Science.gov

Sample records for coupling limit analytical

  1. An analytic Pade-motivated QCD coupling

    SciTech Connect

    Martinez, H. E.; Cvetic, G.

    2010-08-04

    We consider a modification of the Minimal Analytic (MA) coupling of Shirkov and Solovtsov. This modified MA (mMA) coupling reflects the desired analytic properties of the space-like observables. We show that an approximation by Dirac deltas of its discontinuity function {rho} is equivalent to a Pade(rational) approximation of the mMA coupling that keeps its analytic structure. We propose a modification to mMA that, as preliminary results indicate, could be an improvement in the evaluation of low-energy observables compared with other analytic couplings.

  2. Analytic estimates of coupling in damping rings

    SciTech Connect

    Raubenheimer, T.O.; Ruth, R.D.

    1989-03-01

    In this paper we present analytic formulas to estimate the vertical emittance in weakly coupled electron/positron storage rings. We consider contributions from both the vertical dispersion and linear coupling of the betatron motions. In addition to simple expressions for random misalignments and rotations of the magnets, formulas are presented to calculate the vertical emittance blowup due to orbit distortions. The orbit distortions are assumed to be caused by random misalignments, but because the closed orbit is correlated from point to point, the effects must be treated differently. We consider only corrected orbits. Finally, the analytic expressions are compared with computer simulations of storage rings with random misalignments. 6 refs., 3 figs.

  3. Analytical model of internally coupled ears.

    PubMed

    Vossen, Christine; Christensen-Dalsgaard, Jakob; van Hemmen, J Leo

    2010-08-01

    Lizards and many birds possess a specialized hearing mechanism: internally coupled ears where the tympanic membranes connect through a large mouth cavity so that the vibrations of the tympanic membranes influence each other. This coupling enhances the phase differences and creates amplitude differences in the tympanic membrane vibrations. Both cues show strong directionality. The work presented herein sets out the derivation of a three dimensional analytical model of internally coupled ears that allows for calculation of a complete vibration profile of the membranes. The analytical model additionally provides the opportunity to incorporate the effect of the asymmetrically attached columella, which leads to the activation of higher membrane vibration modes. Incorporating this effect, the analytical model can explain measurements taken from the tympanic membrane of a living lizard, for example, data demonstrating an asymmetrical spatial pattern of membrane vibration. As the analytical calculations show, the internally coupled ears increase the directional response, appearing in large directional internal amplitude differences (iAD) and in large internal time differences (iTD). Numerical simulations of the eigenfunctions in an exemplary, realistically reconstructed mouth cavity further estimate the effects of its complex geometry. PMID:20707461

  4. CCTV Video Analytics: Recent Advances and Limitations

    NASA Astrophysics Data System (ADS)

    Velastin, Sergio A.

    There has been a significant increase in the number of CCTV cameras in public and private places worldwide. The cost of monitoring these cameras manually and of reviewing recorded video is prohibitive and therefore manual systems tend to be used mainly reactively with only a small fraction of the cameras being monitored at any given time. There is a need to automate at least simple observation tasks through computer vision, a functionality that has become known popularly as "video analytics". The large size of CCTV systems and the requirement of high detection rates and low false alarms are major challenges. This paper illustrates some of the recent efforts reported in the literature, highlighting advances and pointing out important limitations.

  5. Nucleic acid-coupled colorimetric analyte detectors

    DOEpatents

    Charych, Deborah H.; Jonas, Ulrich

    2001-01-01

    The present invention relates to methods and compositions for the direct detection of analytes and membrane conformational changes through the detection of color changes in biopolymeric materials. In particular, the present invention provide for the direct colorimetric detection of analytes using nucleic acid ligands at surfaces of polydiacetylene liposomes and related molecular layer systems.

  6. Sandplay therapy with couples within the framework of analytical psychology.

    PubMed

    Albert, Susan Carol

    2015-02-01

    Sandplay therapy with couples is discussed within an analytical framework. Guidelines are proposed as a means of developing this relatively new area within sandplay therapy, and as a platform to open a wider discussion to bring together sandplay therapy and couple therapy. Examples of sand trays created during couple therapy are also presented to illustrate the transformations during the therapeutic process. PMID:25610960

  7. Mathematica and Fortran programs for various analytic QCD couplings

    NASA Astrophysics Data System (ADS)

    Ayala, César; Cvetič, Gorazd

    2015-05-01

    We outline here the motivation for the existence of analytic QCD models, i.e., QCD frameworks in which the running coupling A(Q2) has no Landau singularities. The analytic (holomorphic) coupling A(Q2) is the analog of the underlying pQCD coupling a(Q2) = αs(Q2)/π, and any such A(Q2) defines an analytic QCD model. We present the general construction procedure for the couplings Av (Q2) which are analytic analogs of the powers a(Q2)v. Three analytic QCD models are presented. Applications of our program (in Mathematica) for calculation of Av (Q2) in such models are presented. Programs in both Mathematica and Fortran can be downloaded from the web page: gcvetic.usm.cl.

  8. Improving Conceptions in Analytical Chemistry: The Central Limit Theorem

    ERIC Educational Resources Information Center

    Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.

    2006-01-01

    This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)

  9. Investigating the Limits of Neurovascular Coupling.

    PubMed

    Denfield, George H; Fahey, Paul G; Reimer, Jacob; Tolias, Andreas S

    2016-09-01

    O'Herron et al. (2016) perform two-photon imaging of vascular and neural responses in cat and rodent primary visual cortex to investigate the limits of neurovascular coupling. Their results suggest important constraints on making inferences about neuronal responses from hemodynamic activity. PMID:27608758

  10. Limits on anomalous WWγ and WWZ couplings

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babukhadia, L.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhou, Z.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1998-08-01

    Limits on the anomalous WWγ and WWZ couplings are presented from a simultaneous fit to the data samples of three gauge boson pair final states in pp¯ collisions at s=1.8 TeV: Wγ production with the W boson decaying to eν or μν, W boson pair production with both of the W bosons decaying to eν or μν, and WW or WZ production with one W boson decaying to eν and the other W boson or the Z boson decaying to two jets. Assuming identical WWγ and WWZ couplings, 95% C.L. limits on the anomalous couplings of -0.30<Δκ<0.43 (λ=0) and -0.20<λ<0.20 (Δκ=0) are obtained using a form factor scale Λ=2.0 TeV. Limits found under other assumptions on the relationship between the WWγ and WWZ couplings are also presented.

  11. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  12. Design Evaluation of Wind Turbine Spline Couplings Using an Analytical Model: Preprint

    SciTech Connect

    Guo, Y.; Keller, J.; Wallen, R.; Errichello, R.; Halse, C.; Lambert, S.

    2015-02-01

    Articulated splines are commonly used in the planetary stage of wind turbine gearboxes for transmitting the driving torque and improving load sharing. Direct measurement of spline loads and performance is extremely challenging because of limited accessibility. This paper presents an analytical model for the analysis of articulated spline coupling designs. For a given torque and shaft misalignment, this analytical model quickly yields insights into relationships between the spline design parameters and resulting loads; bending, contact, and shear stresses; and safety factors considering various heat treatment methods. Comparisons of this analytical model against previously published computational approaches are also presented.

  13. Analytical reasoning task reveals limits of social learning in networks

    PubMed Central

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-01-01

    Social learning—by observing and copying others—is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an ‘unreflective copying bias’, which limits their social learning to the output, rather than the process, of their peers’ reasoning—even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning. PMID:24501275

  14. Analytical reasoning task reveals limits of social learning in networks.

    PubMed

    Rahwan, Iyad; Krasnoshtan, Dmytro; Shariff, Azim; Bonnefon, Jean-François

    2014-04-01

    Social learning-by observing and copying others-is a highly successful cultural mechanism for adaptation, outperforming individual information acquisition and experience. Here, we investigate social learning in the context of the uniquely human capacity for reflective, analytical reasoning. A hallmark of the human mind is its ability to engage analytical reasoning, and suppress false associative intuitions. Through a set of laboratory-based network experiments, we find that social learning fails to propagate this cognitive strategy. When people make false intuitive conclusions and are exposed to the analytic output of their peers, they recognize and adopt this correct output. But they fail to engage analytical reasoning in similar subsequent tasks. Thus, humans exhibit an 'unreflective copying bias', which limits their social learning to the output, rather than the process, of their peers' reasoning-even when doing so requires minimal effort and no technical skill. In contrast to much recent work on observation-based social learning, which emphasizes the propagation of successful behaviour through copying, our findings identify a limit on the power of social networks in situations that require analytical reasoning. PMID:24501275

  15. Analytical Limit Distributions from Random Power-Law Interactions

    NASA Astrophysics Data System (ADS)

    Zaid, Irwin; Mizuno, Daisuke

    2016-07-01

    Nature is full of power-law interactions, e.g., gravity, electrostatics, and hydrodynamics. When sources of such fields are randomly distributed in space, the superposed interaction, which is what we observe, is naively expected to follow a Gauss or Lévy distribution. Here, we present an analytic expression for the actual distributions that converge to novel limits that are in between these already-known limit distributions, depending on physical parameters, such as the concentration of field sources and the size of the probe used to measure the interactions. By comparing with numerical simulations, the origin of non-Gauss and non-Lévy distributions are theoretically articulated.

  16. Strong-field dipole resonance: Limiting analytical cases

    SciTech Connect

    Uiberacker, Christoph; Jakubetz, Werner

    2009-12-15

    We investigate population dynamics in N-level systems driven beyond the linear regime by a strong external field, which couples to the system through an operator with nonzero diagonal elements. As concrete example we consider the case of dipolar molecular systems. We identify limiting cases of the Hamiltonian leading to wave functions that can be written in terms of ordinary exponentials, and focus on the limits of slowly and rapidly varying fields of arbitrary strength. For rapidly varying fields we prove for arbitrary N that the population dynamics is independent of the sign of the projection of the field onto the dipole coupling. In the opposite limit of slowly varying fields the population of the target level is optimized by a dipole resonance condition. As a result population transfer is maximized for one sign of the field and suppressed for the other one, so that a switch based on flopping the field polarization can be devised. For significant sign dependence the resonance linewidth with respect to the field strength is small. In the intermediate regime of moderate field variation, the integral of lowest order in the coupling can be rewritten as a sum of terms resembling the two limiting cases, plus correction terms for N>2, so that a less pronounced sign-dependence still exists.

  17. Semi-analytic galaxy formation in coupled dark energy cosmologies

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; Baldi, Marco; Springel, Volker; Bianchi, Davide

    2015-09-01

    Among the possible alternatives to the standard cosmological model (ΛCDM), coupled dark energy models postulate that dark energy (DE), seen as a dynamical scalar field, may interact with dark matter (DM), giving rise to a `fifth-force', felt by DM particles only. In this paper, we study the impact of these cosmologies on the statistical properties of galaxy populations by combining high-resolution numerical simulations with semi-analytic models (SAMs) of galaxy formation and evolution. New features have been implemented in the reference SAM in order to have it run self-consistently and calibrated on these cosmological simulations. They include an appropriate modification of the mass-temperature relation and of the baryon fraction in DM haloes, due to the different virial scalings and to the gravitational bias, respectively. Our results show that the predictions of our coupled-DE SAM do not differ significantly from theoretical predictions obtained with standard SAMs applied to a reference Λ cold dark matter (ΛCDM) simulation, implying that the statistical properties of galaxies provide only a weak probe for these alternative cosmological models. On the other hand, we show that both galaxy bias and the galaxy pairwise velocity distribution are sensitive to coupled DE models: this implies that these probes might be successfully applied to disentangle among quintessence, f(R)-gravity and coupled DE models.

  18. Analytical Limit Distributions from Random Power-Law Interactions.

    PubMed

    Zaid, Irwin; Mizuno, Daisuke

    2016-07-15

    Nature is full of power-law interactions, e.g., gravity, electrostatics, and hydrodynamics. When sources of such fields are randomly distributed in space, the superposed interaction, which is what we observe, is naively expected to follow a Gauss or Lévy distribution. Here, we present an analytic expression for the actual distributions that converge to novel limits that are in between these already-known limit distributions, depending on physical parameters, such as the concentration of field sources and the size of the probe used to measure the interactions. By comparing with numerical simulations, the origin of non-Gauss and non-Lévy distributions are theoretically articulated. PMID:27472105

  19. Parallel coupled perturbed CASSCF equations and analytic CASSCF second derivatives.

    PubMed

    Dudley, Timothy J; Olson, Ryan M; Schmidt, Michael W; Gordon, Mark S

    2006-02-01

    A parallel algorithm for solving the coupled-perturbed MCSCF (CPMCSCF) equations and analytic nuclear second derivatives of CASSCF wave functions is presented. A parallel scheme for evaluating derivative integrals and their subsequent use in constructing other derivative quantities is described. The task of solving the CPMCSCF equations is approached using a parallelization scheme that partitions the electronic hessian matrix over all processors as opposed to simple partitioning of the 3 N solution vectors among the processors. The scalability of the current algorithm, up to 128 processors, is demonstrated. Using three test cases, results indicate that the parallelization of derivative integral evaluation through a simple scheme is highly effective regardless of the size of the basis set employed in the CASSCF energy calculation. Parallelization of the construction of the MCSCF electronic hessian during solution of the CPMCSCF equations varies quantitatively depending on the nature of the hessian itself, but is highly scalable in all cases. PMID:16365869

  20. Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Taylor, H.E.; Garbarino, J.R.

    1988-01-01

    A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.

  1. Analytical Insights on Theta-Gamma Coupled Neural Oscillators

    PubMed Central

    2013-01-01

    In this paper, we study the dynamics of a quadratic integrate-and-fire neuron, spiking in the gamma (30–100 Hz) range, coupled to a delta/theta frequency (1–8 Hz) neural oscillator. Using analytical and semianalytical methods, we were able to derive characteristic spiking times for the system in two distinct regimes (depending on parameter values): one regime where the gamma neuron is intrinsically oscillating in the absence of theta input, and a second one in which gamma spiking is directly gated by theta input, i.e., windows of gamma activity alternate with silence periods depending on the underlying theta phase. In the former case, we transform the equations such that the system becomes analogous to the Mathieu differential equation. By solving this equation, we can compute numerically the time to the first gamma spike, and then use singular perturbation theory to find successive spike times. On the other hand, in the excitable condition, we make direct use of singular perturbation theory to obtain an approximation of the time to first gamma spike, and then extend the result to calculate ensuing gamma spikes in a recursive fashion. We thereby give explicit formulas for the onset and offset of gamma spike burst during a theta cycle, and provide an estimation of the total number of spikes per theta cycle both for excitable and oscillator regimes. PMID:23945442

  2. Tate form and weak coupling limits in F-theory

    NASA Astrophysics Data System (ADS)

    Esole, Mboyo; Savelli, Raffaele

    2013-06-01

    We consider the weak coupling limit of F-theory in the presence of non-Abelian gauge groups implemented using the traditional ansatz coming from Tate's algorithm. We classify the types of singularities that could appear in the weak coupling limit and explain their resolution. In particular, the weak coupling limit of SU( n) gauge groups leads to an orientifold theory which suffers from conifold singulaties that do not admit a crepant resolution compatible with the orientifold involution. We present a simple resolution to this problem by introducing a new weak coupling regime that admits singularities compatible with both a crepant resolution and an orientifold symmetry. We also comment on possible applications of the new limit to model building. We finally discuss other unexpected phenomena as for example the existence of several non-equivalent directions to flow from strong to weak coupling leading to different gauge groups.

  3. Analytical examples, measurement models, and classical limit of quantum backflow

    NASA Astrophysics Data System (ADS)

    Yearsley, J. M.; Halliwell, J. J.; Hartshorn, R.; Whitby, A.

    2012-10-01

    We investigate the backflow effect in elementary quantum mechanics—the phenomenon in which a state consisting entirely of positive momenta may have negative current and the probability flows in the opposite direction to the momentum. We compute the current and flux for states consisting of superpositions of Gaussian wave packets. These are experimentally realizable but the amount of backflow is small. Inspired by the numerical results of Penz [Penz, Grübl, Kreidl, and Wagner, J. Phys. AJPHAC50305-447010.1088/0305-4470/39/2/012 39, 423 (2006)], we find two nontrivial wave functions whose current at any time may be computed analytically and which have periods of significant backflow, in one case with a backward flux equal to about 70% of the maximum possible backflow, a dimensionless number cbm≈0.04, discovered by Bracken and Melloy [Bracken and Melloy, J. Phys. AJPHAC50305-447010.1088/0305-4470/27/6/040 27, 2197 (1994)]. This number has the unusual property of being independent of ℏ (and also of all other parameters of the model), despite corresponding to an obviously quantum-mechanical effect, and we shed some light on this surprising property by considering the classical limit of backflow. We discuss some specific measurement models in which backflow may be identified in certain measurable probabilities.

  4. BLF-SSH polarons coupled to acoustic phonons in the adiabatic limit

    NASA Astrophysics Data System (ADS)

    Chandler, Carl J.; Marsiglio, F.

    2014-12-01

    We survey polaron formation in the Barisić-Labbé-Friedel and Su-Schrieffer-Heeger (BLF-SSH) model using acoustic phonons in the adiabatic limit. Multiple different numerical optimization routines and strong-coupling analytical calculations are used to find a robust ground-state energy for a wide range of coupling strengths. The electronic configuration and accompanying ionic distortions of the polaron were determined, as well as a nonzero critical coupling strength for polaron formation in two and three dimensions.

  5. Liquid contact resonance AFM: analytical models, experiments, and limitations

    NASA Astrophysics Data System (ADS)

    Parlak, Zehra; Tu, Qing; Zauscher, Stefan

    2014-11-01

    Contact resonance AFM (CR-AFM) is a scanning probe microscopy technique that utilizes the contact resonances of the AFM cantilever for concurrent imaging of topography and surface stiffness. The technique has not been used in liquid until recently due to analytical and experimental difficulties, associated with viscous damping of cantilever vibrations and fluid loading effects. To address these difficulties, (i) an analytical approach for contact resonances in liquid is developed, and (ii) direct excitation of the contact resonances is demonstrated by actuating the cantilever directly in a magnetic field. By implementing the analytical approach and the direct actuation through magnetic particles, quantitative stiffness imaging on surfaces with a wide range of stiffness can be achieved in liquid with soft cantilevers and low contact forces.

  6. Suppression and revival of oscillation in indirectly coupled limit cycle oscillators

    NASA Astrophysics Data System (ADS)

    Sharma, P. R.; Kamal, N. K.; Verma, U. K.; Suresh, K.; Thamilmaran, K.; Shrimali, M. D.

    2016-09-01

    We study the phenomena of suppression and revival of oscillations in a system of limit cycle oscillators coupled indirectly via a dynamic local environment. The dynamics of the environment is assumed to decay exponentially with time. We show that for appropriate coupling strength, the decay parameter of the environment plays a crucial role in the emergent dynamics such as amplitude death (AD) and oscillation death (OD). We also show that introducing a feedback factor in the diffusion term revives the oscillations in this system. The critical curves for the regions of different emergent states as a function of coupling strength, decay parameter of the environment and feedback factor in the coupling are obtained analytically using linear stability analysis. These results are found to be consistent with the numerics and are also observed experimentally.

  7. Energy demand analytics using coupled technological and economic models

    EPA Science Inventory

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  8. Limits on tensor coupling from neutron β decay

    NASA Astrophysics Data System (ADS)

    Pattie, R. W., Jr.; Hickerson, K. P.; Young, A. R.

    2013-10-01

    Limits on the tensor couplings generating a Fierz interference term b in mixed Gamow-Teller Fermi decays can be derived by combining data from measurements of angular correlation parameters in neutron decay, the neutron lifetime, and GV=GFVud as extracted from measurements of the Ft values from the 0+→0+ superallowed decay data set. These limits are derived by comparing the neutron β-decay rate as predicted in the standard model with the measured decay rate while allowing for the existence of beyond the standard model (BSM) couplings. We analyze limits derived from the electron-neutrino asymmetry a, or the beta asymmetry A, finding that the most stringent limits for CT/CA under the assumption of no right-handed neutrinos is -0.0026limits on scalar and tensor couplings have the useful property that they are independent of BSM extensions with vector or axial-vector symmetry to first order.

  9. Coupling in the singular limit of thin quantum waveguides

    SciTech Connect

    Albeverio, Sergio; Cacciapuoti, Claudio; Finco, Domenico

    2007-03-15

    We analyze the problem of approximating a smooth quantum waveguide with a quantum graph. We consider a planar curve with compactly supported curvature and a strip of constant width around the curve. We rescale the curvature and the width in such a way that the strip can be approximated by a singular limit curve, consisting of one vertex and two infinite, straight edges, i.e., a broken line. We discuss the convergence of the Laplacian, with Dirichlet boundary conditions on the strip, in a suitable sense and we obtain two possible limits: the Laplacian on the line with Dirichlet boundary conditions in the origin and a nontrivial family of point perturbations of the Laplacian on the line. The first case generically occurs and corresponds to the decoupling of the two components of the limit curve, while in the second case a coupling takes place. We present also two families of curves which give rise to coupling.

  10. Semantic Interaction for Visual Analytics: Toward Coupling Cognition and Computation

    SciTech Connect

    Endert, Alexander

    2014-07-01

    The dissertation discussed in this article [1] was written in the midst of an era of digitization. The world is becoming increasingly instrumented with sensors, monitoring, and other methods for generating data describing social, physical, and natural phenomena. Thus, data exist with the potential of being analyzed to uncover, or discover, the phenomena from which it was created. However, as the analytic models leveraged to analyze these data continue to increase in complexity and computational capability, how can visualizations and user interaction methodologies adapt and evolve to continue to foster discovery and sensemaking?

  11. Neutron Limit on the Strongly-Coupled Chameleon Field

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry

    2016-03-01

    One of the major open questions of cosmology is the physical origin of the dark energy. There are a few sets of theories which might explain this origin that could be tested experimentally. The chameleon dark energy theory postulates self-interacting scalar field that couples to matter. This coupling induces a screening mechanism chosen so that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. On behalf of the INDEX collaboration, I will report the most stringent upper bound on the free neutron-chameleon coupling in the strongly-coupled limit of the chameleon theory using neutron interferometric techniques. In our experiment we measure neutron phase induced by chameleon field. We report a 95 % confidence level upper bound on the neutron-chameleon coupling ranging from β < 4 . 7 ×106 for a Ratra-Peebles index of n = 1 in the nonlinear scalar field potential to β < 2 . 4 ×107 for n = 6 , one order of magnitude more sensitive than the most recent free neutron limit for intermediate n. This work was supported by NIST; NSF Grants: PHY-1205342, PHY-1068712, PHY-1307426; DOE award DE-FG02-97ER41042; NSERC CREATE and DISCOVERY programs; CERC; IUCSS and IU FRS program.

  12. Flux limiters in the coupling of radiation and hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Seaid, M.; Klar, A.; Dubroca, B.

    2004-07-01

    Two numerical approximations to radiative heat transfer problem based on asymptotic and entropy approaches are proposed for hydrodynamics radiation coupling. We compare the radiative fluxes between the two approaches and we show that the coupling based on the entropy approach is flux limited, while the other approach does not preserve this condition. Relaxation schemes are considered for the hydrodynamic part, and an iterative procedure is used for radiation. The new splitting algorithm avoids the use of Riemann solvers and Newton iterations. Numerical examples are carried out on two and three dimensional problems.

  13. Limits on Higgs boson couplings in Effective field theory

    NASA Astrophysics Data System (ADS)

    Belyaev, N.; Reid, T.

    2016-02-01

    We review the Effective Field Theory (EFT) to make projections on physics beyond the Standard Model in the Higgs sector. We provide relations between the non-Standard Model couplings of the Strongly-Interacting Light Higgs (SILH) effective Lagrangian implemented in the eHDecay package and the corresponding terms of the spin-0 Higgs Characterisation model's effective Lagrangian used with the aMC@NLO Monte Carlo generator. Constraints on BSM couplings are determined on the basis of existing experimental limits on Higgs boson width and branching ratios.

  14. Stochastic dynamics of coupled active particles in an overdamped limit

    NASA Astrophysics Data System (ADS)

    Ann, Minjung; Lee, Kong-Ju-Bock; Park, Pyeong Jun

    2015-10-01

    We introduce a model for Brownian dynamics of coupled active particles in an overdamped limit. Our system consists of several identical active particles and one passive particle. Each active particle is elastically coupled to the passive particle and there is no direct coupling among the active particles. We investigate the dynamics of the system with respect to the number of active particles, viscous friction, and coupling between the active and passive particles. For this purpose, we consider an intracellular transport process as an application of our model and perform a Brownian dynamics simulation using realistic parameters for processive molecular motors such as kinesin-1. We determine an adequate energy conversion function for molecular motors and study the dynamics of intracellular transport by multiple motors. The results show that the average velocity of the coupled system is not affected by the number of active motors and that the stall force increases linearly as the number of motors increases. Our results are consistent with well-known experimental observations. We also examine the effects of coupling between the motors and the cargo, as well as of the spatial distribution of the motors around the cargo. Our model might provide a physical explanation of the cooperation among active motors in the cellular transport processes.

  15. Does Couple and Relationship Education Work for Individuals in Stepfamilies? A Meta-Analytic Study

    ERIC Educational Resources Information Center

    Lucier-Greer, Mallory; Adler-Baeder, Francesca

    2012-01-01

    Recent meta-analytic efforts have documented how couple and relationship education (CRE) programs promote healthy relationship and family functioning. The current meta-analysis contributes to this body of literature by examining stepfamily couples, an at-risk, subpopulation of participants, and assessing the effectiveness of CRE programs for…

  16. Analytic model of aurorally coupled magnetospheric and ionospheric electrostatic potentials

    NASA Astrophysics Data System (ADS)

    Cornwall, John M.

    1993-09-01

    This paper describes modest but significant improvements on earlier studies of electrostatic potential structure in the auroral region, using the adiabatic auroral arc model. With certain simplifying assumptions, new analytic nonlinear solutions fully exhibiting the parametric dependence of potentials on magnetospheric (e.g., cross-tail potential) and ionospheric (e.g., recombination rate) parameters are found. No purely phenomenological parameters are introduced. The results are in reasonable agreement with observed average auroral potential drops, inverted-V scale sizes, and dissipation rates. The dissipation rate is quite comparable to tail energization and transport rates and should have a major effect on tail and magnetospheric dynamics. Various relations between the cross-tail potential and auroral parameters (e.g., total parallel currents and potential drops) are given which can be studied with existing data sets.

  17. Analytic model of aurorally coupled magnetospheric and ionospheric electrostatic potentials

    NASA Technical Reports Server (NTRS)

    Cornwall, John M.

    1993-01-01

    This paper describes modest but significant improvements on earlier studies of electrostatic potential structure in the auroral region, using the adiabatic auroral arc model. With certain simplifying assumptions, new analytic nonlinear solutions fully exhibiting the parametric dependence of potentials on magnetospheric (e.g., cross-tail potential) and ionospheric (e.g., recombination rate) parameters are found. No purely phenomenological parameters are introduced. The results are in reasonable agreement with observed average auroral potential drops, inverted-V scale sizes, and dissipation rates. The dissipation rate is quite comparable to tail energization and transport rates and should have a major effect on tail and magnetospheric dynamics. Various relations between the cross-tail potential and auroral parameters (e.g., total parallel currents and potential drops) are given which can be studied with existing data sets.

  18. anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models

    NASA Astrophysics Data System (ADS)

    Ayala, César; Cvetič, Gorazd

    2016-02-01

    We provide three Fortran programs which evaluate the QCD analytic (holomorphic) couplings Aν(Q2) for complex or real squared momenta Q2. These couplings are holomorphic analogs of the powers a(Q2)ν of the underlying perturbative QCD (pQCD) coupling a(Q2) ≡αs(Q2) / π, in three analytic QCD models (anQCD): Fractional Analytic Perturbation Theory (FAPT), Two-delta analytic QCD (2 δanQCD), and Massive Perturbation Theory (MPT). The index ν can be noninteger. The provided programs do basically the same job as the Mathematica package anQCD.m published by us previously (Ayala and Cvetič, 2015), but are now written in Fortran.

  19. Scaling properties of the pairing problem in the strong coupling limit

    SciTech Connect

    Barbaro, M.B.; Cenni, R.; Molinari, A.; Quaglia, M.R.

    2013-10-15

    We study the excited states of the pairing Hamiltonian providing an expansion for their energy in the strong coupling limit. To assess the role of the pairing interaction we apply the formalism to the case of a heavy atomic nucleus. We show that only a few statistical moments of the level distribution are sufficient to yield an accurate estimate of the energy for not too small values of the coupling G and we give the analytic expressions of the first four terms of the series. Further, we discuss the convergence radius G{sub sing} of the expansion showing that it strongly depends upon the details of the level distribution. Furthermore G{sub sing} is not related to the critical values of the coupling G{sub crit}, which characterize the physics of the pairing Hamiltonian, since it can exist even in the absence of these critical points. -- Highlights: •We study the excitation spectrum of the pairing Hamiltonian. •We provide an analytic expansion around the strong coupling limit. •We discuss the convergence radius of the expansion. •We connect the radius with the critical points of H.

  20. Non compact continuum limit of two coupled Potts models

    NASA Astrophysics Data System (ADS)

    Vernier, Éric; Lykke Jacobsen, Jesper; Saleur, Hubert

    2014-10-01

    We study two Q-state Potts models coupled by the product of their energy operators, in the regime 2 < Q ⩽ 4 where the coupling is relevant. A particular choice of weights for the square lattice is shown to be equivalent to the integrable a_3(2) vertex model. It corresponds to a selfdual system of two antiferromagnetic Potts models, coupled ferromagnetically. We derive the Bethe ansatz equations and study them numerically for two arbitrary twist angles. The continuum limit is shown to involve two compact bosons and one non compact boson, with discrete states emerging from the continuum at appropriate twists. The non compact boson entails strong logarithmic corrections to the finite-size behaviour of the scaling levels, an understanding of which allows us to correct an earlier proposal for some of the critical exponents. In particular, we infer the full set of magnetic scaling dimensions (watermelon operators) of the Potts model.

  1. Collinear limit of scattering amplitudes at strong coupling.

    PubMed

    Basso, Benjamin; Sever, Amit; Vieira, Pedro

    2014-12-31

    In this Letter, we consider the collinear limit of gluon scattering amplitudes in planar N=4 super-Yang-Mills theory at strong coupling. We argue that in this limit scattering amplitudes map into correlators of twist fields in the two dimensional nonlinear O(6) sigma model, similar to those appearing in recent studies of entanglement entropy. We provide evidence for this assertion by combining the intuition springing from the string world-sheet picture and the predictions coming from the operator product expansion series. One of the main implications of these considerations is that scattering amplitudes receive equally important contributions at strong coupling from both the minimal string area and its fluctuations in the sphere. PMID:25615305

  2. Analytical Solutions Using Integral Formulations and Their Coupling with Numerical Approaches.

    PubMed

    Morel-Seytoux, Hubert J

    2015-01-01

    Analytical and numerical approaches have their own distinct domains of merit and application. Unfortunately there has been a tendency to use either one or the other even when their domains overlap. Yet there is definite advantage in combining the two approaches. Being relatively new this emerging technique of combining the approaches is, at this stage, more of an art than a science. In this article we suggest approaches for the combination through simple examples. We also suggest that the integral formulation of the analytical problems may have some advantages over the differential formulation. The differential formulation limits somewhat the range of linear system descriptions that can be applied to a variety of practical problems. On the other hand the integral approach tends to focus attention to overall integrated behavior and properties of the system rather than on minute details. This is particularly useful in the coupling with a numerical model as in practice it generally deals also with only the integrated behavior of the system. The thesis of this article is illustrated with some simple stream-aquifer flow exchange examples. PMID:25213772

  3. Analytic model of aurorally coupled magnetospheric and ionospheric electrostatic potentials

    NASA Technical Reports Server (NTRS)

    Cornwall, J. M.

    1994-01-01

    This paper describes modest but significant improvements on earlier studies of electrostatic potential structure in the auroral region using the adiabatic auroral arc model. This model has crucial nonlinearities (connected, for example. with aurorally produced ionization) which have hampered analysis; earlier work has either been linear, which I will show is a poor approximation or, if nonlinear, either numerical or too specialized to study parametric dependencies. With certain simplifying assumptions I find new analytic nonlinear solutions fully exhibiting the parametric dependence of potentials on magnetospheric (e.g.. cross-tail potential) and ionospheric (e.g., recombination rate) parameters. No purely phenomenological parameters are introduced. The results are in reasonable agreement with observed average auroral potential drops, inverted-V scale sizes, and dissipation rates. The dissipation rate is quite comparable to tail energization and transport rates and should have a major effect on tail and magnetospheric dynamics. This paper gives various relations between the cross-tail potential and auroral parameters (e.g., total parallel currents and potential drops) which can be studied with existing data sets.

  4. Neutron limit on the strongly-coupled chameleon field

    NASA Astrophysics Data System (ADS)

    Li, K.; Arif, M.; Cory, D. G.; Haun, R.; Heacock, B.; Huber, M. G.; Nsofini, J.; Pushin, D. A.; Saggu, P.; Sarenac, D.; Shahi, C. B.; Skavysh, V.; Snow, W. M.; Young, A. R.; Index Collaboration

    2016-03-01

    The physical origin of the dark energy that causes the accelerated expansion rate of the Universe is one of the major open questions of cosmology. One set of theories postulates the existence of a self-interacting scalar field for dark energy coupling to matter. In the chameleon dark energy theory, this coupling induces a screening mechanism such that the field amplitude is nonzero in empty space but is greatly suppressed in regions of terrestrial matter density. However measurements performed under appropriate vacuum conditions can enable the chameleon field to appear in the apparatus, where it can be subjected to laboratory experiments. Here we report the most stringent upper bound on the free neutron-chameleon coupling in the strongly coupled limit of the chameleon theory using neutron interferometric techniques. Our experiment sought the chameleon field through the relative phase shift it would induce along one of the neutron paths inside a perfect crystal neutron interferometer. The amplitude of the chameleon field was actively modulated by varying the millibar pressures inside a dual-chamber aluminum cell. We report a 95% confidence level upper bound on the neutron-chameleon coupling β ranging from β <4.7 ×106 for a Ratra-Peebles index of n =1 in the nonlinear scalar field potential to β <2.4 ×107 for n =6 , one order of magnitude more sensitive than the most recent free neutron limit for intermediate n . Similar experiments can explore the full parameter range for chameleon dark energy in the foreseeable future.

  5. Transport zonation limits coupled nitrification-denitrification in permeable sediments.

    PubMed

    Kessler, Adam J; Glud, Ronnie N; Cardenas, M Bayani; Cook, Perran L M

    2013-01-01

    Measurement of biogeochemical processes in permeable sediments (including the hyporheic zone) is difficult because of complex multidimensional advective transport. This is especially the case for nitrogen cycling, which involves several coupled redox-sensitive reactions. To provide detailed insight into the coupling between ammonification, nitrification and denitrification in stationary sand ripples, we combined the diffusion equilibrium thin layer (DET) gel technique with a computational reactive transport biogeochemical model. The former approach provided high-resolution two-dimensional distributions of NO3(-) and (15)N-N2 gas. The measured two-dimensional profiles correlate with computational model simulations, showing a deep pool of N2 gas forming, and being advected to the surface below ripple peaks. Further isotope pairing calculations on these data indicate that coupled nitrification-denitrification is severely limited in permeable sediments because the flow and transport field limits interaction between oxic and anoxic pore water. The approach allowed for new detailed insight into subsurface denitrification zones in complex permeable sediments. PMID:24224741

  6. Analytical solution for one-dimensional chemo-mechanical coupling behavior of intelligent polymer gel

    NASA Astrophysics Data System (ADS)

    Yang, Qingsheng; Tian, Hui

    2011-11-01

    As an intelligent material, polymer gel is able to respond to external stimulus, including temperature, chemical concentration, pH, etc. The theoretical framework of chemo-mechanical coupling behavior for intelligent polymer gel is emphasized in this paper. Analytical solutions of the displacement and concentration function are found for one dimensional chemo-mechanical coupling problem. It is shown that the present chemo-mechanical theory can be applied to model chemo-mechanical coupling behavior of intelligent polymer gel. This study has important significance to reveal the mechanism of chemo-mechanical coupling behavior of the polymer gel.

  7. Analytical solution for one-dimensional chemo-mechanical coupling behavior of intelligent polymer gel

    NASA Astrophysics Data System (ADS)

    Yang, Qingsheng; Tian, Hui

    2012-04-01

    As an intelligent material, polymer gel is able to respond to external stimulus, including temperature, chemical concentration, pH, etc. The theoretical framework of chemo-mechanical coupling behavior for intelligent polymer gel is emphasized in this paper. Analytical solutions of the displacement and concentration function are found for one dimensional chemo-mechanical coupling problem. It is shown that the present chemo-mechanical theory can be applied to model chemo-mechanical coupling behavior of intelligent polymer gel. This study has important significance to reveal the mechanism of chemo-mechanical coupling behavior of the polymer gel.

  8. Longitudinal singular response of dusty plasma medium in weak and strong coupling limits

    SciTech Connect

    Kumar Tiwari, Sanat; Das, Amita; Kaw, Predhiman; Sen, Abhijit

    2012-01-15

    The longitudinal response of a dusty plasma medium in both weak and strong coupling limits has been investigated in detail using analytic as well as numerical techniques. In particular, studies on singular response of the medium have been specifically investigated here. A proper Galilean invariant form of the generalized hydrodynamic fluid model has been adopted for the description of the dusty plasma medium. For weak non-linear response, analytic reductive perturbative approach has been adopted. It is well known that in the weak coupling regime for the dusty plasma medium, such an analysis leads to the Korteweg-de Vries equation (KdV) equation and predicts the existence of localized smooth soliton solutions. We show that the strongly coupled dust fluid with the correct Galilean invariant form does not follow the KdV paradigm. Instead, it reduces to the form of Hunter-Saxton equation, which does not permit soliton solutions. The system in this case displays singular response with both conservative as well as dissipative attributes. At arbitrary high amplitudes, the existence and spontaneous formation of sharply peaked cusp structures in both weak and strong coupling regimes has been demonstrated numerically.

  9. Flight and Analytical Methods for Determining the Coupled Vibration Response of Tandem Helicopters

    NASA Technical Reports Server (NTRS)

    Yeates, John E , Jr; Brooks, George W; Houbolt, John C

    1957-01-01

    Chapter one presents a discussion of flight-test and analysis methods for some selected helicopter vibration studies. The use of a mechanical shaker in flight to determine the structural response is reported. A method for the analytical determination of the natural coupled frequencies and mode shapes of vibrations in the vertical plane of tandem helicopters is presented in Chapter two. The coupled mode shapes and frequencies are then used to calculate the response of the helicopter to applied oscillating forces.

  10. Analytic formulation for the ac electrical conductivity in two- temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    SciTech Connect

    Cauble, R.; Rozmus, W.

    1993-10-21

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  11. Comparison of analytic Whipple bumper shield ballistic limits with CTH simulations

    SciTech Connect

    Hertel, E.S. Jr.

    1993-05-01

    A series of CTH simulations were conducted to assess the feasibility of using the hydrodynamic code for debris cloud formation and to predict any damage due to the subsequent loading on rear structures. Six axisymmetric and one 3-dimensional simulations were conducted for spherical projectiles impacting Whipple bumper shields. The projectile diameters were chosen to correlate with two well known analytic expressions for the ballistic limit of a Whipple bumper shield. It has been demonstrated that CTH can be used to simulate the debris cloud formation, the propagation of the debris across a void region, and the secondary impact of the debris against a structure. In addition, the results from the CTH simulations were compared to the analytic estimates of the ballistic limit. At impact velocities of 10 km/s or less, the CTH predicted ballistic limit lays between the two analytic estimates. However, for impact velocities greater than 10 km/s, CTH simulations predicted a ballistic limit larger than both analytical estimates. The differences at high velocities are not well understood. Structural failure at late times due to the time integrated loading of a very diffuse debris cloud has not been considered in the CTH model. In addition, the analytic predictions are extrapolated from relatively low velocity data and the extrapolation technique may not be valid. The discrepancy between the two techniques should be investigated further.

  12. Analytical Solution of Coupled Perturbation of Tesseral Harmonic Terms of Mars's Non-Spherical Gravitational Potential

    NASA Astrophysics Data System (ADS)

    Zhou, Chui-hong; Yu, Sheng-xian; Liu, Lin

    2012-10-01

    The non-spherical gravitational potential of the planet Mars is sig- nificantly different from that of the Earth. The magnitudes of Mars' tesseral harmonic coefficients are basically ten times larger than the corresponding val- ues of the Earth. Especially, the magnitude of its second degree and order tesseral harmonic coefficient J2,2 is nearly 40 times that of the Earth, and approaches to the one tenth of its second zonal harmonic coefficient J2. For a low-orbit Mars probe, if the required accuracy of orbit prediction of 1-day arc length is within 500 m (equivalent to the order of magnitude of 10-4 standard unit), then the coupled terms of J2 with the tesseral harmonics, and even those of the tesseral harmonics themselves, which are negligible for the Earth satellites, should be considered when the analytical perturbation solution of its orbit is built. In this paper, the analytical solutions of the coupled terms are presented. The anal- ysis and numerical verification indicate that the effect of the above-mentioned coupled perturbation on the orbit may exceed 10-4 in the along-track direc- tion. The conclusion is that the solutions of Earth satellites cannot be simply used without any modification when dealing with the analytical perturbation solutions of Mars-orbiting satellites, and that the effect of the coupled terms of Mars's non-spherical gravitational potential discussed in this paper should be taken into consideration.

  13. Coupling impedance of an in-vacuum undulator. Measurement, simulation, and analytical estimation

    SciTech Connect

    Simaluk, Victor; Blednykh, Alexei; Fielder, Richard; Rehm, Guenther; Bartolini, Riccardo

    2014-07-25

    One of the important issues of the in-vacuum undulator design is the coupling impedance of the vacuum chamber, which includes tapered transitions with variable gap size. In order to get complete and reliable information on the impedance, analytical estimate, numerical simulations and beam-based measurements have been performed at Diamond Light Source, a forthcoming upgrade of which includes introducing additional insertion device (ID) straights. Moreover, the impedance of an already existing ID vessel geometrically similar to the new one has been measured using the orbit bump method. The measurement results in comparison with analytical estimations and numerical simulations are discussed in this paper.

  14. Analytical evaluation of a surface integral expressing the coupling between interior and exterior volumes in a FE-IE approach

    NASA Technical Reports Server (NTRS)

    Zuffada, C.; Cwik, T.; Jamnejad, V.

    1993-01-01

    Recently an approach which combines the finite element technique and an integral equation to determine the fields scattered by inhomogeneous bodies of complicated shape has been proposed. Basically, a mathematical surface which encloses the scatterers is introduced, thus dividing the space into an interior and an exterior volume, in which the finite element technique and an integral equation for EM scattering, respectively, are applied. The integral equation is set up for the tangential components of the fields at the surface, while the interior volume the unknowns are the total fields. Continuity of the tangential fields at the boundary, as required by Maxwell's equations, is imposed, thus coupling the two methods to obtain a consistent solution. The coupling term is expressed by a surface integral formed by the dot product of a FE basis function and an IE testing function, or viceversa. By choosing the boundary to be a surface of revolution and by making a convenient selection of IE basis (testing) functions, it is possible to evaluate the integrals analytically on surfaces such as curved triangles, curved quadrilaterals and curved pentagons. We will illustrate the salient steps involved in setting up and carrying out these integrals and discuss what class of basis (testing) functions and analytic surfaces of revolution they are applicable to. Analytic calculations offer the advantage of better accuracy than purely numerical ones, and, when combined with them, often shed light on issues of numerical convergence and limiting values. Furthermore, they may reduce computation time and storage requirements.

  15. Validation of analytical methods involved in dissolution assays: acceptance limits and decision methodologies.

    PubMed

    Rozet, E; Ziemons, E; Marini, R D; Boulanger, B; Hubert, Ph

    2012-11-01

    Dissolution tests are key elements to ensure continuing product quality and performance. The ultimate goal of these tests is to assure consistent product quality within a defined set of specification criteria. Validation of an analytical method aimed at assessing the dissolution profile of products or at verifying pharmacopoeias compliance should demonstrate that this analytical method is able to correctly declare two dissolution profiles as similar or drug products as compliant with respect to their specifications. It is essential to ensure that these analytical methods are fit for their purpose. Method validation is aimed at providing this guarantee. However, even in the ICHQ2 guideline there is no information explaining how to decide whether the method under validation is valid for its final purpose or not. Are the entire validation criterion needed to ensure that a Quality Control (QC) analytical method for dissolution test is valid? What acceptance limits should be set on these criteria? How to decide about method's validity? These are the questions that this work aims at answering. Focus is made to comply with the current implementation of the Quality by Design (QbD) principles in the pharmaceutical industry in order to allow to correctly defining the Analytical Target Profile (ATP) of analytical methods involved in dissolution tests. Analytical method validation is then the natural demonstration that the developed methods are fit for their intended purpose and is not any more the inconsiderate checklist validation approach still generally performed to complete the filing required to obtain product marketing authorization. PMID:23084050

  16. The analytical Scheme calculator for angular momentum coupling and recoupling coefficients

    NASA Astrophysics Data System (ADS)

    Deveikis, A.; Kuznecovas, A.

    2005-10-01

    We describe a Scheme implementation of the interactive environment to calculate analytically the Clebsch-Gordan coefficients, Wigner 6 j and 9 j symbols, and general recoupling coefficients that are used in the quantum theory of angular momentum. The orthogonality conditions for considered coefficients are implemented. The program provides a fast and exact calculation of the coefficients for large values of quantum angular momenta. Program summaryTitle of program:Scheme2Clebsch Catalogue number:ADWC Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWC Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:none Computer for which the program is designed:Any Scheme-capable platform Operating systems under which the program has been tested: Windows 2000 Programming language used:Scheme Memory required to execute with typical data:50 MB (≈ size of DrScheme, version 204) No. of lines in distributed program, including test data, etc.: 2872 No. of bytes in distributed program, including test data, etc.: 109 396 Distribution format:tar.gz Nature of physical problem:The accurate and fast calculation of the angular momentum coupling and recoupling coefficients is required in various branches of quantum many-particle physics. The presented code provides a fast and exact calculation of the angular momentum coupling and recoupling coefficients for large values of quantum angular momenta and is based on the GNU Library General Public License PLT software http://www.plt-scheme.org/. Method of solution:A direct evaluation of sum formulas. A general angular momentum recoupling coefficient for an arbitrary number of (integer or half-integer) angular momenta is expressed as a sum over products of the Clebsch-Gordan coefficients. Restrictions on the complexity of the problem:Limited only by the DrScheme implementation used to run the program. No limitation inherent in the code. Typical running time:The Clebsch

  17. Analytical limits for cold-atom Bose gases with tunable interactions

    SciTech Connect

    Mihaila, Bogdan; Chien, Chih-Chun; Timmermans, Eddy; Cooper, Fred; Dawson, John F.

    2011-08-15

    We discuss the equilibrium properties of dilute Bose gases using a nonperturbative formalism based on auxiliary fields related to the normal and anomalous densities. We show analytically that for a dilute Bose gas of weakly interacting particles at zero temperature, the leading-order auxiliary field (LOAF) approximation leads to well-known analytical results. Close to the critical point the LOAF predictions are the same as those obtained using an effective field theory in the large-N approximation. We also report analytical approximations for the LOAF results in the unitarity limit, which compare favorably with our numerical results. LOAF predicts that the equation of state for the Bose gas in the unitarity limit is E/(pV)=1, unlike the case of the Fermi gas when E/(pV)=3/2.

  18. Gravitational lensing from compact bodies: Analytical results for strong and weak deflection limits

    SciTech Connect

    Amore, Paolo; Cervantes, Mayra; De Pace, Arturo; Fernandez, Francisco M.

    2007-04-15

    We develop a nonperturbative method that yields analytical expressions for the deflection angle of light in a general static and spherically symmetric metric. The method works by introducing into the problem an artificial parameter, called {delta}, and by performing an expansion in this parameter to a given order. The results obtained are analytical and nonperturbative because they do not correspond to a polynomial expression in the physical parameters. Already to first order in {delta} the analytical formulas obtained using our method provide at the same time accurate approximations both at large distances (weak deflection limit) and at distances close to the photon sphere (strong deflection limit). We have applied our technique to different metrics and verified that the error is at most 0.5% for all regimes. We have also proposed an alternative approach which provides simpler formulas, although with larger errors.

  19. Analytical and experimental study of two delay-coupled excitable units.

    PubMed

    Weicker, Lionel; Erneux, Thomas; Keuninckx, Lars; Danckaert, Jan

    2014-01-01

    We investigate the onset of time-periodic oscillations for a system of two identical delay-coupled excitable (nonoscillatory) units. We first analyze these solutions by using asymptotic methods. The oscillations are described as relaxation oscillations exhibiting successive slow and fast changes. The analysis highlights the determinant role of the delay during the fast transition layers. We then study experimentally a system of two coupled electronic circuits that is modeled mathematically by the same delay differential equations. We obtain quantitative agreements between analytical and experimental bifurcation diagrams. PMID:24580298

  20. Analytical and experimental study of two delay-coupled excitable units

    NASA Astrophysics Data System (ADS)

    Weicker, Lionel; Erneux, Thomas; Keuninckx, Lars; Danckaert, Jan

    2014-01-01

    We investigate the onset of time-periodic oscillations for a system of two identical delay-coupled excitable (nonoscillatory) units. We first analyze these solutions by using asymptotic methods. The oscillations are described as relaxation oscillations exhibiting successive slow and fast changes. The analysis highlights the determinant role of the delay during the fast transition layers. We then study experimentally a system of two coupled electronic circuits that is modeled mathematically by the same delay differential equations. We obtain quantitative agreements between analytical and experimental bifurcation diagrams.

  1. Experimental and analytical investigation of dynamic characteristics of extension-twist-coupled composite tubular spars

    NASA Technical Reports Server (NTRS)

    Lake, Renee C.; Izadpanah, Amir P.; Baucom, Robert M.

    1993-01-01

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of extension-twist-coupled composite spars was manufactured with four plies of graphite-epoxy cloth prepreg. These spars were noncircular in cross-section design and were therefore subject to warping deformations. Three different cross-sectional geometries were developed: D-shape, square, and flattened ellipse. Three spars of each type were fabricated to assess the degree of repeatability in the manufacturing process of extension-twist-coupled structures. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models. Five global modes were identified within the frequency range from 0 to 2000 Hz for each spar. The experimental results for only one D-shape spar could be determined, however, and agreed within 13.8 percent of the analytical results. Frequencies corresponding to the five global modes for the three square spars agreed within 9.5, 11.6, and 8.5 percent of the respective analytical results and for the three elliptical spars agreed within 4.9, 7.7, and 9.6 percent of the respective analytical results.

  2. Developing a coupled analytical model for analyzing salt intrusion in alluvial estuaries

    NASA Astrophysics Data System (ADS)

    Savenije, H.; CAI, H.; Gisen, J.

    2013-12-01

    A predictive assessment technique to estimate the salt intrusion length and longitudinal salinity distribution in estuaries is important for policy makers and managers to maintain a healthy estuarine environment. In this study, the salt intrusion model of Savenije (2005, 2012) is applied and coupled to an explicit solution for tidal dynamics developed by Cai and Savenije (2013). The objective of the coupling is to reduce the number of calibration parameters, which subsequently strengthens the reliability of the salt intrusion model. Moreover, the fully analytical treatment allows assessing the effect of model forcing (i.e., tide and river discharge) and geometry adjustments (e.g., by dredging) on system performance. The coupled model has been applied to a wide range of estuaries, and the result shows that the correspondence between analytical estimations and observations is very good. As a result, the coupled model is a useful tool for decision makers to obtain first order estimates of salt intrusion in estuaries based on a minimum of information required. References Savenije, H.H.G. (2005), Salinity and Tides in Alluvial Estuaries, Elsevier. Savenije, H.H.G. (2012), Salinity and Tides in Alluvial Estuaries, completely revised 2nd edition, www.salinityandtides.com. Cai, H., and H. H. G. Savenije (2013), Asymptotic behavior of tidal damping in alluvial estuaries, Journal of Geophysical Research, submitted.

  3. Analytical models for well-mixed populations of cooperators and defectors under limiting resources

    NASA Astrophysics Data System (ADS)

    Requejo, R. J.; Camacho, J.

    2012-06-01

    In the study of the evolution of cooperation, resource limitations are usually assumed just to provide a finite population size. Recently, however, agent-based models have pointed out that resource limitation may modify the original structure of the interactions and allow for the survival of unconditional cooperators in well-mixed populations. Here, we present analytical simplified versions of two types of agent-based models recently published: one in which the limiting resource constrains the ability of reproduction of individuals but not their survival, and a second one where the limiting resource is necessary for both reproduction and survival. One finds that the analytical models display, with a few differences, the same qualitative behavior of the more complex agent-based models. In addition, the analytical models allow us to expand the study and identify the dimensionless parameters governing the final fate of the system, such as coexistence of cooperators and defectors, or dominance of defectors or of cooperators. We provide a detailed analysis of the occurring phase transitions as these parameters are varied.

  4. Closed-form analytical solutions of high-temperature heat pipe startup and frozen startup limitation

    NASA Technical Reports Server (NTRS)

    Cao, Y.; Faghri, A.

    1992-01-01

    Previous numerical and experimental studies indicate that the high-temperature heat pipe startup process is characterized by a moving hot zone with relatively sharp fronts. Based on the above observation, a flat-front model for an approximate analytical solution is proposed. A closed-form solution related to the temperature distribution in the hot zone and the hot zone length as a function of time are obtained. The analytical results agree well with the corresponding experimental data, and provide a quick prediction method for the heat pipe startup performance. Finally, a heat pipe limitation related to the frozen startup process is identified, and an explicit criterion for the high-temperature heat pipe startup is derived. The frozen startup limit identified in this paper provides a fundamental guidance for high-temperature heat pipe design.

  5. Overtone Mobility Spectrometry: Part 5. Simulations and Analytical Expressions Describing Overtone Limits

    PubMed Central

    Ewing, Michael A.; Zucker, Steven M.; Valentine, Stephen J.; Clemmer, David E.

    2015-01-01

    Mathematical expressions for the analytical duty cycle associated with different overtones in overtone mobility spectrometry are derived from the widths of the transmitted packets of ions under different instrumental operating conditions. Support for these derivations is provided through ion trajectory simulations. The outcome of the theory and simulations indicates that under all operating conditions there exists a limit or maximum observable overtone that will result in ion transmission. Implications of these findings on experimental design are discussed. PMID:23468094

  6. An analytical demonstration of coupling schemes between magnetohydrodynamic codes and eddy current codes

    SciTech Connect

    Liu Yueqiang

    2008-07-15

    In order to model a magnetohydrodynamic (MHD) instability that strongly couples to external conducting structures (walls and/or coils) in a fusion device, it is often necessary to combine a MHD code solving for the plasma response, with an eddy current code computing the fields and currents of conductors. We present a rigorous proof of the coupling schemes between these two types of codes. One of the coupling schemes has been introduced and implemented in the CARMA code [R. Albanese, Y. Q. Liu, A. Portone, G. Rubinacci, and F. Villone, IEEE Trans. Magn. 44, 1654 (2008); A. Portone, F. Villone, Y. Q. Liu, R. Albanese, and G. Rubinacci, Plasma Phys. Controlled Fusion 50, 085004 (2008)] that couples the MHD code MARS-F[Y. Q. Liu, A. Bondeson, C. M. Fransson, B. Lennartson, and C. Breitholtz, Phys. Plasmas 7, 3681 (2000)] and the eddy current code CARIDDI[R. Albanese and G. Rubinacci, Adv. Imaging Electron Phys. 102, 1 (1998)]. While the coupling schemes are described for a general toroidal geometry, we give the analytical proof for a cylindrical plasma.

  7. Expressing self-absorption in the analytical function of inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Kántor, Tibor; Bartha, András

    2015-11-01

    The self-absorption of spectral lines was studied with up to date multi-element inductively coupled plasma atomic emission spectrometry (ICP-AES) instrumentation using radial and axial viewing of the plasma, as well, performing line peak height and line peak area measurements. Two resonance atomic and ionic lines of Cd and Mg were studied, the concentration range was extended up to 2000 mg/L. At the varying analyte concentration, constant matrix concentration of 10,000 mg/L Ca was ensured in the pneumatically nebulized solutions. The physical and the phenomenological formulation of the emission analytical function is overviewed and as the continuity of the earlier results the following equation is offered:

  8. Analytic modeling, simulation and interpretation of broadband beam coupling impedance bench measurements

    NASA Astrophysics Data System (ADS)

    Niedermayer, U.; Eidam, L.; Boine-Frankenheim, O.

    2015-03-01

    First, a generalized theoretical approach towards beam coupling impedances and stretched-wire measurements is introduced. Applied to a circular symmetric setup, this approach allows to compare beam and wire impedances. The conversion formulas for TEM scattering parameters from measurements to impedances are thoroughly analyzed and compared to the analytical beam impedance solution. A proof of validity for the distributed impedance formula is given. The interaction of the beam or the TEM wave with dispersive material such as ferrite is discussed. The dependence of the obtained beam impedance on the relativistic velocity β is investigated and found as material property dependent. Second, numerical simulations of wakefields and scattering parameters are compared. The applicability of scattering parameter conversion formulas for finite device length is investigated. Laboratory measurement results for a circularly symmetric test setup, i.e. a ferrite ring, are shown and compared to analytic and numeric models. The optimization of the measurement process and error reduction strategies are discussed.

  9. Analytic and 'frozen' coupling constants in QCD up to NNLO from DIS data

    SciTech Connect

    Kotikov, A. V.; Krivokhizhin, V. G. Shaikhatdenov, B. G.

    2012-04-15

    Deep inelastic scattering data on the F{sub 2} structure function provided by the BCDMS, SLAC, and NMC Collaborations are analyzed in the nonsinglet approximation with the analytic and 'frozen' modifications of the strong-coupling constant featuring no unphysical singularity (the Landau pole). Improvement of agreement between theory and experiment, with respect to the case of the standard perturbative definition of {alpha}{sub s} considered recently, is observed and the higher-twist terms are shown to reduce at the next-to-next-to-leading order accuracy thus confirming earlier studies.

  10. Sound energy decay in coupled spaces using a parametric analytical solution of a diffusion equation.

    PubMed

    Luizard, Paul; Polack, Jean-Dominique; Katz, Brian F G

    2014-05-01

    Sound field behavior in performance spaces is a complex phenomenon. Issues regarding coupled spaces present additional concerns due to sound energy exchanges. Coupled volume concert halls have been of increasing interest in recent decades because this architectural principle offers the possibility to modify the hall's acoustical environment in a passive way by modifying the coupling area. Under specific conditions, the use of coupled reverberation chambers can provide non-exponential sound energy decay in the main room, resulting in both high clarity and long reverberation which are antagonistic parameters in a single volume room. Previous studies have proposed various sound energy decay models based on statistical acoustics and diffusion theory. Statistical acoustics assumes a perfectly uniform sound field within a given room whereas measurements show an attenuation of energy with increasing source-receiver distance. While previously proposed models based on diffusion theory use numerical solvers, the present study proposes a heuristic model of sound energy behavior based on an analytical solution of the commonly used diffusion equation and physically justified approximations. This model is validated by means of comparisons to scale model measurements and numerical geometrical acoustics simulations, both applied to the same simple concert hall geometry. PMID:24815259

  11. Coupling and Hydrodynamic Limit for the Inclusion Process

    NASA Astrophysics Data System (ADS)

    Opoku, Alex; Redig, Frank

    2015-08-01

    We show propagation of local equilibrium for the symmetric inclusion process (SIP) after diffusive rescaling of space and time, as well as the local equilibrium property of the non-equilibrium steady state in the boundary driven SIP. The main tool is self-duality and a coupling between SIP particles and independent random walkers.

  12. New limits on coupled dark energy from Planck

    SciTech Connect

    Xia, Jun-Qing

    2013-11-01

    Recently, the Planck collaboration has released the first cosmological papers providing the high resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. It is crucial to understand that whether the accelerating expansion of our universe at present is driven by an unknown energy component (Dark Energy) or a modification to general relativity (Modified Gravity). In this paper we study the coupled dark energy models, in which the quintessence scalar field nontrivially couples to the cold dark matter, with the strength parameter of interaction β. Using the Planck data alone, we obtain that the strength of interaction between dark sectors is constrained as β < 0.102 at 95% confidence level, which is tighter than that from the WMAP9 data alone. Combining the Planck data with other probes, like the Baryon Acoustic Oscillation (BAO), Type-Ia supernovae ''Union2.1 compilation'' and the CMB lensing data from Planck measurement, we find the tight constraint on the strength of interaction β < 0.052 (95% C.L.). Interestingly, we also find a non-zero coupling β = 0.078±0.022 (68% C.L.) when we use the Planck, the ''SNLS'' supernovae samples, and the prior on the Hubble constant from the Hubble Space Telescope (HST) together. This evidence for the coupled dark energy models mainly comes from a tension between constraints on the Hubble constant from the Planck measurement and the local direct H{sub 0} probes from HST.

  13. A study of the relation between the limit of detection and the limit of quantitation in inductively coupled plasma spectrochemistry

    NASA Astrophysics Data System (ADS)

    Carré, M.; Excoffier, S.; Mermet, J. M.

    1997-12-01

    The limit of quantitation based on a repeatability threshold concept is compared with the limit of detection in induction coupled plasma atomic emission spectrometry (ICP-AES) and induction coupled plasma mass spectrometry (ICP-MS). A 5%-based limit of quantitation would normally correspond to 10 times the 3-σ based limit of detection. However, because of a possible lack of linearity of the calibration graph at low concentrations, some additional noise not taken into consideration and the possible use of time-correlated multichannel detection, this ratio of 10 cannot be used in every case. It is suggested that a suitable way of determining the limit of quantitation is to establish the plot of the percentage relative standard deviation (RSD) of the net signal as a function of the concentration in a range from the limit of detection to 50 times this limit.

  14. Lattice QCD phase diagram in and away from the strong coupling limit.

    PubMed

    de Forcrand, Ph; Langelage, J; Philipsen, O; Unger, W

    2014-10-10

    We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the μ-T phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated at next-to-leading order. PMID:25375704

  15. Analytic solutions of the one-dimensional finite-coupling delta-function Bose gas

    NASA Astrophysics Data System (ADS)

    Forrester, P. J.; Frankel, N. E.; Makin, M. I.

    2006-10-01

    An intensive study for both the weak coupling and strong coupling limits of the ground state properties of this classic system is presented. Detailed results for specific values of finite N are given and from them results for general N are determined. We focus on the density matrix and concomitantly its Fourier transform, the occupation numbers, along with the pair correlation function and concomitantly its Fourier transform, the structure factor. These are the signature quantities of the Bose gas. One specific result is that for weak coupling a rational polynomial structure holds despite the transcendental nature of the Bethe equations. All these results are predicated on the Bethe ansatz and are built upon the seminal works of the past.

  16. Analytic Kerr black hole lensing for equatorial observers in the strong deflection limit

    SciTech Connect

    Bozza, V.; De Luca, F.; Scarpetta, G.; Sereno, M.

    2005-10-15

    In this paper we present an analytical treatment of gravitational lensing by Kerr black holes in the limit of very large deflection angles, restricting to observers in the equatorial plane. We accomplish our objective starting from the Schwarzschild black hole and adding corrections up to second order in the black hole spin. This is sufficient to provide a full description of all caustics and the inversion of lens mapping for sources near them. On the basis of these formulae we argue that relativistic images of low mass x-ray binaries around Sgr A* are very likely to be seen by future x-ray interferometry missions.

  17. Simulation and analytic analysis of radiation driven islands at the density limit

    NASA Astrophysics Data System (ADS)

    Brennan, D. P.; Liu, C.; Gates, D. A.; Delgado-Aparicio, L.; White, R.

    2014-10-01

    The effect of radiative cooling on the onset and evolution of magnetic islands is investigated with nonlinear resistive MHD simulations and reduced theoretical analysis. The configuration is a cylindrical tokamak with a m/n = 2/1 island and includes three dimensional resistivity and anisotropic heat conduction in the simulations. The radiative cooling is implemented as a temperature perturbation inside the island, which modifies the island structure and drives the island more unstable. Analytic reduction of the saturated island size and structure supports the simulation results. The results offer intuitive understanding of experimental observations of radiation driven magnetic islands, which may explain density limit disruptions.

  18. Analytical Model and Optimized Design of Power Transmitting Coil for Inductively Coupled Endoscope Robot.

    PubMed

    Ke, Quan; Luo, Weijie; Yan, Guozheng; Yang, Kai

    2016-04-01

    A wireless power transfer system based on the weakly inductive coupling makes it possible to provide the endoscope microrobot (EMR) with infinite power. To facilitate the patients' inspection with the EMR system, the diameter of the transmitting coil is enlarged to 69 cm. Due to the large transmitting range, a high quality factor of the Litz-wire transmitting coil is a necessity to ensure the intensity of magnetic field generated efficiently. Thus, this paper builds an analytical model of the transmitting coil, and then, optimizes the parameters of the coil by enlarging the quality factor. The lumped model of the transmitting coil includes three parameters: ac resistance, self-inductance, and stray capacitance. Based on the exact two-dimension solution, the accurate analytical expression of ac resistance is derived. Several transmitting coils of different specifications are utilized to verify this analytical expression, being in good agreements with the measured results except the coils with a large number of strands. Then, the quality factor of transmitting coils can be well predicted with the available analytical expressions of self- inductance and stray capacitance. Owing to the exact estimation of quality factor, the appropriate coil turns of the transmitting coil is set to 18-40 within the restrictions of transmitting circuit and human tissue issues. To supply enough energy for the next generation of the EMR equipped with a Ø9.5×10.1 mm receiving coil, the coil turns of the transmitting coil is optimally set to 28, which can transfer a maximum power of 750 mW with the remarkable delivering efficiency of 3.55%. PMID:26292335

  19. Analytic properties of the OCP and ionic mixtures in the strongly coupled fluid state

    SciTech Connect

    DeWitt, H.E.

    1993-12-02

    Exact results for the Madelung constants and first order anharmonic energies are given for the inverse power potentials with the Coulomb potential as the softest example. Similar exact results are obtained using the analysis of Rosenfeld on the {Gamma} {yields} {infinity} limit for the OCP internal energy, direct correlation function, screening function, and bridge functions. Knowing these exact limits for the fluid phase of the OCP allows one to determine the nature of the thermal corrections to the strongly coupled results. Solutions of the HNC equation modified with the hard sphere bridge function give an example.

  20. Analytical Energy Gradients for Excited-State Coupled-Cluster Methods

    NASA Astrophysics Data System (ADS)

    Wladyslawski, Mark; Nooijen, Marcel

    The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit

  1. Comparison of limited measurements of the OTEC-1 plume with analytical model predictions

    NASA Astrophysics Data System (ADS)

    Paddock, R. A.; Ditmars, J. D.

    1981-07-01

    Testing of 1-MWe heat exchangers at the ocean thermal energy-1 (OTEC-1) facility aboard the vessel Ocean Energy Converter moored off the island of Hawaii is described. The warm and cold waters used by the OTEC-1 facility were combined prior to discharge from the vessel to create a mixed discharge condition. A limited field survey of the mixed discharge plume using fluorescent dye as a tracer was conducted as part of the environmental studies at OTEC-1. Results of that survey were compared with analytical model predictions of plume behavior. Although the predictions were in general agreement with the results of the plume survey, inherent limitations in the field measurement precluded complete description of the plume or detailed evaluation of the models.

  2. An analytical model for predicting transport in a coupled vadose/phreatic system

    SciTech Connect

    Tomasko, D.

    1997-05-01

    A simple analytical model is presented for predicting the transport of a contaminant in both the unsaturated (vadose) and saturated (phreatic) zones following a surficial spill. The model incorporates advection, dispersion, adsorption, and first-order decay in both zones and couples the transport processes at the water table. The governing equation is solved by using the method of Laplace transforms, with numerical inversion of the Laplace space equation for concentration. Because of the complexity of the functional form for the Laplace space solution, a numerical methodology using the real and imaginary parts of a Fourier series was implemented. To reduce conservatism in the model, dilution at the water table was also included. Verification of the model is demonstrated by its ability to reproduce the source history at the surface and to replicate appropriate one-dimensional transport through either the vadose or phreatic zone. Because of its simplicity and lack of detailed input data requirements, the model is recommended for scoping calculations.

  3. Directional Surface Plasmon Coupled Luminescence for Analytical Sensing Applications: Which Metal, What Wavelength, What Observation Angle?

    PubMed Central

    Aslan, Kadir; Geddes, Chris D.

    2009-01-01

    The ability of luminescent species in the near-field to both induce and couple to surface plasmons has been known for many years, with highly directional emission from films (Surface Plasmon Coupled Luminescence, SPCL) facilitating the development of sensitive near-field assay sensing platforms, to name but just one application. Because of the near-field nature of the effect, only luminescent species (fluorescence, chemiluminescence and phosphorescence) within a few hundred nanometers from the surface play a role in coupling, which in terms of biosensing, provides for limited penetration into optically dense media, such as in whole blood. Another attractive feature is the highly polarized and angular dependent emission which allows both fixed angle and wavelength dependent emission angles to be realized at high polarization ratios. In this paper, a generic procedure based on theoretical Fresnel calculations, which outlines the step-by-step selection of an appropriate metal for SPCL applications is presented. It is also shown that 11 different metals have differing properties in different spectral regions and offer either fixed angle or wavelength-dependent angular shifts in emission. In addition, it is shown that both chemiluminescence and phosphorescence can also be observed in a highly directional manner similar to coupled fluorescence. PMID:19601619

  4. Reference limits for biochemical and hematological analytes of dairy cows one week before and one week after parturition

    PubMed Central

    Quiroz-Rocha, Gerardo F.; LeBlanc, Stephen J.; Duffield, Todd F.; Wood, Darren; Leslie, Ken E.; Jacobs, Robert M.

    2009-01-01

    Since dairy cows during the transition period have multiple endocrine and metabolic changes, it is necessary to determine the reference limits of laboratory analytes in normal transition cows. Reference limits for the weeks before and after calving were determined in dairy cows. Animals that had adverse clinical outcomes after calving and cows that were culled or had mastitis within the first 7 days after calving were excluded. All biochemical analytes (β-hydroxybutyrate, fatty acids, glucose, cholesterol, urea, calcium, and phosphorus) were statistically different between precalving and postcalving groups. The hematological analytes were not significantly different except for eosinophils. The data from precalving and postcalving cows were significantly different from reference limits in a university-associated laboratory derived from early- and mid-lactation cows. Different reference limits for precalving and postcalving dairy cows should be determined for biochemical analytes to ensure appropriate interpretation of results. PMID:19436445

  5. Analytic coupled channel calculation of ultracold three-body collision rates

    NASA Astrophysics Data System (ADS)

    Meyer, Edmund; Esry, B. D.

    2012-06-01

    We analyze three-body recombination for positive two-body s-wave scattering lengths. Using the adiabatic hyperspherical representation as a starting point, we introduce coupling between the three-body continuum and the weakly bound diatom plus atom channel in the vicinity of R˜a---the location where rigorous calculations have shown the coupling to peak [1]. In order to model loss to deeply bound diatom channels, we introduce a complex short-range K-matrix. Analytic expressions for the loss rates are derived and we recover the behavior found previously [2], including the overall a^4 scaling for identical bosons as well as the log-periodic modulation due to Efimov physics. Our formulation permits straightforward extensions to other symmetries and higher energies. [4pt] [1] J. P. D'Incao and B. D. Esry, Phys. Rev. A 72, 032710 (2005) [2] B. D. Esry, C. H. Greene, and J. P. Burke, Jr., Phys. Rev. Lett. 83, 1751 (1999).

  6. Limits on the abundance and coupling of cosmic axions

    SciTech Connect

    DePanfilis, S.; Melissinos, A.C.; Moskowitz, B.E.; Rogers, J.T.; Semertzidis, Y.K.; Wuensch, W.U.; Halama, H.J.; Prodell, A.G.; Fowler, W.B.; Kerns, Q.

    1987-03-01

    We report preliminary results from a search for galactic axions in the mass range 4.5 < m/sub a/ < 5.0 ..mu..eV. For an axion line width GAMMA/sub a/ less than or equal to 8 x 10/sup -13/ eV, we obtain the experimental limit (g/sub a..gamma gamma../m/sub a/)/sup 2/rho/sub a/ < 1.4 x 10/sup -41/. The theoretical prediction is (g/sub a..gamma gamma../m/sub a/)/sup 2/rho/sub a/ = 3.9 x 10/sup -44/ with the local galactic axion density rho/sub a/ = 300 MeV/cm/sup 3/. We have also searched for the presence of a continuous spectrum of light pseudoscalar particles; assuming that the local galactic axion density is composed of axions with masses uniformly distributed between 4.5 and 5.0 ..mu..eV, we find that g/sub a..gamma gamma../ < 2 x 10/sup -30/ MeV/sup 1/2/ cm/sup 3/2/ approx. = 10/sup 11/ GeV/sup -1/. Limits have also been set on the production of light pseudoscalar x particles; we find g/sub x..gamma gamma../ < 10/sup -24/ MeV/sup 1/2/ cm/sup 3/2/ approx. = 10/sup -5/ GeV/sup -1/ for 0< m/sub x/ less than or equal to 4..mu..eV. 20 refs., 7 figs., 1 tab.

  7. Determination of the upper and lower limits of the mechanistic stoichiometry of incompletely coupled fluxes. Stoichiometry of incompletely coupled reactions.

    PubMed

    Beavis, A D; Lehninger, A L

    1986-07-15

    A rationale is formulated for the design of experiments to determine the upper and lower limits of the mechanistic stoichiometry of any two incompletely coupled fluxes J1 and J2. Incomplete coupling results when there is a branch at some point in the sequence of reactions or processes coupling the two fluxes. The upper limit of the mechanistic stoichiometry is given by the minimum value of dJ2/dJ1 obtained when the fluxes are systematically varied by changes in steps after the branch point. The lower limit is given by the maximum value of dJ2/dJ1 obtained when the fluxes are varied by changes in steps prior to the branch point. The rationale for determining these limits is developed from both a simple kinetic model and from a linear nonequilibrium thermodynamic treatment of coupled fluxes, using the mechanistic approach [Westerhoff, H. V. & van Dam, K. (1979) Curr. Top. Bioenerg. 9, 1-62]. The phenomenological stoichiometry, the flux ratio at level flow and the affinity ratio at static head of incompletely coupled fluxes are defined in terms of mechanistic conductances and their relationship to the mechanistic stoichiometry is discussed. From the rationale developed, experimental approaches to determine the mechanistic stoichiometry of mitochondrial oxidative phosphorylation are outlined. The principles employed do not require knowledge of the pathway or the rate of transmembrane leaks or slippage and may also be applied to analysis of the stoichiometry of other incompletely coupled systems, including vectorial H+/O and K+/O translocation coupled to mitochondrial electron transport. PMID:3015612

  8. Sensitivity and noise in GC-MS: Achieving low limits of detection for difficult analytes

    NASA Astrophysics Data System (ADS)

    Fialkov, Alexander B.; Steiner, Urs; Lehotay, Steven J.; Amirav, Aviv

    2007-01-01

    Gas chromatography-mass spectrometry (GC-MS) instrument limit of detection (LOD) is typically listed by major vendors as that of octafluoronaphthalene (OFN). Most current GC-MS instruments can achieve LODs in the low femtogram range. However, GC-MS LODs for realistic analytes in actual samples are often a few orders of magnitude higher than OFN's. Users seldom encounter 1 pg LOD in the single ion monitoring mode in their applications. We define this detectability difference as the "OFN gap." In this paper, we demonstrate and discuss how the OFN gap can be significantly reduced by the use of GC-MS with supersonic molecular beams (SMB). Experimental results were obtained with a recently developed GC-MS with SMB named 1200-SMB, that is based on the conversion of the Varian 1200 system into a GC-MS-MS with SMB. With this 1200-SMB system, the LOD of all types of analytes, including OFN, in real samples is significantly improved through the combination of: (a) enhanced molecular ion; (b) elimination of vacuum background noise; (c) elimination of mass independent noise; (d) elimination of ion source peak tailing and degradation; (e) significantly increased range of thermally labile and low volatility compounds that are amenable for analysis through lower sample elution temperatures; (f) reduced column bleed and ghost peaks through sample elution at lower temperatures; (g) improved compatibility with large volume injections; and (h) reduced matrix interferences through the combination of enhanced molecular ion and MS-MS. As a result, the 1200-SMB LODs of common and/or difficult compounds are much closer to its OFN LOD, even in complex matrices. We crossed the <1 fg OFN LOD milestone to achieve the lowest LOD to date using GC-MS, but more importantly, we attained LOD of 2 fg for diazinon, a common pesticide analyte. In another example, we achieved an LOD of 10 fg for underivatized testosterone, which is not amenable in traditional GC-MS analysis, and conducted many analyses

  9. A Comparison of Analytical and Numerical Methods for Modeling Dissolution and Other Reactions in Transport Limited Systems

    NASA Astrophysics Data System (ADS)

    Hochstetler, D. L.; Kitanidis, P. K.

    2009-12-01

    Modeling the transport of reactive species is a computationally demanding problem, especially in complex subsurface media, where it is crucial to improve understanding of geochemical processes and the fate of groundwater contaminants. In most of these systems, reactions are inherently fast and actual rates of transformations are limited by the slower physical transport mechanisms. There have been efforts to reformulate multi-component reactive transport problems into systems that are simpler and less demanding to solve. These reformulations include defining conservative species and decoupling of reactive transport equations so that fewer of them must be solved, leaving mostly conservative equations for transport [e.g., De Simoni et al., 2005; De Simoni et al., 2007; Kräutle and Knabner, 2007; Molins et al., 2004]. Complex and computationally cumbersome numerical codes used to solve such problems have also caused De Simoni et al. [2005] to develop more manageable analytical solutions. Furthermore, this work evaluates reaction rates and has reaffirmed that the mixing rate,▽TuD▽u, where u is a solute concentration and D is the dispersion tensor, as defined by Kitanidis [1994], is an important and sometimes dominant factor in determining reaction rates. Thus, mixing of solutions is often reaction-limiting. We will present results from analytical and computational modeling of multi-component reactive-transport problems. The results have applications to dissolution of solid boundaries (e.g., calcite), dissolution of non-aqueous phase liquids (NAPLs) in separate phases, and mixing of saltwater and freshwater (e.g. saltwater intrusion in coastal carbonate aquifers). We quantify reaction rates, compare numerical and analytical results, and analyze under what circumstances which approach is most effective for a given problem. References: DeSimoni, M., et al. (2005), A procedure for the solution of multicomponent reactive transport problems, Water Resources Research, 41

  10. Analytic derivative couplings for spin-flip configuration interaction singles and spin-flip time-dependent density functional theory

    SciTech Connect

    Zhang, Xing; Herbert, John M.

    2014-08-14

    We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H{sub 3} near its D{sub 3h} geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state.

  11. Study of uranium matrix interference on ten analytes using inductively coupled plasma atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Ghazi, A. A.; Qamar, Sajid; Atta, M. A.

    1993-08-01

    Maximum allowable concentrations of 12 elements in uranium hexafluoride feed for enrichment to reactor grade material (about 3%), vary from 1 to 100 ppm ( μg/g). Using an inductively coupled plasma atomic emission spectrometer, 51 lines of ten of these elements (B, Cr, Mo, P, Sb, Si, Ta, Ti, V and W) have been studied with a uranium matrix to investigate the matrix interference on the basis of signal to background (SBR), and background to background ratios (BBR). Detection limits and limits of quantitative determination (LQDs) were calculated for these elements in a uranium matrix using SBR and relative standard deviation of the background signal (RSD B) approach. In almost all cases, the uranium matrix interference reduces the SBRs to the extent that direct trace analysis is impossible. A uranium sample having known concentrations of impurities (around LQDs) was directly analysed with results that showed reasonable accuracy and precision.

  12. Renormalization group flow of quartic perturbations in graphene: Strong coupling and large- N limits

    NASA Astrophysics Data System (ADS)

    Drut, Joaquín E.; Son, Dam Thanh

    2008-02-01

    We explore the renormalization group flow of quartic perturbations in the low-enegy theory of graphene, in the strong Coulomb coupling and large- N limits, where N is the number of fermion flavors. We compute the anomalous dimensions of the quartic couplings u up to leading order in 1/N and find both relevant and irrelevant directions in the space of quartic couplings. We discuss possible phase diagrams and relevance for the physics of graphene.

  13. Advantages and Limits of the Multi SEM-EDX-RAMAN Coupling for Geomaterials

    NASA Astrophysics Data System (ADS)

    Guegan, R.; Di Carlo, I.; Coelho, G.; Branquet, Y.; Champallier, R.; Lahfid, A.; Bourrat, X.

    2014-06-01

    Advantages and limitations of EDX-SEM-Raman coupling via the characterization of two geomaterials: (i) an epidote obtained through a hydrothermal synthesis; and (ii) mother of pearl samples subjected to external stresses will be discussed.

  14. Comparison of limited measurements of the OTEC-1 plume with analytical-model predictions

    SciTech Connect

    Paddock, R.A.; Ditmars, J.D.

    1981-07-01

    Ocean Thermal Energy Conversion (OTEC) requires significant amounts of warm surface waters and cold deep waters for power production. Because these waters are returned to the ocean as effluents, their behavior may affect plant operation and impact the environment. The OTEC-1 facility tested 1-MWe heat exchangers aboard the vessel Ocean Energy Converter moored off the island of Hawaii. The warm and cold waters used by the OTEC-1 facility were combined prior to discharge from the vessel to create a mixed discharge condition. A limited field survey of the mixed discharge plume using fluorescent dye as a tracer was conducted on April 11, 1981, as part of the environmental studies at OTEC-1 coordinated by the Marine Sciences Group at Lawrence Berkeley Laboratory. Results of that survey were compared with analytical model predictions of plume behavior. Although the predictions were in general agreement with the results of the plume survey, inherent limitations in the field measurements precluded complete description of the plume or detailed evaluation of the models.

  15. Development of an analytical method for the determination of polybrominated diphenyl ethers in sewage sludge by the use of gas chromatography coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Novak, Petra; Zuliani, Tea; Milačič, Radmila; Ščančar, Janez

    2016-04-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants. As a consequence of their widespread use, they have been released into the environment. PBDEs are lipophilic organic contaminants that enter wastewater treatment plants (WWTPs) from urban, agricultural and industrial discharges. Because of their low aqueous solubility and resistance to biodegradation, up to 90% of the PBDEs are accumulated in the sewage sludge during the wastewater treatment. To assess the possibilities for sludge re-use, a reliable determination of the concentrations of these PBDEs is of crucial importance. Six PBDE congeners (BDE 28, BDE 47, BDE 99, BDE 100, BDE 153 and BDE 154) are listed as priority substances under the EU Water Framework Directive. In the present work a simple analytical method with minimal sample-preparation steps was developed for a sensitive and reliable determination of the six PBDEs in sewage sludge by the use of gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS). For this purpose an extraction procedure was optimised. Different extracting agents (methanol (MeOH), acetic acid (AcOH)/MeOH mixture (3:1) and 0.1 mol L(-1) hydrochloric acid (HCl) in MeOH) followed by the addition of a Tris-citrate buffer (co-extracting agent) and iso-octane were applied under different modes of extraction (mechanical shaking, microwave- and ultrasound-assisted extraction). Mechanical shaking or the microwave-assisted extraction of sewage sludge with 0.1 mol L(-1) HCl in MeOH and the subsequent addition of the Tris-citrate buffer and the iso-octane extracted the PBDEs from the complex sludge matrix most effectively. However, due to easier sample manipulation during the extraction step, mechanical shaking was used. The PBDEs in the organic phase were quantified with GC-ICP-MS by applying a standard addition calibration method. The spike recovery test (recoveries between 95 and 104%) and comparative analyses with the species-specific isotope

  16. An Analytical Solution of Radiative Transfer in the Coupled Atmosphere-Ocean System with Rough Surface

    NASA Technical Reports Server (NTRS)

    Jin, Zhonghai; Charlock, Thomas P.; Rutledge, Ken; Knut Stamnes; Wang, Yingjian

    2006-01-01

    Using the efficient discrete-ordinate method, we present an analytical solution for radiative transfer in the coupled atmosphere-ocean system with rough air-water interface. The theoretical formulations of the radiative transfer equation and solution are described. The effects of surface roughness on radiation field in the atmosphere and ocean are studied and compared with measurements. The results show that ocean surface roughness has significant effects on the upwelling radiation in the atmosphere and the downwelling radiation in the ocean. As wind speed increases, the angular domain of sunglint broadens, the surface albedo decreases, and the transmission to ocean increases. The downward radiance field in the upper ocean is highly anisotropic, but this anisotropy decreases rapidly as surface wind increases and as depth in ocean increases. The effects of surface roughness on radiation also depend greatly on both wavelength and angle of incidence (i.e., solar elevation); these effects are significantly smaller throughout the spectrum at high sun. The model-observation discrepancies may indicate that the Cox-Munk surface roughness model is not sufficient for high wind conditions.

  17. Analytic Couple Modeling Introducing Device Design Factor, Fin Factor, Thermal Diffusivity Factor, and Inductance Factor

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    A set of convenient thermoelectric device solutions have been derived in order to capture a number of factors which are previously only resolved with numerical techniques. The concise conversion efficiency equations derived from governing equations provide intuitive and straight-forward design guidelines. These guidelines allow for better device design without requiring detailed numerical modeling. The analytical modeling accounts for factors such as i) variable temperature boundary conditions, ii) lateral heat transfer, iii) temperature variable material properties, and iv) transient operation. New dimensionless parameters, similar to the figure of merit, are introduced including the device design factor, fin factor, thermal diffusivity factor, and inductance factor. These new device factors allow for the straight-forward description of phenomenon generally only captured with numerical work otherwise. As an example a device design factor of 0.38, which accounts for thermal resistance of the hot and cold shoes, can be used to calculate a conversion efficiency of 2.28 while the ideal conversion efficiency based on figure of merit alone would be 6.15. Likewise an ideal couple with efficiency of 6.15 will be reduced to 5.33 when lateral heat is accounted for with a fin factor of 1.0.

  18. Analytic formulation for the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma: FORTRAN subroutine

    NASA Astrophysics Data System (ADS)

    Cauble, R.; Rozmus, W.

    1993-10-01

    A FORTRAN subroutine for the calculation of the ac electrical conductivity in two-temperature, strongly coupled, overdense plasma is presented. The routine is the result of a model calculation based on classical transport theory with application to plasmas created by the interaction of short pulse lasers and solids. The formulation is analytic and the routine is self-contained.

  19. A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry for analysis of samples with high NaCl contents

    NASA Astrophysics Data System (ADS)

    Čánský, Zdeněk; Rychlovský, Petr; Petrová, Zuzana; Matousek, J. P.

    2007-03-01

    A technique coupling the analyte electrodeposition followed by in-situ stripping with electrothermal atomic absorption spectrometry has been developed for determination of lead and cadmium in samples with high salt contents. To separate the analyte from the sample matrix, the analyte was in-situ quantitatively electrodeposited on a platinum sampling capillary serving as the cathode (sample volume, 20 μL). The spent electrolyte containing the sample matrix was then withdrawn, the capillary with the analyte deposited was washed with deionized water and the analyte was stripped into a chemically simple electrolyte (5 g/L NH 4H 2PO 4) by reversing the polarity of the electrodeposition circuit. Electrothermal atomization using a suitable optimized temperature program followed. A fully automated manifold was designed for this coupled technique and the appropriate control software was developed. The operating conditions for determination of Pb and Cd in samples with high contents of inorganic salts were optimized, the determination was characterized by principal analytical parameters and its applicability was verified on analyses of urine reference samples. The absolute limits of detection for lead and cadmium (3 σ criterion) in a sample containing 30 g/L NaCl were 8.5 pg and 2.3 pg, respectively (peak absorbance) and the RSD values amounted to 1.6% and 1.9% for lead (at the 40 ng mL - 1 level) and cadmium (at the 4.0 ng mL - 1 level), respectively. These values (and also the measuring sensitivity) are superior to the results attained in conventional electrothermal atomic absorption spectrometric determination of Pb and Cd in pure solutions (5 g/L NH 4H 2PO 4). The sensitivity of the Pb and Cd determination is not affected by the NaCl concentration up to a value of 100 g/L, demonstrating an efficient matrix removal during the electrodeposition step.

  20. Probing Subdiffraction Limit Separations with Plasmon Coupling Microscopy: Concepts and Applications

    PubMed Central

    Wu, Linxi

    2014-01-01

    Due to their advantageous materials properties, noble metal nanoparticles are versatile tools in biosensing and imaging. A characteristic feature of gold and silver nanoparticles is their ability to sustain localized surface plasmons that provide both large optical cross-sections and extraordinary photophysical stability. Plasmon Coupling Microscopy takes advantage of the beneficial optical properties and utilizes electromagnetic near-field coupling between individual noble metal nanoparticle labels to resolve subdiffraction limit separations in an all-optical fashion. This Tutorial provides an introduction into the physical concepts underlying distance dependent plasmon coupling, discusses potential experimental implementations of Plasmon Coupling Microscopy, and reviews applications in the area of biosensing and imaging. PMID:24390574

  1. Analytic evaluation of the nonadiabatic coupling vector between excited states using equation-of-motion coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Tajti, Attila; Szalay, Péter G.

    2009-09-01

    Theory and implementation for evaluation of the nonadiabatic coupling vector between excited electronic states described by equation-of-motion excitation energy coupled-cluster singles and doubles (EOMEE-CCSD) method is presented. Problems arising from the non-Hermitian nature of the theory are discussed in detail. The performance of the new approach is demonstrated by the nice agreement of the nonadiabatic coupling curves for LiH obtained at the EOMEE-CCSD and MR-CISD levels. Using the tools developed we also present a computational procedure to evaluate the interstate coupling constants used in vibronic coupling theories. As an application of this part of the implementation we present simulation of the electronic absorption spectrum of the pyrazine molecule within the linear vibronic coupling model.

  2. Analytical Kerr-Sen dilaton-axion black hole lensing in the weak deflection limit

    SciTech Connect

    Gyulchev, Galin N.; Yazadjiev, Stoytcho S.

    2010-01-15

    We investigate analytical gravitational lensing by charged, stationary, axially symmetric Kerr-Sen dilaton-axion black holes in the weak-deflection limit. Approximate solutions to the lightlike equations of motion are present up to and including third-order terms in M/b, a/b, and r{sub {alpha}/}b, where M is the black hole mass, a is the angular momentum, r{sub {alpha}=}Q{sup 2}/M, Q being the charge and b is the impact parameter of the light ray. We compute the positions of the two weak field images, the corresponding signed and absolute magnifications up to post-Newtonian order. It is shown that there are static post-Newtonian corrections to the signed magnification and their sum as well as to the critical curves, which are functions of the charge. The shift of the critical curves as a function of the lens angular momentum is found, and it is shown that they decrease slightly with the increase of the charge. The pointlike caustics drift away from the optical axis and do not depend on the charge. All of the lensing quantities are compared to particular cases as Schwarzschild and Kerr black holes as well as the Gibbons-Maeda-Garfinkle-Horowitz-Strominger black hole.

  3. Evaluation of the analytical capability of NIR femtosecond laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Hirata, Takafumi; Kon, Yoshiaki

    2008-03-01

    A laser ablation-inductively coupled plasma-mass spectrometric (LA-ICPMS) technique utilizing a titanium-sapphire (TiS) femtosecond laser (fs-laser) has been developed for elemental and isotopic analysis. The signal intensity profile, depth of the ablation pit and level of elemental fractionation were investigated in order to evaluate the analytical capability of the present fs-laser ablation-ICPMS technique. The signal intensity profile of (57)Fe, obtained from iron sulfide (FeS(2)), demonstrated that the resulting signal intensity of (57)Fe achieved by the fs-laser ablation was almost 4-times higher than that obtained by ArF excimer laser ablation under a similar energy fluence (5 J/cm(2)). In fs-laser ablation, there is no significant difference in a depth of the ablation pit between glass and zircon material, while in ArF laser ablation, the resulting crater depth on the zircon crystal was almost half the level than that obtained for glass material. Both the thermal-induced and particle size-related elemental fractionations, which have been thought to be main sources of analytical error in the LA-ICPMS analysis, were measured on a Harvard 91500 zircon crystal. The resulting fractionation indexes on the (206)Pb/(238)U (f(Pb/U)) and (238)U/(232)Th (f(U/Th)) ratios obtained by the present fs-laser ablation system were significantly smaller than those obtained by a conventional ArF excimer laser ablation system, demonstrative of smaller elemental fractionation. Using the present fs-laser ablation technique, the time profile of the signal intensity of (56)Fe and the isotopic ratios ((57)Fe/(54)Fe and (56)Fe/(54)Fe) have been measured on a natural pyrite (FeS(2)) sample. Repeatability in signal intensity of (56)Fe achieved by the fs-laser ablation system was significantly better than that obtained by ArF excimer laser ablation. Moreover, the resulting precision in (57)Fe/(54)Fe and (56)Fe/(54)Fe ratio measurements could be improved by the fs-laser ablation system

  4. Analytic solution to leading order coupled DGLAP evolution equations: A new perturbative QCD tool

    NASA Astrophysics Data System (ADS)

    Block, Martin M.; Durand, Loyal; Ha, Phuoc; McKay, Douglas W.

    2011-03-01

    We have analytically solved the LO perturbative QCD singlet DGLAP equations [V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)SJNCAS0038-5506][G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977)][Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)SPHJAR0038-5646] using Laplace transform techniques. Newly developed, highly accurate, numerical inverse Laplace transform algorithms [M. M. Block, Eur. Phys. J. C 65, 1 (2010)EPCFFB1434-604410.1140/epjc/s10052-009-1195-8][M. M. Block, Eur. Phys. J. C 68, 683 (2010)EPCFFB1434-604410.1140/epjc/s10052-010-1374-7] allow us to write fully decoupled solutions for the singlet structure function Fs(x,Q2) and G(x,Q2) as Fs(x,Q2)=Fs(Fs0(x0),G0(x0)) and G(x,Q2)=G(Fs0(x0),G0(x0)), where the x0 are the Bjorken x values at Q02. Here Fs and G are known functions—found using LO DGLAP splitting functions—of the initial boundary conditions Fs0(x)≡Fs(x,Q02) and G0(x)≡G(x,Q02), i.e., the chosen starting functions at the virtuality Q02. For both G(x) and Fs(x), we are able to either devolve or evolve each separately and rapidly, with very high numerical accuracy—a computational fractional precision of O(10-9). Armed with this powerful new tool in the perturbative QCD arsenal, we compare our numerical results from the above equations with the published MSTW2008 and CTEQ6L LO gluon and singlet Fs distributions [A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009)EPCFFB1434-604410.1140/epjc/s10052-009-1072-5], starting from their initial values at Q02=1GeV2 and 1.69GeV2, respectively, using their choice of αs(Q2). This allows an important independent check on the accuracies of their evolution codes and, therefore, the computational accuracies of their published parton distributions. Our method completely decouples the two LO distributions, at the same time guaranteeing that both G and Fs satisfy the singlet coupled DGLAP equations. It also allows one to easily obtain the effects of

  5. Reliability of the ΔECN42 limit and global method for extra virgin olive oil purity assessment using different analytical approaches.

    PubMed

    Beccaria, Marco; Moret, Erica; Purcaro, Giorgia; Pizzale, Lorena; Cotroneo, Antonella; Dugo, Paola; Mondello, Luigi; Conte, Lanfranco S

    2016-01-01

    Two data elaboration approaches for evaluating olive oils authenticity were compared: (I) determination of the difference between the theoretical and actual amounts of triacylglycerols with partition number 42 (ΔECN42 ⩽ |0.2|); and (II) the global method, which considers also partition numbers 44 and 46 (returning a "correct"/"not correct" result). Analysis of 31 genuine extra virgin olive oil samples was performed using different analytical methods, namely liquid chromatography (LC) coupled with a refractive index detector (RID) and LC coupled with a mass spectrometry (MS), and the results compared. Several false positives were highlighted using the ΔECN42 limit with both instrumental approaches. The global method algorithm returned "correct" results for all the samples analysed (except two that gave no results) with LC-MS; on the other hand, 10 false positives were obtained elaborating data deriving from NARP-LC-RID analysis. PMID:26212964

  6. Analytic gradients for coupled-cluster energies that include noniterative connected triple excitations - Application to cis- and trans-HONO

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rendell, Alistair P.

    1991-01-01

    An efficient formulation of the analytic energy gradient for the single and double excitation coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations is presented. The formulation has a small computational cost, and the algebraic manipulations may be applied generally to the analytic gradient of Moller-Plesset perturbation theory energies. The new formulation has been implemented in an efficient set of programs that utilize highly vectorized algorithms and has been used to investigate the equilibrium structures, harmonic vibrational frequencies, IR intensities, and energy separation of cis- and trans-HONO.

  7. Analytic design method for optimal imaging: coupling three ray sets using two free-form lens profiles.

    PubMed

    Duerr, Fabian; Benítez, Pablo; Miñano, Juan C; Meuret, Youri; Thienpont, Hugo

    2012-02-27

    In this work, a new two-dimensional optics design method is proposed that enables the coupling of three ray sets with two lens surfaces. The method is especially important for optical systems designed for wide field of view and with clearly separated optical surfaces. Fermat's principle is used to deduce a set of functional differential equations fully describing the entire optical system. The presented general analytic solution makes it possible to calculate the lens profiles. Ray tracing results for calculated 15th order Taylor polynomials describing the lens profiles demonstrate excellent imaging performance and the versatility of this new analytic design method. PMID:22418364

  8. On the continuous limits and integrability of a new coupled semidiscrete mKdV system

    SciTech Connect

    Zhu Zuonong; Zhao Haiqiong; Wu Xiaonan

    2011-04-15

    In this paper, we aim to get more insight on the relation between semidiscrete coupled mKdV system (where ''semidiscrete'' means that the system is discrete in the space variable and continuous in time) and the coupled mKdV equations; to this purpose, we propose a new coupled semidiscrete mKdV system. The Lax pairs, the Darboux transformation, soliton solutions and conservation laws for the coupled semidiscrete mKdV system are given. The coupled mKdV theory including the Lax pairs, the Darboux transformation, soliton solutions, and conservation laws is recovered through the continuous limits of corresponding theory for the new semidiscrete mKdV system.

  9. Nonrelativistic limit of the Dirac-Schwarzschild Hamiltonian: Gravitational Zitterbewegung and gravitational spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Jentschura, U. D.; Noble, J. H.

    2013-08-01

    We investigate the nonrelativistic limit of the gravitationally coupled Dirac equation via a Foldy-Wouthuysen transformation. The relativistic correction terms have immediate and obvious physical interpretations in terms of a gravitational Zitterbewegung and a gravitational spin-orbit coupling. We find no direct coupling of the spin vector to the gravitational force, which would otherwise violate parity. The particle-antiparticle symmetry described recently by one of us [Jentschura, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.87.032101 87, 032101 (2013)] is verified on the level of the perturbative corrections accessed by the Foldy-Wouthuysen transformation. The gravitational corrections to the electromagnetic transition current are calculated.

  10. Evaluation of the temporal profiles and the analytical features of a laser ablation - Pulsed glow discharge coupling for optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    González de Vega, Claudia; Bordel, Nerea; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-07-01

    The coupling of a glow discharge (GD) in pulsed mode (PGD) as secondary source for excitation/ionization of the material provided by laser ablation (LA) has been investigated using optical emission spectrometry (OES). The variation of the laser pulse delay with respect to the GD pulse allows to producing the ablation process during prepeak, plateau or afterglow GD regions. Emission properties of the LA-PGD plasma in each temporal region of the GD pulse have been evaluated for analytical lines of different elements. Resonant atomic lines have shown higher emission intensity in the prepeak region compared to non-resonant lines. Non-resonant lines showed higher enhancement of the emission intensity in the afterglow region. Moreover, the coupled LA-PGD system offered better linear correlation coefficients using a set of glass standards for calibration as well as lower detection limits (by at least a factor of two) when compared to laser induced breakdown spectroscopy.

  11. A Meta-Analytic Study of Couple Interventions during the Transition to Parenthood

    ERIC Educational Resources Information Center

    Pinquart, Martin; Teubert, Daniela

    2010-01-01

    The present meta-analysis integrates results of 21 controlled couple-focused interventions with expectant and new parents. The interventions had, on average, small effects on couple communication (d = 0.28 standard deviation units) and psychological well-being (d = 0.21), as well as very small effects on couple adjustment (d = 0.09). Stronger…

  12. Derivative couplings and analytic gradients for diabatic states, with an implementation for Boys-localized configuration-interaction singles

    NASA Astrophysics Data System (ADS)

    Fatehi, Shervin; Alguire, Ethan; Subotnik, Joseph E.

    2013-09-01

    We demonstrate that Boys-localized diabatic states do indeed exhibit small derivative couplings, as is required of quasidiabatic states. In doing so, we present a general formalism for calculating derivative couplings and analytic gradients for diabatic states. We then develop additional equations specific to the case of Boys-localized configuration-interaction singles (CIS)—in particular, the analytic gradient of the CIS dipole matrix—and we validate our implementation against finite-difference results. In a forthcoming paper, we will publish additional algorithmic and computational details and apply our method to the Closs energy-transfer systems as a further test of the validity of Boys-localized diabatic states.

  13. Valley detection using a graphene gradual pn junction with spin-orbit coupling: An analytical conductance calculation

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Wang, Rui-Qiang; Bai, Yan-Kui

    2015-09-01

    Graphene pn junction is the brick to build up variety of graphene nano-structures. The analytical formula of the conductance of graphene gradual pn junctions in the whole bipolar region has been absent up to now. In this paper, we analytically calculated that pn conductance with the spin-orbit coupling and stagger potential taken into account. Our analytical expression indicates that the energy gap causes the conductance to drop a constant value with respect to that without gap in a certain parameter region, and manifests that the curve of the conductance versus the stagger potential consists of two Gaussian peaks - one valley contributes one peak. The latter feature allows one to detect the valley polarization without using double-interface resonant devices.

  14. Analytical model for tilting proprotor aircraft dynamics, including blade torsion and coupled bending modes, and conversion mode operation

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1974-01-01

    An analytical model is developed for proprotor aircraft dynamics. The rotor model includes coupled flap-lag bending modes, and blade torsion degrees of freedom. The rotor aerodynamic model is generally valid for high and low inflow, and for axial and nonaxial flight. For the rotor support, a cantilever wing is considered; incorporation of a more general support with this rotor model will be a straight-forward matter.

  15. Compiled data set of exact NOE distance limits, residual dipolar couplings and scalar couplings for the protein GB3

    PubMed Central

    Vögeli, Beat; Olsson, Simon; Riek, Roland; Güntert, Peter

    2015-01-01

    We compiled an NMR data set consisting of exact nuclear Overhauser enhancement (eNOE) distance limits, residual dipolar couplings (RDCs) and scalar (J) couplings for GB3, which forms one of the largest and most diverse data set for structural characterization of a protein to date. All data have small experimental errors, which are carefully estimated. We use the data in the research article Vogeli et al., 2015, Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics, J. Struct. Biol., 191, 3, 306–317, doi:10.1016/j.jsb.2015.07.008 [1] for cross-validation in multiple-state structural ensemble calculation. We advocate this set to be an ideal test case for molecular dynamics simulations and structure calculations. PMID:26504890

  16. Natural Conception May Be an Acceptable Option in HIV-Serodiscordant Couples in Resource Limited Settings

    PubMed Central

    Xin, Ruolei; Zhu, Yunxia; Li, Jianwei; Shao, Ying; Ye, Jiangzhu; Chen, Danqing; Li, Zaicun

    2015-01-01

    Many HIV serodiscordant couples have a strong desire to have their own biological children. Natural conception may be the only choice in some resource limited settings but data about natural conception is limited. Here, we reported our findings of natural conception in HIV serodiscordant couples. Between January 2008 and June 2014, we retrospectively collected data on 91 HIV serodiscordant couples presenting to Beijing Youan Hospital with childbearing desires. HIV counseling, effective ART on HIV infected partners, pre-exposure prophylaxis (PrEP) and post-exposure prophylaxis (PEP) in negative female partners and timed intercourse were used to maximally reduce the risk of HIV transmission. Of the 91 HIV serodiscordant couples, 43 were positive in male partners and 48 were positive in female partners. There were 196 unprotected vaginal intercourses, 100 natural conception and 97 newborns. There were no cases of HIV seroconversion in uninfected sexual partners. Natural conception may be an acceptable option in HIV-serodiscordant couples in resource limited settings if HIV-positive individuals have undetectable viremia on HAART, combined with HIV counseling, PrEP, PEP and timed intercourse. PMID:26540103

  17. RBS: an analytical technique for elemental characterization of standards; advantages and limits of application

    NASA Astrophysics Data System (ADS)

    Climent-Font, A.; Fernández-Jiménez, M. T.; Wätjen, U.; Perrière, J.

    1994-12-01

    Rutherford backscattering spectrometry (RBS) is an ion beam analytical technique fulfilling unique conditions to give information on the elemental composition of the near surface of materials. Some of the physical processes involved in an RBS experiment are very well understood and are described by analytical formulas allowing for the elaboration of simple computer codes recreating theoretical RBS experiments. Such computer codes are of great help for fast and accurate interpretation of experimental RBS spectra. Under favorable circumstances quantitative composition depth profiles can be obtained. The possibility of doing absolute measurements with RBS makes it very attractive for the characterization of standard samples useful and necessary in other analytical techniques if quantitative analysis is required. In spite of its capabilities, RBS is not free from some flaws that make difficult to reduce the level of uncertainties below 5% in the quantification of the spectra or to make an unambiguous interpretation of the results. In this work we illustrate with a few examples some of the relevant features of RBS which make this analytical technique so useful, and we also discuss situations in which RBS can give only ambiguous information, and where the assistance of a complementary analytical technique is required for a successful interpretation of the results.

  18. Sulfur Limits of Detection and Spectral Interference Corrections for DWPF Sludge Matrices by Inductively Coupled Plasma Emission Spectrometry

    SciTech Connect

    JURGENSEN, AR

    2004-04-20

    The Savannah River Technology Center (SRTC) has been requested to perform sulfur (S) analysis on digested radioactive sludge and supernatant samples by Inductively Coupled Plasma Emission Spectrometry (ICP-ES). The amount of sulfur is a concern because there are sulfur limits for the incoming feed, due to glass melter, process vessel, and off-gas line corrosion concerns and limited sulfur solubility in the glass wasteform. Recent changes in the washing strategy and stream additions change the amount of sulfur in the sludge. Increasing the sulfur concentration in the sludge challenges the current limits, so accurately determining the amount of sulfur present in a sludge batch is paramount. There are two important figures of merit that need to be evaluated for this analysis. The first is the detection limit (LOD), the smallest concentration of an element that can be detected with a defined certainty. This issue is important since the sulfur concentration in these process streams is l ow. Another critical analytical parameter is the effect on the S quantitation from potential spectral interferences. Spectral interferences are caused by background emission from plasma recombination events, scattered and stray light from the line emission of high concentration elements, or molecular band emission and from direct or tailing spectral line overlap from a matrix element. Any existing spectral overlaps could give false positives or increase the measured S concentrations in these matrices.

  19. Analytic derivative couplings between configuration-interaction-singles states with built-in electron-translation factors for translational invariance

    NASA Astrophysics Data System (ADS)

    Fatehi, Shervin; Alguire, Ethan; Shao, Yihan; Subotnik, Joseph E.

    2011-12-01

    We present a method for analytically calculating the derivative couplings between a pair of configuration-interaction-singles (CIS) excited states obtained in an atom-centered basis. Our theory is exact and has been derived using two completely independent approaches: one inspired by the Hellmann-Feynman theorem and the other following from direct differentiation. (The former is new, while the latter is in the spirit of existing approaches in the literature.) Our expression for the derivative couplings incorporates all Pulay effects associated with the use of an atom-centered basis, and the computational cost is minimal, roughly comparable to that of a single CIS energy gradient. We have validated our method against CIS finite-difference results and have applied it to the lowest lying excited states of naphthalene; we find that naphthalene derivative couplings include Pulay contributions sufficient to have a qualitative effect. Going beyond standard problems in analytic gradient theory, we have also constructed a correction, based on perturbative electron-translation factors, for including electronic momentum and eliminating spurious components of the derivative couplings that break translational symmetry. This correction is general and can be applied to any level of electronic structure theory.

  20. The limited relevance of analytical ethics to the problems of bioethics.

    PubMed

    Holmes, R L

    1990-04-01

    Philosophical ethics comprises metaethics, normative ethics and applied ethics. These have characteristically received analytic treatment by twentieth-century Anglo-American philosophy. But there has been disagreement over their interrelationship to one another and the relationship of analytical ethics to substantive morality--the making of moral judgments. I contend that the expertise philosophers have in either theoretical or applied ethics does not equip them to make sounder moral judgments on the problems of bioethics than nonphilosophers. One cannot "apply" theories like Kantianism or consequentialism to get solutions to practical moral problems unless one knows which theory is correct, and that is a metaethical question over which there is no consensus. On the other hand, to presume to be able to reach solutions through neutral analysis of problems is unavoidably to beg controversial theoretical issues in the process. Thus, while analytical ethics can play an important clarificatory role in bioethics, it can neither provide, nor substitute for, moral wisdom. PMID:2351891

  1. Pattern phase diagram for two-dimensional arrays of coupled limit-cycle oscillators.

    PubMed

    Lauter, Roland; Brendel, Christian; Habraken, Steven J M; Marquardt, Florian

    2015-07-01

    Arrays of coupled limit-cycle oscillators represent a paradigmatic example for studying synchronization and pattern formation. We find that the full dynamical equations for the phase dynamics of a limit-cycle oscillator array go beyond previously studied Kuramoto-type equations. We analyze the evolution of the phase field in a two-dimensional array and obtain a "phase diagram" for the resulting stationary and nonstationary patterns. Our results are of direct relevance in the context of currently emerging experiments on nano- and optomechanical oscillator arrays, as well as for any array of coupled limit-cycle oscillators that have undergone a Hopf bifurcation. The possible observation in optomechanical arrays is discussed briefly. PMID:26274242

  2. Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows

    SciTech Connect

    Adamovich, Igor V.

    2014-04-15

    A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes.

  3. RELIABLE ANALYSES OF WATER BY INDUCTIVELY COUPLED PLASMA EMISSION SPECTROSCOPY. ANALYTICAL CHEMISTRY BRANCH

    EPA Science Inventory

    Reduction of stray light in the inductively coupled plasma emission spectrometer (ICPES) has greatly increased its reliability as a technique for the multielemental analysis of water. Because of interferences introduced by matrix elements, reliable analysis of some less-sensitive...

  4. An analytic model for limiting high density LH transition by the onset of the tertiary instability

    NASA Astrophysics Data System (ADS)

    Singh, Raghvendra; Jhang, Hogun; Kaang, Helen H.

    2016-07-01

    We perform an analytic study of the tertiary instability driven by a strong excitation of zonal flows during high density low to high (LH) mode transition. The drift resistive ballooning mode is assumed to be a dominant edge turbulence driver. The analysis reproduces main qualitative features of early computational results [Rogers and Drake, Phys. Rev. Lett. 81, 4396 (1998); Guzdar et al., Phys. Plasmas 14, 020701 (2007)], as well as new characteristics of the maximum edge density due to the onset of the tertiary instability. An analytical scaling indicates that the density scaling of LH transition power may be determined by the onset condition of the tertiary instability when the operating density approaches to the Greenwald density.

  5. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates

    PubMed Central

    Zengin, Gülis; Johansson, Göran; Johansson, Peter; Antosiewicz, Tomasz J.; Käll, Mikael; Shegai, Timur

    2013-01-01

    We studied scattering and extinction of individual silver nanorods coupled to the J-aggregate form of the cyanine dye TDBC as a function of plasmon – exciton detuning. The measured single particle spectra exhibited a strongly suppressed scattering and extinction rate at wavelengths corresponding to the J-aggregate absorption band, signaling strong interaction between the localized surface plasmon of the metal core and the exciton of the surrounding molecular shell. In the context of strong coupling theory, the observed “transparency dips” correspond to an average vacuum Rabi splitting of the order of 100 meV, which approaches the plasmon dephasing rate and, thereby, the strong coupling limit for the smallest investigated particles. These findings could pave the way towards ultra-strong light-matter interaction on the nanoscale and active plasmonic devices operating at room temperature. PMID:24166360

  6. Periodic Forcing of a 555-IC Based Electronic Oscillator in the Strong Coupling Limit

    NASA Astrophysics Data System (ADS)

    Santillán, Moisés

    We designed and developed a master-slave electronic oscillatory system (based on the 555-timer IC working in the astable mode), and investigated its dynamic behavior regarding synchronization. For that purpose, we measured the rotation numbers corresponding to the phase-locking rhythms achieved in a large set of values of the normalized forcing frequency (NFF) and of the coupling strength between the master and the slave oscillators. In particular, we were interested in the system behavior in the strong-coupling limit, because such problem has not been extensively studied from an experimental perspective. Our results indicate that, in such a limit, a degenerate codimension-2 bifurcation point at NFF = 2 exists, in which all the phase-locking regions converge. These findings were corroborated by means of a mathematical model developed to that end, as well as by ad hoc further experiments.

  7. Limits on WWγ and WWZ couplings from W boson pair production

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babukhadia, L.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johari, H.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhou, Z.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1998-09-01

    The results of a search for W boson pair production in pp¯ collisions at s=1.8 TeV with subsequent decay to eμ, ee, and μμ channels are presented. Five candidate events are observed with an expected background of 3.1+/-0.4 events for an integrated luminosity of approximately 97 pb-1. Limits on the anomalous couplings are obtained from a maximum likelihood fit of the ET spectra of the leptons in the candidate events. Assuming identical WWγ and WWZ couplings, the 95% C.L. limits are -0.62<Δκ<0.77 (λ=0) and -0.53<λ <0.56 (Δκ=0) for a form factor scale Λ=1.5 TeV.

  8. Analytic free-form lens design in 3D: coupling three ray sets using two lens surfaces.

    PubMed

    Duerr, Fabian; Benítez, Pablo; Miñano, Juan C; Meuret, Youri; Thienpont, Hugo

    2012-05-01

    The two-dimensional analytic optics design method presented in a previous paper [Opt. Express 20, 5576-5585 (2012)] is extended in this work to the three-dimensional case, enabling the coupling of three ray sets with two free-form lens surfaces. Fermat's principle is used to deduce additional sets of functional differential equations which make it possible to calculate the lens surfaces. Ray tracing simulations demonstrate the excellent imaging performance of the resulting free-form lenses described by more than 100 coefficients. PMID:22565708

  9. Improving the Mass-Limited Performance of Routine NMR Probes using Coupled Coils.

    PubMed

    Marsden, Brian; Lim, Victor; Taber, Bob; Zens, Albert

    2016-07-01

    We report a method to convert, on demand, a general use dual-broadband probe to a high performance mass-limited probe for both high band and low band nuclei. This technology uses magnetic coupling of inductors to achieve this capability. The method offers a cost effective way of increasing the performance of routine NMR probes without having to change probes or increase the overall foot print of the spectrometer. PMID:27155588

  10. Improving the Mass-Limited Performance of Routine NMR Probes using Coupled Coils

    NASA Astrophysics Data System (ADS)

    Marsden, Brian; Lim, Victor; Taber, Bob; Zens, Albert

    2016-07-01

    We report a method to convert, on demand, a general use dual-broadband probe to a high performance mass-limited probe for both high band and low band nuclei. This technology uses magnetic coupling of inductors to achieve this capability. The method offers a cost effective way of increasing the performance of routine NMR probes without having to change probes or increase the overall foot print of the spectrometer.

  11. Chiral Lagrangians from lattice gauge theories in the strong coupling limit

    SciTech Connect

    Nagao, Taro; Nishigaki, Shinsuke M.

    2001-07-01

    We derive nonlinear {sigma} models (chiral Lagrangians) over symmetric spaces U(n), U(2n)/Sp(2n), and U(2n)/O(2n) from U(N), O(N), and Sp(2N) lattice gauge theories coupled to n flavors of staggered fermions, in the large-N and g{sup 2}N limit. To this end, we employ Zirnbauer{close_quote}s color-flavor transformation. We prove the spatial homogeneity of the vacuum configurations of mesons by explicitly solving the large-N saddle point equations, and thus establish these patterns of spontaneous chiral symmetry breaking in the above limit.

  12. Analytical estimations for thermal crosstalk, retention, and scaling limits in filamentary resistive memory

    NASA Astrophysics Data System (ADS)

    Lohn, Andrew J.; Mickel, Patrick R.; Marinella, Matthew J.

    2014-06-01

    We discuss the thermal effects on scaling, retention, and error rate in filamentary resistive memories from a theoretical perspective using an analytical approach. Starting from the heat equation, we derive the temperature profile surrounding a resistive memory device and calculate its effect on neighboring devices. We outline the engineering tradeoffs that are expected with continued scaling, such as retention and power use per device. Based on our calculations, we expect scaling to continue well below 10 nm, but that the effect of heating from neighboring devices needs to be considered for some applications even at current manufacturing capabilities. We discuss possible designs to alleviate some of these effects while further increasing device density.

  13. F-theory on Spin(7) manifolds: weak-coupling limit

    NASA Astrophysics Data System (ADS)

    Bonetti, Federico; Grimm, Thomas W.; Palti, Eran; Pugh, Tom G.

    2014-02-01

    F-theory on appropriately fibered Spin(7) holonomy manifolds is defined to arise as the dual of M-theory on the same space in the limit of a shrinking fiber. A class of Spin(7) orbifolds can be constructed as quotients of elliptically fibered Calabi-Yau fourfolds by an anti-holomorphic involution. The F-theory dual then exhibits one macroscopic dimension that has the topology of an interval. In this work we study the weak-coupling limit of a subclass of such constructions and identify the objects that arise in this limit. On the Type IIB side we find space-time filling O7-planes as well as O5- planes and orbifold five-planes with a (-1) FL factor localised on the interval boundaries. These orbifold planes are referred to as X5-planes and are S-dual to a D5-O5 system. For other involutions exotic O3-planes and X3-planes on top of a six-dimensional orbifold singularity can appear. We show that the objects present preserve a mutual supersymmetry of four supercharges in the bulk of the interval and two supercharges on the boundary. It follows that in the infinite-interval and weak-coupling limit full four-dimensional = 1 supersymmetry is restored, which on the Type IIA side corresponds to an enhancement of supersymmetry by winding modes in the vanishing interval limit.

  14. General analytic methods for solving coupled transport equations: From cosmology to beyond

    NASA Astrophysics Data System (ADS)

    White, G. A.

    2016-02-01

    We propose a general method to analytically solve transport equations during a phase transition without making approximations based on the assumption that any transport coefficient is large. Using a cosmic phase transition in the minimal supersymmetric standard model as a pedagogical example, we derive the solutions to a set of 3 transport equations derived under the assumption of supergauge equilibrium and the diffusion approximation. The result is then rederived efficiently using a technique we present involving a parametrized ansatz which turns the process of deriving a solution into an almost elementary problem. We then show how both the derivation and the parametrized ansatz technique can be generalized to solve an arbitrary number of transport equations. Finally we derive a perturbative series that relaxes the usual approximation that inactivates vacuum-expectation-value dependent relaxation and C P -violating source terms at the bubble wall and through the symmetric phase. Our analytical methods are able to reproduce a numerical calculation in the literature.

  15. The analytics of the limitation of collimating ability for asymmetric bi-convex lenses

    NASA Astrophysics Data System (ADS)

    Shi, Yong; Shao, Zhongxing

    2005-01-01

    Laser diode (LD) are playing more and more important role in a number of technical areas. However, due to LD's bad beam divergence, researchers have to use sophisticate optical systems to collimate or focus LD into other appliance. It is necessary to collimate laser diode. Whereas if the object is not ideal but with a limited dimension, no matter how to correct the radius, some aberrations may always remain. That is the collimation has a limitation. In this paper, we investigate the limitation for the asymmetric bi-convex lenses by ray tracing method with the help of Femat theory. And obtain the equations which analyze the limitation of the asymmetric bi-convex lenses. By programming the equations, we calculated and the limitation as a function of LD's beam dimension, index and the two radii of curvature of the asymmetric bi-convex lenses respectively. Keeping other conditions invariably and changing LD's beam dimension from 5mm to 150mm with a step of 5mm, we find that the limitation increases approximatively linearly with the increase of the beam dimension. Basing on the results of the calculation, we analyzed and plotted the limitation as a function of index and radii of curvature of the asymmetric bi-convex lenses in detail.

  16. Analytical solution of a stochastic model of risk spreading with global coupling

    NASA Astrophysics Data System (ADS)

    Morita, Satoru; Yoshimura, Jin

    2013-11-01

    We study a stochastic matrix model to understand the mechanics of risk spreading (or bet hedging) by dispersion. Up to now, this model has been mostly dealt with numerically, except for the well-mixed case. Here, we present an analytical result that shows that optimal dispersion leads to Zipf's law. Moreover, we found that the arithmetic ensemble average of the total growth rate converges to the geometric one, because the sample size is finite.

  17. Analytical stability and simulation response study for a coupled two-body system

    NASA Technical Reports Server (NTRS)

    Tao, K. M.; Roberts, J. R.

    1975-01-01

    An analytical stability study and a digital simulation response study of two connected rigid bodies are documented. Relative rotation of the bodies at the connection is allowed, thereby providing a model suitable for studying system stability and response during a soft-dock regime. Provisions are made of a docking port axes alignment torque and a despin torque capability for encountering spinning payloads. Although the stability analysis is based on linearized equations, the digital simulation is based on nonlinear models.

  18. Authentication of Kalix (N.E. Sweden) vendace caviar using inductively coupled plasma-based analytical techniques: evaluation of different approaches.

    PubMed

    Rodushkin, I; Bergman, T; Douglas, G; Engström, E; Sörlin, D; Baxter, D C

    2007-02-01

    Different analytical approaches for origin differentiation between vendace and whitefish caviars from brackish- and freshwaters were tested using inductively coupled plasma double focusing sector field mass spectrometry (ICP-SFMS) and multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). These approaches involve identifying differences in elemental concentrations or sample-specific isotopic composition (Sr and Os) variations. Concentrations of 72 elements were determined by ICP-SFMS following microwave-assisted digestion in vendace and whitefish caviar samples from Sweden (from both brackish and freshwater), Finland and USA, as well as in unprocessed vendace roe and salt used in caviar production. This data set allows identification of elements whose contents in caviar can be affected by salt addition as well as by contamination during production and packaging. Long-term method reproducibility was assessed for all analytes based on replicate caviar preparations/analyses and variations in element concentrations in caviar from different harvests were evaluated. The greatest utility for differentiation was demonstrated for elements with varying concentrations between brackish and freshwaters (e.g. As, Br, Sr). Elemental ratios, specifically Sr/Ca, Sr/Mg and Sr/Ba, are especially useful for authentication of vendace caviar processed from brackish water roe, due to the significant differences between caviar from different sources, limited between-harvest variations and relatively high concentrations in samples, allowing precise determination by modern analytical instrumentation. Variations in the 87Sr/86Sr ratio for vendace caviar from different harvests (on the order of 0.05-0.1%) is at least 10-fold less than differences between caviar processed from brackish and freshwater roe. Hence, Sr isotope ratio measurements (either by ICP-SFMS or by MC-ICP-MS) have great potential for origin differentiation. On the contrary, it was impossible to

  19. Analytical continuation in coupling constant method; application to the calculation of resonance energies and widths for organic molecules: Glycine, alanine and valine and dimer of formic acid

    NASA Astrophysics Data System (ADS)

    Papp, P.; Matejčík, Š.; Mach, P.; Urban, J.; Paidarová, I.; Horáček, J.

    2013-06-01

    The method of analytic continuation in the coupling constant (ACCC) in combination with use of the statistical Padé approximation is applied to the determination of resonance energy and width of some amino acids and formic acid dimer. Standard quantum chemistry codes provide accurate data which can be used for analytic continuation in the coupling constant to obtain the resonance energy and width of organic molecules with a good accuracy. The obtained results are compared with the existing experimental ones.

  20. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  1. Gearbox Reliability Collaborative Analytic Formulation for the Evaluation of Spline Couplings

    SciTech Connect

    Guo, Y.; Keller, J.; Errichello, R.; Halse, C.

    2013-12-01

    Gearboxes in wind turbines have not been achieving their expected design life; however, they commonly meet and exceed the design criteria specified in current standards in the gear, bearing, and wind turbine industry as well as third-party certification criteria. The cost of gearbox replacements and rebuilds, as well as the down time associated with these failures, has elevated the cost of wind energy. The National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) was established by the U.S. Department of Energy in 2006; its key goal is to understand the root causes of premature gearbox failures and improve their reliability using a combined approach of dynamometer testing, field testing, and modeling. As part of the GRC program, this paper investigates the design of the spline coupling often used in modern wind turbine gearboxes to connect the planetary and helical gear stages. Aside from transmitting the driving torque, another common function of the spline coupling is to allow the sun to float between the planets. The amount the sun can float is determined by the spline design and the sun shaft flexibility subject to the operational loads. Current standards address spline coupling design requirements in varying detail. This report provides additional insight beyond these current standards to quickly evaluate spline coupling designs.

  2. Effective spin-orbit couplings in an analytical tight-binding model of DNA: Spin filtering and chiral spin transport

    NASA Astrophysics Data System (ADS)

    Varela, Solmar; Mujica, Vladimiro; Medina, Ernesto

    2016-04-01

    We derive a detailed analytical tight-binding (TB) model for a double helix emulating DNA with one type of nucleotide pair and a single oriented π orbital per base. The TB model incorporates both kinetic and intrinsic spin-orbit (ISO) contributions as well as Rashba-type interactions coupled to an external electric field along the axis of the double helix. The helical structure of the molecule renders the ISO first order in the interaction strength (in the meV range) as in carbon nanotubes. The coupling between the ISO and the chirality of the molecule is manifest in the effective coupling parameters while the Rashba coupling is only weakly dependent on structural chirality. A continuum model at half filling is derived where the dispersion is linear around the Fermi level. Spin transport can be completely solved in the case of ISO and the dominant Rashba type term. Spin selectivity is shown to exist for this minimal model (with features similar to recent experimental findings) when the double helix is biased and thus time reversal symmetry is broken. The model also display robustness toward scattering because of the chiral nature of the eigenstates.

  3. Analytic derivative couplings in time-dependent density functional theory: Quadratic response theory versus pseudo-wavefunction approach

    SciTech Connect

    Zhang, Xing; Herbert, John M.

    2015-02-14

    We revisit the formalism for analytic derivative couplings between excited states in time-dependent density functional theory (TDDFT). We derive and implement these couplings using quadratic response theory, then numerically compare this response-theory formulation to couplings implemented previously based on a pseudo-wavefunction formalism and direct differentiation of the Kohn-Sham determinant. Numerical results, including comparison to full configuration interaction calculations, suggest that the two approaches perform equally well for many molecular systems, provided that the underlying DFT method affords accurate potential energy surfaces. The response contributions are found to be important for certain systems with high symmetry, but can be calculated with only a moderate increase in computational cost beyond what is required for the pseudo-wavefunction approach. In the case of spin-flip TDDFT, we provide a formal proof that the derivative couplings obtained using response theory are identical to those obtained from the pseudo-wavefunction formulation, which validates our previous implementation based on the latter formalism.

  4. A unifying mode-coupling theory for transport properties of electrolyte solutions. I. General scheme and limiting laws

    NASA Astrophysics Data System (ADS)

    Contreras Aburto, Claudio; Nägele, Gerhard

    2013-10-01

    We develop a general method for calculating conduction-diffusion transport properties of strong electrolyte mixtures, including specific conductivities, steady-state electrophoretic mobilities, and self-diffusion coefficients. The ions are described as charged Brownian spheres, and the solvent-mediated hydrodynamic interactions (HIs) are also accounted for in the non-instantaneous ion atmosphere relaxation effect. A linear response expression relating long-time partial mobilities to associated dynamic structure factors is employed in our derivation of a general mode coupling theory (MCT) method for the conduction-diffusion properties. A simplified solution scheme for the MCT method is discussed. Analytic results are obtained for transport coefficients of pointlike ions which, for very low ion concentrations, reduce to the Deby-Falkenhagen-Onsager-Fuoss limiting law expressions. As an application, an unusual non-monotonic concentration dependence of the polyion electrophoretic mobility in a mixture of two binary electrolytes is discussed. In addition, leading-order extensions of the limiting law results are derived with HIs included. The present method complements a related MCT method by the authors for the electrolyte viscosity and shear relaxation function [C. Contreras-Aburto and G. Nägele, J. Phys.: Condens. Matter 24, 464108 (2012)], so that a unifying scheme for conduction-diffusion and viscoelastic properties is obtained. We present here the general framework of the method, illustrating its versatility for conditions where fully analytic results are obtainable. Numerical results for conduction-diffusion properties and the viscosity of concentrated electrolytes are presented in Paper II [C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134110 (2013)].

  5. A unifying mode-coupling theory for transport properties of electrolyte solutions. I. General scheme and limiting laws.

    PubMed

    Contreras Aburto, Claudio; Nägele, Gerhard

    2013-10-01

    We develop a general method for calculating conduction-diffusion transport properties of strong electrolyte mixtures, including specific conductivities, steady-state electrophoretic mobilities, and self-diffusion coefficients. The ions are described as charged Brownian spheres, and the solvent-mediated hydrodynamic interactions (HIs) are also accounted for in the non-instantaneous ion atmosphere relaxation effect. A linear response expression relating long-time partial mobilities to associated dynamic structure factors is employed in our derivation of a general mode coupling theory (MCT) method for the conduction-diffusion properties. A simplified solution scheme for the MCT method is discussed. Analytic results are obtained for transport coefficients of pointlike ions which, for very low ion concentrations, reduce to the Deby-Falkenhagen-Onsager-Fuoss limiting law expressions. As an application, an unusual non-monotonic concentration dependence of the polyion electrophoretic mobility in a mixture of two binary electrolytes is discussed. In addition, leading-order extensions of the limiting law results are derived with HIs included. The present method complements a related MCT method by the authors for the electrolyte viscosity and shear relaxation function [C. Contreras-Aburto and G. Nägele, J. Phys.: Condens. Matter 24, 464108 (2012)], so that a unifying scheme for conduction-diffusion and viscoelastic properties is obtained. We present here the general framework of the method, illustrating its versatility for conditions where fully analytic results are obtainable. Numerical results for conduction-diffusion properties and the viscosity of concentrated electrolytes are presented in Paper II [C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134110 (2013)]. PMID:24116554

  6. Simulation of population response to ionizing radiation in an ecosystem with a limiting resource--Model and analytical solutions.

    PubMed

    Sazykina, Tatiana G; Kryshev, Alexander I

    2016-01-01

    A dynamic mathematical model is formulated, predicting the development of radiation effects in a generic animal population, inhabiting an elemental ecosystem 'population-limiting resource'. Differential equations of the model describe the dynamic responses to radiation damage of the following population characteristics: gross biomass; intrinsic fractions of healthy and reversibly damaged tissues in biomass; intrinsic concentrations of the self-repairing pool and the growth factor; and amount of the limiting resource available in the environment. Analytical formulae are found for the steady states of model variables as non-linear functions of the dose rate of chronic radiation exposure. Analytical solutions make it possible to predict the expected severity of radiation effects in a model ecosystem, including such endpoints as morbidity, mortality, life shortening, biosynthesis, and population biomass. Model parameters are selected from species data on lifespan, physiological growth and mortality rates, and individual radiosensitivity. Thresholds for population extinction can be analytically calculated for different animal species, examples are provided for generic mice and wolf populations. The ecosystem model demonstrates a compensatory effect of the environment on the development of radiation effects in wildlife. The model can be employed to construct a preliminary scale 'radiation exposure-population effects' for different animal species; species can be identified, which are vulnerable at a population level to chronic radiation exposure. PMID:26408836

  7. Analytical Investigation of Icing Limit for Diamond-Shaped Airfoil in Transonic and Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E.; Serafini, John S.

    1953-01-01

    Calculations have been made for the icing limit of a diamond airfoil at zero angle of attack in terms of the stream Mach number, stream temperature, and pressure altitude. The icing limit is defined as a wetted-surface temperature of 320 F and is related to the stream conditions by the method of Hardy. The results show that the point most likely to ice on the airfoil lies immediately behind the shoulder and is subject to possible icing at Mach numbers as high as 1.4.

  8. Experimental and analytical investigations of fuselage modal characteristics and structural-acoustic coupling

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Mathur, Gopal P.

    1992-01-01

    Measurements conducted on a DC-9 aircraft test section to define the shell and cavity modes of the fuselage, understand its structural-acoustic coupling characteristics, and measure its response to different types of acoustic and vibration excitations are reported. The data were processed to generate spatial plots and wavenumber maps of the shell acceleration and cabin acoustic pressure field. Analysis and interpretation of the spatial plots and wavenumber maps showed that the only structural-acoustic coupling occurred at 105 Hz between the N=2 circumferential structural mode and the (n=2, p=0) circumferential cavity mode. The fuselage response to vibration excitation was found to be dominated by modes whose order increases with frequency.

  9. Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients

    NASA Astrophysics Data System (ADS)

    Suk, Heejun

    2016-08-01

    This paper presents a semi-analytical procedure for solving coupled the multispecies reactive solute transport equations, with a sequential first-order reaction network on spatially or temporally varying flow velocities and dispersion coefficients involving distinct retardation factors. This proposed approach was developed to overcome the limitation reported by Suk (2013) regarding the identical retardation values for all reactive species, while maintaining the extensive capability of the previous Suk method involving spatially variable or temporally variable coefficients of transport, general initial conditions, and arbitrary temporal variable inlet concentration. The proposed approach sequentially calculates the concentration distributions of each species by employing only the generalized integral transform technique (GITT). Because the proposed solutions for each species' concentration distributions have separable forms in space and time, the solution for subsequent species (daughter species) can be obtained using only the GITT without the decomposition by change-of-variables method imposing the limitation of identical retardation values for all the reactive species by directly substituting solutions for the preceding species (parent species) into the transport equation of subsequent species (daughter species). The proposed solutions were compared with previously published analytical solutions or numerical solutions of the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) in three verification examples. In these examples, the proposed solutions were well matched with previous analytical solutions and the numerical solutions obtained by 2DFATMIC model. A hypothetical single-well push-pull test example and a scale-dependent dispersion example were designed to demonstrate the practical application of the proposed solution to a real field problem.

  10. On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach

    NASA Technical Reports Server (NTRS)

    Gastaldi, Fabio; Quarteroni, Alfio

    1988-01-01

    The coupling of hyperbolic and parabolic systems is discussed in a domain Omega divided into two distinct subdomains omega(+) and omega(-). The main concern is to find the proper interface conditions to be fulfilled at the surface separating the two domains. Next, they are used in the numerical approximation of the problem. The justification of the interface conditions is based on a singular perturbation analysis, i.e., the hyperbolic system is rendered parabolic by adding a small artifical viscosity. As this goes to zero, the coupled parabolic-parabolic problem degenerates into the original one, yielding some conditions at the interface. These are taken as interface conditions for the hyperbolic-parabolic problem. Actually, two alternative sets of interface conditions are discussed according to whether the regularization procedure is variational or nonvariational. It is shown how these conditions can be used in the frame of a numerical approximation to the given problem. Furthermore, a method of resolution is discussed which alternates the resolution of the hyperbolic problem within omega(-) and of the parabolic one within omega(+). The spectral collocation method is proposed, as an example of space discretization (different methods could be used as well); both explicit and implicit time-advancing schemes are considered. The present study is a preliminary step toward the analysis of the coupling between Euler and Navier-Stokes equations for compressible flows.

  11. What Limits the Encoding Effect of Note-Taking? A Meta-Analytic Examination

    ERIC Educational Resources Information Center

    Kobayashi, K.

    2005-01-01

    Previous meta-analyses indicate that the overall encoding effect of note-taking is positive but modest. This meta-analysis of 57 note-taking versus no note-taking comparison studies explored what limits the encoding effect by examining the moderating influence of seven variables: intervention, schooling level, presentation mode and length, test…

  12. Analytical Investigation of the Decrease in the Size of the Habitable Zone Due to a Limited CO2 Outgassing Rate

    NASA Astrophysics Data System (ADS)

    Abbot, Dorian S.

    2016-08-01

    The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. In this paper, I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a snowball state and a warm climate are only possible beyond this limit if the weathering rate in the snowball climate is smaller than the CO2 outgassing rate (otherwise stable snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.

  13. Comparing Theory and Experiment for Analyte Transport in the First Vacuum Stage of the Inductively Coupled Plasma Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Zachreson, Matthew R.

    The inductively coupled plasma mass spectrometer (ICP-MS) has been used in laboratories for many years. The majority of the improvements to the instrument have been done empirically through trial and error. A few fluid models have been made, which have given a general description of the flow through the mass spectrometer interface. However, due to long mean free path effects and other factors, it is very difficult to simulate the flow details well enough to predict how changing the interface design will change the formation of the ion beam. Towards this end, Spencer et al. developed FENIX, a direct simulation Monte Carlo algorithm capable of modeling this transitional flow through the mass spectrometer interface, the transitional flow from disorganized plasma to focused ion beam. Their previous work describes how FENIX simulates the neutral ion flow. While understanding the argon flow is essential to understanding the ICP-MS, the true goal is to improve its analyte detection capabilities. In this work, we develop a model for adding analyte to FENIX and compare it to previously collected experimental data. We also calculate how much ambipolar fields, plasma sheaths, and electron-ion recombination affect the ion beam formation. We find that behind the sampling interface there is no evidence of turbulent mixing. The behavior of the analyte seems to be described simply by convection and diffusion. Also, ambipolar field effects are small and do not significantly affect ion beam formation between the sampler and skimmer cones. We also find that the plasma sheath that forms around the sampling cone does not significantly affect the analyte flow downstream from the skimmer. However, it does thermally insulate the electrons from the sampling cone, which reduces ion-electron recombination. We also develop a model for electron-ion recombination. By comparing it to experimental data, we find that significant amounts of electron-ion recombination occurs just downstream from the

  14. Analytical determination of coupled bending-torsion vibrations of cantilever beams by means of station functions

    NASA Technical Reports Server (NTRS)

    Mendelson, Alexander; Gendler, Selwyn

    1951-01-01

    A method based on the concept of station functions is presented for calculating the modes and the frequencies of nonuniform cantilever beams vibrating in torsion, bending, and coupled bending-torsion motion. The method combines some of the advantages of the Rayleigh-Ritz and Stodola methods, in that a continuous loading function for the beam is used, with the advantages of the influence-coefficient method, in that the continuous loading function is obtained in terms of the displacements of a finite number of stations along the beam.

  15. Analytical formulation of orbiter-payload coupled by trunnion joints with Coulomb friction

    NASA Technical Reports Server (NTRS)

    Liu, Frank C.

    1986-01-01

    An orbiter and its payload substructure are linked together by five trunnion joints which have thirty degrees-of-freedom. Geometric compatibility conditions require fourteen of the interface physical coordinates of the orbiter and payload to be equal to each other and the remaining sixteen are free to have relative motions under Coulomb friction. The component modes synthesis method using fourteen inertia relief attachment modes for the formulation of the coupled system is presented. The exact nonlinear friction function is derived based on the characteristics of the joints. Formulation is applicable to an orbiter that carries any number of payload substructures.

  16. A logical way through the limits of quantitation in inductively coupled plasma spectrochemistry

    NASA Astrophysics Data System (ADS)

    Mermet, J. M.; Granier, G.; Fichet, P.

    2012-10-01

    The limit of quantitation (LOQ) is a crucial parameter in quantitative analysis. Besides the classical "10 sB approach", other concepts have been previously described based on the limitation resulting from the calibration procedure, namely from the prediction bands and the uncertainty calibration. Because of the difficulty of obtaining a reliable value of the blank standard deviation, this approach was replaced by the study of the %RSD of the net signal as a function of the concentration. Recently described, the so-called accuracy profile method, accuracy being the contribution of both the trueness and the precision, allows the analyst to define a validity domain, the lowest point acting as a limit of quantitation. The aim of this work was to determine these various limits of quantitation, including that from the accuracy profile, to compare them, and to study the parameters that can influence their values. It was concluded that the LOQ deduced from the accuracy profile is a realistic one. Its value is mainly influenced by the calibration procedure, particularly when a weighting procedure is used. A 1/y weighting factor, y being the analyte line intensity, seems to be an efficient compromise for calibration.

  17. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory

    NASA Astrophysics Data System (ADS)

    Zope, Rajendra R.; Dunlap, Brett I.

    2006-01-01

    Our recent formulation of the analytic and variational Slater-Roothaan (SR) method, which uses Gaussian basis sets to variationally express the molecular orbitals, electron density, and the one-body effective potential of density-functional theory, is reviewed. Variational fitting can be extended to the resolution of identity method, where variationality then refers to the error in each two-electron integral and not to the total energy. However, a Taylor-series analysis shows that all analytic ab initio energies calculated with variational fits to two-electron integrals are stationary. It is proposed that the appropriate fitting functions be charge neutral and that all ab initio energies be evaluated using two-center fits of the two-electron integrals. The SR method has its root in Slater's Xα method and permits an arbitrary scaling of the Slater-Gàspàr-Kohn-Sham exchange-correlation potential around each atom in the system. The scaling factors are Slater's exchange parameters α. Of several ways of choosing these parameters, two most obvious are the Hartree-Fock (HF) αHF values and the exact atomic αEA values. The former are obtained by equating the self-consistent Xα energy and the HF energies, while the latter set reproduces exact atomic energies. In this work, we examine the performance of the SR method for predicting atomization energies, bond distances, and ionization potentials using the two sets of α parameters. The atomization energies are calculated for the extended G2 set of 148 molecules for different basis-set combinations. The mean error (ME) and mean absolute error (MAE) in atomization energies are about 25 and 33kcal /mol, respectively, for the exact atomic αEA values. The HF values of exchange parameters αHF give somewhat better performance for the atomization energies with ME and MAE being about 15 and 26kcal/mol, respectively. While both sets give performance better than the local-density approximation or the HF theory, the errors in

  18. An analytical model for relating global terrestrial carbon assimilation with climate and surface conditions using a rate limitation framework

    NASA Astrophysics Data System (ADS)

    Yang, Yuting; Donohue, Randall J.; McVicar, Tim R.; Roderick, Michael L.

    2015-11-01

    We develop an analytical model for estimating mean annual terrestrial gross primary productivity (GPP) based on a rate limitation framework. Actual GPP (climatological mean from 1982 to 2010) is calculated as a function of the balance between two GPP potentials defined by the climate (i.e., precipitation and solar radiation) and a third parameter that encodes other environmental variables and modifies the GPP-climate relationship. The model was tested using observed GPP from 94 flux sites and modeled GPP (using the model tree ensemble approach) at 48,654 (0.5°) grid cells globally. Results show that the model could account for the spatial GPP patterns, with a root-mean-square error of 0.70 and 0.65 g C m-2 d-1 and R2 of 0.79 and 0.92 for the flux site and grid cell scales, respectively. This analytical GPP model shares a similar form with the Budyko hydroclimatological model, which opens the possibility of a general analytical framework to analyze the linked carbon-water-energy cycles.

  19. Photon noise limited radiation detection with lens-antenna coupled microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Yates, S. J. C.; Baselmans, J. J. A.; Endo, A.; Janssen, R. M. J.; Ferrari, L.; Diener, P.; Baryshev, A. M.

    2011-08-01

    Microwave kinetic inductance detectors (MKIDs) have shown great potential for sub-mm instrumentation because of the high scalability of the technology. Here, we demonstrate for the first time in the sub-mm band (0.1-2 mm) a photon noise limited performance of a small antenna coupled MKID detector array and we describe the relation between photon noise and MKID intrinsic generation-recombination noise. Additionally, we use the observed photon noise to measure the optical efficiency of detectors to be 0.8 ± 0.2.

  20. The nature of the continuum limit in strongly coupled quenched [ital QED

    SciTech Connect

    Lombardo, M.; Kogut, J.B. ); Kocic, A. ); Wang, K.C. )

    1992-02-05

    We review the results of large scale simulations of noncompact quenched [ital QED] which use spectrum and Equation of State calculations to determine the theory's phase diagram, critical indices, and continuum limit. The resulting anomalous dimensions are in good agreement with Schwinger-Dyson solutions of the ladder graphs of conventional [ital QED] and they satisfy the hyperscaling relations expected of a relativistic renormalizable field theory. The spectroscopy results satisfy the constraints of the Goldstone mechanism and PCAC, and may be indicative of Technicolor versions of the Standard Model which are strongly coupled at short distances.

  1. Photon noise limited radiation detection with lens-antenna coupled microwave kinetic inductance detectors

    SciTech Connect

    Yates, S. J. C.; Baselmans, J. J. A.; Diener, P.; Endo, A.; Janssen, R. M. J.; Ferrari, L.; Baryshev, A. M.

    2011-08-15

    Microwave kinetic inductance detectors (MKIDs) have shown great potential for sub-mm instrumentation because of the high scalability of the technology. Here, we demonstrate for the first time in the sub-mm band (0.1-2 mm) a photon noise limited performance of a small antenna coupled MKID detector array and we describe the relation between photon noise and MKID intrinsic generation-recombination noise. Additionally, we use the observed photon noise to measure the optical efficiency of detectors to be 0.8 {+-} 0.2.

  2. Fibre coupled micro-light emitting diode array light source with integrated band-pass filter for fluorescence detection in miniaturised analytical systems.

    PubMed

    Vaculovičová, Markéta; Akther, Mahbub; Maaskant, Pleun; Brabazon, Dermot; Macka, Mirek

    2015-04-29

    In this work, a new type of miniaturized fibre-coupled solid-state light source is demonstrated as an excitation source for fluorescence detection in capillary electrophoresis. It is based on a parabolically shaped micro-light emitting diode (μ-LED) array with a custom band-pass optical interference filter (IF) deposited at the back of the LED substrate. The GaN μ-LED array consisted of 270 individual μ-LED elements with a peak emission at 470 nm, each about 14 μm in diameter and operated as a single unit. Light was extracted through the transparent substrate material, and coupled to an optical fibre (OF, 400 μm in diameter, numerical aperture NA=0.37), to form an integrated μ-LED-IF-OF light source component. This packaged μ-LED-IF-OF light source emitted approximately 225 μW of optical power at a bias current of 20 mA. The bandpass IF filter was designed to reduce undesirable LED light emissions in the wavelength range above 490 nm. Devices with and without IF were compared in terms of the optical power output, spectral characteristics as well as LOD values. While the IF consisted of only 7.5 pairs (15 layers) of SiO2/HfO2 layers, it resulted in an improvement of the baseline noise as well as the detection limit measured using fluorescein as test analyte, both by approximately one order of magnitude, with a LOD of 1×10(-8) mol L(-1) obtained under optimised conditions. The μ-LED-IF-OF light source was then demonstrated for use in capillary electrophoresis with fluorimetric detection. The limits of detection obtained by this device were compared to those obtained with a commercial fibre coupled LED device. PMID:25847165

  3. Decision-analytic modeling to evaluate benefits and harms of medical tests: uses and limitations.

    PubMed

    Trikalinos, Thomas A; Siebert, Uwe; Lau, Joseph

    2009-01-01

    The clinical utility of medical tests is measured by whether the information they provide affects patient-relevant outcomes. To a large extent, effects of medical tests are indirect in nature. In principle, a test result affects patient outcomes mainly by influencing treatment choices. This indirectness in the link between testing and its downstream effects poses practical challenges to comparing alternate test-and-treat strategies in clinical trials. Keeping in mind the broader audience of researchers who perform comparative effectiveness reviews and technology assessments, the authors summarize the rationale for and pitfalls of decision modeling in the comparative evaluation of medical tests by virtue of specific examples. Modeling facilitates the interpretation of test performance measures by connecting the link between testing and patient outcomes, accounting for uncertainties and explicating assumptions, and allowing the systematic study of tradeoffs and uncertainty. The authors discuss challenges encountered when modeling test-and-treat strategies, including but not limited to scarcity of data on important parameters, transferring estimates of test performance across studies, choosing modeling outcomes, and obtaining summary estimates for test performance data. PMID:19734441

  4. Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil; Aghdaei, Mehdi Fazli

    2016-04-01

    In this paper, the improved tan(Φ(ξ)/2)-expansion method is proposed to find the exact soliton solutions of the coupled Schrödinger-Boussinesq (SB) system. The exact particular solutions are of five types: hyperbolic function solution (exact soliton wave solution), trigonometric function solution (exact periodic wave solution), rational exponential solution (exact singular kink-type wave solution), logarithmic solution and rational solution (exact singular cupson wave solution). We obtained the further solutions comparing with other methods. The results demonstrate that the new tan(Φ(ξ)/2)-expansion method is more efficient than the Ansatz method applied by Bilige et al. (2013). Recently this method was developed for searching the exact travelling-wave solutions of nonlinear partial differential equations. Abundant exact travelling-wave solutions including solitons, kink, periodic and rational solutions have been found. These solutions might play an important role in Laser and plasma. It is shown that this method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving the nonlinear problems.

  5. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation.

    PubMed

    Bozkaya, Uğur; Sherrill, C David

    2016-05-01

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the "gradient terms": computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C10H22), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies. PMID:27155621

  6. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation

    NASA Astrophysics Data System (ADS)

    Bozkaya, Uǧur; Sherrill, C. David

    2016-05-01

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the "gradient terms": computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbital (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C10H22), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.

  7. Sound propagation in dilute suspensions of spheres: Analytical comparison between coupled phase model and multiple scattering theory.

    PubMed

    Valier-Brasier, Tony; Conoir, Jean-Marc; Coulouvrat, François; Thomas, Jean-Louis

    2015-10-01

    Sound propagation in dilute suspensions of small spheres is studied using two models: a hydrodynamic model based on the coupled phase equations and an acoustic model based on the ECAH (ECAH: Epstein-Carhart-Allegra-Hawley) multiple scattering theory. The aim is to compare both models through the study of three fundamental kinds of particles: rigid particles, elastic spheres, and viscous droplets. The hydrodynamic model is based on a Rayleigh-Plesset-like equation generalized to elastic spheres and viscous droplets. The hydrodynamic forces for elastic spheres are introduced by analogy with those of droplets. The ECAH theory is also modified in order to take into account the velocity of rigid particles. Analytical calculations performed for long wavelength, low dilution, and weak absorption in the ambient fluid show that both models are strictly equivalent for the three kinds of particles studied. The analytical calculations show that dilatational and translational mechanisms are modeled in the same way by both models. The effective parameters of dilute suspensions are also calculated. PMID:26520342

  8. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    SciTech Connect

    Datta, Dipayan Gauss, Jürgen

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  9. Analytical procedures for the determination of selected trace elements in peat and plant samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Krachler, Michael; Mohl, Carola; Emons, Hendrik; Shotyk, William

    2002-08-01

    A simple, robust and reliable analytical procedure for the determination of 15 elements, namely Ca, V, Cr, Mn, Co, Ni, Cu, Zn, Rb, Ag, Cd, Ba, Tl, Th and U in peat and plant materials by inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) was developed. Powdered sample aliquots of approximately 220 mg were dissolved with various acid mixtures in a microwave heated high-pressure autoclave capable to digest 40 samples simultaneously. The selection of appropriate amounts of digestion acids (nitric acid, hydrofluoric acid or tetrafluoroboric acid) was crucial to obtain accurate results. The optimized acid mixture for digestion of plant and peat samples consisted of 3 ml HNO 3 and 0.1 ml HBF 4. An ultrasonic nebulizer with an additional membrane desolvation unit was found beneficial for the determination of Co, Ni, Ag, Tl, Th and U, allowing to aspirate a dry sample aerosol into the ICP-QMS. A pneumatic cross flow nebulizer served as sample introduction device for the other elements. Internal standardization was achieved with 103Rh for all elements, except for Th whose ICP-QMS signals were corrected by 103Rh and 185Re. Quality control was ascertained by analysis of the certified plant reference material GBW 07602 Bush Branches and Leaves. In almost all cases HNO 3 alone could not fully liberate the analytes of interest from the peat or plant matrix, probably because of the silicates present. After adding small amounts (0.05-0.1 ml) of either HF or HBF 4 to the digestion mixture, concentrations quantified by ICP-QMS generally increased significantly, in the case of Rb up to 80%. Further increasing the volumes of HF or HBF 4 in turn, resulted in a loss of recoveries of almost all elements, some of which amounted to approximately 60%. The successful analytical procedures were applied to the determination of two bulk peat materials. In general, good agreement between the found concentrations and results from an inter-laboratory trial or from instrumental

  10. Analytical evaluation of nebulizers for the introduction of acetic acid extracts aiming at the determination of trace elements by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    de Gois, Jefferson S.; Maranhão, Tatiane de A.; Oliveira, Fernando J. S.; Frescura, Vera L. A.; Curtius, Adilson J.; Borges, Daniel L. G.

    2012-11-01

    Most of the official procedures aiming at classification of solid waste toxicity take into account metal solubility and bioavailability by means of extraction experiments using acetic acid solutions. Hence, the aim of this work was to investigate and optimize conditions to suppress the effect of acetic acid on the determination of trace elements using inductively coupled plasma mass spectrometry. The performance of four nebulizers (cross-flow (CFN), ultrasonic (USN), Meinhard (MN) and MicroMist (MMN)) were compared as to their efficiency in minimizing spectral and non-spectral effects on the determination of Ag, As, Ba, Cd, Cr, Hg, Pb and Se, with the ultimate goal to analyze acetic acid extracts obtained from solid waste residues. Operating conditions (desolvation temperatures for USN, RF power and nebulizer gas flow rates) were optimized individually for each nebulizer and for all analytes maintained in 0.14 mol L- 1 HNO3 solutions and in solutions prepared with acetic acid and acetic acid + NaOH, adjusted to pH 2.88 and 4.93, respectively. Pronounced non-spectral interferences for 75As and 82Se were observed in the presence of acetic acid for CF and MN, although to a less extent also for MMN and USN. Signal increase for blank solutions measured at m/z 208 (208Pb) for CFN and MN, 107 (107Ag) for USN and MN coupled to a cyclonic chamber and, m/z 82 (82Se) for USN was observed, indicating an increased risk of spectral interference upon an increase in the concentration of acetic acid. Signal increase at specific m/z ratios, however, was not significant when the MMN was used, with the exception of m/z 52 (52Cr) in acetic acid solutions, arising from the formation of 40Ar12C+. This same effect was noticed for all nebulizers, although at noticeably different intensities. A signal stability study was performed, demonstrating that variations in the analytical signal were within a 20% range for all analytes, with the exception of Hg, after continuous aspiration for 70 min

  11. Limitations of symmetry in FE modeling: A comparison of fem and air-coupled resonance imaging

    NASA Astrophysics Data System (ADS)

    Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.

    2012-05-01

    It has long been an accepted practice to use symmetry in Finite Element Modeling. Whenever modeling a large structure, we turn to symmetry in order to significantly reduce the model size and computation time. But is symmetry always the solution to long computation times, and is it always accurate? This study is aimed at modeling a whole ceramic tile and several possible symmetric models under several different loading cases and comparing them to each other and Air-Coupled Ultrasonic scans to determine if the Finite Element Models can accurately predict the vibrational resonance patterns. The reason for the accuracy or inaccuracy will also be examined. The understanding of the limitations of using symmetry to model large structures will be very useful in all future modeling.

  12. GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling.

    PubMed

    Johnston, Christopher A; Taylor, J Philip; Gao, Yajun; Kimple, Adam J; Grigston, Jeffrey C; Chen, Jin-Gui; Siderovski, David P; Jones, Alan M; Willard, Francis S

    2007-10-30

    Heterotrimeric G protein signaling is important for cell-proliferative and glucose-sensing signal transduction pathways in the model plant organism Arabidopsis thaliana. AtRGS1 is a seven-transmembrane, RGS domain-containing protein that is a putative membrane receptor for d-glucose. Here we show, by using FRET, that d-glucose alters the interaction between the AtGPA1 and AtRGS1 in vivo. AtGPA1 is a unique heterotrimeric G protein alpha subunit that is constitutively GTP-bound given its high spontaneous nucleotide exchange coupled with slow GTP hydrolysis. Analysis of a point mutation in AtRGS1 that abrogates GTPase-accelerating activity demonstrates that the regulation of AtGPA1 GTP hydrolysis mediates sugar signal transduction during Arabidopsis development, in contrast to animals where nucleotide exchange is the limiting step in the heterotrimeric G protein nucleotide cycle. PMID:17951432

  13. New Limits on Coupling of Fundamental Constants to Gravity Using {sup 87}Sr Optical Lattice Clocks

    SciTech Connect

    Blatt, S.; Ludlow, A. D.; Campbell, G. K.; Thomsen, J. W.; Zelevinsky, T.; Boyd, M. M.; Ye, J.; Baillard, X.; Fouche, M.; Le Targat, R.; Brusch, A.; Lemonde, P.; Takamoto, M.; Hong, F.-L.; Katori, H.; Flambaum, V. V.

    2008-04-11

    The {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition frequency {nu}{sub Sr} in neutral {sup 87}Sr has been measured relative to the Cs standard by three independent laboratories in Boulder, Paris, and Tokyo over the last three years. The agreement on the 1x10{sup -15} level makes {nu}{sub Sr} the best agreed-upon optical atomic frequency. We combine periodic variations in the {sup 87}Sr clock frequency with {sup 199}Hg{sup +} and H-maser data to test local position invariance by obtaining the strongest limits to date on gravitational-coupling coefficients for the fine-structure constant {alpha}, electron-proton mass ratio {mu}, and light quark mass. Furthermore, after {sup 199}Hg{sup +}, {sup 171}Yb{sup +}, and H, we add {sup 87}Sr as the fourth optical atomic clock species to enhance constraints on yearly drifts of {alpha} and {mu}.

  14. Comprehensive analytical strategy for biomarker identification based on liquid chromatography coupled to mass spectrometry and new candidate confirmation tools.

    PubMed

    Mohamed, Rayane; Varesio, Emmanuel; Ivosev, Gordana; Burton, Lyle; Bonner, Ron; Hopfgartner, Gérard

    2009-09-15

    A comprehensive analytical LC-MS(/MS) platform for low weight biomarkers molecule in biological fluids is described. Two complementary retention mechanisms were used in HPLC by optimizing the chromatographic conditions for a reversed-phase column and a hydrophilic interaction chromatography column. LC separation was coupled to mass spectrometry by using an electrospray ionization operating in positive polarity mode. This strategy enables us to correctly retain and separate hydrophobic as well as polar analytes. For that purpose artificial model study samples were generated with a mixture of 38 well characterized compounds likely to be present in biofluids. The set of compounds was used as a standard aqueous mixture or was spiked into urine at different concentration levels to investigate the capability of the LC-MS(/MS) platform to detect variations across biological samples. Unsupervised data analysis by principal component analysis was performed and followed by principal component variable grouping to find correlated variables. This tool allows us to distinguish three main groups whose variables belong to (a) background ions (found in all type of samples), (b) ions distinguishing urine samples from aqueous standard and blank samples, (c) ions related to the spiked compounds. Interpretation of these groups allows us to identify and eliminate isotopes, adducts, fragments, etc. and to generate a reduced list of m/z candidates. This list is then submitted to the prototype MZSearcher software tool which simultaneously searches several lists of potential metabolites extracted from metabolomics databases (e.g., KEGG, HMDB, etc) to propose biomarker candidates. Structural confirmation of these candidates was done off-line by fraction collection followed by nanoelectrospray infusion to provide high quality MS/MS data for spectral database queries. PMID:19702294

  15. An efficient semi-analytical method for modeling strongly coupled diffusion and deformation processes in layered poroelastic media

    NASA Astrophysics Data System (ADS)

    Wang, R.; Kuempel, H.

    2003-12-01

    From poroelasticity theory we know that fluid diffusion will induce matrix deformation and vice versa. In practice, well known phenomena for such coupled processes are, for example, occurrence of seismo-tectonically induced groundwater fluctuations, land subsidence as a result of fluid extraction from subsurface reservoirs, production-induced surface strain near the vicinity of wells, reservoir- or injection-induced seismicity. Modeling of deformation and pore-pressure data that have been observed near the surface can help to image the dynamics and to assess the hydraulic properties of subsurface aquifers. We here present a semi-analytical Haskell propagator method to fully handle linear poroelastic problems in a multilayered half-space. Our method is a powerful tool for various reasons: (1) It is faster than traditional numerical schemes when respective discretization of the object region is chosen and solutions are sought for single locations only; (2) a problem is easily formulated, as only a set of five poroelastic parameters per layer plus the layers' thicknesses need to be specified; (3) the method is highly flexible, as forcing functions of point injection, single force (e.g., surface loading), double couple dislocation (earthquakes), etc. may be readily incorporated; (4) the so-called loss-of-precision problem of the original propagator algorithm has been fully overcome using the orthonormalization technique. The effectiveness of the new tool has been demonstrated by modeling pump-induced near-surface tilt data obtained at a test site near Sopron in western Hungary. The results show that the hydraulic diffusivity of the shallow subsurface aquifer can be assessed with an accuracy better than half an order of magnitude, if other elastic parameters and the geometry (depth and thickness) of the water-bearing formations are sufficiently known from, for example, bore-log records. Moreover, the present method can be applied to model induced seismicity based on the

  16. Subnanomolar detection limit of stripping voltammetric Ca²⁺-selective electrode: effects of analyte charge and sample contamination.

    PubMed

    Kabagambe, Benjamin; Garada, Mohammed B; Ishimatsu, Ryoichi; Amemiya, Shigeru

    2014-08-01

    Ultrasensitive ion-selective electrode measurements based on stripping voltammetry are an emerging sensor technology with low- and subnanomolar detection limits. Here, we report on stripping voltammetry of down to 0.1 nM Ca(2+) by using a thin-polymer-coated electrode and demonstrate the advantageous effects of the divalent charge on sensitivity. A simple theory predicts that the maximum concentration of an analyte ion preconcentrated in the thin membrane depends exponentially on the charge and that the current response based on exhaustive ion stripping from the thin membrane is proportional to the square of the charge. The theoretical predictions are quantitatively confirmed by using a thin ionophore-doped polymer membrane spin-coated on a conducting-polymer-modified electrode. The potentiostatic transfer of hydrophilic Ca(2+) from an aqueous sample into the hydrophobic double-polymer membrane is facilitated by an ionophore with high Ca(2+) affinity and selectivity. The resultant concentration of the Ca(2+)-ionophore complex in the ~1 μm-thick membrane can be at least 5 × 10(6) times higher than the aqueous Ca(2+) concentration. The stripping voltammetric current response to the divalent ion is enhanced to achieve a subnanomolar detection limit under the condition where a low-nanomolar detection limit is expected for a monovalent ion. Significantly, charge-dependent sensitivity is attractive for the ultrasensitive detection of multivalent ions with environmental and biomedical importance such as heavy metal ions and polyionic drugs. Importantly, this stripping voltammetric approach enables the absolute determination of subnanomolar Ca(2+) contamination in ultrapure water containing 10 mM supporting electrolytes, i.e., an 8 orders of magnitude higher background concentration. PMID:24992261

  17. Coherent coupling between a molecular vibration and Fabry-Perot optical cavity to give hybridized states in the strong coupling limit (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Long, James P.; Owrutsky, Jeff C.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Compton, Ryan; Spann, Bryan; Simpkins, Blake S.

    2015-09-01

    Coherent coupling between an optical-transition and confined optical mode, when sufficiently strong, gives rise to new modes separated by the vacuum Rabi splitting. Such systems have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we bring strong polaritonic-coupling in cavities from the visible into the infrared where a new range of static and dynamic vibrational processes await investigation. First, we experimentally and numerically describe coupling between a Fabry-Perot cavity and carbonyl stretch (~1730 cm 1) in poly-methylmethacrylate. As is requisite for "strong coupling", the measured vacuum Rabi splitting of 132 cm 1 is much larger than the full width of the cavity (34 cm-1) and the inhomogeneously broadened carbonyl-stretch (24 cm-1). Agreement with classical theories providea evidence that the mixed-states are relatively immune to inhomogeneous broadening. Next, we investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of urethane. Rabi splittings increases from 0 to ~104 cm-1 with concentrations from 0-20 vol% and are in excellent agreement to an analytical description using no fitting parameters. Ultra-fast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band as well as modifications of energy relaxation times. Finally, we demonstrate coupling to liquids using the C-O stretching band (~1985 cm-1) of Mo(CO)6 in an aqueous solution. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied statically and dynamically.

  18. Problems, possibilities and limitations of inductively coupled plasma atomic emission spectrometry in the determination of platinum, palladium and rhodium in samples with different matrix composition

    NASA Astrophysics Data System (ADS)

    Petrova, P.; Velichkov, S.; Velitchkova, N.; Havezov, I.; Daskalova, N.

    2010-02-01

    The economic and geological importance of platinum group of elements has led to the development of analytical methods to quantify them in different types of samples. In the present paper the quantitative information for spectral interference in radial viewing 40.68 MHz inductively coupled plasma atomic emission spectrometry in the determination of Pt, Pd and Rh in the presence of complex matrix, containing Al, Ca, Fe, Mg, Mn, P and Ti as matrix constituents was obtained. The database was used for optimum line selections. By using the selected analysis lines the following detection limits in ng g - 1 were obtained: Pt 1700, Pd-1440, Rh-900. The reached detection limits determine the possibilities and limitation of the direct ICP-AES method in the determination of Pt, Pd and Rh in geological and environmental materials. The database for spectral interferences in the presence of aluminum can be used for the determination of platinum group of elements in car catalysts. The accuracy of the analytical results was experimentally demonstrated by two certified reference materials that were analyzed: SARM 7, Pt ore and recycled auto-catalyst certified reference material SRM 2556.

  19. An analytical coupled technique for solving nonlinear large-amplitude oscillation of a conservative system with inertia and static non-linearity.

    PubMed

    Razzak, Md Abdur; Alam, Md Shamsul

    2016-01-01

    Based on a new trial function, an analytical coupled technique (a combination of homotopy perturbation method and variational method) is presented to obtain the approximate frequencies and the corresponding periodic solutions of the free vibration of a conservative oscillator having inertia and static non-linearities. In some of the previous articles, the first and second-order approximations have been determined by the same method of such nonlinear oscillator, but the trial functions have not been satisfied the initial conditions. It seemed to be a big shortcoming of those articles. The new trial function of this paper overcomes aforementioned limitation. The first-order approximation is mainly considered in this paper. The main advantage of this present paper is, the first-order approximation gives better result than other existing second-order harmonic balance methods. The present method is valid for large amplitudes of oscillation. The absolute relative error measures (first-order approximate frequency) in this paper is 0.00 % for large amplitude A = 1000, while the relative error gives two different second-order harmonic balance methods: 10.33 and 3.72 %. Thus the present method is suitable for solving the above-mentioned nonlinear oscillator. PMID:27119060

  20. Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOF and Cr2

    NASA Astrophysics Data System (ADS)

    Scuseria, Gustavo E.

    1991-01-01

    The analytic energy gradient for the singles and doubles coupled cluster method including a perturbative correction due to triple excitations [CCSD(T)] is formulated and computationally implemented. Encouraged by the recent success in reproducing the experimental equilibrium structure and vibrational frequencies of ozone, the new CCSD(T) gradient method is tested with two other ``difficult'' quantum chemistry problems: FOOF and Cr2. With the largest basis set employed in this work [triple zeta plus two sets of polarization functions (TZ2Pf)] at the CCSD(T) level of theory, the predictions for the O-O and O-F bond lengths in FOOF are 1.218 and 1.589 Å, respectively. These figures are in good agreement with the experimental values 1.216 and 1.575 Å. Based on CCSD calculations with even larger basis sets, it is concluded that the error of 0.014 Å in the O-F bond length at the TZ2Pf/CCSD(T) level of theory is due to the remaining basis set deficiency. On the other hand, the CCSD(T) prediction for the equilibrium bond length of Cr2 (1.604 Å), obtained with a large (10s8p3d2f1g) basis set capable of achieving the Hartree-Fock limit, is still 0.075 Å shorter than experiment, clearly indicating the importance of higher than connected triple excitations in a single-reference treatment of this particular problem.

  1. Cavity-mediated coupling of mechanical oscillators limited by quantum back-action

    NASA Astrophysics Data System (ADS)

    Spethmann, Nicolas; Kohler, Jonathan; Schreppler, Sydney; Buchmann, Lukas; Stamper-Kurn, Dan M.

    2016-01-01

    A complex quantum system can be constructed by coupling simple elements. For example, trapped-ion or superconducting quantum bits may be coupled by Coulomb interactions, mediated by the exchange of virtual photons. Alternatively, quantum objects can be made to emit and exchange real photons, providing either unidirectional coupling in cascaded geometries, or bidirectional coupling that is particularly strong when both objects are placed within a common electromagnetic resonator. However, in such an open system, the capacity of a coupling channel to convey quantum information or generate entanglement may be compromised by photon loss. Here, we realize phase-coherent interactions between two addressable, spatially separated, near-ground-state mechanical oscillators within a driven optical cavity. We observe the quantum back-action noise imparted by the optical coupling resulting in correlated mechanical fluctuations of the two oscillators. Our results illustrate challenges and opportunities of coupling quantum objects with light for applications of quantum cavity optomechanics.

  2. COUPLING

    DOEpatents

    Hawke, B.C.

    1963-02-26

    This patent relates to a releasable coupling connecting a control rod to a control rod drive. This remotely operable coupling mechanism can connect two elements which are laterally and angviarly misaligned, and provides a means for sensing the locked condition of the elements. The coupling utilizes a spherical bayonet joint which is locked against rotation by a ball detent lock. (AEC)

  3. Experimental control of the solvent load of inductively coupled argon plasmas and effects of the chloroform plasma load on their analytical performance

    NASA Astrophysics Data System (ADS)

    Maessen, F. J. M. J.; Kreuning, G.; Balke, J.

    The solvent plasma load ( QSPL) of water, methanol and chloroform was established as a function of the liquid uptake rate ( QL) by using a continuous weighing method for recording the rate differences between the relevant liquid streams. The shape of the QL vs QSPL curves revealed that the liquid uptake rate is a parameter much too insensitive to serve as a criterion for assessing the stability of "organic" plasmas. The quantity "maximum tolerable solvent plasma load" is suggested as a more useful criterion. Effects of rf power, observation height and solvent plasma load on the properties of chloroform inductively coupled plasmas (ICPs) are reported. The measurement of the axial distribution of net line intensities of representative spectral lines showed that the behaviour of emission lines as to their "hardness" is essentially the same in ICPs loaded with chloroform or water. The chloroform plasma load was regulated by the use of a condenser of which the temperature was varied in a range between -50°C and +20°C. Analytical performance characteristics such as net line and background intensities, signal-to-background ratios, and relative standard deviations of the background signal are presented for ICPs with various chloroform loads. Two sets of experimental conditions were finally selected for simultaneous multielement analysis of chloroform solvent solutions, one with and one without aerosol cooling. In the case that aerosol cooling was applied, the detection limits were similar to those for aqueous plasmas. Without aerosol cooling the detection limits were up to an order of magnitude poorer. An attempt has been made to catagorize organic solvents on the basis of both volatility and their behaviour in ICP systems. For a better understanding of the consequences of solvent volatility in ICP-AES it is of importance to consider separately the properties that determine the volatility of liquids, viz. the evaporation rate and the saturation vapour pressure.

  4. Kirchhoff plate theory-based electromechanically-coupled analytical model considering inertia and stiffness effects of a surface-bonded piezoelectric patch

    NASA Astrophysics Data System (ADS)

    Yoon, Heonjun; Youn, Byeng D.; Kim, Heung Soo

    2016-02-01

    As a compact and durable design concept, piezoelectric energy harvesting skin (PEH skin) has been recently proposed for self-powered electronic device applications. This study aims to develop an electromechanically-coupled analytical model of PEH skin considering the inertia and stiffness effects of a piezoelectric patch. Based on Kirchhoff plate theory, Hamilton’s principle is used to derive the electromechanically-coupled differential equation of motion. Due to the geometric discontinuity of the piezoelectric patch, the Rayleigh-Ritz method is applied to calculate the natural frequency and corresponding mode shapes. The electrical circuit equation is derived from Gauss’s law. Output voltage is estimated by solving the equation of motion and electrical circuit equation, simultaneously. For the purpose of evaluating the predictive capability, the results of the electromechanically-coupled analytical model are compared with those of the finite element method in a hierarchical manner. The outstanding merits of the electromechanically-coupled analytical model of PEH skin are three-fold: (1) consideration of the inertia and stiffness effects of the piezoelectric patches; (2) physical parameterization between the two-dimensional mechanical configuration and piezoelectric transduction; (3) manipulability of the twisting modes of a cantilever plate with a small aspect ratio.

  5. Limiter

    DOEpatents

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  6. Mechanical coupling limits the density and quality of self-organized carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Bedewy, Mostafa; Hart, A. John

    2013-03-01

    Aligned carbon nanotube (CNT) structures are promising for many applications; however, as-grown CNT "forests" synthesized by chemical vapor deposition (CVD) are typically low-density and mostly comprise tortuous defective CNTs. Here, we present evidence that the density and alignment of self-organized CNT growth is limited by mechanical coupling among CNTs in contact, in combination with their diameter-dependent growth rates. This study is enabled by comprehensive X-ray characterization of the spatially and temporally-varying internal morphology of CNT forests. Based on this data, we model the time evolution and diameter-dependent scaling of the ensuing mechanical forces on catalyst nanoparticles during CNT growth, which arise from the mismatch between the collective lengthening rate of the forest and the diameter-dependent growth rates of individual CNTs. In addition to enabling self-organization of CNTs into forests, time-varying forces between CNTs in contact dictate the hierarchical tortuous morphology of CNT forests, and may be sufficient to influence the structural quality of CNTs. These forces reach a maximum that is coincident with the maximum density observed in our growth process, and are proportional to CNT diameter. Therefore, we propose that improved manufacturing strategies for self-organized CNTs should consider both chemical and mechanical effects. This may be especially necessary to achieve high density CNT forests with low defect density, such as for improved thermal interfaces and high-permeability membranes.Aligned carbon nanotube (CNT) structures are promising for many applications; however, as-grown CNT "forests" synthesized by chemical vapor deposition (CVD) are typically low-density and mostly comprise tortuous defective CNTs. Here, we present evidence that the density and alignment of self-organized CNT growth is limited by mechanical coupling among CNTs in contact, in combination with their diameter-dependent growth rates. This study is

  7. The Study of WGamma production at D0: Anomalous Coupling Limits and the Radiation Amplitude Zero

    SciTech Connect

    Pawloski, Gregory J.; /Rice U.

    2007-06-01

    W{gamma} production is analyzed in the electron and muon decay channels with approximately 1 fb{sup -1} of data from p{bar p} collisions that were produced at a center-of-mass energy of {radical}s = 1.96 TeV and that were collected by the D0 detector at the Fermilab Tevatron collider. The inclusive p{bar p} {yields} {ell}{nu}{gamma} cross section is measured in both channels and is found to be consistent with the Standard Model expectation of 2.08 {+-} 0.05{sub PDF} pb for events with a photon E{sub T} > 11 GeV, {Delta}R{sub {ell}{sub {gamma}}} > 0.7, and {ell}{nu}{gamma} transverse mass greater than 90 GeV . The observed cross section is measured to be 2.05 {+-} 0.18{sub stat} {+-} 0.10{sub sys} {+-} 0.13{sub lumi} pb and a.72 {+-} 0.19{sub stat} {+-} 0.15{sub sys} {+-} 0.10{sub lumi} pb for the electron and muon channels respectively. The photon E{sub T} spectrum is examined for indications of anomalous WW{gamma} couplings. No evidence is found, and the following one-dimensional limits are set at a 95% confidence level: -0.18 < {lambda} < 0.18 and 0.16 < {kappa} < 1.84. The observed charge-signed photon-lepton rapidity difference is consistent with the Standard Model prediction and is indicative of the theoretically expected radiation amplitude zero. The distribution exhibits a bimodal structure which is expected from the destructive interference, with the unimodal hypothesis being ruled out at the 94% confidence level.

  8. Excitonic splitting and vibronic coupling in 1,2-diphenoxyethane: Conformation-specific effects in the weak coupling limit

    NASA Astrophysics Data System (ADS)

    Buchanan, Evan G.; Walsh, Patrick S.; Plusquellic, David F.; Zwier, Timothy S.

    2013-05-01

    Vibrationally and rotationally resolved electronic spectra of 1,2-diphenoxyethane (C6H5-O-CH2-CH2-O-C6H5, DPOE) are reported for the isolated molecule under jet-cooled conditions. The spectra demonstrate that the two excited surfaces are within a few cm-1 of one another over significant regions of the torsional potential energy surfaces that modulate the position and orientation of the two aromatic rings with respect to one another. Two-color resonant two-photon ionization (2C-R2PI) and laser-induced fluorescence excitation spectra were recorded in the near-ultraviolet in the region of the close-lying S0-S1 and S0-S2 states (36 400-36 750 cm-1). In previous work, double resonance spectroscopy in the ultraviolet and alkyl CH stretch regions of the infrared was used to identify and assign transitions to two conformational isomers differing primarily in the central C-C dihedral angle, a tgt conformation with C2 symmetry and a ttt conformation with C2h symmetry [E. G. Buchanan, E. L. Sibert, and T. S. Zwier, J. Phys. Chem. A 117, 2800 (2013)], 10.1021/jp400691a. Comparison of 2C-R2PI spectra recorded in the m/z 214 (all 12C) and m/z 215 (one 13C) mass channels demonstrate the close proximity of the S1 and S2 excited states for both conformations, with an upper bound of 4 cm-1 between them. High resolution spectra of the origin band of the tgt conformer reveal it to consist of two transitions at 36 422.91 and 36 423.93 cm-1, with transition dipole moments perpendicular to one another. These are assigned to the S0-S1 and S0-S2 origin transitions with excited states of A and B symmetry, respectively, and an excitonic splitting of only 1.02 cm-1. The excited state rotational constants and transition dipole coupling model directions prove that the electronic excitation is delocalized over the two rings. The ttt conformer has only one dipole-allowed electronic transition (Ag→Bu) giving rise to a pure b-type band at 36 508.77 cm-1. Here, the asymmetry induced by a single 13

  9. Limiter

    DOEpatents

    Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.

    1986-01-01

    A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.

  10. High-resolution spectroscopy using an echelle spectrometer with predisperser-II. Analytical optimization for inductively coupled plasma atomic emission spectrometry1

    NASA Astrophysics Data System (ADS)

    Boumans, P. W. J. M.; Vrakking, J. J. A. M.

    This work is primarily concerned with the optimization of the slit width (and thus the practical resolving power) of a new type of echelle spectrometer coupled to a 50-MHz ICP operated with a pneumatic nebulizer, as described in Part I of this article series (Spectrochim. Acta39B, this issue (1984)). The optimization is carried out under "ICP compromise conditions" and uses detection power as criterion. With a "pure water" matrix, the effects of slit width on net line and background signals, signal-to-background ratio (SBR), relative standard deviation (RSD) of background signal and detection limit were evaluated for a set of prominent ICP lines spread over wavelengths between 190 and 500 nm. The detection limits eventually attained under optimum conditions were an order of magnitude better than "standard" values reported in the literature (winge et al., Appl. Spectrosc.33, 206 (1979)). The optimization was extended to a Ni-Co matrix, the latter serving as an example of samples that emit line-rich spectra. In this context, a detailed analysis was made of the background enhancements associated with the presence of major elements that emit line-rich spectra. Accordingly the effects of slit width on SBR, background RSD and detection limit were differentiated in dependence on whether the background enhancement was due to quasicontinuous background, due to complete coincidence of the analysis line with a line of the matrix, or due to partial line overlap. The quasi-continuous background was attributed to the wings of strong lines of the matrix, as described in Part III ( Spectrochim. Acta39B, this issue (1984)). It was established that with pure line wing interference the gain in detection power achieved by improving the practical spectral bandwidth from, say, 0.015-0.005 nm is approximately similar to that found for pure water, that is, a factor of 2-3. In the case of partial line overlap, larger improvements can be achieved depending on the physical widths of the

  11. An analytical method for hydrogeochemical surveys: Inductively coupled plasma-atomic emission spectrometry after using enrichment coprecipitation with cobalt and ammonium pyrrolidine dithiocarbamate

    USGS Publications Warehouse

    Hopkins, D.M.

    1991-01-01

    Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a

  12. Analytic determination of n, κ, and d of an absorbing film from polarimetric data in the thin-film limit

    NASA Astrophysics Data System (ADS)

    Kim, I. K.; Aspnes, D. E.

    2007-02-01

    We obtain a solution of the three-phase model in the limit d /λ≪1, where the complex refractive index ñ=n+iκ and thickness d of an isotropic film on an isotropic substrate are given analytically at any single wavelength λ from polarimetric data Δρ /ρ and ΔR /R, where ρ is the complex reflectance ratio and R is either the p- or s-polarized reflectance. We describe several procedures for extending the range of validity of the solution. Analysis of correlations shows that the uncertainty δ(ΔR /R) of ΔR /R is significantly more important than the δ(Δρ /ρ) of Δρ /ρ, which allows us to obtain an expression for the uncertainties δn, δκ, and δd of n, κ, and d, and to identify conditions that optimize the determination of the layer parameters. We find that the relative uncertainties δn /n and δd /d are not equal, as would be expected if they were determined by the optical thickness nd measured by ellipsometry, but that ΔR /R breaks the connection. We verify our results by measurements of H2O reversibly physisorbed on oxidized GaAs, finding, for example, that for our conditions δκ is determined more accurately than δn, and δn more accurately than δd. These data and model calculations show that fluctuations in parameters, particularly d, are asymmetric, leading in principle to inaccurate average values. However, we show that the importance of the ΔR /R data together with the remaining high correlation between n and d allows us to define a characteristic curve that can be used to correct the results for this nonlinearity. Finally, we extend our analysis to determine the orthogonal linear combinations of n, κ, and d that the data actually determine, which explains why the data fit the characteristic curve so well. Our results will be useful in various contexts for the analysis of films less than 1nm thick, for example, in applications involving preparation of next-generation electronic and optoelectronic devices with complicated multilayer

  13. Analytical developments for the determination of monomethylmercury complexes with low molecular mass thiols by reverse phase liquid chromatography hyphenated to inductively coupled plasma mass spectrometry.

    PubMed

    Bouchet, Sylvain; Björn, Erik

    2014-04-25

    The behavior of monomethylmercury (MMHg) is markedly influenced by its distribution among complexes with low molecular mass (LMM) thiols but analytical methodologies dedicated to measure such complexes are very scarce up to date. In this work, we selected 15 LMM thiols often encountered in living organisms and/or in the environment and evaluated the separation of the 15 corresponding MMHg-thiol complexes by various high performance liquid chromatography (HPLC) columns. Two C18 (Phenomenex Synergi Hydro-RP and LunaC18(2)), two phenyl (Inertsil Ph 3 and 5μm) and one mixed-mode (Restek Ultra IBD) stationary phases were tested for their retention and resolution capacities of the various complexes. The objective was to find simple separation conditions with low organic contents in the mobile phase to provide optimal conditions for detection by inductively coupled plasma mass spectrometry (ICPMS). The 15 complexes were synthesized in solution and characterized by electrospray ionization-mass spectrometry (ESI-MS). The C18 columns tested were either not resolutive enough or too retentive. The 3μm phenyl stationary phase was able to resolve 10 out of the 15 complexes in less than 25min, under isocratic conditions. The mixed-mode column was especially effective at separating the most hydrophilic complexes (6 complexes out of the 15), corresponding to the main LMM thiols found in living organisms. The detection limits (DLs) for these two columns were in the low nanomolar range and overall slightly better for the phenyl column. The possibilities offered by such methodology were exemplified by monitoring the time-course concentrations of four MMHg-thiol complexes within a phytoplankton incubation containing MMHg in the presence of an excess of four added thiols. PMID:24657146

  14. A broadened classical master equation approach for nonadiabatic dynamics at metal surfaces: Beyond the weak molecule-metal coupling limit.

    PubMed

    Dou, Wenjie; Subotnik, Joseph E

    2016-01-14

    A broadened classical master equation (BCME) is proposed for modeling nonadiabatic dynamics for molecules near metal surfaces over a wide range of parameter values and with arbitrary initial conditions. Compared with a standard classical master equation-which is valid in the limit of weak molecule-metal couplings-this BCME should be valid for both weak and strong molecule-metal couplings. (The BCME can be mapped to a Fokker-Planck equation that captures level broadening correctly.) Finally, our BCME can be solved with a simple surface hopping algorithm; numerical tests of equilibrium and dynamical observables look very promising. PMID:26772563

  15. Clausius inequality beyond the weak-coupling limit: the quantum Brownian oscillator.

    PubMed

    Kim, Ilki; Mahler, Günter

    2010-01-01

    We consider a quantum linear oscillator coupled at an arbitrary strength to a bath at an arbitrary temperature. We find an exact closed expression for the oscillator density operator. This state is noncanonical but can be shown to be equivalent to that of an uncoupled linear oscillator at an effective temperature T*(eff) with an effective mass and an effective spring constant. We derive an effective Clausius inequality deltaQ*(eff)< or =T*(eff)dS , where deltaQ*(eff) is the heat exchanged between the effective (weakly coupled) oscillator and the bath, and S represents a thermal entropy of the effective oscillator, being identical to the von-Neumann entropy of the coupled oscillator. Using this inequality (for a cyclic process in terms of a variation of the coupling strength) we confirm the validity of the second law. For a fixed coupling strength this inequality can also be tested for a process in terms of a variation of either the oscillator mass or its spring constant. Then it is never violated. The properly defined Clausius inequality is thus more robust than assumed previously. PMID:20365317

  16. Strong coupling in the sub-wavelength limit using metamaterial nanocavities

    PubMed Central

    Benz, A.; Campione, S.; Liu, S.; Montaño, I.; Klem, J.F.; Allerman, A; Wendt, J.R.; Sinclair, M.B.; Capolino, F.; Brener, I.

    2013-01-01

    The interaction between cavity modes and optical transitions leads to new coupled light-matter states in which the energy is periodically exchanged between the matter states and the optical mode. Here we present experimental evidence of optical strong coupling between modes of individual sub-wavelength metamaterial nanocavities and engineered optical transitions in semiconductor heterostructures. We show that this behaviour is generic by extending the results from the mid-infrared (~10 μm) to the near-infrared (~1.5 μm). Using mid-infrared structures, we demonstrate that the light-matter coupling occurs at the single resonator level and with extremely small interaction volumes. We calculate a mode volume of 4.9 × 10−4 (λ/n)3 from which we infer that only ~2,400 electrons per resonator participate in this energy exchange process. PMID:24287692

  17. Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration

    DOEpatents

    Vinegar, Harold J.; Sandberg, Chester Ledlie

    2010-11-09

    A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

  18. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  19. Strong-coupling limit in cold-molecule formation via photoassociation or Feshbach resonance through Nikitin exponential resonance crossing

    SciTech Connect

    Ishkhanyan, Artur; Nakamura, H.

    2006-12-15

    The strong-coupling limit of molecule formation in an atomic Bose-Einstein condensate via two-mode one-color photoassociation or sweep across a Feshbach resonance is examined using a basic nonlinear time-dependent two-state model. For the general class of term-crossing models with constant coupling, a common strategy for attacking the problem is developed based on the reduction of the initial system of semiclassical equations for atom-molecule amplitudes to a third-order nonlinear differential equation for the molecular state probability. This equation provides deriving exact solution for a class of periodic level-crossing models. These models reveal much in common with the Rabi problem. Discussing the strong-coupling limit for the general case of variable detuning, the equation is further truncated to a limit first-order nonlinear equation. Using this equation, the strong nonlinearity regime for the first Nikitin exponential-crossing model is analyzed and accurate asymptotic expressions for the nonlinear transition probability to the molecular state are derived. It is shown that, because of a finite final detuning involved, this model displays essential deviations from the Landau-Zener behavior. In particular, it is shown that in the limit of strong coupling the final conversion probability tends to 1/6. Thus, in this case the strong interaction limit is not optimal for molecule formation. We have found that if optimal field intensity is applied the molecular probability is increased up to 1/4 (i.e., the half of the initial atomic population)

  20. Welwistatin Support Studies: Expansion and Limitation of Aryllead(IV) Coupling Reactions

    PubMed Central

    Xia, Jibo; Brown, Lauren E.

    2008-01-01

    Recent support studies on the total synthesis of the welwitstatin system are described. The target step involves lead-mediated arylation of sterically demanding aryl groups and carbon acid coupling partners in order to establish the highly congested tetracyclic core structure. Type 7 β-ketoesters and β-ketonitriles were successfully arylated with a variety of ortho- and meta-subsituted aryllead compounds generated by a halogen-boron-lead exchange sequence. The enolates of compounds 15, 19 and 25, each bearing all-carbon quaternary centers adjacent to the arylation site, failed to couple. PMID:17685656

  1. FEM–BEM coupling for the large-body limit in micromagnetics

    PubMed Central

    Aurada, M.; Melenk, J.M.; Praetorius, D.

    2015-01-01

    We present and analyze a coupled finite element–boundary element method for a model in stationary micromagnetics. The finite element part is based on mixed conforming elements. For two- and three-dimensional settings, we show well-posedness of the discrete problem and present an a priori error analysis for the case of lowest order elements. PMID:26041946

  2. Studies of {ital WW} and {ital WZ} production and limits on anomalous {ital WW{gamma}} and {ital WWZ} couplings

    SciTech Connect

    Grinstein, S.; Mostafa, M.; Piegaia, R.; Alves, G.A.; Carvalho, W.; da Motta, H.; Santoro, A.; Lima, J.G.; Oguri, V.; Mao, H.S.; Gomez, B.; Mooney, P.; Negret, J.P.; Hoeneisen, B.; Parua, N.; Ducros, Y.; Shivpuri, R.K.; Acharya, B.S.; Banerjee, S.; Dugad, S.R.; Gupta, A.; Krishnaswamy, M.R.; Mondal, N.K.; Narasimham, V.S.; Shankar, H.C.; Park, Y.M.; Choi, S.; Kim, S.K.; Castilla-Valdez, H.; Gonzalez Solis, J.L.; Hernandez-Montoya, R.; Magana-Mendoza, L.; Sanchez-Hernandez, A.; Pawlik, B.; Akimov, V.; Gavrilov, V.; Kuleshov, S.; Belyaev, A.; Dudko, L.V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Manankov, V.; Merkin, M.; Shabalina, E.; Abramov, V.; Babintsev, V.V.; Bezzubov, V.A.; Bojko, N.I.; Burtovoi, V.S.; Chekulaev, S.V.; Denisov, S.P.; Dyshkant, A.; Eroshin, O.V.; Evdokimov, V.N.; Galyaev, A.N.; Goncharov, P.I.; Gurzhiev, S.N.; Kostritskiy, A.V.; Kozelov, A.V.; Kozlovsky, E.A.; Mayorov, A.A.; Bertram, I.

    1999-10-01

    Evidence of anomalous WW and WZ production was sought in p{bar p} collisions at a center-of-mass energy of {radical} (s) =1.8&hthinsp;TeV. The final states WW(WZ){r_arrow}{mu}{nu} jet jet+X, WZ{r_arrow}{mu}{nu}ee+X and WZ{r_arrow}e{nu}ee+X were studied using a data sample corresponding to an integrated luminosity of approximately 90&hthinsp;pb{sup {minus}1}. No evidence of anomalous diboson production was found. Limits were set on anomalous WW{gamma} and WWZ couplings and were combined with our previous results. The combined 95{percent} confidence level anomalous coupling limits for {Lambda}=2&hthinsp;TeV are {minus}0.25{le}{Delta}{kappa}{le}0.39 ({lambda}=0) and {minus}0.18{le}{lambda}{le}0.19 ({Delta}{kappa}=0), assuming the WW{gamma} couplings are equal to the WWZ couplings. {copyright} {ital 1999} {ital The American Physical Society}

  3. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    SciTech Connect

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  4. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: Evaluation of first-order electrical properties

    SciTech Connect

    Datta, Dipayan Gauss, Jürgen

    2014-09-14

    An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approach are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.

  5. Detection limits in inductively coupled plasma atomic emission spectrometry: an approach to the breakdown of the ratios of detection limits reported for different equipments

    NASA Astrophysics Data System (ADS)

    Boumans, P. W. J. M.; Vrakking, J. J. A. M.

    This paper deals with the differences among detection limits in inductively coupled plasma atomic emission spectrometry (ICP-AES) as reported for different experimental facilities. The factor by which such detection limits differ can be split into three factors to account separately for the differences between the sources, the resolving powers of the spectrometers and the noise characteristics of the systems. The approach uses earlier results about the behaviour of the relative standard deviation (RSD) of the background signal and, as a new feature, an experimentally established linear relationship between the ratio of signal-to-background ratios, (SBR) HR/(SBR) MR, and the inverse ratio of the effective line widths, (Δλ eff) MR/(Δλ eff) HR, where "HR" and "MR" refer to high and medium spectral resolution as achieved by applying narrow (60μm) and wide (210μm) slits in a 1.5-m echelle monochromator. The approach is applied to the breakdown of the ratios of detection limits reported by winge et al. ( Appl. Spectrosc.33, 206 (1979)) for a 27-MHz ICP and those found in this work for a 50-MHz ICP. Data for some 100 prominent ICP lines in the wavelength region between about 280 and 325 nm were processed. It is shown that the approach leads to a rational comparison of detection limits.

  6. A review of special gate coupling effects in long-channel SOI MOSFETs with lightly doped ultra-thin bodies and their compact analytical modeling

    NASA Astrophysics Data System (ADS)

    Rudenko, T.; Nazarov, A.; Kilchytska, V.; Flandre, D.

    2016-03-01

    The charge coupling between the front and back gates is a fundamental property of any fully-depleted silicon-on-insulator (SOI) MOSFET. It is traditionally described by the classical Lim and Fossum model (Lim and Fossum, 1983). However, in the case of lightly-doped ultra-thin-body (UTB) SOI MOSFETs with ultra-thin gate dielectrics, significant deviations from this model have been observed and analyzed over the years. In this paper, we present a thorough review of special features of gate coupling in such devices, combining a large set of results from one-dimensional numerical simulations in classical and quantum-mechanical modes, experimental data and analytical modeling. We show that UTB SOI MOSFETs with ultra-thin gate dielectrics feature stronger modulation of the threshold voltage at the conduction side with opposite gate bias and much wider range of gate voltages for interface coupling than predicted by the Lim and Fossum model. These differences originate from both electrostatic and quantization effects. A simple analytical model taking into account these effects is presented. The model enables an easy assessment of the quantization-induced threshold voltage increase in a long-channel SOI MOSFET versus opposite gate bias and the electric field in the silicon film associated with gate decoupling.

  7. Microbial mechanisms coupling carbon and phosphorus cycles in phosphorus-limited northern Adriatic Sea.

    PubMed

    Malfatti, F; Turk, V; Tinta, T; Mozetič, P; Manganelli, M; Samo, T J; Ugalde, J A; Kovač, N; Stefanelli, M; Antonioli, M; Fonda-Umani, S; Del Negro, P; Cataletto, B; Hozić, A; Ivošević Denardis, N; Zutić, V; Svetličić, V; Mišić Radić, T; Radić, T; Fuks, D; Azam, F

    2014-02-01

    The coastal northern Adriatic Sea receives pulsed inputs of riverine nutrients, causing phytoplankton blooms and seasonally sustained dissolved organic carbon (DOC) accumulation-hypothesized to cause episodes of massive mucilage. The underlying mechanisms regulating P and C cycles and their coupling are unclear. Extensive biogeochemical parameters, processes and community composition were measured in a 64-day mesocosms deployed off Piran, Slovenia. We followed the temporal trends of C and P fluxes in P-enriched (P+) and unenriched (P-) mesocosms. An intense diatom bloom developed then crashed; however, substantial primary production was maintained throughout, supported by tightly coupled P regeneration by bacteria and phytoplankton. Results provide novel insights on post-bloom C and P dynamics and mechanisms. 1) Post-bloom DOC accumulation to 186 μM remained elevated despite high bacterial carbon demand. Presumably, a large part of DOC accumulated due to the bacterial ectohydrolytic processing of primary productivity that adventitiously generated slow-to-degrade DOC; 2) bacteria heavily colonized post-bloom diatom aggregates, rendering them microscale hotspots of P regeneration due to locally intense bacterial ectohydrolase activities; 3) Pi turnover was rapid thus suggesting high P flux through the DOP pool (dissolved organic phosphorus) turnover; 4) Alpha- and Gamma-proteobacteria dominated the bacterial communities despite great differences of C and P pools and fluxes in both mesocosms. However, minor taxa showed dramatic changes in community compositions. Major OTUs were presumably generalists adapted to diverse productivity regimes.We suggest that variation in bacterial ectohydrolase activities on aggregates, regulating the rates of POM→DOM transition as well as dissolved polymer hydrolysis, could become a bottleneck in P regeneration. This could be another regulatory step, in addition to APase, in the microbial regulation of P cycle and the coupling

  8. Algebraic relaxation of an order parameter in randomly coupled limit-cycle oscillators

    NASA Astrophysics Data System (ADS)

    Daido, Hiroaki

    2000-02-01

    In their recent paper [Phys. Rev. E 58, 1789 (1998)], Stiller and Radons (SR) study, following our earlier work [Phys. Rev. Lett. 68, 1073 (1992)], the behavior of globally and randomly coupled phase oscillators with distributed intrinsic frequencies. They claim that their simulation results do not confirm the power-law behavior of an order parameter found numerically by the author, attributing its cause to the poor precision of the author's integration scheme. Here demonstrated is that the power law survives even for a scheme better than SR's, provided that finite-size effects are properly taken into account, as was done in our previous work.

  9. Strong Coupling Effects on the Specific Heat of an Ultracold Fermi Gas in the Unitarity Limit

    NASA Astrophysics Data System (ADS)

    van Wyk, P.; Tajima, H.; Hanai, R.; Ohashi, Y.

    2016-05-01

    We investigate strong-coupling corrections to the specific heat C_V in the normal state of an ultracold Fermi gas in the BCS-BEC crossover region. A recent experiment on a ^6Li unitary Fermi gas (Ku et. al. in Science 335:563 2012) shows that C_V is remarkably amplified near the superfluid phase transition temperature T_c, being similar to the well-known λ -structure observed in liquid ^4He. Including pairing fluctuations within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink, we show that strong pairing fluctuations are sufficient to explain the anomalous behavior of C_V observed in a ^6Li unitary Fermi gas near T_c. We also show that there is no contribution from stable preformed Cooper pairs to C_V at the unitarity. This indicates that the origin of the observed anomaly is fundamentally different from the case of liquid 4He, where stable ^4He Bose atoms induce the λ -structure in C_V near the superfluid instability. Instead, the origin is the suppression of the entropy S, near T_c, due to the increase of metastable preformed Cooper pairs. Our results indicate that the specific heat is a useful quantity to study the effects of pairing fluctuations on the thermodynamic properties of an ultracold Fermi gas in the BCS-BEC crossover region.

  10. Three-state analytic theory of two-dimensional nuclear magnetic resonance in systems with coupled macro- and micropores.

    PubMed

    Johnson, David Linton; Schwartz, Lawrence M

    2015-06-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) experiments involve a sequence of longitudinal (T(1)) and transverse (T(2)) measurements. In a previous paper we showed that if each of these 1D measurements can be represented by two exponential decays then there can be an accurate analytic solution for the 2D measurements with no additional information. In this paper we extend the theory to the case where there are three decay channels for the 1D measurements. The resulting analytic theory introduces a single free parameter, which is a rotation angle in the vector space spanned by the normal modes. Our predictions agree quite well with numerical results based on the microporous grain consolidation (μGC) model. The theory allows one to deduce information about decay modes in situations in which they may not be measurable in a conventional 1D measurement because the amplitude of that mode is too small. PMID:26172724

  11. Benefits and limitations of using decision analytic tools to assess uncertainty and prioritize Landscape Conservation Cooperative information needs

    USGS Publications Warehouse

    Post van der Burg, Max; Cullinane Thomas, Catherine; Holcombe, Tracy R.; Nelson, Richard D.

    2016-01-01

    The Landscape Conservation Cooperatives (LCCs) are a network of partnerships throughout North America that are tasked with integrating science and management to support more effective delivery of conservation at a landscape scale. In order to achieve this integration, some LCCs have adopted the approach of providing their partners with better scientific information in an effort to facilitate more effective and coordinated conservation decisions. Taking this approach has led many LCCs to begin funding research to provide the information for improved decision making. To ensure that funding goes to research projects with the highest likelihood of leading to more integrated broad scale conservation, some LCCs have also developed approaches for prioritizing which information needs will be of most benefit to their partnerships. We describe two case studies in which decision analytic tools were used to quantitatively assess the relative importance of information for decisions made by partners in the Plains and Prairie Potholes LCC. The results of the case studies point toward a few valuable lessons in terms of using these tools with LCCs. Decision analytic tools tend to help shift focus away from research oriented discussions and toward discussions about how information is used in making better decisions. However, many technical experts do not have enough knowledge about decision making contexts to fully inform the latter type of discussion. When assessed in the right decision context, however, decision analyses can point out where uncertainties actually affect optimal decisions and where they do not. This helps technical experts understand that not all research is valuable in improving decision making. But perhaps most importantly, our results suggest that decision analytic tools may be more useful for LCCs as way of developing integrated objectives for coordinating partner decisions across the landscape, rather than simply ranking research priorities.

  12. Scalar coupling limits and diphoton Higgs decay from LHC in an U (1 )' model with scalar dark matter

    NASA Astrophysics Data System (ADS)

    Martinez, R.; Nisperuza, J.; Ochoa, F.; Rubio, J. P.; Sierra, C. F.

    2015-08-01

    We explore constraints on the scalar coupling in a family nonuniversal U (1 )' extension of the standard model free from anomalies with a complex scalar dark matter particle. From unitarity and stability of the Higgs potential, we find the full set of bounds and order relations for the scalar coupling constants. Using recent data from the CERN-LHC collider, we study the signal strength of the diphoton Higgs decay, which imposes very stringent bounds to the scalar couplings and other scalar parameters, including parameters associated to the dark matter. Taking into account these constraints, the observable relic density of the Universe, and the limits from LUX collaboration for direct detection, we obtain allowed masses for the dark matter particle as low as 55 GeV. By assuming that the lightest scalar boson of the model corresponds to the observed Higgs boson, we evaluate deviations from the standard model of the trilineal Higgs self-coupling. The conditions from unitarity, stability and Higgs diphoton decay data allow trilineal deviations in the range 0 ≤δ g ≲-72 %.

  13. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights

    PubMed Central

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks. PMID:26973503

  14. Analytical Performance of a Venturi-assisted Array of Micromachined UltraSonic Electrosprays (AMUSE) Coupled to Ion Trap Mass Spectrometry for the Analysis of Peptides and Proteins

    PubMed Central

    Hampton, Christina Y.; Forbes, Thomas P.; Varady, Mark J.; Meacham, J. Mark; Fedorov, Andrei G.; Degertekin, F. Levent; Fernández, Facundo M.

    2008-01-01

    The analytical characterization of a novel ion source for mass spectrometry named Array of Micromachined UltraSonic Electrosprays (AMUSE) is presented here. This is a fundamentally different type of ion generation device, consisting of three major components: 1) a piezoelectric transducer that creates ultrasonic waves at one of the resonant frequencies of the sample-filled device, 2) an array of pyramidally-shaped nozzles micromachined on a silicon wafer, and 3) a spacer which prevents contact between the array and transducer ensuring the transfer of acoustic energy to the sample. A high pressure gradient generated at the apices of the nozzle pyramids forces the periodic ejection of multiple droplet streams from the device. With this device, the processes of droplet formation and droplet charging are separated, hence, the limitations of conventional electrospray-type ion sources, including the need for high charging potentials and the addition of organic solvent to decrease surface tension can be avoided. In this work, a Venturi device is coupled with AMUSE in order to increase desolvation, droplet focusing, and signal stability. Results show that ionization of model peptides and small tuning molecules is possible with DC charging potentials of 100 VDC or less. Ionization in RF-only mode (without DC biasing) was also possible. It was observed that, when combined with AMUSE, the Venturi device provides a 10-fold gain in signal-to-noise ratio for 90% aqueous sample solutions. Further reduction in the diameter of the orifices of the micromachined arrays, led to an additional signal gain of at least 3 orders of magnitude, a 2- to 10-fold gain in the signal-to-noise ratio, and an improvement in signal stability from 47% to 8.5% RSD. The effectiveness of this device for the soft ionization of model proteins in aqueous media, such as cytochrome C was also examined, yielding spectra with an average charge state of 8.8 when analyzed with a 100 VDC charging potential

  15. Detecting directional coupling in the human epileptic brain: Limitations and potential pitfalls

    NASA Astrophysics Data System (ADS)

    Osterhage, Hannes; Mormann, Florian; Wagner, Tobias; Lehnertz, Klaus

    2008-01-01

    We study directional relationships—in the driver-responder sense—in networks of coupled nonlinear oscillators using a phase modeling approach. Specifically, we focus on the identification of drivers in clusters with varying levels of synchrony, mimicking dynamical interactions between the seizure generating region (epileptic focus) and other brain structures. We demonstrate numerically that such an identification is not always possible in a reliable manner. Using the same analysis techniques as in model systems, we study multichannel electroencephalographic recordings from two patients suffering from focal epilepsy. Our findings demonstrate that—depending on the degree of intracluster synchrony—certain subsystems can spuriously appear to be driving others, which should be taken into account when analyzing field data with unknown underlying dynamics.

  16. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two new explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess clear advantages over available alternatives, including: (i) the new solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the new analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  17. Benthic Foraminifera, Food in the Deep Sea, and Limits to Bentho-Pelagic Coupling

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Boscolo-Galazzo, F.; Arreguin-Rodrigu, G. J.; Ortiz, S.; Alegret, L.

    2015-12-01

    The deep-sea is the largest habitat on Earth, contains highly diverse biota, but is very little known. Many of its abundant benthic biota (e.g., nematodes) are not preserved in the fossil record. Calcareous and agglutinated benthic foraminifera (unicellular eukaryotes, Rhizaria; efficient dispersers) and ostracodes (Animalia, Crustacea; non-efficient dispersers) are the most common organisms providing a fossil record of deep-sea environments. Very little food is supplied to the deep-sea, because organic matter produced by photosynthesis is largely degraded before it arrives at the seafloor. Only a few % of organic matter is carried to the ocean bottom by 'marine snow', with its particle size and behavior in the water column controlled by surface ecosystem structure, including type of dominant primary producers (diatoms, cyanobacteria). Food supply and its seasonality are generally seen as the dominant control on benthic assemblages (combined with oxygenation), providing bentho-pelagic coupling between primary and benthic productivity. Benthic foraminiferal assemblages (composition and density) thus are used widely to estimate past productivity, especially during episodes of global climate change, ocean acidification, and mass extinction of primary producers. We show that some environmental circumstances may result in interrupting bentho-pelagic coupling, e.g. through lateral supply of organic matter along continental margins (adding more refractory organic matter), through trophic focusing and/or fine particle winnowing on seamounts (giving an advantage to suspension feeders), and through carbonate undersaturation (giving advantage to infaunal over epifaunal calcifyers). In addition, increased remineralization of organic matter combined with increased metabolic rates may cause assemblages to reflect more oligotrophic conditions at stable primary productivity during periods of global warming. As a result, benthic foraminiferal accumulation rates must be carefully

  18. Vertex function for the coupling of an electron with intramolecular phonons: Exact results in the antiadiabatic limit

    NASA Astrophysics Data System (ADS)

    Takada, Yasutami; Higuchi, Takatoshi

    1995-11-01

    The Green's-function techniques, especially the one developed in the preceding paper [Takada, Phys. Rev. B 52, 12 708 (1995)], are employed to calculate the electron-phonon vertex part as well as the electronic self-energy exactly on both real- and imaginary-frequency axes in the electron-phonon Holstein model with the on-site Coulomb repulsion in the limit in which the intramolecular phonon energy ω0 is much larger than the electronic bandwidth. The rigorous vertex part is found to diverge at the frequencies at which an electron is locked by such local phonons with an infinitely strong effective coupling. Characteristic frequencies of this divergence, which are not equal to multiples of ω0, are calculated as a function of the electron-phonon bare coupling constant. Our results for the self-energy are checked successfully with the exact ones obtained by the Lang-Firsov canonical transformation.

  19. Short communication: Reference limits for blood analytes in Holstein late-pregnant heifers and dry cows: Effects of parity, days relative to calving, and season.

    PubMed

    Brscic, M; Cozzi, G; Lora, I; Stefani, A L; Contiero, B; Ravarotto, L; Gottardo, F

    2015-11-01

    Reference limits for metabolic profiles in Holstein late-pregnant heifers and dry cows were determined considering the effects of parity, days relative to calving, and season. Blood samples were collected from 104 pregnant heifers and 186 dry cows (68 primiparous and 118 pluriparous) from 60 to 10 d before the expected calving date in 31 dairy farms in northeastern Italy. Sampling was performed during summer (182 samples) and the following winter (108 samples). All the animals were judged as clinically healthy at a veterinary visit before sampling. Outliers were removed from data of each blood analyte, and variables that were not normally distributed were log transformed. A mixed model was used to test the fixed effects of parity (late-pregnant heifers, primiparous or pluriparous dry cows), class of days relative to calving (60-41 d, 40-21 d, 20-10 d), season (summer or winter), and the interactions between parity and class of days relative to calving and between parity and season, with farm as random effect. Single general reference limits and 95% confidence intervals were generated for analytes that did not vary according to fixed effects. Whenever a fixed effect included in the model significantly affected a given analyte, specific reference limits and 95% confidence intervals were generated for each of its levels. Albumin, urea, triglycerides, alanine aminotransferase, aspartate aminotransferase, creatinine kinase, conjugated bilirubin, calcium, phosphorus, magnesium, potassium, chloride, zinc, copper, and iron concentrations were not influenced by any of the fixed effects. Total protein, globulins, creatinine, glucose, alkaline phosphatase, gamma glutamyltransferase, lactate dehydrogenase, and sodium plasma concentrations were affected by parity. The class of days relative to calving had a significant effect on the concentrations of total protein, globulins, fatty acids, cholesterol, total bilirubin, and sodium. Season affected plasma concentrations of

  20. Microscale enzymatic optical biosensors using mass transport limiting nanofilms. 1. Fabrication and characterization using glucose as a model analyte.

    PubMed

    Stein, Erich W; Grant, Patrick S; Zhu, Huiguang; McShane, Michael J

    2007-02-15

    "Smart tattoo" sensors-fluorescent microspheres that can be implanted intradermally and interrogated noninvasively using light-are being developed as potential tools for in vivo biochemical monitoring. In this work, a platform for enzymatic tattoo-type sensors is described and prototype devices evaluated using glucose as a model analyte. Sensor particles were prepared by immobilizing Pt(II) octaethylporphine (PtOEP), a phosphorescent dye readily quenched by molecular oxygen, into hybrid silicate microspheres, followed by loading and subsequent covalent immobilization of glucose oxidase. Rhodamine B-doped multilayer nanofilms were subsequently assembled on the surfaces of the particles to provide a reference signal and provide critical control of glucose transport into the particle. The enzymatic oxidation of glucose within the sensor results in the glucose concentration-dependent depletion of local oxygen levels, enabling indirect monitoring of glucose by measuring relative changes in PtOEP emission. A custom testing apparatus was used to monitor the dynamic sensor response to varying bulk oxygen and glucose levels, respectively. For the prototypes tested, dynamic test results indicate that the sensors respond rapidly (t(95) = 84 s) and reversibly to changes in bulk glucose levels, while demonstrating high baseline stability. The sensitivity (change in intensity ratio) of these devices was determined to be 4.16 +/- 0.57%/mg dL(-1). The analytical range for the prototypes was determined to be 2-120 mg/dl, though this can be extended to cover the physiologically relevant range by tailoring the nanofilm coatings. These findings confirm the potential for enzymatic microscale optical and pave the way for extension of this initial demonstration with glucose to target other biochemical species relevant to metabolic monitoring. PMID:17297932

  1. Microscale Enzymatic Optical Biosensors using Mass-Transport Limiting Nanofilms. 1. Fabrication and Characterization Using Glucose as a Model Analyte

    PubMed Central

    Stein, Erich W.; Grant, Patrick S.; Zhu, Huiguang; McShane, Michael J.

    2008-01-01

    “Smart tattoo” sensors – fluorescent microspheres which can be implanted intradermally and interrogated noninvasively using light – are being developed as potential tools for in vivo biochemical monitoring. In this work, a platform for enzymatic tattoo-type sensors is described, and prototype devices evaluated using glucose as a model analyte. Sensor particles were prepared by immobilizing Pt(II) octaethylporphine (PtOEP), a phosphorescent dye readily quenched by molecular oxygen, into hybrid silicate microspheres, followed by loading and subsequent covalent immobilization of glucose oxidase (GOx). Rhodamine B (RITC)-doped multilayer nanofilms were subsequently assembled on the surfaces of the particles to provide a reference signal and provide critical control of glucose transport into the particle. The enzymatic oxidation of glucose within the sensor results in the glucose concentration-dependent depletion of local oxygen levels, enabling indirect monitoring of glucose by measuring relative changes in PtOEP emission. A custom testing apparatus was used to monitor the dynamic sensor response to varying bulk oxygen and glucose levels, respectively. For the prototypes tested, dynamic test results indicate that the sensors respond rapidly (t95 = 84 sec) and reversibly to changes in bulk glucose levels, while demonstrating high baseline stability. The sensitivity (change in intensity ratio) of these devices was determined to be 4.16 ± 0.57 %/mg dL−1. The analytical range for the prototypes was determined to be 2 to 120 mg/dl, though this can be extended to cover the physiologically relevant range by tailoring the nanofilm coatings. These findings confirm the potential for enzymatic microscale optical, and pave the way for extension of this initial demonstration with glucose to target other biochemical species relevant to metabolic monitoring. PMID:17297932

  2. Electron attachment in F2 - Conclusive demonstration of nonresonant, s-wave coupling in the limit of zero electron energy

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Alajajian, S. H.

    1987-01-01

    Dissociative electron attachment to F2 has been observed in the energy range 0-140 meV, at a resolution of 6 meV (full width at half maximum). Results show conclusively a sharp, resolution-limited threshold behavior consistent with an s-wave cross section varying as sq rt of epsilon. Two accurate theoretical calculations predict only p-wave behavior varying as the sq rt of epsilon. Several nonadiabatic coupling effects leading to s-wave behavior are outlined.

  3. How to overcome limitations of analytic solutions when determining the direction of a gravitational wave using experimental data: an example with the Schenberg detector

    NASA Astrophysics Data System (ADS)

    Costa, C. F. S.; Magalhaes, N. S.

    2016-05-01

    It has been commonly assumed that analytic solutions can efficiently provide the direction of a gravitational wave (GW) once sufficient data is available from gravitational wave detectors. Nevertheless, we identified that such analytic solutions (based on the GW matrix reconstruction) present unforeseen theoretical and practical limitations (indeterminacies) and that for certain incoming directions they are unable to recover the latter. We present here important indeterminacy cases as well as a mathematical procedure that reduces such indeterminacies. Also, we developed a method that requires the least computational power to retrieve GW directions and which can be applied to any system of detectors able to reconstruct the GW matrix. As a test for the method, we used simulated data of the spherical, resonant- mass GW detector Schenberg, which involves five oscillating modes and six transducer readouts. The results show that this method canceled indeterminacies out satisfactorily.

  4. Ultrafast Electronic Energy Transfer Beyond the Weak Coupling Limit in a Proximal but Orthogonal Molecular Dyad.

    PubMed

    Hedley, Gordon J; Ruseckas, Arvydas; Benniston, Andrew C; Harriman, Anthony; Samuel, Ifor D W

    2015-12-24

    Electronic energy transfer (EET) from a donor to an acceptor is an important mechanism that controls the light harvesting efficiency in a wide variety of systems, including artificial and natural photosynthesis and contemporary photovoltaic technologies. The detailed mechanism of EET at short distances or large angles between the donor and acceptor is poorly understood. Here the influence of the orientation between the donor and acceptor on EET is explored using a molecule with two nearly perpendicular chromophores. Very fast EET with a time constant of 120 fs is observed, which is at least 40 times faster than the time predicted by Coulombic coupling calculations. Depolarization of the emission signal indicates that the transition dipole rotates through ca. 64°, indicating the near orthogonal nature of the EET event. The rate of EET is found to be similar to structural relaxation rates in the photoexcited oligothiophene donor alone, which suggests that this initial relaxation brings the dyad to a conical intersection where the excitation jumps to the acceptor. PMID:26617059

  5. Subsurface fluids screening by an analytical system employing a diffusion-limited and implantable sampling module deployable with a cone penetrometer

    SciTech Connect

    Lucero, D.P.; Ilgner, R.H.; Smith, R.R.; Jenkins, R.A.

    1997-03-01

    An analytical system employing a diffusion-limited sampling module and a direct sampling ion trap for quantitative assessment of subsurface fluids was developed and field tested. The sampling module is deployable with a cone penetrometer. It can be retrieved and/or remain as an implant for an indefinite time period. The device geometry, comprised of two planar membranes enclosing a diffusion cell, provides good implant ruggedness and reliable service in the field. Also, the sampling module is protected within a push pipe housing to extend implant service life. Subsurface volatile organic compound (VOC) vapors, in nanoliter amounts, diffuse through the sampler membrane wall by a diffusion-limited process that is independent of the soil permeability. Sample vapors are transported to the surface for analysis by direct sampling ion trap, or other analytical devices. Metered pressurized or reduced pressure transport (carrier) gas is utilized for sample transport to the surface. The vapors obtained are a function only of the fluid partial pressure and the vapor conductance of the sampler. Thus, quantitative analytical data is obtained regardless of soil conditions. The sampling module was deployed in the field at Dover Air Force Base at depths of 5 to 8.5 feet by the US Army Site Characterization and Analysis Penetrometer System (SCAPS). Relatively small 1.75 inch diameter push pipe and the relatively small vapor samples extracted cause minimal soil disturbance which preserves the integrity of the sampler subsurface surroundings. Analytical results were obtained for the system sampler operating in real time and as an implant where equilibrium was obtained between sampler interior and the external surroundings.

  6. Short-time-delay limit of the self-coupled FitzHugh-Nagumo system

    NASA Astrophysics Data System (ADS)

    Erneux, Thomas; Weicker, Lionel; Bauer, Larissa; Hövel, Philipp

    2016-02-01

    We analyze the FitzHugh-Nagumo equations subject to time-delayed self-feedback in the activator variable. Parameters are chosen such that the steady state is stable independent of the feedback gain and delay τ . We demonstrate that stable large-amplitude τ -periodic oscillations can, however, coexist with a stable steady state even for small delays, which is mathematically counterintuitive. In order to explore how these solutions appear in the bifurcation diagram, we propose three different strategies. We first analyze the emergence of periodic solutions from Hopf bifurcation points for τ small and show that a subcritical Hopf bifurcation allows the coexistence of stable τ -periodic and stable steady-state solutions. Second, we construct a τ -periodic solution by using singular perturbation techniques appropriate for slow-fast systems. The theory assumes τ =O (1 ) and its validity as τ →0 is investigated numerically by integrating the original equations. Third, we develop an asymptotic theory where the delay is scaled with respect to the fast timescale of the activator variable. The theory is applied to the FitzHugh-Nagumo equations with threshold nonlinearity, and we show that the branch of τ -periodic solutions emerges from a limit point of limit cycles.

  7. Application of a modified flux-coupling type superconducting fault current limiter to transient performance enhancement of micro-grid

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zheng, Feng; Deng, Changhong; Li, Shichun; Li, Miao; Liu, Hui; Zhu, Lin; Guo, Fang

    2015-11-01

    Concerning the application and development of a micro-grid system which is designed to accommodate high penetration of intermittent renewable resources, one of the main issues is related to an increase in the fault-current level. It is crucial to ensure the micro-grid's operational stability and service reliability when a fault occurs in the main network. In this paper, our research group suggests a modified flux-coupling type superconducting fault current limiter (SFCL) to enhance the transient performance of a typical micro-grid system. The SFCL is installed at the point of common coupling (PCC) between the main network and the micro-grid, and it is expected to actively improve the micro-grid's fault ride-through capability. And for some specific faults, the micro-grid should disconnect from the main network, and the SFCL's contribution is to make the micro-grid carry out a smooth transition between its grid-connected and islanded modes. Related theory derivation, technical discussion and simulation analysis are performed. From the demonstrated results, applying the SFCL can effectively limit the fault current, maintain the power balance, and enhance the voltage and frequency stability of the micro-grid.

  8. Passive sampling coupled to ultraviolet irradiation: a useful analytical approach for studying oxygenated polycyclic aromatic hydrocarbon formation in bioavailable mixtures.

    PubMed

    Forsberg, Norman D; O'Connell, Steven G; Allan, Sarah E; Anderson, Kim A

    2014-01-01

    The authors investigated coupling passive sampling technologies with ultraviolet irradiation experiments to study polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH transformation processes in real-world bioavailable mixtures. Passive sampling device (PSD) extracts were obtained from coastal waters impacted by the Deepwater Horizon oil spill and Superfund sites in Portland, Oregon, USA. Oxygenated PAHs were found in the contaminated waters with our PSDs. All mixtures were subsequently exposed to a mild dose of ultraviolet B (UVB). A reduction in PAH levels and simultaneous formation of several oxygenated PAHs were measured. Site-specific differences were observed with UVB-exposed PSD mixtures. PMID:24123227

  9. Differentiation of colloidal and dissolved silica: Analytical separation using spectrophotometry and inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Lewis-Russ, A.; Ranville, J.; Kashuba, A.T.

    1991-01-01

    A method is described that differentiates between solutions containing silica-dominated colloids and solutions that are essentially free of colloids. Suspensions of tuff particles were treated to remove colloids by centrifugation, filtration or both. Agreement of silica concentrations determined by inductively coupled plasma atomic emission spectrometry and by a spectrophotometric method was taken as an indication of colloid-free solutions. For two tuffs, centrifugation was effective for removing colloids. For the third, highly altered tuff, filtration was more effective for removing colloids.

  10. Geomechanical Facies Concept In Fractured Resevoirs and the Application of Hybrid Numerical and Analytical Techniques for the Description of Coupled Transport In Fractured Systems

    NASA Astrophysics Data System (ADS)

    McDermott, C. I.; Wenqing, W.; Kolditz, O.

    2009-04-01

    Exploiting and geo-engineering of fractured rocks in the context of reservoir storage and utilisation is important to applications such as hydrogeology, petroleum geology, geothermal energy, nuclear waste storage and CO2-sequestration. Understanding fluid, mass and energy transport in the three dimensional fracture network is critical to the evaluation planned operating efficiency. Hydraulic, thermal, mechanical and chemical coupled processes under the typical reservoir conditions operate at different scales. Depending on whether the process is continuum dominated (e.g. transfer of stress in the rock body) or discontinuity dominated (e.g. hydraulic transport processes) different methods of numerically investigating and quantifying the system can be applied. A geomechanical facies approach provides the basis for large scale numerical analysis of the coupled processes and prediction of system response. It also provides the basis for a three dimensional holistic understanding of the reservoir systems and the appropriate investigation techniques which could be used to evaluate the capacities of the reservoirs to be investigated as well as appropriate development techniques. Concentrating on the numerical modelling there is often a difficult balance between the numerical stability criteria of the different equation systems which need to be solved to describe the interaction of the dominant processes. The introduction of analytical solutions where possible, functional dependencies and multiple meshes provides on the framework of the geo-mechanical facies concept provides an efficient and stable method for the prediction of the effect of the in situ coupling.

  11. Analytic and numerical analysis of the longitudinal coupling impedance of a rectangular slot in a thin coaxial liner

    NASA Astrophysics Data System (ADS)

    Fedotov, Alexei V.; Gluckstern, Robert L.

    1997-09-01

    Beam pipes of high-energy superconducting colliders require a shielding tube (liner) with pumping slots to screen cold chamber walls from synchrotron radiation. Pumping slots in the liner walls are required to keep high vacuum inside the beam pipe and provide for a long beam lifetime. As previously discussed [Fedotov and Gluckstern, Phys. Rev. E 54, 1930 (1996)], for a long narrow slot whose length may be comparable with the wavelength, the usual static approximation for the polarizability and susceptibility that enter into the impedance is a poor one. Therefore, finding semianalytic expressions for the impedance of a rectangular slot in a broad frequency range is highly desirable. We develop a general analysis based on a variational formulation, which includes both the realistic coaxial structure of the beam-pipe and the effect of finite wavelength, in order to calculate the coupling impedance of a rectangular slot in a liner wall of zero thickness. We then present a numerical study of the frequency dependence of the coupling impedance of a transverse rectangular slot. Numerical results for a small square hole are presented for frequencies above and below cutoff, and compared with the results of other calculations.

  12. An analytical and explicit multi-field coupled nonlinear constitutive model for Terfenol-D giant magnetostrictive material

    NASA Astrophysics Data System (ADS)

    Zhou, Hao-Miao; Li, Meng-Han; Li, Xiao-Hong; Zhang, Da-Guang

    2016-08-01

    For a giant magnetostrictive rod under the action of multiple physical loads, such as an external magnetic field, temperature and axial pre-stress, this paper proposes a general one-dimensional nonlinear magneto-thermo-mechanical coupled constitutive model. This model is based on the Taylor expansion of the elastic Gibbs free energy of giant magnetostrictive material and thermodynamic relations from the perspective of macro continuum mechanics. Predictions made using this model are in good agreement with experimental data for magnetization and the magnetostrictive strain curve under the collective effect of pre-stress and temperature. Additionally, the model overcomes the drawback of the existing magneto-thermo-mechanical constitutive model that cannot accurately predict the magnetization and magnetostrictive strain curve for different temperatures and pre-stresses. Furthermore, the constitutive model does not contain an implicit function and is compact, and can thus be applied in both situations of tensile and compressive stress and to both positive and negative magnetostrictive materials, and it is thus appropriate for engineering applications. Comprehensive analysis shows that the model fully describes the nonlinear coupling properties of a magnetic field, magnetostrictive strain and elasticity of a magnetostrictive material subjected to stress, a magnetic field and heat.

  13. Preliminary Study of High Resolution HPLC Analytical Method for Sedimentary Pigments Based on Coupled C8 Columns

    NASA Astrophysics Data System (ADS)

    Yao, P.; Yu, Z.; Deng, C.; Liu, S.; Zhao, J.

    2008-05-01

    The pigments in marine water columns can provide accurate estimates of community composition and abundance of phytoplankton. In addition, the sedimentary pigments, especially the derivatives of chlorophyll such as pyrophaeophytins, pyrophaeophorbides and steryl chlorin esters (SCEs) formed during early diagenesis can also provide information on the primary producer community and the changes in paleoproductivity. Accordingly, analysis of pigments and their derivatives is of great importance for oceanography, limnology and geochemistry. Many methods have been developed for the separation of chlorophylls, carotenoids and their derivatives derived from phytoplankton and water column samples using high-performance liquid chromatography (HPLC). Methods widely cited in the literatures include those developed by Wright et al. (1991) and Zapata et al. (2000). Both methods use reversed-phase columns, but C18 column was employed in Wright et al. (1991) and C8 column in Zapata et al. (2000). However, evident coelutions are observed in published works. This will particularly cause problematic identification and quantification in dealing with sedimentary pigments which are highly complex and often display a broad range in polarity. Clearly, it is necessary to improve the separation of the complex pigments if the information carried by the pigments is to be used fully. Coupled C18 columns were used in the HPLC method developed by Airs et al. (2001) for the analysis of complex pigment distributions. Improved chromatographic resolution, more pigment components and novel bacteriochlorophyll derivatives were obtained by this method. It indicates a new road for HPLC method development. C8 column has shorter carbon chains than that of C18 column and can provide less retention of apolar compounds which is of particular advantaged to hydrophobic chlorophyll a, b and their derivatives. That is one of the reasons why the C8 method developed by Zapata et al. (2000) is admittedly better than

  14. Renormalization group treatment of excluded volume effects in a polyelectrolyte chain in the weak electrostatic coupling limit

    NASA Astrophysics Data System (ADS)

    Kholodenko, A. L.; Freed, Karl F.

    1983-06-01

    We provide the first rigorous treatment of the electrostatic excluded volume for a polyelectrolyte chain which incorporates the effects of salt concentration. Our treatment involves an extension of the t'Hooft-Veltman method of dimensional regularization for polymer excluded volume, developed in the accompanying paper, to the case complicated by the presence of electrostatic interactions. The critical dimensionality for the polyelectrolyte chains with realistic interactions is shown to be four in sharp contrast to previous simplified analyses, which do not consider salt concentration effects explicitly and which lead to a critical dimensionality of six. Our results imply that expansions in ɛ=4-d (with d the dimensionality of space) can be applied, so the theory reduces to the limit of uncharged polymers with excluded volume when the electrostatic interactions become totally screened. Our renormalization group (RG) treatment indicates the absence of stable fixed points, so there is no simple scaling limit. The range of validity of the perturbation expansion is established on the basis of a RG analysis, and a physical meaning of the weak coupling limit is also determined. The predicted lack of universality for the polyelectrolyte chain is in accord with experimental information. Explicit renormalized expressions are derived for the mean squared end-to-end distance to lowest order in both excluded volume and electrostatic coupling constants. These expressions are combined with the solution of the RG equations to provide a generalized scaling representation for in terms of three scaling variables. A brief discussion of possible future biological and nonbiological applications is provided.

  15. An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect

    NASA Astrophysics Data System (ADS)

    Fan-Yu, Liu; Heng-Zhu, Liu; Bi-Wei, Liu; Yu-Feng, Guo

    2016-04-01

    In this paper, the three-dimensional (3D) coupling effect is discussed for nanowire junctionless silicon-on-insulator (SOI) FinFETs. With fin width decreasing from 100 nm to 7 nm, the electric field induced by the lateral gates increases and therefore the influence of back gate on the threshold voltage weakens. For a narrow and tall fin, the lateral gates mainly control the channel and therefore the effect of back gate decreases. A simple two-dimensional (2D) potential model is proposed for the subthreshold region of junctionless SOI FinFET. TCAD simulations validate our model. It can be used to extract the threshold voltage and doping concentration. In addition, the tuning of back gate on the threshold voltage can be predicted. Project supported by the Research Program of the National University of Defense Technology (Grant No. JC 13-06-04).

  16. Adsorption and transport of arsenate in carbonate-rich soils: coupled effects of nonlinear and rate-limited sorption.

    PubMed

    Yolcubal, Irfan; Akyol, Nihat Hakan

    2008-11-01

    The transport and fate of arsenate in carbonate-rich soil under alkaline conditions was investigated with multiple approaches combining batch, sequential extraction and column experiments as well as transport modeling studies. Batch experiments indicated that sorption isotherm was nonlinear over a wide range of concentration (0.1-200 mg L(-1)) examined. As(V) adsorption to the calcareous soil was initially fast but then continued at a slower rate, indicating the potential effect of rate-limited sorption on transport. Column experiments illustrated that transport of As(V) was significantly retarded compared to a non-reactive tracer. The degree of retardation decreased with increasing As(V) concentration. As(V) breakthrough curves exhibited nonideal transport behavior due to the coupled effects of nonlinear and rate-limited sorption on arsenate transport, which is consistent with the results of modeling studies. The contribution of nonlinear sorption to the arsenate retardation was negligible at low concentration but increased with increasing As(V) concentration. Sequential extraction results showed that nonspecifically sorbed (easily exchangeable, outer sphere complexes) fraction of arsenate is dominant with respect to the inner-sphere surface bound complexes of arsenate in the carbonate soil fraction, indicating high bioavailability and transport for arsenate in the carbonate-rich soils of which Fe and Al oxyhydroxide fractions are limited. PMID:18718636

  17. Bifurcation structure of the special class of nonstationary regimes emerging in the 2D inertially coupled, unit-cell model: Analytical study

    NASA Astrophysics Data System (ADS)

    Vorotnikov, K.; Starosvetsky, Y.

    2016-09-01

    Present work is devoted to the analytical investigation of the bifurcation structure of special class of nonstationary low-energy regimes emerging in the locally resonant unit-cell model. System under consideration comprises an outer mass with internal rotator and subject to the 2D, nonlinear local potential. These regimes are characterized by the slow, purely rotational motion of the rotator synchronized with the periodic energy beats between the axial and the lateral vibrations of the outer element. Thus the angular speed of the rotator and the beating frequency of the outer element satisfy the 1:2 resonance condition. In the present study these regimes are referred to as regimes of synchronous nonlinear beats (RSNB). Using the regular muti-scale analysis in the limit of low energy excitation we derive the slow-flow model. To showcase the evolution of RSNBs we used the special Poincaré map technique applied on the slow-flow model. Results of the Poincaré sections unveiled some interesting local bifurcations undergone by these regimes. Further analysis of the slow-flow model enabled us to describe the RSNBs analytically as well as exposed their entire bifurcation structure. The bifurcation analysis has shown the coexistence of several branches of RSNBs corresponding to the regimes of weak and strong, two-dimensional, recurrent energy channeling. We substantiate the results of the analytical study with numerical simulations of the full model and find them to be in the very good agreement.

  18. An efficient formulation and implementation of the analytic energy gradient method to the single and double excitation coupled-cluster wave function - Application to Cl2O2

    NASA Technical Reports Server (NTRS)

    Rendell, Alistair P.; Lee, Timothy J.

    1991-01-01

    The analytic energy gradient for the single and double excitation coupled-cluster (CCSD) wave function has been reformulated and implemented in a new set of programs. The reformulated set of gradient equations have a smaller computational cost than any previously published. The iterative solution of the linear equations and the construction of the effective density matrices are fully vectorized, being based on matrix multiplications. The new method has been used to investigate the Cl2O2 molecule, which has recently been postulated as an important intermediate in the destruction of ozone in the stratosphere. In addition to reporting computational timings, the CCSD equilibrium geometries, harmonic vibrational frequencies, infrared intensities, and relative energetics of three isomers of Cl2O2 are presented.

  19. An analytical approach for beam loading compensation and excitation of maximum cavity field gradient in a coupled cavity-waveguide system

    NASA Astrophysics Data System (ADS)

    Kelisani, M. Dayyani; Doebert, S.; Aslaninejad, M.

    2016-08-01

    The critical process of beam loading compensation in high intensity accelerators brings under control the undesired effect of the beam induced fields to the accelerating structures. A new analytical approach for optimizing standing wave accelerating structures is found which is hugely fast and agrees very well with simulations. A perturbative analysis of cavity and waveguide excitation based on the Bethe theorem and normal mode expansion is developed to compensate the beam loading effect and excite the maximum field gradient in the cavity. The method provides the optimum values for the coupling factor and the cavity detuning. While the approach is very accurate and agrees well with simulation software, it massively shortens the calculation time compared with the simulation software.

  20. Multi-residue analytical method for the determination of endocrine disruptors and related compounds in river and waste water using dual column liquid chromatography switching system coupled to mass spectrometry.

    PubMed

    Gorga, Marina; Petrovic, Mira; Barceló, Damià

    2013-06-21

    The present study describes a novel, fully automated method, based on column switching using EQuan™ columns for an integrated sample preconcentration and liquid chromatography coupled to tandem mass spectrometry (LC-LC-MS/MS). The method allows the unequivocal identification and quantification of the most relevant environmental endocrine disruptors compounds (EDCs) and compounds suspected to be EDCs, such as natural and synthetic estrogens and their conjugates, antimicrobials, parabens, bisphenol A, alkylphenolic compounds, benzotriazoles, and organophosphorus flame retardants, in surface river water and wastewater samples. Applying this technique, water samples were directly injected into the chromatographic system and the target compounds were concentrated into the loading column. Thereafter, the analytes were transferred into the analytical column for subsequent detection by MS-MS (QqQ). A comparative study employing three types of columns, with different chemical modifications, was performed in order to determine the optimal column that allowed maximum retention and subsequent elution of the analytes. Using this new optimized methodology a fast and easy online methodology for the analysis of EDCs in surface river water and wastewater with low limits of quantification (LOQ) was obtained. LOQs ranged from 0.008 to 1.54 ng/L for surface river water and from 0.178/0.364 to 12.5/25.0 ng/L (except for alkylphenol monoethoxylates) for effluent/influent waste water. Moreover, employing approximately 1h, a complete analysis was performed which was significant improvement in comparison to other methods reported previously. This method was used to track the presence and fate of target compounds in the Ebro River which is the most important river in Spain whose intensive agricultural and industrial activities concentrate mainly close to the main cities in the basin, deteriorating soil and water quality. PMID:23683400

  1. Analytical control of wollastonite for biomedical applications by use of atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry.

    PubMed

    De Aza, P N; Guitián, F; De Aza, S; Valle, F J

    1998-04-01

    Preliminary in vitro experiments revealed that wollastonite (CaSiO3) is a potentially highly bioactive material that forms a hyroxyapatite (HA) surface layer on exposure to simulated body fluid with an ion concentration, pH and temperature virtually identical with those of human blood plasma. The formation of the HA layer is an essential requirement for an artificial material to be used as bioactive bone substitute. This finding opens up a wide field for biomedical applications of wollastonite. Biomaterials used as implants in the human body require strict control of trace elements and of the toxic species specified in American Society for Testing and Materials F-1185-88 (As, Cd, Hg and Pb) in ceramic hydroxyapatite for surgical implantation. In this work, two types of pseudowollastonite, the high temperature form of wollastonite, were analysed by using cold vapour atomic absorption spectrometry and hydride generation atomic absorption spectrometry, in order to determine the elements stated in the above-mentioned norm, and inductively coupled plasma atomic emission spectrometry to establish the SiO2/CaO ratio of the two materials and analyse for all other impurities introduced by the raw materials and by the processes of synthesis, sintering and grinding. Barium and Mg were especially prominent in raw materials, and Zr, Y, Mg, W, Co and Ni come mainly from the processing. PMID:9684401

  2. PASSIVE SAMPLING COUPLED TO ULTRAVIOLET IRRADIATION: A USEFUL ANALYTICAL APPROACH FOR STUDYING OXYGENATED POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN BIOAVAILABLE MIXTURES

    PubMed Central

    Forsberg, Norman D; O'Connell, Steven G; Allan, Sarah E; Anderson, Kim A

    2014-01-01

    The authors investigated coupling passive sampling technologies with ultraviolet irradiation experiments to study polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH transformation processes in real-world bioavailable mixtures. Passive sampling device (PSD) extracts were obtained from coastal waters impacted by the Deepwater Horizon oil spill and Superfund sites in Portland, Oregon, USA. Oxygenated PAHs were found in the contaminated waters with our PSDs. All mixtures were subsequently exposed to a mild dose of ultraviolet B (UVB). A reduction in PAH levels and simultaneous formation of several oxygenated PAHs were measured. Site-specific differences were observed with UVB-exposed PSD mixtures. Environ Toxicol Chem 2014;33:XX–XX. © 2013 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial, and no modifications or adaptations are made. PMID:24123227

  3. Analytical performance of a low-gas-flow torch optimized for inductively coupled plasma atomic emission spectrometry

    USGS Publications Warehouse

    Montaser, A.; Huse, G.R.; Wax, R.A.; Chan, S.-K.; Golightly, D.W.; Kane, J.S.; Dorrzapf, A.F., Jr.

    1984-01-01

    An inductively coupled Ar plasma (ICP), generated in a lowflow torch, was investigated by the simplex optimization technique for simultaneous, multielement, atomic emission spectrometry (AES). The variables studied included forward power, observation height, gas flow (outer, intermediate, and nebulizer carrier) and sample uptake rate. When the ICP was operated at 720-W forward power with a total gas flow of 5 L/min, the signal-to-background ratios (S/B) of spectral lines from 20 elements were either comparable or inferior, by a factor ranging from 1.5 to 2, to the results obtained from a conventional Ar ICP. Matrix effect studies on the Ca-PO4 system revealed that the plasma generated in the low-flow torch was as free of vaporizatton-atomizatton interferences as the conventional ICP, but easily ionizable elements produced a greater level of suppression or enhancement effects which could be reduced at higher forward powers. Electron number densities, as determined via the series until line merging technique, were tower ht the plasma sustained in the low-flow torch as compared with the conventional ICP. ?? 1984 American Chemical Society.

  4. Cisapride a green analytical reagent for rapid and sensitive determination of bromate in drinking water, bread and flour additives by oxidative coupling spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Al Okab, Riyad Ahmed

    2013-02-01

    Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml-1 and molar absorptivity 1.41 × 104 L mol-1 cm-1. All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses.

  5. Enhanced fluorescence sensitivity by coupling yttrium-analyte complexes and three-way fast high-performance liquid chromatography data modeling.

    PubMed

    Alcaraz, Mirta R; Culzoni, María J; Goicoechea, Héctor C

    2016-01-01

    The present study reports a sensitive chromatographic method for the analysis of seven fluoroquinolones (FQs) in environmental water samples, by coupling yttrium-analyte complex and three-way chromatographic data modeling. This method based on the use of HPLC-FSFD does not require complex or tedious sample treatments or enrichment processes before the analysis, due to the significant fluorescence increments of the analytes reached by the presence of Y(3+). Enhancement achieved for the FQs signals obtained after Y(3+) addition reaches 103- to 1743-fold. Prediction results corresponding to the application of MCR-ALS to the validation set showed relative error of prediction (REP%) values below 10% in all cases. A recovery study that includes the simultaneous determination of the seven FQs in three different environmental aqueous matrices was conducted. The recovery studies assert the efficiency and the accuracy of the proposed method. The LOD values calculated are in the order of part per trillion (below 0.5 ng mL(-1) for all the FQs, except for enoxacin). It is noteworthy to mention that the method herein proposed, which does not include pre-concentration steps, allows reaching LOD values in the same order of magnitude than those achieved by more sophisticated methods based on SPE and UHPLC-MS/MS. PMID:26703253

  6. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Syta, Olga; Rozum, Karol; Choińska, Marta; Zielińska, Dobrochna; Żukowska, Grażyna Zofia; Kijowska, Agnieszka; Wagner, Barbara

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th-14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers.

  7. Analytical second derivatives of excited-state energy within the time-dependent density functional theory coupled with a conductor-like polarizable continuum model

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Liang, WanZhen

    2013-01-01

    This work extends our previous works [J. Liu and W. Z. Liang, J. Chem. Phys. 135, 014113 (2011), 10.1063/1.3605504; J. Liu and W. Z. Liang, J. Chem. Phys. 135, 184111 (2011)], 10.1063/1.3659312 on analytical excited-state Hessian within the framework of time-dependent density functional theory (TDDFT) to couple with a conductor-like polarizable continuum model (CPCM). The formalism, implementation, and application of analytical first and second energy derivatives of TDDFT/CPCM excited state with respect to the nuclear and electric perturbations are presented. Their performances are demonstrated by the calculations of excitation energies, excited-state geometries, and harmonic vibrational frequencies for a number of benchmark systems. The calculated results are in good agreement with the corresponding experimental data or other theoretical calculations, indicating the reliability of the current computer implementation of the developed algorithms. Then we made some preliminary applications to calculate the resonant Raman spectrum of 4-hydroxybenzylidene-2,3-dimethyl-imidazolinone in ethanol solution and the infrared spectra of ground and excited states of 9-fluorenone in methanol solution.

  8. Cisapride a green analytical reagent for rapid and sensitive determination of bromate in drinking water, bread and flour additives by oxidative coupling spectrophotometric methods.

    PubMed

    Al Okab, Riyad Ahmed

    2013-02-15

    Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml(-1) and molar absorptivity 1.41 × 10(4) L mol(-1)cm(-1). All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses. PMID:23261631

  9. Secular diffusion in discrete self-gravitating tepid discs. I. Analytic solution in the tightly wound limit

    NASA Astrophysics Data System (ADS)

    Fouvry, J. B.; Pichon, C.; Chavanis, P. H.

    2015-09-01

    The secular evolution of an infinitely thin tepid isolated galactic disc made of a finite number of particles is described using the inhomogeneous Balescu-Lenard equation. Assuming that only tightly wound transient spirals are present in the disc, a WKB approximation provides a simple and tractable quadrature for the corresponding drift and diffusion coefficients. It provides insight into the physical processes at work during the secular diffusion of a self-gravitating discrete disc and makes quantitative predictions on the initial variations of the distribution function in action space. When applied to the secular evolution of an isolated stationary self-gravitating Mestel disc, this formalism predicts the initial importance of the corotation resonance in the inner regions of the disc leading to a regime involving radial migration and heating. It predicts in particular the formation of a ridge-like feature in action space, in agreement with simulations, but over-estimates the timescale involved in its appearance. Swing amplification is likely needed to resolve this discrepancy. In astrophysics, the inhomogeneous Balescu-Lenard equation and its WKB limit may also describe the secular diffusion of giant molecular clouds in galactic discs, the secular migration and segregation of planetesimals in proto-planetary discs, or even the long-term evolution of population of stars within the Galactic centre. Appendices are available in electronic form at http://www.aanda.org

  10. Bayesian inference of interaction properties of noisy dynamical systems with time-varying coupling: capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Wilting, Jens; Lehnertz, Klaus

    2015-08-01

    We investigate a recently published analysis framework based on Bayesian inference for the time-resolved characterization of interaction properties of noisy, coupled dynamical systems. It promises wide applicability and a better time resolution than well-established methods. At the example of representative model systems, we show that the analysis framework has the same weaknesses as previous methods, particularly when investigating interacting, structurally different non-linear oscillators. We also inspect the tracking of time-varying interaction properties and propose a further modification of the algorithm, which improves the reliability of obtained results. We exemplarily investigate the suitability of this algorithm to infer strength and direction of interactions between various regions of the human brain during an epileptic seizure. Within the limitations of the applicability of this analysis tool, we show that the modified algorithm indeed allows a better time resolution through Bayesian inference when compared to previous methods based on least square fits.