcomings of conventional SnCl(2)-based VG techniques for the vaporization of MeHg(+) was overcome; comparing to the concentric nebulizer-ICP-MS system, the analytical sensitivity of ICP-MS toward the detection of Hg(2+) and MeHg(+) were also improved to 25- and 7-fold, respectively. With the use of our established HPLC-UV/nano-TiO(2)-ICP-MS system, the precision for each analyte, based on three replicate injections of 2 ng/mL samples of each species, was better than 15% RSD. This hyphenated method also provided excellent detection limits--0.1 and 0.03 ng/mL for Hg(2+) and MeHg(+), respectively. A series of validation experiments--analysis of the NIST 2672a Standard Urine Reference Material and other urine samples--confirmed further that our proposed method could be applied satisfactorily to the determination of inorganic Hg(2+) and MeHg(+) species in real samples. PMID:19913233

  17. Determination of 241Am in sediments by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS).

    PubMed

    Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D

    2001-08-01

    Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry. PMID:11393755

  18. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-01

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air. PMID:26388365

  19. Development of an analytical method for the determination of polybrominated diphenyl ethers in sewage sludge by the use of gas chromatography coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Novak, Petra; Zuliani, Tea; Milačič, Radmila; Ščančar, Janez

    2016-04-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants. As a consequence of their widespread use, they have been released into the environment. PBDEs are lipophilic organic contaminants that enter wastewater treatment plants (WWTPs) from urban, agricultural and industrial discharges. Because of their low aqueous solubility and resistance to biodegradation, up to 90% of the PBDEs are accumulated in the sewage sludge during the wastewater treatment. To assess the possibilities for sludge re-use, a reliable determination of the concentrations of these PBDEs is of crucial importance. Six PBDE congeners (BDE 28, BDE 47, BDE 99, BDE 100, BDE 153 and BDE 154) are listed as priority substances under the EU Water Framework Directive. In the present work a simple analytical method with minimal sample-preparation steps was developed for a sensitive and reliable determination of the six PBDEs in sewage sludge by the use of gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS). For this purpose an extraction procedure was optimised. Different extracting agents (methanol (MeOH), acetic acid (AcOH)/MeOH mixture (3:1) and 0.1 mol L(-1) hydrochloric acid (HCl) in MeOH) followed by the addition of a Tris-citrate buffer (co-extracting agent) and iso-octane were applied under different modes of extraction (mechanical shaking, microwave- and ultrasound-assisted extraction). Mechanical shaking or the microwave-assisted extraction of sewage sludge with 0.1 mol L(-1) HCl in MeOH and the subsequent addition of the Tris-citrate buffer and the iso-octane extracted the PBDEs from the complex sludge matrix most effectively. However, due to easier sample manipulation during the extraction step, mechanical shaking was used. The PBDEs in the organic phase were quantified with GC-ICP-MS by applying a standard addition calibration method. The spike recovery test (recoveries between 95 and 104%) and comparative analyses with the species-specific isotope

  20. Cathodoluminescence, laser ablasion inductively coupled plasma mass spectrometry, electron probe microanalysis and electron paramagnetic resonance analyses of natural sphalerite

    USGS Publications Warehouse

    Karakus, M.; Hagni, R.D.; Koenig, A.; Ciftc, E.

    2008-01-01

    Natural sphalerite associated with copper, silver, lead-zinc, tin and tungsten deposits from various world-famous mineral deposits have been studied by cathodoluminescence (CL), laser ablasion inductively coupled plasma mass spectrometry (LA-ICP-MS), electron probe microanalysis (EPMA) and electron paramagnetic resonance (EPR) to determine the relationship between trace element type and content and the CL properties of sphalerite. In general, sphalerite produces a spectrum of CL colour under electron bombardment that includes deep blue, turquoise, lime green, yellow-orange, orange-red and dull dark red depending on the type and concentration of trace quantities of activator ions. Sphalerite from most deposits shows a bright yellow-orange CL colour with ??max centred at 585 nm due to Mn2+ ion, and the intensity of CL is strongly dependent primarily on Fe2+ concentration. The blue emission band with ??max centred at 470-490 nm correlates with Ga and Ag at the Tsumeb, Horn Silver, Balmat and Kankoy mines. Colloform sphalerite from older well-known European lead-zinc deposits and late Cretaceous Kuroko-type VMS deposits of Turkey shows intense yellowish CL colour and their CL spectra are characterised by extremely broad emission bands ranging from 450 to 750 nm. These samples are characterised by low Mn (<10 ppm) and Ag (<1 ppm), and they are enriched in Tl (1-30 ppm) and Pb (80-1500 ppm). Strong green CL is produced by sphalerite from the Balmat-Edwards district. Amber, lime-green and red-orange sphalerite produced weak orange-red CL at room temperatures, with several emission bands centred at 490, 580, 630, 680, 745, with ??max at 630 nm being the strongest. These emission bands are well correlated with trace quantities of Sn, In, Cu and Mn activators. Sphalerite from the famous Ogdensburg and Franklin mines exhibited brilliant deep blue and orange CL colours and the blue CL may be related to Se. Cathodoluminescence behaviour of sphalerite serves to characterise ore

  1. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    SciTech Connect

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead

  2. Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS)†

    PubMed Central

    Kenduzler, Erdal; Ates, Mehmet; Arslan, Zikri; McHenry, Melanie; Tchounwou, Paul B.

    2012-01-01

    A method based on cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS) has been developed for determination of inorganic mercury, Hg(II), and total mercury in fish otoliths. Sodium borohydride (NaBH4) was used as the only reducing agent and its concentration was optimized across an acidity gradient to selectively reduce Hg(II) without affecting methylmercury, CH3Hg(I). Inorganic Hg was quantitatively reduced to elemental mercury (Hg0) with 1×10−4% (m/v) NaBH4. CH3Hg(I) required a minimum of 0.5% (m/v) NaBH4 for complete reduction. Increasing the HCl concentration of solution to 5% (v/v) improved the selectivity toward Hg(II) as it decreased the signals from CH3Hg(I) to baseline levels. Potassium ferricyanide solution was the most effective in eliminating the memory effects of Hg compared with a number of chelating and oxidizing agents, including EDTA, gold chloride, thiourea, cerium ammonium nitrate and 2-mercaptoethylamine chloride. The relative standard deviation (RSD) was less than 5% for 1.0 μg L−1 Hg(II) solution. The detection limits were 4.2 and 6.4 ng L−1 (ppt) for Hg(II) and total Hg, respectively. Sample dissolution conditions and recoveries were examined with ultra-pure CaCO3 (99.99%) spiked with Hg(II) and CH3HgCl. Methylmercury was stable when dissolution was performed with up to 20% (v/v) HCl at 100 oC. Recoveries from spiked solutions were higher than 95% for both Hg(II) and CH3Hg(I). The method was applied to the determination of Hg(II) and total Hg concentrations in the otoliths of red emperor (CRM 22) and Pacific halibut. Total Hg concentration in the otoliths was 0.038 ± 0.004 μg g−1 for the red emperor and 0.021 ± 0.003 μg g−1 for the Pacific halibut. Inorganic Hg accounted for about 25% of total Hg indicating that Hg in the otoliths was predominantly organic mercury (e.g., methylmercury). However, as opposed to the bioaccumulation in tissues, methylmercury levels in otoliths was very low suggesting a

  3. Improved performance of a shielded torch using ethanol in inductively coupled plasma-sector field mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Hu, Zhaochu; Liu, Shenghua; Liu, Yongsheng; Gao, Shan; Li, Ming; Zong, Keqing; Chen, Haihong; Hu, Shenghong

    2015-04-01

    To improve the accuracy and precision of trace element analysis, higher analytical sensitivity and lower interference are required. In this study, we investigated the effects of the addition of ethanol in combination with a shielded torch on the signal intensities of elements from 7Li to 238U, oxide yields, doubly charged ion yields, isobaric interferences and ion distributions in inductively coupled plasma-sector field mass spectrometry (ICP-SFMS). For the 39 investigated elements in this study, using the shielded torch increases the sensitivity by a factor of 17-58. The well-known drawback of using a shielded torch is that it will increase the oxide yield. In this study, the CeO+/Ce+ ratio is increased by a factor of 3.3 in the GE-on mode compared to that in the GE-off mode at normal conditions (without ethanol). In the GE-on mode, the addition of 4% ethanol in ICP-SFMS is found not only to decrease the CeO+/Ce+ ratio by a factor of 4 but also to suppress the Ce2 +/Ce+ ratio by a factor of 4.2. In large contrast, the effect of 2-6% ethanol on the oxide yield and doubly charged ratio is minimal in the GE-off mode. Except for As, Se, Sb, Te and Au, for which the signal intensities are increased by a factor of 1.4-3.7 in the presence of 2-6% ethanol, an increased concentration of ethanol suppresses intensities of other elements. In the GE-off mode, the suppression of the analyte signal due to increased ethanol concentration is more significant than that in the GE-on mode. Compared to the spatial profiles of the ion distributions in the normal mode (without ethanol), the addition of 2-4% ethanol leads to significantly wider axial and radial profiles. The significantly wider axial and radial ion distribution had a dilution effect on the ion densities, which subsequently reduced the ion signal intensities. The addition of 4% ethanol was also found to suppress the interferences of Xe by a factor of 2.8 and increase the sensitivity of Te determination in ICP-SFMS by a

  4. Speciation of arsenic in different types of nuts by ion chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Kannamkumarath, Sasi S; Wróbel, Kazimierz; Wróbel, Katarzyna; Caruso, Joseph A

    2004-03-24

    In this work the quantitative determination and analytical speciation of arsenic were undertaken in different types of nuts, randomly purchased from local markets. The hardness of the whole nuts and high lipid content made the preparation of this material difficult for analysis. The lack of sample homogeneity caused irreproducible results. To improve the precision of analysis, arsenic was determined separately in nut oil and in the defatted sample. The lipids were extracted from the ground sample with the two portions of a mixture of chloroform and methanol (2:1). The defatted material was dried and ground again, yielding a fine powder. The nut oil was obtained by combining the two organic extracts and by evaporating the solvents. The two nut fractions were microwave digested, and total arsenic was determined by inductively coupled plasma mass spectrometry (ICP-MS). The results obtained for oils from different types of nuts showed element concentration in the range 2.9-16.9 ng g(-)(1). Lower levels of arsenic were found in defatted material (<0.1 ng g(-)(1) with the exception of Brazil nuts purchased with and without shells, 3.0 and 2.8 ng g(-)(1) respectively). For speciation analysis of arsenic in nut oils, elemental species were extracted from 2 g of oil with 12 mL of chloroform/methanol (2:1) and 8 mL of deionized water. The aqueous layer, containing polar arsenic species, was evaporated and the residue dissolved and analyzed by ion chromatography-ICP-MS. The anion exchange chromatography enabled separation of As(III), dimethylarsinic acid (DMAs(V)), monomethylarsonic acid (MMAs(V)), and As(V) within 8 min. Several types of nuts were analyzed, including walnuts, Brazil nuts, almonds, cashews, pine nuts, peanuts, pistachio nuts, and sunflower seeds. The recovery for the speciation procedure was in the range 72.7-90.6%. The primary species found in the oil extracts were As(III) and As(V). The arsenic concentration levels in these two species were 0.7-12.7 and 0

  5. Determination of mercury in fish otoliths by cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS).

    PubMed

    Kenduzler, Erdal; Ates, Mehmet; Arslan, Zikri; McHenry, Melanie; Tchounwou, Paul B

    2012-05-15

    A method based on cold vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS) has been developed for determination of inorganic mercury, Hg(II), and total mercury in fish otoliths. Sodium borohydride (NaBH(4)) was used as the only reducing agent and its concentration was optimized across an acidity gradient to selectively reduce Hg(II) without affecting methylmercury, CH(3)Hg(I). Inorganic Hg was quantitatively reduced to elemental mercury (Hg(0)) with 1 × 10(-4)% (m/v) NaBH(4). CH(3)Hg(I) required a minimum of 0.5% (m/v) NaBH(4) for complete reduction. Increasing the HCl concentration of solution to 5% (v/v) improved the selectivity toward Hg(II) as it decreased the signals from CH(3)Hg(I) to baseline levels. Potassium ferricyanide solution was the most effective in eliminating the memory effects of Hg compared with a number of chelating and oxidizing agents, including EDTA, gold chloride, thiourea, cerium ammonium nitrate and 2-mercaptoethylamine chloride. The relative standard deviation (RSD) was less than 5% for 1.0 μg L(-1) Hg(II) solution. The detection limits were 4.2 and 6.4 ng L(-1) (ppt) for Hg(II) and total Hg, respectively. Sample dissolution conditions and recoveries were examined with ultra-pure CaCO(3) (99.99%) spiked with Hg(II) and CH(3)HgCl. Methylmercury was stable when dissolution was performed with up to 20% (v/v) HCl at 100°C. Recoveries from spiked solutions were higher than 95% for both Hg(II) and CH(3)Hg(I). The method was applied to the determination of Hg(II) and total Hg concentrations in the otoliths of red emperor (CRM 22) and Pacific halibut. Total Hg concentration in the otoliths was 0.038 ± 0.004 μg g(-1) for the red emperor and 0.021 ± 0.003 μg g(-1) for the Pacific halibut. Inorganic Hg accounted for about 25% of total Hg indicating that Hg in the otoliths was predominantly organic mercury (e.g., methylmercury). However, as opposed to the bioaccumulation in tissues, methylmercury levels in otoliths was

  6. Laser ablation inductively coupled plasma dynamic reaction cell mass spectrometry for the multi-element analysis of polymers

    NASA Astrophysics Data System (ADS)

    Resano, M.; García-Ruiz, E.; Vanhaecke, F.

    2005-11-01

    In this work, the potential of laser ablation-inductively coupled plasma-mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration. Special attention has been paid to the difficulties expected for the determination of Cr at the μg g - 1 level in this kind of materials, due to the interference of ArC + ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g - 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time. In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g - 1 level to tens of thousands of μg g - 1 . However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work). Precision ranged between 5% and 10% RSD for elements found at the 10 μg g - 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g - 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due

  7. Analytical procedures for the determination of selected trace elements in peat and plant samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Krachler, Michael; Mohl, Carola; Emons, Hendrik; Shotyk, William

    2002-08-01

    A simple, robust and reliable analytical procedure for the determination of 15 elements, namely Ca, V, Cr, Mn, Co, Ni, Cu, Zn, Rb, Ag, Cd, Ba, Tl, Th and U in peat and plant materials by inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) was developed. Powdered sample aliquots of approximately 220 mg were dissolved with various acid mixtures in a microwave heated high-pressure autoclave capable to digest 40 samples simultaneously. The selection of appropriate amounts of digestion acids (nitric acid, hydrofluoric acid or tetrafluoroboric acid) was crucial to obtain accurate results. The optimized acid mixture for digestion of plant and peat samples consisted of 3 ml HNO 3 and 0.1 ml HBF 4. An ultrasonic nebulizer with an additional membrane desolvation unit was found beneficial for the determination of Co, Ni, Ag, Tl, Th and U, allowing to aspirate a dry sample aerosol into the ICP-QMS. A pneumatic cross flow nebulizer served as sample introduction device for the other elements. Internal standardization was achieved with 103Rh for all elements, except for Th whose ICP-QMS signals were corrected by 103Rh and 185Re. Quality control was ascertained by analysis of the certified plant reference material GBW 07602 Bush Branches and Leaves. In almost all cases HNO 3 alone could not fully liberate the analytes of interest from the peat or plant matrix, probably because of the silicates present. After adding small amounts (0.05-0.1 ml) of either HF or HBF 4 to the digestion mixture, concentrations quantified by ICP-QMS generally increased significantly, in the case of Rb up to 80%. Further increasing the volumes of HF or HBF 4 in turn, resulted in a loss of recoveries of almost all elements, some of which amounted to approximately 60%. The successful analytical procedures were applied to the determination of two bulk peat materials. In general, good agreement between the found concentrations and results from an inter-laboratory trial or from instrumental

  8. Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Lingott, Jana; Lindner, Uwe; Telgmann, Lena; Esteban-Fernández, Diego; Jakubowski, Norbert; Panne, Ulrich

    2016-02-17

    Gadolinium (Gd) based contrast agents (CA) are used to enhance magnetic resonance imaging. As a consequence of excretion by patients and insufficient elimination in wastewater treatment plants they are detected in high concentrations in surface water. At present, little is known about the uptake of these species by living organisms in aquatic systems. Therefore the uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. For this purpose two types of plants were treated with two different contrast agents. The uptake of the Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the multi-elemental analysis of solid samples with high resolution and little sample preparation. The analysis of L. minor showed that the uptake of Gd correlated with the concentration of gadodiamide in the water. The higher the concentration in the exposed water, the larger the Gd signal in the LA-ICP-MS acquired image. Exposure time experiments showed saturation within one day. The L. minor had contact with the CAs through roots and fronds, whereas the L. sativum only showed uptake through the roots. These results show that an external absorption of the CA through the leaves of L. sativum was impossible. All the analyzed parts of the plant showed Gd signal from the CA; the highest being at the main vein of the leaf. It is shown that the CAs can be taken up from plants. Furthermore, the uptake and distribution of Gd in Daphnia magna were shown. The exposure via cultivation medium is followed by Gd signals on the skin and in the area of the intestine, while the uptake via exposed nutrition algae causes the significantly highest Gd intensities in the area of the intestine. Because there are hints of negative effects for human organism these findings are important as they show that Gd based

  9. Methods of Analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of Elements in Whole-Water Digests Using Inductively Coupled Plasma-Optical Emission Spectrometry and Inductively Coupled Plasma-Mass Spectrometry

    USGS Publications Warehouse

    Garbarino, John R.; Struzeski, Tedmund M.

    1998-01-01

    Inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) can be used to determine 26 elements in whole-water digests. Both methods have distinct advantages and disadvantages--ICP-OES is capable of analyzing samples with higher elemental concentrations without dilution, however, ICP-MS is more sensitive and capable of determining much lower elemental concentrations. Both techniques gave accurate results for spike recoveries, digested standard reference-water samples, and whole-water digests. Average spike recoveries in whole-water digests were 100 plus/minus 10 percent, although recoveries for digests with high dissolved-solid concentrations were lower for selected elements by ICP-MS. Results for standard reference-water samples were generally within 1 standard deviation of hte most probable values. Statistical analysis of the results from 43 whole-water digest indicated that there was no significant difference among ICP-OES, ICP-MS, and former official methods of analysis for 24 of the 26 elements evaluated.

  10. Comparative Proteome Analyses of Human Plasma Following in vivo Lipopolysaccharide Administration Using Multidimensional Separations Coupled with Tandem Mass Spectrometry

    SciTech Connect

    Qian, Weijun; Jacobs, Jon M.; Camp, David G.; Monroe, Matthew E.; Moore, Ronald J.; Gritsenko, Marina A.; Calvano, Steven E.; Lowry, Stephen F.; Xiao, Wenzhong; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Smith, Richard D.

    2005-01-03

    There is significant interest in characterization of the human plasma proteome due to its potential for providing biomarkers applicable to clinical diagnosis and treatment and for gaining a better understanding of human diseases. We describe here a strategy for comparative proteome analyses of human plasma, which is applicable to biomarker identifications for various disease states. Multidimensional liquid chromatography-mass spectrometry has been applied to make comparative proteome analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Peptide peak areas and the number of peptide identifications for each protein were used to evaluate the reproducibility of LC-MS/MS and to compare relative changes in protein concentration between the samples following LPS treatment. A total of 804 distinct plasma proteins (not including immunoglobulins) were confidently identified with 32 proteins observed to be significantly increased in concentration following LPS administration, including several known inflammatory response or acute-phase mediators such as C-reactive protein, serum amyloid A and A2, LPS-binding protein, LPS-responsive and beige-like anchor protein, hepatocyte growth factor activator and von Willebrand factor, and thus constituting potential biomarkers for inflammatory response.

  11. Quantitative determination of uridine in rabbit plasma and urine by liquid chromatography coupled to a tandem mass spectrometry.

    PubMed

    Kang, Wonku

    2012-04-01

    Recently a pyrimidine nucleoside, uridine, has been show to have a protective effect on cultured human corneal epithelial cells, and on dry eye animal model and patients. In this study, we introduce a sensitive liquid chromatography/tandem mass spectrometry method for the determination of uridine in rabbit plasma and urine. After protein precipitation with methanol including methaqualone (internal standard), the analyte was chromatographed on a reversed-phase column with a mobile phase of 0.1% formic acid aqueous solution and methanol (1:4, v/v). The accuracy and precision of the assay were in accordance with Food and Drug Administration regulations for the validation of bioanalytical methods. This method was used to measure the concentrations of uridine in plasma and urine after a single oral administration of 450 mg/kg uridine in rabbits. PMID:22392515

  12. Speciation of Selenium in Selenium-Enriched Sunflower Oil by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry/Electrospray-Orbitrap Tandem Mass Spectrometry.

    PubMed

    Bierla, Katarzyna; Flis-Borsuk, Anna; Suchocki, Piotr; Szpunar, Joanna; Lobinski, Ryszard

    2016-06-22

    The reaction of sunflower oil with selenite produces a complex mixture of selenitriglycerides with antioxidant and anticancer properties. To obtain insight into the identity and characteristics of the species formed, an analytical approach based on the combination of high-performance liquid chromatography (HPLC) with (78)Se-specific selenium detection by inductively coupled plasma mass spectrometry (ICP MS) and high-resolution (100 000), high mass accuracy (<1 ppm) molecule-specific detection by electrospray-Orbitrap MS(3) was developed. For the first time, a non-aqueous mobile phase gradient was used in reversed-phase HPLC-ICP MS for the separation of a complex mixture of selenospecies and a mathematical correction of the background signal was developed. The identical chromatographic conditions served for the sample introduction into electrospray MS. Two types of samples were analyzed: sunflower oil dissolved in isopropanol and methanol extract of the oil containing 65% selenium. HPLC-ICP MS showed 14 peaks, 11 of which could also be detected in the methanol extract. Isotopic patterns corresponding to molecules with one or two selenium atoms could be attributed by Orbitrap MS at the retention times corresponding to the HPLC-ICP MS peak apexes. Structural data for these species were acquired by MS(2) and MS(3) fragmentation of protonated or sodiated ions using high-energy collisional dissociation (HCD). A total of 11 selenium-containing triglycerol derivatives resulting from the oxidation of one or two double bonds of linoleic acid and analogous derivatives of glycerol-mixed linoleate(s)/oleinate(s) have been identified for the first time. The presence of these species was confirmed by the targeted analysis in the total oil isopropanol solution. Their identification corroborated the predicted elution order in reversed-phase chromatography: LLL (glycerol trilinoleate), LLO (glycerol dilinoleate-oleinate), LOO (glycerol linoleate-dioleinate), OOO (glycerol

  13. [Determination of Total Sulfur Dioxide in Chinese Herbal Medicines via Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry].

    PubMed

    Wang, Xiao-wei; Liu, Jing-fu; Guan, Hong; Wang, Xiao-yan; Shag, Bing; Zhang, Jing; Liu, Li-ping; Zhang, Ni-na

    2016-02-01

    As an important treatment method, sulfur fumigation plays an essential role in the production and preservation of traditional Chinese herbal medicines. Although there is strict regulation on the use of sulfur dioxide, the abuse of sulfur dioxide still occurred from time to time. And the public faces a high risk of exposure. Because of the poor precision and tedious preparation procedures of traditional recommended titration, the accurate and convenient determination of sulfur dioxide in Chinese herbal medicines is still a critical analytical task for medicines safety and the public health. In this study, an accurate, high-throughput, and convenient method for the absolute determination of SO₂ in Chinese herbal medicines based on triple quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS) technique is developed. The study compared the quantitative ability for sulfur when the ICP-MS operated under traditional single quadrupole (QMS) mode and novel triple quadrupole (MS/MS) mode with three Reaction/Collision cell condition (no gas, helium, and oxygen). The result indicated that when the concentration of sulfate ranging from 0.5 to 100 mg · L⁻¹, isotopic ³⁴S can be selected as quantitative ion either the ICP-MS operated under the QMS mode or MS/MS mode. The use of helium in the Reaction/Collision cell decreased the single intensity of background ions. Better than QMS mode, the MS/MS mode can effectively reduced background interference. But there are no significant differences about the linear range and limit of detection. However, when the ICP-MS operated under MS/MS mode and oxygen was used as reaction gas in the Reaction/Collision cell, the ICP-MS/MS provided an interference-free performance, the linear range and limit of detection improved significantly. Either ³²S or ³⁴S exhibits an excellent linearity (r > 0.999) over the concentration range of 0.02-100 mg · L⁻¹, with a limit of detection of 5.48 and 9.76 µg · L⁻¹ for

  14. Determination of lead, cadmium and mercury in blood for assessment of environmental exposure: A comparison between inductively coupled plasma mass spectrometry and atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Palmer, Christopher D.; Lewis, Miles E.; Geraghty, Ciaran M.; Barbosa, Fernando; Parsons, Patrick J.

    2006-08-01

    A biomonitoring method for the determination of Pb, Cd, and Hg at background levels in whole blood by inductively coupled plasma-mass spectrometry is described. While this method was optimized for assessing Pb, Cd and Hg at environmental levels, it also proved suitable for assessing concentrations associated with occupational exposure. The method requires as little as 200 μl of blood that is diluted 1 + 49 for direct analysis in the inductively coupled plasma-mass spectrometer. Method performance is compared to well-established AAS methods. Initial method validation was accomplished using National Institute of Standards and Technology (NIST) Standard Reference Material 966, Toxic Metals in Bovine Blood. Method detection limits (3s) are 0.05 μg dl - 1 for Pb, 0.09 μg l - 1 for Cd; and 0.17 μg l - 1 for Hg. Repeatability ranged from 1.4% to 2.8% for Pb; 3% to 10% for Cd; and 2.6% to 8.8% for Hg. In contrast, AAS method detection limits were 1 μg dl - 1 , 0.54 μg l - 1 , and 0.6 μg l - 1 , for Pb, Cd, and Hg, respectively. Further performance assessments were conducted over a 2-year period via participation in four international External Quality Assessment Schemes (EQAS) operated specifically for toxic metals in blood. This includes schemes operated by (a) the New York State Department of Health's Wadsworth Center, Albany, NY, USA (b) L'Institut National de Santé Publique du Québec, Centre de Toxicologie du Québec, Canada, (c) Friedrich-Alexander University, Erlangen, Germany, and (d) the University of Surrey, Guildford, UK Trace Elements scheme. The EQAS data reflect analytical performance for blind samples analyzed independently by both inductively coupled plasma-mass spectrometry and AAS methods.

  15. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  16. Determination of abacavir, tenofovir, darunavir, and raltegravir in human plasma and saliva using liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Yamada, Eiko; Takagi, Ritsuo; Sudo, Koji; Kato, Shingo

    2015-10-10

    A liquid chromatography-tandem mass spectrometry assay for the determination of abacavir (ABC), tenofovir (TFV), darunavir (DRV), and raltegravir (RAL) in human plasma and saliva was developed and validated to investigate the applicability of saliva as an appropriate specimen for therapeutic drug monitoring. As internal standards, TFV was chosen for ABC, ABC was chosen for TFV, RAL for DRV, and DRV for RAL. Sample preparation involved protein precipitation with acetonitrile, evaporation of solvent using a centrifugal evaporator, and reconstitution by dissolving the residue in mobile phase. Liquid chromatography was performed on a C18 reverse phase column (1.5 × 50 mm, 5 μm) isocratically at a flow rate of 0.2 mL/min using 5mM formic acid-3% (v/v) acetonitrile as the mobile phase for ABC and TFV and 5mM formic acid-35% (v/v) acetonitrile as the mobile phase for DRV and RAL. The run time was 6 min, and the retention time was approximately 2.0 min for TFV, 2.5 min for RAL, and 4-4.5 min for ABC and DRV. Analytes were detected using tandem mass spectrometry in positive electrospray ionization mode. The precursor/product ion transitions (m/z) were 287.3/191.2 for ABC, 288.5/176.2 for TFV, 548.3/392.3 for DRV, and 445.3/109.5 for RAL, and were monitored on a triple-quadrupole mass spectrometer operated in the multiple reaction monitoring mode. The linearity of the assay was assessed in the range 1-10,000 ng/mL for all four drugs. Within-run and between-run mean accuracy, precision, and the extraction recovery for all drugs were -14.5-18.1%, 1.2-13.1%, and 86.0-111.1%, respectively. The proposed assay is sufficiently sensitive and accurate to quantify these drugs in plasma and saliva, and is suitable for investigating the relationship between drug concentrations in plasma and saliva. PMID:26112927

  17. Closed inductively coupled plasma cell

    DOEpatents

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  18. Closed inductively coupled plasma cell

    DOEpatents

    Manning, Thomas J.; Palmer, Byron A.; Hof, Douglas E.

    1990-01-01

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy.

  19. Rapid quantification of miglustat in human plasma and cerebrospinal fluid by liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Guitton, Jérôme; Coste, Sylvie; Guffon-Fouilhoux, Nathalie; Cohen, Sabine; Manchon, Monique; Guillaumont, Marc

    2009-01-15

    Miglustat (OGT 918) is an iminosugar recently introduced in therapeutic as potential alternative therapy in disorders found in several diseases such as Tay-Sachs, Gaucher or Niemann-Pick diseases. A highly sensitive liquid-chromatography-electrospray tandem mass spectrometry (LC-MS/MS) assay was developed for the quantification of miglustat in human plasma and cerebrospinal fluid (CSF). The sample preparation consists in a simple protein precipitation with a mixture of acetonitrile/methanol (75/25) which yields 100% recovery. The isocratic separation utilizes an Atlantis Hilic (3 microm, 150 mm x 2.1 mm) column, with a mobile phase of acetonitrile/water/ammonium acetate buffer (75/10/15, v/v/v) delivered at 230 microl/min. Selected reaction monitoring (SRM) mode was used with the transitions m/z 220-->158 for the miglustat and m/z 208-->m/z 146 for the miglitol (internal standard). Good linearity was observed in a range from 125 to 2500 ng/ml and from 50 to 1000 ng/ml, for plasma and CSF, respectively. The within-run precision of the assay was less than 6%, and the between-run run precision was less than 6.5%, for six replicates at each of three concentrations and evaluated on three separated days for both plasma and CSF mediums. Assay accuracy was in the range of 98-106.5%. Stability of miglustat was reported under a variety of storage conditions. The miglustat concentrations in two children are presented to demonstrate the clinical interest of this new method. PMID:19095507

  20. Determination of cobimetinib in human plasma using protein precipitation extraction and high-performance liquid chromatography coupled to mass spectrometry.

    PubMed

    Deng, Yuzhong; Musib, Luna; Choo, Edna; Chapple, Matthew; Burke, Sarah; Johnson, James; Eppler, Steve; Dean, Brian

    2014-12-01

    Inhibition of MAP/ERK kinase (MEK) is a promising strategy to control the growth of tumors that are dependent on aberrant signaling in the MEK pathway. Cobimetinib (GDC-0973) (S)-[3,4-Difluoro-2-(2-fluoro-4-iodo-phenylamino)-phenyl]-((S)-3-hydroxy-3-piperidin-2-yl-azetidin-1-yl)-methanone) inhibits proliferation of a variety of human tumor cell lines by inhibiting MEK1 and MEK2. A specific high performance liquid chromatography-mass spectrometric assay was developed and validated for the determination of cobimetinib in human plasma. The overall mean recovery using protein precipitation extraction with acetonitrile was found to be 54.1%. The calibration curve was ranged from 0.20 to 100ng/mL. The LLOQ was sensitive enough to detect terminal phase concentrations of the drug. The intra- and inter-assay precision (%CV) was within 10.3% and 9.5% for cobimetinib. The assay accuracy (%RE) was within ±13.7% of the nominal concentration values for cobimetinib with the normal analytical QCs. The developed assay was successfully used to analyze the human plasma samples (for pharmacokinetic analysis) from clinical trials. PMID:25444546

  1. A systematic study on the influence of carbon on the behavior of hard-to-ionize elements in inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Mora, Juan; de Loos-Vollebregt, Margaretha; Vanhaecke, Frank

    2013-08-01

    A systematic study on the influence of carbon on the signal of a large number of hard-to-ionize elements (i.e. B, Be, P, S, Zn, As, Se, Pd, Cd, Sb, I, Te, Os, Ir, Pt, Au, and Hg) in inductively coupled plasma-mass spectrometry has been carried out. To this end, carbon matrix effects have been evaluated considering different plasma parameters (i.e. nebulizer gas flow rate, r.f. power and sample uptake rate), sample introduction systems, concentration and type of carbon matrix (i.e. glycerol, citric acid, potassium citrate and ammonium carbonate) and type of mass spectrometer (i.e. quadrupole filter vs. double-focusing sector field mass spectrometer). Experimental results show that P, As, Se, Sb, Te, I, Au and Hg sensitivities are always higher for carbon-containing solutions than those obtained without carbon. The other hard-to-ionize elements (Be, B, S, Zn, Pd, Cd, Os, Ir and Pt) show no matrix effect, signal enhancement or signal suppression depending on the experimental conditions selected. The matrix effects caused by the presence of carbon are explained by changes in the plasma characteristics and the corresponding changes in ion distribution in the plasma (as reflected in the signal behavior plot, i.e. the signal intensity as a function of the nebulizer gas flow rate). However, the matrix effects for P, As, Se, Sb, Te, I, Au and Hg are also related to an increase in analyte ion population caused as a result of charge transfer reactions involving carbon-containing charged species in the plasma. The predominant specie is C+, but other species such as CO+, CO2+, C2+ and ArC+ could also play a role. Theoretical data suggest that B, Be, S, Pd, Cd, Os, Ir and Pt could also be involved in carbon based charge transfer reactions, but no experimental evidence substantiating this view has been found.

  2. Mass fractions of 52 trace elements and zinc/trace element content ratios in intact human prostates investigated by inductively coupled plasma mass spectrometry.

    PubMed

    Zaichick, Sofia; Zaichick, Vladimir; Nosenko, Sergey; Moskvina, Irina

    2012-11-01

    Contents of 52 trace elements in intact prostate of 64 apparently healthy 13-60-year-old men (mean age 36.5 years) were investigated by inductively coupled plasma mass spectrometry. Mean values (M ± SΕΜ) for mass fraction (in milligrams per kilogram, on dry-weight basis) of trace elements were as follows: Ag 0.041 ± 0.005, Al 36 ± 4, Au 0.0039 ± 0.0007, B 0.97 ± 0.13, Be 0.00099 ± 0.00006, Bi 0.021 ± 0.008, Br 29 ± 3, Cd 0.78 ± 0.09, Ce 0.028 ± 0.004, Co 0.035 ± 0.003, Cs 0.034 ± 0.003, Dy 0.0031 ± 0.0005, Er 0.0018 ± 0.0004, Gd 0.0030 ± 0.0005, Hg 0.046 ± 0.006, Ho 0.00056 ± 0.00008, La 0.074 ± 0.015, Li 0.040 ± 0.004, Mn 1.53 ± 0.09, Mo 0.30 ± 0.03, Nb 0.0051 ± 0.0009, Nd 0.013 ± 0.002, Ni 4.3 ± 0.7, Pb 1.8 ± 0.4, Pr 0.0033 ± 0.0004, Rb 15.9 ± 0.6, Sb 0.040 ± 0.005, Se 0.73 ± 0.03, Sm 0.0027 ± 0.0004, Sn 0.25 ± 0.05, Tb 0.00043 ± 0.00009, Th 0.0024 ± 0.0005, Tl 0.0014 ± 0.0001, Tm 0.00030 ± 0.00006, U 0.0049 ± 0.0014, Y 0.019 ± 0.003, Yb 0.0015 ± 0.0002, Zn 782 ± 97, and Zr 0.044 ± 0.009, respectively. The upper limit of mean contents of As, Cr, Eu, Ga, Hf, Ir, Lu, Pd, Pt, Re, Ta, and Ti were the following: As ≤ 0.018, Cr ≤ 0.64, Eu ≤ 0.0006, Ga ≤ 0.08, Hf ≤ 0.02, Ir ≤ 0.0004, Lu ≤ 0.00028, Pd ≤ 0.007, Pt ≤ 0.0009, Re ≤ 0.0015, Ta ≤ 0.005, and Ti ≤ 2.6. In all prostate samples, the content of Te was under detection limit (<0.003). Additionally, ratios of the Zn content to other trace element contents as well as correlations between Zn and trace elements were calculated. Our data indicate that the human prostate accumulates such trace elements as Al, Au, B, Br, Cd, Cr, Ga, Li, Mn, Ni, Pb, U, and Zn. No special relationship between Zn and other trace elements was found. PMID:22549701

  3. Determination of 234U/238U, 235U/238U and 236U/238U isotope ratios in urine using sector field inductively coupled plasma mass spectrometry.

    PubMed

    Xiao, Ge; Jones, Robert L; Saunders, David; Caldwell, Kathleen L

    2014-12-01

    Quantification of the isotopic composition of uranium in urine at low levels of concentration is important for assessing both military and civilian populations' exposures to uranium. However, until now there has been no convenient, precise method established for rapid determination of multiple uranium isotope ratios. Here, the authors report a new method to measure (234)U/(238)U, (235)U/(238)U and (236)U/(238)U. It uses solid-phase chelation extraction (via TRU columns) of actinides from the urine matrix, followed by measurement using a magnetic sector field inductively coupled plasma mass spectrometer (SF-ICP-MS-Thermo Element XR) equipped with a high-efficiency nebulizer (Apex PFA microflow) and coupled with a membrane desolvating nebulizer system (Aridus II™). This method provides rapid and reliable results and has been used successfully to analyse Certified Reference Materials. PMID:24563523

  4. Considerations in the Application of Multiple Ion Counting for the Trace Analysis of Plutonium and Uranium Isotope Ratios Using Thermal Ionization and Inductively-Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Riciputi, L. R.

    2008-12-01

    The use of simultaneous multiple-ion counting for the analysis of small samples of plutonium and uranium has been investigated using three different instruments, the ThermoElectron Neptune inductively-coupled plasma mass spectrometer, the ThermoElectron Triton thermal ionization mass spectrometer, and the Isotopex Iso-T thermal ionization mass spectrometer. The Neptune and Triton instruments utilize identical multiple ion counter arrays, with ions impinging directly on the channeltron surface. The Isotopex instruments utilize a different style of channeltron detector. The most significant difference in the Isotopex detectors is the presence of a conversion dynode at the entrance to the channeltron. Results suggest that the performance of the ThermoElectron MIC system varies between the Neptune and Triton instruments, which probably reflects both differences in the inherent characteristics of plasma and thermal sources and the performance of the MICS themselves. Differences in performance and stability between the '"naked"' and conversion dynode equipped channeltrons on the two thermal ionization instruments support these observations. These differences suggest that different analytical approaches to calibration of the multiple-ion counters may be required. Differences in potential analytical strategies employing multiple ion counters on the different instruments, including calibration schemes, precision and accuracy limits, and analytical strategies that can be employed, will be discussed. Results from both thermal ionization and inductively-coupled plasma sources suggest that the dominant source of uncertainty in isotope ratio measurement using multiple ion counting shifts from counting limitations for very small signals to uncertainties in gain calibration and detector drift among the ion counters at higher count rates. These characteristics place limits on the applicability of multiple ion counters; results from mixed Faraday/multiple ion counting analysis will

  5. Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins

    NASA Astrophysics Data System (ADS)

    Claverie, Fanny; Pécheyran, Christophe; Mounicou, Sandra; Ballihaut, Guillaume; Fernandez, Beatriz; Alexis, Joël; Lobinski, Ryszard; Donard, Olivier F. X.

    2009-07-01

    A 2D high repetition rate femtosecond laser ablation strategy (2-mm wide lane) previously developed for the detection of selenoproteins in gel electrophoresis by inductively coupled plasma mass spectrometry was found to increase signal sensitivity by a factor of 40 compared to conventional nanosecond ablation (0.12-mm wide lane) [G. Ballihaut, F. Claverie, C. Pécheyran, S. Mounicou, R. Grimaud and R. Lobinski, Sensitive Detection of Selenoproteins in Gel Electrophoresis by High Repetition Rate Femtosecond Laser Ablation-Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 79 (2007) 6874-6880]. Such improvement couldn't be explained solely by the difference of amount of material ablated, and then, was attributed to the aerosol properties. In order to validate this hypothesis, the characterization of the aerosol produced by nanosecond and high repetition rate femtosecond laser ablation of polyacrylamide gels was investigated. Our 2D high repetition rate femtosecond laser ablation strategy of 2-mm wide lane was found to produce aerosols of similar particle size distribution compared to nanosecond laser ablation of 0.12-mm wide lane, with 38% mass of particles < 1 µm. However, at high repetition rate, when the ablated surface was reduced, the particle size distribution was shifted toward thinner particle diameter (up to 77% for a 0.12-mm wide lane at 285 µm depth). Meanwhile, scanning electron microscopy was employed to visualize the morphology of the aerosol. In the case of larger ablation, the fine particles ejected from the sample were found to form agglomerates due to higher ablation rate and then higher collision probability. Additionally, investigations of the plasma temperature changes during the ablation demonstrated that the introduction of such amount of polyacrylamide gel particles had very limited impact on the ICP source (Δ T~ 25 ± 5 K). This suggests that the cohesion forces between the thin particles composing these large aggregates were weak

  6. Reduction of Matrix-Induced Oxide Interferences on Rare Earth Elements and Platinum Using a Desolvating Nebulizer System with Quadrupole Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Smith, F.

    2013-12-01

    This paper will examine the use of a specialized low-flow desolvating nebulizer system for reduction of oxide mass spectral interferences that can occur in quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). This nebulizer system uses an inert low-flow nebulizer (100 microliters/min) coupled to an inert, heated membrane desolvator for efficient water vapor removal before sample aerosol injection to the Q-ICP-MS instrument. Water vapor from conventional nebulizer / spray chamber systems used with Q-ICP-MS can cause numerous mass spectral interferences. One general example is metal oxides formed from the combination of oxygen (from injected water) with sample matrix components. Two specific examples of metal oxide interferences will be investigated with and without membrane desolvation: Ba and Ce oxides on several low-mass rare earth elements (Sm, Eu, and Gd) and Hf oxides on platinum. Rare earth elements are critically important components of modern electronics (ex. magnets, lasers, cell phones, computers) and platinum is a widely used catalyst. Figures of merit for both a conventional nebulizer/spray chamber and the desolvating nebulizer systems will include operating conditions, interference intensities and reduction factors, background equivalent concentrations (BECs), and instrument detection limits (IDLs).

  7. Evaluation of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for the Quantitative Determination of Lead in Different Parts of Archeological Human Teeth

    PubMed Central

    Bellis, David J.; Parsons, Patrick J.; Jones, Joseph; Amarasiriwardena, Dula

    2011-01-01

    The lead content of teeth or tooth-parts has been used as a biomarker of cumulative lead exposure in clinical, epidemiological, environmental, and archaeological studies. Through the application of laser ablation inductively coupled plasma mass spectrometry, a pilot study of the micrometer-scale distribution and quantification of lead was conducted for two human teeth obtained from an archeological burial site in Manhattan, New York, USA. Lead was highly localized within each tooth, with accumulation in circumpulpal dentine and cementum. The maximum localized lead content in circumpulpal dentine was remarkably high, almost 2000 μg g-1, compared to the mean enamel and dentine content of about 5 μg g-1. The maximum lead content in cementum was approximately 700 μg g-1. The large quantity of cementum found in the teeth suggested that the subjects had hypercementosis (excess cementum formation) of the root, a condition reported to have been prevalent among African-American slave populations. The distribution of lead in these human teeth was remarkably similar to the distribution that we previously reported in the teeth of present-day lead-dosed goats. The data shown demonstrate the feasibility of using laser ablation inductively coupled plasma mass spectrometry to examine lead exposure in archaeological studies. PMID:22467976

  8. Direct determination of trace rare earth elements in ancient porcelain samples with slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xiang, Guoqiang; Jiang, Zucheng; He, Man; Hu, Bin

    2005-10-01

    A method for the direct determination of trace rare earth elements in ancient porcelain samples by slurry sampling fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry was developed with the use of polytetrafluoroethylene as fluorinating reagent. It was found that Si, as a main matrix element in ancient porcelain sample, could be mostly removed at the ashing temperature of 1200 °C without considerable losses of the analytes. However, the chemical composition of ancient porcelain sample is very complicated, which makes the influences resulting from other matrix elements not be ignored. Therefore, the matrix effect of ancient porcelain sample was also investigated, and it was found that the matrix effect is obvious when the matrix concentration was larger than 0.8 g l - 1 . The study results of particle size effect indicated that when the sample particle size was less than 0.057 mm, the particle size effect is negligible. Under the optimized operation conditions, the detection limits for rare earth elements by fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry were 0.7 ng g - 1 (Eu)-33.3 ng g - 1 (Nd) with the precisions of 4.1% (Yb)-10% (La) ( c = 1 μg l - 1 , n = 9). The proposed method was used to directly determine the trace rare earth elements in ancient porcelain samples produced in different dynasty (Sui, Ming and Qing), and the analytical results are satisfactory.

  9. Development of cadmium/silver/palladium separation by ion chromatography with quadrupole inductively coupled plasma mass spectrometry detection for off-line cadmium isotopic measurements.

    PubMed

    Gautier, C; Bourgeois, M; Isnard, H; Nonell, A; Stadelmann, G; Goutelard, F

    2011-08-01

    A separation method was investigated to perform off-line cadmium isotopic measurements on a (109)Ag transmutation target. Ion chromatography (IC) with Q ICPMS detection (quadrupole inductively coupled plasma mass spectrometry detection) was chosen to separate cadmium from the isobarically interfering elements, silver and palladium, present in the sample. The optimization of chromatographic conditions was particularly studied. Several anion and cation columns (Dionex AG11(®), CS10(®) and CS12(®)) were compared with different mobile phases (HNO(3), HCl). The separation procedure was achieved with a carboxylate-functionalized cation exchange CS12 column using 0.5 M HNO(3) as eluent. The developed technique yielded satisfactory results in terms of separation factors (greater than 5) and provides an efficient solution to obtain rapidly purified cadmium fractions (decontamination factors higher 100,000 for silver and palladium) which can directly be analyzed by multi collection inductively coupled plasma mass spectrometry (MC ICPMS). By applying the proposed procedure, accurate and precise cadmium isotope ratios were determined for the irradiated (109)Ag transmutation target. PMID:21703628

  10. High resolution mass spectrometry coupled with multivariate data analysis revealing plasma lipidomic alteration in ovarian cancer in Asian women.

    PubMed

    Zhang, Yangyang; Liu, Yingying; Li, Lin; Wei, Jinchao; Xiong, Shaoxiang; Zhao, Zhenwen

    2016-04-01

    Ovarian cancer (OC) is the most common cause of death from gynecologic malignancies in women. The identification of reliable diagnostic biomarkers for the early detection of this deadly disease is critical for reducing the mortality rate of OC. Plasma lysophosphatidic acid (LPA) levels were increased from OC patients vs. healthy controls. Therefore, lipidomics may represent an excellent developing prospect for the discovery of diagnostic biomarkers of OC. In this study, a nontargeted lipidomics approach based on ultra performance liquid chromatography-electrospray ionization-QTOF-mass spectrometry (UPLC-ESI-QTOF-MS) combined with multivariate data analysis, including principal component analysis (PCA) and (orthogonal) partial least squared discriminant analysis [(O)PLS-DA] was applied for the investigation of potential diagnostic biomarkers in plasma of OC patients. Patients with OC could be distinguished from healthy individuals and patients with benign gynecological tumor disease by this method, which shows a significant lipid perturbation in this disease. With the assistance of high resolution and high accuracy of MS and MS/MS data, the potential markers including lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs) and triacylglycerols (TGs) with specific fatty acid chains, were identified. Interestingly, LPCs were up-regulated and PCs and TGs were down-regulated, compared OC group with benign tumor and normal control groups, and the glycerophospholipid metabolism emerged as a key pathway, in particular, the phospholipase A2 (PLA2) enzyme activity, that was disregulated in the disease. This study may provide new insight into underlying mechanisms for OC and proves that MS-based lipidomics is a powerful method in discovering new potential clinical biomarkers for diseases. PMID:26838385

  11. Total zinc quantification by inductively coupled plasma-mass spectrometry and its speciation by size exclusion chromatography-inductively coupled plasma-mass spectrometry in human milk and commercial formulas: Importance in infant nutrition.

    PubMed

    Fernández-Menéndez, Sonia; Fernández-Sánchez, María L; Fernández-Colomer, Belén; de la Flor St Remy, Rafael R; Cotallo, Gil Daniel Coto; Freire, Aline Soares; Braz, Bernardo Ferreira; Santelli, Ricardo Erthal; Sanz-Medel, Alfredo

    2016-01-01

    This paper summarises results of zinc content and its speciation in human milk from mothers of preterm and full-term infants at different stages of lactation and from synthetic formula milks. Human milk samples (colostrum, 7th, 14th, and 28th day after delivery) from Spanish and Brazilian mothers of preterm and full-term infants (and also formula milks) were collected. After adequate treatment of the sample, total Zn was determined, while speciation analysis of the Zn was accomplished by size exclusion chromatography coupled online with the ICP-MS. It is observed that total zinc content in human milk decreases continuously during the first month of lactation, both for preterm and full term gestations. All infant formulas analysed for total Zn were within the currently legislated levels. For Zn speciation analysis, there were no differences between preterm and full term human milk samples. Moreover Zn species elute mainly associated with immunoglobulins and citrate in human milk whey. Interestingly the speciation in formula milk whey turned out to be completely different as the observed Zn(2+) was bound almost exclusively to low molecular weight ligands (citrate) and only comparatively very low amounts of the metal appeared to be associated with higher mass biomolecules (e.g. proteins). PMID:26381570

  12. Ultra-trace determination of iodine in sediments and biological material using UV photochemical generation-inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grinberg, Patricia; Sturgeon, Ralph E.

    2009-03-01

    Several sample preparation techniques have been evaluated for the determination of iodine using UV-photochemical generation-quadrupole inductively coupled plasma mass spectrometry. Thermal decomposition of samples at 1000 °C followed by capture of the liberated iodine in dilute acetic acid permitted subsequent UV-photochemical generation of a volatile iodine species that serves to enhance sensitivity 25-fold over conventional solution nebulization, delivering reagent blank detection limits of 8.75 pg g -1 127I and 0.075 pg g -1 129I for solid samples (400 mg test mass). The methodology was validated through determination of total iodine in several Standard Reference Materials, including NIST 1572 Citrus leaves, NIST 1549 Non-fat milk powder, NIST 1566a Oyster tissue and NIST 2709 San Joaquin Soil. Liberation of iodine from samples and its collection as well as photochemical generation were quantitative, permitting calibration to be achieved using standards prepared in dilute acetic acid.

  13. A comparison of lead-isotope measurements on exploration-type samples using inductively coupled plasma and thermal ionization mass spectrometry

    USGS Publications Warehouse

    Gulson, B.L.; Meier, A.L.; Church, S.E.; Mizon, K.J.

    1989-01-01

    Thermal ionization mass spectrometry (TI-MS) has long been the method of choice for Pb-isotope determinations. More recently, however, inductively coupled plasma mass spectrometry (ICP-MS) has been used to determine Pb-isotope ratios for mineral exploration. The ICP-MS technique, although not as precise as TI-MS, may promote a wider application of Ph-isotope ratio methods because it allows individual isotopes to be determined more rapidly, generally without need for chemical separation (e.g., Smith et al., 1984; Hinners et al., 1987). To demonstrate the utility of the ICP-MS method, we have conducted a series of Pb-isotope measurements on several suites of samples using both TI-MS and ICP-MS. ?? 1989.

  14. Application of size-exclusion chromatography-inductively coupled plasma mass spectrometry for fractionation of element species in seeds of legumes.

    PubMed

    Koplík, Richard; Borková, Markéta; Mestek, Oto; Komínková, Jana; Suchánek, Miloslav

    2002-08-01

    Fractionation of soluble species of P, Mn, Fe, Co, Ni, Cu, Zn, Se and Mo in pea and lentil seeds was made by on-line hyphenation of size-exclusion chromatography (SEC) and inductively coupled plasma mass spectrometry. Seed samples were extracted with 0.02 mol l(-1) Tris-HCl buffer solution, pH 7.5. SEC was performed on Superdex 75 and Superdex Peptide columns (300 x 10 mm) with the same buffer solution as the mobile phase. Monitoring of oxide ion 47(PO)+ was used for detection of phosphorus compounds. Other elements were detected as ions of 55Mn, 57Fe, 59Co, 62Ni, 65Cu, 66Zn, 82Se and 95Mo nuclides. Elements in individual elution zones were quantified using external calibration. Complete chromatographic recoveries of elements were found in cases of phosphorus, nickel and copper. Substantial parts of manganese and zinc, as well as traces of cobalt, selenium and molybdenum are retained on the column. Injection of EDTA solution removes these elements from the column. Chromatographic profiles of pea and lentil samples are very similar for all elements except Mo. Main element species in the high-molecular-mass region (approx. 190,000 rel. mol. mass unit) were detected in case of Fe. Low-molecular-mass species (<2000 rel. mol. mass unit) as major element forms are typical for Cu and Zn. PMID:12113984

  15. Measurement of the isotopic composition of uranium micrometer-size particles by femtosecond laser ablation-inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hubert, Amélie; Claverie, Fanny; Pécheyran, Christophe; Pointurier, Fabien

    In this paper, we will describe and indicate the performance of a new method based on the use of femtosecond laser ablation (fs-LA) coupled to a quadrupole-based inductively coupled plasma mass spectrometer (ICP-QMS) for analyzing the isotopic composition of micrometer-size uranium particles. The fs-LA device was equipped with a high frequency source (till 10 kHz). We applied this method to 1-2 μm diameter-uranium particles of known isotopic composition and we compared this technique with the two techniques currently used for uranium particle analysis: Secondary Ionization Mass Spectrometry (SIMS) and Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS). By optimizing the experimental conditions, we achieved typical accuracy and reproducibility below 4% on 235U/238U for short transient signals of only 15 s related to 10 to 200 pg of uranium. The detection limit (at the 3 sigma level) was ~ 350 ag for the 235U isotope, meaning that 235U/238U isotope ratios in natural uranium particles of ~ 220 nm diameter can be measured. We also showed that the local contamination resulting from the side deposition of ablation debris at ~ 100 μm from the ablation crater represented only a small percentage of the initial uranium signal of the ablated particle. Despite the use of single collector ICP-MS, we were able to demonstrate that fs-LA-ICP-MS is a promising alternative technique for determining uranium isotopic composition in particle analysis.

  16. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-10-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.

  17. Flow-injection technique for determination of uranium and thorium isotopes in urine by inductively coupled plasma mass spectrometry.

    PubMed

    Benkhedda, Karima; Epov, Vladimir N; Evans, R Douglas

    2005-04-01

    A sensitive and efficient flow-injection (FI) preconcentration and matrix-separation technique coupled to sector field ICP-mass spectrometry (SF-ICP-MS) has been developed and validated for simultaneous determination of ultra-low levels of uranium (U) and thorium (Th) in human urine. The method is based on selective retention of U and Th from a urine matrix, after microwave digestion, on an extraction chromatographic TRU resin, as an alternative to U/TEVA resin, and their subsequent elution with ammonium oxalate. Using a 10 mL sample, the limits of detection achieved for 238U and 232Th were 0.02 and 0.03 ng L(-1), respectively. The accuracy of the method was checked by spike-recovery measurements. Levels of U and Th in human urine were found to be in the ranges 1.86-5.50 and 0.176-2.35 ng L(-1), respectively, well in agreement with levels considered normal for non-occupationally exposed persons. The precision obtained for five replicate measurements of a urine sample was 2 and 3% for U and Th, respectively. The method also enables on-line measurements of the 235U/238U isotope ratios in urine. Precision of 0.82-1.04% (RSD) was obtained for 235U/238U at low ng L(-1) levels, using the FI transient signal approach. PMID:15827719

  18. Speciation of arsenic animal feed additives by microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Pergantis, S A; Heithmar, E M; Hinners, T A

    1997-10-01

    Phenylarsonic compounds have been used as poultry and swine feed additives for the purpose of growth promotion and disease prevention. Owing to the lack of suitable analytical methods, however, knowledge of their metabolism, environmental fate and impact remains incomplete. In order to compensate for this, analytical procedures were developed that allow the speciation of arsenic animal feed additives by using microbore high-performance liquid chromatography (microHPLC) coupled on-line with ICP-MS. More specifically, reversed-phase (RP) chromatographic methods were optimised to achieve the separation of various phenylarsonic acids from each other and from the more toxic inorganic arsenic compounds. This mode of chromatography, however, exhibits limitations, especially in the presence of naturally occurring organoarsenic compounds. The application of RP ion-pairing chromatography eliminates such shortcomings by minimising the co-elution of arsenic species. In general, the microHPLC-ICP-MS methods developed in this study provide high selectivity, extremely good sensitivity, low limits of detection (low-ppb or sub-pg amounts of As), require small sample volumes (< 1 microliter), minimise waste and operate most efficiently under low mobile-phase flow rates (15-40 microliters min-1), which are compatible for use with other types of mass spectrometers, e.g., electrospray. Reference materials containing naturally occurring arsenic compounds were spiked with phenylarsonic compounds and then analysed by using the procedures developed in this study. PMID:9463956

  19. Reference measurements for total mercury and methyl mercury content in marine biota samples using direct or species-specific isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Krata, Agnieszka; Vassileva, Emilia; Bulska, Ewa

    2016-11-01

    The analytical procedures for reference measurements of the total Hg and methyl mercury (MeHg) mass fractions at various concentration levels in marine biota samples, candidates for certified reference materials (oyster and clam Gafrarium tumidum), were evaluated. Two modes of application of isotope dilution inductively coupled plasma mass spectrometry method (ID ICP-MS), namely direct isotope dilution and species-specific isotope dilution analysis with the use of two different quantification mass spectrometry techniques were compared. The entire ID ICP-MS measurement procedure was described by mathematical modelling and the combined uncertainty of measurement results was estimated. All factors influencing the final results as well as isotopic equilibrium were systematically investigated. This included the procedural blank, the moisture content in the biota samples and all factors affecting the blend ratio measurements (instrumental background, spectral interferences, dead time and mass discrimination effects as well as the repeatability of measured isotopic ratios). Modelling of the entire measurement procedures and the use of appropriate certified reference materials enable to assure the traceability of obtained values to the International System of Units (SI): the mole or the kilogram. The total mass fraction of mercury in oyster and clam biota samples, after correction for moisture contents, was found to be: 21.1 (1.1) 10(-9) kg kg(-1) (U =5.1% relative, k=2) and 390.0 (9.4) 10(-9) kg kg(-1) (U=2.4% relative, k=2), respectively. For the determination of mercury being present as methyl mercury, the non-chromatographic separation on anion-exchange resin AG1-X8 of the blended samples was applied. The content of MeHg (as Hg) in oyster sample was found: 4.81 (24) 10(-9)kgkg(-1) (U=5.0%, k=2) and 4.84 (21) 10(-9)kgkg(-1) (U=4.3%, k=2) with the use of quadrupole (ICP QMS) or sector field (ICP SFMS) inductively coupled plasma mass spectrometers, respectively. In the

  20. Fast determination of hydroxylated polychlorinated biphenyls in human plasma by online solid phase extraction coupled to liquid chromatography-tandem mass spectrometry.

    PubMed

    Quinete, Natalia; Kraus, Thomas; Belov, Vladimir N; Aretz, Christina; Esser, André; Schettgen, Thomas

    2015-08-12

    Hydroxylated polychlorinated biphenyls (OH-PCBs) have been shown to be strongly retained in human blood causing endocrine-related toxicity, particularly on the thyroid system. Traditionally, analytical methods for the determination of OH-PCBs require labor-intensive and long-time consuming sample preparation with several extraction, evaporation and cleanup procedures steps and, in some cases, derivatization prior to the analysis by gas or liquid chromatography-mass spectrometry (GC-MS or LC-MS). The present study developed and validated a novel, sensitive and high throughput online solid phase extraction (SPE) method coupled to LC-tandem mass spectrometry (MS/MS) for the separation and quantitation of relevant congeners of OH-PCBs in human plasma. The developed method presented limits of quantification (LOQ) ranging from 0.02 to 0.5 ng mL(-1) and extraction recoveries from 71 to 134% for all congeners, requiring small amount of sample (only 100 μL) and minimal sample preparation. In order to evaluate the applicability of the method, preliminary tests (N = 93) were conducted in plasma from individuals occupationally exposed to very high levels of PCBs in a German cohort. Penta-through hepta-chlorinated OH-PCBs were the predominant congeners in human plasma with concentrations up to 44.5 ng mL(-1), while lower chlorinated OH-PCBs were occasionally detected. In addition, a new PCB 28 metabolite has been synthesized and identified for the first time in human plasma and associations between OH-PCBs and their parent compounds in the studied cohort were also assessed. PMID:26320963

  1. Arsenic species determination in human scalp hair by pressurized hot water extraction and high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Morado Piñeiro, Andrés; Moreda-Piñeiro, Jorge; Alonso-Rodríguez, Elia; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2013-02-15

    Analytical methods for the determination of total arsenic and arsenic species (mainly As(III) and As(V)) in human scalp hair have been developed. Inductively coupled plasma-mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) coupled to ICP-MS have been used for total arsenic and arsenic species determination, respectively. The proposed methods include a "green", fast, high efficient and automated species leaching procedure by pressurized hot water extraction (PHWE). The operating parameters for PHWE including modifier concentration, extraction temperature, static time, extraction steps, pressure, mean particle size, diatomaceous earth (DE) mass/sample mass ratio and flush volume were studied using design of experiments (Plackett-Burman design PBD). Optimum condition implies a modifier concentration (acetic acid) of 150 mM and powdered hair samples fully mixed with diatomaceous earth (DE) as a dispersing agent at a DE mass/sample mass ratio of 5. The extraction has been carried out at 100°C and at an extraction pressure of 1500 psi for 5 min in four extraction step. Under optimised conditions, limits of quantification of 7.0, 6.3 and 50.3 ng g(-1) for total As, As(III) and As(V), respectively were achieved. Repeatability of the overall procedure (4.4, 7.2 and 2.1% for total As, As(III) and As(V), respectively) was achieved. The analysis of GBW-07601 (human hair) certified reference material was used for validation. The optimised method has been finally applied to several human scalp hair samples. PMID:23598040

  2. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace.

    PubMed

    Stanislawska, Magdalena; Janasik, Beata; Wasowicz, Wojciech

    2013-12-15

    The toxicity and bioavailability of chromium species are highly dependable on the form or species, therefore determination of total chromium is insufficient for a complete toxicological evaluation and risk assessment. An analytical method for determination of soluble and insoluble Cr (III) and Cr (VI) compounds in welding fume at workplace air has been developed. The total chromium (Cr) was determined by using quadruple inductively coupled plasma mass spectrometry (ICP-MS) equipped with a dynamic reaction cell (DRC(®)). Soluble trivalent and hexavalent chromium compounds were determined by high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). A high-speed, reversed-phase CR C8 column (PerkinElmer, Inc., Shelton, CT, USA) was used for the speciation of soluble Cr (III) and soluble Cr (VI). The separation was accomplished by interaction of the chromium species with the different components of the mobile phase. Cr (III) formed a complex with EDTA, i.e. retained on the column, while Cr (VI) existed in the solutions as dichromate. Alkaline extraction (2% KOH and 3% Na2CO3) and anion exchange column (PRP-X100, PEEK, Hamilton) were used for the separation of the total Cr (VI). The results of the determination of Cr (VI) were confirmed by the analysis of the certified reference material BCR CRM 545 (Cr (VI) in welding dust). The results obtained for the certified material (40.2±0.6 g kg(-1)) and the values recorded in the examined samples (40.7±0.6 g kg(-1)) were highly consistent. This analytical method was applied for the determination of chromium in the samples in the workplace air collected onto glass (Whatman, Ø 37 mm) and membrane filters (Sartorius, 0.8 μm, Ø 37 mm). High performance liquid chromatography with inductively coupled plasma mass spectrometry is a remarkably powerful and versatile technique for determination of chromium species in welding fume at workplace air. PMID:24209303

  3. Fast Determination of Toxic Arsenic Species in Food Samples Using Narrow-bore High-Performance Liquid-Chromatography Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Terol, Amanda; Marcinkowska, Monika; Ardini, Francisco; Grotti, Marco

    2016-01-01

    A new method for the speciation analysis of arsenic in food using narrow-bore high-performance liquid-chromatography inductively coupled plasma mass spectrometry (HPLC-ICP-MS) has been developed. Fast separation of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid was carried out in 7 min using an anion-exchange narrow-bore Nucleosil 100 SB column and 12 mM ammonium dihydrogen phosphate of pH 5.2 as the mobile phase, at a flow rate of 0.3 mL min(-1). A PFA-ST micronebulizer jointed to a cyclonic spray chamber was used for HPLC-ICP-MS coupling. Compared with standard-bore HPLC-ICP-MS, the new method has provided higher sensitivity, reduced mobile-phase consumption, a lower matrix plasma load and a shorter analysis time. The achieved instrumental limits of detection were in the 0.3 - 0.4 ng As mL(-1) range, and the precision was better than 3%. The arsenic compounds were efficiently (>80%) extracted from various food samples using a 1:5 methanol/water solution, with additional ultrasonic treatment for rice products. The applicability of this method was demonstrated by the analysis of several samples, such as seafood (fish, mussels, shrimps, edible algae) and rice-based products (Jasmine and Arborio rice, spaghetti, flour, crackers), including three certified reference materials. PMID:27506720

  4. Bromine isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry with a conventional sample introduction system.

    PubMed

    de Gois, Jefferson S; Vallelonga, Paul; Spolaor, Andrea; Devulder, Veerle; Borges, Daniel L G; Vanhaecke, Frank

    2016-01-01

    A simple and accurate methodology for Br isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) with pneumatic nebulization for sample introduction was developed. The Br(+) signals could be measured interference-free at high mass resolution. Memory effects for Br were counteracted using 5 mmol L(-1) of NH4OH in sample, standard, and wash solutions. The major cation load of seawater was removed via cation exchange chromatography using Dowex 50WX8 resin. Subsequent Br preconcentration was accomplished via evaporation of the sample solution at 90 °C, which did not induce Br losses or isotope fractionation. Mass discrimination was corrected for by external correction using a Cl-matched standard measured in a sample-standard bracketing approach, although Sr, Ge, and Se were also tested as potential internal standards for internal correction for mass discrimination. The δ(81)Br (versus standard mean ocean bromide (SMOB)) values thus obtained for the NaBr isotopic reference material NIST SRM 977 and for IRMM BCR-403 seawater certified reference material are in agreement with literature values. For NIST SRM 977, the (81)Br/(79)Br ratio (0.97291) was determined with a precision ≤0.08‰ relative standard deviation (RSD). PMID:26123436

  5. Analysis of radium-226 in high salinity wastewater from unconventional gas extraction by inductively coupled plasma-mass spectrometry.

    PubMed

    Zhang, Tieyuan; Bain, Daniel; Hammack, Richard; Vidic, Radisav D

    2015-03-01

    Elevated concentration of naturally occurring radioactive material (NORM) in wastewater generated from Marcellus Shale gas extraction is of great concern due to potential environmental and public health impacts. Development of a rapid and robust method for analysis of Ra-226, which is the major NORM component in this water, is critical for the selection of appropriate management approaches to properly address regulatory and public concerns. Traditional methods for Ra-226 determination require long sample holding time or long detection time. A novel method combining Inductively Coupled Mass Spectrometry (ICP-MS) with solid-phase extraction (SPE) to separate and purify radium isotopes from the matrix elements in high salinity solutions is developed in this study. This method reduces analysis time while maintaining requisite precision and detection limit. Radium separation is accomplished using a combination of a strong-acid cation exchange resin to separate barium and radium from other ions in the solution and a strontium-specific resin to isolate radium from barium and obtain a sample suitable for analysis by ICP-MS. Method optimization achieved high radium recovery (101 ± 6% for standard mode and 97 ± 7% for collision mode) for synthetic Marcellus Shale wastewater (MSW) samples with total dissolved solids as high as 171,000 mg/L. Ra-226 concentration in actual MSW samples with TDS as high as 415,000 mg/L measured using ICP-MS matched very well with the results from gamma spectrometry. The Ra-226 analysis method developed in this study requires several hours for sample preparation and several minutes for analysis with the detection limit of 100 pCi/L with RSD of 45% (standard mode) and 67% (collision mode). The RSD decreased to below 15% when Ra-226 concentration increased over 500 pCi/L. PMID:25642997

  6. Simultaneous speciation of selenium and sulfur species in selenized odorless garlic (Allium sativum L. Shiro) and shallot (Allium ascalonicum) by HPLC-inductively coupled plasma-(octopole reaction system)-mass spectrometry and electrospray ionization-tandem mass spectrometry.

    PubMed

    Ogra, Yasumitsu; Ishiwata, Kazuya; Iwashita, Yuji; Suzuki, Kazuo T

    2005-11-01

    The simultaneous speciation of selenium and sulfur in selenized odorless garlic (Allium sativum L. Shiro) and a weakly odorous Allium plant, shallot (Allium ascalonicum), was performed by means of a hyphenated technique, a HPLC coupled with an inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) equipped with an octopole reaction system (ORS). The aqueous extracts of them contained the common seleno compound that was identified as gamma-glutamylmethylselenocysteine by an electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Normal garlic contains alliin as the major sulfur-containing compound, which is the biological precursor of the garlic odorant, allicin. Alliin, however, was not detected in the extracts of the selenized odorless garlic. At least, four unidentified sulfur-containing compounds were detected in odorless garlic and shallot. Moreover, these Allium plants showed chemopreventive effects against human leukemia cells. PMID:16233877

  7. A new strategy of solution calibration in laser ablation inductively coupled plasma mass spectrometry for multielement trace analysis of geological samples.

    PubMed

    Pickhardt, C; Becker, J S; Dietze, H J

    2000-01-01

    Because multielement trace analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is often limited by the lack of suitable reference materials with a similar matrix composition, a novel quantification strategy using solution calibration was developed. For mass spectrometric multielement determination in geological samples a quadrupole-based LA-ICP-MS is coupled with an ultrasonic nebulizer (USN). In order to arrange matrix matching the standard solutions are nebulized with a USN during solution calibration and simultaneously a blank target (e.g. lithium borate) is ablated with a focused laser beam. The homogeneous geological samples were measured using the same experimental arrangement where a 2% nitric acid is simultaneously nebulized with the USN. Homogeneous targets were prepared from inhomogeneous geological samples by powdering, homogenizing and fusing with a lithium borate mixture in a muffle furnace at 1050 degrees C. Furthermore, a homogeneous geological glass was also investigated. The quantification of analytical results was performed by external calibration using calibration curves measured on standard solutions. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS, measured concentrations in homogeneous geological targets were also corrected with relative sensitivity coefficients (RSCs) determined using one standard solution only. The analytical results of LA-ICP-MS on various geological samples are in good agreement with the reference values and the results of other trace analytical methods. The relative standard deviation (RSD) for trace element determination (N = 6) is between 2 and 10%. PMID:11220576

  8. Determination of trace elements in serum by dynamic reaction cell inductively coupled plasma mass spectrometry: developing of a method with a desolvating system nebulizer.

    PubMed

    D'Ilio, S; Violante, N; Caimi, S; Di Gregorio, M; Petrucci, F; Senofonte, O

    2006-07-28

    An inductively coupled plasma mass spectrometer (ICP-MS), equipped with a dynamic reaction cell (DRC) and coupled with a desolvating nebulizing system (Apex-ACM) to reduce the oxide formation, was used in the determination of Al, Co, Cr, Mn, Ni and Se in serum samples. The effect of the operating conditions of the DRC system was studied to get the best signal-to-background (S/B) ratio. The potentially interfering molecular ions at the masses m/z27Al, 59Co, 52Cr, 55Mn, 60Ni and 78Se, were significantly reduced in intensity by using NH3 and H2, as the reaction cell gases in the DRC, while a proper Dynamic Bandpass Tuning parameter q (RPq) value was optimized. The detection limits for 27Al, 59Co, 52Cr, 55Mn, 60Ni and 78Se, estimated with 3-sigma method, resulted to be 0.14, 0.003, 0.002, 0.01, 0.01 and 1.8 microg L(-1), respectively. This analytical method was developed on both a human serum certified reference material and a lyophilized animal serum produced and proposed in an intercomparison study. The results obtained for the reference samples agreed satisfactorily with the certified values. Precision (expressed as CV%) between sample replicates was better than 10% for elements determination, with the only exception of aluminium (14%). PMID:17723557

  9. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    SciTech Connect

    Witte, Travis

    2011-01-01

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  10. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples.

    PubMed

    Schütz, C L; Brochhausen, C; Hampel, G; Iffland, D; Kuczewski, B; Otto, G; Schmitz, T; Stieghorst, C; Kratz, J V

    2012-10-01

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. PMID:22918535

  11. Quantification of modifiers in advanced materials based on zinc oxide by total reflection X-ray fluorescence and inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Filatova, Daria G.; Alov, Nikolai V.; Vorobyeva, Natalia A.; Rumyantseva, Marina N.; Sharanov, Pavel Yu.; Seregina, Irina F.; Gaskov, Alexander M.

    2016-04-01

    A novel approach to quantification of Ga and Zn modifiers in advanced materials based on zinc oxide is presented. The approach includes a combination of total reflection X-ray fluorescence (TXRF) and inductively coupled plasma mass spectrometry (ICP-MS) for determination and validation of the results. It is suggested to use aqueous standards for the direct determination of elements in powder samples by TXRF with a relative standard deviation no more than sr = 0.11. The accuracy of these results was proved by ICP-MS after the sample decomposition, sr(In) = 0.05, sr(Ga) = 0.06 and sr(Zn) = 0.06. It was established that there is a possibility to determine indium above 300 ppb on the background of K-M3 line of argon.

  12. Demonstration of femtosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements in U-10Mo nuclear fuel foils

    SciTech Connect

    Havrilla, George Joseph; Gonzalez, Jhanis

    2015-06-10

    The use of femtosecond laser ablation inductively coupled plasma mass spectrometry was used to demonstrate the feasibility of measuring the isotopic ratio of uranium directly in U-10Mo fuel foils. The measurements were done on both the flat surface and cross sections of bare and Zr clad U-10Mo fuel foil samples. The results for the depleted uranium content measurements were less than 10% of the accepted U235/238 ratio of 0.0020. Sampling was demonstrated for line scans and elemental mapping over large areas. In addition to the U isotopic ratio measurement, the Zr thickness could be measured as well as trace elemental composition if required. A number of interesting features were observed during the feasibility measurements which could provide the basis for further investigation using this methodology. The results demonstrate the feasibility of using fs-LA-ICP-MS for measuring the U isotopic ratio in U-10Mo fuel foils.

  13. Inductively coupled plasma mass spectrometry in comparison with neutron activation and ion chromatography with UV/VIS detection for the determination of lanthanides in plant materials.

    PubMed

    Bulska, Ewa; Danko, Bożena; Dybczyński, Rajmund S; Krata, Agnieszka; Kulisa, Krzysztof; Samczyński, Zbigniew; Wojciechowski, Marcin

    2012-08-15

    Analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) for determination of lanthanides in plant materials was investigated and compared with neutron activation analysis (NAA) as well as ion chromatography (IC) with UV-VIS detection. Two sample preparation protocols were tested: (i) microwave assisted digestion by concentrated nitric acid; (ii) microwave digestion involving silica and fluoride removal, followed by the selective and quantitative lanthanides group separation from the plant matrix. Several Certified Reference Materials (CRM) of plant origin were used for the evaluation of the accuracy of the applied analytical procedures. The consistency of results, obtained by various methods, enabled to establish the tentative recommended values (TRV) for several missing elements in one of CRMs. The ICP-MS, due to its very high sensitivity, has the potential to contribute to this aim. The discrepancy of the results obtained by various methods was discussed in a view of possible matrix effects related to the composition of investigated materials. PMID:22841084

  14. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  15. Portable x-ray fluorescence for assessing trace elements in rice and rice products: Comparison with inductively coupled plasma-mass spectrometry.

    PubMed

    Fleming, David E B; Foran, Kelly A; Kim, Jong Sung; Guernsey, Judy R

    2015-10-01

    Portable x-ray fluorescence (XRF) was investigated as a means of assessing trace elements in rice and rice products. Using five measurement trials of 180 s real time, portable XRF was first used to detect arsenic (As), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), and zinc (Zn) in a variety of rice samples. The same samples were then microwave-digested and used to determine elemental concentrations using inductively coupled plasma-mass spectrometry (ICP-MS). The concentrations of As, Mn, Fe, Cu, and Zn determined by ICP-MS were found to be consistent with other recent studies involving various types of rice and rice products. When assessing for As, Mn, Fe, Cu, and Zn, comparison of results between XRF amplitude and ICP-MS concentration (wet weight) demonstrated a linear relationship with a significant correlation. A significant correlation between XRF amplitude and ICP-MS concentration was not found when assessing for Ni. PMID:26203871

  16. A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry

    SciTech Connect

    LaFerriere, Brian D.; Maiti, Tapas C.; Arnquist, Isaac J.; Hoppe, Eric W.

    2015-03-01

    This study describes a novel sample preparation and assay method developed in support of the MAJORANA DEMONSTRATOR experiment for the determination of thorium and uranium levels in copper and lead shielding components. Meticulously clean sample preparation methods combined with novel anion exchange separations for analyte pre-concentration and matrix removal were developed. Quantification was performed by inductively coupled plasma mass spectrometry. Detection limits of 0.0084 pg 232Th/g and 0.0106 pg 238U/g were determined for copper, while detection limits of 0.23 pg 232Th/g and 0.46 pg 238U/g were achieved for lead. These methods allow the Majorana Collaboration to accurately assay detector components and ensure that the experiment’s stringent radiopurity requirements are met.

  17. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples

    NASA Astrophysics Data System (ADS)

    Voica, C.; Dehelean, A.; Kovacs, M. H.

    2012-02-01

    Food is the primary source of essential elements for humans and it is an important source of exposure to toxic elements. In this context, levels of essential and toxic elements must be determined routinely in consumed food products. The content of trace elements (As, Pb, Cu, Cd, Zn, Sn, Hg) in different types of food samples (e.g. rice, bread, sugar, cheese, milk, butter, wheat, coffee, chocolate, biscuits pasta, etc.) was determined, using inductively coupled plasma mass spectrometry (ICP-MS). Trace element contents in some foods were higher than maximum permissible levels of toxic metals in human food (Cd in bread, Zn in cheese, Cu in coffee, Hg in carrots and peppers).

  18. Determination of rare earth elements in human hair and wheat flour reference materials by inductively coupled plasma mass spectrometry with dry ashing and microwave digestion

    NASA Astrophysics Data System (ADS)

    Ming, Yin; Bing, Li

    1998-09-01

    A method was developed for the determination of all rare earth elements (REEs) at sub ng g -1 levels in human hair (GBW 09101, SRM, Republic of China) and wheat flour (GBW 08503, SRM, Republic of China) by Inductively coupled plasma mass spectrometry (ICP-MS). The values obtained by dry ashing and microwave oven digestion procedures were compared with those obtained by traditional open vessel acid digestion method. The validity of the analytical procedure was examined by analyzing spiked samples and two vegetables (GBW 07603 and GBW 07605, SRMs, Republic of China). The results are satisfactory. The detection limits for 14 REEs ranged from 0.0039 to 0.0003 ng cm -3 in solution and the quantification limits ranged from 0.16 to 0.01 ng g -1 in solid sample. The precision for most REEs were less than 10% RSD.

  19. Inductively coupled plasma mass spectrometry as a simple, rapid, and inexpensive method for determination of uranium in urine and fresh water: Comparison with LIF

    SciTech Connect

    Karpas, Z.; Halicz, L.; Roiz, J.

    1996-12-01

    A simple method, based on inductively coupled plasma mass spectrometry, for determination of uranium in urine at levels that indicate occupational exposure, is presented. Sample preparation involves a fifty-fold dilution of the urine by nitric acid (2% HNO{sub 3}) and no other chemical treatment or separation. The analysis itself is completed in under 3 min. The analytical procedure is fully autominated so that a technician may perform over 100 analyses per day. With proper control of the blank contribution, a lower limit of detection of 3 ng L{sup {minus}1} in the original urine sample was achieved. Uranium concentrations in the range 6-30 ng L{sup {minus}1} were found in urine samples of people that are not occupationally exposed. The validity of the results was demonstrated through measurement of standards, controlled uranium addition experiments and, at higher concentrations, by comparison with results obtained by an independent method based on laser induced fluorescence. The laser induced fluorescence technique was found to be sufficient for detection of occupational exposure at an action level of 1.5 {mu}g L{sup {minus}1}. Use of internal standards, indium, and thallium, improved quantification by about 10%, but was not deemed necessary for routine analysis. The inductively coupled plasma mass spectrometry is also ideally suited for monitoring uranium in fresh water and drinking water, as no sample dilution is required and the lower limit of detection is below 0.15 ng L{sup {minus}1}. 41 refs., 4 figs., 5 tabs.

  20. Mobile inductively coupled plasma system

    DOEpatents

    D`Silva, A.P.; Jaselskis, E.J.

    1999-03-30

    A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

  1. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry.

    PubMed

    Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair

    2016-08-01

    Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge. PMID:27216665

  2. Determination of 16 Selected Trace Elements in Children Plasma from China Economical Developed Rural Areas Using High Resolution Magnetic Sector Inductively Coupled Mass Spectrometry

    PubMed Central

    Liu, Xiaobing; Piao, Jianhua; Huang, Zhenwu; Zhang, Shuang-Qing; Li, Weidong; Tian, Yuan; Yang, Xiaoguang

    2014-01-01

    A rapid, accurate, and high performance method of high resolution sector field inductively coupled plasma mass spectrometry (HR-ICP-MS) combined with a small-size sample (0.1 mL) preparation was established. The method was validated and applied for the determination of 16 selected plasma trace elements (Fe, Cu, Zn, Rb, B, Al, Se, Sr, V, Cr, Mn, Co, As, Mo, Cd, and Pb). The linear working ranges were over three intervals, 0-1 μg/L, 0–10 μg/L and 0–100 μg/L. Correlation coefficients (R2) ranged from 0.9957 to 0.9999 and the limits of quantification (LOQ) ranged from 0.02 μg/L (Rb) to 1.89 μg/L (Se). The trueness (or recovery) spanned from 89.82% (Al) to 119.15% (Se) and precision expressed by the relative standard deviation (RSD %) for intra-day ranging from 1.1% (Zn) to 9.0% (Se), while ranged from 3.7% (Fe) to 12.7% (Al) for interday. A total of 440 plasma samples were collected from Chinese National Nutrition and Health Survey Project 2002 (CNNHS 2002), which represented the status of plasma trace elements for the children aged 3–12 years from China economical developed rural areas. The concentrations of 16 trace elements were summarized and compared by age groups and gender, which can be used as one of the basic components for the formulation of the baseline reference values of trace elements for the children in 2002. PMID:24701366

  3. Applications of inductively coupled plasma-mass spectrometry to the determination of actinides and fission products in high level radioactive wastes at the Savannah River Site

    SciTech Connect

    Kinard, W.F.; Bibler, N.E.; Coleman, C.J.; Dewberry, R.A.; Boyce, W.T.; Wyrick, S.B.

    1995-12-31

    Four years of experience in applying inductively coupled plasma-mass spectrometry (ICP-MS) to the analysis of actinides and fission products in high level waste (HLW) samples at the Savannah River Site has led to the development of a number of techniques to aid in the interpretation of the mass spectral data. The goal has been to develop rapid and reliable analytical procedures that provide the necessary chemical and isotopic information to answer the process needs of the customers. Techniques that have been developed include the writing of computer software to strip the experimental data from the instrumental data files into spreadsheets or into a spectral data processing package so that the raw mass spectra can be overlain for comparison or plotted with higher output resolution. These procedures have been applied to problems ranging from the analysis of the high level waste tanks to reactor moderator water as well as environmental samples. Criticality safety analyses in some HLW waste treatment processes depend upon actinide concentration and isotopic information generated by ICP-MS, particularly in tanks with high concentrations of {sup 137}Cs and {sup 90}Sr. Experimental results for a number of these applications will be presented. These procedures represent a considerable saving in time and expense as compared to conventional chemical separation followed by radiochemical analyses, as well as decreased radiation exposure for the analysts.

  4. Direct determination of cadmium in foods by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry using a tungsten coil trap

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Mao, Xuefei; Liu, Jixin; Wang, Min; Qian, Yongzhong; Gao, Chengling; Qi, Yuehan

    2016-04-01

    In this work, a solid sampling device consisting of a tungsten coil trap, porous carbon vaporizer and on-line ashing furnace of a Ni-Cr coil was interfaced with inductively coupled plasma mass spectrometry (ICP-MS). A modified double gas circuit system was employed that was composed of carrier and supplemental gas lines controlled by separate gas mass flow controllers. For Cd determination in food samples using the assembled solid sampling ICP-MS, the optimal ashing and vaporization conditions, flow rate of the argon-hydrogen (Ar/H2) (v:v = 24:1) carrier gas and supplemental gas, and minimum sampling mass were investigated. Under the optimized conditions, the limit of quantification was 0.5 pg and the relative standard deviation was within a 10.0% error range (n = 10). Furthermore, the mean spiked recoveries for various food samples were 99.4%-105.9% (n = 6). The Cd concentrations measured by the proposed method were all within the certified values of the reference materials or were not significantly different (P > 0.05) from those of the microwave digestion ICP-MS method, demonstrating the good accuracy and precision of the solid sampling ICP-MS method for Cd determination in food samples.

  5. Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine

    2005-04-01

    For a few years now inductively coupled plasma mass spectrometry has been increasingly used for precise and accurate determination of isotope ratios of long-lived radionuclides at the trace and ultratrace level due to its excellent sensitivity, good precision and accuracy. At present, ICP-MS and also laser ablation ICP-MS are applied as powerful analytical techniques in different fields such as the characterization of nuclear materials, recycled and by-products (e.g., spent nuclear fuel or depleted uranium ammunitions), radioactive waste control, in environmental monitoring and in bioassay measurements, in health control, in geochemistry and geochronology. Especially double-focusing sector field ICP mass spectrometers with single ion detector or with multiple ion collector device have been used for the precise determination of long-lived radionuclides isotope ratios at very low concentration levels. Progress has been achieved by the combination of ultrasensitive mass spectrometric techniques with effective separation and enrichment procedures in order to improve detection limits or by the introduction of the collision cell in ICP-MS for reducing disturbing interfering ions (e.g., of 129Xe+ for the determination of 129I). This review describes the state of the art and the progress of ICP-MS and laser ablation ICP-MS for isotope ratio measurements of long-lived radionuclides in different sample types, especially in the main application fields of characterization of nuclear and radioactive waste material, environmental research and health controls.

  6. Comparison of 265 nm Femtosecond and 213 nm Nanosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Pb Isotope Ratio Measurements.

    PubMed

    Ohata, Masaki; Nonose, Naoko; Dorta, Ladina; Günther, Detlef

    2015-01-01

    The analytical performance of 265 nm femtosecond laser ablation (fs-LA) and 213 nm nanosecond laser ablation (ns-LA) systems coupled with multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) for Pb isotope ratio measurements of solder were compared. Although the time-resolved signals of Pb measured by fs-LA-MC-ICPMS showed smoother signals compared to those obtained by ns-LA-MC-ICPMS, similar precisions on Pb isotope ratio measurements were obtained between them, even though their operating conditions were slightly different. The mass bias correction of the Pb isotope ratio measurement was carried out by a comparison method using a Pb standard solution prepared from NIST SRM 981 Pb metal isotopic standard, which was introduced into the ICP by a desolvation nebulizer (DSN) via a dual-sample introduction system, and it was successfully demonstrated for Pb isotope ratio measurements for either NIST 981 metal isotopic standard or solder by fs-LA-MC-ICPMS since the analytical results agreed well with the certified value as well as the determined value within their standard deviations obtained and the expanded uncertainty of the certified or determined value. The Pb isotope ratios of solder obtained by ns-LA-MC-ICPMS also showed agreement with respect to the determined value within their standard deviations and expanded uncertainty. From these results, it was evaluated that the mass bias correction applied in the present study was useful and both LA-MC-ICPMS could show similar analytical performance for the Pb isotope ratio microanalysis of metallic samples such as solder. PMID:26656823

  7. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect

    Praphairaksit, N.

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at {approximately}70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of {approximately}4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression

  8. Method for the quantification of vanadyl porphyrins in fractions of crude oils by High Performance Liquid Chromatography-Flow Injection-Inductively Coupled Plasma Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Wandekoken, Flávia G.; Duyck, Christiane B.; Fonseca, Teresa C. O.; Saint'Pierre, Tatiana D.

    2016-05-01

    High performance liquid chromatography hyphenated by flow injection to inductively coupled plasma mass spectrometry (HPLC-FI-ICP-MS) was used to investigate V linked to porphyrins present in fractions of crude oil. First, the crude oil sample was submitted to fractionation by preparative liquid chromatography with UV detection, at the porphyrin Soret band wavelength (400 nm). The obtained porphyrin fractions were then separated in a 250 mm single column, in the HPLC, and eluted with different mobile phases (methanol or methanol:toluene (80:20; v:v)). The quantification of V-porphyrins in the fractions eluted from HPLC was carried out by online measuring the 51V isotope in the ICP-MS, against vanadyl octaethylporphine standard solutions (VO-OEP), prepared in the same solvent as the mobile phase, and injected post-column directly into the plasma. A 20 μg L- 1 Ge in methanol was used as internal standard for minimizing non-spectral interference, such as short-term variations due to injection. The mathematical treatment of the signal based on Fast Fourier Transform smoothing algorithm was employed to improve the precision. The concentrations of V as V-porphyrins were between 2.7 and 11 mg kg- 1 in the fractions, which were close to the total concentration of V in the porphyrin fractions of the studied crude oil.

  9. The Archimedes Plasma Mass Filter

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Ohkawa, T.; Agnew, S. F.; Cluggish, B. P.; Freeman, R. L.; Gilleland, J.; Putvinski, S.; Sevier, L.; Umstadter, K. R.

    2001-10-01

    Archimedes Technology Group is developing a plasma technology, called the Archimedes Plasma Mass Filter, which can separate a waste mixture ion by ion into mass groups and as such represents a major advance in waste separations technology. The filter is a plasma device employing a magnetic and electric field configuration that acts as a low-mass-pass filter for ions. Ions with mass above a tunable “cutoff mass” are expelled from the plasma. The Archimedes Plasma Mass Filter satisfies all of the requirements of an economic mass separator system: good single-pass separation, acceptable energy cost per ion, and high material throughput. This technology could significantly reduce the volume of radioactive waste at the Hanford Site in Richland, Washington, which is storing sixty percent of the nation’s defense nuclear waste. The potential waste reduction is dramatic because 82 wtpresently scheduled to be vitrified (immobilized and stored in glass) at Hanford are below mass number 60 while 99.9the radioactivity comes from atoms above mass number 89. We will present the plasma physics basis for the filter effect, the fundamental parameter constraints, and modeling results of filter operation.

  10. Theoretical Investigation of Small Polyatomic Ions Observed in Inductively Coupled Plasma Mass Spectrometry: HxCO+ and HxN2+ (x = 1, 2, 3)

    SciTech Connect

    Sears, K.; Ferguson, J.; Dudley, T.; Houk, R.; Gordon, M.

    2008-03-01

    Two series of small polyatomic ions, H{sub x}CO{sup +} and H{sub x}N{sub 2}{sup +} (x = 1, 2, 3), were systematically characterized using three correlated theoretical techniques: density functional theory using the B3LYP functional, spin-restricted second-order perturbation theory, and singles + doubles coupled cluster theory with perturbative triples. On the basis of thermodynamic data, the existence of these ions in inductively coupled plasma mass spectrometry (ICP-MS) experiments is not surprising since the ions are predicted to be considerably more stable than their corresponding dissociation products (by 30-170 kcal/mol). While each pair of isoelectronic ions exhibit very similar thermodynamic and kinetic characteristics, there are significant differences within each series. While the mechanism for dissociation of the larger ions occurs through hydrogen abstraction, the triatomic ions (HCO{sup +} and HN{sub 2}{sup +}) appear to dissociate by proton abstraction. These differing mechanisms help to explain large differences in the abundances of HN{sub 2}{sup +} and HCO{sup +} observed in ICP-MS experiments.

  11. Soluble arsenic and selenium species in fly ash/organic waste-amended soils using ion chromatography-inductively coupled plasma mass spectrometry

    SciTech Connect

    Jackson, B.P.; Miller, W.P.

    1999-01-15

    Mixing coal fly ash with an organic waste increases macronutrient content and may make land application of fly ash a viable disposal alternative. However, trace element chemistry of these mixed waste products warrants investigation. Speciation of As and Se in soil solutions of fly ash-, poultry litter- and sewage sludge-amended soils was determined over a 10-day period by ion chromatography coupled to inductively coupled plasma mass spectrometry (IC-ICP-MS). Detection limits were 0.031, 0.028, 0.051, 0.161, 0.497, and 0.660 {micro}g L{sup {minus}1} for dimethylarsinate (DMA), As(III), monomethylarsonate (MMA), As(V), Se(IV), and Se(VI), respectively. Arsenic was highly water-soluble from poultry litter and appeared to be predominantly As(V). Arsenic(V) was the predominant species in soil amended with two fly ashes. Application of fly ash/poultry litter mixtures increased As solubility and led to the prevalence of DMA as the major As species. DMA concentrations of these soil solutions decreased rapidly over the sampling period relative to As(V), suggesting that DMA readily underwent mineralization in the soil solution. Se(VI) was the predominant soluble Se species in all treatments indicating rapid oxidation of Se(IV) initially solubilized from the fly ashes.

  12. Development of a novel low-flow ion source/sampling cone geometry for inductively coupled plasma mass spectrometry and application in hyphenated techniques

    NASA Astrophysics Data System (ADS)

    Pfeifer, Thorben; Janzen, Rasmus; Steingrobe, Tobias; Sperling, Michael; Franze, Bastian; Engelhard, Carsten; Buscher, Wolfgang

    2012-10-01

    A novel ion source/sampling cone device for inductively coupled plasma mass spectrometry (ICP-MS) especially operated in the hyphenated mode as a detection system coupled with different separation modules is presented. Its technical setup is described in detail. Its main feature is the very low total argon consumption of less than 1.5 L min- 1, leading to significant reduction of operational costs especially when time-consuming speciation analysis is performed. The figures of merit of the new system with respect to sensitivity, detection power, long-term stability and working range were explored. Despite the profound differences of argon consumption of the new system in comparison to the conventional ICP-MS system, many of the characteristic features of the conventional ICP-MS could be maintained to a great extent. To demonstrate the ion source's capabilities, it was used as an element-selective detector for gas (GC) and high performance liquid chromatography (HPLC) where organic compounds of mercury and cobalt, respectively, were separated and detected with the new low-flow ICP-MS detection system. The corresponding chromatograms are shown. The applicability for trace element analysis has been validated with the certified reference material NIST 1643e.

  13. Determination of arsenic species in fish, crustacean and sediment samples from Thailand using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Rattanachongkiat, S; Millward, G E; Foulkes, M E

    2004-04-01

    Suitable techniques have been developed for the extraction of arsenic species in a variety of biological and environmental samples from the Pak Pa-Nang Estuary and catchment, located in Southern Thailand, and for their determination using HPLC directly coupled with ICP-MS. The estuary catchment comprises a tin mining area and inhabitants of the region can suffer from various stages of arsenic poisoning. The important arsenic species, AsB, DMA, MMA, and inorganic arsenic (As III and V) have been determined in fish and crustacean samples to provide toxicological information on those fauna which contribute to the local diet. A Hamilton PRP-X100 anion-exchange HPLC system employing a step elution has been used successfully to achieve separation of the arsenic species. A nitric acid microwave digestion procedure, followed by carrier gas nitrogen addition- (N2)-ICP-MS analysis was used to measure total arsenic in sample digests and extracts. The arsenic speciation of the biological samples was preserved using a Trypsin enzymatic extraction procedure. Extraction efficiencies were high, with values of 82-102%(As) for fish and crustacean samples. Validation for these procedures was carried out using certified reference materials. Fish and crustacean samples from the Pak Pa-Nang Estuary showed a range for total arsenic concentration, up to 17 microg g(-1) dry mass. The major species of arsenic in all fauna samples taken was AsB, together with smaller quantities of DMA and, more importantly, inorganic As. For sediment samples, arsenic species were determined following phosphoric acid (1 M H3PO4) extraction in an open focused microwave system. A phosphate-based eluant, pH 6-7.5, with anion exchange HPLC coupled with ICP-MS was used for separation and detection of AsIII, AsV, MMA and DMA. The optimum conditions, identified using an estuarine sediment reference material (LGC), were achieved using 45 W power and a 20 minute heating period for extraction of 0.5 g sediment. The

  14. Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Devulder, Veerle; Gerdes, Axel; Vanhaecke, Frank; Degryse, Patrick

    2015-03-01

    The applicability of laser ablation multi-collector inductively coupled plasma-mass spectrometry (LA-MC-ICP-MS) for the determination of the B isotopic composition in Roman glasses was investigated. The δ11B values thus obtained provide information on the natron flux used during the glass-making process. The glass samples used for this purpose were previously characterized using pneumatic nebulization (PN) MC-ICP-MS. Unfortunately, this method is time-consuming and labor-intensive and consumes some 100 mg of sample, which is a rather high amount for ancient materials. Therefore, the use of the less invasive and faster LA-MC-ICP-MS approach was explored. In this work, the results for 29 Roman glasses and 4 home-made glasses obtained using both techniques were compared to assess the suitability of LA-MC-ICP-MS in this context. The results are in excellent agreement within experimental uncertainty. No difference in overall mass discrimination was observed between the Roman glasses, NIST SRM 610 reference glass and B6 obsidian. The expanded uncertainty of the LA-MC-ICP-MS approach was estimated to be < 2‰, which is similar to that obtained upon sample digestion and PN-MC-ICP-MS measurement.

  15. Direct determination of bromine in plastics by electrothermal vaporization/inductively coupled plasma mass spectrometry using a tungsten boat furnace vaporizer and an exchangeable sample cuvette system.

    PubMed

    Okamoto, Yasuaki; Komori, Hiromi; Kataoka, Hiroko; Tsukahara, Satoshi; Fujiwara, Terufumi

    2010-05-15

    A tungsten boat furnace vaporization inductively coupled plasma mass spectrometry (TBF/ICP-MS) method has been applied to the direct determination of bromine in plastic samples. In the pretreatment, the plastic sample is spread over a small sample cuvette made of tungsten by treating it with a strongly basic organic solution, e.g., octanol or diisobutyl ketone in the presence of potassium hydroxide. The cuvette is placed on a tungsten boat furnace, with which the electrothermal vaporizer is equipped. At the vaporization step, a widely spread thin layer of the sample facilitates its efficient evaporation and introduction into an ICP mass spectrometer. The most remarkable feature is that all the bromine species in plastic samples are decomposed to form a thermally stable inorganic salt during the pretreatment procedure. Therefore, the bromine content in plastic samples can be measured by a calibration curve method constructed with an aqueous standard solution of potassium bromate(V). The detection limit (3sigma) was estimated to be 0.77 pg of bromine, which corresponds to a concentration of 0.31 ng g(-1) of bromine in plastic samples when a sample amount taken of 2.5 mg is studied. The relative standard deviation was calculated to be 2.2%. Analytical results of some plastic samples, which contained both inorganic bromide salts and also organic bromine species, are given. PMID:20391597

  16. Sensitive determination of bromine and iodine in aqueous and biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry using tetramethylammonium hydroxide as a chemical modifier.

    PubMed

    Kataoka, Hiroko; Tanaka, Sachiko; Konishi, Chie; Okamoto, Yasuaki; Fujiwara, Terufumi; Ito, Kazuaki

    2008-06-01

    A procedure for the simultaneous determination of bromine and iodine by inductively coupled plasma (ICP) mass spectrometry was investigated. In order to prevent the decrease in the ionization efficiencies of bromine and iodine atoms caused by the introduction of water mist, electrothermal vaporization was used for sample introduction into the ICP mass spectrometer. To prevent loss of analytes during the drying process, a small amount of tetramethylammonium hydroxide solution was placed as a chemical modifier into the tungsten boat furnace. After evaporation of the solvent, the analytes instantly vaporized and were then introduced into the ICP ion source to detect the (79)Br(+), (81)Br(+), and (127)I(+) ions. By using this system, detection limits of 0.77 pg and 0.086 pg were achieved for bromine and iodine, respectively. These values correspond to 8.1 pg mL(-1) and 0.91 pg mL(-1) of the aqueous bromide and iodide ion concentrations, respectively, for a sampling volume of 95 microL. The relative standard deviations for eight replicate measurements were 2.2% and 2.8% for 20 pg of bromine and 2 pg of iodine, respectively. Approximately 25 batches were vaporizable per hour. The method was successfully applied to the analysis of various certified reference materials and practical situations as biological and aqueous samples. There is further potential for the simultaneous determination of fluorine and chlorine. PMID:18496883

  17. Profiling the iron, copper and zinc content in primary neuron and astrocyte cultures by rapid online quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Hare, Dominic J; Grubman, Alexandra; Ryan, Timothy M; Lothian, Amber; Liddell, Jeffrey R; Grimm, Rudolf; Matsuda, Toshiaki; Doble, Philip A; Cherny, Robert A; Bush, Ashley I; White, Anthony R; Masters, Colin L; Roberts, Blaine R

    2013-12-01

    Metals often determine the chemical reactivity of the proteins to which they are bound. Each cell in the body tightly maintains a unique metalloproteomic profile, mostly dependent on function. This paper describes an analytical online flow injection quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) method, which was applied to profiling the metal-binding proteins found in primary cultures of neurons and astrocytes. This method can be conducted using similar amounts of sample to those used for Western blotting (20-150 μg protein), and has a turnaround time of <15 minutes. Metalloprotein standards for Fe (as ferritin), Cu and Zn (as superoxide dismutase-1) were used to construct multi-point calibration curves for online quantification of metalloproteins by SEC-ICP-MS. Homogenates of primary neuron and astrocyte cultures were analysed by SEC-ICP-MS. Online quantification by external calibration with metalloprotein standards determined the mass of metal eluting from the column relative to time (as pg s(-1)). Total on-column Fe, Cu and Zn detection limits ranged from 0.825 ± 0.005 ng to 13.6 ± 0.7 pg. Neurons and astrocytes exhibited distinct metalloprotein profiles, featuring both ubiquitous and unique metalloprotein species. Separation and detection by SEC-ICP-MS allows appraisal of these metalloproteins in their native state, and online quantification was achieved using this relatively simple external calibration process. PMID:24132241

  18. Simultaneous determination of bromine and chlorine in coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis.

    PubMed

    de Gois, Jefferson S; Pereira, Éderson R; Welz, Bernhard; Borges, Daniel L G

    2014-12-10

    A new method for the direct analysis of coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis was developed, aiming at the determination of Br and Cl. The procedure does not require any significant sample pretreatment and allows simultaneous determination of both elements to be carried out, requiring small mass aliquots of sample (about 0.5 mg). All operating parameters, including carrier gas flow-rate and RF power, were optimized for maximum sensitivity. The use of modifiers/aerosol carriers (Pd, Pd+Al and Pd+Ca) was evaluated, and the mixture of Pd and Ca was chosen, allowing pyrolysis and vaporization temperatures of 700°C and 1900°C, respectively. Chlorine was accurately determined using calibration against solid standards, whereas Br could also be determined using calibration against aqueous standard solutions. The limits of quantification were 0.03 μg g(-1) for Br and 7 μg g(-1) for Cl, and no spectral interferences were observed. PMID:25441883

  19. Fast determination of arsenosugars in algal extracts by narrow bore high-performance liquid chromatography-inductively coupled plasma mass spectrometry.

    PubMed

    Todolí, José Luis; Grotti, Marco

    2010-11-19

    The potential of narrow bore high-performance liquid chromatography (HPLC) with detection by inductively coupled plasma mass spectrometry (ICP-MS) for fast determination of arsenosugars in algal extracts was explored. The retention behavior of four naturally occurring dimethylarsinoylribosides on an anion-exchange microbore column was investigated, with the mobile phase flow rate ranging from 60 to 200μLmin(-1). A low sample consumption system consisting of a micronebulizer and a low inner volume cyclonic spray chamber was used as the interface between the micro-column and the ICP mass spectrometer. Both the high efficiency nebulizer, HEN, and the PFA micronebulizer were tested, with the former providing 20-50% greater sensitivity than PFA (depending on the liquid flow rate), but comparable limits of detection and slightly lower chromatographic resolution. With the setup employed and under the optimal conditions, a satisfactory separation of the arsenosugars was achieved in less than 5min. The instrumental limit of detection was 0.20μgAsL(-1) and the precision was better than 3% (RSD%, n=5). The accuracy of the determination was verified by the analysis of a reference algal extract, obtaining values in good agreement with the reference ones. PMID:20965508

  20. Application of Microwave-Induced Combustion and Isotope Dilution Strategies for Quantification of Sulfur in Coals via Sector-Field Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Christopher, Steven J; Vetter, Thomas W

    2016-05-01

    In recent years, microwave-induced combustion (MIC) has proved to be a robust sample preparation technique for difficult-to-digest samples containing high carbon content, especially for determination of halogens and sulfur. National Institute of Standards and Technology (NIST) has applied the MIC methodology in combination with isotope dilution analysis for sulfur determinations, representing the first-reported combination of this robust sample preparation methodology and high-accuracy quantification approach. Medium-resolution mode sector-field inductively coupled plasma mass spectrometry was invoked to avoid spectral interferences on the sulfur isotopes. The sample preparation and instrumental analysis scheme was used for the value assignment of total sulfur in Standard Reference Material (SRM) 2682c Subbituminous Coal (nominal mass fraction 0.5% sulfur). A description of the analytical procedures required is provided, along with metrological results, including an estimation of the overall method uncertainty (<1.5% relative expanded uncertainty) calculated using the IDMS measurement function and a Kragten spreadsheet approach. PMID:27032706

  1. Determination of trace phosphorus in high purity tantalum materials by inductively coupled plasma mass spectrometry subsequent to matrix separation with on-line anion exchange/coprecipitation.

    PubMed

    Kozono, Shuji; Takahashi, Shigeto; Haraguchi, Hiroki

    2002-02-01

    An on-line matrix separation/inductively coupled plasma mass spectrometry (ICP-MS) method is proposed for the determination of trace amounts of phosphorus in high purity tantalum metal, tantalum (V) oxide, and tantalum pentaethoxide. In the present method, the matrix tantalum in the sample solution was adsorbed on the anion exchange resin, and phosphorus (phosphate ion) was eluted with the carrier solution of HF and HNO3 mixture. Then, the effluent solution was subsequently mixed with bismuth solution and aqueous ammonia solution to coprecipitate phosphate together with bismuth hydroxide. The precipitate formed was collected on the in-line membrane filter to wash out nitric acid with pure water, and then dissolved with hydrochloric acid. The obtained phosphorus sample solution was introduced directly into the nebulizer of ICP-MS for the determination of phosphorus. Phosphorus was determined at the molecular ion signal of 31P16O+ (m/z 47). The detection limit (3sigma) of phosphorus in the present method was 1.3 ng mL(-1) as the sample solution basis, and the relative standard deviation for 30 ng mL(-1) of phosphorus in the standard solution was 4.3% in the replicate measurements (n=11). The present method was applied to the analysis of high purity tantalum materials. The concentrations of phosphorus in tantalum samples were in fairly good agreement with those obtained by glow discharge mass spectrometry (GDMS). PMID:11939629

  2. Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles.

    PubMed

    Claverie, Fanny; Hubert, Amélie; Berail, Sylvain; Donard, Ariane; Pointurier, Fabien; Pécheyran, Christophe

    2016-04-19

    The isotope drift encountered on short transient signals measured by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) is related to differences in detector time responses. Faraday to Faraday and Faraday to ion counter time lags were determined and corrected using VBA data processing based on the synchronization of the isotope signals. The coefficient of determination of the linear fit between the two isotopes was selected as the best criterion to obtain accurate detector time lag. The procedure was applied to the analysis by laser ablation-MC-ICPMS of micrometer sized uranium particles (1-3.5 μm). Linear regression slope (LRS) (one isotope plotted over the other), point-by-point, and integration methods were tested to calculate the (235)U/(238)U and (234)U/(238)U ratios. Relative internal precisions of 0.86 to 1.7% and 1.2 to 2.4% were obtained for (235)U/(238)U and (234)U/(238)U, respectively, using LRS calculation, time lag, and mass bias corrections. A relative external precision of 2.1% was obtained for (235)U/(238)U ratios with good accuracy (relative difference with respect to the reference value below 1%). PMID:27031645

  3. Determination of trace sulfur in biodiesel and diesel standard reference materials by isotope dilution sector field inductively coupled plasma mass spectrometry.

    PubMed

    Amais, Renata S; Long, Stephen E; Nóbrega, Joaquim A; Christopher, Steven J

    2014-01-01

    A method is described for quantification of sulfur at low concentrations on the order of mgkg(-1) in biodiesel and diesel fuels using isotope dilution and sector field inductively coupled plasma mass spectrometry (ID-SF-ICP-MS). Closed vessel microwave-assisted digestion was employed using a diluted nitric acid and hydrogen peroxide decomposition medium to reduce sample dilution volumes. Medium resolution mode was employed to eliminate isobaric interferences at (32)S and (34)S related to polyatomic phosphorus and oxygen species, and sulfur hydride species. The method outlined yielded respective limits of detection (LOD) and limits of quantification (LOQ) of 0.7 mg kg(-1) S and 2.5 mg kg(-1) S (in the sample). The LOD was constrained by instrument background counts at (32)S but was sufficient to facilitate value assignment of total S mass fraction in NIST SRM 2723b Sulfur in Diesel Fuel Oil at 9.06±0.13 mg kg(-1). No statistically significant difference at a 95% confidence level was observed between the measured and certified values for certified reference materials NIST SRM 2773 B100 Biodiesel (Animal-Based), CENAM DRM 272b and NIST SRM 2723a Sulfur in Diesel Fuel Oil, validating method accuracy. PMID:24331043

  4. Application of induction coupled plasma mass spectrometry to the analysis of fluids extracted from Mississippi Valley-type deposits of the midcontinent, USA

    SciTech Connect

    Viets, J.G.; Leach, D.L.; Meier, A.L.; Rose, S.C.; Rowan, E.L.

    1985-01-01

    The development of induction coupled plasma (ICP) mass spectrometry permits analysis for many cations in fluid inclusion extracts at lower detection limits than previously obtainable. Using ICP mass spectrometry, selected cations were analyzed in fluids extracted from galena, sphalerite, and hydrothermal dolomites from the Northern Arkansas, Tri-State, Central Missouri, and Viburnum Trend Mississippi Valley-type districts. Regionally, the composition of the extracted fluids are quite similar. However, in the Viburnum Trend, early octahedral galena is enriched in potassium and aluminum relative to late cubic galena. Potassium and aluminum values for late cubic galena are similar to the values for the other districts. Although carbonate hosted, the lead-rich Vibrunum Trend is unique among the districts studied in its proximity to a basal sandstone aquifer underlain by Precambrian felsic igneous rocks. The decrease in potassium and aluminum content through time suggest that early octahedral galena may have been deposited from a fluid channeled primarily through the basal Lamotte Sandstone aquifer. Late cubic galena was deposited from a fluid with less potassium and aluminum. Perhaps this fluid had more interaction with carbonate rocks owing to development of porosity; alternatively, a change in pH through time would also be consistent with these observations.

  5. Quantitative imaging of the tissue contrast agent [Gd(DTPA)]²⁻ in articular cartilage by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Sussulini, Alessandra; Wiener, Edzard; Marnitz, Tim; Wu, Bei; Müller, Berit; Hamm, Bernd; Sabine Becker, J

    2013-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is an emerging analytical technique in the generation of quantitative images of MR contrast agent distribution in thin tissue sections of articular cartilage. An analytical protocol is described that includes sample preparation by cryo-cutting of tissue sections, mass spectrometric measurements by LA-ICP-MS and quantification of gadolinium images by one-point calibration, standard addition method (employing matrix-matched laboratory standards) and isotope dilution analysis using highly enriched stable Gd-155 isotope (abundance 92 vs 14.8% in the [Gd(DTPA)]²⁻ contrast agent). The tissue contrast agent concentrations of [Gd(DTPA)]²⁻ in cartilage measured in this work are in agreement with findings obtained by magnetic resonance imaging and other analytical methodologies. The LA-ICP-MS imaging data also confirm the observation that the spatial distribution of [Gd(DTPA)]²⁻ in the near-equilibrium state is highly inhomogeneous across cartilage thickness with the highest concentration measured in superficial cartilage and a strong decrease toward the subchondral bone. In the present work, it is shown for the first time that LA-ICP-MS can be applied to validate the results from quantitative gadolinium-enhanced MRI technique of articular cartilage. PMID:23281293

  6. Ion chromatography/inductively coupled plasma mass spectrometry for simultaneous determination of glyphosate, glufosinate, fosamine and ethephon at nanogram levels in water.

    PubMed

    Guo, Zhong-Xian; Cai, Qiantao; Yang, Zhaoguang

    2007-01-01

    This paper describes the first approach that simultaneously quantifies four polar, water-soluble organophosphorus herbicides, i.e., glyphosate, glufosinate, fosamine and ethephon, at nanogram levels in environmental waters. The target herbicides were separated completely by ion chromatography (IC) on a polymer anion-exchange column, Dionex IonPac AS16 (4.0 mm x 250 mm), with 30 mM citric acid flowing at 0.70 mL min(-1) as the eluent. On-line inductively coupled plasma mass spectrometry (ICP-MS) using a quadrupole mass spectrometer was employed as a sensitive and selective detector of the effluents. Various parameters affecting the separation and detection were systematically examined and optimized. Detection limits of the herbicides achieved with the proposed IC/ICP-MS method were 1.1-1.4 microg L(-1) (as compound) based on a 500-microL sample injection. Matrix anions, metal ions, phosphate, polyphosphates, non-polar and other polar organophosphorus pesticides showed no interference. The developed method was validated using reservoir water, treated water and NEWater samples spiked at the level of 10-25 microg L(-1) with satisfactory recoveries (95-109%). It is applicable to the simultaneous determination of microg L(-1) concentrations of the herbicides in polluted water. PMID:17443488

  7. Ultrasound-assisted enzymatic hydrolysis for iodinated amino acid extraction from edible seaweed before reversed-phase high performance liquid chromatography-inductively coupled plasma-mass spectrometry.

    PubMed

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2013-09-27

    The combination of reverse phase high performance liquid chromatography (RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) was used for the determination of monoiodotyrosine (MIT) and diiodotyrosine (DIT) in edible seaweed. A sample pre-treatment based on ultrasound assisted enzymatic hydrolysis was optimized for the extraction of these iodinated amino acids. Pancreatin was selected as the most adequate type of enzyme, and parameters affecting the extraction efficiency (pH, temperature, mass of enzyme and extraction time) were evaluated by univariate approaches. In addition, extractable inorganic iodine (iodide) was also quantified by anion exchange high performance liquid chromatography (AE-HPLC) coupled with ICP-MS. The proposed procedure offered limits of detection of 1.1 and 4.3ngg(-1) for MIT and DIT, respectively. Total iodine contents in seaweed, as well as total iodine in enzymatic digests were measured by ICP-MS after microwave assisted alkaline digestion with tetramethylamonium hydroxide (TMAH) for total iodine assessment, and also by treating the pancreatin extracts (extractable total iodine assessment). The optimized procedure was successfully applied to five different types of edible seaweed. The highest total iodine content, and also the highest iodide levels, was found in the brown seaweed Kombu (6646±45μgg(-1)). Regarding iodinated amino acids, Nori (a red seaweed) was by far the one with the highest amount of both species (42±3 and 0.41±0.024μgg(-1) for MIT and DIT, respectively). In general, MIT concentrations were much higher than the amounts of DIT, which suggests that iodine from iodinated proteins in seaweed is most likely bound in the form of MIT residues. PMID:23972456

  8. Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Becker, J S; Zoriy, M V; Pickhardt, C; Palomero-Gallagher, N; Zilles, K

    2005-05-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used to produce images of element distribution in 20-microm thin sections of human brain tissue. The sample surface was scanned (raster area approximately 80 mm(2)) with a focused laser beam (wavelength 213 nm, diameter of laser crater 50 microm, and laser power density 3 x 10(9) W cm(-2)) in a cooled laser ablation chamber developed for these measurements. The laser ablation system was coupled to a double-focusing sector field ICPMS. Ion intensities of 31P+, 32S+, 56Fe+, 63Cu+, 64Zn+, 232Th+, and 238U+ were measured within the area of interest of the human brain tissue (hippocampus) by LA-ICPMS. The quantitative determination of copper, zinc, uranium, and thorium distribution in thin slices of the human hippocampus was performed using matrix-matched laboratory standards. In addition, a new arrangement in solution-based calibration using a micronebulizer, which was inserted directly into the laser ablation chamber, was applied for validation of synthetic laboratory standard. The mass spectrometric analysis yielded an inhomogeneous distribution (layered structure) for P, S, Cu, and Zn in thin brain sections of the hippocampus. In contrast, Th and U are more homogeneously distributed at a low-concentration level with detection limits in the low-nanogram per gram range. The unique analytical capability and the limits of LA-ICPMS will be demonstrated for the imaging of element distribution in thin cross sections of brain tissue from the hippocampus. LA-ICPMS provides new information on the spatial element distribution of the layered structure in thin sections of brain tissues from the hippocampus. PMID:15889910

  9. Certification of beryllium mass fraction in SRM 1877 Beryllium Oxide Powder using high-performance inductively coupled plasma optical emission spectrometry with exact matching.

    PubMed

    Winchester, Michael R; Turk, Gregory C; Butler, Therese A; Oatts, Thomas J; Coleman, Charles; Nadratowski, Donald; Sud, Ritu; Hoover, Mark D; Stefaniak, Aleksandr B

    2009-03-15

    High-performance inductively coupled plasma optical emission spectrometry (HP-ICP-OES) was used to certify the Be mass fraction in National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1877 Beryllium Oxide Powder. The certified value and expanded uncertainty expressed at a 95% confidence level is (0.3576 +/- 0.0024) g/g. To obtain best results, the Be mass fractions, Mn (internal standard) mass fractions, and matrix compositions of the calibration solutions were carefully matched to those of the sample solutions for each individual HP-ICP-OES analysis. This "exact matching" approach was used because experience at NIST has shown that it often affords improved accuracy and precision in HP-ICP-OES analysis. NIST has never published these observations. Due to the toxicity of BeO and the difficulty of containing the very fine powder material, sets of solutions for HP-ICP-OES analysis were prepared by laboratories collaborating with NIST who have the experience and equipment needed to work with the material safely. Each laboratory utilized a unique digestion protocol(s). After preparing the sets of solutions, the collaborating laboratories shipped them to NIST for HP-ICP-OES analysis. NIST provided the collaborating laboratories with solution preparation kits and spreadsheets to help establish traceability of the HP-ICP-OES results to the International System of Units (SI) and to allow exact matching to be accomplished. The agreement observed among the four individual Be mass fraction values determined from the sets of solutions prepared by the collaborating laboratories was 0.074% relative (1s of mean). The excellent agreement provides a measure of confidence in the robustness of each of the digestion procedures, as well as in the certified Be mass fraction value. The analytical benefits of using exact matching for this particular certification were investigated. Results show that exactly matching the matrix compositions of the

  10. Multielement trace determinations in A1 2O 3 ceramic powders by inductively coupled plasma mass spectrometry with special reference to on-line trace preconcentration

    NASA Astrophysics Data System (ADS)

    Pollmann, D.; Leis, F.; Tölg, G.; Tschöpel, P.; Broekaert, J. A. C.

    1994-12-01

    The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of trace elements in Al 2O 3 powders is reported. Special interest is given to a preconcentration of the trace elements by on-line coupling of chromatography to ICP-MS. This is based on the complexation of Co, Cu, Cr, Fe, Ga, Mn, Ni, V and Zn with hexamethylene-dithiocarbamate (HMDC), their preconcentration on a C18 RP column by reversed phase liquid chromatography and their elution with CH 3OH-H 2O mixtures. A direct coupling of the HPLC system to the ICP-MS has been realized by high pressure pneumatic nebulization using desolvation. With the Chromatographie method developed, removal of the AI by at least 99% was achieved. For the trace elements V, Fe, Ni, Co, Cu and Ga, high and reproducible recoveries (ranging from 96-99%) were reached. The method developed has been shown to considerably enhance the power of detection as compared with direct procedures, namely down to 0.02-0.16 ( μg/g for V and Fe, respectively. The possibilities of the method are shown by the determinations of V, Mn, Fe, Ni, Co, Cu, Zn and Ga at the μg/g level in A1 2O 3 powders. The accuracy of the method at the 0.06 to 9.0 μg/g level for Co and Fe, respectively, is demonstrated by a comparison with results of independent methods from the literature.

  11. SPECIATION OF SELENIUM AND ARSENIC COMPOUNDS BY CAPILLARY ELECTROPHORESIS WITH HYDRODYNAMICALLY MODIFIED ELECTROOSMOTIC FLOW AND ON-LINE REDUCTION OF SELENIUM(VI) TO SELENIUM(IV) WITH HYDRIDE GENERATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC DETECTION

    EPA Science Inventory

    Capillary electrophoresis (CE) with hydride generation inductively coupled plasma mass spectrometry was used to determine four arsenicals and two selenium species. Selenate (SeVI) was reduced on-line to selenite (SeIV') by mixing the CE effluent with concentrated HCl. A microporo...

  12. Testing the limits of micro-scale analyses of Si stable isotopes by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry with application to rock weathering

    NASA Astrophysics Data System (ADS)

    Schuessler, Jan A.; von Blanckenburg, Friedhelm

    2014-08-01

    An analytical protocol for accurate in-situ Si stable isotope analysis has been established on a new second-generation custom-built femtosecond laser ablation system. The laser was coupled to a multicollector inductively coupled plasma mass spectrometer (fsLA-MC-ICP-MS). We investigated the influence of laser parameters such as spot size, laser focussing, energy density and repetition rate, and ICP-MS operating conditions such as ICP mass load, spectral and non-spectral matrix effects, signal intensities, and data processing on precision and accuracy of Si isotope ratios. We found that stable and reproducible ICP conditions were obtained by using He as aerosol carrier gas mixed with Ar/H2O before entering the plasma. Precise δ29Si and δ30Si values (better than ± 0.23‰, 2SD) can be obtained if the area ablated is at least 50 × 50 μm; or, alternatively, for the analysis of geometric features down to the width of the laser spot (about 20 μm) if an equivalent area is covered. Larger areas can be analysed by rastering the laser beam, whereas small single spot analyses reduce the attainable precision of δ30Si to ca. ± 0.6‰, 2SD, for < 30 μm diameter spots. It was found that focussing the laser beam beneath the sample surface with energy densities between 1 and 3.8 J/cm2 yields optimal analytical conditions for all materials investigated here. Using pure quartz (NIST 8546 aka. NBS-28) as measurement standard for calibration (standard-sample-bracketing) did result in accurate and precise data of international reference materials and samples covering a wide range in chemical compositions (Si single crystal IRMM-017, basaltic glasses KL2-G, BHVO-2G and BHVO-2, andesitic glass ML3B-G, rhyolitic glass ATHO-G, diopside glass JER, soda-lime glasses NIST SRM 612 and 610, San Carlos olivine). No composition-dependent matrix effect was discernible within uncertainties of the method. The method was applied to investigate the Si isotope signature of rock weathering at

  13. Combining single-particle inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy to evaluate the release of colloidal arsenic from environmental samples.

    PubMed

    Gomez-Gonzalez, Miguel Angel; Bolea, Eduardo; O'Day, Peggy A; Garcia-Guinea, Javier; Garrido, Fernando; Laborda, Francisco

    2016-07-01

    Detection and sizing of natural colloids involved in the release and transport of toxic metals and metalloids is essential to understand and model their environmental effects. Single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was applied for the detection of arsenic-bearing particles released from mine wastes. Arsenic-bearing particles were detected in leachates from mine wastes, with a mass-per-particle detection limit of 0.64 ng of arsenic. Conversion of the mass-per-particle information provided by SP-ICP-MS into size information requires knowledge of the nature of the particles; therefore, synchrotron-based X-ray absorption spectroscopy (XAS) was used to identify scorodite (FeAsO4·2H2O) as the main species in the colloidal particles isolated by ultrafiltration. The size of the scorodite particles detected in the leachates was below 300-350 nm, in good agreement with the values obtained by TEM. The size of the particles detected by SP-ICP-MS was determined as the average edge of scorodite crystals, which show a rhombic dipyramidal form, achieving a size detection limit of 117 nm. The combined use of SP-ICP-MS and XAS allowed detection, identification, and size determination of scorodite particles released from mine wastes, suggesting their potential to transport arsenic. Graphical abstract Analytical approach for the detection and size characterization of As-bearing particles by SP-ICP-MS and XAS in environmental samples. PMID:26847190

  14. Enhanced flow injection leaching of rocks by focused microwave heating with in-line monitoring of released elements by inductively coupled plasma mass spectrometry.

    PubMed

    Silva, Milithza; Kyser, Kurt; Beauchemin, Diane

    2007-02-19

    A focused microwave digestion system was used to heat a mini-column of sample of crushed rock (hematite) during its successive leaching by repeated 250-microL injections of water, HNO(3) 1%, 10% and 30% (v/v). The mini-column was connected to the nebulizer of an inductively coupled plasma mass spectrometry instrument, which allowed a continuous monitoring of the progressive release of elements by a given leaching reagent. Quantitation of the accessible fraction of Mg, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Sb and Pb was done by calibration using 250-microL injections of standard solutions prepared in the leaching reagent matrices. Total digestion of the sample residue was also done to verify mass balance. With the exception of Mg, V and Co, where the same total amount was released with or without microwave heating, an increased release resulted from focused microwave heating, by up to an order of magnitude. Furthermore, mass balance was verified for more elements using microwave heating, presumably because of a lower relative proportion of spectroscopic interference as a result of an increased release of analytes. Using microwave energy in general resulted in the dissolution of additional phases, as evidenced by significantly different (208)Pb/(206)Pb ratios as well as the increased release of elements with milder reagents. In fact, in the case of Pb, leaching with 30% HNO(3) was no longer necessary as all the Pb was released in the first three leaching reagents. Microwave heating could therefore be used advantageously in on-line leaching for exploration geochemistry and environmental monitoring. PMID:17386636

  15. In situ location and U-Pb dating of small zircon grains in igneous rocks using laser ablation-inductively coupled plasma-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Sack, Patrick J.; Berry, Ron F.; Meffre, Sebastien; Falloon, Trevor J.; Gemmell, J. Bruce; Friedman, Richard M.

    2011-05-01

    A new U-Pb zircon dating protocol for small (10-50 μm) zircons has been developed using an automated searching method to locate zircon grains in a polished rock mount. The scanning electron microscope-energy-dispersive X ray spectrum-based automated searching method can routinely find in situ zircon grains larger than 5 μm across. A selection of these grains was ablated using a 10 μm laser spot and analyzed in an inductively coupled plasma-quadrupole mass spectrometer (ICP-QMS). The technique has lower precision (˜6% uncertainty at 95% confidence on individual spot analyses) than typical laser ablation ICP-MS (˜2%), secondary ion mass spectrometry (<1%), and isotope dilution-thermal ionization mass spectrometry (˜0.4%) methods. However, it is accurate and has been used successfully on fine-grained lithologies, including mafic rocks from island arcs, ocean basins, and ophiolites, which have traditionally been considered devoid of dateable zircons. This technique is particularly well suited for medium- to fine-grained mafic volcanic rocks where zircon separation is challenging and can also be used to date rocks where only small amounts of sample are available (clasts, xenoliths, dredge rocks). The most significant problem with dating small in situ zircon grains is Pb loss. In our study, many of the small zircons analyzed have high U contents, and the isotopic compositions of these grains are consistent with Pb loss resulting from internal α radiation damage. This problem is not significant in very young rocks and can be minimized in older rocks by avoiding high-U zircon grains.

  16. Metabolic profile of Fructus Gardeniae in human plasma and urine using ultra high-performance liquid chromatography coupled with high-resolution LTQ-orbitrap mass spectrometry.

    PubMed

    Wang, Gao-Wa; Bao, Burenbatu; Han, Zhi-Qiang; Han, Qing-Yu; Yang, Xiu-Lan

    2016-10-01

    1. In China, Fructus Gardeniae was used as a traditional Chinese medicine (TCM) with a wide array of biological activities. The bioactive components identified in Fructus Gardeniae mainly included iridoids, flavonids, pigments, and so on. Among them, iridoids were regarded as important compounds in Fructus Gardeniae. Though analyses of the constituents in biological samples after oral administration of Fructus Gardeniae effective fraction or its active compounds have been reported, few efforts have been made to investigate the metabolic profile of Fructus Gardeniae in humans. In this study, the constituents and metabolites of Fructus Gardeniae in human blood and urine after oral administration of Fructus Gardeniae were investigated using ultra high-performance liquid chromatography (UHPLC) coupled with high-resolution LTQ-Orbitrap mass spectrometery. 2. Totally, 14 constituents (two parent compounds and 12 metabolites) of Fructus Gardeniae were identified in human plasma and urine either by comparing the retention time and mass spectrometry data with that of reference compounds or by the accurate high-resolution MS/MS data of the chemicals. The compounds identified were mainly iridoid glycosides such as geniposide and the derivatives of genipin-O-glucuronide. Among them, 11 metabolites were detected in human plasma and urine while the other three metabolites including geniposidic acid (M1), demethylation derivative of genipin-O-glucuronide (M2), and dehydration product of mono-hydroxylated genipin-O-glucuronide (M9) were only discovered in human urine. Further, the possible metabolic pathways of Fructus Gardeniae in vivo were proposed and the peak area-time curve of the most abundant metabolite genipin-O-glucuronide (M13) in human plasma after oral administration of Fructus Gardeniae was depicted. The results suggested that a metabolic difference existed between rats and humans. 3. The results obtained in the present research would provide basic information to

  17. Electrochemically modulated separation, concentration, and detection of plutonium using an anodized glassy carbon electrode and inductively coupled plasma mass spectrometry.

    PubMed

    Clark, William J; Park, Sea H; Bostick, Debra A; Duckworth, Douglas C; Van Berkel, Gary J

    2006-12-15

    Plutonium is shown to be retained on anodized glassy carbon (GC) electrodes at potentials positive of +0.7 V (vs Ag/AgCl reference) and released upon potential shifts to values negative of +0.3 V. This phenomenon has been exploited for the separation, concentration, and detection of plutonium by the coupling an electrochemical flow cell on-line with an ICPMS system. The electrochemically controlled deposition and analysis of Pu improves detection limits by analyte preconcentration and by matrix and isobaric ion elimination. Information related to the parametric optimization of the technique and hypotheses regarding the mechanism of electrochemical accumulation of Pu are reported. The most likely accumulation scenario involves complexation of Pu(IV) species, produced under a controlled potential, with anions retained in the anodization film that develops during the activation of the GC electrode. The release mechanism is believed to result from the reduction of Pu(IV) in the anion complex to Pu(III), which has a lower tendency to form complexes. PMID:17165850

  18. Electrochemically Modulated Separation, Concentration, and Detection of Plutonium Using an Anodized Glassy Carbon Electrode and Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect

    Clark, William J.; Park, Sea H.; Bostick, Debra A.; Duckworth, Doug C.; Van Berkel, Gary J.

    2006-12-15

    Plutonium is shown to be retained on anodized glassy carbon (GC) electrodes at potentials positive of +0.7 V (vs. Ag/AgCl reference) and released upon potential shifts to values negative of +0.3 V. This phenomenon has been exploited for the separation, concentration, and detection of plutonium by the coupling an electrochemical flow cell online with an ICP-MS system. The electrochemically-controlled deposition and analysis of Pu improves detection limits by analyte preconcentration and by matrix and isobaric ion elimination. Information related to the parametric optimization of the technique and hypotheses regarding the mechanism of electrochemical accumulation of Pu are reported. The most likely accumulation scenario involves complexation of Pu (IV) species, produced under a controlled potential, with anions retained in the anodization film that develops during the activation of the GC electrode. The release mechanism is believed to result from the reduction of Pu(IV) in the anion complex to Pu (III), which has a lower tendency to form complexes.

  19. Determination of total and isotopic uranium by inductively coupled plasma-mass spectrometry at the Fernald Environmental Management Project

    SciTech Connect

    Miller, F.L.; Bolin, R.N.; Feller, M.T.; Danahy, R.J.

    1995-04-01

    At the Fernald Environmental Management Project (FEMP) in southwestern Ohio, ICP-mass spectrometry (ICP-MS), with sample introduction by peristaltic pumping, is used to determine total and isotopic uranium (U-234, U-235, U-236 and U-238) in soil samples. These analyses are conducted in support of the environmental cleanup of the FEMP site. Various aspects of the sample preparation and instrumental analysis will be discussed. Initial sample preparation consists of oven drying to determine moisture content, and grinding and rolling to homogenize the sample. This is followed by a nitric/hydrofluoric acid digestion to bring the uranium in the sample into solution. Bismuth is added to the sample prior to digestion to monitor for losses. The total uranium (U-238) content of this solution and the U{sup 235}/U{sup 238} ratio are measured on the first pass through the ICP-MS. To determine the concentration of the less abundant U{sup 234} and U{sup 236} isotopes, the digestate is further concentrated by using Eichrom TRU-Spec extraction columns before the second pass through the ICP-MS. Quality controls for both the sample preparation and instrumental protocols will also be discussed. Finally, an explanation of the calculations used to report the data in either weight percent or activity units will be given.

  20. Validation of a method to quantify titanium, vanadium and zirconium in oral mucosa cells by inductively coupled plasma-mass spectrometry (ICP-MS).

    PubMed

    Martín-Cameán, Ana; Jos, Angeles; Calleja, Ana; Gil, Fernando; Iglesias, Alejandro; Solano, Enrique; Cameán, Ana M

    2014-01-01

    The release of metal ions from fixed orthodontic appliances is a source of major concern. Various studies have evaluated the discharge of metals from these appliances in biological fluids, such as saliva or blood, overlooking the cells with prolonged contact with fixed appliances. The aim of this work is to develop and optimize an analytical procedure to determine Ti, V and Zr in oral mucosa cells in patients with and without orthodontic appliances by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The analytical procedure is based on an extraction and digestion of the samples and quantification of the elements. A suitable and practical procedure for assessing the trueness and precision of the proposed method has been applied by using validation standards. The method has been suitably validated: the regression equation was calculated from standards prepared in the same matrix without oral mucosa cells and the linear range was 0.5-50.0 ng/mL for Zr and 5.0-50.0 ng/mL for Ti and V. Limits of detection were 0.9, 2.8 and 0.4 ng/mL and limits of quantification 1.8, 3.4 and 0.7 ng/mL for Ti, V and Zr, respectively. The recovery percentages (%) obtained oscillated between 101 and 108 for Ti, 98 and 111 for V, and 92 and 104 for Zr. Intermediate precision (RSD%) data obtained were also adequate. The present method showed to be robust for the three factors considered: heating time, volume of the deionized water, and volume of PlasmaPure 65% HNO₃ used to dilute the samples, which permits its validation and application to oral mucosa cells from orthodontic patients. PMID:24274294

  1. Bromazepam determination in human plasma by high-performance liquid chromatography coupled to tandem mass spectrometry: a highly sensitive and specific tool for bioequivalence studies.

    PubMed

    Laurito, Tiago L; Mendes, Gustavo D; Santagada, Vincenzo; Caliendo, Giuseppe; de Moraes, Maria Elisabete A; De Nucci, Gilberto

    2004-02-01

    A rapid, sensitive and specific method to quantify bromazepam in human plasma using diazepam as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using diethyl ether-hexane (80 : 20, v/v). The extracts were analyzed by high-performance liquid chromatography (HPLC) coupled to electrospray tandem mass spectrometry (MS/MS). Chromatography was performed isocratically on a Genesis C(18) analytical column (100 x 2.1 mm i.d., film thickness 4 microm). The method had a chromatographic run time of 5.0 min and a linear calibration curve over the range 5.0-150 ng ml(-1) (r(2) > 0.9952). The limit of quantification was 5 ng ml(-1). This HPLC/MS/MS procedure was used to assess the bioequivalence of two bromazepam 6 mg tablet formulations (bromazepam from Medley SA Indústria Farmacêutica as the test formulation and Lexotan from Produtos Roche Químico e Farmacêutico SA as the reference formulation). A single 6 mg dose of each formulation was administered to 24 healthy volunteers (12 males and 12 females). The study was conducted using an open, randomized, two-period crossover design with a 3 week washout interval. Since the 90% CI for C(max), AUC(last), AUC(0-240 h) (linear) and AUC((0- infinity )) ratios were all inside the 80-125% interval proposed by the US Food and Drug Administration, it was concluded that the bromazepam formulation from Medley is bioequivalent to the Lexotan formulation for both the rate and the extent of absorption. PMID:14991686

  2. The development of a method for the determination of trace elements in fuel alcohol by electrothermal vaporization inductively coupled plasma mass spectrometry using external calibration

    NASA Astrophysics Data System (ADS)

    Saint'Pierre, Tatiana Dillenburg; Maranhão, Tatiane de Andrade; Frescura, Vera Lúcia Azzolin; Curtius, Adilson José

    2005-06-01

    A method for the determination of Ag, As, Cd, Cu, Co, Fe, Mn, Ni, Pb, Sn and Tl in fuel alcohol by electrothermal vaporization inductively coupled plasma mass spectrometry is proposed. The determinations were carried out by external calibration against ethanolic solutions, without a chemical modifier, employing the following pyrolysis and vaporization temperatures: 400 °C and 2300 °C for the more volatile analytes and 1000 °C and 2500 °C for the less volatile analytes. The determination of As, Cd, Pb, Sn and Tl was additionally carried out using Pd as modifier at 800 °C pyrolysis and 2400 °C vaporization temperatures. The temperatures were optimized through pyrolysis and vaporization curves. Seven common fuel ethanol, one fuel ethanol with additive and one anhydrous fuel ethanol sample have been analyzed. The measured concentrations were at the μg L -1 level or lower. Since there is no certified reference material for fuel ethanol, the accuracy of the method was checked by the recovery test, with recoveries from 75% to 124%. The limits of detection (LODs), in μg L -1, and the relative standard deviations for 5 replicates were, for the elements in the conditions without modifier: Ag: 0.015 and 9.1%, Co: 0.002 and 10%, Cu: 0.22 and 6.6%, Fe: 0.72 and 4.3%, Mn: 0.025 and 12%, Ni: 0.026 and 9.3%, and for the elements with Pd: As: 0.02 and 2.9%, Cd: 0.07 and 25%, Pb: 0.02 and 3.1%, Sn: 0.010 and 6.0%, Tl: 0.0008 and 2.5%. Electrothermal vaporization avoids the loading of the plasma with organics, allowing the analysis of fuel ethanol by ICP-MS with good accuracy and reasonable precision.

  3. Forensic discrimination of blue ballpoint pens on documents by laser ablation inductively coupled plasma mass spectrometry and multivariate analysis.

    PubMed

    Alamilla, Francisco; Calcerrada, Matías; García-Ruiz, Carmen; Torre, Mercedes

    2013-05-10

    The differentiation of blue ballpoint pen inks written on documents through an LA-ICP-MS methodology is proposed. Small common office paper portions containing ink strokes from 21 blue pens of known origin were cut and measured without any sample preparation. In a first step, Mg, Ca and Sr were proposed as internal standards (ISs) and used in order to normalize elemental intensities and subtract background signals from the paper. Then, specific criteria were designed and employed to identify target elements (Li, V, Mn, Co, Ni, Cu, Zn, Zr, Sn, W and Pb) which resulted independent of the IS chosen in a 98% of the cases and allowed a qualitative clustering of the samples. In a second step, an elemental-related ratio (ink ratio) based on the targets previously identified was used to obtain mass independent intensities and perform pairwise comparisons by means of multivariate statistical analyses (MANOVA, Tukey's HSD and T2 Hotelling). This treatment improved the discrimination power (DP) and provided objective results, achieving a complete differentiation among different brands and a partial differentiation within pen inks from the same brands. The designed data treatment, together with the use of multivariate statistical tools, represents an easy and useful tool for differentiating among blue ballpoint pen inks, with hardly sample destruction and without the need for methodological calibrations, being its use potentially advantageous from a forensic-practice standpoint. To test the procedure, it was applied to analyze real handwritten questioned contracts, previously studied by the Department of Forensic Document Exams of the Criminalistics Service of Civil Guard (Spain). The results showed that all questioned ink entries were clustered in the same group, being those different from the remaining ink on the document. PMID:23597731

  4. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Syta, Olga; Rozum, Karol; Choińska, Marta; Zielińska, Dobrochna; Żukowska, Grażyna Zofia; Kijowska, Agnieszka; Wagner, Barbara

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th-14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers.

  5. Chemometric classification of gunshot residues based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection

    NASA Astrophysics Data System (ADS)

    Steffen, S.; Otto, M.; Niewoehner, L.; Barth, M.; Bro¿żek-Mucha, Z.; Biegstraaten, J.; Horváth, R.

    2007-09-01

    A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification.

  6. Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry.

    PubMed

    Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio

    2012-10-01

    A bioavailability study based on an in vitro dialyzability approach has been applied to assess the bio-available fractions of iodine and bromine species from edible seaweed. Iodide, iodate, 3-iodo-tyrosine (MIT), 3,5-diiodo-tyrosine (DIT), bromide and bromate were separated by anion exchange chromatography under a gradient elution mode (175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase, and flow rates within the 0.5-1.5 mL min(-1) range). Inductively coupled plasma-mass spectrometry (ICP-MS) was used as a selective detector for iodine ((127)I) and bromine ((79)Br). Low dialyzability ratios (within the 2.0-18% range) were found for iodine species; whereas, moderate dialyzability percentages (from 9.0 to 40%) were obtained for bromine species. Iodide and bromide were the major species found in the dialyzates from seaweed, although MIT and bromate were also found in the dialyzates from most of the seaweed samples analysed. However, DIT was only found in dialyzates from Wakame, Kombu, and NIES 09 (Sargasso) certified reference material; whereas, iodate was not found in any dialyzate. Iodine dialyzability was found to be dependent on the protein content (negative correlation), and on the carbohydrate and dietary fibre levels (positive correlation). However, bromine dialyzability was only dependent on the protein amount in seaweed (negative correlation). PMID:22938602

  7. Comparison of voltammetry and inductively coupled plasma-mass spectrometry for the determination of heavy metals in PM 10 airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Buzica, Daniela; Gerboles, Michel; Borowiak, Annette; Trincherini, Pier; Passarella, Rosanna; Pedroni, Valerio

    The potential of the voltammetry method was examined for the determination of heavy metals in ambient air particulate matter (PM 10) on quartz filter. Cd, Pb, Cu, Zn, As were determined by anodic stripping voltammetry while adsorptive stripping voltammetry was used for the analysis of Ni. The method detection limit of these metals were 9.3, 0.1, 0.8, 0.3, 0.4, 0.1 ng m -3 for Zn, Cd, Pb, Cu, Ni and As, respectively. In addition, the analysis of a Certified Reference Material NIST 1648, yielded recoveries between 92% and 103%. Consequently, both the detection limit and recovery of the voltammetric method satisfy the requirements of the European Standard for the analyses of heavy metals in PM 10 (EN 14902). A comparison of the inductively coupled plasma-mass spectrometry (ICP-MS) and voltammetry method on the NIST 1648 and PM 10 filters showed the differences between them remained well within the level of uncertainty on the NIST 1648 requested by European Directives for heavy metals (25% for Pb and 40% for As, Cd and Ni, respectively). In addition to its compliance with legislations, the voltammetry method benefits from low investment cost and the potential of complete automation. As such, one may expect voltammetry to provide a reliable alternative to the European laboratories in charge of ambient air monitoring at the time when the European Directives require to measure heavy metals in PM 10 on a regularly basis.

  8. Determination of mercury compounds in fish by microwave-assisted extraction and liquid chromatography-vapor generation-inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chiou, Chwei-Sheng; Jiang, Shiuh-Jen; Kumar Danadurai, K. Suresh

    2001-07-01

    A method employing a vapor generation system and LC combined with inductively coupled plasma mass spectrometry (LC-ICP-MS) is presented for the determination of mercury in biological tissues. An open vessel microwave digestion system was used to extract the mercury compounds from the sample matrix. The efficiency of the mobile phase, a mixture of L-cysteine and 2-mercaptoethanol, was evaluated for LC separation of inorganic mercury [Hg(II)], methylmercury (methyl-Hg) and ethylmercury (ethyl-Hg). The sensitivity, detection limits and repeatability of the liquid chromatography (LC) ICP-MS system with a vapor generator were comparable to, or better than, that of an LC-ICP-MS system with conventional pneumatic nebulization, or other sample introduction techniques. The experimental detection limits for various mercury species were in the range of 0.05-0.09 ng ml -1 Hg, based on peak height. The proposed method was successfully applied to the determination of mercury compounds in a swordfish sample purchased from the local market. The accuracy of the method was evaluated by analyzing a marine biological certified reference material (DORM-2, NRCC).

  9. Determination of As, Hg and Pb in herbs using slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry.

    PubMed

    Tai, Chia-Yi; Jiang, Shiuh-Jen; Sahayam, A C

    2016-02-01

    Analysis of herbs for As, Hg and Pb has been carried out using slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) with flow injection vapor generation. Slurry containing 0.5% m/v herbal powder, 0.1% m/v citric acid and 2% v/v HCl was injected into the VG-ICP-MS system for the determination of As, Hg and Pb that obviate dissolution and mineralization. Standard addition and isotope dilution methods were used for quantifications in selected herbal powders. This method has been validated by the determination of As, Hg and Pb in NIST standard reference materials SRM 1547 Peach Leaves and SRM 1573a Tomato Leaves. The As, Hg and Pb analysis results of the reference materials agreed with the certified values. The precision obtained by the reported procedure was better than 7% for all determinations. The detection limit estimated from standard addition curve was 0.008, 0.003, and 0.007 ng mL(-1) for As, Hg and Pb, respectively. PMID:26304347

  10. Determination of traces of uranium and thorium in titanium and copper used for the construction of the Russian Emission Detector 100 by inductively coupled plasma mass spectrometry.

    PubMed

    Poteshin, Sergey S; Sysoev, Alexey A; Lagunov, Sergey S; Sereda, Andrei; Sosnovtsev, Valery V; Bolozdynya, Alexander I; Efremenko, Yuriy B

    2015-01-01

    The Russian Emission Detector 100 (RED-100) under construction at the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) is designed to detect the presently undiscovered effect of coherent neutrino scattering. One of the factors limiting the sensitivity of the detector is the spontaneous decay of uranium and thorium in the detector materials. Radioactive impurities in detector materials at levels of parts per billion can significantly affect the sensitivity. Five random samples of titanium and one of copper from materials used in the construction of the detector were selected for assay. The concentration of (232)Th and (238)U were measured by inductively coupled plasma mass spectrometry (ICP- MS) in solid titanium using both: solutions in acids and direct sampling by laser ablation (LA-ICP-MS). The LA- ICP-MS method allowed us to determine (238)U and (232)Th at subnanogram per gram levels. This method is much faster than ICP-MS with liquid injection. The titanium samples studied have impurities in the range between 1 ng g(-1) and 21 ng g(-1) for (238)U and 3 ng g(-1) and 31 ng g(-1) for (232)Th. In copper we set upper limits of 0.4 ng g(-1) for (238)U and 1 ng g(-1)for (232)Th. The total activity of the cryostat constructed from materials studied was estimated to be 43 Bq. PMID:26307714

  11. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    de Gois, Jefferson Santos; Pereira, Éderson R.; Welz, Bernhard; Borges, Daniel L. G.

    2015-03-01

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite 'cups' and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min- 1, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g- 1 under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values.

  12. Microwave-assisted extraction of rare earth elements from petroleum refining catalysts and ambient fine aerosols prior to inductively coupled plasma-mass spectrometry.

    PubMed

    Kulkarni, Pranav; Chellam, Shankararaman; Mittlefehldt, David W

    2007-01-01

    A robust microwave-assisted acid digestion procedure followed by inductively coupled plasma-mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM(2.5)). High temperature (200 degrees C), high pressure (200 psig), acid digestion (HNO(3), HF and H(3)BO(3)) with 20 min dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst and PM(2.5). This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using (115)In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu and Dy in ambient PM(2.5) in an industrial area of Houston, TX. PMID:17386451

  13. Quantitative imaging analysis and investigation of transmission loss in PbF2 crystals by laser ablation-inductively coupled plasma-mass spectrometry method.

    PubMed

    Zhang, Guoxia; Wang, Zheng; Li, Qing; Zhou, Hui; Zhu, Yan; Du, Yiping

    2016-07-01

    We developed a procedure for preparing matrix-matched calibration standards for the quantitative imaging of multiple trace elements in PbF2 crystals by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). In this facile approach, PbO powder was employed as the matrix with the addition of a series of standard solutions, followed by drying and tableting, for determining the concentrations of (24)Mg, (27)Al, (89)Y, (103)Rh, (133)Cs, (175)Lu and (209)Bi in transparent samples (with homogeneous element distribution). (206)Pb was chosen as the internal standard and the correlation coefficients of the calibration curves for all elements ranged from 0.9987 to 0.9999 after internal standard correction. The analysis showed good agreement with the results observed by established ICP-MS methods, following acid dissolution of the samples. Finally, the element distributions and transmission curves of a PbF2 sample with non-transparent and transparent sections were visualized. The distribution images, in conjunction with the transmission curves, suggested that the enrichment of Mg, Al, Rh, Cs, and Bi atoms in the non-transparent section of the sample could explain the loss in transmission observed for that section. PMID:27154704

  14. The direct determination of trace metals in gold and silver materials by laser ablation inductively coupled plasma mass spectrometry without matrix matched standards

    NASA Astrophysics Data System (ADS)

    Kogan, Valentina V.; Hinds, Michael W.; Ramendik, Gregory I.

    1994-04-01

    Typically, accurate trace element determination in solid samples by laser ablation ICP-MS requires calibration with matrix matched standards. Trace metal analysis was performed in high purity gold, high purity silver and 14 karat gold-silver alloys. A Nd : YAG laser was used to evaporate solid samples of precious metals into an inductively coupled plasma mass spectrometer. Analytical data and a study of the crater sizes indicated that approximately the same amount of material for both gold and silver samples was vaporized by a Nd : YAG laser operated in a Q-switched mode with the following parameters: 210 mJ laser energy; 8 Hz repetition rate; and focused 7 mm below the sample surface. High purity gold and silver, and a 14 karat gold-silver alloy were analyzed for trace metals common to gold and silver reference materials. In general, the determination of Fe, Ni, Cu, Zn, Pd, Pt, Pb, and Bi did not strongly depend on whether gold or silver reference materials were used for calibration. This permits these trace metals to be determined directly with only one set of reference materials, by laser ablation ICP-MS, in a wide variety of gold-silver alloys.

  15. Changes of the metal composition in German white wines through the winemaking process. A study of 63 elements by inductively coupled plasma-mass spectrometry.

    PubMed

    Castiñeira Gómez, Maria del Mar; Brandt, Rolf; Jakubowski, Norbert; Andersson, Jan T

    2004-05-19

    Elemental patterns are often used for the classification or identification of the origin of wines. A prerequisite is that the concentration of the elements is not strongly influenced by the addition of different substances such as yeast and fining products during the winemaking process. Inductively coupled plasma-mass spectrometry (ICP-MS) has been used in this study to determine in total 63 elements (including some nonmetals and the rare earth elements) in five German white wines from five regions of origin. The whole winemaking process was studied, from the must to the ready wine. Microwave acid digestion was used for sample preparation, and indium was added as internal standard for a semiquantitative analysis. Two winemaking processes were compared: with the addition of clarifying agents (bentonites) before and after the fermentation. The concentration of only a few elements such as Li, B, Mg, Ca, Rb, Cs, and Pb seems to be constant throughout the whole winemaking process (changes of <+/-50%) and are independent of the time of addition of the bentonites. When bentonites are added before fermentation, the concentration of other elements, such as V, Co, and Fe, remains constant. If bentonites are added after fermentation, the concentration of some other elements such as Sr, Zn, and Mn is nearly unaffected. These elements are therefore robust elements for origin studies in German white wines. PMID:15137840

  16. Re-evaluation of interferences of doubly charged ions of heavy rare earth elements on Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Yue-Heng; Wu, Fu-Yuan; Xie, Lie-Wen; Chu, Zhu-Yin; Yang, Jin-Hui

    2014-07-01

    We re-evaluate the interference of doubly charged heavy rare earth elements during Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). A series of mixed solutions of standard reference material SRM 987, rare earth elements, and Sr separated from rock reference materials are measured to assess the influence of isobaric interferences on the MC-ICP-MS analysis of Sr isotopes. After sample dissolution, conventional cation-exchange chromatography is employed for Sr purification of rock reference materials prior to MC-ICP-MS measurement. It has been demonstrated that if the natural abundances of Er and Yb are used to correct for doubly charged ion interferences on Sr, an overcorrection results. In contrast, the use of measured doubly charged ion ratios results in an accurate and precise correction of isobaric interference. This finding is confirmed by analytical results for several certified reference materials from mafic (basaltic) to felsic (granitic) silicate rocks. It is noteworthy that, because Er is more prone to doubly charged ion formation, it dominates over Yb doubly charged ions as an interference source.

  17. Analysis of fish otoliths by electrothermal vaporization inductively coupled plasma mass spectrometry: aspects of precipitating otolith calcium with hydrofluoric acid for trace element determination.

    PubMed

    Arslan, Zikri

    2005-03-15

    A method is developed for determination of trace elements, including Ag, As, Cd, Co, Cr, Cu, Mn, Ni, Se, Tl and Zn, in fish otoliths by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Hydrofluoric acid was used to precipitate calcium resulting from acid dissolution of otolith calcium carbonate. Initial acidity of the sample solution influenced the precipitation efficiency of calcium fluoride. Up to 99.5% of Ca was precipitated in solutions that contained less than 2% (v/v) HNO(3). Recoveries of the elements obtained from spiked artificial otolith solutions were between 90 and 103%. Stabilization of the elements within the ETV cell was achieved with 0.3mug Pd/0.2mug Rh chemical modifier that also afforded optimum sensitivity for multielement determination. The method was validated by the analysis of a fish otolith reference material (CRM) of emperor snapper, and then applied to the determination of the trace elements in otoliths of several fish species captured in Raritan Bay, New Jersey. Results indicated that fish physiology and biological processes could influence the levels of Cu, Mn, Se and Zn in the otoliths of fish inhabiting a similar aqueous environment. Otolith concentrations of Cr and Ni did not show any significant differences among different species. Concentrations for Ag, As, Cd, Co and Tl were also not significantly different, but were very low indicating low affinity of otolith calcium carbonate to these elements. PMID:18969949

  18. Laser ablation-inductively coupled plasma-mass spectrometry imaging of white and gray matter iron distribution in Alzheimer's disease frontal cortex.

    PubMed

    Hare, Dominic J; Raven, Erika P; Roberts, Blaine R; Bogeski, Mirjana; Portbury, Stuart D; McLean, Catriona A; Masters, Colin L; Connor, James R; Bush, Ashley I; Crouch, Peter J; Doble, Philip A

    2016-08-15

    Iron deposition in the brain is a feature of normal aging, though in several neurodegenerative disorders, including Alzheimer's disease, the rate of iron accumulation is more advanced than in age-matched controls. Using laser ablation-inductively coupled plasma-mass spectrometry imaging we present here a pilot study that quantitatively assessed the iron content of white and gray matter in paraffin-embedded sections from the frontal cortex of Alzheimer's and control subjects. Using the phosphorus image as a confirmed proxy for the white/gray matter boundary, we found that increased intrusion of iron into gray matter occurs in the Alzheimer's brain compared to controls, which may be indicative of either a loss of iron homeostasis in this vulnerable brain region, or provide evidence of increased inflammatory processes as a response to chronic neurodegeneration. We also observed a trend of increasing iron within the white matter of the frontal cortex, potentially indicative of disrupted iron metabolism preceding loss of myelin integrity. Considering the known potential toxicity of excessive iron in the brain, our results provide supporting evidence for the continuous development of novel magnetic resonance imaging approaches for assessing white and gray matter iron accumulation in Alzheimer's disease. PMID:27233149

  19. Microwave-assisted Extraction of Rare Earth Elements from Petroleum Refining Catalysts and Ambient Fine Aerosols Prior to Inductively Coupled Plasma - Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Kulkarni, Pranav; Chellam, Shankar

    2006-01-01

    In the absence of a certified reference material, a robust microwave-assisted acid digestion procedure followed by inductively coupled plasma - mass spectrometry (ICP-MS) was developed to quantify rare earth elements (REEs) in fluidized-bed catalytic cracking (FCC) catalysts and atmospheric fine particulate matter (PM2.5). High temperature (200 C), high pressure (200 psig), acid digestion (HNO3, HF, and H3BO3) with 20 minute dwell time effectively solubilized REEs from six fresh catalysts, a spent catalyst, and PM2.5. This method was also employed to measure 27 non-REEs including Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Zr, Mo, Cd, Cs, Ba, Pb, and U. Complete extraction of several REEs (Y, La, Ce, Pr, Nd, Tb, Dy, and Er) required HF indicating that they were closely associated with the aluminosilicate structure of the zeolite FCC catalysts. Internal standardization using 115In quantitatively corrected non-spectral interferences in the catalyst digestate matrix. Inter-laboratory comparison using ICP-optical emission spectroscopy (ICP-OES) and instrumental neutron activation analysis (INAA) demonstrated the applicability of the newly developed analytical method for accurate analysis of REEs in FCC catalysts. The method developed for FCC catalysts was also successfully implemented to measure trace to ultra-trace concentrations of La, Ce, Pr, Nd, Sm, Gd, Eu, and Dy in ambient PM2.5 in an industrial area of Houston, TX.

  20. Mercury speciation analysis in sea water by solid phase microextraction?gas chromatography?inductively coupled plasma mass spectrometry using ethyl and propyl derivatization. Matrix effects evaluation

    NASA Astrophysics Data System (ADS)

    Bravo-Sánchez, Luis R.; Ruiz Encinar, Jorge; Fidalgo Martínez, José I.; Sanz-Medel, Alfredo

    2004-01-01

    An approach to the speciation analysis of mercury in sea-water samples at sub-ppt levels by means of the hyphenation of solid phase microextraction to gas chromatography-inductively coupled plasma mass spectrometry was developed. Blank values turned out to be the limiting factor for lower detection limits of inorganic mercury. Thus, all the reagents were thoroughly cleaned using laboratory made microcolumns packed with 8-hydroxyquinoline on TSK gel. Sodium tetrapropylborate (NaBPr 4) synthesized for the purpose of derivatization of the mercury species resulted in better analytical performances of the method, probably due to lower mercury contamination, than commercial sodium tetraethylborate (NaBEt 4). Detection limits down to a few picogram per liter for both mercury and methylmercury were obtained using NaBPr 4. The high salt content of sea-water samples was responsible for strong matrix effects, which were overcome by using standards additions to the samples. The validation of the methodology was carried out by direct comparison of the results for inorganic mercury with those obtained using a flow injection system followed by preconcentration/trapping of the species and its detection by atomic absorption spectrometry. The proposed method was applied to the determination of mercury and methylmercury in coastal sea-water samples from Gijón (Asturias, Spain) and results obtained are discussed in the light of the butyltin levels previously determined in the same area.

  1. Comparison of digestion procedures and methods for quantification of trace lead in breast milk by isotope dilution inductively coupled plasma mass spectrometry

    PubMed Central

    Amarasiriwardena, Chitra J.; Jayawardene, Innocent; Lupoli, Nicola; Barnes, Ramon M.; Hernandez-Avila, Mauricio; Hu, Howard

    2014-01-01

    Measurement of lead in breast milk is an important public health consideration and can be technically quite challenging. The reliable and accurate determination of trace lead in human breast milk is difficult for several reasons including: potential for contamination during sample collection, storage, and analysis; complexities related to the high fat content of human milk; and poor analytic sensitivity at low concentrations. Breast milk lead levels from previous published studies should therefore be reviewed with caution. Due to the difficulty in identifying a method that would successfully digest samples with 100% efficiency, we evaluated three different digestion procedures including: (1) dry ashing in a muffle furnace, (2) microwave oven digestion, and (3) digestion in high pressure asher. High temperature, high pressure asher digestion was selected as the procedure of choice for the breast milk samples. Trace lead analysis was performed using isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS). Measured lead concentrations in breast milk samples (n = 200) from Mexico ranged from 0.2 to 6.7 ng ml−1. The precision for these measurements ranged from 0.27–7.8% RSD. Use of strict contamination control techniques and of a very powerful digestion procedure, along with an ID-ICP-MS method for lead determination, enables us to measure trace lead levels as low as 0.2 ng ml−1 in milk (instrument detection limit = 0.01 ng ml−1). PMID:24808927

  2. Chemical speciation studies on DU contaminated soils using flow field flow fractionation linked to inductively coupled plasma mass spectrometry (FlFFF-ICP-MS).

    PubMed

    Brittain, S R; Cox, A G; Tomos, A D; Paterson, E; Siripinyanond, A; McLeod, C W

    2012-03-01

    Flow field flow fractionation (FlFFF) in combination with inductively coupled plasma mass spectrometry (ICP-MS) was used to study the chemical speciation of U and trace metals in depleted uranium (DU) contaminated soils. A chemical extraction procedure using sodium pyrophosphate, followed by isolation of humic and fulvic substances was applied to two dissimilar DU contaminated sample types (a sandy soil and a clay-rich soil), in addition to a control soil. The sodium pyrophosphate fractions of the firing range soils (Eskmeals and Kirkcudbright) were found to contain over 50% of the total U (measured after aqua regia digestion), compared to approximately 10% for the control soil. This implies that the soils from the contaminated sites contained a large proportion of the U within more easily mobile soil fractions. Humic and fulvic acid fractions each gave characteristic peak maxima for analytes of interest (Mn, Fe, Cu, Zn, Pb and U), with the fulvic acid fraction eluting at a smaller diameter (approximately 2.1 nm on average) than the humic fraction (approximately 2.4 nm on average). DU in the fulvic acid fraction gave a bimodal peak, not apparent for other trace elements investigated, including natural U. This implies that DU interacts with the fulvic acid fraction in a different way to all other elements studied. PMID:22237634

  3. Speciation and determination of bioavailable arsenic species in soil samples by one-step solvent extraction and high-performance liquid chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Sun, Jing; Ma, Li; Yang, Zhaoguang; Lee, Hsiaowan; Wang, Lin

    2015-03-01

    A new analytical method was developed to determine the bioavailable arsenic species (arsenite, arsenate, monomethylarsonic acid, and dimethylarsonic acid) in soil samples using high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Bioavailable arsenic was extracted with ammonium phosphate buffer by a simplified one-step solvent extraction procedure. To estimate the effect of variables on arsenic extraction, a two-level Plackett-Burman factorial design was conducted to screen the significant factors that were further investigated by a separate univariate approach. The optimum conditions were confirmed by compromising the stability of arsenic species and the extraction efficiency. The concentration of arsenic species was determined in method blank and soil-certified reference materials both spiked with standard solutions of arsenic species. All the target arsenic species were stable during the whole extraction procedure. Furthermore, the proposed method was applied to release bioavailable arsenic from contaminated soil samples, showing that the major arsenic species in soil samples were inorganic arsenic: arsenite and arsenate, of which the latter was dominant. PMID:25594186

  4. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Jia, Xiaoyu; Han, Yi; Liu, Xinli; Duan, Taicheng; Chen, Hangting

    2011-01-01

    The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg +) and mercury (Hg 2+) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg + and Hg 2+ were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL -1 for MeHg + and 0.0014 ng mL -1 for Hg 2+, respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL -1 MeHg + and Hg 2+ were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.

  5. A high-throughput solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for rapid determination of trace heavy metals in natural water.

    PubMed

    Shih, Tsung-Ting; Hsieh, Cheng-Chuan; Luo, Yu-Ting; Su, Yi-An; Chen, Ping-Hung; Chuang, Yu-Chen; Sun, Yuh-Chang

    2016-04-15

    Herein, a hyphenated system combining a high-throughput solid-phase extraction (htSPE) microchip with inductively coupled plasma-mass spectrometry (ICP-MS) for rapid determination of trace heavy metals was developed. Rather than performing multiple analyses in parallel for the enhancement of analytical throughput, we improved the processing speed for individual samples by increasing the operation flow rate during SPE procedures. To this end, an innovative device combining a micromixer and a multi-channeled extraction unit was designed. Furthermore, a programmable valve manifold was used to interface the developed microchip and ICP-MS instrumentation in order to fully automate the system, leading to a dramatic reduction in operation time and human error. Under the optimized operation conditions for the established system, detection limits of 1.64-42.54 ng L(-1) for the analyte ions were achieved. Validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Each analysis could be readily accomplished within just 186 s using the established system. This represents, to the best of our knowledge, an unprecedented speed for the analysis of trace heavy metal ions. PMID:27016435

  6. Study on the in vivo toxic mechanism of xixin based on trace elements determination by inductively coupled plasma-mass spectrometry

    PubMed Central

    Yong-Rui, Bao; Xin-Xin, Yang; Shuai, Wang; Xian-Sheng, Meng; Rui-Qing, Zhu; Yue-Ming, Xia; Lin, Cai

    2014-01-01

    Background: Xixin has been widely used as a traditional Chinese medicine for headache, toothache and inflammatory diseases. Clinical investigation indicated that adverse drug reactions occurred with an overdose of xixin, but the toxic mechanism of xixin in vivo based on trace elements has not been researched yet. Objective: To explore the in vivo toxic mechanism of xixin induced by trace elements. Materials and Methods: The contents of trace elements in the serum and liver of mice were determined by inductively coupled plasma-mass spectrometry (ICP-MS) after obtaining xixin extracts. Principal component analysis (PCA) and cluster analysis (CA) were performed between the trace elements’ content and dosage using the software GeneSpring 12.1 to analyze the main toxic elements in vivo. Results: Trace elements’ contents were obviously raised after xixin extracts were taken as a dosage of 150 mg/mL and 50 mg/mL, respectively. Na, Ca, Cu and Cd in serum and Ca and Zn in liver were the main trace elements inducing the toxic reaction of xixin. Conclusion: Xixin possesses the potential function of indirectly upregulating trace elements in vivo. This study, for the first time, elucidated the in vivo toxic mechanism of xixin based on trace elements. This method could also be utilized in the research of corresponding aspects. PMID:24914279

  7. Arsenic Species in Edible Seaweeds Using In Vitro Biomimetic Digestion Determined by High-Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Zhao, Yan-Fang; Wu, Ji-Fa; Shang, De-Rong; Ning, Jin-Song; Ding, Hai-Yan; Zhai, Yu-Xiu

    2014-01-01

    Arsenite [As (III)], arsenate [As (V)], methylarsonate (MMA), and dimethylarsinate (DMA) in five edible seaweeds (the brown algae Laminaria japonica, red algae Porphyra yezoensis, brown algae Undaria pinnatifida, brown algae Hizikia fusiformis, and green algae Enteromorpha prolifera) were analyzed using in vitro digestion method determined by high-performance liquid chromatography inductively coupled plasma mass spectrometry. The results showed that DMA was found in the water extracts of all samples; As (III) were detected in L. japonica and U. pinnatifida and about 23.0 and 0.15 mg/kg of As (V) were found in H. fusiformis and E. prolifera respectively. However, after the gastrointestinal digestion, As (V) was not detected in any of the five seaweeds. About 0.19 and 1.47 mg/kg of As (III) was detected in the gastric extracts of L. japonica and H. fusiformis, respectively, and about 0.31 and 0.10 mg/kg of As (III) were extracted from the intestinal extracts of Porphyra yezoensis and U. pinnatifida, respectively. The present results successfully reveal the differences of As species and levels in the water and biomimetic extracts of five edible seaweeds. The risk assessment of the inorganic arsenic in the five edible seaweeds based on present data showed almost no hazards to human health. PMID:26904630

  8. Solid phase extraction and preconcentration of uranium(VI) and thorium(IV) on Duolite XAD761 prior to their inductively coupled plasma mass spectrometric determination.

    PubMed

    Aydin, Funda Armagan; Soylak, Mustafa

    2007-04-15

    A simple and effective method is presented for the separation and preconcentration of thorium(IV) and uranium(VI) by solid phase extraction on Duolite XAD761 adsorption resin. Thorium(IV) and uranium(VI) 9-phenyl-3-fluorone chelates are formed and adsorbed onto the Duolite XAD761. Thorium(IV) and uranium(VI) are quantitatively eluted with 2molL(-1) HCl and determined by inductively coupled plasma-mass spectrometry (ICP-MS). The influences of analytical parameters including pH, amount of reagents, amount of Duolite XAD761 and sample volume, etc. were investigated on the recovery of analyte ions. The interference of a large number of anions and cations has been studied and the optimized conditions developed have been utilized for the trace determination of uranium and thorium. A preconcentration factor of 30 for uranium and thorium was achieved. The relative standard deviation (N=10) was 2.3% for uranium and 4.5% for thorium ions for 10 replicate determinations in the solution containing 0.5mug of uranium and thorium. The three sigma detection limits (N=15) for thorium(IV) and uranium(VI) ions were found to be 4.5 and 6.3ngL(-1), respectively. The developed solid phase extraction method was successively utilized for the determination of traces thorium(IV) and uranium(VI) in environmental samples by ICP-MS. PMID:19071600

  9. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  10. Element bioimaging of liver needle biopsy specimens from patients with Wilson's disease by laser ablation-inductively coupled plasma-mass spectrometry.

    PubMed

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2016-05-01

    A laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is developed and applied for the analysis of paraffin-embedded liver needle biopsy specimens of patients with Wilson's disease (WD), a rare autosomal recessive disorder of the copper metabolism causing various hepatic, neurological and psychiatric symptoms due to a copper accumulation in the liver and the central nervous system. The sample set includes two WD liver samples and one negative control sample. The imaging analysis was performed with a spatial resolution of 10 μm. Besides copper, iron was monitored because an elevated iron concentration in the liver is known for WD. In addition to this, both elements were quantified using an external calibration based on matrix-matched gelatine standards. The presented method offers low limits of detection of 1 and 5 μg/g for copper and iron, respectively. The high detection power and good spatial resolution allow the analysis of small needle biopsy specimen using this method. The two analyzed WD samples can be well differentiated from the control sample due to their inhomogeneous copper distribution and high copper concentrations of up to 1200 μg/g. Interestingly, the WD samples show an inverse correlation of regions with elevated copper concentrations and regions with high iron concentrations. PMID:27049132

  11. Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Fang, Yong; Pan, Yushi; Li, Peng; Xue, Mei; Pei, Fei; Yang, Wenjian; Ma, Ning; Hu, Qiuhui

    2016-12-15

    An analytical method using reversed phase chromatography-inductively coupled plasma mass spectrometry for arsenic and mercury speciation analysis was described. The effect of ion-pairing reagent on simultaneous separation of four arsenic (arsenite, arsenate, monomethlyarsonate and dimethylarsinate) and three mercury species (inorganic mercury (Hg(II)), methylmecury and ethylmercury) was investigated. Parameters including concentrations and pH of the mobile phase were optimized. The separation and re-equilibration time was attained within 20min. Meanwhile, a sequential extraction method for arsenic and mercury in rice was tested. Subsequently, 1% HNO3 microwave-assisted extraction was chosen. Calibration curves based on peak area measurements were linear with correlation coefficient greater than 0.9958 for each species in the range studied. The detection limits of the species were in the range of 0.84-2.41μg/L for arsenic and 0.01-0.04μg/L for mercury, respectively. The proposed method was then successfully applied for the simultaneous determination of arsenic and mercury species in rice flour standard material and two kinds of rice from local markets. PMID:27451225

  12. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    NASA Astrophysics Data System (ADS)

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  13. Determination of ultratrace impurity elements in high purity niobium materials by on-line matrix separation and direct injection/inductively coupled plasma mass spectrometry.

    PubMed

    Kozono, Shuji; Haraguchi, Hiroki

    2007-07-31

    The determination of 52 impurity elements in niobium materials (niobium metal, niobium oxide (V), and niobium pentaethoxide) was performed by inductively coupled plasma mass spectrometry (ICP-MS) with on-line anion exchange matrix separation as well as direct nebulization. Niobium material samples were decomposed with a mixture of hydrofluoric acid and nitric acid to prepare 10% niobium solutions. In the on-line anion exchange matrix separation/ICP-MS, the niobium and hydrofluoric acid concentrations in sample solution were adjusted to 5% and ca. 8M, respectively. The solution was then injected into the carrier stream from the sample loop of injection valve to pass through an anion exchange resin column. In the anion exchange separation, niobium in the fluoro-complex form was adsorbed on the resin, while impurity elements were eluted. The eluted elements were introduced into ICP-MS for the determination of 25 impurity elements. On the other hand, 27 impurity elements could not be separated well from niobium matrix under the above anion exchange conditions, and then the sample solution with the niobium concentration of max. 0.2% containing internal standard elements was injected from the sample loop of injection valve directly to introduce into ICP-MS. As a result, 52 impurity elements in three kinds of niobium materials could be determined at the ng g(-1) level. PMID:19071834

  14. Identification of species of the Euterpe genus by rare earth elements using inductively coupled plasma mass spectrometry and linear discriminant analysis.

    PubMed

    Santos, Vívian Silva; Nardini, Viviani; Cunha, Luís Carlos; Barbosa, Fernando; De Almeida Teixeira, Gustavo Henrique

    2014-06-15

    The açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) produce similar fruits which are rich in energy, minerals, vitamins and natural compounds with antioxidant and anti-inflammatory properties. Although the drink obtained from these species is similar, it is important to develop tools to establish the identity of the fruit species and growing regions. To assess claims of origin and for other purposes, we use multivariate analysis to investigate the differentiation of açaí and juçara fruits based on rare earth element (REE) content determined by Inductively Coupled Plasma Mass Spectrometry. REE content, in particular Sm, Th, La, Pr, Gd, and especially Ce and Nd varied between species. PCA analysis was not efficient in differentiating açaí from juçara fruit samples. In contrast, LDA analysis permitted a correct differentiation between species with a predictive ability of 83.3%. The methodology that we have applied confirms that REE can be used to differentiate between açaí and juçara fruit samples and to identify their origin. PMID:24491738

  15. Evaluation of microwave and ultrasound extraction procedures for arsenic speciation in bivalve mollusks by liquid chromatography-inductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Clarissa M. M.; Nunes, Matheus A. G.; Barbosa, Isa S.; Santos, Gabriel L.; Peso-Aguiar, Marlene C.; Korn, Maria G. A.; Flores, Erico M. M.; Dressler, Valderi L.

    2013-08-01

    Liquid chromatography-inductively coupled plasma-mass spectrometry (LC-ICP-MS) was used for arsenic speciation analysis in tissues of bivalve mollusks (Anomalocardia brasiliana sp. and Macoma constricta sp.). Microwave and ultrasound radiation, combined with different extraction conditions (solvent, sample amount, time, and temperature), were evaluated for As-species extraction from the mollusks' tissues. Accuracy, extraction efficiency, and the stability of As species were evaluated by analyzing certified reference materials (DORM-2, dogfish muscle; BCR-627, tuna fish tissue; and SRM 1566b, oyster tissue) and analyte recovery tests. The best conditions were found to be microwave-assisted extraction using 200 mg of samples and water at 80 °C for 6 min. The agreement of As-species concentration in samples ranged from 97% to 102%. Arsenobetaine (AsB) was the main species present in bivalve mollusk tissues, while monomethylarsonic acid (MMA) and arsenate (As(V)) were below the limit of quantification (0.001 and 0.003 μg g- 1, respectively). Two unidentified As species also were detected and quantified. The sum of the As-species concentration was in agreement (90 to 104%), with the total As content determined by ICP-MS after sample digestion.

  16. Investigation of corrosion behavior of biodegradable magnesium alloys using an online-micro-flow capillary flow injection inductively coupled plasma mass spectrometry setup with electrochemical control

    NASA Astrophysics Data System (ADS)

    Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.

    2011-07-01

    The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.

  17. Rapid speciation and determination of vanadium compounds using ion-pair reversed-phase ultra-high-performance liquid chromatography inductively coupled plasma-sector field mass spectrometry.

    PubMed

    Kilibarda, Nikola; Afton, Scott E; Harrington, James M; Yan, Fei; Levine, Keith E

    2013-08-23

    Environmental vanadium contamination is a potential concern to public health, as evidenced by its place on the U.S. Environmental Protection Agency Drinking Water Contaminant Candidate List as a priority contaminant. Vanadium toxicity varies significantly between different oxidation states; therefore, it is crucial to be able to monitor the speciation of vanadium in environmental samples. In this study, a novel method is described that utilizes ion-pair reversed-phase ultra-high-performance liquid chromatography with inductively coupled plasma-sector field mass spectrometry (IP-RP-UHPLC-ICP-SFMS) to separate vanadyl and vanadate ions and resolve a major polyatomic spectral interference ((35)Cl(16)O(+)) in less than a minute. Detection limits were obtained in the low ngL(-1) (part per trillion) range with linear calibrations across several orders of magnitude (50ngL(-1)-100μgL(-1)). The mechanism of chromatographic retention was elucidated through investigation of the role of ethylenediaminetetraacetic acid, tetrabutylammonium ion and pH on elution. The optimized method was then applied to the speciation of vanadium in local lake water samples. PMID:23871564

  18. Determination of Ag, Tl, and Pb in few milligrams of platinum nanoclusters by on-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine; Pickhardt, Carola; Pompe, W.

    2004-09-01

    A new analysis procedure for determination of trace impurities in a few milligram noble metal nanoclusters, using on-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed. During the laser ablation of investigated sample simultaneous the dry aerosol of nebulized enriched isotope spike solution was added and mixed in the laser ablation chamber. The capability of solution-based calibration by a modified isotope dilution analysis in LA-ICP-MS for the determination of selected elements was tested, using platinum reference material NIST SRM 681. A good agreement of measured with certified concentration for Ag and Pb was found. The detection limits for trace element determination of the developed analytical technique, using LA-ICP-MS with quadrupole analyzer varied between 6 ng g-1 for Ag and 90 ng g-1 for Pb. The analytical technique was applied for the determination of Ag, Tl, and Pb in a few milligram of platinum nanoclusters.

  19. Validation of an optimized method for the determination of iodine in human breast milk by inductively coupled plasma mass spectrometry (ICPMS) after tetramethylammonium hydroxide extraction.

    PubMed

    Huynh, Dao; Zhou, Shao Jia; Gibson, Robert; Palmer, Lyndon; Muhlhausler, Beverly

    2015-01-01

    In this study a novel method to determine iodine concentrations in human breast milk was developed and validated. The iodine was analyzed by inductively coupled plasma mass spectrometry (ICPMS) following tetramethylammonium hydroxide (TMAH) extraction at 90°C in disposable polypropylene tubes. While similar approaches have been used previously, this method adopted a shorter extraction time (1h vs. 3h) and used antimony (Sb) as the internal standard, which exhibited greater stability in breast milk and milk powder matrices compared to tellurium (Te). Method validation included: defining iodine linearity up to 200μgL(-1); confirming recovery of iodine from NIST 1549 milk powder. A recovery of 94-98% was also achieved for the NIST 1549 milk powder and human breast milk samples spiked with sodium iodide and thyroxine (T4) solutions. The method quantitation limit (MQL) for human breast milk was 1.6μgL(-1). The intra-assay and inter-assay coefficient of variation for the breast milk samples and NIST powder were <1% and <3.5%, respectively. NIST 1549 milk powder, human breast milk samples and calibration standards spiked with the internal standard were all stable for at least 2.5 months after extraction. The results of the validation process confirmed that this newly developed method provides greater accuracy and precision in the assessment of iodine concentrations in human breast milk than previous methods and therefore offers a more reliable approach for assessing iodine concentrations in human breast milk. PMID:25153367

  20. Simultaneous determination of seven ginsenosides in rat plasma by high-performance liquid chromatography coupled to time-of-flight mass spectrometry: application to pharmacokinetics of Shenfu injection.

    PubMed

    Li, Zhengguang; Zhang, Rui; Wang, Xiuping; Hu, Xiaofei; Chen, Yuguo; Liu, Qingfei

    2015-02-01

    A high-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-TOF MS) method was successfully developed and validated for the identification and determination of seven ginsenosides, Re , Rf , Rb1 , Rc , Rb2 , Ro and Rd , in a Chinese herbal preparation, Shenfu injection, and rat plasma. Based on the method, the pharmacokinetic profiles of the seven ginsenosides were investigated following intravenous administration of single dose of Shenfu injection to six rats. The established method had high linearity, selectivity, sensitivity, accuracy and precision. The pharmacokinetic results showed that Rb1 , Rc and Rb2 had similar pharmacokinetic profiles and relatively long half-life values (19.29 ± 6.36, 29.54 ± 22.91 and 35.60 ± 30.66 h). The half-lives of Rf and Rd were 4.21 ± 3.68 and 8.49 ± 5.20 h, respectively, indicating that they could be metabolized more rapidly than Rb1 , Rc and Rb2 . PMID:24935437

  1. Evaluation of the Forensic Utility of Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Printing Ink Examinations.

    PubMed

    Corzo, Ruthmara; Subedi, Kiran; Trejos, Tatiana; Almirall, José R

    2016-05-01

    Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). As anticipated, the high sensitivity of LA-ICP-MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM-EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM-EDS provided complementary information to LA-ICP-MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks. PMID:27122412

  2. Comparison of digestion procedures and methods for quantification of trace lead in breast milk by isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Amarasiriwardena, Chitra J; Jayawardene, Innocent; Lupoli, Nicola; Barnes, Ramon M; Hernandez-Avila, Mauricio; Hu, Howard; Ettinger, Adrienne S

    2013-01-01

    Measurement of lead in breast milk is an important public health consideration and can be technically quite challenging. The reliable and accurate determination of trace lead in human breast milk is difficult for several reasons including: potential for contamination during sample collection, storage, and analysis; complexities related to the high fat content of human milk; and poor analytic sensitivity at low concentrations. Breast milk lead levels from previous published studies should therefore be reviewed with caution. Due to the difficulty in identifying a method that would successfully digest samples with 100% efficiency, we evaluated three different digestion procedures including: (1) dry ashing in a muffle furnace, (2) microwave oven digestion, and (3) digestion in high pressure asher. High temperature, high pressure asher digestion was selected as the procedure of choice for the breast milk samples. Trace lead analysis was performed using isotope dilution (ID) inductively coupled plasma mass spectrometry (ICP-MS). Measured lead concentrations in breast milk samples (n = 200) from Mexico ranged from 0.2 to 6.7 ng ml(-1). The precision for these measurements ranged from 0.27-7.8% RSD. Use of strict contamination control techniques and of a very powerful digestion procedure, along with an ID-ICP-MS method for lead determination, enables us to measure trace lead levels as low as 0.2 ng ml(-1) in milk (instrument detection limit = 0.01 ng ml(-1)). PMID:24808927

  3. Separation and characterization of metallothionein in the liver of sea turtles by high performance liquid chromatographylinductively coupled plasma-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shinsuke, T.; Yasumi, A.; Takashi, K.

    2003-05-01

    To investigate whether trace metals bind to metallothioneins (MTs) in the hepatocytosol of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata), MT fraction was obtained by ultracentrifugation and gel filtration methods. MTs separated from hepatocytosol were further purified and characterized by high performance liquid chromatography/inductively coupled plasma-mass spectrometry. In addition, the involvement of MTs in the accumulation of trace metals in the liver of sea turtle was examine. Gel filtration analysis showed that significant amounts of Cu, Zn, Ag and Cd were bound to MT in the cytosol of sea turtles, suggesting that such trace metals were primarily detoxified by interaction with MTs in the liver. Elution profiles of these trace metals by anion-exchange chromatography were different between green turtles and hawksbill turtles. These results suggest the presence of multiple isoforms of MT in the liver of both sea turtles; however, constituents of isoforms were different between green and hawksbill turtles. In both species, we observed the elevation of the height of a specific peak in elution profile with an increase in Cu concentration in hepatocytosol. This result suggests the presence of a novel MT isoform related to copper accumulation in the liver of sea turtles.

  4. Development of an ion chromatography-inductively coupled plasma-mass spectrometry method to determine inorganic arsenic in liver from chickens treated with roxarsone.

    PubMed

    Conklin, Sean D; Shockey, Nohora; Kubachka, Kevin; Howard, Karyn D; Carson, Mary C

    2012-09-19

    Roxarsone, (4-hydroxy-3-nitrophenyl)arsonic acid, is an arsenic-containing compound that has been approved as a feed additive for poultry and swine since the 1940s; however, little information is available regarding residual arsenic species present in edible tissues. We developed a novel method for the extraction and quantification of arsenic species in chicken liver. A strongly basic solution solubilized the liver, and ultrafiltration removed macromolecules and particulate material. Ion chromatography separated the species [arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, (4-hydroxy-3-aminophenyl)arsonic acid, (4-hydroxy-3-acetaminophenyl)arsonic acid, and roxarsone] in the extracts, which were then detected by inductively coupled plasma-mass spectrometry. The extraction oxidized most arsenite to arsenate. For fortification concentrations at 2 μg kg(-1) and above, recoveries ranged from 70 to 120%, with relative standard deviations from 7 to 34%. We detected roxarsone, its 3-amino and 3-acetamido metabolites, inorganic arsenic, and additional unknown arsenic species in livers from roxarsone-treated chickens. Both the originating laboratory and a second laboratory validated the method. PMID:22897610

  5. Optimization of a single-drop microextraction method for multielemental determination by electrothermal vaporization inductively coupled plasma mass spectrometry following in situ vapor generation

    NASA Astrophysics Data System (ADS)

    Gil, Sandra; de Loos-Vollebregt, Margaretha T. C.; Bendicho, Carlos

    2009-03-01

    A headspace single-drop microextraction (HS-SDME) method has been developed in combination with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) for the simultaneous determination of As, Sb, Bi, Pb, Sn and Hg in aqueous solutions. Vapor generation is carried out in a 40 mL volume closed-vial containing a solution with the target analytes in hydrochloric acid and potassium ferricyanide medium. Hydrides (As, Sb, Bi, Pb, Sn) and Hg vapor are trapped onto an aqueous single drop (3 µL volume) containing Pd(II), followed by the subsequent injection in the ETV. Experimental variables such as medium composition, sodium tetrahydroborate (III) volume and concentration, stirring rate, extraction time, sample volume, ascorbic acid concentration and palladium amount in the drop were fully optimized. The limits of detection (LOD) (3 σ criterion) of the proposed method for As, Sb, Bi, Pb, Sn and Hg were 0.2, 0.04, 0.01, 0.07, 0.09 and 0.8 µg/L, respectively. Enrichment factors of 9, 85, 138, 130, 37 and 72 for As, Sb, Bi, Pb, Sn and Hg, respectively, were achieved in 210 s. The relative standard deviations ( N = 5) ranged from 4 to 8%. The proposed HS-SDME-ETV-ICP-MS method has been applied for the determination of As, Sb, Bi, Pb, Sn and Hg in NWRI TM-28.3 certified reference material.

  6. Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry.

    PubMed

    Chen, Shizhong; Liu, Cheng; Yang, Ming; Lu, Dengbo; Zhu, Li; Wang, Zhan

    2009-10-15

    A novel method using a microcolumn packed with single-walled carbon nanotubes (SWNTs) as a new adsorption material was developed for the preconcentration of trace Cu, Co and Pb in biological and environmental samples prior to their determination by inductively coupled plasma mass spectrometry (ICP-MS). SWNTs oxidized with concentrated nitric acid have been proved to possess an exceptional adsorption capability for the analytes due to their surface functionalization. The adsorption behaviors of the analytes on SWNTs under dynamic conditions were studied systematically. The main factors influencing the preconcentration and determination of the analytes (pH, sample flow rate and volume, eluent concentration and interfering ions) have been examined in detail. Under the optimum conditions, the detection limits for Cu, Co and Pb were 39, 1.2 and 5.4 pg mL(-1), respectively; the relative standard deviations (RSDs) were found to be less than 6.0% (n=9, c=1.0 ng mL(-1)). This method was validated using a certified reference material of mussel, and has been successfully applied for the determination of trace Cu, Co and Pb in real water sample with the recoveries of 96.0-109%. PMID:19473762

  7. Microwave dissolution of plant tissue and the subsequent determination of trace lanthanide and actinide elements by inductively coupled plasma-mass spectrometry

    SciTech Connect

    Alvarado, J.S.; Neal, T.J.; Smith, L.L.; Erickson, M.D.

    1997-08-01

    Recently there has been much concern with the ability of plants to uptake heavy metals from their surroundings. With the development of instrumental techniques with low detection limits such as inductively coupled plasma-mass spectrometry (ICP-MS), attention is shifting toward achieving faster and more elegant ways of oxidizing the organic material inherent in environmental samples. Closed-vessel microwave dissolution was compared with conventional methods for the determination of concentrations of cerium, samarium, europium, terbium, uranium and thorium in a series of samples from the National Institute of Standards and Technology and from fields in Idaho. The ICP-MS technique exhibited detection limits in parts-per-trillion and linear calibration plots over three orders of magnitude for the elements under study. The results obtained by using nitric acid and hydrogen peroxide in a microwave digestion system for the analysis of reference materials showed close agreement with the accepted values. These values were compared with results obtained from dry- and wet-ashing procedures. The findings from an experiment comparing radiometric techniques for the determination of actinide elements to ICP-MS are reported.

  8. Disequilibrium effects in metal speciation by capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS); theory, simulations and experiments.

    PubMed

    Sonke, Jeroen E; Salters, Vincent J M

    2004-08-01

    A theoretical-experimental approach to evaluate disequilibrium effects in capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) is presented. Electrophoresis requires metal ligand (ML) complexes to be stable on the time scale of separation and detection. By expressing ML complex stability in terms of half-life during a CE separation, an evaluation of separation artifacts can be made. Kinetically slow metals like Cr, Al or Fe form complexes that are stable on the time scale of electrophoretic separations. Kinetically fast metals, like Pb, Hg, Cu, Cd and REE, however tend to form labile complexes which unless complexed by strong chelators will dissociate during CE separations. A reactive transport simulation model of CE separations involving ML complexes allows a more detailed prediction of disequilibrium bias and identifies kinetically limited from mobility-limited types of dissociation. Complementary experimental results are given for kinetic and equilibrium binding experiments of Sm with humic acid. The equilibrium logK for Sm-Leonardite humic acid (HA) binding at pH 7 and 0.01 mol L(-1) ionic strength was determined to be 13.04. Kinetic rates of formation and dissociation for SmHA were 5.9 10(8) and 5.3 10(-5) mol s(-1). PMID:15284917

  9. [Determination of trivalent chromium and hexavalent chromium in dried edible fungi by microwave ashing-liquid chromatography with inductively coupled plasma mass spectrometry].

    PubMed

    Ni, Zhanglin; Tang, Fubin; Qu, Minghua; Mo, Runhong

    2014-02-01

    An analytical method using liquid chromatography with inductively coupled plasma mass spectrometry (LC-ICP-MS) for the determination of trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) in dried edible fungi was established. Edible fungi sample was ashed by a microwave ashing system and Na2 EDTA was added to the ashing sample to stabilize the Cr(III). An anion exchange column (250 mm x 4.6 mm, 10 microm) with a 60 mmol/L nitric acid (pH 9.3) solution as mobile phase was used for the separation and using ICP-MS as a detector for the determination of trivalent chromium and hexavalent chromium. The calibration curves were linear in the range of 0.5-50 microg/L and the correlation coefficients were 0. 999 9 for Cr(III) and Cr(VI). The average recoveries of Cr(III) and Cr(VI) ranged from 78.0% to 90.7% with the relative standard deviations (RSDs, n = 6) less than 4%. The limits of quantification (LOQ) of Cr(III) and Cr(VI) were 0.5 microg/L. The method is efficient, reliable and sensitive, and can meet the requirement for the determination of Cr(III) and Cr(VI) in dried edible fungi. PMID:24822453

  10. Quantitative imaging of platinum based on laser ablation-inductively coupled plasma-mass spectrometry to investigate toxic side effects of cisplatin.

    PubMed

    Köppen, C; Reifschneider, O; Castanheira, I; Sperling, M; Karst, U; Ciarimboli, G

    2015-12-01

    This work presents a quantitative bioimaging method for platinum based on laser ablation-inductively coupled plasma-mass spectrometry and its application for a biomedical study concerning toxic side effects of cisplatin. To trace the histopathology back to cisplatin, platinum was localized and quantified in major functional units of testicle, cochlea, kidney, nerve and brain sections from cisplatin treated mice. The direct consideration of the histology enables precise interpretation of the Pt images and the novel quantitative evaluation approach allows significantly more precise investigations than the pure image. For the first time, platinum was detected and quantified in all major injured structures including organ of Corti of cochlea and seminiferous tubule of testicle. In this way, proximal tubule in kidney, Leydig cells in testicle, stria vascularis and organ of Corti in cochlea and nerve fibers in sciatic nerves are confirmed as targets of cisplatin in these organs. However, the accumulation of platinum in almost all investigated structures also raises questions about more complex pathogenesis including direct and indirect interruption of several biological processes. PMID:26477751

  11. Single-step solubilization of milk samples with N,N-dimethylformamide for inductively coupled plasma-mass spectrometry analysis and classification based on their elemental composition.

    PubMed

    Azcarate, Silvana M; Savio, Marianela; Smichowski, Patricia; Martinez, Luis D; Camiña, José M; Gil, Raúl A

    2015-10-01

    A single-step procedure for trace elements analysis of milk samples is presented. Solubilization with small amounts of dymethylformamide (DMF) was assayed prior to inductively coupled plasma mass spectrometry (ICPMS) detection with a high efficiency sample introduction system. All main instrumental conditions were optimized in order to readily introduce the samples without matrix elimination. In order to assess and mitigate matrix effects in the determination of As, Cd, Co, Cu, Eu, Ga, Gd, Ge, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sm, S, Sr, Ta, Tb, V, Zn, and Zr, matrix matching calibration with (103)Rh as internal standard (IS) was performed. The obtained limits of detection were between 0.68 (Tb) and 30 (Zn) μg L(-1). For accuracy verification, certified Skim milk powder reference material (BCR 063R) was employed. The developed method was applied to trace elements analysis of commercially available milks. Principal components analysis was used to correlate the content of trace metals with the kind of milk, obtaining a classification according to adults, baby or baby fortified milks. The outcomes highlight a simple and fast approach that could be trustworthy for routine analysis, quality control and traceability of milks. PMID:26078129

  12. Determination of minor and trace elements in aromatic spices by micro-wave assisted digestion and inductively coupled plasma-mass spectrometry.

    PubMed

    Khan, Naeem; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Habte, Girum; Hong, Joon Ho; Hwang, In Min; Kim, Kyong Su

    2014-09-01

    This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers. PMID:24731332

  13. A novel aeration-assisted homogenous liquid-liquid microextration for determination of thorium and uranium in water and hair samples by inductively coupled plasma-mass spectroscopy.

    PubMed

    Veyseh, Somayeh; Niazi, Ali

    2016-01-15

    A novel method based on aeration-assisted homogeneous liquid-liquid microextraction using high density solvent is presented, which is combined with inductively coupled plasma-mass spectroscopy in which simultaneous preconcentration and determination of thorium and uranium with arsenazo III as the chelating reagent is carried out. To achieve optimum conditions, several parameters such as pH, concentration of arsenazo III, extraction and homogenous solvent types and their volumes, salt concentration and extraction time were investigated. Under which, the calibration graphs were linear in the range of 0.5-600.0ng L(-1) for thorium and 0.3-550.0ng L(-1) for uranium. Good linearities were obtained for both analytes with R(2) values larger than 0.9990. The limits of detection (LOD, 3Sb/m, n=5) of this method were 0.12 and 0.09ng L(-1), and the enrichment factors were estimated to be 370 and 410 for thorium and uranium, respectively. The proposed method was applied to determine the thorium and uranium in human hair and different environmental water samples. Acceptable recoveries ranged from 99.4% to 100.7% with standard deviation of 0.05 to 0.17. PMID:26592585

  14. Capillary gas chromatography inductively coupled plasma mass spectrometry (CGC-ICPMS) for the enantiomeric analysis of D,L-selenomethionine in food supplements and urine.

    PubMed

    Devos, Christophe; Sandra, Koen; Sandra, Pat

    2002-01-15

    Capillary gas chromatography inductively coupled plasma mass spectrometry (CGC-ICPMS) was applied to the determination of D- and L-selenomethionine in food supplements and in urine. Derivatization was performed with ethylchloroformate (ECF) offering the advantage that the reaction can be carried out in aqueous medium i.e. urine. The derivatives were separated on the chiral stationary phase (CSP) Chiralsil-L-Val. The method was validated with D- and L-seleno-ethionine as internal standard (IS) and the linearity for a seven point calibration from 12.5 pg to 2.5 ng per enantiomer was excellent (R(2) 0.9997). Repeatability of injection (n=3) was <1.8%. The limit of detection (LOD) and quantification (LOQ) were 4 and 12 pg, respectively. Food supplements presently on the market contain L-selenomethionine for at least 90%. Repeatability of the whole procedure (n=6) was tested on one L-selenomethionine formulation and was 3.8 (R.S.D.%). Data for urine samples after a daily intake of L-selenomethionine or the racemate D,L-selenomethionine corresponding to 100 microg selenium indicate that the D-enantiomer is not metabolized. PMID:11755752

  15. An incident study about acute and chronic human exposure to uranium by high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS).

    PubMed

    Krystek, Petra; Ritsema, Rob

    2009-01-01

    From the year 2003 to 2005 around 1700 Dutch soldiers made a part of the international stabilisation force in Iraq. An incident happened as a group of four Dutch soldiers found a 30mm bullet identified as containing depleted uranium (DU). The main pathway of the acute exposure is via inhalation of small uranium containing particles, e.g. from a bullet during its explosion. To develop a method for acute exposure investigations were carried out about finding an efficient and suitable way to sample nasal mucus as medium of inhalation. Generally, in human exposure studies with regard to natural uranium (NU) or DU, urine is the matrix for analysis. Uranium concentrations in urine are based on daily ingestion depending on the composition of drinking water and food. A second possibility is the acute exposure to uranium after an incident, either through inhalation or impact. Nevertheless, the results deliver only interpretations in respect to chronic/long-term exposure. For the acute exposure procedures like sniffling out into cleansing tissues and rinsing the nose were tested with real-life samples from four soldiers involved in an incident with possibly acute exposure to uranium. For the quantification of uranium high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS) was applied. PMID:18187363

  16. Evaluation of Dietary Supplement Contamination by Xenobiotic and Essential Elements Using Microwave-Enhanced Sample Digestion and Inductively Coupled Plasma-Mass Spectrometry.

    PubMed

    Zinn, Gregory M; Rahman, G M Mizanur; Faber, Scott; Wolle, Mesay Mulugeta; Pamuku, Matt; Kingston, H M Skip

    2016-01-01

    Dietary supplements were analyzed by evaluating the elemental content in six widely consumed products manufactured by four well-known companies. The elements included the neurotoxic and carcinogenic elements cadmium, mercury, aluminum, lead, arsenic, and antimony, as well as the essential elements zinc, selenium, chromium, iron, and copper, which were often not listed as ingredients on the product labels. Contamination from either xenobiotic or essential elements was found in all samples analyzed. The samples were prepared using US Environmental Protection Agency (EPA) Method 3052, microwave-enhanced digestion. The resulting digests were analyzed by Inductively Coupled Plasma-Mass Spectrometry based on EPA Method 6020B. The analytical protocols were validated by analyzing a multivitamin standard reference material, the National Institute of Standards and Technology Standard Reference Material 3280. The application of EPA standard methods demonstrated their utility in making accurate and precise measurements in complex matrices with multiple ingredients and excipients. In the future, the use of these methods could provide a uniform quality assurance protocol that can be implemented along with other industry guidelines to improve the production of dietary supplements. PMID:25730528

  17. On-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry using a microflow nebulizer inserted in the laser ablation chamber

    NASA Astrophysics Data System (ADS)

    Pickhardt, Carola; Izmer, Andrej V.; Zoriy, Miroslav V.; Schaumlöffel, D.; Sabine Becker, J.

    2006-02-01

    Laser ablation ICP-MS (inductively coupled plasma mass spectrometry) is becoming one of the most important analytical techniques for fast determination of trace impurities in solid samples. Quantification of analytical results requires matrix-matched standards, which are in some cases (e.g., high-purity metals, proteins separated by 2D gel electrophoresis) difficult to obtain or prepare. In order to overcome the quantification problem a special arrangement for on-line solution-based calibration has been proposed in laser ablation ICP-MS by the insertion of a microflow nebulizer in the laser ablation chamber. This arrangement allows an easy, accurate and precise quantification by on-line isotope dilution using a defined standard solution with an isotope enriched tracer nebulized to the laser-ablated sample material. An ideal matrix matching in LA-ICP-MS is therefore obtained during the measurement. The figures of merit of this arrangement with a microflow nebulizer inserted in the laser ablation chamber and applications of on-line isotope dilution in LA-ICP-MS on two different types of sample material (NIST glass SRM 612 and NIST apple leaves SRM 1515) will be described.

  18. Comparative Study of Metal Quantification in Neurological Tissue Using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging and X-ray Fluorescence Microscopy.

    PubMed

    Davies, Katherine M; Hare, Dominic J; Bohic, Sylvain; James, Simon A; Billings, Jessica L; Finkelstein, David I; Doble, Philip A; Double, Kay L

    2015-07-01

    Redox-active metals in the brain mediate numerous biochemical processes and are also implicated in a number of neurodegenerative diseases. A number of different approaches are available for quantitatively measuring the spatial distribution of biometals at an image resolution approaching the subcellular level. Measured biometal levels obtained using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS; spatial resolution 15 μm × 15 μm) were within the range of those obtained using X-ray fluorescence microscopy (XFM; spatial resolution 2 μm × 7 μm) and regional changes in metal concentration across discrete brain regions were replicated to the same degree. Both techniques are well suited to profiling changes in regional biometal distribution between healthy and diseased brain tissues, but absolute quantitation of metal levels varied significantly between methods, depending on the metal of interest. Where all possible variables affect metal levels, independent of a treatment/phenotype are controlled, either method is suitable for examining differences between experimental groups, though, as with any method for imaging post mortem brain tissue, care should be taken when interpreting the total metal levels with regard to physiological concentrations. PMID:26020362

  19. Quantitative imaging of 2 nm monolayer-protected gold nanoparticle distributions in tissues using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Elci, S Gokhan; Yan, Bo; Kim, Sung Tae; Saha, Krishnendu; Jiang, Ying; Klemmer, Gunnar A; Moyano, Daniel F; Tonga, Gulen Yesilbag; Rotello, Vincent M; Vachet, Richard W

    2016-04-21

    Functionalized gold nanoparticles (AuNPs) have unique properties that make them important biomedical materials. Optimal use of these materials, though, requires an understanding of their fate in vivo. Here we describe the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to image the biodistributions of AuNPs in tissues from mice intravenously injected with AuNPs. We demonstrate for the first time that the distributions of very small (∼2 nm core) monolayer-protected AuNPs can be imaged in animal tissues at concentrations in the low parts-per-billion range. Moreover, the LA-ICP-MS images reveal that the monolayer coatings on the injected AuNPs influence their distributions, suggesting that the AuNPs remain intact in vivo and their surface chemistry influences how they interact with different organs. We also demonstrate that quantitative images of the AuNPs can be generated when the appropriate tissue homogenates are chosen for matrix matching. Overall, these results demonstrate the utility of LA-ICP-MS for tracking the fate of biomedically-relevant AuNPs in vivo, facilitating the design of improved AuNP-based therapeutics. PMID:26979648

  20. Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates

    SciTech Connect

    Perkins, W.T.; Pearce, N.J.G.; Jeffries, T.E. )

    1993-01-01

    This paper describes recent work applying a laser ablation system coupled to an inductively coupled plasma mass spectrometer (LA-ICP-MS) for the direct analysis of solid geological materials. This work demonstrates the potential of LA-ICP-MS for the determination of a wide range of petrogenetically important trace and ultra-trace elements (including for example REE, Hf, Ta, Nb, Th, U) following a routine method of sample preparation. Powdered geological materials have been prepared as both pressed powder disks and fused glasses; both common methods of sample preparation for X-ray fluorescence (XRF) analysis. The solid materials were sampled by ablation using a pulsed Nd:YAG laser operating at 1,064 nm. Analyses can be produced at approximately 10 samples per hour. This instrumental method has limits of detection at or close to those in chondritic meteorites and gives linear calibrations over four orders of magnitude. The accuracy of the technique has been evaluated using reference materials to calibrate the instrument and treating Geological Survey of Japan basalts JB-1a, JB-2, and JB-3 as unknowns.' Detection limits are better than routine XRF analysis and compare favorably with Instrumental Neutron Activation Analysis. Laser ablation overcomes the problems of sample dissolution employed in standard wet chemical techniques, whilst the fused glasses provide homogeneous solid samples. The fused glass technique has been applied to a wide range of reference materials from ultra-basic rocks through basalts and andesites to granites, as well as syenite, mica schist, and black shale. For all of the elements commonly used to generate multi-element discrimination diagrams the data obtained define straight line calibrations. This method is therefore capable of analyzing the complete range of silicate compositions normally encountered with a single calibration (i.e., there is no apparent matrix effect). 47 refs., 4 figs., 5 tabs.

  1. Elemental mapping in fossil tooth root section of Ursus arctos by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS).

    PubMed

    Vašinová Galiová, M; Nývltová Fišáková, M; Kynický, J; Prokeš, L; Neff, H; Mason, A Z; Gadas, P; Košler, J; Kanický, V

    2013-02-15

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to map the matrix (Ca, P) and trace (Ba, Sr, Zn) elements in the root section of a fossilized brown bear (Ursus arctos) tooth. Multielemental analysis was performed on a (2.5 × 1.5)cm(2) area. For elemental distribution, a UP 213 laser ablation system was coupled either with a quadrupole or a time of flight ICP-MS. The cementum and dentine on the slice of the sample surface were clearly distinguishable, especially changes in elemental distribution in the summer and winter bands in the fossil root dentine. Migration and diet of U. arctos were determined on the basis of fluctuations in Sr/Zn ratio and their contents. Quantification was accomplished with standard reference material of bone meal (NIST 1486) and by the use of electron microprobe analysis (EMPA). Changes in Sr/Zn and Sr/Ba ratios relating to the season, and composition of food during the lifetime of the animal are discussed on basis of analysis of light stable isotopes. It was observed that there was an increase in the Sr/Zn ratio during the winter season caused by a reduction of food intake during hibernation. Above mentioned inferences drawn from elemental data obtained by LA-ICP-MS were confirmed independently by determination of carbon, nitrogen and strontium isotopes. Moreover, diagenesis and its interfering influence on the biogenic composition of cementum and dentine were resolved. According to the distribution and/or content of the element of interest, post-mortem alterations were revealed. Namely, U, Na, Fe, Mg and F predicate about the suitability of the selected area for determination of migration and diet. PMID:23598013

  2. Magnetosphere-ionosphere coupling currents in JupiterÂ’s middle magnetosphere: dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Cowley, S. W. H.

    2003-07-01

    The amplitude and spatial distribution of the coupling currents that flow between Jupiter’s ionosphere and middle magnetosphere, which enforce partial corotation on outward-flowing iogenic plasma, depend on the values of the effective Pedersen conductivity of the jovian ionosphere and the mass outflow rate of iogenic plasma. The values of these parameters are, however, very uncertain. Here we determine how the solutions for the plasma angular velocity and current components depend on these parameters over wide ranges. We consider two models of the poloidal magnetospheric magnetic field, namely the planetary dipole alone, and an empirical current sheet field based on Voyager data. Following work by Hill (2001), we obtain a complete normalized analytic solution for the dipole field, which shows in compact form how the plasma angular velocity and current components scale in space and in amplitude with the system parameters in this case. We then obtain an approximate analytic solution in similar form for a current sheet field in which the equatorial field strength varies with radial distance as a power law. A key feature of the model is that the current sheet field lines map to a narrow latitudinal strip in the ionosphere, at approx 15° co-latitude. The approximate current sheet solutions are compared with the results of numerical integrations using the full field model, for which a power law applies beyond approx 20 RJ, and are found to agree very well within their regime of applicability. A major distinction between the solutions for the dipole field and the current sheet concerns the behaviour of the field-aligned current. In the dipole model the direction of the current reverses at moderate equatorial distances, and the current system wholly closes if the model is extended to infinity in the equatorial plane and to the pole in the ionosphere. In the approximate current sheet model, however, the field-aligned current is unidirectional, flowing consistently from

  3. Mass Spectrometric and Langmuir Probe Measurements in Inductively Coupled Plasmas in Ar, CHF3/Ar and CHF3/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2000-01-01

    Absolute fluxes and energy distributions of ions in inductively coupled plasmas of Ar, CHF3/Ar, and CHF3/Ar/O2 have been measured. These plasmas were generated in a Gaseous Electronics Conference (GEC) cell modified for inductive coupling at pressures 10-50 mTorr and 100-300 W of 13.56 MHz radio frequency (RF) power in various feedgas mixtures. In pure Ar plasmas, the Ar(+) flux increases linearly with pressure as well as RF-power. Total ion flux in CHF3 mixtures decreases with increase in pressure and also CHF3 concentration. Relative ion fluxes observed in the present studies are analyzed with the help of available cross sections for electron impact ionization and charge-exchange ion-molecule reactions. Measurements of plasma potential, electron and ion number densities, electron energy distribution function, and mean electron energy have also been made in the center of the plasma with a RF compensated Langmuir probe. Plasma potential values are compared with the mean ion energies determined from the measured ion energy distributions and are consistent. Electron temperature, plasma potential, and mean ion energy vary inversely with pressure, but increase with CHF3 content in the mixture.

  4. Strongly coupled quark gluon plasma (SCQGP)

    NASA Astrophysics Data System (ADS)

    Bannur, Vishnu M.

    2006-07-01

    We propose that the reason for the non-ideal behaviour seen in lattice simulation of quark gluon plasma (QGP) and ultrarelativistic heavy ion collision experiments is that the QGP near Tc and above is a strongly coupled plasma (SCP), i.e., a strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include colour degrees of freedom and the running coupling constant. Results on pressure in pure gauge, 2-flavours and 3-flavours QGP can all be explained by treating QGP as SCQGP, as demonstrated here. Energy density and speed of sound are also presented for all three systems. We further extend the model to systems with finite quark mass and reasonably good fits to lattice results are obtained for (2+1)-flavours and 4-flavours QGP. Hence it is a unified model, namely SCQGP, to explain the non-ideal QGP seen in lattice simulations with just two system dependent parameters.

  5. Evaluation of the multi-element capabilities of collision/reaction cell inductively coupled plasma-mass spectrometry in wine analysis.

    PubMed

    Grindlay, Guillermo; Mora, Juan; de Loos-Vollebregt, Margaretha T C; Vanhaecke, Frank

    2014-10-01

    This work explores the multi-element capabilities of inductively coupled plasma-mass spectrometry with collision/reaction cell technology (CCT-ICP-MS) for the simultaneous determination of both spectrally interfered and non-interfered nuclides in wine samples using a single set of experimental conditions. The influence of the cell gas type (i.e. He, He+H2 and He+NH3), cell gas flow rate and sample pre-treatment (i.e. water dilution or acid digestion) on the background-equivalent concentration (BEC) of several nuclides covering the mass range from 7 to 238u has been studied. Results obtained in this work show that, operating the collision/reaction cell with a compromise cell gas flow rate (i.e. 4 mL min(-1)) improves BEC values for interfered nuclides without a significant effect on the BECs for non-interfered nuclides, with the exception of the light elements Li and Be. Among the different cell gas mixtures tested, the use of He or He+H2 is preferred over He+NH3 because NH3 generates new spectral interferences. No significant influence of the sample pre-treatment methodology (i.e. dilution or digestion) on the multi-element capabilities of CCT-ICP-MS in the context of simultaneous analysis of interfered and non-interfered nuclides was observed. Nonetheless, sample dilution should be kept at minimum to ensure that light nuclides could be quantified in wine. Finally, a direct 5-fold aqueous dilution is recommended for the simultaneous trace and ultra-trace determination of spectrally interfered and non-interfered elements in wine by means of CCT-ICP-MS. The use of the CCT is mandatory for interference-free ultra-trace determination of Ti and Cr. Only Be could not be determined when using the CCT due to a deteriorated limit of detection when compared to conventional ICP-MS. PMID:25059175

  6. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry.

    PubMed

    Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan

    2016-09-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed. PMID:27469116

  7. Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Fe, Cu, Zn and Se in cereals

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yi; Jiang, Shiuh-Jen; Sahayam, A. C.

    2014-11-01

    Ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry (USS-ETV-ICP-MS) has been applied to determine Cr, Fe, Cu, Zn and Se in several cereal samples. Thioacetamide was used as the modifier to enhance the ion signals. The background ions at the masses of interest were reduced in intensity significantly by using 1.0 mL min- 1 methane (CH4) as reaction cell gas in the dynamic reaction cell (DRC). Since the sensitivities of Cr, Fe, Cu, Zn and Se in different matrices were quite different, standard addition and isotope dilution methods were used for the determination of Cr, Fe, Cu, Zn and Se in these cereal samples. The method detection limits estimated from standard addition curves were about 1, 10, 4, 12 and 2 ng g- 1 for Cr, Fe, Cu, Zn and Se, respectively, in original cereal samples. This procedure has been applied to the determination of Cr, Fe, Cu, Zn and Se whose concentrations are in μg g- 1 (except Cr and Se) in standard reference materials (SRM) of National institute of standards and technology (NIST), NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and two cereal samples purchased from a local market. The analysis results of reference materials agreed with certified values at 95% confidence level according to Student's T-test. The results for the real world cereal samples were also found to be in good agreement with the pneumatic nebulization DRC ICP-MS results of the sample solutions.

  8. Certification of Total Arsenic in Blood and Urine Standard Reference Materials by Radiochemical Neutron Activation Analysis and Inductively Coupled Plasma - Mass Spectrometry

    PubMed Central

    Paul, Rick L.; Davis, W. Clay; Yu, Lee; Murphy, Karen E.; Guthrie, William F.; Leber, Dennis D.; Bryan, Colleen E.; Vetter, Thomas W.; Shakirova, Gulchekhra; Mitchell, Graylin; Kyle, David J.; Jarrett, Jeffery M.; Caldwell, Kathleen L.; Jones, Robert L.; Eckdahl, Steven; Wermers, Michelle; Maras, Melissa; Palmer, C. D.; Verostek, M.F.; Geraghty, C. M.; Steuerwald, Amy J.; Parsons, Patrick J.

    2015-01-01

    A newly developed procedure for determination of arsenic by radiochemical neutron activation analysis (RNAA) was used to measure arsenic at four levels in SRM 955c Toxic Elements in Caprine Blood and at two levels in SRM 2668 Toxic Elements in Frozen Human Urine for the purpose of providing mass concentration values for certification. Samples were freeze-dried prior to analysis followed by neutron irradiation for 3 h at a fluence rate of 1×1014cm−2s−1. After sample dissolution in perchloric and nitric acids, arsenic was separated from the matrix by extraction into zinc diethyldithiocarbamate in chloroform, and 76As quantified by gamma-ray spectroscopy. Differences in chemical yield and counting geometry between samples and standards were monitored by measuring the count rate of a 77As tracer added before sample dissolution. RNAA results were combined with inductively coupled plasmamass spectrometry (ICP-MS) values from NIST and collaborating laboratories to provide certified values of (10.81 ± 0.54) μg/kg and (213.1 ± 0.73) μg/kg for SRM 2668 Levels I and II, and certified values of (21.66 ± 0.73) μg/kg, (52.7 ± 1.1) μg/kg, and (78.8 ± 4.9) μg/kg for SRM 955c Levels 2, 3, and 4 respectively. Because of discrepancies between values obtained by different methods for SRM 955c Level 1, an information value of < 5 μg/kg was assigned for this material. PMID:26300575

  9. Pharmacokinetics and tissue distribution of novel platinum containing anticancer agent BP‐C1 studied in rabbits using sector field inductively coupled plasma mass spectrometry

    PubMed Central

    Navolotskii, Denis V.; Ivanenko, Natalya B.; Fedoros, Elena I.; Panchenko, Andrey V.

    2015-01-01

    A method of platinum quantification in whole blood samples after microwave digestion using sector field inductively coupled plasma mass spectrometry has been developed. The following analytical figures of merit have been established: limit of detection 1.1 µg/L for blood samples, dynamic range 3.6–200 µg/L, intra‐day precision (relative standard deviation, n = 9) did not exceed 5%. Spiked samples were analyzed for method validation. The method was used for pharmacokinetics studies of a novel anti‐cancer drug BP‐С1, a complex of cis‐configured platinum and benzene‐poly‐carboxylic acids. Main pharmacokinetic parameters (area under curve, maximum concentration, clearance, half‐life times for α‐ and β‐phase) were estimated for two dosage forms of BP‐C1 0.05 and 0.125 mass %. Pharmacokinetic curves were assessed for single and course administration. Studies were performed using rabbits (n = 6) as a model. BP‐C1 was injected intramuscularly. The study established dose proportionality of the tested dosage forms and suggested clinical dosing schedule: 5 days of injections followed by 2 days’ break. Platinum tissue distribution was studied in tissue samples collected 20 days after the last injection. Predominant platinum accumulation was observed in kidneys, liver, and muscles near injection site. ‘Slow’ phase of platinum excretion kinetics may be related to the muscles at the injection site. © 2015 The Authors. Drug Testing and Analysis published by John Wiley & Sons Ltd. PMID:26061351

  10. Fit for purpose validated method for the determination of the strontium isotopic signature in mineral water samples by multi-collector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Brach-Papa, Christophe; Van Bocxstaele, Marleen; Ponzevera, Emmanuel; Quétel, Christophe R.

    2009-03-01

    A robust method allowing the routine determination of n( 87Sr)/ n( 86Sr) with at least five significant decimal digits for large sets of mineral water samples is described. It is based on 2 consecutive chromatographic separations of Sr associated to multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) measurements. Separations are performed using commercial pre-packed columns filled with "Sr resin" to overcome isobaric interferences affecting the determination of strontium isotope ratios. The careful method validation scheme applied is described. It included investigations on all parameters influencing both chromatographic separations and MC-ICPMS measurements, and also the test on a synthetic sample made of an aliquot of the NIST SRM 987 certified reference material dispersed in a saline matrix to mimic complex samples. Correction for mass discrimination was done internally using the n( 88Sr)/ n( 86Sr) ratio. For comparing mineral waters originating from different geological backgrounds or identifying counterfeits, calculations involved the well known consensus value (1/0.1194) ± 0 as reference. The typical uncertainty budget estimated for these results was 40 'ppm' relative ( k = 2). It increased to 150 'ppm' ( k = 2) for the establishment of stand alone results, taking into account a relative difference of about 126 'ppm' systematically observed between measured and certified values of the NIST SRM 987. In case there was suspicion of a deviation of the n( 88Sr)/ n( 86Sr) ratio (worst case scenario) our proposal was to use the NIST SRM 987 value 8.37861 ± 0.00325 ( k = 2) as reference, and assign a typical relative uncertainty budget of 300 'ppm' ( k = 2). This method is thus fit for purpose and was applied to eleven French samples.

  11. Determination of As, Cd, Pb, and Hg in urine using inductively coupled plasma mass spectrometry with the direct injection high efficiency nebulizer

    NASA Astrophysics Data System (ADS)

    Minnich, Michael G.; Miller, Derek C.; Parsons, Patrick J.

    2008-03-01

    The application of the large-bore direct injection high efficiency nebulizer (LB-DIHEN) for the determination of arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) in urine by inductively coupled plasma mass spectrometry (ICP-MS) is described. The LB-DIHEN is compared with the standard method using a concentric pneumatic nebulizer and cyclonic spray chamber. In addition to the toxicological significance of As, Cd, Pb, and Hg, these elements represent a cross-section of analytical issues including spectral interferences (e.g., 40Ar 35Cl + on 75As + and 98Mo 16O + on 114Cd +) and memory effects (Hg). In this study, the low sample consumption of the LB-DIHEN is used to reduce the volume of urine needed for analysis, and to reduce the volume of final diluted sample required for analysis. Eliminating the spray chamber and reducing the dead volume of the nebulizer reduces memory effects, especially for analytes such as Hg. The Dynamic Reaction Cell (DRC) is used in this study to attenuate the background level of ArCl + in spite of the increase in the solvent load and, in turn, the urine matrix (chloride) delivered to the plasma by the LB-DIHEN. This is the first report on coupling the LB-DIHEN to a standard autosampler for unattended sample analysis. The robustness of direct injection nebulization for routine analysis and the issues associated with automation of the sample introduction process are discussed. Although the figures of merit (sensitivity, limit of detection, and precision) determined for both nebulizers are slightly poorer for the LB-DIHEN than for the concentric pneumatic nebulizer, there is not a clinically significant difference between the results for both sample introduction systems. The accuracy of results is assessed using archived urine materials that are circulated by several different proficiency testing (PT) programs and external quality assessment schemes (EQAS). Results obtained using the LB-DIHEN were within the acceptable range

  12. A micro-fluidic sub-microliter sample introduction system for direct analysis of Chinese rice wine by inductively coupled plasma mass spectrometry using external aqueous calibration

    NASA Astrophysics Data System (ADS)

    Cheng, Heyong; Liu, Jinhua; Xu, Zigang; Yin, Xuefeng

    2012-07-01

    A microfluidic sub-microliter sample introducing system was developed for direct analysis of Chinese rice wine by inductively coupled plasma mass spectrometry (ICP-MS). It consisted of a microfluidic chip integrating variable-volume sampling channels (0.1-0.8 μL), an eight-way multi-functional valve used in flow injection analysis (FIA), a syringe pump and a peristaltic pump of the Ar ICP-MS instrument. Three solutions, i.e., 15, 40 and 100 g L- 1 glucose in 20% ethanol were used to simulate Chinese rice wine of the dry type, the semidry type and the semisweet type, each. The effects of their volume introduced into ICP-MS on the plasma stability and ICP-MS intensities were studied. The experimental results showed that neither alteration of plasma stability nor carbon deposition was observed when the sampling volume of 20% ethanol containing 100 g L- 1 glucose was downscaled to 0.8 μL. Further reducing the sampling volume to 0.4 μL, no significant difference between the intensities of multi-element standard prepared in three simulated Chinese rice wine matrices and those in aqueous solution was observed. It indicated no negative effect of Chinese rice wine matrix on the ICP-MS intensities. A sampling volume of 0.4 μL was considered to be a good compromise between sensitivity and matrix effect. The flow rate of the carrier was chosen as 20 μL min- 1 for obtaining peaks with the highest peak height within the shortest time. Based on these observations, a microflow injection (μFI) method for the direct determination of cadmium and lead in Chinese rice wine by ICP-MS using an external aqueous calibration was developed. The sample throughput was 45 h- 1 with the detection limit of 19.8 and 10.4 ng L- 1 for Cd and Pb, respectively. The contents of Cd and Pb in 10 Chinese rice wine samples were measured. The results agreed well with those determined by ICP-MS with the conventional sampling system after microwave assisted digestion. The recoveries of three Chinese

  13. Introduction of organic/hydro-organic matrices in inductively coupled plasma optical emission spectrometry and mass spectrometry: a tutorial review. Part I. Theoretical considerations.

    PubMed

    Leclercq, Amélie; Nonell, Anthony; Todolí Torró, José Luis; Bresson, Carole; Vio, Laurent; Vercouter, Thomas; Chartier, Frédéric

    2015-07-23

    Due to their outstanding analytical performances, inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS) are widely used for multi-elemental measurements and also for isotopic characterization in the case of ICP-MS. While most studies are carried out in aqueous matrices, applications involving organic/hydro-organic matrices become increasingly widespread. This kind of matrices is introduced in ICP based instruments when classical "matrix removal" approaches such as acid digestion or extraction procedures cannot be implemented. Due to the physico-chemical properties of organic/hydro-organic matrices and their associated effects on instrumentation and analytical performances, their introduction into ICP sources is particularly challenging and has become a full topic. In this framework, numerous theoretical and phenomenological studies of these effects have been performed in the past, mainly by ICP-OES, while recent literature is more focused on applications and associated instrumental developments. This tutorial review, divided in two parts, explores the rich literature related to the introduction of organic/hydro-organic matrices in ICP-OES and ICP-MS. The present Part I, provides theoretical considerations in connection with the physico-chemical properties of organic/hydro-organic matrices, in order to better understand the induced phenomena. This focal point is divided in four chapters highlighting: (i) the impact of organic/hydro-organic matrices from aerosol generation to atomization/excitation/ionization processes; (ii) the production of carbon molecular constituents and their spatial distribution in the plasma with respect to analytes repartition; (iii) the subsequent modifications of plasma fundamental properties; and (iv) the resulting spectroscopic and non spectroscopic interferences. This first part of this tutorial review is addressed either to beginners or to more experienced scientists who are interested in the

  14. Development of routines for simultaneous in situ chemical composition and stable Si isotope ratio analysis by femtosecond laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Frick, Daniel A; Schuessler, Jan A; von Blanckenburg, Friedhelm

    2016-09-28

    Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous

  15. Matrix and energy effects during in-situ determination of Cu isotope ratios by ultraviolet-femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lazarov, Marina; Horn, Ingo

    2015-09-01

    Copper isotope compositions in Cu-bearing metals and minerals have been measured by deep (194 nm) ultraviolet femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry (UV-fsLA-MC-ICP-MS). Pure Cu-metal, brass, and several Cu-rich minerals (chalcopyrite, enargite, covellite, malachite and cuprite) have been investigated. A long-term reproducibility of better than 0.08‰ at the 95% confidence limit on the NIST SRM 976 (National Institute of Standards and Technology) Cu-metal standard has been achieved with this technique. The δ65Cu values for all samples have been calculated by standard-sample-standard bracketing with NIST SRM 976. All analyses have been carried out using Ni as a mass discrimination monitor added by nebulization prior to entering the plasma torch. For further verification samples have been analysed by conventional solution nebulization MC-ICP-MS and the results obtained have been compared with those from UV-fsLA-MC-ICP-MS. Several potential matrix-induced molecular interferences on the mineral copper isotope ratio, such as (32S33S)+ and (32S-16O17O)+ do not affect the Cu isotope measurements on sulfides, while hydrides, such as Zn-H or doubly-charged Sn2 + that interfere Ni isotopes can be either neglected or stripped by calculation. Matrix independent Cu-isotope measurements are sensitive to the energy density (fluence) applied onto the sample and can produce artificial shifts in the obtained δ65Cu values which are on the order of 3‰ for Cu-metal, 0.5‰ for brass and 0.3‰ for malachite when using energy density of up to 2 J/cm2 for ablation. A positive correlation between applied energy density and the magnitude of the isotope ratio shift has been found in the energy density range from 0.2 to 1.3 J/cm2 which is below the ablation threshold for ns-laser ablation. The results demonstrate that by using appropriate low fluence it is possible to measure Cu isotopic ratios in native copper and Cu-bearing sulfides

  16. Size and mass determination of silver nanoparticles in an aqueous matrix using asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometer and ultraviolet-visible detectors.

    PubMed

    Geiss, Otmar; Cascio, Claudia; Gilliland, Douglas; Franchini, Fabio; Barrero-Moreno, Josefa

    2013-12-20

    The powerful antibacterial properties of engineered silver nanoparticles (AgNPs) have, in recent years, led to a great increase in their use in consumer products such as textiles and personal care products offers. This widespread and often indiscriminate use of nano-silver is inevitably increasing the probability that such materials be accidentally or deliberately lost into the environment. Once present in the environment the normally useful antibacterial properties of the silver may instead become a potential hazard to both man and the environment. In the face of such concerns it therefore desirable to develop easy, reliable and sensitive analytical methods for the determination of nano-sized silver in various matrices. This paper describes a method for the simultaneous determination of particles-size and mass-concentration of citrate-stabilized silver nano-particles in aqueous matrices by asymmetric flow field flow fractionation coupled to an ICP-mass spectrometer and UV/vis detector. In particular, this work has evaluated the use of pre-channel injections of mono-dispersed silver nano-particles as a means of accurate size and mass-calibration. The suitability of the method as a means to generate accurate and reliable results was verified by determination of parameters such as precision under repeatability conditions, linearity, accuracy, recovery and analytical sensitivity. PMID:24238704

  17. Determination of plutonium and other transuranic elements by inductively coupled plasma mass spectrometry: A historical perspective and new frontiers in the environmental sciences

    NASA Astrophysics Data System (ADS)

    Ketterer, Michael E.; Szechenyi, Scott C.

    2008-07-01

    Inductively coupled plasma mass spectrometry (ICPMS), particularly with sector field mass analyzers (SF-ICPMS), has emerged in the past several years as an excellent analytical technique for rapid, highly sensitive determination of transuranic elements (TRU) in environmental samples. SF-ICPMS has advantages of simplicity of sample preparation, high sample throughput, widespread availability in laboratories worldwide, and relatively straightforward operation when compared to other competing mass spectrometric techniques. Arguably, SF-ICPMS is the preferred technique for routine, high-throughput determination of 237Np and the Pu isotopes, excepting 238Pu, at fg-pg levels in environmental samples. Many research groups have now demonstrated the SF-ICPMS determination of 239 + 240 Pu activities, 240Pu/ 239Pu and other Pu atom ratios in several different application areas. Many studies have examined the relative contribution of global fallout vs. local/regional Pu sources in the environment through measurement of 240Pu/ 239Pu and, in some cases, 241Pu/ 239Pu and 242Pu/ 239Pu. "Stratospheric fallout", which was deposited from thermonuclear tests, conducted largely during the 1952-1964 time period, is characterized by a well-defined 240Pu/ 239Pu of ~ 0.18, while most other sources have different ratios. Examples of local/regional Pu sources are the Nevada Test Site, the Chernobyl plume, and accidents at Palomares, Spain and Thule, Greenland. The determination of Pu activities and atom ratios has stimulated much interest in the use of Pu as a marine tracer; several studies have shown that Pu is transported over long distances by ocean currents. 240Pu/ 239Pu ratios > 0.20 in sediments and seawater of the North Pacific are ascribed to ocean current transport of fallout from the Pacific Proving Ground. In nuclear forensics, much effort is focused on detection and fingerprinting of small amounts of TRU in environmental samples consisting of bulk material or individual isolated

  18. Flow injection on-line solid phase extraction coupled with inductively coupled plasma mass spectrometry for determination of (ultra)trace rare earth elements in environmental materials using maleic acid grafted polytetrafluoroethylene fibers as sorbent.

    PubMed

    Wang, Zhao-Hui; Yan, Xiu-Ping; Wang, Zhi-Peng; Zhang, Zheng-Pu; Liu, Li-Wen

    2006-09-01

    A new sorbent, maleic acid grafted polytetrafluoroethylene fiber (MA-PTFE), was prepared and evaluated for on-line solid-phase extraction coupled with inductively coupled plasma mass spectrometry (ICP-MS) for fast, selective, and sensitive determination of (ultra)trace rare earth elements (REEs) in environmental samples. The REEs in aqueous samples at pH = 3.0 were selectively extracted onto a microcolumn packed with the MA-PTFE fiber, and the adsorbed REEs were subsequently eluted on-line with 0.9 mol l(-1) HNO3 for ICP-MS determination. The new sorbent extraction system allows effective preconcentration and separation of the REEs from the major matrix constituents of alkali and alkali earth elements, particularly their separation from barium that produces considerable isobaric interferences of 134Ba16O1H+, 135Ba16O+, 136Ba16O1H+, and 137Ba16O+ on 151Eu+ and 153Eu+. With the use of a sample loading flow rate of 7.4 ml min(-1) for 120 s preconcentration, enhancement factors of 69-97 and detection limits (3s) of 1-20 pg l(-1) were achieved at a sample throughput of 22 samples h(-1). The precision (RSD) for 16 replicate determinations of 50 ng l(-1) of REEs was 0.5-1.1%. The developed method was successfully applied to the determination of (ultra)trace REEs in sediment, soil, and seawater samples. PMID:16814561

  19. Detection and Quantification of Silver Nanoparticles at Environmentally Relevant Concentrations Using Asymmetric Flow Field-Flow Fractionation Online with Single Particle Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Huynh, Khanh An; Siska, Emily; Heithmar, Edward; Tadjiki, Soheyl; Pergantis, Spiros A

    2016-05-01

    The presence of silver nanoparticles (AgNPs) in aquatic environments could potentially cause adverse impacts on ecosystems and human health. However, current understanding of the environmental fate and transport of AgNPs is still limited because their properties in complex environmental samples cannot be accurately determined. In this study, the feasibility of using asymmetric flow field-flow fractionation (AF4) connected online with single particle inductively coupled plasma mass spectrometry (spICPMS) to detect and quantify AgNPs at environmentally relevant concentrations was investigated. The AF4 channel had a thickness of 350 μm and its accumulation wall was a 10 kDa regenerated cellulose membrane. A 0.02% FL-70 surfactant solution was used as an AF4 carrier. With 1.2 mL/min AF4 cross-flow rate, 1.5 mL/min AF4 channel flow rate, and 5 ms spICPMS dwell time, the AF4-spICPMS can detect and quantify 40-80 nm AgNPs, as well as Ag-SiO2 core-shell nanoparticles (51.0 nm diameter Ag core and 21.6 nm SiO2 shell), with good recovery within 30 min. This system was not only effective in differentiating and quantifying different types of AgNPs with similar hydrodynamic diameters, such as in mixtures containing Ag-SiO2 core-shell nanoparticles and 40-80 nm AgNPs, but also suitable for differentiating between 40 nm AgNPs and elevated Ag(+) content. The study results indicate that AF4-spICPMS is capable of detecting and quantifying AgNPs and other engineered metal nanomaterials in environmental samples. Nevertheless, further studies are needed before AF4-spICPMS can become a routine analytical technique. PMID:27104795

  20. Species classification and bioactive ingredients accumulation of BaiJiangCao based on characteristic inorganic elements analysis by inductively coupled plasma-mass spectrometry and multivariate analysis

    PubMed Central

    Wen-Lan, Li; Xue, Zhang; Xin-Xin, Yang; Shuai, Wang; Lin, Zhao; Huan-Jun, Zhao; Yong-Rui, Bao; Chen-Feng, Ji; Ning, Chen; Zheng, Xiang

    2015-01-01

    Background: Patrinia scabiosaefolia Fisch and Patrinia villosa (Thunb.) Juss., two species herbs with the same Chinese name “BaiJiangCao”, are important ancient herbal medicines widely used for more than 2000 years. The clinical application of two species herb is confused due to the difficult identification. Objective: The objective was to authenticate the species of BaiJiangCao and analyze the accumulation of bioactive ingredients based on characteristic inorganic elements analysis. Materials and Methods: Content of 32 inorganic elements in BaiJiangCao from different habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the characteristic inorganic elements were picked to distinguish the species of the herb by principal component analysis and cluster analysis. Contents of two bioactive ingredients, luteoloside, and oleanolic acid, in the samples, were also analyzed by high-performance liquid chromatography method. Relationship between accumulation of bioactive ingredients and content of macroelements in BaiJiangCao was established by statistics. Results: A 4 macroelements (Na, Mg, K, Fe) in 32 determined inorganic elements were picked for characteristic inorganic elements. Content of Na, Mg, K and Fe showed positive correlations with that of luteoloside, content of Na, Mg showed positive correlations with that of oleanolic acid, but content of K and Fe showed negative correlations with that of oleanolic acid. Conclusion: It is for the first time to utilize the characteristic inorganic elements as an index to classify the herb species by the method of ICP-MS and multivariate analysis. And it is also the first report to investigate the influence of inorganic elements in herb on the accumulation of bioactive components which could affect the pharmacological efficacy of the herb medicine. And this method could also be utilized in research of corresponding aspects. PMID:26600721

  1. Evaluation of Nickel and Chromium Ion Release During Fixed Orthodontic Treatment Using Inductively Coupled Plasma-Mass Spectrometer: An In Vivo Study

    PubMed Central

    Nayak, Rabindra S; Khanna, Bharti; Pasha, Azam; Vinay, K; Narayan, Anjali; Chaitra, K

    2015-01-01

    Background: Fixed orthodontic appliances with the use of stainless steel brackets and archwires made of nitinol have a corrosive potential in the oral environment. Nickel and chromium ions released from these appliances act as allergens apart from being cytotoxic, mutagenic and carcinogenic in smaller quantities in the range of nanograms. This study was done to evaluate the release of nickel and chromium ions from orthodontic appliances in the oral cavity using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Materials and Methods: Saliva samples from 30 orthodontic patients undergoing treatment with 0.022″ MBT mechanotherapy were collected prior to commencement of treatment, after initial aligning wires and after 10-12 months of treatment. Salivary nickel and chromium ion concentration was measured in parts per billion (ppb) using ICP-MS. Results: Mean, standard deviation and range were computed for the concentrations of ions obtained. Results analyzed using ANOVA indicated a statistically significant increase of 10.35 ppb in nickel ion concentration and 33.53 ppb in chromium ion concentration after initial alignment. The ionic concentration at the end of 10-12 months of treatment showed a statistically significant increase in of 17.92 ppb for chromium and a statistically insignificant decrease in nickel ion concentration by 1.58 ppb. Pearson’s correlation coefficient showed a positive correlation for an increase in nickel concentration after aligning, but not at the end of 10-12 months. A positive correlation was seen for an increase in chromium ion concentration at both time intervals. Conclusion: Nickel and chromium ion concentration in saliva even though below the recommended daily allowance should not be ignored in light of the new knowledge regarding effects of these ions at the molecular level and the allergic potential. Careful and detailed medical history of allergy is essential. Nickel free alternatives should form an essential part of an

  2. Novel Bioimaging Techniques of Metals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Diagnosis Of Fibrotic and Cirrhotic Liver Disorders

    PubMed Central

    Gassler, Nikolaus; Bosserhoff, Anja K.; Becker, J. Sabine

    2013-01-01

    Background and Aims Hereditary disorders associated with metal overload or unwanted toxic accumulation of heavy metals can lead to morbidity and mortality. Patients with hereditary hemochromatosis or Wilson disease for example may develop severe hepatic pathology including fibrosis, cirrhosis or hepatocellular carcinoma. While relevant disease genes are identified and genetic testing is applicable, liver biopsy in combination with metal detecting techniques such as energy-dispersive X-ray spectroscopy (EDX) is still applied for accurate diagnosis of metals. Vice versa, several metals are needed in trace amounts for carrying out vital functions and their deficiency due to rapid growth, pregnancy, excessive blood loss, and insufficient nutritional or digestive uptake results in organic and systemic shortcomings. Established in situ techniques, such as EDX-ray spectroscopy, are not sensitive enough to analyze trace metal distribution and the quantification of metal images is difficult. Methods In this study, we developed a quantitative biometal imaging technique of human liver tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in order to compare the distribution of selected metals in cryo-sections of healthy and fibrotic/cirrhotic livers. Results Most of the metals are homogeneous distributed within the normal tissue, while they are redirected within fibrotic livers resulting in significant metal deposits. Moreover, total iron and copper concentrations in diseased liver were found about 3-5 times higher than in normal liver samples. Conclusions Biometal imaging via LA-ICP-MS is a sensitive innovative diagnostic tool that will impact clinical practice in identification and evaluation of hepatic metal disorders and to detect subtle metal variations during ongoing hepatic fibrogenesis. PMID:23505552

  3. Investigation of the new sorption preconcentration systems for determination of noble metals in rocks by inductively coupled plasma-mass spectrometry.

    PubMed

    Dubenskiy, A S; Seregina, I F; Blinnikova, Z K; Tsyurupa, M P; Pavlova, L A; Davankov, V A; Bolshov, M A

    2016-06-01

    The reversible sorption preconcentration of noble metals (NMs) prior to their determination by inductively coupled plasma-mass spectrometry (ICP-MS) was investigated. Six new hypercrosslinked polystyrene sorbents were tested. The dependence of the degree of NMs sorption on the average degree of polymer network crosslinking and pore diameters was investigated. It was found that sorbents HP-100/6, HP-300/6 and HP-500/6 have low efficiency of NMs chlorocomplexes extraction. Among Stirosorb sorbents (Stirosorb-2, Stirosorb-514 and Stirosorb-584) the highest efficiency of the extraction of NMs' chlorocomplexes has Stirosorb-514. Tributylamine (TBA), N-methylbenzylamine (MBA), N,N-dimethylbenzylamine (DMBA), N,N-dibenzylmetylamine (DBMA) were studied as the reagents for extraction of Ru, Rh, Pd, Ir, Pt and Au chlorocomplexes from hydrochloric acid solutions in the form of ion associates by reversed-phase mechanism. The reversible quantitative extraction of Ru, Pd, Pt and Au in system Stirosorb-514 - TBA - 1M HCl in ethanol as eluent was achieved. It was found that resulting eluates do not contain matrix components which may cause spectral interferences on the stage of NMs determination by ICP-MS. The found scheme of NMs reversible sorption was validated by the analysis of certified reference materials of basic and ultrabasic rocks GPt-5, GPt-6 and SARM-7. Good agreement between the measured NMs concentrations and the certified values was demonstrated. The achieved limits of detection for Ru, Pd, Pt and Au vary within 10(-8)-10(-7)wt% range. PMID:27130114

  4. Determination of precise ¹³⁵Cs/¹³⁷Cs ratio in environmental samples using sector field inductively coupled plasma mass spectrometry.

    PubMed

    Russell, Ben C; Croudace, Ian W; Warwick, Phil E; Milton, J Andy

    2014-09-01

    Recent advances in sector field inductively coupled plasma mass spectrometry (ICP-SFMS) have led to significant sensitivity enhancements that expand the range of radionuclides measurable by ICP-MS. The increasing capability and performance of modern ICP-MS now allows analysis of medium-lived radionuclides previously undertaken using radiometric methods. A new generation ICP-SFMS was configured to achieve sensitivities up to 80,000 counts per second for a 1 ng/L (133)Cs solution, providing a detection limit of 1 pg/L. To extend this approach to environmental samples it has been necessary to develop an effective chemical separation scheme using ultrapure reagents. A procedure incorporating digestion, chemical separation and quantification by ICP-SFMS is presented for detection of the significant fission product radionuclides of cesium ((135)Cs and (137)Cs) at concentrations found in environmental and low level nuclear waste samples. This in turn enables measurement of the (135)Cs/(137)Cs ratio, which varies with the source of nuclear contamination, and can therefore provide a powerful dating and forensic tool compared to radiometric detection of (137)Cs alone. A detection limit in sediment samples of 0.05 ng/kg has been achieved for (135)Cs and (137)Cs, corresponding to 2.0 × 10(-3) and 160 mBq/kg, respectively. The critical issue is ensuring removal of barium to eliminate isobaric interferences arising from (135)Ba and (137)Ba. The ability to reliably measure (135)Cs/(137)Cs using a high specification laboratory ICP-SFMS now enables characterization of waste materials destined for nuclear waste repositories as well as extending options in environmental geochemical and nuclear forensics studies. PMID:25109496

  5. Slurry sampling flow injection chemical vapor generation inductively coupled plasma mass spectrometry for the determination of trace Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions.

    PubMed

    Chen, Wei-Ni; Jiang, Shiuh-Jen; Chen, Yen-Ling; Sahayam, A C

    2015-02-20

    A slurry sampling inductively coupled plasma mass spectrometry (ICP-MS) method has been developed for the determination of Ge, As, Cd, Sb, Hg and Bi in cosmetic lotions using flow injection (FI) vapor generation (VG) as the sample introduction system. A slurry containing 2% m/v lotion, 2% m/v thiourea, 0.05% m/v L-cysteine, 0.5 μg mL(-1) Co(II), 0.1% m/v Triton X-100 and 1.2% v/v HCl was injected into a VG-ICP-MS system for the determination of Ge, As, Cd, Sb, Hg and Bi without dissolution and mineralization. Because the sensitivities of the analytes in the slurry and that of aqueous solution were quite different, an isotope dilution method and a standard addition method were used for the determination. This method has been validated by the determination of Ge, As, Cd, Sb, Hg and Bi in GBW09305 Cosmetic (Cream) reference material. The method was also applied for the determination of Ge, As, Cd, Sb, Hg and Bi in three cosmetic lotion samples obtained locally. The analysis results of the reference material agreed with the certified value and/or ETV-ICP-MS results. The detection limit estimated from the standard addition curve was 0.025, 0.1, 0.2, 0.1, 0.15, and 0.03 ng g(-1) for Ge, As, Cd, Sb, Hg and Bi, respectively, in original cosmetic lotion sample. PMID:25682241

  6. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. PMID:26005744

  7. Phase transfer hollow fiber liquid phase microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental and biological samples.

    PubMed

    Guo, Xueqin; He, Man; Chen, Beibei; Hu, Bin

    2012-11-15

    A new method of phase transfer hollow fiber liquid phase microextraction (PT-HF-LPME) combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) has been developed for the determination of trace Co, Pd, Cd and Bi in environmental and biological samples. In PT-HF-LPME, an intermediate solvent (1-butanol) was added into the sample solution to ensure the maximum contact area between the target metal ions and the chelating reagent (8-hydroxyquinoline, 8-HQ), which accelerated the formation of 8-HQ-metal complexes and their subsequent extraction by extraction solvent (toluene). The experimental parameters affecting the extraction efficiency of PT-HF-LPME for the target metals were studied by simplex optimization and orthogonal array design (OAD) experiments. Under the optimized conditions, the enrichment factors for Co, Pd, Cd and Bi were 110, 393, 121 and 111-fold, respectively, the limits of detection (LODs, 3σ) ranged from 3.7 to 8.3 ng L(-1). The relative standard deviations (RSDs, c=0.5 ng mL(-1), n=7) were 8.7, 6.2, 12.4 and 12.9% for Co, Pd, Cd and Bi, respectively. To validate the accuracy of the proposed method, two Certified Reference Materials of GSBZ50009-88 Environment Water and GBW09103 Human Urine were analyzed, and the results obtained for Cd were in good agreement with the certified values. Finally, the developed method was successfully applied to the analysis of Co, Pd, Cd and Bi in lake water and human urine samples. PMID:23158357

  8. Influence of relative abundance of isotopes on depth resolution for depth profiling of metal coatings by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Fariñas, Juan C; Coedo, Aurora G; Dorado, Teresa

    2010-04-15

    A systematic study on the influence of relative abundance of isotopes of elements in the coating (A(c)) and in the substrate (A(s)) on both shape of time-resolved signals and depth resolution (Delta z) was performed for depth profile analysis of metal coatings on metal substrates by ultraviolet (266 nm) nanosecond laser ablation inductively coupled plasma quadrupole mass spectrometry. Five coated samples with coating thicknesses of the same order of magnitude (20-30 microm) were tested: nickel coating on aluminium, chromium and copper, and steel coated with copper and zinc. A laser repetition rate of 1 Hz and a laser fluence of 21 J cm(-2) were used. Five different depth profile types were established, which showed a clear dependence on A(c)/A(s) ratio. In general, depth profiles obtained for ratios above 1-10 could not be used to determine Delta z. We found that Delta z increased non-linearly with A(c)/A(s) ratio. The best depth profile types, leading to highest depth resolution and reproducibility, were attained in all cases by using the isotopes with low/medium A(c) values and with the highest A(s) values. In these conditions, an improvement of up to 4 times in Delta z values was achieved. The average ablation rates were in the range from 0.55 microm pulse(-1) for copper coating on steel to 0.83 microm pulse(-1) for zinc coating on steel, and the Delta z values were between 2.74 microm for nickel coating on chromium and 5.91 microm for nickel coating on copper, with RSD values about 5-8%. PMID:20188923

  9. Rapid determination of plutonium isotopes in environmental samples using sequential injection extraction chromatography and detection by inductively coupled plasma mass spectrometry.

    PubMed

    Qiao, Jixin; Hou, Xiaolin; Roos, Per; Miró, Manuel

    2009-10-01

    This article presents an automated method for the rapid determination of 239Pu and 240Pu in various environmental samples. The analytical method involves the in-line separation of Pu isotopes using extraction chromatography (TEVA) implemented in a sequential injection (SI) network followed by detection of isolated analytes with inductively coupled plasma mass spectrometry (ICP-MS). The method has been devised for the determination of Pu isotopes at environmentally relevant concentrations, whereby it has been successfully applied to the analyses of large volumes/amounts of samples, for example, 100-200 g of soil and sediment, 20 g of seaweed, and 200 L of seawater following analyte preconcentration. The investigation of the separation capability of the assembled SI system revealed that up to 200 g of soil or sediment can be treated using a column containing about 0.70 g of TEVA resin. The analytical results of Pu isotopes in the reference materials showed good agreement with the certified or reference values at the 0.05 significance level. Chemical yields of Pu ranged from 80 to 105%, and the decontamination factors for uranium, thorium, mercury and lead were all above 10(4). The duration of the in-line extraction chromatographic run was <1.5 h, and the proposed setup was able to handle up to 20 samples (14 mL each) in a fully automated mode using a single chromatographic column. The SI manifold is thus suitable for rapid and automated determination of Pu isotopes in environmental risk assessment and emergency preparedness scenarios. PMID:19722516

  10. Determination of boron in high-purity tantalum materials by on-line matrix separation/inductively coupled plasma mass spectrometry.

    PubMed

    Kozono, Shuji; Takahashi, Shigeto; Haraguchi, Hiroki

    2002-07-01

    A method for the determination of ultratrace amounts of boron in high-purity tantalum materials [tantalum metal, tantalum(v) oxide, tantalum pentachloride and tantalum pentaethoxide] is described. On-line anion-exchange matrix separation combined with inductively coupled plasma mass spectrometry (ICP-MS) was employed for the determination of boron at the ng g(-1) level. Tantalum materials were dissolved using HF and/or HNO3 prior to analysis. The loss of boron in the sample preparation procedure was examined as the recovery of boron by adding a definite amount of boron to each tantalum material sample before decomposition, and it was almost negligible. In an anion-exchange method using 0.1 M HF carrier solution, tantalum and boron in the sample solution were first adsorbed on a strongly basic anion-exchange resin. Next, boron was eluted from the resin with 5 M HCl, whereas tantalum was retained strongly adsorbed. The eluted boron was introduced directly into the ICP-MS system for quantitative analysis at m/z 10 and 11. Because of the long elution time of boron, the transient signal was integrated in the time range 70-300 s on the chromatogram. Although the elution of boron in the time range was ca. 40% of total boron in the sample solution injected, the determination limits (10sigma) obtained by the present method were 30, 25, 15 and 13 ng g(-1) for tantalum metal, tantalum(v) oxide, tantalum pentachloride and tantalum pentaethoxide, respectively. The method was applied to the determination of boron in commercially available high-purity tantalum materials and it was found that the concentrations of boron were in the ng g(-1)-microg g(-1) range. PMID:12173652

  11. Removal of high-salinity matrices through polymer-complexation-ultrafiltration for the detection of trace levels of REEs using inductively coupled plasma mass spectrometry.

    PubMed

    Duan, Hualing; Lin, Jijun; Gong, Zhenbin; Huang, Jiahua; Yang, Shifeng

    2015-10-01

    The polymer-complexation-ultrafiltration (PCUF) technique was applied to separate trace levels of rare earth elements (REEs), including scandium, yttrium and the lanthanides, from high-salinity matrices prior to their determination by inductively coupled plasma mass spectrometry (ICP-MS). The REEs were converted into REE-polymer complexes using the water-soluble polymer polyacrylic acid (PAA) at a specified pH, retained on the ultrafiltration membrane of centrifugal filter units, and finally eluted using diluted nitric acid to achieve separation from matrices with relatively high levels of various inorganic ions, such as sodium, potassium, calcium, magnesium, and chlorine ions. Numerous factors affecting the PCUF efficiency were optimized. The optimal conditions included the addition of 30 mg L(-1) of PAA, a pH of 7.5, a reaction time of 40 min at room temperature, and 5.0 mL of 3% nitric acid (v/v) eluent. Under these conditions, the analytes were quantitatively separated and recovered, with a resulting relative standard deviation (RSD) of less than 4.0% (0.05 µg L(-1), n=5) and standard addition recoveries between 89.2% (La) and 95.8% (Sm) for matrices of various salinities. The blank samples for the method ranged from 0.0003 µg L(-1) (Dy) to 0.0031 µg L(-1) (Sc), and the limits of quantification (LOQs, 10σ) were between 0.0006 µg L(-1) (Dy) and 0.0026 µg L(-1) (Sc). Furthermore, the salinity of the sample exhibited no effect on the REE-polymer complex formation process. Finally, the method was successfully applied for the determination of trace levels of dissolved Sc, Y, and lanthanides in coastal and estuarine seawater samples. PMID:26078161

  12. Extravasation of Pt-based chemotherapeutics - bioimaging of their distribution in resectates using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).

    PubMed

    Egger, Alexander E; Kornauth, Christoph; Haslik, Werner; Hann, Stephan; Theiner, Sarah; Bayer, Günther; Hartinger, Christian G; Keppler, Bernhard K; Pluschnig, Ursula; Mader, Robert M

    2015-03-01

    Platinum-based drugs (cisplatin, carboplatin and oxaliplatin) are widely used in cancer treatment. They are administered intravenously, thus accidental extravasations of infusions can occur. This may cause severe complications for the patient as the toxic platinum compounds likely persist in subcutaneous tissue. At high concentrations, platinum toxicity in combination with local thrombosis may result in tissue necrosis, eventually requiring surgical intervention. To describe tissue distribution at the anatomic level, we quantified drug extravasation in cryosections of various tissues (muscle, nerve tissue, connective tissue, fat tissue) by means of quantitative laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and compared the resulting data with bulk analysis of microwave-assisted digestion of tissue samples followed by ICP-MS analysis. Samples of three patients receiving systemic chemotherapy either via peripheral venous access or central access via port-a-cath® were analyzed. Pt was enriched up to 50-times in connective tissue when compared with muscle tissue or drain samples collected over five days. The large areas of subcutaneous fat tissue showed areactive necrosis and average Pt concentrations (determined upon sample digestion) ranged from 0.2 μg g(-1) (therapy with 25 mg m(-2) cisplatin, four weeks after peripheral extravasation) to 10 μg g(-1) (therapy with 50 mg m(-2) oxaliplatin: four weeks after port-a-cath® extravasation). A peripheral nerve subjected to bioimaging by LA-ICP-MS showed a 5-times lower Pt concentration (0.2 μg g(-1)) than the surrounding connective tissue (1.0 μg g(-1)). This is in accordance with the patient showing no signs of neurotoxicity during recovery from extravasation side-effects. Thus, bioimaging of cutaneous nerve tissue may contribute to understand the risk of peripheral neurotoxic events. PMID:25659827

  13. Quantitative analysis of some important metals and metalloids in tobacco products by inductively coupled plasma-mass spectrometry (ICP-MS)

    PubMed Central

    2012-01-01

    Background Large scale usage of tobacco causes a lot of health troubles in human. Various formulations of tobacco are extensively used by the people particularly in developing world. Besides several toxic tobacco constituents some metals and metalloids are also believed to pose health risks. This paper describes inductively coupled plasma-mass spectrometric (ICP-MS) quantification of some important metals and metalloids in various brands of smoked, sniffed, dipped and chewed tobacco products. Results A microwave-assisted digestion method was used for sample preparation. The method was validated by analyzing a certified reference material. Percentage relative standard deviation (% R.S.D.) between recovered and certified values was < 5.8. Linearity value for calibration curve of each metal was 1 > r > 0.999. Improved limits of detection (LODs) were in range of ng/L for all elements. Fe, Al and Mn were found to be in the highest concentration in all types of tobacco products, while Zn, Cu, Ni and Cr were below the average concentration of 40 μg/g, and Pb, Co, As, Se and Cd were below 5 μg/g. All elements, apart from Pb, were high in concentration in dipping tobacco in comparison to other tobacco products. Generally, the order of all elemental concentration can be expressed in different tobacco products as chewing < smoked < sniffing < dipping. However, smoked and sniffing will interchange their position in the case of Mn, Cu, Se and Cd. Multivariate statistical analyses were also performed to evaluate the correlation and variations among tobacco products. Conclusions The present study highlights the quantification of some important metals and metalloids in a wide spectrum of tobacco formulations. The outcome of this study would be beneficial for health authorities and individuals. PMID:22709464

  14. A novel method for exploring elemental composition of microbial communities: laser ablation-inductively coupled plasma-mass spectrometry of intact bacterial colonies.

    PubMed

    Latimer, Joe; Stokes, Sarah L; Graham, Alison I; Bunch, Josephine; Jackson, Rachel J; McLeod, Cameron W; Poole, Robert K

    2009-12-01

    Bacterial colonies are spatially complex structures whose physiology is profoundly dependent on interactions between cells and with the underlying semi-solid substratum. Here, we use bacterial colonies as a model of a microbial community to evaluate the potential of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to delineate elemental distributions within colonies with minimal pre-treatment. To reduce water content of the colony and limit undesirable absorption of laser energy, we compared methods of preparing 24h-old colonies of Escherichia coli TG1 on agar for laser ablation. Colonies on excised agar segments dried on chromatography paper were superior to colonies dried in a dessicator or by prolonged incubation, with respect to signal magnitude, signal:noise ratio and background signal. Having optimised laser scan speed (10 microm s(-1)) and laser beam diameter (100 microm), further improvements were achieved by growing colonies on nylon membranes over agar, which were then transferred to the ablation chamber without further treatment. Repeated line rasters across individual membrane-supported colonies yielded three-dimensional elemental maps of colonies, revealing a convex morphology consistent with visual inspection. By normalising isotope counts for P, Mn, Zn, Fe and Ca against Mg, the most abundant cellular divalent cation, we sought elemental heterogeneity within the colony. The normalised concentration of Mn in the perimeter was higher than in the colony interior, whereas the converse was true for Ca. LA-ICP-MS is a novel and powerful method for probing elemental composition and organisation within microbial communities and should find numerous applications in, for example, biofilm studies. PMID:19835915

  15. Determination of some refractory elements and Pb by fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry with platform and wall vaporization

    NASA Astrophysics Data System (ADS)

    Zhang, Yuefei; Hu, Bin

    2011-02-01

    Platform and wall vaporization for electrothermal vaporization (ETV)-inductively coupled plasma mass spectrometry (ICP-MS) determination of some refractory elements (Ti, V, Cr, Mo, La and Zr) and Pb were comparatively studied with the use of poly (tetrafluoroethylene) (PTFE) as fluorinating reagent. The factors affecting the vaporization behaviors of the target analytes in the platform and tube wall vaporization including vaporization temperature and time, pyrolytic temperature and time were studied in detail, and the flow rates of carrier gas/auxiliary carrier gas, were carefully optimized. Under the optimal conditions, the signal profiles, signal intensity, interferences of coexisting ions and analytical reproducibility for wall and platform vaporization ETV-ICP-MS were compared. It was found that both wall and platform vaporization could give very similar detection limits, but the platform vaporization provided higher signal intensity and better precision for some refractory elements and Pb than the wall vaporization. Especially for La, the signal intensity obtained by platform vaporization was 3 times higher than that obtained by wall vaporization. For platform vaporization ETV-ICP-MS, the limits of detection (LODs) of 0.001 μg L -1 (La) ~ 0.09 μg L - 1 (Ti) with the relative standard deviations (RSDs) of 1.5% (Pb) ~ 15.5% (Zr) were obtained. While for wall vaporization ETV-ICP-MS, LODs of 0.005 μg L - 1 (La) ~ 0.4 μg L - 1 (Pb) with RSDs of 3.2% (Mo) ~ 12.8% (Zr) were obtained. Both platform and tube wall vaporization techniques have been used for slurry sampling fluorination assisted ETV-ICP-MS direct determination of Ti, V, Cr, Mo, La, Zr and Pb in certified reference materials of NIES No. 8 vehicle exhaust particulates and GBW07401 soil, and the analytical results obtained are in good agreement with the certified values.

  16. Determination of total lead in 400 lipsticks on the U.S. market using a validated microwave-assisted digestion, inductively coupled plasma-mass spectrometric method.

    PubMed

    Hepp, Nancy M

    2012-01-01

    In 2009, the U.S. Food and Drug Administration (FDA) published lead (Pb) content results from a small survey of 20 tube lipsticks with red shades using a validated inductively coupled plasma-mass spectrometric (ICP-MS) method developed by FDA chemists. The study was prompted by a media report suggesting that potential exposure to lead from lipsticks under conditions of ordinary use might be harmful. The FDA has since investigated the lead content of tube lipsticks by conducting an expanded survey that included a variety of shades and manufacturers, at varying prices. The purposes of the expanded survey were to ascertain the levels of lead in lipsticks sold on the U.S. market, to identify any categories of lipstick with elevated levels of lead, and to compare the results to those from the initial small survey. Four hundred lipsticks available on the U.S. market in the spring of 2010 were tested for total lead content using the FDA's validated method. The analyses were performed by a private laboratory contracted by the FDA. The maximum lead level found was 7.19 mg Pb/kg. Thirteen of the 400 lipsticks were found to contain levels greater than 3.06 mg Pb/kg, the highest amount found in the initial survey. The average lead concentration found in the expanded survey was 1.11 mg Pb/kg, which was very close to the average of 1.07 mg Pb/kg found in the initial survey. Some statistically significant associations between lead level and parent company were found. The contract requirements, testing procedures, and findings from the expanded survey are described here. PMID:23193690

  17. Determination of total lead in lipstick: development and validation of a microwave-assisted digestion, inductively coupled plasma-mass spectrometric method.

    PubMed

    Hepp, Nancy M; Mindak, William R; Cheng, John

    2009-01-01

    Recent reports describing the presence of lead (Pb) in lipsticks have suggested that, under ordinary use, the potential amount of Pb exposure is harmful. To permit independent assessment of the Pb contamination, a method for determining total Pb in lipstick using microwave-assisted digestion and analysis employing inductively coupled plasma-mass spectrometry (ICP-MS) was developed and validated. Since lipsticks may contain fats, oils, pigments, dyes, and minerals, several reference materials (RM) were analyzed, including coal, wear metals in oil, organic Pb in oil, milk powder, and estuarine sediment. With the exception of the RM with mineral content (estuarine sediment), complete recovery of Pb from the RMs was obtained by simple nitric acid (HNO(3)) digestion. Complete recovery of Pb from estuarine sediment was achieved only when hydrofluoric acid (HF) was added to the digestion mix, followed by treatment with excess boric acid (H(3)BO(3)) to neutralize the HF and to dissolve insoluble fluorides. Commercial lipsticks were tested for total Pb by the validated method. The detection limit was estimated to be 0.04 microg Pb/g. The average value obtained for the lipsticks was 1.07 microg/g. Undigested material was present in some lipstick digests when only HNO(3) was used, and generally lower Pb values were obtained. All of the Pb levels found by the U.S. Food and Drug Administration (FDA) were within the range the agency would expect to find in lipsticks formulated with permitted color additives and other ingredients prepared under good manufacturing practice (GMP) conditions. This method will be useful for the FDA and industry in helping to ensure the safety of cosmetic products. PMID:19691936

  18. A dipole-assisted solid-phase extraction microchip combined with inductively coupled plasma-mass spectrometry for online determination of trace heavy metals in natural water.

    PubMed

    Shih, Tsung-Ting; Hsu, I-Hsiang; Chen, Shun-Niang; Chen, Ping-Hung; Deng, Ming-Jay; Chen, Yu; Lin, Yang-Wei; Sun, Yuh-Chang

    2015-01-21

    We employed a polymeric material, poly(methyl methacrylate) (PMMA), for fabricating a microdevice and then implanted the chlorine (Cl)-containing solid-phase extraction (SPE) functionality into the PMMA chip to develop an innovative on-chip dipole-assisted SPE technique. Instead of the ion-ion interactions utilized in on-chip SPE techniques, the dipole-ion interactions between the highly electronegative C-Cl moieties in the channel interior and the positively charged metal ions were employed to facilitate the on-chip SPE procedures. Furthermore, to avoid labor-intensive manual manipulation, a programmable valve manifold was designed as an interface combining the dipole-assisted SPE microchip and inductively coupled plasma-mass spectrometry (ICP-MS) to achieve the fully automated operation. Under the optimized operation conditions for the established system, the detection limits for each analyte ion were obtained based on three times the standard deviation of seven measurements of the blank eluent solution. The limits ranged from 3.48 to 20.68 ng L(-1), suggesting that this technique appears uniquely suited for determining the levels of heavy metal ions in natural water. Indeed, a series of validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Remarkably, the developed device was durable enough to be reused more than 160 times without any loss in its analytical performance. To the best of our knowledge, this is the first study reporting on the combination of a dipole-assisted SPE microchip and elemental analysis instrument for the online determination of trace heavy metal ions. PMID:25426495

  19. Evaluated the Twenty-Six Elements in the Pectoral Muscle of As-Treated Chicken by Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Sun, Bonan; Xing, Mingwei

    2016-02-01

    This study assessed the impacts of dietary arsenic trioxide on the contents of 26 elements in the pectoral muscle of chicken. A total of 100 Hy-line laying cocks were randomly divided into two groups (n = 50), including an As-treated group (basic diet supplemented with arsenic trioxide at 30 mg/kg) and a control group (basal diet). The feeding experiment lasted for 90 days and the experimental animals were given free access to feed and drinking water. The elements lithium (Li), boron (B), natrum (Na), magnesium (Mg), aluminium (AI), silicium (Si), kalium (K), calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), ferrum (Fe), cobalt (Co.), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), molybdenum (Mo), cadmium (Cd), stannum (Sn), stibium (Sb), barium (Ba), hydrargyrum (Hg), thallium (Tl) and plumbum (Pb) in the pectoral muscles were determined using inductively coupled plasma mass spectrometry (ICP-MS). The resulted data indicated that Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl and Pb were significantly increased (P < 0.05) in chicken exposed to As2O3 compared to control chicken, while Mg, Si, K, As and Cd decreased significantly (P < 0.05). These results suggest that ICP-MS determination of elements in chicken tissues enables a rapid analysis with good precision and accuracy. Supplementation of high levels of As affected levels of 20 elements (Li, Na, AI, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Ba, Tl, Pb, Mg, Si, K, As and Cd) in the pectoral muscles of chicken. Thus, it is needful to monitor the concentration of toxic metal (As) in chicken for human health. PMID:26123164

  20. Simultaneous separation and determination of six arsenic species in rice by anion-exchange chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Ma, Li; Yang, Zhaoguang; Tang, Jie; Wang, Lin

    2016-06-01

    The simultaneous separation and determination of arsenite As(III), arsenate As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) in rice samples have been carried out in one single anion-exchange column run by high-performance liquid chromatography with inductively coupled plasma mass spectrometry. To estimate the effect of variables on arsenic (As) speciation, the chromatographic conditions including type of competing anion, ionic strength, pH of elution buffer, and flow rate of mobile phase have been investigated by a univariate approach. Under the optimum chromatographic conditions, baseline separation of six As species has been achieved within 10 min by gradient elution program using 4 mM NH4 HCO3 at pH 8.6 as mobile phase A and 4 mM NH4 HCO3 , 40 mM NH4 NO3 at pH 8.6 as mobile phase B. The method detection limits for As(III), As(V), MMA, DMA, AsB, and AsC were 0.4, 0.9, 0.2, 0.4, 0.5, and 0.3 μg/kg, respectively. The proposed method has been applied to separation and quantification of As species in real rice samples collected from Hunan Province, China. The main As species detected in all samples were As(III), As(V) and DMA, with inorganic As accounting for over 80% of total As in these samples. PMID:27062347

  1. Method development and inter-laboratory comparison about the determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled plasma mass spectrometry.

    PubMed

    Krystek, Petra; Tentschert, Jutta; Nia, Yacine; Trouiller, Benedicte; Noël, Laurent; Goetz, Mario E; Papin, Arnaud; Luch, Andreas; Guérin, Thierry; de Jong, Wim H

    2014-06-01

    Nanosized titanium dioxide (TiO2) is one of the most interesting and valuable nanomaterials for the construction industry but also in health care applications, food, and consumer goods, e.g., cosmetics. Therefore, the properties associated with this material are described in detail. Despite its widespread use, the analytical determination and characterization of nanosized metal oxides is not as straightforward as the comparatively easy-to-detect metallic nanoparticles (e.g., silver or gold). This study presents the method development and the results of the determination of tissue titanium (Ti) levels after treatment of rats with the nanosized TiO2. Total Ti levels were chosen to evaluate the presence and distribution of TiO2 nanoparticles. A procedure consisting of incubation with a mixture of nitric acid (HNO3) and hydrofluoric acid (HF), and heating was developed to digest tissues and TiO2 nanomaterials in order to determine the total Ti content by inductively coupled plasma mass spectrometry (ICPMS). For the inter-laboratory comparison, altogether four laboratories analyzed the same samples upon digestion using the available ICPMS equipment. A major premise for any toxicokinetic study is the possibility to detect the chemical under investigation in biological samples (tissues). So, the study has to be performed with a dose high enough to allow for subsequent tissue level measurement of the chemical under investigation. On the other hand, dose of the chemical applied should not induce over toxicity in the animal as this may affect its absorption, distribution, metabolism, and excretion. To determine a non-toxic TiO2 dosage, an acute toxicity study in rats was performed, and the organs obtained were evaluated for the presence of Ti by ICPMS. Despite the differences in methodology and independent of the sample preparation and the ICPMS equipment used, the results obtained for samples with Ti concentrations >4 μg Ti/g tissue agreed well. PMID:24390463

  2. Determination of trace metals in atmospheric aerosols with a heavy matrix of cellulose by microwave digestion-inductively coupled plasma mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Karl X.; Swami, Kamal; Husain, Liaquat

    2002-01-01

    A microwave digestion method followed by inductively coupled plasma mass spectrometric (ICP-MS) analysis was developed to determine trace metal concentrations in atmospheric aerosol samples with a heavy matrix of cellulose material. A combination of HF-HNO 3-H 2O 2-H 3BO 3 was used for digestion. The background spectral features contributed by the matrix elements were studied. In particular, spectral and non-spectral interference caused by B and F were investigated. Detection limits of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb and Pb were determined in the presence of various amounts of matrix elements. In general, the detection limits of most elements degraded with an increase in B and F. Vanadium (V) suffered most due to severe spectral interference from 11B 40Ar + and/or 19F 16O 16O. The concentrations of elements in filter paper matrix blanks were measured. An NIST standard (urban particulate matter, 1648), as well as real world atmospheric aerosol samples from Whiteface Mountain, NY, and from Mayville, NY were pressed into pellets with a great amount of cellulose filter material and digested, and the concentrations of trace metals were determined. For the NIST standard, the recoveries of V, Mn, Fe, Co, Ni, Cu, Zn, Cd, As, Sb and Pb were over 90%, while 77 and 70% for Cr and Se, respectively. For the atmospheric aero