Science.gov

Sample records for covariate-adjusted nonlinear regression

  1. Partial covariate adjusted regression

    PubMed Central

    Şentürk, Damla; Nguyen, Danh V.

    2008-01-01

    Covariate adjusted regression (CAR) is a recently proposed adjustment method for regression analysis where both the response and predictors are not directly observed (Şentürk and Müller, 2005). The available data has been distorted by unknown functions of an observable confounding covariate. CAR provides consistent estimators for the coefficients of the regression between the variables of interest, adjusted for the confounder. We develop a broader class of partial covariate adjusted regression (PCAR) models to accommodate both distorted and undistorted (adjusted/unadjusted) predictors. The PCAR model allows for unadjusted predictors, such as age, gender and demographic variables, which are common in the analysis of biomedical and epidemiological data. The available estimation and inference procedures for CAR are shown to be invalid for the proposed PCAR model. We propose new estimators and develop new inference tools for the more general PCAR setting. In particular, we establish the asymptotic normality of the proposed estimators and propose consistent estimators of their asymptotic variances. Finite sample properties of the proposed estimators are investigated using simulation studies and the method is also illustrated with a Pima Indians diabetes data set. PMID:20126296

  2. On variance estimate for covariate adjustment by propensity score analysis.

    PubMed

    Zou, Baiming; Zou, Fei; Shuster, Jonathan J; Tighe, Patrick J; Koch, Gary G; Zhou, Haibo

    2016-09-10

    Propensity score (PS) methods have been used extensively to adjust for confounding factors in the statistical analysis of observational data in comparative effectiveness research. There are four major PS-based adjustment approaches: PS matching, PS stratification, covariate adjustment by PS, and PS-based inverse probability weighting. Though covariate adjustment by PS is one of the most frequently used PS-based methods in clinical research, the conventional variance estimation of the treatment effects estimate under covariate adjustment by PS is biased. As Stampf et al. have shown, this bias in variance estimation is likely to lead to invalid statistical inference and could result in erroneous public health conclusions (e.g., food and drug safety and adverse events surveillance). To address this issue, we propose a two-stage analytic procedure to develop a valid variance estimator for the covariate adjustment by PS analysis strategy. We also carry out a simple empirical bootstrap resampling scheme. Both proposed procedures are implemented in an R function for public use. Extensive simulation results demonstrate the bias in the conventional variance estimator and show that both proposed variance estimators offer valid estimates for the true variance, and they are robust to complex confounding structures. The proposed methods are illustrated for a post-surgery pain study. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26999553

  3. The Covariance Adjustment Approaches for Combining Incomparable Cox Regressions Caused by Unbalanced Covariates Adjustment: A Multivariate Meta-Analysis Study

    PubMed Central

    Dehesh, Tania; Zare, Najaf; Ayatollahi, Seyyed Mohammad Taghi

    2015-01-01

    Background. Univariate meta-analysis (UM) procedure, as a technique that provides a single overall result, has become increasingly popular. Neglecting the existence of other concomitant covariates in the models leads to loss of treatment efficiency. Our aim was proposing four new approximation approaches for the covariance matrix of the coefficients, which is not readily available for the multivariate generalized least square (MGLS) method as a multivariate meta-analysis approach. Methods. We evaluated the efficiency of four new approaches including zero correlation (ZC), common correlation (CC), estimated correlation (EC), and multivariate multilevel correlation (MMC) on the estimation bias, mean square error (MSE), and 95% probability coverage of the confidence interval (CI) in the synthesis of Cox proportional hazard models coefficients in a simulation study. Result. Comparing the results of the simulation study on the MSE, bias, and CI of the estimated coefficients indicated that MMC approach was the most accurate procedure compared to EC, CC, and ZC procedures. The precision ranking of the four approaches according to all above settings was MMC ≥ EC ≥ CC ≥ ZC. Conclusion. This study highlights advantages of MGLS meta-analysis on UM approach. The results suggested the use of MMC procedure to overcome the lack of information for having a complete covariance matrix of the coefficients. PMID:26413142

  4. A method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  5. Differential correction schemes in nonlinear regression

    NASA Technical Reports Server (NTRS)

    Decell, H. P., Jr.; Speed, F. M.

    1972-01-01

    Classical iterative methods in nonlinear regression are reviewed and improved upon. This is accomplished by discussion of the geometrical and theoretical motivation for introducing modifications using generalized matrix inversion. Examples having inherent pitfalls are presented and compared in terms of results obtained using classical and modified techniques. The modification is shown to be useful alone or in conjunction with other modifications appearing in the literature.

  6. A Simulation-Based Comparison of Covariate Adjustment Methods for the Analysis of Randomized Controlled Trials

    PubMed Central

    Chaussé, Pierre; Liu, Jin; Luta, George

    2016-01-01

    Covariate adjustment methods are frequently used when baseline covariate information is available for randomized controlled trials. Using a simulation study, we compared the analysis of covariance (ANCOVA) with three nonparametric covariate adjustment methods with respect to point and interval estimation for the difference between means. The three alternative methods were based on important members of the generalized empirical likelihood (GEL) family, specifically on the empirical likelihood (EL) method, the exponential tilting (ET) method, and the continuous updated estimator (CUE) method. Two criteria were considered for the comparison of the four statistical methods: the root mean squared error and the empirical coverage of the nominal 95% confidence intervals for the difference between means. Based on the results of the simulation study, for sensitivity analysis purposes, we recommend the use of ANCOVA (with robust standard errors when heteroscedasticity is present) together with the CUE-based covariate adjustment method. PMID:27077870

  7. Validity of a Residualized Dependent Variable after Pretest Covariance Adjustments: Still the Same Variable?

    ERIC Educational Resources Information Center

    Nimon, Kim; Henson, Robin K.

    2015-01-01

    The authors empirically examined whether the validity of a residualized dependent variable after covariance adjustment is comparable to that of the original variable of interest. When variance of a dependent variable is removed as a result of one or more covariates, the residual variance may not reflect the same meaning. Using the pretest-posttest…

  8. Covariate Adjustment Strategy Increases Power in the Randomized Controlled Trial With Discrete-Time Survival Endpoints

    ERIC Educational Resources Information Center

    Safarkhani, Maryam; Moerbeek, Mirjam

    2013-01-01

    In a randomized controlled trial, a decision needs to be made about the total number of subjects for adequate statistical power. One way to increase the power of a trial is by including a predictive covariate in the model. In this article, the effects of various covariate adjustment strategies on increasing the power is studied for discrete-time…

  9. Sample Size for Confidence Interval of Covariate-Adjusted Mean Difference

    ERIC Educational Resources Information Center

    Liu, Xiaofeng Steven

    2010-01-01

    This article provides a way to determine adequate sample size for the confidence interval of covariate-adjusted mean difference in randomized experiments. The standard error of adjusted mean difference depends on covariate variance and balance, which are two unknown quantities at the stage of planning sample size. If covariate observations are…

  10. Cardiovascular Response Identification Based on Nonlinear Support Vector Regression

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.

    This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.

  11. Kernel Partial Least Squares for Nonlinear Regression and Discrimination

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper summarizes recent results on applying the method of partial least squares (PLS) in a reproducing kernel Hilbert space (RKHS). A previously proposed kernel PLS regression model was proven to be competitive with other regularized regression methods in RKHS. The family of nonlinear kernel-based PLS models is extended by considering the kernel PLS method for discrimination. Theoretical and experimental results on a two-class discrimination problem indicate usefulness of the method.

  12. An Excel Solver Exercise to Introduce Nonlinear Regression

    ERIC Educational Resources Information Center

    Pinder, Jonathan P.

    2013-01-01

    Business students taking business analytics courses that have significant predictive modeling components, such as marketing research, data mining, forecasting, and advanced financial modeling, are introduced to nonlinear regression using application software that is a "black box" to the students. Thus, although correct models are…

  13. Covariate-Adjusted Linear Mixed Effects Model with an Application to Longitudinal Data

    PubMed Central

    Nguyen, Danh V.; Şentürk, Damla; Carroll, Raymond J.

    2009-01-01

    Linear mixed effects (LME) models are useful for longitudinal data/repeated measurements. We propose a new class of covariate-adjusted LME models for longitudinal data that nonparametrically adjusts for a normalizing covariate. The proposed approach involves fitting a parametric LME model to the data after adjusting for the nonparametric effects of a baseline confounding covariate. In particular, the effect of the observable covariate on the response and predictors of the LME model is modeled nonparametrically via smooth unknown functions. In addition to covariate-adjusted estimation of fixed/population parameters and random effects, an estimation procedure for the variance components is also developed. Numerical properties of the proposed estimators are investigated with simulation studies. The consistency and convergence rates of the proposed estimators are also established. An application to a longitudinal data set on calcium absorption, accounting for baseline distortion from body mass index, illustrates the proposed methodology. PMID:19266053

  14. Detecting influential observations in nonlinear regression modeling of groundwater flow

    USGS Publications Warehouse

    Yager, R.M.

    1998-01-01

    Nonlinear regression is used to estimate optimal parameter values in models of groundwater flow to ensure that differences between predicted and observed heads and flows do not result from nonoptimal parameter values. Parameter estimates can be affected, however, by observations that disproportionately influence the regression, such as outliers that exert undue leverage on the objective function. Certain statistics developed for linear regression can be used to detect influential observations in nonlinear regression if the models are approximately linear. This paper discusses the application of Cook's D, which measures the effect of omitting a single observation on a set of estimated parameter values, and the statistical parameter DFBETAS, which quantifies the influence of an observation on each parameter. The influence statistics were used to (1) identify the influential observations in the calibration of a three-dimensional, groundwater flow model of a fractured-rock aquifer through nonlinear regression, and (2) quantify the effect of omitting influential observations on the set of estimated parameter values. Comparison of the spatial distribution of Cook's D with plots of model sensitivity shows that influential observations correspond to areas where the model heads are most sensitive to certain parameters, and where predicted groundwater flow rates are largest. Five of the six discharge observations were identified as influential, indicating that reliable measurements of groundwater flow rates are valuable data in model calibration. DFBETAS are computed and examined for an alternative model of the aquifer system to identify a parameterization error in the model design that resulted in overestimation of the effect of anisotropy on horizontal hydraulic conductivity.

  15. Effects of model sensitivity and nonlinearity on nonlinear regression of ground water flow

    USGS Publications Warehouse

    Yager, R.M.

    2004-01-01

    Nonlinear regression is increasingly applied to the calibration of hydrologic models through the use of perturbation methods to compute the Jacobian or sensitivity matrix required by the Gauss-Newton optimization method. Sensitivities obtained by perturbation methods can be less accurate than those obtained by direct differentiation, however, and concern has arisen that the optimal parameter values and the associated parameter covariance matrix computed by perturbation could also be less accurate. Sensitivities computed by both perturbation and direct differentiation were applied in nonlinear regression calibration of seven ground water flow models. The two methods gave virtually identical optimum parameter values and covariances for the three models that were relatively linear and two of the models that were relatively nonlinear, but gave widely differing results for two other nonlinear models. The perturbation method performed better than direct differentiation in some regressions with the nonlinear models, apparently because approximate sensitivities computed for an interval yielded better search directions than did more accurately computed sensitivities for a point. The method selected to avoid overshooting minima on the error surface when updating parameter values with the Gauss-Newton procedure appears for nonlinear models to be more important than the method of sensitivity calculation in controlling regression convergence.

  16. Covariate Adjusted Correlation Analysis with Application to FMR1 Premutation Female Carrier Data

    PubMed Central

    Şentürk, Damla; Nguyen, Danh V.; Tassone, Flora; Hagerman, Randi J.; Carroll, Raymond J.; Hagerman, Paul J.

    2009-01-01

    Summary Motivated by molecular data on female premutation carriers of the fragile X mental retardation 1 (FMR1) gene, we present a new method of covariate adjusted correlation analysis to examine the association of messenger RNA (mRNA) and number of CGG repeat expansion in the FMR1 gene. The association between the molecular variables in female carriers needs to adjust for activation ratio (ActRatio), a measure which accounts for the protective effects of one normal X chromosome in females carriers. However, there are inherent uncertainties in the exact effects of ActRatio on the molecular measures of interest. To account for these uncertainties, we develop a flexible adjustment that accommodates both additive and multiplicative effects of ActRatio nonparametrically. The proposed adjusted correlation uses local conditional correlations, which are local method of moments estimators, to estimate the Pearson correlation between two variables adjusted for a third observable covariate. The local method of moments estimators are averaged to arrive at the final covariate adjusted correlation estimator, which is shown to be consistent. We also develop a test to check the nonparametric joint additive and multiplicative adjustment form. Simulation studies illustrate the efficacy of the proposed method. (Application to FMR1 premutation data on 165 female carriers indicates that the association between mRNA and CGG repeat after adjusting for ActRatio is stronger.) Finally, the results provide independent support for a specific jointly additive and multiplicative adjustment form for ActRatio previously proposed in the literature. PMID:19173699

  17. Development and Application of Nonlinear Land-Use Regression Models

    NASA Astrophysics Data System (ADS)

    Champendal, Alexandre; Kanevski, Mikhail; Huguenot, Pierre-Emmanuel

    2014-05-01

    The problem of air pollution modelling in urban zones is of great importance both from scientific and applied points of view. At present there are several fundamental approaches either based on science-based modelling (air pollution dispersion) or on the application of space-time geostatistical methods (e.g. family of kriging models or conditional stochastic simulations). Recently, there were important developments in so-called Land Use Regression (LUR) models. These models take into account geospatial information (e.g. traffic network, sources of pollution, average traffic, population census, land use, etc.) at different scales, for example, using buffering operations. Usually the dimension of the input space (number of independent variables) is within the range of (10-100). It was shown that LUR models have some potential to model complex and highly variable patterns of air pollution in urban zones. Most of LUR models currently used are linear models. In the present research the nonlinear LUR models are developed and applied for Geneva city. Mainly two nonlinear data-driven models were elaborated: multilayer perceptron and random forest. An important part of the research deals also with a comprehensive exploratory data analysis using statistical, geostatistical and time series tools. Unsupervised self-organizing maps were applied to better understand space-time patterns of the pollution. The real data case study deals with spatial-temporal air pollution data of Geneva (2002-2011). Nitrogen dioxide (NO2) has caught our attention. It has effects on human health and on plants; NO2 contributes to the phenomenon of acid rain. The negative effects of nitrogen dioxides on plants are the reduction of the growth, production and pesticide resistance. And finally, the effects on materials: nitrogen dioxide increases the corrosion. The data used for this study consist of a set of 106 NO2 passive sensors. 80 were used to build the models and the remaining 36 have constituted

  18. The Allometry of Coarse Root Biomass: Log-Transformed Linear Regression or Nonlinear Regression?

    PubMed Central

    Lai, Jiangshan; Yang, Bo; Lin, Dunmei; Kerkhoff, Andrew J.; Ma, Keping

    2013-01-01

    Precise estimation of root biomass is important for understanding carbon stocks and dynamics in forests. Traditionally, biomass estimates are based on allometric scaling relationships between stem diameter and coarse root biomass calculated using linear regression (LR) on log-transformed data. Recently, it has been suggested that nonlinear regression (NLR) is a preferable fitting method for scaling relationships. But while this claim has been contested on both theoretical and empirical grounds, and statistical methods have been developed to aid in choosing between the two methods in particular cases, few studies have examined the ramifications of erroneously applying NLR. Here, we use direct measurements of 159 trees belonging to three locally dominant species in east China to compare the LR and NLR models of diameter-root biomass allometry. We then contrast model predictions by estimating stand coarse root biomass based on census data from the nearby 24-ha Gutianshan forest plot and by testing the ability of the models to predict known root biomass values measured on multiple tropical species at the Pasoh Forest Reserve in Malaysia. Based on likelihood estimates for model error distributions, as well as the accuracy of extrapolative predictions, we find that LR on log-transformed data is superior to NLR for fitting diameter-root biomass scaling models. More importantly, inappropriately using NLR leads to grossly inaccurate stand biomass estimates, especially for stands dominated by smaller trees. PMID:24116197

  19. A Simulation Study on the Performance of the Simple Difference and Covariance-Adjusted Scores in Randomized Experimental Designs

    ERIC Educational Resources Information Center

    Petscher, Yaacov; Schatschneider, Christopher

    2011-01-01

    Research by Huck and McLean (1975) demonstrated that the covariance-adjusted score is more powerful than the simple difference score, yet recent reviews indicate researchers are equally likely to use either score type in two-wave randomized experimental designs. A Monte Carlo simulation was conducted to examine the conditions under which the…

  20. Covariate-adjusted response-adaptive designs for longitudinal treatment responses: PEMF trial revisited.

    PubMed

    Biswas, Atanu; Park, Eunsik; Bhattacharya, Rahul

    2012-08-01

    Response-adaptive designs have become popular for allocation of the entering patients among two or more competing treatments in a phase III clinical trial. Although there are a lot of designs for binary treatment responses, the number of designs involving covariates is very small. Sometimes the patients give repeated responses. The only available response-adaptive allocation design for repeated binary responses is the urn design by Biswas and Dewanji [Biswas A and Dewanji AA. Randomized longitudinal play-the-winner design for repeated binary data. ANZJS 2004; 46: 675-684; Biswas A and Dewanji A. Inference for a RPW-type clinical trial with repeated monitoring for the treatment of rheumatoid arthritis. Biometr J 2004; 46: 769-779.], although it does not take care of the covariates of the patients in the allocation design. In this article, a covariate-adjusted response-adaptive randomisation procedure is developed using the log-odds ratio within the Bayesian framework for longitudinal binary responses. The small sample performance of the proposed allocation procedure is assessed through a simulation study. The proposed procedure is illustrated using some real data set. PMID:20974667

  1. Comparison between Linear and Nonlinear Regression in a Laboratory Heat Transfer Experiment

    ERIC Educational Resources Information Center

    Gonçalves, Carine Messias; Schwaab, Marcio; Pinto, José Carlos

    2013-01-01

    In order to interpret laboratory experimental data, undergraduate students are used to perform linear regression through linearized versions of nonlinear models. However, the use of linearized models can lead to statistically biased parameter estimates. Even so, it is not an easy task to introduce nonlinear regression and show for the students…

  2. Comparison of covariate adjustment methods using space-time scan statistics for food animal syndromic surveillance

    PubMed Central

    2013-01-01

    Background Abattoir condemnation data show promise as a rich source of data for syndromic surveillance of both animal and zoonotic diseases. However, inherent characteristics of abattoir condemnation data can bias results from space-time cluster detection methods for disease surveillance, and may need to be accounted for using various adjustment methods. The objective of this study was to compare the space-time scan statistics with different abilities to control for covariates and to assess their suitability for food animal syndromic surveillance. Four space-time scan statistic models were used including: animal class adjusted Poisson, space-time permutation, multi-level model adjusted Poisson, and a weighted normal scan statistic using model residuals. The scan statistics were applied to monthly bovine pneumonic lung and “parasitic liver” condemnation data from Ontario provincial abattoirs from 2001–2007. Results The number and space-time characteristics of identified clusters often varied between space-time scan tests for both “parasitic liver” and pneumonic lung condemnation data. While there were some similarities between isolated clusters in space, time and/or space-time, overall the results from space-time scan statistics differed substantially depending on the covariate adjustment approach used. Conclusions Variability in results among methods suggests that caution should be used in selecting space-time scan methods for abattoir surveillance. Furthermore, validation of different approaches with simulated or real outbreaks is required before conclusive decisions can be made concerning the best approach for conducting surveillance with these data. PMID:24246040

  3. Confidence region estimation techniques for nonlinear regression :three case studies.

    SciTech Connect

    Swiler, Laura Painton (Sandia National Laboratories, Albuquerque, NM); Sullivan, Sean P. (University of Texas, Austin, TX); Stucky-Mack, Nicholas J. (Harvard University, Cambridge, MA); Roberts, Randall Mark; Vugrin, Kay White

    2005-10-01

    This work focuses on different methods to generate confidence regions for nonlinear parameter identification problems. Three methods for confidence region estimation are considered: a linear approximation method, an F-test method, and a Log-Likelihood method. Each of these methods are applied to three case studies. One case study is a problem with synthetic data, and the other two case studies identify hydraulic parameters in groundwater flow problems based on experimental well-test results. The confidence regions for each case study are analyzed and compared. Although the F-test and Log-Likelihood methods result in similar regions, there are differences between these regions and the regions generated by the linear approximation method for nonlinear problems. The differing results, capabilities, and drawbacks of all three methods are discussed.

  4. Incorporation of prior information on parameters into nonlinear regression groundwater flow models 2. Applications.

    USGS Publications Warehouse

    Cooley, R.L.

    1983-01-01

    Investigates factors influencing the degree of improvement in estimates of parameters of a nonlinear regression groundwater flow model by incorporating prior information of unknown reliability. Consideration of expected behavior of the regression solutions and results of a hypothetical modeling problem lead to several general conclusions. -from Author

  5. Nonlinear regression on Riemannian manifolds and its applications to Neuro-image analysis ★

    PubMed Central

    Banerjee, Monami; Chakraborty, Rudrasis; Ofori, Edward; Vaillancourt, David

    2016-01-01

    Regression in its most common form where independent and dependent variables are in ℝn is a ubiquitous tool in Sciences and Engineering. Recent advances in Medical Imaging has lead to a wide spread availability of manifold-valued data leading to problems where the independent variables are manifold-valued and dependent are real-valued or vice-versa. The most common method of regression on a manifold is the geodesic regression, which is the counterpart of linear regression in Euclidean space. Often, the relation between the variables is highly complex, and existing most commonly used geodesic regression can prove to be inaccurate. Thus, it is necessary to resort to a non-linear model for regression. In this work we present a novel Kernel based non-linear regression method when the mapping to be estimated is either from M → ℝn or ℝn → M, where M is a Riemannian manifold. A key advantage of this approach is that there is no requirement for the manifold-valued data to necessarily inherit an ordering from the data in ℝn. We present several synthetic and real data experiments along with comparisons to the state-of-the-art geodesic regression method in literature and thus validating the effectiveness of the proposed algorithm. PMID:27110601

  6. Incorporation of prior information on parameters into nonlinear regression groundwater flow models. l. Theory.

    USGS Publications Warehouse

    Cooley, R.L.

    1982-01-01

    Prior information on the parameters of a groundwater flow model can be used to improve parameter estimates obtained from nonlinear regression solution of a modeling problem. Two scales of prior information can be available: 1) prior information having known reliability (that is, bias and random error structure), and 2) prior information consisting of best available estimates of unknown reliability. It is shown that if both scales of prior information are available, then a combined regression analysis may be made. -from Author

  7. A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover

    USGS Publications Warehouse

    Huang, C.; Townshend, J.R.G.

    2003-01-01

    A stepwise regression tree (SRT) algorithm was developed for approximating complex nonlinear relationships. Based on the regression tree of Breiman et al . (BRT) and a stepwise linear regression (SLR) method, this algorithm represents an improvement over SLR in that it can approximate nonlinear relationships and over BRT in that it gives more realistic predictions. The applicability of this method to estimating subpixel forest was demonstrated using three test data sets, on all of which it gave more accurate predictions than SLR and BRT. SRT also generated more compact trees and performed better than or at least as well as BRT at all 10 equal forest proportion interval ranging from 0 to 100%. This method is appealing to estimating subpixel land cover over large areas.

  8. A regularization corrected score method for nonlinear regression models with covariate error.

    PubMed

    Zucker, David M; Gorfine, Malka; Li, Yi; Tadesse, Mahlet G; Spiegelman, Donna

    2013-03-01

    Many regression analyses involve explanatory variables that are measured with error, and failing to account for this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski-Nakamura corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression, nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses' Health Study concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast cancer. PMID:23379851

  9. Robust ridge regression estimators for nonlinear models with applications to high throughput screening assay data.

    PubMed

    Lim, Changwon

    2015-03-30

    Nonlinear regression is often used to evaluate the toxicity of a chemical or a drug by fitting data from a dose-response study. Toxicologists and pharmacologists may draw a conclusion about whether a chemical is toxic by testing the significance of the estimated parameters. However, sometimes the null hypothesis cannot be rejected even though the fit is quite good. One possible reason for such cases is that the estimated standard errors of the parameter estimates are extremely large. In this paper, we propose robust ridge regression estimation procedures for nonlinear models to solve this problem. The asymptotic properties of the proposed estimators are investigated; in particular, their mean squared errors are derived. The performances of the proposed estimators are compared with several standard estimators using simulation studies. The proposed methodology is also illustrated using high throughput screening assay data obtained from the National Toxicology Program. PMID:25490981

  10. INAKT--an interactive non-linear regression program for enzyme inactivation and affinity labelling studies.

    PubMed

    Christophersen, A; McKinley-McKee, J S

    1984-01-01

    An interactive program for analysing enzyme activity-time data using non-linear regression analysis is described. Protection studies can also be dealt with. The program computes inactivation rates, dissociation constants and promotion or inhibition parameters with their standard errors. It can also be used to distinguish different inactivation models. The program is written in SIMULA and is menu-oriented for refining or correcting data at the different levels of computing. PMID:6546558

  11. A comparison of several methods of solving nonlinear regression groundwater flow problems.

    USGS Publications Warehouse

    Cooley, R.L.

    1985-01-01

    Computational efficiency and computer memory requirements for four methods of minimizing functions were compared for four test nonlinear-regression steady state groundwater flow problems. The fastest methods were the Marquardt and quasi-linearization methods, which required almost identical computer times and numbers of iterations; the next fastest was the quasi-Newton method, and last was the Fletcher-Reeves method, which did not converge in 100 iterations for two of the problems.-from Author

  12. A Nonlinear Causality Estimator Based on Non-Parametric Multiplicative Regression

    PubMed Central

    Nicolaou, Nicoletta; Constandinou, Timothy G.

    2016-01-01

    Causal prediction has become a popular tool for neuroscience applications, as it allows the study of relationships between different brain areas during rest, cognitive tasks or brain disorders. We propose a nonparametric approach for the estimation of nonlinear causal prediction for multivariate time series. In the proposed estimator, CNPMR, Autoregressive modeling is replaced by Nonparametric Multiplicative Regression (NPMR). NPMR quantifies interactions between a response variable (effect) and a set of predictor variables (cause); here, we modified NPMR for model prediction. We also demonstrate how a particular measure, the sensitivity Q, could be used to reveal the structure of the underlying causal relationships. We apply CNPMR on artificial data with known ground truth (5 datasets), as well as physiological data (2 datasets). CNPMR correctly identifies both linear and nonlinear causal connections that are present in the artificial data, as well as physiologically relevant connectivity in the real data, and does not seem to be affected by filtering. The Sensitivity measure also provides useful information about the latent connectivity.The proposed estimator addresses many of the limitations of linear Granger causality and other nonlinear causality estimators. CNPMR is compared with pairwise and conditional Granger causality (linear) and Kernel-Granger causality (nonlinear). The proposed estimator can be applied to pairwise or multivariate estimations without any modifications to the main method. Its nonpametric nature, its ability to capture nonlinear relationships and its robustness to filtering make it appealing for a number of applications. PMID:27378901

  13. An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

    SciTech Connect

    Harlim, John; Mahdi, Adam; Majda, Andrew J.

    2014-01-15

    A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model.

  14. CANFIS: A non-linear regression procedure to produce statistical air-quality forecast models

    SciTech Connect

    Burrows, W.R.; Montpetit, J.; Pudykiewicz, J.

    1997-12-31

    Statistical models for forecasts of environmental variables can provide a good trade-off between significance and precision in return for substantial saving of computer execution time. Recent non-linear regression techniques give significantly increased accuracy compared to traditional linear regression methods. Two are Classification and Regression Trees (CART) and the Neuro-Fuzzy Inference System (NFIS). Both can model predict and distributions, including the tails, with much better accuracy than linear regression. Given a learning data set of matched predict and predictors, CART regression produces a non-linear, tree-based, piecewise-continuous model of the predict and data. Its variance-minimizing procedure optimizes the task of predictor selection, often greatly reducing initial data dimensionality. NFIS reduces dimensionality by a procedure known as subtractive clustering but it does not of itself eliminate predictors. Over-lapping coverage in predictor space is enhanced by NFIS with a Gaussian membership function for each cluster component. Coefficients for a continuous response model based on the fuzzified cluster centers are obtained by a least-squares estimation procedure. CANFIS is a two-stage data-modeling technique that combines the strength of CART to optimize the process of selecting predictors from a large pool of potential predictors with the modeling strength of NFIS. A CANFIS model requires negligible computer time to run. CANFIS models for ground-level O{sub 3}, particulates, and other pollutants will be produced for each of about 100 Canadian sites. The air-quality models will run twice daily using a small number of predictors isolated from a large pool of upstream and local Lagrangian potential predictors.

  15. Aboveground biomass and carbon stocks modelling using non-linear regression model

    NASA Astrophysics Data System (ADS)

    Ain Mohd Zaki, Nurul; Abd Latif, Zulkiflee; Nazip Suratman, Mohd; Zainee Zainal, Mohd

    2016-06-01

    Aboveground biomass (AGB) is an important source of uncertainty in the carbon estimation for the tropical forest due to the variation biodiversity of species and the complex structure of tropical rain forest. Nevertheless, the tropical rainforest holds the most extensive forest in the world with the vast diversity of tree with layered canopies. With the usage of optical sensor integrate with empirical models is a common way to assess the AGB. Using the regression, the linkage between remote sensing and a biophysical parameter of the forest may be made. Therefore, this paper exemplifies the accuracy of non-linear regression equation of quadratic function to estimate the AGB and carbon stocks for the tropical lowland Dipterocarp forest of Ayer Hitam forest reserve, Selangor. The main aim of this investigation is to obtain the relationship between biophysical parameter field plots with the remotely-sensed data using nonlinear regression model. The result showed that there is a good relationship between crown projection area (CPA) and carbon stocks (CS) with Pearson Correlation (p < 0.01), the coefficient of correlation (r) is 0.671. The study concluded that the integration of Worldview-3 imagery with the canopy height model (CHM) raster based LiDAR were useful in order to quantify the AGB and carbon stocks for a larger sample area of the lowland Dipterocarp forest.

  16. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control.

    PubMed

    Hahne, J M; Biessmann, F; Jiang, N; Rehbaum, H; Farina, D; Meinecke, F C; Muller, K-R; Parra, L C

    2014-03-01

    In recent years the number of active controllable joints in electrically powered hand-prostheses has increased significantly. However, the control strategies for these devices in current clinical use are inadequate as they require separate and sequential control of each degree-of-freedom (DoF). In this study we systematically compare linear and nonlinear regression techniques for an independent, simultaneous and proportional myoelectric control of wrist movements with two DoF. These techniques include linear regression, mixture of linear experts (ME), multilayer-perceptron, and kernel ridge regression (KRR). They are investigated offline with electro-myographic signals acquired from ten able-bodied subjects and one person with congenital upper limb deficiency. The control accuracy is reported as a function of the number of electrodes and the amount and diversity of training data providing guidance for the requirements in clinical practice. The results showed that KRR, a nonparametric statistical learning method, outperformed the other methods. However, simple transformations in the feature space could linearize the problem, so that linear models could achieve similar performance as KRR at much lower computational costs. Especially ME, a physiologically inspired extension of linear regression represents a promising candidate for the next generation of prosthetic devices. PMID:24608685

  17. Inference of dense spectral reflectance images from sparse reflectance measurement using non-linear regression modeling

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Kazemzadeh, Farnoud; Wong, Alexander; Clausi, David A.

    2015-09-01

    One method to acquire multispectral images is to sequentially capture a series of images where each image contains information from a different bandwidth of light. Another method is to use a series of beamsplitters and dichroic filters to guide different bandwidths of light onto different cameras. However, these methods are very time consuming and expensive and perform poorly in dynamic scenes or when observing transient phenomena. An alternative strategy to capturing multispectral data is to infer this data using sparse spectral reflectance measurements captured using an imaging device with overlapping bandpass filters, such as a consumer digital camera using a Bayer filter pattern. Currently the only method of inferring dense reflectance spectra is the Wiener adaptive filter, which makes Gaussian assumptions about the data. However, these assumptions may not always hold true for all data. We propose a new technique to infer dense reflectance spectra from sparse spectral measurements through the use of a non-linear regression model. The non-linear regression model used in this technique is the random forest model, which is an ensemble of decision trees and trained via the spectral characterization of the optical imaging system and spectral data pair generation. This model is then evaluated by spectrally characterizing different patches on the Macbeth color chart, as well as by reconstructing inferred multispectral images. Results show that the proposed technique can produce inferred dense reflectance spectra that correlate well with the true dense reflectance spectra, which illustrates the merits of the technique.

  18. Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae.

    PubMed Central

    Coons, D M; Boulton, R B; Bisson, L F

    1995-01-01

    The kinetics of glucose uptake in Saccharomyces cerevisiae are complex. An Eadie-Hofstee (rate of uptake versus rate of uptake over substrate concentration) plot of glucose uptake shows a nonlinear form typical of a multicomponent system. The nature of the constituent components is a subject of debate. It has recently been suggested that this nonlinearity is due to either a single saturable component together with free diffusion of glucose or a single constitutive component with a variable Km, rather than the action of multiple hexose transporters. Genetic data support the existence of a family of differentially regulated glucose transporters, encoded by the HXT genes. In this work, kinetic expressions and nonlinear regression analysis, based on an improved zero trans-influx assay, were used to address the nature of the components of the transport system. The results indicate that neither one component with free diffusion nor a single permease with a variable Km can explain the observed uptake rates. Results of uptake experiments, including the use of putative alternative substrates as inhibitory compounds, support the model derived from genetic analyses of a multicomponent system with at least two components, one a high-affinity carrier and the other a low-affinity carrier. This approach was extended to characterize the activity of the SNF3 protein and identify its role in the depression of high-affinity uptake. The kinetic data support a role of SNF3 as a regulatory protein that may not itself be a transporter. PMID:7768825

  19. NONLINEAR-REGRESSION GROUNDWATER FLOW MODELING OF A DEEP REGIONAL AQUIFER SYSTEM.

    USGS Publications Warehouse

    Cooley, Richard L.; Konikow, Leonard F.; Naff, Richard L.

    1986-01-01

    A nonlinear regression groundwater flow model, based on a Galerkin finite-element discretization, was used to analyze steady state two-dimensional groundwater flow in the areally extensive Madison aquifer in a 75,000 mi**2 area of the Northern Great Plains. Regression parameters estimated include intrinsic permeabilities of the main aquifer and separate lineament zones, discharges from eight major springs surrounding the Black Hills, and specified heads on the model boundaries. Aquifer thickness and temperature variations were included as specified functions. The regression model was applied using sequential F testing so that the fewest number and simplest zonation of intrinsic permeabilities, combined with the simplest overall model, were evaluated initially; additional complexities (such as subdivisions of zones and variations in temperature and thickness) were added in stages to evaluate the subsequent degree of improvement in the model results. It was found that only the eight major springs, a single main aquifer intrinsic permeability, two separate lineament intrinsic permeabilities of much smaller values, and temperature variations are warranted by the observed data (hydraulic heads and prior information on some parameters) for inclusion in a model that attempts to explain significant controls on groundwater flow.

  20. Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach

    USGS Publications Warehouse

    Qian, S.S.; Reckhow, K.H.; Zhai, J.; McMahon, G.

    2005-01-01

    A Bayesian nonlinear regression modeling method is introduced and compared with the least squares method for modeling nutrient loads in stream networks. The objective of the study is to better model spatial correlation in river basin hydrology and land use for improving the model as a forecasting tool. The Bayesian modeling approach is introduced in three steps, each with a more complicated model and data error structure. The approach is illustrated using a data set from three large river basins in eastern North Carolina. Results indicate that the Bayesian model better accounts for model and data uncertainties than does the conventional least squares approach. Applications of the Bayesian models for ambient water quality standards compliance and TMDL assessment are discussed. Copyright 2005 by the American Geophysical Union.

  1. A Nonlinear Adaptive Beamforming Algorithm Based on Least Squares Support Vector Regression

    PubMed Central

    Wang, Lutao; Jin, Gang; Li, Zhengzhou; Xu, Hongbin

    2012-01-01

    To overcome the performance degradation in the presence of steering vector mismatches, strict restrictions on the number of available snapshots, and numerous interferences, a novel beamforming approach based on nonlinear least-square support vector regression machine (LS-SVR) is derived in this paper. In this approach, the conventional linearly constrained minimum variance cost function used by minimum variance distortionless response (MVDR) beamformer is replaced by a squared-loss function to increase robustness in complex scenarios and provide additional control over the sidelobe level. Gaussian kernels are also used to obtain better generalization capacity. This novel approach has two highlights, one is a recursive regression procedure to estimate the weight vectors on real-time, the other is a sparse model with novelty criterion to reduce the final size of the beamformer. The analysis and simulation tests show that the proposed approach offers better noise suppression capability and achieve near optimal signal-to-interference-and-noise ratio (SINR) with a low computational burden, as compared to other recently proposed robust beamforming techniques.

  2. A nonlinear regression approach to test for size-dependence of competitive ability.

    PubMed

    Lamb, Eric G; Cahill, James F; Dale, Mark R T

    2006-06-01

    An individual's competitive ability is often dependent on its size, but the methods commonly used to analyze plant competition experiments generally assume that the outcome of interactions are size independent. A method for the analysis of experiments with paired competition treatments based on nonlinear regression with a power function is presented. This method allows straightforward tests of whether a competitive interaction is size dependent, and for the significance of experimental treatments. The method is applied to three example data sets: (1) an experiment where pairs of plants were grown with and without competition at five fertilization levels, (2) an experiment where the fecundity of two snail species were compared between environments at two densities, and (3) an addition series experiment where two plant species were grown in proportional mixtures at several densities. Competitive ability was size-dependent in two of these examples, which demonstrates that a wide range of ecologically important information can be lost when the assumption of size-dependence is ignored. Regression with a power curve should always be used to test whether competitive interactions are size independent, and for the further analysis of size-dependent interactions. PMID:16869420

  3. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws

    USGS Publications Warehouse

    Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.

    2011-01-01

    Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.

  4. A Bayesian Nonlinear Mixed-Effects Regression Model for the Characterization of Early Bactericidal Activity of Tuberculosis Drugs

    PubMed Central

    Burger, Divan Aristo; Schall, Robert

    2015-01-01

    Trials of the early bactericidal activity (EBA) of tuberculosis (TB) treatments assess the decline, during the first few days to weeks of treatment, in colony forming unit (CFU) count of Mycobacterium tuberculosis in the sputum of patients with smear-microscopy-positive pulmonary TB. Profiles over time of CFU data have conventionally been modeled using linear, bilinear, or bi-exponential regression. We propose a new biphasic nonlinear regression model for CFU data that comprises linear and bilinear regression models as special cases and is more flexible than bi-exponential regression models. A Bayesian nonlinear mixed-effects (NLME) regression model is fitted jointly to the data of all patients from a trial, and statistical inference about the mean EBA of TB treatments is based on the Bayesian NLME regression model. The posterior predictive distribution of relevant slope parameters of the Bayesian NLME regression model provides insight into the nature of the EBA of TB treatments; specifically, the posterior predictive distribution allows one to judge whether treatments are associated with monolinear or bilinear decline of log(CFU) count, and whether CFU count initially decreases fast, followed by a slower rate of decrease, or vice versa. PMID:25322214

  5. A comparative study between nonlinear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...

  6. A comparative study between non-linear regression and non-parametric approaches for modelling Phalaris paradoxa seedling emergence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Parametric non-linear regression (PNR) techniques commonly are used to develop weed seedling emergence models. Such techniques, however, require statistical assumptions that are difficult to meet. To examine and overcome these limitations, we compared PNR with a nonparametric estimation technique. F...

  7. Using Recursive Regression to Explore Nonlinear Relationships and Interactions: A Tutorial Applied to a Multicultural Education Study

    ERIC Educational Resources Information Center

    Strang, Kenneth David

    2009-01-01

    This paper discusses how a seldom-used statistical procedure, recursive regression (RR), can numerically and graphically illustrate data-driven nonlinear relationships and interaction of variables. This routine falls into the family of exploratory techniques, yet a few interesting features make it a valuable compliment to factor analysis and…

  8. Sensorless cardiac phase detection for synchronized control of ventricular assist devices using nonlinear kernel regression model.

    PubMed

    Hirohashi, Yoshihiro; Tanaka, Akira; Yoshizawa, Makoto; Sugita, Norihiro; Abe, Makoto; Kato, Tsuyoshi; Shiraishi, Yasuyuki; Miura, Hidekazu; Yambe, Tomoyuki

    2016-06-01

    Recently, driving methods for synchronizing ventricular assist devices (VADs) with heart rhythm of patients suffering from severe heart failure have been receiving attention. Most of the conventional methods require implanting a sensor for measurement of a signal, such as electrocardiogram, to achieve synchronization. In general, implanting sensors into the cardiovascular system of the patients is undesirable in clinical situations. The objective of this study was to extract the heartbeat component without any additional sensors, and to synchronize the rotational speed of the VAD with this component. Although signals from the VAD such as the consumption current and the rotational speed are affected by heartbeat, these raw signals cannot be utilized directly in the heartbeat synchronization control methods because they are changed by not only the effect of heartbeat but also the change in the rotational speed itself. In this study, a nonlinear kernel regression model was adopted to estimate the instantaneous rotational speed from the raw signals. The heartbeat component was extracted by computing the estimation error of the model with parameters determined by using the signals when there was no effect of heartbeat. Validations were conducted on a mock circulatory system, and the heartbeat component was extracted well by the proposed method. Also, heartbeat synchronization control was achieved without any additional sensors in the test environment. PMID:26758256

  9. A fast nonlinear regression method for estimating permeability in CT perfusion imaging

    PubMed Central

    Bennink, Edwin; Riordan, Alan J; Horsch, Alexander D; Dankbaar, Jan Willem; Velthuis, Birgitta K; de Jong, Hugo W

    2013-01-01

    Blood–brain barrier damage, which can be quantified by measuring vascular permeability, is a potential predictor for hemorrhagic transformation in acute ischemic stroke. Permeability is commonly estimated by applying Patlak analysis to computed tomography (CT) perfusion data, but this method lacks precision. Applying more elaborate kinetic models by means of nonlinear regression (NLR) may improve precision, but is more time consuming and therefore less appropriate in an acute stroke setting. We propose a simplified NLR method that may be faster and still precise enough for clinical use. The aim of this study is to evaluate the reliability of in total 12 variations of Patlak analysis and NLR methods, including the simplified NLR method. Confidence intervals for the permeability estimates were evaluated using simulated CT attenuation–time curves with realistic noise, and clinical data from 20 patients. Although fixating the blood volume improved Patlak analysis, the NLR methods yielded significantly more reliable estimates, but took up to 12 × longer to calculate. The simplified NLR method was ∼4 × faster than other NLR methods, while maintaining the same confidence intervals (CIs). In conclusion, the simplified NLR method is a new, reliable way to estimate permeability in stroke, fast enough for clinical application in an acute stroke setting. PMID:23881247

  10. Growth curve by Gompertz nonlinear regression model in female and males in tambaqui (Colossoma macropomum).

    PubMed

    De Mello, Fernanda; Oliveira, Carlos A L; Ribeiro, Ricardo P; Resende, Emiko K; Povh, Jayme A; Fornari, Darci C; Barreto, Rogério V; McManus, Concepta; Streit, Danilo

    2015-01-01

    Was evaluated the pattern of growth among females and males of tambaqui by Gompertz nonlinear regression model. Five traits of economic importance were measured on 145 animals during the three years, totaling 981 morphometric data analyzed. Different curves were adjusted between males and females for body weight, height and head length and only one curve was adjusted to the width and body length. The asymptotic weight (a) and relative growth rate to maturity (k) were different between sexes in animals with ± 5 kg; slaughter weight practiced by a specific niche market, very profitable. However, there was no difference between males and females up to ± 2 kg; slaughter weight established to supply the bigger consumer market. Females showed weight greater than males (± 280 g), which are more suitable for fish farming purposes defined for the niche market to larger animals. In general, males had lower maximum growth rate (8.66 g / day) than females (9.34 g / day), however, reached faster than females, 476 and 486 days growth rate, respectively. The height and length body are the traits that contributed most to the weight at 516 days (P <0.001). PMID:26628036

  11. Variable Selection for Sparse High-Dimensional Nonlinear Regression Models by Combining Nonnegative Garrote and Sure Independence Screening

    PubMed Central

    Xue, Hongqi; Wu, Yichao; Wu, Hulin

    2013-01-01

    In many regression problems, the relations between the covariates and the response may be nonlinear. Motivated by the application of reconstructing a gene regulatory network, we consider a sparse high-dimensional additive model with the additive components being some known nonlinear functions with unknown parameters. To identify the subset of important covariates, we propose a new method for simultaneous variable selection and parameter estimation by iteratively combining a large-scale variable screening (the nonlinear independence screening, NLIS) and a moderate-scale model selection (the nonnegative garrote, NNG) for the nonlinear additive regressions. We have shown that the NLIS procedure possesses the sure screening property and it is able to handle problems with non-polynomial dimensionality; and for finite dimension problems, the NNG for the nonlinear additive regressions has selection consistency for the unimportant covariates and also estimation consistency for the parameter estimates of the important covariates. The proposed method is applied to simulated data and a real data example for identifying gene regulations to illustrate its numerical performance. PMID:25170239

  12. Application of nonlinear least-squares regression to ground-water flow modeling, west-central Florida

    USGS Publications Warehouse

    Yobbi, D.K.

    2000-01-01

    A nonlinear least-squares regression technique for estimation of ground-water flow model parameters was applied to an existing model of the regional aquifer system underlying west-central Florida. The regression technique minimizes the differences between measured and simulated water levels. Regression statistics, including parameter sensitivities and correlations, were calculated for reported parameter values in the existing model. Optimal parameter values for selected hydrologic variables of interest are estimated by nonlinear regression. Optimal estimates of parameter values are about 140 times greater than and about 0.01 times less than reported values. Independently estimating all parameters by nonlinear regression was impossible, given the existing zonation structure and number of observations, because of parameter insensitivity and correlation. Although the model yields parameter values similar to those estimated by other methods and reproduces the measured water levels reasonably accurately, a simpler parameter structure should be considered. Some possible ways of improving model calibration are to: (1) modify the defined parameter-zonation structure by omitting and/or combining parameters to be estimated; (2) carefully eliminate observation data based on evidence that they are likely to be biased; (3) collect additional water-level data; (4) assign values to insensitive parameters, and (5) estimate the most sensitive parameters first, then, using the optimized values for these parameters, estimate the entire data set.

  13. What's the Risk? A Simple Approach for Estimating Adjusted Risk Measures from Nonlinear Models Including Logistic Regression

    PubMed Central

    Kleinman, Lawrence C; Norton, Edward C

    2009-01-01

    Objective To develop and validate a general method (called regression risk analysis) to estimate adjusted risk measures from logistic and other nonlinear multiple regression models. We show how to estimate standard errors for these estimates. These measures could supplant various approximations (e.g., adjusted odds ratio [AOR]) that may diverge, especially when outcomes are common. Study Design Regression risk analysis estimates were compared with internal standards as well as with Mantel–Haenszel estimates, Poisson and log-binomial regressions, and a widely used (but flawed) equation to calculate adjusted risk ratios (ARR) from AOR. Data Collection Data sets produced using Monte Carlo simulations. Principal Findings Regression risk analysis accurately estimates ARR and differences directly from multiple regression models, even when confounders are continuous, distributions are skewed, outcomes are common, and effect size is large. It is statistically sound and intuitive, and has properties favoring it over other methods in many cases. Conclusions Regression risk analysis should be the new standard for presenting findings from multiple regression analysis of dichotomous outcomes for cross-sectional, cohort, and population-based case–control studies, particularly when outcomes are common or effect size is large. PMID:18793213

  14. A non-linear regression method for CT brain perfusion analysis

    NASA Astrophysics Data System (ADS)

    Bennink, E.; Oosterbroek, J.; Viergever, M. A.; Velthuis, B. K.; de Jong, H. W. A. M.

    2015-03-01

    CT perfusion (CTP) imaging allows for rapid diagnosis of ischemic stroke. Generation of perfusion maps from CTP data usually involves deconvolution algorithms providing estimates for the impulse response function in the tissue. We propose the use of a fast non-linear regression (NLR) method that we postulate has similar performance to the current academic state-of-art method (bSVD), but that has some important advantages, including the estimation of vascular permeability, improved robustness to tracer-delay, and very few tuning parameters, that are all important in stroke assessment. The aim of this study is to evaluate the fast NLR method against bSVD and a commercial clinical state-of-art method. The three methods were tested against a published digital perfusion phantom earlier used to illustrate the superiority of bSVD. In addition, the NLR and clinical methods were also tested against bSVD on 20 clinical scans. Pearson correlation coefficients were calculated for each of the tested methods. All three methods showed high correlation coefficients (>0.9) with the ground truth in the phantom. With respect to the clinical scans, the NLR perfusion maps showed higher correlation with bSVD than the perfusion maps from the clinical method. Furthermore, the perfusion maps showed that the fast NLR estimates are robust to tracer-delay. In conclusion, the proposed fast NLR method provides a simple and flexible way of estimating perfusion parameters from CT perfusion scans, with high correlation coefficients. This suggests that it could be a better alternative to the current clinical and academic state-of-art methods.

  15. The mechanical properties of high speed GTAW weld and factors of nonlinear multiple regression model under external transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; He, Youyou

    2013-05-01

    A transverse magnetic field was introduced to the arc plasma in the process of welding stainless steel tubes by high-speed Tungsten Inert Gas Arc Welding (TIG for short) without filler wire. The influence of external magnetic field on welding quality was investigated. 9 sets of parameters were designed by the means of orthogonal experiment. The welding joint tensile strength and form factor of weld were regarded as the main standards of welding quality. A binary quadratic nonlinear regression equation was established with the conditions of magnetic induction and flow rate of Ar gas. The residual standard deviation was calculated to adjust the accuracy of regression model. The results showed that, the regression model was correct and effective in calculating the tensile strength and aspect ratio of weld. Two 3D regression models were designed respectively, and then the impact law of magnetic induction on welding quality was researched.

  16. Comparison of Linear and Non-Linear Regression Models to Estimate Leaf Area Index of Dryland Shrubs.

    NASA Astrophysics Data System (ADS)

    Dashti, H.; Glenn, N. F.; Ilangakoon, N. T.; Mitchell, J.; Dhakal, S.; Spaete, L.

    2015-12-01

    Leaf area index (LAI) is a key parameter in global ecosystem studies. LAI is considered a forcing variable in land surface processing models since ecosystem dynamics are highly correlated to LAI. In response to environmental limitations, plants in semiarid ecosystems have smaller leaf area, making accurate estimation of LAI by remote sensing a challenging issue. Optical remote sensing (400-2500 nm) techniques to estimate LAI are based either on radiative transfer models (RTMs) or statistical approaches. Considering the complex radiation field of dry ecosystems, simple 1-D RTMs lead to poor results, and on the other hand, inversion of more complex 3-D RTMs is a demanding task which requires the specification of many variables. A good alternative to physical approaches is using methods based on statistics. Similar to many natural phenomena, there is a non-linear relationship between LAI and top of canopy electromagnetic waves reflected to optical sensors. Non-linear regression models can better capture this relationship. However, considering the problem of a few numbers of observations in comparison to the feature space (nnon-linear regression techniques were investigated to estimate LAI. Our study area is located in southwestern Idaho, Great Basin. Sagebrush (Artemisia tridentata spp) serves a critical role in maintaining the structure of this ecosystem. Using a leaf area meter (Accupar LP-80), LAI values were measured in the field. Linear Partial Least Square regression and non-linear, tree based Random Forest regression have been implemented to estimate the LAI of sagebrush from hyperspectral data (AVIRIS-ng) collected in late summer 2014. Cross validation of results indicate that PLS can provide comparable results to Random Forest.

  17. CONFIDENCE INTERVALS FOR A CROP YIELD LOSS FUNCTION IN NONLINEAR REGRESSION

    EPA Science Inventory

    Quantifying the relationship between chronic pollutant exposure and the ensuing biological response requires consideration of nonlinear functions that are flexible enough to generate a wide range of response curves. he linear approximation (i.e., Wald's) interval estimates for oz...

  18. Nonlinear regression-based method for pseudoenhancement correction in CT colonography.

    PubMed

    Tsagaan, Baigalmaa; Näppi, Janne; Yoshida, Hiroyuki

    2009-08-01

    In CT colonography (CTC), orally administered positive-contrast tagging agents are often used for differentiating residual bowel contents from native colonic structures. However, tagged materials can sometimes hyperattenuate observed CT numbers of their adjacent untagged materials. Such pseudoenhancement complicates the differentiation of colonic soft-tissue structures from tagged materials, because pseudoenhanced colonic structures may have CT numbers that are similar to those of tagged materials. The authors developed a nonlinear regression-based (NLRB) method for performing a local image-based pseudoenhancement correction of CTC data. To calibrate the correction parameters, the CT data of an anthropomorphic reference phantom were correlated with those of partially tagged phantoms. The CTC data were registered spatially by use of an adaptive multiresolution method, and untagged and tagged partial-volume soft-tissue surfaces were correlated by use of a virtual tagging scheme. The NLRB method was then optimized to minimize the difference in the CT numbers of soft-tissue regions between the untagged and tagged phantom CTC data by use of the Nelder-Mead downhill simplex method. To validate the method, the CT numbers of untagged regions were compared with those of registered pseudoenhanced phantom regions before and after the correction. The CT numbers were significantly different before performing the correction (p<0.01), whereas, after the correction, the difference between the CT numbers was not significant. The effect of the correction was also tested on the size measurement of polyps that were covered by tagging in phantoms and in clinical cases. In phantom cases, before the correction, the diameters of 12 simulated polyps submerged in tagged fluids that were measured in a soft-tissue CT display were significantly different from those measured in an untagged phantom (p<0.01), whereas after the correction the difference was not significant. In clinical cases

  19. Global nonlinear kernel prediction for large data set with a particle swarm-optimized interval support vector regression.

    PubMed

    Ding, Yongsheng; Cheng, Lijun; Pedrycz, Witold; Hao, Kuangrong

    2015-10-01

    A new global nonlinear predictor with a particle swarm-optimized interval support vector regression (PSO-ISVR) is proposed to address three issues (viz., kernel selection, model optimization, kernel method speed) encountered when applying SVR in the presence of large data sets. The novel prediction model can reduce the SVR computing overhead by dividing input space and adaptively selecting the optimized kernel functions to obtain optimal SVR parameter by PSO. To quantify the quality of the predictor, its generalization performance and execution speed are investigated based on statistical learning theory. In addition, experiments using synthetic data as well as the stock volume weighted average price are reported to demonstrate the effectiveness of the developed models. The experimental results show that the proposed PSO-ISVR predictor can improve the computational efficiency and the overall prediction accuracy compared with the results produced by the SVR and other regression methods. The proposed PSO-ISVR provides an important tool for nonlinear regression analysis of big data. PMID:25974954

  20. Nonlinear regression in environmental sciences by support vector machines combined with evolutionary strategy

    NASA Astrophysics Data System (ADS)

    Lima, Aranildo R.; Cannon, Alex J.; Hsieh, William W.

    2013-01-01

    A hybrid algorithm combining support vector regression with evolutionary strategy (SVR-ES) is proposed for predictive models in the environmental sciences. SVR-ES uses uncorrelated mutation with p step sizes to find the optimal SVR hyper-parameters. Three environmental forecast datasets used in the WCCI-2006 contest - surface air temperature, precipitation and sulphur dioxide concentration - were tested. We used multiple linear regression (MLR) as benchmark and a variety of machine learning techniques including bootstrap-aggregated ensemble artificial neural network (ANN), SVR-ES, SVR with hyper-parameters given by the Cherkassky-Ma estimate, the M5 regression tree, and random forest (RF). We also tested all techniques using stepwise linear regression (SLR) first to screen out irrelevant predictors. We concluded that SVR-ES is an attractive approach because it tends to outperform the other techniques and can also be implemented in an almost automatic way. The Cherkassky-Ma estimate is a useful approach for minimizing the mean absolute error and saving computational time related to the hyper-parameter search. The ANN and RF are also good options to outperform multiple linear regression (MLR). Finally, the use of SLR for predictor selection can dramatically reduce computational time and often help to enhance accuracy.

  1. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    USGS Publications Warehouse

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface

  2. Creating a non-linear total sediment load formula using polynomial best subset regression model

    NASA Astrophysics Data System (ADS)

    Okcu, Davut; Pektas, Ali Osman; Uyumaz, Ali

    2016-08-01

    The aim of this study is to derive a new total sediment load formula which is more accurate and which has less application constraints than the well-known formulae of the literature. 5 most known stream power concept sediment formulae which are approved by ASCE are used for benchmarking on a wide range of datasets that includes both field and flume (lab) observations. The dimensionless parameters of these widely used formulae are used as inputs in a new regression approach. The new approach is called Polynomial Best subset regression (PBSR) analysis. The aim of the PBRS analysis is fitting and testing all possible combinations of the input variables and selecting the best subset. Whole the input variables with their second and third powers are included in the regression to test the possible relation between the explanatory variables and the dependent variable. While selecting the best subset a multistep approach is used that depends on significance values and also the multicollinearity degrees of inputs. The new formula is compared to others in a holdout dataset and detailed performance investigations are conducted for field and lab datasets within this holdout data. Different goodness of fit statistics are used as they represent different perspectives of the model accuracy. After the detailed comparisons are carried out we figured out the most accurate equation that is also applicable on both flume and river data. Especially, on field dataset the prediction performance of the proposed formula outperformed the benchmark formulations.

  3. Bayesian regression analysis of data with random effects covariates from nonlinear longitudinal measurements

    PubMed Central

    De la Cruz, Rolando; Meza, Cristian; Arribas-Gil, Ana; Carroll, Raymond J.

    2016-01-01

    Joint models for a wide class of response variables and longitudinal measurements consist on a mixed-effects model to fit longitudinal trajectories whose random effects enter as covariates in a generalized linear model for the primary response. They provide a useful way to assess association between these two kinds of data, which in clinical studies are often collected jointly on a series of individuals and may help understanding, for instance, the mechanisms of recovery of a certain disease or the efficacy of a given therapy. When a nonlinear mixed-effects model is used to fit the longitudinal trajectories, the existing estimation strategies based on likelihood approximations have been shown to exhibit some computational efficiency problems (De la Cruz et al., 2011). In this article we consider a Bayesian estimation procedure for the joint model with a nonlinear mixed-effects model for the longitudinal data and a generalized linear model for the primary response. The proposed prior structure allows for the implementation of an MCMC sampler. Moreover, we consider that the errors in the longitudinal model may be correlated. We apply our method to the analysis of hormone levels measured at the early stages of pregnancy that can be used to predict normal versus abnormal pregnancy outcomes. We also conduct a simulation study to assess the importance of modelling correlated errors and quantify the consequences of model misspecification. PMID:27274601

  4. An Efficient Nonlinear Regression Approach for Genome-wide Detection of Marginal and Interacting Genetic Variations.

    PubMed

    Lee, Seunghak; Lozano, Aurélie; Kambadur, Prabhanjan; Xing, Eric P

    2016-05-01

    Genome-wide association studies have revealed individual genetic variants associated with phenotypic traits such as disease risk and gene expressions. However, detecting pairwise interaction effects of genetic variants on traits still remains a challenge due to a large number of combinations of variants (∼10(11) SNP pairs in the human genome), and relatively small sample sizes (typically <10(4)). Despite recent breakthroughs in detecting interaction effects, there are still several open problems, including: (1) how to quickly process a large number of SNP pairs, (2) how to distinguish between true signals and SNPs/SNP pairs merely correlated with true signals, (3) how to detect nonlinear associations between SNP pairs and traits given small sample sizes, and (4) how to control false positives. In this article, we present a unified framework, called SPHINX, which addresses the aforementioned challenges. We first propose a piecewise linear model for interaction detection, because it is simple enough to estimate model parameters given small sample sizes but complex enough to capture nonlinear interaction effects. Then, based on the piecewise linear model, we introduce randomized group lasso under stability selection, and a screening algorithm to address the statistical and computational challenges mentioned above. In our experiments, we first demonstrate that SPHINX achieves better power than existing methods for interaction detection under false positive control. We further applied SPHINX to late-onset Alzheimer's disease dataset, and report 16 SNPs and 17 SNP pairs associated with gene traits. We also present a highly scalable implementation of our screening algorithm, which can screen ∼118 billion candidates of associations on a 60-node cluster in <5.5 hours. PMID:27159633

  5. Determination of Constitutive Equation for Thermo-mechanical Processing of INCONEL 718 Through Double Multivariate Nonlinear Regression Analysis

    NASA Astrophysics Data System (ADS)

    Hussain, Mirza Zahid; Li, Fuguo; Wang, Jing; Yuan, Zhanwei; Li, Pan; Wu, Tao

    2015-07-01

    The present study comprises the determination of constitutive relationship for thermo-mechanical processing of INCONEL 718 through double multivariate nonlinear regression, a newly developed approach which not only considers the effect of strain, strain rate, and temperature on flow stress but also explains the interaction effect of these thermo-mechanical parameters on flow behavior of the alloy. Hot isothermal compression experiments were performed on Gleeble-3500 thermo-mechanical testing machine in the temperature range of 1153 to 1333 K within the strain rate range of 0.001 to 10 s-1. The deformation behavior of INCONEL 718 is analyzed and summarized by establishing the high temperature deformation constitutive equation. The calculated correlation coefficient ( R) and average absolute relative error ( AARE) underline the precision of proposed constitutive model.

  6. Determination of the pKa of ionizable enzyme groups by nonlinear regression using a second degree equation.

    PubMed

    O'Reilly, S; Riveros, M C

    1994-01-01

    A second degree equation fitted by nonlinear regression for the analysis of the pH effect on enzyme activity is proposed for diprotic enzyme systems. This method allows the calculation of two molecular dissociation constants (KE1 and KE2 for the free enzyme, KES1 and KES2 for the ES complex) and the pH independent parameters (Vmax and Vmax/Km). The method is validated by bibliographic (alpha-chymotrypsin) and experimental data (almond beta-D-glucosidase). No significant differences were found between present data and those previously reported in the literature using similar experimental conditions. This method works using comparatively few [H+] concentration values within a narrow pH range, preferentially around the optimum, being adequate for diprotic systems with close pKa values. PMID:8728828

  7. Deconvolution of antibody affinities and concentrations by non-linear regression analysis of competitive ELISA data.

    SciTech Connect

    Stevens, F. J.; Bobrovnik, S. A.; Biosciences Division; Palladin Inst. Biochemistry

    2007-12-01

    Physiological responses of the adaptive immune system are polyclonal in nature whether induced by a naturally occurring infection, by vaccination to prevent infection or, in the case of animals, by challenge with antigen to generate reagents of research or commercial significance. The composition of the polyclonal responses is distinct to each individual or animal and changes over time. Differences exist in the affinities of the constituents and their relative proportion of the responsive population. In addition, some of the antibodies bind to different sites on the antigen, whereas other pairs of antibodies are sterically restricted from concurrent interaction with the antigen. Even if generation of a monoclonal antibody is the ultimate goal of a project, the quality of the resulting reagent is ultimately related to the characteristics of the initial immune response. It is probably impossible to quantitatively parse the composition of a polyclonal response to antigen. However, molecular regression allows further parameterization of a polyclonal antiserum in the context of certain simplifying assumptions. The antiserum is described as consisting of two competing populations of high- and low-affinity and unknown relative proportions. This simple model allows the quantitative determination of representative affinities and proportions. These parameters may be of use in evaluating responses to vaccines, to evaluating continuity of antibody production whether in vaccine recipients or animals used for the production of antisera, or in optimizing selection of donors for the production of monoclonal antibodies.

  8. Inference of nonlinear gene regulatory networks through optimized ensemble of support vector regression and dynamic Bayesian networks.

    PubMed

    Akutekwe, Arinze; Seker, Huseyin

    2015-08-01

    Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in systems biology. Most methods for modeling and inferring the dynamics of GRNs, such as those based on state space models, vector autoregressive models and G1DBN algorithm, assume linear dependencies among genes. However, this strong assumption does not make for true representation of time-course relationships across the genes, which are inherently nonlinear. Nonlinear modeling methods such as the S-systems and causal structure identification (CSI) have been proposed, but are known to be statistically inefficient and analytically intractable in high dimensions. To overcome these limitations, we propose an optimized ensemble approach based on support vector regression (SVR) and dynamic Bayesian networks (DBNs). The method called SVR-DBN, uses nonlinear kernels of the SVR to infer the temporal relationships among genes within the DBN framework. The two-stage ensemble is further improved by SVR parameter optimization using Particle Swarm Optimization. Results on eight insilico-generated datasets, and two real world datasets of Drosophila Melanogaster and Escherichia Coli, show that our method outperformed the G1DBN algorithm by a total average accuracy of 12%. We further applied our method to model the time-course relationships of ovarian carcinoma. From our results, four hub genes were discovered. Stratified analysis further showed that the expression levels Prostrate differentiation factor and BTG family member 2 genes, were significantly increased by the cisplatin and oxaliplatin platinum drugs; while expression levels of Polo-like kinase and Cyclin B1 genes, were both decreased by the platinum drugs. These hub genes might be potential biomarkers for ovarian carcinoma. PMID:26738192

  9. Inverse Tasks In The Tsunami Problem: Nonlinear Regression With Inaccurate Input Data

    NASA Astrophysics Data System (ADS)

    Lavrentiev, M.; Shchemel, A.; Simonov, K.

    A variant of modified training functional that allows considering inaccurate input data is suggested. A limiting case when a part of input data is completely undefined, and, therefore, a problem of reconstruction of hidden parameters should be solved, is also considered. Some numerical experiments are presented. It is assumed that a dependence of known output variables on known input ones should be found is the classic problem definition, which is widely used in the majority of neural nets algorithms. The quality of approximation is evaluated as a performance function. Often the error of the task is evaluated as squared distance between known input data and predicted data multiplied by weighed coefficients. These coefficients may be named "precision coefficients". When inputs are not known exactly, natural generalization of performance function is adding member that responsible for distance between known inputs and shifted inputs, which lessen model's error. It is desirable that the set of variable parameters is compact for training to be con- verging. In the above problem it is possible to choose variants of demands of a priori compactness, which allow meaningful interpretation in the smoothness of the model dependence. Two kinds of regularization was used, first limited squares of coefficients responsible for nonlinearity and second limited multiplication of the above coeffi- cients and linear coefficients. Asymptotic universality of neural net ability to approxi- mate various smooth functions with any accuracy by increase of the number of tunable parameters is often the base for selecting a type of neural net approximation. It is pos- sible to show that used neural net will approach to Fourier integral transform, which approximate abilities are known, with increasing of the number of tunable parameters. In the limiting case, when input data is set with zero precision, the problem of recon- struction of hidden parameters with observed output data appears. The

  10. A strategy for multivariate calibration based on modified single-index signal regression: Capturing explicit non-linearity and improving prediction accuracy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; Li, Qingbo; Zhang, Guangjun

    2013-11-01

    In this paper, a modified single-index signal regression (mSISR) method is proposed to construct a nonlinear and practical model with high-accuracy. The mSISR method defines the optimal penalty tuning parameter in P-spline signal regression (PSR) as initial tuning parameter and chooses the number of cycles based on minimizing root mean squared error of cross-validation (RMSECV). mSISR is superior to single-index signal regression (SISR) in terms of accuracy, computation time and convergency. And it can provide the character of the non-linearity between spectra and responses in a more precise manner than SISR. Two spectra data sets from basic research experiments, including plant chlorophyll nondestructive measurement and human blood glucose noninvasive measurement, are employed to illustrate the advantages of mSISR. The results indicate that the mSISR method (i) obtains the smooth and helpful regression coefficient vector, (ii) explicitly exhibits the type and amount of the non-linearity, (iii) can take advantage of nonlinear features of the signals to improve prediction performance and (iv) has distinct adaptability for the complex spectra model by comparing with other calibration methods. It is validated that mSISR is a promising nonlinear modeling strategy for multivariate calibration.

  11. Non-Linear Wavelet Regression and Branch & Bound Optimization for the Full Identification of Bivariate Operator Fractional Brownian Motion

    NASA Astrophysics Data System (ADS)

    Frecon, Jordan; Didier, Gustavo; Pustelnik, Nelly; Abry, Patrice

    2016-08-01

    Self-similarity is widely considered the reference framework for modeling the scaling properties of real-world data. However, most theoretical studies and their practical use have remained univariate. Operator Fractional Brownian Motion (OfBm) was recently proposed as a multivariate model for self-similarity. Yet it has remained seldom used in applications because of serious issues that appear in the joint estimation of its numerous parameters. While the univariate fractional Brownian motion requires the estimation of two parameters only, its mere bivariate extension already involves 7 parameters which are very different in nature. The present contribution proposes a method for the full identification of bivariate OfBm (i.e., the joint estimation of all parameters) through an original formulation as a non-linear wavelet regression coupled with a custom-made Branch & Bound numerical scheme. The estimation performance (consistency and asymptotic normality) is mathematically established and numerically assessed by means of Monte Carlo experiments. The impact of the parameters defining OfBm on the estimation performance as well as the associated computational costs are also thoroughly investigated.

  12. Characterization of acid functional groups of carbon dots by nonlinear regression data fitting of potentiometric titration curves

    NASA Astrophysics Data System (ADS)

    Alves, Larissa A.; de Castro, Arthur H.; de Mendonça, Fernanda G.; de Mesquita, João P.

    2016-05-01

    The oxygenated functional groups present on the surface of carbon dots with an average size of 2.7 ± 0.5 nm were characterized by a variety of techniques. In particular, we discussed the fit data of potentiometric titration curves using a nonlinear regression method based on the Levenberg-Marquardt algorithm. The results obtained by statistical treatment of the titration curve data showed that the best fit was obtained considering the presence of five Brønsted-Lowry acids on the surface of the carbon dots with constant ionization characteristics of carboxylic acids, cyclic ester, phenolic and pyrone-like groups. The total number of oxygenated acid groups obtained was 5 mmol g-1, with approximately 65% (∼2.9 mmol g-1) originating from groups with pKa < 6. The methodology showed good reproducibility and stability with standard deviations below 5%. The nature of the groups was independent of small variations in experimental conditions, i.e. the mass of carbon dots titrated and initial concentration of HCl solution. Finally, we believe that the methodology used here, together with other characterization techniques, is a simple, fast and powerful tool to characterize the complex acid-base properties of these so interesting and intriguing nanoparticles.

  13. Curvilinear Relationships in Special Education Research: How Multiple Regression Analysis Can Be Used To Investigate Nonlinear Effects.

    ERIC Educational Resources Information Center

    Barringer, Mary S.

    Researchers are becoming increasingly aware of the advantages of using multiple regression as opposed to analysis of variance (ANOVA) or analysis of covariance (ANCOVA). Multiple regression is more versatile and does not force the researcher to throw away variance by categorizing intervally scaled data. Polynomial regression analysis offers the…

  14. Reliability and uncertainty in the estimation of pKa by least squares nonlinear regression analysis of multiwavelength spectrophotometric pH titration data.

    PubMed

    Meloun, Milan; Syrový, Tomás; Bordovská, Sylva; Vrána, Ales

    2007-02-01

    When drugs are poorly soluble then, instead of the potentiometric determination of dissociation constants, pH-spectrophotometric titration can be used along with nonlinear regression of the absorbance response surface data. Generally, regression models are extremely useful for extracting the essential features from a multiwavelength set of data. Regression diagnostics represent procedures for examining the regression triplet (data, model, method) in order to check (a) the data quality for a proposed model; (b) the model quality for a given set of data; and (c) that all of the assumptions used for least squares hold. In the interactive, PC-assisted diagnosis of data, models and estimation methods, the examination of data quality involves the detection of influential points, outliers and high leverages, that cause many problems when regression fitting the absorbance response hyperplane. All graphically oriented techniques are suitable for the rapid estimation of influential points. The reliability of the dissociation constants for the acid drug silybin may be proven with goodness-of-fit tests of the multiwavelength spectrophotometric pH-titration data. The uncertainty in the measurement of the pK (a) of a weak acid obtained by the least squares nonlinear regression analysis of absorption spectra is calculated. The procedure takes into account the drift in pH measurement, the drift in spectral measurement, and all of the drifts in analytical operations, as well as the relative importance of each source of uncertainty. The most important source of uncertainty in the experimental set-up for the example is the uncertainty in the pH measurement. The influences of various sources of uncertainty on the accuracy and precision are discussed using the example of the mixed dissociation constants of silybin, obtained using the SQUAD(84) and SPECFIT/32 regression programs. PMID:17216158

  15. Development of fuzzy system and nonlinear regression models for ozone and PM2.5 air quality forecasts

    NASA Astrophysics Data System (ADS)

    Lin, Yiqiu

    2007-12-01

    Ozone forecast models using nonlinear regression (NLR) have been successfully applied to daily ozone forecast for seven metro areas in Kentucky, including Ashland, Bowling Green, Covington, Lexington, Louisville, Owensboro, and Paducah. In this study, the updated 2005 NLR ozone forecast models for these metro areas were evaluated on both the calibration data sets and independent data sets. These NLR ozone forecast models explained at least 72% of the variance of the daily peak ozone. Using the models to predict the ozone concentrations during the 2005 ozone season, the metro area mean absolute errors (MAEs) of the model hindcasts ranged from 5.90 ppb to 7.20 ppb. For the model raw forecasts, the metro area MAEs ranged from 7.90 ppb to 9.80 ppb. Based on previously developed NLR ozone forecast models for those areas, Takagi-Sugeno fuzzy system models were developed for the seven metro areas. The fuzzy "c-means" clustering technique coupled with an optimal output predefuzzification approach (least square method) was used to train the Takagi-Sugeno fuzzy system. Two types of fuzzy models, basic fuzzy and NLR-fuzzy system models, were developed. The basic fuzzy and NLR-fuzzy models exhibited essentially equivalent performance to the existing NLR models on 2004 ozone season hindcasts and forecasts. Both types of fuzzy models had, on average, slightly lower metro area averaged MAEs than the NLR models. Among the seven Kentucky metro areas Ashland, Covington, and Louisville are currently designated nonattainment areas for both ground level O 3 and PM2.5. In this study, summer PM2.5 forecast models were developed for providing daily average PM2.5 forecasts for the seven metro areas. The performance of the PM2.5 forecast models was generally not as good as that of the ozone forecast models. For the summer 2004 model hindcasts, the metro-area average MAE was 5.33 mug/m 3. Exploratory research was conducted to find the relationship between the winter PM2.5 concentrations and

  16. CONFIDENCE INTERVALS AND CURVATURE MEASURES IN NONLINEAR REGRESSION USING THE IML AND NLIN PROCEDURES IN SAS SOFTWARE

    EPA Science Inventory

    Interval estimates for nonlinear parameters using the linear approximation are sensitive to parameter curvature effects. he adequacy of the linear approximation (Wald) interval is determined using the nonlinearity measures of Bates and Watts (1980), and Clarke (1987b), and the pr...

  17. Kernel Continuum Regression.

    PubMed

    Lee, Myung Hee; Liu, Yufeng

    2013-12-01

    The continuum regression technique provides an appealing regression framework connecting ordinary least squares, partial least squares and principal component regression in one family. It offers some insight on the underlying regression model for a given application. Moreover, it helps to provide deep understanding of various regression techniques. Despite the useful framework, however, the current development on continuum regression is only for linear regression. In many applications, nonlinear regression is necessary. The extension of continuum regression from linear models to nonlinear models using kernel learning is considered. The proposed kernel continuum regression technique is quite general and can handle very flexible regression model estimation. An efficient algorithm is developed for fast implementation. Numerical examples have demonstrated the usefulness of the proposed technique. PMID:24058224

  18. The thermodynamic dissociation constants of four non-steroidal anti-inflammatory drugs by the least-squares nonlinear regression of multiwavelength spectrophotometric pH-titration data.

    PubMed

    Meloun, Milan; Bordovská, Sylva; Galla, Lubomír

    2007-11-30

    The mixed dissociation constants of four non-steroidal anti-inflammatory drugs (NSAIDs) ibuprofen, diclofenac sodium, flurbiprofen and ketoprofen at various ionic strengths I of range 0.003-0.155, and at temperatures of 25 degrees C and 37 degrees C, were determined with the use of two different multiwavelength and multivariate treatments of spectral data, SPECFIT/32 and SQUAD(84) nonlinear regression analyses and INDICES factor analysis. The factor analysis in the INDICES program predicts the correct number of components, and even the presence of minor ones, when the data quality is high and the instrumental error is known. The thermodynamic dissociation constant pK(a)(T) was estimated by nonlinear regression of (pK(a), I) data at 25 degrees C and 37 degrees C. Goodness-of-fit tests for various regression diagnostics enabled the reliability of the parameter estimates found to be proven. PALLAS, MARVIN, SPARC, ACD/pK(a) and Pharma Algorithms predict pK(a) being based on the structural formulae of drug compounds in agreement with the experimental value. The best agreement seems to be between the ACD/pK(a) program and experimentally found values and with SPARC. PALLAS and MARVIN predicted pK(a,pred) values with larger bias errors in comparison with the experimental value for all four drugs. PMID:17825517

  19. Nonlinear-regression flow model of the Gulf Coast aquifer systems in the south-central United States

    USGS Publications Warehouse

    Kuiper, L.K.

    1994-01-01

    A multiple-regression methodology was used to help answer questions concerning model reliability, and to calibrate a time-dependent variable-density ground-water flow model of the gulf coast aquifer systems in the south-central United States. More than 40 regression models with 2 to 31 regressions parameters are used and detailed results are presented for 12 of the models. More than 3,000 values for grid-element volume-averaged head and hydraulic conductivity are used for the regression model observations. Calculated prediction interval half widths, though perhaps inaccurate due to a lack of normality of the residuals, are the smallest for models with only four regression parameters. In addition, the root-mean weighted residual decreases very little with an increase in the number of regression parameters. The various models showed considerable overlap between the prediction inter- vals for shallow head and hydraulic conductivity. Approximate 95-percent prediction interval half widths for volume-averaged freshwater head exceed 108 feet; for volume-averaged base 10 logarithm hydraulic conductivity, they exceed 0.89. All of the models are unreliable for the prediction of head and ground-water flow in the deeper parts of the aquifer systems, including the amount of flow coming from the underlying geopressured zone. Truncating the domain of solution of one model to exclude that part of the system having a ground-water density greater than 1.005 grams per cubic centimeter or to exclude that part of the systems below a depth of 3,000 feet, and setting the density to that of freshwater does not appreciably change the results for head and ground-water flow, except for locations close to the truncation surface.

  20. Use of a non-linear spline regression to model time-varying fluctuations in mammary-secretion element concentrations of periparturient mares in Michigan, USA.

    PubMed

    Lloyd, J W; Rook, J S; Braselton, E; Shea, M E

    2000-02-01

    A study was designed to model the fluctuations of nine specific element concentrations in mammary secretions from periparturient mares over time. During the 1992 foaling season, serial samples of mammary secretions were collected from all 18 pregnant Arabian mares at the Michigan State University equine teaching and research center. Non-linear regression techniques were used to model the relationship between element concentration in mammary secretions and days from foaling (which connected two separate sigmoid curves with a spline function); indicator variables were included for mare and mare parity. Element concentrations in mammary secretions varied significantly during the periparturient period in mares. Both time trends and individual variability explained a significant portion of the variation in these element concentrations. Multiparous mares had lower concentrations of K and Zn, but higher concentrations of Na. Substantial serial and spatial correlation were detected in spite of modeling efforts to avoid the problem. As a result, p-values obtained for parameter estimates were likely biased toward zero. Nonetheless, results of this analysis indicate that monitoring changes in mammary-secretion element concentrations might reasonably be used as a predictor of impending parturition in the mare. In addition, these results suggest that element concentrations warrant attention in the development of neonatal milk-replacement therapies. This study demonstrates that non-linear regression can be used successfully to model time-series data in animal-health management. This approach should be considered by investigators facing similar analytical challenges. PMID:10782599

  1. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects. PMID:21350755

  2. Monte Carlo simulation of parameter confidence intervals for non-linear regression analysis of biological data using Microsoft Excel.

    PubMed

    Lambert, Ronald J W; Mytilinaios, Ioannis; Maitland, Luke; Brown, Angus M

    2012-08-01

    This study describes a method to obtain parameter confidence intervals from the fitting of non-linear functions to experimental data, using the SOLVER and Analysis ToolPaK Add-In of the Microsoft Excel spreadsheet. Previously we have shown that Excel can fit complex multiple functions to biological data, obtaining values equivalent to those returned by more specialized statistical or mathematical software. However, a disadvantage of using the Excel method was the inability to return confidence intervals for the computed parameters or the correlations between them. Using a simple Monte-Carlo procedure within the Excel spreadsheet (without recourse to programming), SOLVER can provide parameter estimates (up to 200 at a time) for multiple 'virtual' data sets, from which the required confidence intervals and correlation coefficients can be obtained. The general utility of the method is exemplified by applying it to the analysis of the growth of Listeria monocytogenes, the growth inhibition of Pseudomonas aeruginosa by chlorhexidine and the further analysis of the electrophysiological data from the compound action potential of the rodent optic nerve. PMID:21764476

  3. Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table

    NASA Astrophysics Data System (ADS)

    Huttunen, Jani; Kokkola, Harri; Mielonen, Tero; Esa Juhani Mononen, Mika; Lipponen, Antti; Reunanen, Juha; Vilhelm Lindfors, Anders; Mikkonen, Santtu; Erkki Juhani Lehtinen, Kari; Kouremeti, Natalia; Bais, Alkiviadis; Niska, Harri; Arola, Antti

    2016-07-01

    In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR) measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine) with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during

  4. The use of Bayesian nonlinear regression techniques for the modelling of the retention behaviour of volatile components of Artemisia species.

    PubMed

    Jalali-Heravi, M; Mani-Varnosfaderani, A; Taherinia, D; Mahmoodi, M M

    2012-07-01

    The main aim of this work was to assess the ability of Bayesian multivariate adaptive regression splines (BMARS) and Bayesian radial basis function (BRBF) techniques for modelling the gas chromatographic retention indices of volatile components of Artemisia species. A diverse set of molecular descriptors was calculated and used as descriptor pool for modelling the retention indices. The ability of BMARS and BRBF techniques was explored for the selection of the most relevant descriptors and proper basis functions for modelling. The results revealed that BRBF technique is more reproducible than BMARS for modelling the retention indices and can be used as a method for variable selection and modelling in quantitative structure-property relationship (QSPR) studies. It is also concluded that the Markov chain Monte Carlo (MCMC) search engine, implemented in BRBF algorithm, is a suitable method for selecting the most important features from a vast number of them. The values of correlation between the calculated retention indices and the experimental ones for the training and prediction sets (0.935 and 0.902, respectively) revealed the prediction power of the BRBF model in estimating the retention index of volatile components of Artemisia species. PMID:22452344

  5. The covariate-adjusted frequency plot.

    PubMed

    Holling, Heinz; Böhning, Walailuck; Böhning, Dankmar; Formann, Anton K

    2016-04-01

    Count data arise in numerous fields of interest. Analysis of these data frequently require distributional assumptions. Although the graphical display of a fitted model is straightforward in the univariate scenario, this becomes more complex if covariate information needs to be included into the model. Stratification is one way to proceed, but has its limitations if the covariate has many levels or the number of covariates is large. The article suggests a marginal method which works even in the case that all possible covariate combinations are different (i.e. no covariate combination occurs more than once). For each covariate combination the fitted model value is computed and then summed over the entire data set. The technique is quite general and works with all count distributional models as well as with all forms of covariate modelling. The article provides illustrations of the method for various situations and also shows that the proposed estimator as well as the empirical count frequency are consistent with respect to the same parameter. PMID:23376964

  6. Fouling resistance prediction using artificial neural network nonlinear auto-regressive with exogenous input model based on operating conditions and fluid properties correlations

    NASA Astrophysics Data System (ADS)

    Biyanto, Totok R.

    2016-06-01

    Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO2 emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.

  7. Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks.

    PubMed

    Caballero, Julio; Fernández, Michael

    2006-01-01

    Antifungal activity was modeled for a set of 96 heterocyclic ring derivatives (2,5,6-trisubstituted benzoxazoles, 2,5-disubstituted benzimidazoles, 2-substituted benzothiazoles and 2-substituted oxazolo(4,5-b)pyridines) using multiple linear regression (MLR) and Bayesian-regularized artificial neural network (BRANN) techniques. Inhibitory activity against Candida albicans (log(1/C)) was correlated with 3D descriptors encoding the chemical structures of the heterocyclic compounds. Training and test sets were chosen by means of k-Means Clustering. The most appropriate variables for linear and nonlinear modeling were selected using a genetic algorithm (GA) approach. In addition to the MLR equation (MLR-GA), two nonlinear models were built, model BRANN employing the linear variable subset and an optimum model BRANN-GA obtained by a hybrid method that combined BRANN and GA approaches (BRANN-GA). The linear model fit the training set (n = 80) with r2 = 0.746, while BRANN and BRANN-GA gave higher values of r2 = 0.889 and r2 = 0.937, respectively. Beyond the improvement of training set fitting, the BRANN-GA model was superior to the others by being able to describe 87% of test set (n = 16) variance in comparison with 78 and 81% the MLR-GA and BRANN models, respectively. Our quantitative structure-activity relationship study suggests that the distributions of atomic mass, volume and polarizability have relevant relationships with the antifungal potency of the compounds studied. Furthermore, the ability of the six variables selected nonlinearly to differentiate the data was demonstrated when the total data set was well distributed in a Kohonen self-organizing neural network (KNN). PMID:16205958

  8. Computer-assisted design of surface coils used in magnetic resonance imaging. II. Rotational discrimination nonlinear regression analysis and the design of surface coils.

    PubMed

    Letcher, J H

    1989-01-01

    For a number of reasons, it is desirable to fabricate coils which, for a known current, shall produce predetermined values of the magnetic field intensity at a number of points within a nuclear magnetic resonance imager. The calculation of the magnetic field intensity at a set of points involves the integration of the Biot-Savart equation for all components of the segments of conductor which make up the coil. This process in itself is a rather formidable task. When this process is parameterized in terms of coil diameter, coil spacing, etc. the problem is to determine the values of these parameters to match values of magnetic field intensities which are desired. The problem thereby increases in complexity to the point where, by ordinary methods, the problem becomes intractable. A generalized solution technique has been developed on a digital computer to implement the rotational discrimination nonlinear regression techniques of Faris, Law and Letcher to find the best solution to this problem. The problem is posed by integrating the Biot-Savart equation. This produces algebraic expressions for incorporation into the optimization program which is executed on a computer in a conversational mode. This technique was employed to specify the dimensions of a rectangular surface coil for the investigation of the whole human spine. PMID:2630841

  9. Boosted Beta Regression

    PubMed Central

    Schmid, Matthias; Wickler, Florian; Maloney, Kelly O.; Mitchell, Richard; Fenske, Nora; Mayr, Andreas

    2013-01-01

    Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1). Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures. PMID:23626706

  10. Logistic Regression

    NASA Astrophysics Data System (ADS)

    Grégoire, G.

    2014-12-01

    The logistic regression originally is intended to explain the relationship between the probability of an event and a set of covariables. The model's coefficients can be interpreted via the odds and odds ratio, which are presented in introduction of the chapter. The observations are possibly got individually, then we speak of binary logistic regression. When they are grouped, the logistic regression is said binomial. In our presentation we mainly focus on the binary case. For statistical inference the main tool is the maximum likelihood methodology: we present the Wald, Rao and likelihoods ratio results and their use to compare nested models. The problems we intend to deal with are essentially the same as in multiple linear regression: testing global effect, individual effect, selection of variables to build a model, measure of the fitness of the model, prediction of new values… . The methods are demonstrated on data sets using R. Finally we briefly consider the binomial case and the situation where we are interested in several events, that is the polytomous (multinomial) logistic regression and the particular case of ordinal logistic regression.

  11. Novel approaches to the calculation and comparison of thermoregulatory parameters: Non-linear regression of metabolic rate and evaporative water loss in Australian rodents.

    PubMed

    Tomlinson, Sean

    2016-04-01

    The calculation and comparison of physiological characteristics of thermoregulation has provided insight into patterns of ecology and evolution for over half a century. Thermoregulation has typically been explored using linear techniques; I explore the application of non-linear scaling to more accurately calculate and compare characteristics and thresholds of thermoregulation, including the basal metabolic rate (BMR), peak metabolic rate (PMR) and the lower (Tlc) and upper (Tuc) critical limits to the thermo-neutral zone (TNZ) for Australian rodents. An exponentially-modified logistic function accurately characterised the response of metabolic rate to ambient temperature, while evaporative water loss was accurately characterised by a Michaelis-Menten function. When these functions were used to resolve unique parameters for the nine species studied here, the estimates of BMR and TNZ were consistent with the previously published estimates. The approach resolved differences in rates of metabolism and water loss between subfamilies of Australian rodents that haven't been quantified before. I suggest that non-linear scaling is not only more effective than the established segmented linear techniques, but also is more objective. This approach may allow broader and more flexible comparison of characteristics of thermoregulation, but it needs testing with a broader array of taxa than those used here. PMID:27033039

  12. Robust Regression.

    PubMed

    Huang, Dong; Cabral, Ricardo; De la Torre, Fernando

    2016-02-01

    Discriminative methods (e.g., kernel regression, SVM) have been extensively used to solve problems such as object recognition, image alignment and pose estimation from images. These methods typically map image features ( X) to continuous (e.g., pose) or discrete (e.g., object category) values. A major drawback of existing discriminative methods is that samples are directly projected onto a subspace and hence fail to account for outliers common in realistic training sets due to occlusion, specular reflections or noise. It is important to notice that existing discriminative approaches assume the input variables X to be noise free. Thus, discriminative methods experience significant performance degradation when gross outliers are present. Despite its obvious importance, the problem of robust discriminative learning has been relatively unexplored in computer vision. This paper develops the theory of robust regression (RR) and presents an effective convex approach that uses recent advances on rank minimization. The framework applies to a variety of problems in computer vision including robust linear discriminant analysis, regression with missing data, and multi-label classification. Several synthetic and real examples with applications to head pose estimation from images, image and video classification and facial attribute classification with missing data are used to illustrate the benefits of RR. PMID:26761740

  13. Examining Non-Linear Associations between Accelerometer-Measured Physical Activity, Sedentary Behavior, and All-Cause Mortality Using Segmented Cox Regression

    PubMed Central

    Lee, Paul H.

    2016-01-01

    Healthy adults are advised to perform at least 150 min of moderate-intensity physical activity weekly, but this advice is based on studies using self-reports of questionable validity. This study examined the dose-response relationship of accelerometer-measured physical activity and sedentary behaviors on all-cause mortality using segmented Cox regression to empirically determine the break-points of the dose-response relationship. Data from 7006 adult participants aged 18 or above in the National Health and Nutrition Examination Survey waves 2003–2004 and 2005–2006 were included in the analysis and linked with death certificate data using a probabilistic matching approach in the National Death Index through December 31, 2011. Physical activity and sedentary behavior were measured using ActiGraph model 7164 accelerometer over the right hip for 7 consecutive days. Each minute with accelerometer count <100; 1952–5724; and ≥5725 were classified as sedentary, moderate-intensity physical activity, and vigorous-intensity physical activity, respectively. Segmented Cox regression was used to estimate the hazard ratio (HR) of time spent in sedentary behaviors, moderate-intensity physical activity, and vigorous-intensity physical activity and all-cause mortality, adjusted for demographic characteristics, health behaviors, and health conditions. Data were analyzed in 2016. During 47,119 person-year of follow-up, 608 deaths occurred. Each additional hour per day of sedentary behaviors was associated with a HR of 1.15 (95% CI 1.01, 1.31) among participants who spend at least 10.9 h per day on sedentary behaviors, and each additional minute per day spent on moderate-intensity physical activity was associated with a HR of 0.94 (95% CI 0.91, 0.96) among participants with daily moderate-intensity physical activity ≤14.1 min. Associations of moderate physical activity and sedentary behaviors on all-cause mortality were independent of each other. To conclude, evidence from

  14. Rice-Ramsperger-Kassel-Marcus theoretical prediction of high-pressure arrhenius parameters by nonlinear regression: application to silane and disilane decomposition

    SciTech Connect

    Roenigk, K.F.; Jensen, K.F.; Carr, R.W.

    1987-10-22

    Arrhenius parameters are estimated for silane and disilane thermal decomposition reactions by direct regression of RRKM predictions on published static and shock-tube data. For silane decomposition, they find E/sub infinity/ = 57.4-61.1 kcal/mol and log A/sub infinity/ = 14.9-16.3, while for disilane they find E/sub infinity/ = 51.1-52.5 kcal/mol and log A/sub infinity/ = 15.2-16.2. The lower limiting values correspond to inclusion of negative temperature dependence in the collision efficiency, while the higher values correspond to inclusion of weak or negligible temperature dependence. The Arrhenium parameters for both silane and disilane decomposition differ substantially from previously published values. For silane, they predict preexponentials approximately an order of magnitude greater than the previous values for the same activation energy. For disilane, they find A/sub infinity/ is roughly an order of magnitude higher than the literature values and E/sub infinity/ is greater by more than 2 kcal/mol. Falloff curves for both silane and disilane decomposition are given. Implications of these results for the activation energy of SiH/sub 2/ insertion into H/sub 2/ and SiH/sub 4/ and for ..delta..H/sub f//sup 0/(SiH/sub 2/) are discussed.

  15. Resolving model parameter values from carbon and nitrogen stock measurements in a wide range of tropical mature forests using nonlinear inversion and regression trees

    USGS Publications Warehouse

    Liu, S.; Anderson, P.; Zhou, G.; Kauffman, B.; Hughes, F.; Schimel, D.; Watson, Vicente; Tosi, Joseph

    2008-01-01

    Objectively assessing the performance of a model and deriving model parameter values from observations are critical and challenging in landscape to regional modeling. In this paper, we applied a nonlinear inversion technique to calibrate the ecosystem model CENTURY against carbon (C) and nitrogen (N) stock measurements collected from 39 mature tropical forest sites in seven life zones in Costa Rica. Net primary productivity from the Moderate-Resolution Imaging Spectroradiometer (MODIS), C and N stocks in aboveground live biomass, litter, coarse woody debris (CWD), and in soils were used to calibrate the model. To investigate the resolution of available observations on the number of adjustable parameters, inversion was performed using nine setups of adjustable parameters. Statistics including observation sensitivity, parameter correlation coefficient, parameter sensitivity, and parameter confidence limits were used to evaluate the information content of observations, resolution of model parameters, and overall model performance. Results indicated that soil organic carbon content, soil nitrogen content, and total aboveground biomass carbon had the highest information contents, while measurements of carbon in litter and nitrogen in CWD contributed little to the parameter estimation processes. The available information could resolve the values of 2-4 parameters. Adjusting just one parameter resulted in under-fitting and unacceptable model performance, while adjusting five parameters simultaneously led to over-fitting. Results further indicated that the MODIS NPP values were compressed as compared with the spatial variability of net primary production (NPP) values inferred from inverse modeling. Using inverse modeling to infer NPP and other sensitive model parameters from C and N stock observations provides an opportunity to utilize data collected by national to regional forest inventory systems to reduce the uncertainties in the carbon cycle and generate valuable

  16. Steganalysis using logistic regression

    NASA Astrophysics Data System (ADS)

    Lubenko, Ivans; Ker, Andrew D.

    2011-02-01

    We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.

  17. Covariate-adjusted confidence interval for the intraclass correlation coefficient.

    PubMed

    Shoukri, Mohamed M; Donner, Allan; El-Dali, Abdelmoneim

    2013-09-01

    A crucial step in designing a new study is to estimate the required sample size. For a design involving cluster sampling, the appropriate sample size depends on the so-called design effect, which is a function of the average cluster size and the intracluster correlation coefficient (ICC). It is well-known that under the framework of hierarchical and generalized linear models, a reduction in residual error may be achieved by including risk factors as covariates. In this paper we show that the covariate design, indicating whether the covariates are measured at the cluster level or at the within-cluster subject level affects the estimation of the ICC, and hence the design effect. Therefore, the distinction between these two types of covariates should be made at the design stage. In this paper we use the nested-bootstrap method to assess the accuracy of the estimated ICC for continuous and binary response variables under different covariate structures. The codes of two SAS macros are made available by the authors for interested readers to facilitate the construction of confidence intervals for the ICC. Moreover, using Monte Carlo simulations we evaluate the relative efficiency of the estimators and evaluate the accuracy of the coverage probabilities of a 95% confidence interval on the population ICC. The methodology is illustrated using a published data set of blood pressure measurements taken on family members. PMID:23871746

  18. Generalized REGression Package for Nonlinear Parameter Estimation

    Energy Science and Technology Software Center (ESTSC)

    1995-05-15

    GREG computes modal (maximum-posterior-density) and interval estimates of the parameters in a user-provided Fortran subroutine MODEL, using a user-provided vector OBS of single-response observations or matrix OBS of multiresponse observations. GREG can also select the optimal next experiment from a menu of simulated candidates, so as to minimize the volume of the parametric inference region based on the resulting augmented data set.

  19. Deriving the Regression Equation without Using Calculus

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Gordon, Florence S.

    2004-01-01

    Probably the one "new" mathematical topic that is most responsible for modernizing courses in college algebra and precalculus over the last few years is the idea of fitting a function to a set of data in the sense of a least squares fit. Whether it be simple linear regression or nonlinear regression, this topic opens the door to applying the…

  20. Regression: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

  1. Image segmentation via piecewise constant regression

    NASA Astrophysics Data System (ADS)

    Acton, Scott T.; Bovik, Alan C.

    1994-09-01

    We introduce a novel unsupervised image segmentation technique that is based on piecewise constant (PICO) regression. Given an input image, a PICO output image for a specified feature size (scale) is computed via nonlinear regression. The regression effectively provides the constant region segmentation of the input image that has a minimum deviation from the input image. PICO regression-based segmentation avoids the problems of region merging, poor localization, region boundary ambiguity, and region fragmentation. Additionally, our segmentation method is particularly well-suited for corrupted (noisy) input data. An application to segmentation and classification of remotely sensed imagery is provided.

  2. Regression modeling of ground-water flow

    USGS Publications Warehouse

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  3. Multiple linear regression.

    PubMed

    Eberly, Lynn E

    2007-01-01

    This chapter describes multiple linear regression, a statistical approach used to describe the simultaneous associations of several variables with one continuous outcome. Important steps in using this approach include estimation and inference, variable selection in model building, and assessing model fit. The special cases of regression with interactions among the variables, polynomial regression, regressions with categorical (grouping) variables, and separate slopes models are also covered. Examples in microbiology are used throughout. PMID:18450050

  4. Orthogonal Regression and Equivariance.

    ERIC Educational Resources Information Center

    Blankmeyer, Eric

    Ordinary least-squares regression treats the variables asymmetrically, designating a dependent variable and one or more independent variables. When it is not obvious how to make this distinction, a researcher may prefer to use orthogonal regression, which treats the variables symmetrically. However, the usual procedure for orthogonal regression is…

  5. NCCS Regression Test Harness

    Energy Science and Technology Software Center (ESTSC)

    2015-09-09

    The NCCS Regression Test Harness is a software package that provides a framework to perform regression and acceptance testing on NCCS High Performance Computers. The package is written in Python and has only the dependency of a Subversion repository to store the regression tests.

  6. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  7. Prediction in Multiple Regression.

    ERIC Educational Resources Information Center

    Osborne, Jason W.

    2000-01-01

    Presents the concept of prediction via multiple regression (MR) and discusses the assumptions underlying multiple regression analyses. Also discusses shrinkage, cross-validation, and double cross-validation of prediction equations and describes how to calculate confidence intervals around individual predictions. (SLD)

  8. Improved Regression Calibration

    ERIC Educational Resources Information Center

    Skrondal, Anders; Kuha, Jouni

    2012-01-01

    The likelihood for generalized linear models with covariate measurement error cannot in general be expressed in closed form, which makes maximum likelihood estimation taxing. A popular alternative is regression calibration which is computationally efficient at the cost of inconsistent estimation. We propose an improved regression calibration…

  9. Morse-Smale Regression

    PubMed Central

    Gerber, Samuel; Rübel, Oliver; Bremer, Peer-Timo; Pascucci, Valerio; Whitaker, Ross T.

    2012-01-01

    This paper introduces a novel partition-based regression approach that incorporates topological information. Partition-based regression typically introduce a quality-of-fit-driven decomposition of the domain. The emphasis in this work is on a topologically meaningful segmentation. Thus, the proposed regression approach is based on a segmentation induced by a discrete approximation of the Morse-Smale complex. This yields a segmentation with partitions corresponding to regions of the function with a single minimum and maximum that are often well approximated by a linear model. This approach yields regression models that are amenable to interpretation and have good predictive capacity. Typically, regression estimates are quantified by their geometrical accuracy. For the proposed regression, an important aspect is the quality of the segmentation itself. Thus, this paper introduces a new criterion that measures the topological accuracy of the estimate. The topological accuracy provides a complementary measure to the classical geometrical error measures and is very sensitive to over-fitting. The Morse-Smale regression is compared to state-of-the-art approaches in terms of geometry and topology and yields comparable or improved fits in many cases. Finally, a detailed study on climate-simulation data demonstrates the application of the Morse-Smale regression. Supplementary materials are available online and contain an implementation of the proposed approach in the R package msr, an analysis and simulations on the stability of the Morse-Smale complex approximation and additional tables for the climate-simulation study. PMID:23687424

  10. Morse–Smale Regression

    SciTech Connect

    Gerber, Samuel; Rubel, Oliver; Bremer, Peer -Timo; Pascucci, Valerio; Whitaker, Ross T.

    2012-01-19

    This paper introduces a novel partition-based regression approach that incorporates topological information. Partition-based regression typically introduces a quality-of-fit-driven decomposition of the domain. The emphasis in this work is on a topologically meaningful segmentation. Thus, the proposed regression approach is based on a segmentation induced by a discrete approximation of the Morse–Smale complex. This yields a segmentation with partitions corresponding to regions of the function with a single minimum and maximum that are often well approximated by a linear model. This approach yields regression models that are amenable to interpretation and have good predictive capacity. Typically, regression estimates are quantified by their geometrical accuracy. For the proposed regression, an important aspect is the quality of the segmentation itself. Thus, this article introduces a new criterion that measures the topological accuracy of the estimate. The topological accuracy provides a complementary measure to the classical geometrical error measures and is very sensitive to overfitting. The Morse–Smale regression is compared to state-of-the-art approaches in terms of geometry and topology and yields comparable or improved fits in many cases. Finally, a detailed study on climate-simulation data demonstrates the application of the Morse–Smale regression. Supplementary Materials are available online and contain an implementation of the proposed approach in the R package msr, an analysis and simulations on the stability of the Morse–Smale complex approximation, and additional tables for the climate-simulation study.

  11. Multivariate Regression with Calibration*

    PubMed Central

    Liu, Han; Wang, Lie; Zhao, Tuo

    2014-01-01

    We propose a new method named calibrated multivariate regression (CMR) for fitting high dimensional multivariate regression models. Compared to existing methods, CMR calibrates the regularization for each regression task with respect to its noise level so that it is simultaneously tuning insensitive and achieves an improved finite-sample performance. Computationally, we develop an efficient smoothed proximal gradient algorithm which has a worst-case iteration complexity O(1/ε), where ε is a pre-specified numerical accuracy. Theoretically, we prove that CMR achieves the optimal rate of convergence in parameter estimation. We illustrate the usefulness of CMR by thorough numerical simulations and show that CMR consistently outperforms other high dimensional multivariate regression methods. We also apply CMR on a brain activity prediction problem and find that CMR is as competitive as the handcrafted model created by human experts. PMID:25620861

  12. George: Gaussian Process regression

    NASA Astrophysics Data System (ADS)

    Foreman-Mackey, Daniel

    2015-11-01

    George is a fast and flexible library, implemented in C++ with Python bindings, for Gaussian Process regression useful for accounting for correlated noise in astronomical datasets, including those for transiting exoplanet discovery and characterization and stellar population modeling.

  13. Regression versus No Regression in the Autistic Disorder: Developmental Trajectories

    ERIC Educational Resources Information Center

    Bernabei, P.; Cerquiglini, A.; Cortesi, F.; D' Ardia, C.

    2007-01-01

    Developmental regression is a complex phenomenon which occurs in 20-49% of the autistic population. Aim of the study was to assess possible differences in the development of regressed and non-regressed autistic preschoolers. We longitudinally studied 40 autistic children (18 regressed, 22 non-regressed) aged 2-6 years. The following developmental…

  14. Automation of a procedure to find the polynomial which best fits (kappa, c1, c2, T) data of electrolyte solutions by non-linear regression analysis using MATHEMATICA software.

    PubMed

    Cortazar, E; Usobiaga, A; Fernández, L A; de, Diego A; Madariaga, J M

    2002-02-01

    A MATHEMATICA package, 'CONDU.M', has been developed to find the polynomial in concentration and temperature which best fits conductimetric data of the type (kappa, c, T) or (kappa, c1, c2, T) of electrolyte solutions (kappa: specific conductivity; ci: concentration of component i; T: temperature). In addition, an interface, 'TKONDU', has been written in the TCL/Tk language to facilitate the use of CONDU.M by an operator not familiarised with MATHEMATICA. All this software is available on line (UPV/EHU, 2001). 'CONDU.M' has been programmed to: (i) select the optimum grade in c1 and/or c2; (ii) compare models with linear or quadratic terms in temperature; (iii) calculate the set of adjustable parameters which best fits data; (iv) simplify the model by elimination of 'a priori' included adjustable parameters which after the regression analysis result in low statistical significance; (v) facilitate the location of outlier data by graphical analysis of the residuals; and (vi) provide quantitative statistical information on the quality of the fit, allowing a critical comparison among different models. Due to the multiple options offered the software allows testing different conductivity models in a short time, even if a large set of conductivity data is being considered simultaneously. Then, the user can choose the best model making use of the graphical and statistical information provided in the output file. Although the program has been initially designed to treat conductimetric data, it can be also applied for processing data with similar structure, e.g. (P, c, T) or (P, c1, c2, T), being P any appropriate transport, physical or thermodynamic property. PMID:11868914

  15. Practical Session: Logistic Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    An exercise is proposed to illustrate the logistic regression. One investigates the different risk factors in the apparition of coronary heart disease. It has been proposed in Chapter 5 of the book of D.G. Kleinbaum and M. Klein, "Logistic Regression", Statistics for Biology and Health, Springer Science Business Media, LLC (2010) and also by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr341.pdf). This example is based on data given in the file evans.txt coming from http://www.sph.emory.edu/dkleinb/logreg3.htm#data.

  16. Explorations in Statistics: Regression

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2011-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This seventh installment of "Explorations in Statistics" explores regression, a technique that estimates the nature of the relationship between two things for which we may only surmise a mechanistic or predictive connection.…

  17. Modern Regression Discontinuity Analysis

    ERIC Educational Resources Information Center

    Bloom, Howard S.

    2012-01-01

    This article provides a detailed discussion of the theory and practice of modern regression discontinuity (RD) analysis for estimating the effects of interventions or treatments. Part 1 briefly chronicles the history of RD analysis and summarizes its past applications. Part 2 explains how in theory an RD analysis can identify an average effect of…

  18. CORRELATION AND REGRESSION

    EPA Science Inventory

    Webcast entitled Statistical Tools for Making Sense of Data, by the National Nutrient Criteria Support Center, N-STEPS (Nutrients-Scientific Technical Exchange Partnership. The section "Correlation and Regression" provides an overview of these two techniques in the context of nut...

  19. Multiple linear regression analysis

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  20. Bayesian ARTMAP for regression.

    PubMed

    Sasu, L M; Andonie, R

    2013-10-01

    Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. PMID:23665468

  1. Mechanisms of neuroblastoma regression

    PubMed Central

    Brodeur, Garrett M.; Bagatell, Rochelle

    2014-01-01

    Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179

  2. Residuals and regression diagnostics: focusing on logistic regression.

    PubMed

    Zhang, Zhongheng

    2016-05-01

    Up to now I have introduced most steps in regression model building and validation. The last step is to check whether there are observations that have significant impact on model coefficient and specification. The article firstly describes plotting Pearson residual against predictors. Such plots are helpful in identifying non-linearity and provide hints on how to transform predictors. Next, I focus on observations of outlier, leverage and influence that may have significant impact on model building. Outlier is such an observation that its response value is unusual conditional on covariate pattern. Leverage is an observation with covariate pattern that is far away from the regressor space. Influence is the product of outlier and leverage. That is, when influential observation is dropped from the model, there will be a significant shift of the coefficient. Summary statistics for outlier, leverage and influence are studentized residuals, hat values and Cook's distance. They can be easily visualized with graphs and formally tested using the car package. PMID:27294091

  3. ``Once Nonlinear, Always Nonlinear''

    NASA Astrophysics Data System (ADS)

    Blackstock, David T.

    2006-05-01

    The phrase "Once nonlinear, always nonlinear" is attributed to David F. Pernet. In the 1970s he noticed that nonlinearly generated higher harmonic components (both tones and noise) don't decay as small signals, no matter how far the wave propagates. Despite being out of step with the then widespread notion that small-signal behavior is restored in "old age," Pernet's view is supported by the Burgers-equation solutions of the early 1960s. For a plane wave from a sinusoidally vibrating source in a thermoviscous fluid, the old-age decay of the nth harmonic is e-nαx, not e-n2αx (small-signal expectation), where α is the absorption coefficient at the fundamental frequency f and x is propagation distance. Moreover, for spherical waves (r the distance) the harmonic diminishes as e-nαx/rn, not e-n2αx/r. While not new, these results have special application to aircraft noise propagation, since the large propagation distances of interest imply old age. The virtual source model may be used to explain the "anomalous" decay rates. In old age most of the nth harmonic sound comes from virtual sources close to the receiver. Their strength is proportional to the nth power of the local fundamental amplitude, and that sets the decay law for the nth harmonic.

  4. Ridge Regression: A Regression Procedure for Analyzing Correlated Independent Variables.

    ERIC Educational Resources Information Center

    Rakow, Ernest A.

    Ridge regression is presented as an analytic technique to be used when predictor variables in a multiple linear regression situation are highly correlated, a situation which may result in unstable regression coefficients and difficulties in interpretation. Ridge regression avoids the problem of selection of variables that may occur in stepwise…

  5. Ridge Regression Signal Processing

    NASA Technical Reports Server (NTRS)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  6. Fast Censored Linear Regression

    PubMed Central

    HUANG, YIJIAN

    2013-01-01

    Weighted log-rank estimating function has become a standard estimation method for the censored linear regression model, or the accelerated failure time model. Well established statistically, the estimator defined as a consistent root has, however, rather poor computational properties because the estimating function is neither continuous nor, in general, monotone. We propose a computationally efficient estimator through an asymptotics-guided Newton algorithm, in which censored quantile regression methods are tailored to yield an initial consistent estimate and a consistent derivative estimate of the limiting estimating function. We also develop fast interval estimation with a new proposal for sandwich variance estimation. The proposed estimator is asymptotically equivalent to the consistent root estimator and barely distinguishable in samples of practical size. However, computation time is typically reduced by two to three orders of magnitude for point estimation alone. Illustrations with clinical applications are provided. PMID:24347802

  7. Orthogonal Regression: A Teaching Perspective

    ERIC Educational Resources Information Center

    Carr, James R.

    2012-01-01

    A well-known approach to linear least squares regression is that which involves minimizing the sum of squared orthogonal projections of data points onto the best fit line. This form of regression is known as orthogonal regression, and the linear model that it yields is known as the major axis. A similar method, reduced major axis regression, is…

  8. Correlation and simple linear regression.

    PubMed

    Eberly, Lynn E

    2007-01-01

    This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression. PMID:18450049

  9. Incremental hierarchical discriminant regression.

    PubMed

    Weng, Juyang; Hwang, Wey-Shiuan

    2007-03-01

    This paper presents incremental hierarchical discriminant regression (IHDR) which incrementally builds a decision tree or regression tree for very high-dimensional regression or decision spaces by an online, real-time learning system. Biologically motivated, it is an approximate computational model for automatic development of associative cortex, with both bottom-up sensory inputs and top-down motor projections. At each internal node of the IHDR tree, information in the output space is used to automatically derive the local subspace spanned by the most discriminating features. Embedded in the tree is a hierarchical probability distribution model used to prune very unlikely cases during the search. The number of parameters in the coarse-to-fine approximation is dynamic and data-driven, enabling the IHDR tree to automatically fit data with unknown distribution shapes (thus, it is difficult to select the number of parameters up front). The IHDR tree dynamically assigns long-term memory to avoid the loss-of-memory problem typical with a global-fitting learning algorithm for neural networks. A major challenge for an incrementally built tree is that the number of samples varies arbitrarily during the construction process. An incrementally updated probability model, called sample-size-dependent negative-log-likelihood (SDNLL) metric is used to deal with large sample-size cases, small sample-size cases, and unbalanced sample-size cases, measured among different internal nodes of the IHDR tree. We report experimental results for four types of data: synthetic data to visualize the behavior of the algorithms, large face image data, continuous video stream from robot navigation, and publicly available data sets that use human defined features. PMID:17385628

  10. Regression Segmentation for M³ Spinal Images.

    PubMed

    Wang, Zhijie; Zhen, Xiantong; Tay, KengYeow; Osman, Said; Romano, Walter; Li, Shuo

    2015-08-01

    Clinical routine often requires to analyze spinal images of multiple anatomic structures in multiple anatomic planes from multiple imaging modalities (M(3)). Unfortunately, existing methods for segmenting spinal images are still limited to one specific structure, in one specific plane or from one specific modality (S(3)). In this paper, we propose a novel approach, Regression Segmentation, that is for the first time able to segment M(3) spinal images in one single unified framework. This approach formulates the segmentation task innovatively as a boundary regression problem: modeling a highly nonlinear mapping function from substantially diverse M(3) images directly to desired object boundaries. Leveraging the advancement of sparse kernel machines, regression segmentation is fulfilled by a multi-dimensional support vector regressor (MSVR) which operates in an implicit, high dimensional feature space where M(3) diversity and specificity can be systematically categorized, extracted, and handled. The proposed regression segmentation approach was thoroughly tested on images from 113 clinical subjects including both disc and vertebral structures, in both sagittal and axial planes, and from both MRI and CT modalities. The overall result reaches a high dice similarity index (DSI) 0.912 and a low boundary distance (BD) 0.928 mm. With our unified and expendable framework, an efficient clinical tool for M(3) spinal image segmentation can be easily achieved, and will substantially benefit the diagnosis and treatment of spinal diseases. PMID:25361503

  11. Ridge regression processing

    NASA Technical Reports Server (NTRS)

    Kuhl, Mark R.

    1990-01-01

    Current navigation requirements depend on a geometric dilution of precision (GDOP) criterion. As long as the GDOP stays below a specific value, navigation requirements are met. The GDOP will exceed the specified value when the measurement geometry becomes too collinear. A new signal processing technique, called Ridge Regression Processing, can reduce the effects of nearly collinear measurement geometry; thereby reducing the inflation of the measurement errors. It is shown that the Ridge signal processor gives a consistently better mean squared error (MSE) in position than the Ordinary Least Mean Squares (OLS) estimator. The applicability of this technique is currently being investigated to improve the following areas: receiver autonomous integrity monitoring (RAIM), coverage requirements, availability requirements, and precision approaches.

  12. Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test

    PubMed Central

    Zhao, Ni; Chen, Jun; Carroll, Ian M.; Ringel-Kulka, Tamar; Epstein, Michael P.; Zhou, Hua; Zhou, Jin J.; Ringel, Yehuda; Li, Hongzhe; Wu, Michael C.

    2015-01-01

    High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Distance-based analysis is a popular strategy for evaluating the overall association between microbiome diversity and outcome, wherein the phylogenetic distance between individuals’ microbiome profiles is computed and tested for association via permutation. Despite their practical popularity, distance-based approaches suffer from important challenges, especially in selecting the best distance and extending the methods to alternative outcomes, such as survival outcomes. We propose the microbiome regression-based kernel association test (MiRKAT), which directly regresses the outcome on the microbiome profiles via the semi-parametric kernel machine regression framework. MiRKAT allows for easy covariate adjustment and extension to alternative outcomes while non-parametrically modeling the microbiome through a kernel that incorporates phylogenetic distance. It uses a variance-component score statistic to test for the association with analytical p value calculation. The model also allows simultaneous examination of multiple distances, alleviating the problem of choosing the best distance. Our simulations demonstrated that MiRKAT provides correctly controlled type I error and adequate power in detecting overall association. “Optimal” MiRKAT, which considers multiple candidate distances, is robust in that it suffers from little power loss in comparison to when the best distance is used and can achieve tremendous power gain in comparison to when a poor distance is chosen. Finally, we applied MiRKAT to real microbiome datasets to show that microbial communities are associated with smoking and with fecal protease levels after confounders are controlled for. PMID:25957468

  13. Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test.

    PubMed

    Zhao, Ni; Chen, Jun; Carroll, Ian M; Ringel-Kulka, Tamar; Epstein, Michael P; Zhou, Hua; Zhou, Jin J; Ringel, Yehuda; Li, Hongzhe; Wu, Michael C

    2015-05-01

    High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Distance-based analysis is a popular strategy for evaluating the overall association between microbiome diversity and outcome, wherein the phylogenetic distance between individuals' microbiome profiles is computed and tested for association via permutation. Despite their practical popularity, distance-based approaches suffer from important challenges, especially in selecting the best distance and extending the methods to alternative outcomes, such as survival outcomes. We propose the microbiome regression-based kernel association test (MiRKAT), which directly regresses the outcome on the microbiome profiles via the semi-parametric kernel machine regression framework. MiRKAT allows for easy covariate adjustment and extension to alternative outcomes while non-parametrically modeling the microbiome through a kernel that incorporates phylogenetic distance. It uses a variance-component score statistic to test for the association with analytical p value calculation. The model also allows simultaneous examination of multiple distances, alleviating the problem of choosing the best distance. Our simulations demonstrated that MiRKAT provides correctly controlled type I error and adequate power in detecting overall association. "Optimal" MiRKAT, which considers multiple candidate distances, is robust in that it suffers from little power loss in comparison to when the best distance is used and can achieve tremendous power gain in comparison to when a poor distance is chosen. Finally, we applied MiRKAT to real microbiome datasets to show that microbial communities are associated with smoking and with fecal protease levels after confounders are controlled for. PMID:25957468

  14. Recursive Algorithm For Linear Regression

    NASA Technical Reports Server (NTRS)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  15. Perioperative factors predicting poor outcome in elderly patients following emergency general surgery: a multivariate regression analysis

    PubMed Central

    Lees, Mackenzie C.; Merani, Shaheed; Tauh, Keerit; Khadaroo, Rachel G.

    2015-01-01

    Background Older adults (≥ 65 yr) are the fastest growing population and are presenting in increasing numbers for acute surgical care. Emergency surgery is frequently life threatening for older patients. Our objective was to identify predictors of mortality and poor outcome among elderly patients undergoing emergency general surgery. Methods We conducted a retrospective cohort study of patients aged 65–80 years undergoing emergency general surgery between 2009 and 2010 at a tertiary care centre. Demographics, comorbidities, in-hospital complications, mortality and disposition characteristics of patients were collected. Logistic regression analysis was used to identify covariate-adjusted predictors of in-hospital mortality and discharge of patients home. Results Our analysis included 257 patients with a mean age of 72 years; 52% were men. In-hospital mortality was 12%. Mortality was associated with patients who had higher American Society of Anesthesiologists (ASA) class (odds ratio [OR] 3.85, 95% confidence interval [CI] 1.43–10.33, p = 0.008) and in-hospital complications (OR 1.93, 95% CI 1.32–2.83, p = 0.001). Nearly two-thirds of patients discharged home were younger (OR 0.92, 95% CI 0.85–0.99, p = 0.036), had lower ASA class (OR 0.45, 95% CI 0.27–0.74, p = 0.002) and fewer in-hospital complications (OR 0.69, 95% CI 0.53–0.90, p = 0.007). Conclusion American Society of Anesthesiologists class and in-hospital complications are perioperative predictors of mortality and disposition in the older surgical population. Understanding the predictors of poor outcome and the importance of preventing in-hospital complications in older patients will have important clinical utility in terms of preoperative counselling, improving health care and discharging patients home. PMID:26204143

  16. A Version of Quadratic Regression with Interpretable Parameters.

    ERIC Educational Resources Information Center

    Cudeck, Robert; du Toit, Stephen H. C.

    2002-01-01

    Suggests an alternative form of the quadratic model that has the same expectation function of the original model but has the useful feature that its parameters are interpretable. Provides examples of a simple regression problem and a nonlinear mixed-effects model. (SLD)

  17. Logarithmic Transformations in Regression: Do You Transform Back Correctly?

    ERIC Educational Resources Information Center

    Dambolena, Ismael G.; Eriksen, Steven E.; Kopcso, David P.

    2009-01-01

    The logarithmic transformation is often used in regression analysis for a variety of purposes such as the linearization of a nonlinear relationship between two or more variables. We have noticed that when this transformation is applied to the response variable, the computation of the point estimate of the conditional mean of the original response…

  18. Multinomial logistic regression ensembles.

    PubMed

    Lee, Kyewon; Ahn, Hongshik; Moon, Hojin; Kodell, Ralph L; Chen, James J

    2013-05-01

    This article proposes a method for multiclass classification problems using ensembles of multinomial logistic regression models. A multinomial logit model is used as a base classifier in ensembles from random partitions of predictors. The multinomial logit model can be applied to each mutually exclusive subset of the feature space without variable selection. By combining multiple models the proposed method can handle a huge database without a constraint needed for analyzing high-dimensional data, and the random partition can improve the prediction accuracy by reducing the correlation among base classifiers. The proposed method is implemented using R, and the performance including overall prediction accuracy, sensitivity, and specificity for each category is evaluated on two real data sets and simulation data sets. To investigate the quality of prediction in terms of sensitivity and specificity, the area under the receiver operating characteristic (ROC) curve (AUC) is also examined. The performance of the proposed model is compared to a single multinomial logit model and it shows a substantial improvement in overall prediction accuracy. The proposed method is also compared with other classification methods such as the random forest, support vector machines, and random multinomial logit model. PMID:23611203

  19. Bayesian Spatial Quantile Regression

    PubMed Central

    Reich, Brian J.; Fuentes, Montserrat; Dunson, David B.

    2013-01-01

    Tropospheric ozone is one of the six criteria pollutants regulated by the United States Environmental Protection Agency under the Clean Air Act and has been linked with several adverse health effects, including mortality. Due to the strong dependence on weather conditions, ozone may be sensitive to climate change and there is great interest in studying the potential effect of climate change on ozone, and how this change may affect public health. In this paper we develop a Bayesian spatial model to predict ozone under different meteorological conditions, and use this model to study spatial and temporal trends and to forecast ozone concentrations under different climate scenarios. We develop a spatial quantile regression model that does not assume normality and allows the covariates to affect the entire conditional distribution, rather than just the mean. The conditional distribution is allowed to vary from site-to-site and is smoothed with a spatial prior. For extremely large datasets our model is computationally infeasible, and we develop an approximate method. We apply the approximate version of our model to summer ozone from 1997–2005 in the Eastern U.S., and use deterministic climate models to project ozone under future climate conditions. Our analysis suggests that holding all other factors fixed, an increase in daily average temperature will lead to the largest increase in ozone in the Industrial Midwest and Northeast. PMID:23459794

  20. Canonical variate regression.

    PubMed

    Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun

    2016-07-01

    In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. PMID:26861909

  1. Bayesian Spatial Quantile Regression.

    PubMed

    Reich, Brian J; Fuentes, Montserrat; Dunson, David B

    2011-03-01

    Tropospheric ozone is one of the six criteria pollutants regulated by the United States Environmental Protection Agency under the Clean Air Act and has been linked with several adverse health effects, including mortality. Due to the strong dependence on weather conditions, ozone may be sensitive to climate change and there is great interest in studying the potential effect of climate change on ozone, and how this change may affect public health. In this paper we develop a Bayesian spatial model to predict ozone under different meteorological conditions, and use this model to study spatial and temporal trends and to forecast ozone concentrations under different climate scenarios. We develop a spatial quantile regression model that does not assume normality and allows the covariates to affect the entire conditional distribution, rather than just the mean. The conditional distribution is allowed to vary from site-to-site and is smoothed with a spatial prior. For extremely large datasets our model is computationally infeasible, and we develop an approximate method. We apply the approximate version of our model to summer ozone from 1997-2005 in the Eastern U.S., and use deterministic climate models to project ozone under future climate conditions. Our analysis suggests that holding all other factors fixed, an increase in daily average temperature will lead to the largest increase in ozone in the Industrial Midwest and Northeast. PMID:23459794

  2. Linear regression in astronomy. I

    NASA Technical Reports Server (NTRS)

    Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh

    1990-01-01

    Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.

  3. Evaluating differential effects using regression interactions and regression mixture models

    PubMed Central

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903

  4. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced mathematical models have the potential to capture the complex metabolic and physiological processes that result in heat production, or energy expenditure (EE). Multivariate adaptive regression splines (MARS), is a nonparametric method that estimates complex nonlinear relationships by a seri...

  5. Linear regression in astronomy. II

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  6. Quantile regression for climate data

    NASA Astrophysics Data System (ADS)

    Marasinghe, Dilhani Shalika

    Quantile regression is a developing statistical tool which is used to explain the relationship between response and predictor variables. This thesis describes two examples of climatology using quantile regression.Our main goal is to estimate derivatives of a conditional mean and/or conditional quantile function. We introduce a method to handle autocorrelation in the framework of quantile regression and used it with the temperature data. Also we explain some properties of the tornado data which is non-normally distributed. Even though quantile regression provides a more comprehensive view, when talking about residuals with the normality and the constant variance assumption, we would prefer least square regression for our temperature analysis. When dealing with the non-normality and non constant variance assumption, quantile regression is a better candidate for the estimation of the derivative.

  7. Retro-regression--another important multivariate regression improvement.

    PubMed

    Randić, M

    2001-01-01

    We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA. PMID:11410035

  8. Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models

    ERIC Educational Resources Information Center

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…

  9. Nonparametric Covariate-Adjusted Association Tests Based on the Generalized Kendall’s Tau*

    PubMed Central

    Zhu, Wensheng; Jiang, Yuan; Zhang, Heping

    2012-01-01

    Identifying the risk factors for comorbidity is important in psychiatric research. Empirically, studies have shown that testing multiple, correlated traits simultaneously is more powerful than testing a single trait at a time in association analysis. Furthermore, for complex diseases, especially mental illnesses and behavioral disorders, the traits are often recorded in different scales such as dichotomous, ordinal and quantitative. In the absence of covariates, nonparametric association tests have been developed for multiple complex traits to study comorbidity. However, genetic studies generally contain measurements of some covariates that may affect the relationship between the risk factors of major interest (such as genes) and the outcomes. While it is relatively easy to adjust these covariates in a parametric model for quantitative traits, it is challenging for multiple complex traits with possibly different scales. In this article, we propose a nonparametric test for multiple complex traits that can adjust for covariate effects. The test aims to achieve an optimal scheme of adjustment by using a maximum statistic calculated from multiple adjusted test statistics. We derive the asymptotic null distribution of the maximum test statistic, and also propose a resampling approach, both of which can be used to assess the significance of our test. Simulations are conducted to compare the type I error and power of the nonparametric adjusted test to the unadjusted test and other existing adjusted tests. The empirical results suggest that our proposed test increases the power through adjustment for covariates when there exist environmental effects, and is more robust to model misspecifications than some existing parametric adjusted tests. We further demonstrate the advantage of our test by analyzing a data set on genetics of alcoholism. PMID:22745516

  10. Covariate adjustment of cumulative incidence functions for competing risks data using inverse probability of treatment weighting.

    PubMed

    Neumann, Anke; Billionnet, Cécile

    2016-06-01

    In observational studies without random assignment of the treatment, the unadjusted comparison between treatment groups may be misleading due to confounding. One method to adjust for measured confounders is inverse probability of treatment weighting. This method can also be used in the analysis of time to event data with competing risks. Competing risks arise if for some individuals the event of interest is precluded by a different type of event occurring before, or if only the earliest of several times to event, corresponding to different event types, is observed or is of interest. In the presence of competing risks, time to event data are often characterized by cumulative incidence functions, one for each event type of interest. We describe the use of inverse probability of treatment weighting to create adjusted cumulative incidence functions. This method is equivalent to direct standardization when the weight model is saturated. No assumptions about the form of the cumulative incidence functions are required. The method allows studying associations between treatment and the different types of event under study, while focusing on the earliest event only. We present a SAS macro implementing this method and we provide a worked example. PMID:27084321

  11. Effects of Participation in a Post-Secondary Honors Program with Covariate Adjustment Using Propensity Score

    ERIC Educational Resources Information Center

    Furtwengler, Scott R.

    2015-01-01

    The present study sought to determine the extent to which participation in a post-secondary honors program affected academic achievement. Archival data were collected on three cohorts of high-achieving students at a large public university. Propensity scores were calculated on factors predicting participation in honors and used as the covariate.…

  12. A consistent local linear estimator of the covariate adjusted correlation coefficient

    PubMed Central

    Nguyen, Danh V.; Şentürk, Damla

    2009-01-01

    Consider the correlation between two random variables (X, Y), both not directly observed. One only observes X̃ = φ1(U)X + φ2(U) and Ỹ = ψ1(U)Y + ψ2(U), where all four functions {φl(·),ψl(·), l = 1, 2} are unknown/unspecified smooth functions of an observable covariate U. We consider consistent estimation of the correlation between the unobserved variables X and Y, adjusted for the above general dual additive and multiplicative effects of U, based on the observed data (X̃, Ỹ, U). PMID:21720454

  13. Precision Efficacy Analysis for Regression.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.

    When multiple linear regression is used to develop a prediction model, sample size must be large enough to ensure stable coefficients. If the derivation sample size is inadequate, the model may not predict well for future subjects. The precision efficacy analysis for regression (PEAR) method uses a cross- validity approach to select sample sizes…

  14. Ecological Regression and Voting Rights.

    ERIC Educational Resources Information Center

    Freedman, David A.; And Others

    1991-01-01

    The use of ecological regression in voting rights cases is discussed in the context of a lawsuit against Los Angeles County (California) in 1990. Ecological regression assumes that systematic voting differences between precincts are explained by ethnic differences. An alternative neighborhood model is shown to lead to different conclusions. (SLD)

  15. Logistic Regression: Concept and Application

    ERIC Educational Resources Information Center

    Cokluk, Omay

    2010-01-01

    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  16. [Regression grading in gastrointestinal tumors].

    PubMed

    Tischoff, I; Tannapfel, A

    2012-02-01

    Preoperative neoadjuvant chemoradiation therapy is a well-established and essential part of the interdisciplinary treatment of gastrointestinal tumors. Neoadjuvant treatment leads to regressive changes in tumors. To evaluate the histological tumor response different scoring systems describing regressive changes are used and known as tumor regression grading. Tumor regression grading is usually based on the presence of residual vital tumor cells in proportion to the total tumor size. Currently, no nationally or internationally accepted grading systems exist. In general, common guidelines should be used in the pathohistological diagnostics of tumors after neoadjuvant therapy. In particularly, the standard tumor grading will be replaced by tumor regression grading. Furthermore, tumors after neoadjuvant treatment are marked with the prefix "y" in the TNM classification. PMID:22293790

  17. Fungible weights in logistic regression.

    PubMed

    Jones, Jeff A; Waller, Niels G

    2016-06-01

    In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record PMID:26651981

  18. Splines for Diffeomorphic Image Regression

    PubMed Central

    Singh, Nikhil; Niethammer, Marc

    2016-01-01

    This paper develops a method for splines on diffeomorphisms for image regression. In contrast to previously proposed methods to capture image changes over time, such as geodesic regression, the method can capture more complex spatio-temporal deformations. In particular, it is a first step towards capturing periodic motions for example of the heart or the lung. Starting from a variational formulation of splines the proposed approach allows for the use of temporal control points to control spline behavior. This necessitates the development of a shooting formulation for splines. Experimental results are shown for synthetic and real data. The performance of the method is compared to geodesic regression. PMID:25485370

  19. Practical Session: Simple Linear Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    Two exercises are proposed to illustrate the simple linear regression. The first one is based on the famous Galton's data set on heredity. We use the lm R command and get coefficients estimates, standard error of the error, R2, residuals …In the second example, devoted to data related to the vapor tension of mercury, we fit a simple linear regression, predict values, and anticipate on multiple linear regression. This pratical session is an excerpt from practical exercises proposed by A. Dalalyan at EPNC (see Exercises 1 and 2 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_4.pdf).

  20. Multiple Regression and Its Discontents

    ERIC Educational Resources Information Center

    Snell, Joel C.; Marsh, Mitchell

    2012-01-01

    Multiple regression is part of a larger statistical strategy originated by Gauss. The authors raise questions about the theory and suggest some changes that would make room for Mandelbrot and Serendipity.

  1. Abstract Expression Grammar Symbolic Regression

    NASA Astrophysics Data System (ADS)

    Korns, Michael F.

    This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.

  2. Time-Warped Geodesic Regression

    PubMed Central

    Hong, Yi; Singh, Nikhil; Kwitt, Roland; Niethammer, Marc

    2016-01-01

    We consider geodesic regression with parametric time-warps. This allows, for example, to capture saturation effects as typically observed during brain development or degeneration. While highly-flexible models to analyze time-varying image and shape data based on generalizations of splines and polynomials have been proposed recently, they come at the cost of substantially more complex inference. Our focus in this paper is therefore to keep the model and its inference as simple as possible while allowing to capture expected biological variation. We demonstrate that by augmenting geodesic regression with parametric time-warp functions, we can achieve comparable flexibility to more complex models while retaining model simplicity. In addition, the time-warp parameters provide useful information of underlying anatomical changes as demonstrated for the analysis of corpora callosa and rat calvariae. We exemplify our strategy for shape regression on the Grassmann manifold, but note that the method is generally applicable for time-warped geodesic regression. PMID:25485368

  3. Wrong Signs in Regression Coefficients

    NASA Technical Reports Server (NTRS)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  4. Basis Selection for Wavelet Regression

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Lau, Sonie (Technical Monitor)

    1998-01-01

    A wavelet basis selection procedure is presented for wavelet regression. Both the basis and the threshold are selected using cross-validation. The method includes the capability of incorporating prior knowledge on the smoothness (or shape of the basis functions) into the basis selection procedure. The results of the method are demonstrated on sampled functions widely used in the wavelet regression literature. The results of the method are contrasted with other published methods.

  5. Regression methods for spatial data

    NASA Technical Reports Server (NTRS)

    Yakowitz, S. J.; Szidarovszky, F.

    1982-01-01

    The kriging approach, a parametric regression method used by hydrologists and mining engineers, among others also provides an error estimate the integral of the regression function. The kriging method is explored and some of its statistical characteristics are described. The Watson method and theory are extended so that the kriging features are displayed. Theoretical and computational comparisons of the kriging and Watson approaches are offered.

  6. Forward model nonlinearity versus inverse model nonlinearity

    USGS Publications Warehouse

    Mehl, S.

    2007-01-01

    The issue of concern is the impact of forward model nonlinearity on the nonlinearity of the inverse model. The question posed is, "Does increased nonlinearity in the head solution (forward model) always result in increased nonlinearity in the inverse solution (estimation of hydraulic conductivity)?" It is shown that the two nonlinearities are separate, and it is not universally true that increased forward model nonlinearity increases inverse model nonlinearity. ?? 2007 National Ground Water Association.

  7. Nonlinear waveguides

    NASA Astrophysics Data System (ADS)

    SjöBerg, Daniel

    2003-04-01

    We investigate the propagation of electromagnetic waves in a cylindrical waveguide with an arbitrary cross section filled with a nonlinear material. The electromagnetic field is expanded in the usual eigenmodes of the waveguide, and the coupling between the modes is quantified. We derive the wave equations governing each mode with special emphasis on the situation with a dominant TE mode. The result is a strictly hyperbolic system of nonlinear partial differential equations for the dominating mode, whereas the minor modes satisfy hyperbolic systems of linear, nonstationary, and partial differential equations. A growth estimate is given for the minor modes.

  8. Demosaicing Based on Directional Difference Regression and Efficient Regression Priors.

    PubMed

    Wu, Jiqing; Timofte, Radu; Van Gool, Luc

    2016-08-01

    Color demosaicing is a key image processing step aiming to reconstruct the missing pixels from a recorded raw image. On the one hand, numerous interpolation methods focusing on spatial-spectral correlations have been proved very efficient, whereas they yield a poor image quality and strong visible artifacts. On the other hand, optimization strategies, such as learned simultaneous sparse coding and sparsity and adaptive principal component analysis-based algorithms, were shown to greatly improve image quality compared with that delivered by interpolation methods, but unfortunately are computationally heavy. In this paper, we propose efficient regression priors as a novel, fast post-processing algorithm that learns the regression priors offline from training data. We also propose an independent efficient demosaicing algorithm based on directional difference regression, and introduce its enhanced version based on fused regression. We achieve an image quality comparable to that of the state-of-the-art methods for three benchmarks, while being order(s) of magnitude faster. PMID:27254866

  9. Interpretation of Standardized Regression Coefficients in Multiple Regression.

    ERIC Educational Resources Information Center

    Thayer, Jerome D.

    The extent to which standardized regression coefficients (beta values) can be used to determine the importance of a variable in an equation was explored. The beta value and the part correlation coefficient--also called the semi-partial correlation coefficient and reported in squared form as the incremental "r squared"--were compared for variables…

  10. Interquantile Shrinkage in Regression Models

    PubMed Central

    Jiang, Liewen; Wang, Huixia Judy; Bondell, Howard D.

    2012-01-01

    Conventional analysis using quantile regression typically focuses on fitting the regression model at different quantiles separately. However, in situations where the quantile coefficients share some common feature, joint modeling of multiple quantiles to accommodate the commonality often leads to more efficient estimation. One example of common features is that a predictor may have a constant effect over one region of quantile levels but varying effects in other regions. To automatically perform estimation and detection of the interquantile commonality, we develop two penalization methods. When the quantile slope coefficients indeed do not change across quantile levels, the proposed methods will shrink the slopes towards constant and thus improve the estimation efficiency. We establish the oracle properties of the two proposed penalization methods. Through numerical investigations, we demonstrate that the proposed methods lead to estimations with competitive or higher efficiency than the standard quantile regression estimation in finite samples. Supplemental materials for the article are available online. PMID:24363546

  11. Survival Data and Regression Models

    NASA Astrophysics Data System (ADS)

    Grégoire, G.

    2014-12-01

    We start this chapter by introducing some basic elements for the analysis of censored survival data. Then we focus on right censored data and develop two types of regression models. The first one concerns the so-called accelerated failure time models (AFT), which are parametric models where a function of a parameter depends linearly on the covariables. The second one is a semiparametric model, where the covariables enter in a multiplicative form in the expression of the hazard rate function. The main statistical tool for analysing these regression models is the maximum likelihood methodology and, in spite we recall some essential results about the ML theory, we refer to the chapter "Logistic Regression" for a more detailed presentation.

  12. Regression models of atlas appearance.

    PubMed

    Rohlfing, Torsten; Sullivan, Edith V; Pfefferbaum, Adolf

    2009-01-01

    Models of object appearance based on principal components analysis provide powerful and versatile tools in computer vision and medical image analysis. A major shortcoming is that they rely entirely on the training data to extract principal modes of appearance variation and ignore underlying variables (e.g., subject age, gender). This paper introduces an appearance modeling framework based instead on generalized multi-linear regression. The training of regression appearance models is controlled by independent variables. This makes it straightforward to create model instances for specific values of these variables, which is akin to model interpolation. We demonstrate the new framework by creating an appearance model of the human brain from MR images of 36 subjects. Instances of the model created for different ages are compared with average shape atlases created from age-matched sub-populations. Relative tissue volumes vs. age in models are also compared with tissue volumes vs. subject age in the original images. In both experiments, we found excellent agreement between the regression models and the comparison data. We conclude that regression appearance models are a promising new technique for image analysis, with one potential application being the representation of a continuum of mutually consistent, age-specific atlases of the human brain. PMID:19694260

  13. Ridge Regression for Interactive Models.

    ERIC Educational Resources Information Center

    Tate, Richard L.

    1988-01-01

    An exploratory study of the value of ridge regression for interactive models is reported. Assuming that the linear terms in a simple interactive model are centered to eliminate non-essential multicollinearity, a variety of common models, representing both ordinal and disordinal interactions, are shown to have "orientations" that are favorable to…

  14. Spontaneous regression of breast cancer.

    PubMed

    Lewison, E F

    1976-11-01

    The dramatic but rare regression of a verified case of breast cancer in the absence of adequate, accepted, or conventional treatment has been observed and documented by clinicians over the course of many years. In my practice limited to diseases of the breast, over the past 25 years I have observed 12 patients with a unique and unusual clinical course valid enough to be regarded as spontaneous regression of breast cancer. These 12 patients, with clinically confirmed breast cancer, had temporary arrest or partial remission of their disease in the absence of complete or adequate treatment. In most of these cases, spontaneous regression could not be equated ultimately with permanent cure. Three of these case histories are summarized, and patient characteristics of pertinent clinical interest in the remaining case histories are presented and discussed. Despite widespread doubt and skepticism, there is ample clinical evidence to confirm the fact that spontaneous regression of breast cancer is a rare phenomenon but is real and does occur. PMID:799758

  15. Regression Models of Atlas Appearance

    PubMed Central

    Rohlfing, Torsten; Sullivan, Edith V.; Pfefferbaum, Adolf

    2010-01-01

    Models of object appearance based on principal components analysis provide powerful and versatile tools in computer vision and medical image analysis. A major shortcoming is that they rely entirely on the training data to extract principal modes of appearance variation and ignore underlying variables (e.g., subject age, gender). This paper introduces an appearance modeling framework based instead on generalized multi-linear regression. The training of regression appearance models is controlled by independent variables. This makes it straightforward to create model instances for specific values of these variables, which is akin to model interpolation. We demonstrate the new framework by creating an appearance model of the human brain from MR images of 36 subjects. Instances of the model created for different ages are compared with average shape atlases created from age-matched sub-populations. Relative tissue volumes vs. age in models are also compared with tissue volumes vs. subject age in the original images. In both experiments, we found excellent agreement between the regression models and the comparison data. We conclude that regression appearance models are a promising new technique for image analysis, with one potential application being the representation of a continuum of mutually consistent, age-specific atlases of the human brain. PMID:19694260

  16. Correlation Weights in Multiple Regression

    ERIC Educational Resources Information Center

    Waller, Niels G.; Jones, Jeff A.

    2010-01-01

    A general theory on the use of correlation weights in linear prediction has yet to be proposed. In this paper we take initial steps in developing such a theory by describing the conditions under which correlation weights perform well in population regression models. Using OLS weights as a comparison, we define cases in which the two weighting…

  17. Quantile Regression with Censored Data

    ERIC Educational Resources Information Center

    Lin, Guixian

    2009-01-01

    The Cox proportional hazards model and the accelerated failure time model are frequently used in survival data analysis. They are powerful, yet have limitation due to their model assumptions. Quantile regression offers a semiparametric approach to model data with possible heterogeneity. It is particularly powerful for censored responses, where the…

  18. Cactus: An Introduction to Regression

    ERIC Educational Resources Information Center

    Hyde, Hartley

    2008-01-01

    When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…

  19. Regression modelling of Dst index

    NASA Astrophysics Data System (ADS)

    Parnowski, Aleksei

    We developed a new approach to the problem of real-time space weather indices forecasting using readily available data from ACE and a number of ground stations. It is based on the regression modelling method [1-3], which combines the benefits of empirical and statistical approaches. Mathematically it is based upon the partial regression analysis and Monte Carlo simulations to deduce the empirical relationships in the system. The typical elapsed time per forecast is a few seconds on an average PC. This technique can be easily extended to other indices like AE and Kp. The proposed system can also be useful for investigating physical phenomena related to interactions between the solar wind and the magnetosphere -it already helped uncovering two new geoeffective parameters. 1. Parnowski A.S. Regression modeling method of space weather prediction // Astrophysics Space Science. — 2009. — V. 323, 2. — P. 169-180. doi:10.1007/s10509-009-0060-4 [arXiv:0906.3271] 2. Parnovskiy A.S. Regression Modeling and its Application to the Problem of Prediction of Space Weather // Journal of Automation and Information Sciences. — 2009. — V. 41, 5. — P. 61-69. doi:10.1615/JAutomatInfScien.v41.i5.70 3. Parnowski A.S. Statistically predicting Dst without satellite data // Earth, Planets and Space. — 2009. — V. 61, 5. — P. 621-624.

  20. Fungible Weights in Multiple Regression

    ERIC Educational Resources Information Center

    Waller, Niels G.

    2008-01-01

    Every set of alternate weights (i.e., nonleast squares weights) in a multiple regression analysis with three or more predictors is associated with an infinite class of weights. All members of a given class can be deemed "fungible" because they yield identical "SSE" (sum of squared errors) and R[superscript 2] values. Equations for generating…

  1. Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors

    PubMed Central

    Woodard, Dawn B.; Crainiceanu, Ciprian; Ruppert, David

    2013-01-01

    We propose a new method for regression using a parsimonious and scientifically interpretable representation of functional predictors. Our approach is designed for data that exhibit features such as spikes, dips, and plateaus whose frequency, location, size, and shape varies stochastically across subjects. We propose Bayesian inference of the joint functional and exposure models, and give a method for efficient computation. We contrast our approach with existing state-of-the-art methods for regression with functional predictors, and show that our method is more effective and efficient for data that include features occurring at varying locations. We apply our methodology to a large and complex dataset from the Sleep Heart Health Study, to quantify the association between sleep characteristics and health outcomes. Software and technical appendices are provided in online supplemental materials. PMID:24293988

  2. Direct regression models for longitudinal rates of change

    PubMed Central

    Bryan, Matthew; Heagerty, Patrick J.

    2014-01-01

    Comparing rates of growth, or rates of change, across covariate-defined subgroups is a primary objective for many longitudinal studies. In the special case of a linear trend over time, the interaction between a covariate and time will characterize differences in longitudinal rates of change. However, in the presence of a non-linear longitudinal trajectory, the standard mean regression approach does not permit parsimonious description or inference regarding differences in rates of change. Therefore, we propose regression methodology for longitudinal data that allows a direct, structured comparison of rates across subgroups even in the presence of a non-linear trend over time. Our basic longitudinal rate regression method assumes a proportional difference across covariate groups in the rate of change across time, but this assumption can be relaxed. Rates are compared relative to a generally specified time trend for which we discuss both parametric and non-parametric estimating approaches. We develop mixed model longitudinal methodology that explicitly characterizes subject-to-subject variation in rates, as well as a marginal estimating equation-based method. In addition, we detail a score test to detect violations of the proportionality assumption, and we allow time-varying rate effects as a natural generalization. Simulation results demonstrate potential gains in power for the longitudinal rate regression model relative to a linear mixed effects model in the presence of a non-linear trend in time. We apply our method to a study of growth among infants born to HIV infected mothers, and conclude with a discussion of possible extensions for our methods. PMID:24497427

  3. Regression Verification Using Impact Summaries

    NASA Technical Reports Server (NTRS)

    Backes, John; Person, Suzette J.; Rungta, Neha; Thachuk, Oksana

    2013-01-01

    Regression verification techniques are used to prove equivalence of syntactically similar programs. Checking equivalence of large programs, however, can be computationally expensive. Existing regression verification techniques rely on abstraction and decomposition techniques to reduce the computational effort of checking equivalence of the entire program. These techniques are sound but not complete. In this work, we propose a novel approach to improve scalability of regression verification by classifying the program behaviors generated during symbolic execution as either impacted or unimpacted. Our technique uses a combination of static analysis and symbolic execution to generate summaries of impacted program behaviors. The impact summaries are then checked for equivalence using an o-the-shelf decision procedure. We prove that our approach is both sound and complete for sequential programs, with respect to the depth bound of symbolic execution. Our evaluation on a set of sequential C artifacts shows that reducing the size of the summaries can help reduce the cost of software equivalence checking. Various reduction, abstraction, and compositional techniques have been developed to help scale software verification techniques to industrial-sized systems. Although such techniques have greatly increased the size and complexity of systems that can be checked, analysis of large software systems remains costly. Regression analysis techniques, e.g., regression testing [16], regression model checking [22], and regression verification [19], restrict the scope of the analysis by leveraging the differences between program versions. These techniques are based on the idea that if code is checked early in development, then subsequent versions can be checked against a prior (checked) version, leveraging the results of the previous analysis to reduce analysis cost of the current version. Regression verification addresses the problem of proving equivalence of closely related program

  4. Nonlinear analysis of pupillary dynamics.

    PubMed

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (p<0.001). Our results suggest that (a) pupil size at constant light condition is characterized by nonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. PMID:26351899

  5. Observational Studies: Matching or Regression?

    PubMed

    Brazauskas, Ruta; Logan, Brent R

    2016-03-01

    In observational studies with an aim of assessing treatment effect or comparing groups of patients, several approaches could be used. Often, baseline characteristics of patients may be imbalanced between groups, and adjustments are needed to account for this. It can be accomplished either via appropriate regression modeling or, alternatively, by conducting a matched pairs study. The latter is often chosen because it makes groups appear to be comparable. In this article we considered these 2 options in terms of their ability to detect a treatment effect in time-to-event studies. Our investigation shows that a Cox regression model applied to the entire cohort is often a more powerful tool in detecting treatment effect as compared with a matched study. Real data from a hematopoietic cell transplantation study is used as an example. PMID:26712591

  6. Regression analysis of networked data

    PubMed Central

    Zhou, Yan; Song, Peter X.-K.

    2016-01-01

    This paper concerns regression methodology for assessing relationships between multi-dimensional response variables and covariates that are correlated within a network. To address analytical challenges associated with the integration of network topology into the regression analysis, we propose a hybrid quadratic inference method that uses both prior and data-driven correlations among network nodes. A Godambe information-based tuning strategy is developed to allocate weights between the prior and data-driven network structures, so the estimator is efficient. The proposed method is conceptually simple and computationally fast, and has appealing large-sample properties. It is evaluated by simulation, and its application is illustrated using neuroimaging data from an association study of the effects of iron deficiency on auditory recognition memory in infants. PMID:27279658

  7. Sliced Inverse Regression for Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Li-Sue

    1995-11-01

    In this thesis, general nonlinear models for time series data are considered. A basic form is x _{t} = f(beta_sp{1} {T}X_{t-1},beta_sp {2}{T}X_{t-1},... , beta_sp{k}{T}X_ {t-1},varepsilon_{t}), where x_{t} is an observed time series data, X_{t } is the first d time lag vector, (x _{t},x_{t-1},... ,x _{t-d-1}), f is an unknown function, beta_{i}'s are unknown vectors, varepsilon_{t }'s are independent distributed. Special cases include AR and TAR models. We investigate the feasibility applying SIR/PHD (Li 1990, 1991) (the sliced inverse regression and principal Hessian methods) in estimating beta _{i}'s. PCA (Principal component analysis) is brought in to check one critical condition for SIR/PHD. Through simulation and a study on 3 well -known data sets of Canadian lynx, U.S. unemployment rate and sunspot numbers, we demonstrate how SIR/PHD can effectively retrieve the interesting low-dimension structures for time series data.

  8. PM10 forecasting using clusterwise regression

    NASA Astrophysics Data System (ADS)

    Poggi, Jean-Michel; Portier, Bruno

    2011-12-01

    In this paper, we are interested in the statistical forecasting of the daily mean PM10 concentration. Hourly concentrations of PM10 have been measured in the city of Rouen, in Haute-Normandie, France. Located at northwest of Paris, near the south side of Manche sea and heavily industrialised. We consider three monitoring stations reflecting the diversity of situations: an urban background station, a traffic station and an industrial station near the cereal harbour of Rouen. We have focused our attention on data for the months that register higher values, from December to March, on years 2004-2009. The models are obtained from the winter days of the four seasons 2004/2005 to 2007/2008 (training data) and then the forecasting performance is evaluated on the winter days of the season 2008/2009 (test data). We show that it is possible to accurately forecast the daily mean concentration by fitting a function of meteorological predictors and the average concentration measured on the previous day. The values of observed meteorological variables are used for fitting the models and are also considered for the test data. We have compared the forecasts produced by three different methods: persistence, generalized additive nonlinear models and clusterwise linear regression models. This last method gives very impressive results and the end of the paper tries to analyze the reasons of such a good behavior.

  9. Counting people with low-level features and Bayesian regression.

    PubMed

    Chan, Antoni B; Vasconcelos, Nuno

    2012-04-01

    An approach to the problem of estimating the size of inhomogeneous crowds, which are composed of pedestrians that travel in different directions, without using explicit object segmentation or tracking is proposed. Instead, the crowd is segmented into components of homogeneous motion, using the mixture of dynamic-texture motion model. A set of holistic low-level features is extracted from each segmented region, and a function that maps features into estimates of the number of people per segment is learned with Bayesian regression. Two Bayesian regression models are examined. The first is a combination of Gaussian process regression with a compound kernel, which accounts for both the global and local trends of the count mapping but is limited by the real-valued outputs that do not match the discrete counts. We address this limitation with a second model, which is based on a Bayesian treatment of Poisson regression that introduces a prior distribution on the linear weights of the model. Since exact inference is analytically intractable, a closed-form approximation is derived that is computationally efficient and kernelizable, enabling the representation of nonlinear functions. An approximate marginal likelihood is also derived for kernel hyperparameter learning. The two regression-based crowd counting methods are evaluated on a large pedestrian data set, containing very distinct camera views, pedestrian traffic, and outliers, such as bikes or skateboarders. Experimental results show that regression-based counts are accurate regardless of the crowd size, outperforming the count estimates produced by state-of-the-art pedestrian detectors. Results on 2 h of video demonstrate the efficiency and robustness of the regression-based crowd size estimation over long periods of time. PMID:22020684

  10. Deep Wavelet Scattering for Quantum Energy Regression

    NASA Astrophysics Data System (ADS)

    Hirn, Matthew

    Physical functionals are usually computed as solutions of variational problems or from solutions of partial differential equations, which may require huge computations for complex systems. Quantum chemistry calculations of ground state molecular energies is such an example. Indeed, if x is a quantum molecular state, then the ground state energy E0 (x) is the minimum eigenvalue solution of the time independent Schrödinger Equation, which is computationally intensive for large systems. Machine learning algorithms do not simulate the physical system but estimate solutions by interpolating values provided by a training set of known examples {(xi ,E0 (xi) } i <= n . However, precise interpolations may require a number of examples that is exponential in the system dimension, and are thus intractable. This curse of dimensionality may be circumvented by computing interpolations in smaller approximation spaces, which take advantage of physical invariants. Linear regressions of E0 over a dictionary Φ ={ϕk } k compute an approximation E 0 as: E 0 (x) =∑kwkϕk (x) , where the weights {wk } k are selected to minimize the error between E0 and E 0 on the training set. The key to such a regression approach then lies in the design of the dictionary Φ. It must be intricate enough to capture the essential variability of E0 (x) over the molecular states x of interest, while simple enough so that evaluation of Φ (x) is significantly less intensive than a direct quantum mechanical computation (or approximation) of E0 (x) . In this talk we present a novel dictionary Φ for the regression of quantum mechanical energies based on the scattering transform of an intermediate, approximate electron density representation ρx of the state x. The scattering transform has the architecture of a deep convolutional network, composed of an alternating sequence of linear filters and nonlinear maps. Whereas in many deep learning tasks the linear filters are learned from the training data, here

  11. Regression analysis of non-contact acousto-thermal signature data

    NASA Astrophysics Data System (ADS)

    Criner, Amanda; Schehl, Norman

    2016-05-01

    The non-contact acousto-thermal signature (NCATS) is a nondestructive evaluation technique with potential to detect fatigue in materials such as noisy titanium and polymer matrix composites. The underlying physical mechanisms and properties may be determined by parameter estimation via nonlinear regression. The nonlinear regression analysis formulation, including the underlying models, is discussed. Several models and associated data analyses are given along with the assumptions implicit in the underlying model. The results are anomalous. These anomalous results are evaluated with respect to the accuracy of the implicit assumptions.

  12. Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat

    PubMed Central

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-01-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882

  13. Heteroscedastic transformation cure regression models.

    PubMed

    Chen, Chyong-Mei; Chen, Chen-Hsin

    2016-06-30

    Cure models have been applied to analyze clinical trials with cures and age-at-onset studies with nonsusceptibility. Lu and Ying (On semiparametric transformation cure model. Biometrika 2004; 91:331?-343. DOI: 10.1093/biomet/91.2.331) developed a general class of semiparametric transformation cure models, which assumes that the failure times of uncured subjects, after an unknown monotone transformation, follow a regression model with homoscedastic residuals. However, it cannot deal with frequently encountered heteroscedasticity, which may result from dispersed ranges of failure time span among uncured subjects' strata. To tackle the phenomenon, this article presents semiparametric heteroscedastic transformation cure models. The cure status and the failure time of an uncured subject are fitted by a logistic regression model and a heteroscedastic transformation model, respectively. Unlike the approach of Lu and Ying, we derive score equations from the full likelihood for estimating the regression parameters in the proposed model. The similar martingale difference function to their proposal is used to estimate the infinite-dimensional transformation function. Our proposed estimating approach is intuitively applicable and can be conveniently extended to other complicated models when the maximization of the likelihood may be too tedious to be implemented. We conduct simulation studies to validate large-sample properties of the proposed estimators and to compare with the approach of Lu and Ying via the relative efficiency. The estimating method and the two relevant goodness-of-fit graphical procedures are illustrated by using breast cancer data and melanoma data. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887342

  14. Regression analysis of cytopathological data

    SciTech Connect

    Whittemore, A.S.; McLarty, J.W.; Fortson, N.; Anderson, K.

    1982-12-01

    Epithelial cells from the human body are frequently labelled according to one of several ordered levels of abnormality, ranging from normal to malignant. The label of the most abnormal cell in a specimen determines the score for the specimen. This paper presents a model for the regression of specimen scores against continuous and discrete variables, as in host exposure to carcinogens. Application to data and tests for adequacy of model fit are illustrated using sputum specimens obtained from a cohort of former asbestos workers.

  15. Multiatlas segmentation as nonparametric regression.

    PubMed

    Awate, Suyash P; Whitaker, Ross T

    2014-09-01

    This paper proposes a novel theoretical framework to model and analyze the statistical characteristics of a wide range of segmentation methods that incorporate a database of label maps or atlases; such methods are termed as label fusion or multiatlas segmentation. We model these multiatlas segmentation problems as nonparametric regression problems in the high-dimensional space of image patches. We analyze the nonparametric estimator's convergence behavior that characterizes expected segmentation error as a function of the size of the multiatlas database. We show that this error has an analytic form involving several parameters that are fundamental to the specific segmentation problem (determined by the chosen anatomical structure, imaging modality, registration algorithm, and label-fusion algorithm). We describe how to estimate these parameters and show that several human anatomical structures exhibit the trends modeled analytically. We use these parameter estimates to optimize the regression estimator. We show that the expected error for large database sizes is well predicted by models learned on small databases. Thus, a few expert segmentations can help predict the database sizes required to keep the expected error below a specified tolerance level. Such cost-benefit analysis is crucial for deploying clinical multiatlas segmentation systems. PMID:24802528

  16. Adaptive support vector regression for UAV flight control.

    PubMed

    Shin, Jongho; Jin Kim, H; Kim, Youdan

    2011-01-01

    This paper explores an application of support vector regression for adaptive control of an unmanned aerial vehicle (UAV). Unlike neural networks, support vector regression (SVR) generates global solutions, because SVR basically solves quadratic programming (QP) problems. With this advantage, the input-output feedback-linearized inverse dynamic model and the compensation term for the inversion error are identified off-line, which we call I-SVR (inversion SVR) and C-SVR (compensation SVR), respectively. In order to compensate for the inversion error and the unexpected uncertainty, an online adaptation algorithm for the C-SVR is proposed. Then, the stability of the overall error dynamics is analyzed by the uniformly ultimately bounded property in the nonlinear system theory. In order to validate the effectiveness of the proposed adaptive controller, numerical simulations are performed on the UAV model. PMID:20970303

  17. Robust and efficient estimation with weighted composite quantile regression

    NASA Astrophysics Data System (ADS)

    Jiang, Xuejun; Li, Jingzhi; Xia, Tian; Yan, Wanfeng

    2016-09-01

    In this paper we introduce a weighted composite quantile regression (CQR) estimation approach and study its application in nonlinear models such as exponential models and ARCH-type models. The weighted CQR is augmented by using a data-driven weighting scheme. With the error distribution unspecified, the proposed estimators share robustness from quantile regression and achieve nearly the same efficiency as the oracle maximum likelihood estimator (MLE) for a variety of error distributions including the normal, mixed-normal, Student's t, Cauchy distributions, etc. We also suggest an algorithm for the fast implementation of the proposed methodology. Simulations are carried out to compare the performance of different estimators, and the proposed approach is used to analyze the daily S&P 500 Composite index, which verifies the effectiveness and efficiency of our theoretical results.

  18. Demonstration of leapfrogging for implementing nonlinear model predictive control on a heat exchanger.

    PubMed

    Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell

    2016-01-01

    This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques. PMID:26606850

  19. New Nonlinear Multigrid Analysis

    NASA Technical Reports Server (NTRS)

    Xie, Dexuan

    1996-01-01

    The nonlinear multigrid is an efficient algorithm for solving the system of nonlinear equations arising from the numerical discretization of nonlinear elliptic boundary problems. In this paper, we present a new nonlinear multigrid analysis as an extension of the linear multigrid theory presented by Bramble. In particular, we prove the convergence of the nonlinear V-cycle method for a class of mildly nonlinear second order elliptic boundary value problems which do not have full elliptic regularity.

  20. Practical Session: Multiple Linear Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    Three exercises are proposed to illustrate the simple linear regression. In the first one investigates the influence of several factors on atmospheric pollution. It has been proposed by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr33.pdf) and is based on data coming from 20 cities of U.S. Exercise 2 is an introduction to model selection whereas Exercise 3 provides a first example of analysis of variance. Exercises 2 and 3 have been proposed by A. Dalalyan at ENPC (see Exercises 2 and 3 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_5.pdf).

  1. Determination of airplane model structure from flight data by using modified stepwise regression

    NASA Technical Reports Server (NTRS)

    Klein, V.; Batterson, J. G.; Murphy, P. C.

    1981-01-01

    The linear and stepwise regressions are briefly introduced, then the problem of determining airplane model structure is addressed. The MSR was constructed to force a linear model for the aerodynamic coefficient first, then add significant nonlinear terms and delete nonsignificant terms from the model. In addition to the statistical criteria in the stepwise regression, the prediction sum of squares (PRESS) criterion and the analysis of residuals were examined for the selection of an adequate model. The procedure is used in examples with simulated and real flight data. It is shown that the MSR performs better than the ordinary stepwise regression and that the technique can also be applied to the large amplitude maneuvers.

  2. [Nonlinear magnetohydrodynamics

    SciTech Connect

    Not Available

    1994-01-01

    Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday`s law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm`s law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile.

  3. Semiparametric regression during 2003–2007*

    PubMed Central

    Ruppert, David; Wand, M.P.; Carroll, Raymond J.

    2010-01-01

    Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application. PMID:20305800

  4. Building Regression Models: The Importance of Graphics.

    ERIC Educational Resources Information Center

    Dunn, Richard

    1989-01-01

    Points out reasons for using graphical methods to teach simple and multiple regression analysis. Argues that a graphically oriented approach has considerable pedagogic advantages in the exposition of simple and multiple regression. Shows that graphical methods may play a central role in the process of building regression models. (Author/LS)

  5. Regression Analysis by Example. 5th Edition

    ERIC Educational Resources Information Center

    Chatterjee, Samprit; Hadi, Ali S.

    2012-01-01

    Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

  6. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  7. Bayesian Unimodal Density Regression for Causal Inference

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2011-01-01

    Karabatsos and Walker (2011) introduced a new Bayesian nonparametric (BNP) regression model. Through analyses of real and simulated data, they showed that the BNP regression model outperforms other parametric and nonparametric regression models of common use, in terms of predictive accuracy of the outcome (dependent) variable. The other,…

  8. Developmental Regression in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Rogers, Sally J.

    2004-01-01

    The occurrence of developmental regression in autism is one of the more puzzling features of this disorder. Although several studies have documented the validity of parental reports of regression using home videos, accumulating data suggest that most children who demonstrate regression also demonstrated previous, subtle, developmental differences.…

  9. Modeling maximum daily temperature using a varying coefficient regression model

    NASA Astrophysics Data System (ADS)

    Li, Han; Deng, Xinwei; Kim, Dong-Yun; Smith, Eric P.

    2014-04-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature. A good predictive model for daily maximum temperature is required because daily maximum temperature is an important measure for predicting survival of temperature sensitive fish. To appropriately model the strong relationship between water and air temperatures at a daily time step, it is important to incorporate information related to the time of the year into the modeling. In this work, a time-varying coefficient model is used to study the relationship between air temperature and water temperature. The time-varying coefficient model enables dynamic modeling of the relationship, and can be used to understand how the air-water temperature relationship varies over time. The proposed model is applied to 10 streams in Maryland, West Virginia, Virginia, North Carolina, and Georgia using daily maximum temperatures. It provides a better fit and better predictions than those produced by a simple linear regression model or a nonlinear logistic model.

  10. Estimating equivalence with quantile regression.

    PubMed

    Cade, Brian S

    2011-01-01

    Equivalence testing and corresponding confidence interval estimates are used to provide more enlightened statistical statements about parameter estimates by relating them to intervals of effect sizes deemed to be of scientific or practical importance rather than just to an effect size of zero. Equivalence tests and confidence interval estimates are based on a null hypothesis that a parameter estimate is either outside (inequivalence hypothesis) or inside (equivalence hypothesis) an equivalence region, depending on the question of interest and assignment of risk. The former approach, often referred to as bioequivalence testing, is often used in regulatory settings because it reverses the burden of proof compared to a standard test of significance, following a precautionary principle for environmental protection. Unfortunately, many applications of equivalence testing focus on establishing average equivalence by estimating differences in means of distributions that do not have homogeneous variances. I discuss how to compare equivalence across quantiles of distributions using confidence intervals on quantile regression estimates that detect differences in heterogeneous distributions missed by focusing on means. I used one-tailed confidence intervals based on inequivalence hypotheses in a two-group treatment-control design for estimating bioequivalence of arsenic concentrations in soils at an old ammunition testing site and bioequivalence of vegetation biomass at a reclaimed mining site. Two-tailed confidence intervals based both on inequivalence and equivalence hypotheses were used to examine quantile equivalence for negligible trends over time for a continuous exponential model of amphibian abundance. PMID:21516905

  11. Streamflow forecasting using functional regression

    NASA Astrophysics Data System (ADS)

    Masselot, Pierre; Dabo-Niang, Sophie; Chebana, Fateh; Ouarda, Taha B. M. J.

    2016-07-01

    Streamflow, as a natural phenomenon, is continuous in time and so are the meteorological variables which influence its variability. In practice, it can be of interest to forecast the whole flow curve instead of points (daily or hourly). To this end, this paper introduces the functional linear models and adapts it to hydrological forecasting. More precisely, functional linear models are regression models based on curves instead of single values. They allow to consider the whole process instead of a limited number of time points or features. We apply these models to analyse the flow volume and the whole streamflow curve during a given period by using precipitations curves. The functional model is shown to lead to encouraging results. The potential of functional linear models to detect special features that would have been hard to see otherwise is pointed out. The functional model is also compared to the artificial neural network approach and the advantages and disadvantages of both models are discussed. Finally, future research directions involving the functional model in hydrology are presented.

  12. Insulin resistance: regression and clustering.

    PubMed

    Yoon, Sangho; Assimes, Themistocles L; Quertermous, Thomas; Hsiao, Chin-Fu; Chuang, Lee-Ming; Hwu, Chii-Min; Rajaratnam, Bala; Olshen, Richard A

    2014-01-01

    In this paper we try to define insulin resistance (IR) precisely for a group of Chinese women. Our definition deliberately does not depend upon body mass index (BMI) or age, although in other studies, with particular random effects models quite different from models used here, BMI accounts for a large part of the variability in IR. We accomplish our goal through application of Gauss mixture vector quantization (GMVQ), a technique for clustering that was developed for application to lossy data compression. Defining data come from measurements that play major roles in medical practice. A precise statement of what the data are is in Section 1. Their family structures are described in detail. They concern levels of lipids and the results of an oral glucose tolerance test (OGTT). We apply GMVQ to residuals obtained from regressions of outcomes of an OGTT and lipids on functions of age and BMI that are inferred from the data. A bootstrap procedure developed for our family data supplemented by insights from other approaches leads us to believe that two clusters are appropriate for defining IR precisely. One cluster consists of women who are IR, and the other of women who seem not to be. Genes and other features are used to predict cluster membership. We argue that prediction with "main effects" is not satisfactory, but prediction that includes interactions may be. PMID:24887437

  13. Harmonic regression and scale stability.

    PubMed

    Lee, Yi-Hsuan; Haberman, Shelby J

    2013-10-01

    Monitoring a very frequently administered educational test with a relatively short history of stable operation imposes a number of challenges. Test scores usually vary by season, and the frequency of administration of such educational tests is also seasonal. Although it is important to react to unreasonable changes in the distributions of test scores in a timely fashion, it is not a simple matter to ascertain what sort of distribution is really unusual. Many commonly used approaches for seasonal adjustment are designed for time series with evenly spaced observations that span many years and, therefore, are inappropriate for data from such educational tests. Harmonic regression, a seasonal-adjustment method, can be useful in monitoring scale stability when the number of years available is limited and when the observations are unevenly spaced. Additional forms of adjustments can be included to account for variability in test scores due to different sources of population variations. To illustrate, real data are considered from an international language assessment. PMID:24092490

  14. Time series regression model for infectious disease and weather.

    PubMed

    Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro

    2015-10-01

    Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. PMID:26188633

  15. Developmental regression in autism spectrum disorder

    PubMed Central

    Al Backer, Nouf Backer

    2015-01-01

    The occurrence of developmental regression in autism spectrum disorder (ASD) is one of the most puzzling phenomena of this disorder. A little is known about the nature and mechanism of developmental regression in ASD. About one-third of young children with ASD lose some skills during the preschool period, usually speech, but sometimes also nonverbal communication, social or play skills are also affected. There is a lot of evidence suggesting that most children who demonstrate regression also had previous, subtle, developmental differences. It is difficult to predict the prognosis of autistic children with developmental regression. It seems that the earlier development of social, language, and attachment behaviors followed by regression does not predict the later recovery of skills or better developmental outcomes. The underlying mechanisms that lead to regression in autism are unknown. The role of subclinical epilepsy in the developmental regression of children with autism remains unclear. PMID:27493417

  16. A Survey of UML Based Regression Testing

    NASA Astrophysics Data System (ADS)

    Fahad, Muhammad; Nadeem, Aamer

    Regression testing is the process of ensuring software quality by analyzing whether changed parts behave as intended, and unchanged parts are not affected by the modifications. Since it is a costly process, a lot of techniques are proposed in the research literature that suggest testers how to build regression test suite from existing test suite with minimum cost. In this paper, we discuss the advantages and drawbacks of using UML diagrams for regression testing and analyze that UML model helps in identifying changes for regression test selection effectively. We survey the existing UML based regression testing techniques and provide an analysis matrix to give a quick insight into prominent features of the literature work. We discuss the open research issues like managing and reducing the size of regression test suite, prioritization of the test cases that would be helpful during strict schedule and resources that remain to be addressed for UML based regression testing.

  17. Multiobjective Optimization for Model Selection in Kernel Methods in Regression

    PubMed Central

    You, Di; Benitez-Quiroz, C. Fabian; Martinez, Aleix M.

    2016-01-01

    Regression plays a major role in many scientific and engineering problems. The goal of regression is to learn the unknown underlying function from a set of sample vectors with known outcomes. In recent years, kernel methods in regression have facilitated the estimation of nonlinear functions. However, two major (interconnected) problems remain open. The first problem is given by the bias-vs-variance trade-off. If the model used to estimate the underlying function is too flexible (i.e., high model complexity), the variance will be very large. If the model is fixed (i.e., low complexity), the bias will be large. The second problem is to define an approach for selecting the appropriate parameters of the kernel function. To address these two problems, this paper derives a new smoothing kernel criterion, which measures the roughness of the estimated function as a measure of model complexity. Then, we use multiobjective optimization to derive a criterion for selecting the parameters of that kernel. The goal of this criterion is to find a trade-off between the bias and the variance of the learned function. That is, the goal is to increase the model fit while keeping the model complexity in check. We provide extensive experimental evaluations using a variety of problems in machine learning, pattern recognition and computer vision. The results demonstrate that the proposed approach yields smaller estimation errors as compared to methods in the state of the art. PMID:25291740

  18. Multiobjective optimization for model selection in kernel methods in regression.

    PubMed

    You, Di; Benitez-Quiroz, Carlos Fabian; Martinez, Aleix M

    2014-10-01

    Regression plays a major role in many scientific and engineering problems. The goal of regression is to learn the unknown underlying function from a set of sample vectors with known outcomes. In recent years, kernel methods in regression have facilitated the estimation of nonlinear functions. However, two major (interconnected) problems remain open. The first problem is given by the bias-versus-variance tradeoff. If the model used to estimate the underlying function is too flexible (i.e., high model complexity), the variance will be very large. If the model is fixed (i.e., low complexity), the bias will be large. The second problem is to define an approach for selecting the appropriate parameters of the kernel function. To address these two problems, this paper derives a new smoothing kernel criterion, which measures the roughness of the estimated function as a measure of model complexity. Then, we use multiobjective optimization to derive a criterion for selecting the parameters of that kernel. The goal of this criterion is to find a tradeoff between the bias and the variance of the learned function. That is, the goal is to increase the model fit while keeping the model complexity in check. We provide extensive experimental evaluations using a variety of problems in machine learning, pattern recognition, and computer vision. The results demonstrate that the proposed approach yields smaller estimation errors as compared with methods in the state of the art. PMID:25291740

  19. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  20. Regression in schizophrenia and its therapeutic value.

    PubMed

    Yazaki, N

    1992-03-01

    Using the regression evaluation scale, 25 schizophrenic patients were classified into three groups of Dissolution/autism (DAUG), Dissolution----attachment (DATG) and Non-regression (NRG). The regression of DAUG was of the type in which autism occurred when destructiveness emerged, while the regression of DATG was of the type in which attachment occurred when destructiveness emerged. This suggests that the regressive phenomena are an actualized form of the approach complex. In order to determine the factors distinguishing these two groups, I investigated psychiatric symptoms, mother-child relationships, premorbid personalities and therapeutic interventions. I believe that these factors form a continuity in which they interrelatedly determine the regressive state. Foremost among them, I stressed the importance of the mother-child relationship. PMID:1353128

  1. LRGS: Linear Regression by Gibbs Sampling

    NASA Astrophysics Data System (ADS)

    Mantz, Adam B.

    2016-02-01

    LRGS (Linear Regression by Gibbs Sampling) implements a Gibbs sampler to solve the problem of multivariate linear regression with uncertainties in all measured quantities and intrinsic scatter. LRGS extends an algorithm by Kelly (2007) that used Gibbs sampling for performing linear regression in fairly general cases in two ways: generalizing the procedure for multiple response variables, and modeling the prior distribution of covariates using a Dirichlet process.

  2. Data Mining within a Regression Framework

    NASA Astrophysics Data System (ADS)

    Berk, Richard A.

    Regression analysis can imply a far wider range of statistical procedures than often appreciated. In this chapter, a number of common Data Mining procedures are discussed within a regression framework. These include non-parametric smoothers, classification and regression trees, bagging, and random forests. In each case, the goal is to characterize one or more of the distributional features of a response conditional on a set of predictors.

  3. Geodesic least squares regression on information manifolds

    SciTech Connect

    Verdoolaege, Geert

    2014-12-05

    We present a novel regression method targeted at situations with significant uncertainty on both the dependent and independent variables or with non-Gaussian distribution models. Unlike the classic regression model, the conditional distribution of the response variable suggested by the data need not be the same as the modeled distribution. Instead they are matched by minimizing the Rao geodesic distance between them. This yields a more flexible regression method that is less constrained by the assumptions imposed through the regression model. As an example, we demonstrate the improved resistance of our method against some flawed model assumptions and we apply this to scaling laws in magnetic confinement fusion.

  4. Quantile regression applied to spectral distance decay

    USGS Publications Warehouse

    Rocchini, D.; Cade, B.S.

    2008-01-01

    Remotely sensed imagery has long been recognized as a powerful support for characterizing and estimating biodiversity. Spectral distance among sites has proven to be a powerful approach for detecting species composition variability. Regression analysis of species similarity versus spectral distance allows us to quantitatively estimate the amount of turnover in species composition with respect to spectral and ecological variability. In classical regression analysis, the residual sum of squares is minimized for the mean of the dependent variable distribution. However, many ecological data sets are characterized by a high number of zeroes that add noise to the regression model. Quantile regressions can be used to evaluate trend in the upper quantiles rather than a mean trend across the whole distribution of the dependent variable. In this letter, we used ordinary least squares (OLS) and quantile regressions to estimate the decay of species similarity versus spectral distance. The achieved decay rates were statistically nonzero (p < 0.01), considering both OLS and quantile regressions. Nonetheless, the OLS regression estimate of the mean decay rate was only half the decay rate indicated by the upper quantiles. Moreover, the intercept value, representing the similarity reached when the spectral distance approaches zero, was very low compared with the intercepts of the upper quantiles, which detected high species similarity when habitats are more similar. In this letter, we demonstrated the power of using quantile regressions applied to spectral distance decay to reveal species diversity patterns otherwise lost or underestimated by OLS regression. ?? 2008 IEEE.

  5. Hybrid fuzzy regression with trapezoidal fuzzy data

    NASA Astrophysics Data System (ADS)

    Razzaghnia, T.; Danesh, S.; Maleki, A.

    2011-12-01

    In this regard, this research deals with a method for hybrid fuzzy least-squares regression. The extension of symmetric triangular fuzzy coefficients to asymmetric trapezoidal fuzzy coefficients is considered as an effective measure for removing unnecessary fuzziness of the linear fuzzy model. First, trapezoidal fuzzy variable is applied to derive a bivariate regression model. In the following, normal equations are formulated to solve the four parts of hybrid regression coefficients. Also the model is extended to multiple regression analysis. Eventually, method is compared with Y-H.O. chang's model.

  6. Predicting Antitumor Activity of Peptides by Consensus of Regression Models Trained on a Small Data Sample

    PubMed Central

    Radman, Andreja; Gredičak, Matija; Kopriva, Ivica; Jerić, Ivanka

    2011-01-01

    Predicting antitumor activity of compounds using regression models trained on a small number of compounds with measured biological activity is an ill-posed inverse problem. Yet, it occurs very often within the academic community. To counteract, up to some extent, overfitting problems caused by a small training data, we propose to use consensus of six regression models for prediction of biological activity of virtual library of compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor (OGF, Tyr-Gly-Gly-Phe-Met) with known antitumor activity were used to train regression models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness constrained linear regression, the linear and nonlinear (with polynomial and Gaussian kernel) support vector machine. Regression models were applied on a virtual library of 429 compounds that resulted in six lists with candidate compounds ranked by predicted antitumor activity. The highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative activity. Some of prepared peptides showed more pronounced activity compared with the native OGF; however, they were less active than highly ranked compounds selected previously by the radial basis function support vector machine (RBF SVM) regression model. The ill-posedness of the related inverse problem causes unstable behavior of trained regression models on test data. These results point to high complexity of prediction based on the regression models trained on a small data sample. PMID:22272081

  7. Predicting antitumor activity of peptides by consensus of regression models trained on a small data sample.

    PubMed

    Radman, Andreja; Gredičak, Matija; Kopriva, Ivica; Jerić, Ivanka

    2011-01-01

    Predicting antitumor activity of compounds using regression models trained on a small number of compounds with measured biological activity is an ill-posed inverse problem. Yet, it occurs very often within the academic community. To counteract, up to some extent, overfitting problems caused by a small training data, we propose to use consensus of six regression models for prediction of biological activity of virtual library of compounds. The QSAR descriptors of 22 compounds related to the opioid growth factor (OGF, Tyr-Gly-Gly-Phe-Met) with known antitumor activity were used to train regression models: the feed-forward artificial neural network, the k-nearest neighbor, sparseness constrained linear regression, the linear and nonlinear (with polynomial and Gaussian kernel) support vector machine. Regression models were applied on a virtual library of 429 compounds that resulted in six lists with candidate compounds ranked by predicted antitumor activity. The highly ranked candidate compounds were synthesized, characterized and tested for an antiproliferative activity. Some of prepared peptides showed more pronounced activity compared with the native OGF; however, they were less active than highly ranked compounds selected previously by the radial basis function support vector machine (RBF SVM) regression model. The ill-posedness of the related inverse problem causes unstable behavior of trained regression models on test data. These results point to high complexity of prediction based on the regression models trained on a small data sample. PMID:22272081

  8. Nonlinear Hysteretic Torsional Waves.

    PubMed

    Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V

    2015-07-31

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters. PMID:26274421

  9. Nonlinear Hysteretic Torsional Waves

    NASA Astrophysics Data System (ADS)

    Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.

    2015-07-01

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.

  10. Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability.

    PubMed

    Ahn, Jae Joon; Kim, Young Min; Yoo, Keunje; Park, Joonhong; Oh, Kyong Joo

    2012-11-01

    For groundwater conservation and management, it is important to accurately assess groundwater pollution vulnerability. This study proposed an integrated model using ridge regression and a genetic algorithm (GA) to effectively select the major hydro-geological parameters influencing groundwater pollution vulnerability in an aquifer. The GA-Ridge regression method determined that depth to water, net recharge, topography, and the impact of vadose zone media were the hydro-geological parameters that influenced trichloroethene pollution vulnerability in a Korean aquifer. When using these selected hydro-geological parameters, the accuracy was improved for various statistical nonlinear and artificial intelligence (AI) techniques, such as multinomial logistic regression, decision trees, artificial neural networks, and case-based reasoning. These results provide a proof of concept that the GA-Ridge regression is effective at determining influential hydro-geological parameters for the pollution vulnerability of an aquifer, and in turn, improves the AI performance in assessing groundwater pollution vulnerability. PMID:22124584

  11. A Simulation Investigation of Principal Component Regression.

    ERIC Educational Resources Information Center

    Allen, David E.

    Regression analysis is one of the more common analytic tools used by researchers. However, multicollinearity between the predictor variables can cause problems in using the results of regression analyses. Problems associated with multicollinearity include entanglement of relative influences of variables due to reduced precision of estimation,…

  12. Cross-Validation, Shrinkage, and Multiple Regression.

    ERIC Educational Resources Information Center

    Hynes, Kevin

    One aspect of multiple regression--the shrinkage of the multiple correlation coefficient on cross-validation is reviewed. The paper consists of four sections. In section one, the distinction between a fixed and a random multiple regression model is made explicit. In section two, the cross-validation paradigm and an explanation for the occurrence…

  13. Principles of Quantile Regression and an Application

    ERIC Educational Resources Information Center

    Chen, Fang; Chalhoub-Deville, Micheline

    2014-01-01

    Newer statistical procedures are typically introduced to help address the limitations of those already in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this paper as a relatively new methodology, which is intended to overcome some of the limitations of least squares mean regression (LMR). QR is more…

  14. Regression Analysis: Legal Applications in Institutional Research

    ERIC Educational Resources Information Center

    Frizell, Julie A.; Shippen, Benjamin S., Jr.; Luna, Andrew L.

    2008-01-01

    This article reviews multiple regression analysis, describes how its results should be interpreted, and instructs institutional researchers on how to conduct such analyses using an example focused on faculty pay equity between men and women. The use of multiple regression analysis will be presented as a method with which to compare salaries of…

  15. Dealing with Outliers: Robust, Resistant Regression

    ERIC Educational Resources Information Center

    Glasser, Leslie

    2007-01-01

    Least-squares linear regression is the best of statistics and it is the worst of statistics. The reasons for this paradoxical claim, arising from possible inapplicability of the method and the excessive influence of "outliers", are discussed and substitute regression methods based on median selection, which is both robust and resistant, are…

  16. A Practical Guide to Regression Discontinuity

    ERIC Educational Resources Information Center

    Jacob, Robin; Zhu, Pei; Somers, Marie-Andrée; Bloom, Howard

    2012-01-01

    Regression discontinuity (RD) analysis is a rigorous nonexperimental approach that can be used to estimate program impacts in situations in which candidates are selected for treatment based on whether their value for a numeric rating exceeds a designated threshold or cut-point. Over the last two decades, the regression discontinuity approach has…

  17. Regression Analysis and the Sociological Imagination

    ERIC Educational Resources Information Center

    De Maio, Fernando

    2014-01-01

    Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.

  18. Illustration of Regression towards the Means

    ERIC Educational Resources Information Center

    Govindaraju, K.; Haslett, S. J.

    2008-01-01

    This article presents a procedure for generating a sequence of data sets which will yield exactly the same fitted simple linear regression equation y = a + bx. Unless rescaled, the generated data sets will have progressively smaller variability for the two variables, and the associated response and covariate will "regress" towards their…

  19. Stepwise versus Hierarchical Regression: Pros and Cons

    ERIC Educational Resources Information Center

    Lewis, Mitzi

    2007-01-01

    Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…

  20. Sulphasalazine and regression of rheumatoid nodules.

    PubMed

    Englert, H J; Hughes, G R; Walport, M J

    1987-03-01

    The regression of small rheumatoid nodules was noted in four patients after starting sulphasalazine therapy. This coincided with an improvement in synovitis and also falls in erythrocyte sedimentation rate (ESR) and C reactive protein (CRP). The relation between the nodule regression and the sulphasalazine therapy is discussed. PMID:2883940

  1. Three-Dimensional Modeling in Linear Regression.

    ERIC Educational Resources Information Center

    Herman, James D.

    Linear regression examines the relationship between one or more independent (predictor) variables and a dependent variable. By using a particular formula, regression determines the weights needed to minimize the error term for a given set of predictors. With one predictor variable, the relationship between the predictor and the dependent variable…

  2. Improved speech inversion using general regression neural network.

    PubMed

    Najnin, Shamima; Banerjee, Bonny

    2015-09-01

    The problem of nonlinear acoustic to articulatory inversion mapping is investigated in the feature space using two models, the deep belief network (DBN) which is the state-of-the-art, and the general regression neural network (GRNN). The task is to estimate a set of articulatory features for improved speech recognition. Experiments with MOCHA-TIMIT and MNGU0 databases reveal that, for speech inversion, GRNN yields a lower root-mean-square error and a higher correlation than DBN. It is also shown that conjunction of acoustic and GRNN-estimated articulatory features yields state-of-the-art accuracy in broad class phonetic classification and phoneme recognition using less computational power. PMID:26428818

  3. On robust regression with high-dimensional predictors

    PubMed Central

    El Karoui, Noureddine; Bean, Derek; Bickel, Peter J.; Lim, Chinghway; Yu, Bin

    2013-01-01

    We study regression M-estimates in the setting where p, the number of covariates, and n, the number of observations, are both large, but . We find an exact stochastic representation for the distribution of at fixed p and n under various assumptions on the objective function ρ and our statistical model. A scalar random variable whose deterministic limit can be studied when plays a central role in this representation. We discover a nonlinear system of two deterministic equations that characterizes . Interestingly, the system shows that depends on ρ through proximal mappings of ρ as well as various aspects of the statistical model underlying our study. Several surprising results emerge. In particular, we show that, when is large enough, least squares becomes preferable to least absolute deviations for double-exponential errors. PMID:23954908

  4. Symplectic geometry spectrum regression for prediction of noisy time series

    NASA Astrophysics Data System (ADS)

    Xie, Hong-Bo; Dokos, Socrates; Sivakumar, Bellie; Mengersen, Kerrie

    2016-05-01

    We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry spectrum analysis, which decomposes a time series into the sum of a small number of independent and interpretable components. The key to successful regularization is to damp higher order symplectic geometry spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series), and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic and mechanomyographic signal recorded from human body).

  5. Symplectic geometry spectrum regression for prediction of noisy time series.

    PubMed

    Xie, Hong-Bo; Dokos, Socrates; Sivakumar, Bellie; Mengersen, Kerrie

    2016-05-01

    We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry spectrum analysis, which decomposes a time series into the sum of a small number of independent and interpretable components. The key to successful regularization is to damp higher order symplectic geometry spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series), and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic and mechanomyographic signal recorded from human body). PMID:27300890

  6. Nonlinear Pricing in Energy and Environmental Markets

    NASA Astrophysics Data System (ADS)

    Ito, Koichiro

    This dissertation consists of three empirical studies on nonlinear pricing in energy and environmental markets. The first investigates how consumers respond to multi-tier nonlinear price schedules for residential electricity. Chapter 2 asks a similar research question for residential water pricing. Finally, I examine the effect of nonlinear financial rewards for energy conservation by applying a regression discontinuity design to a large-scale electricity rebate program that was implemented in California. Economic theory generally assumes that consumers respond to marginal prices when making economic decisions, but this assumption may not hold for complex price schedules. The chapter "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing" provides empirical evidence that consumers respond to average price rather than marginal price when faced with nonlinear electricity price schedules. Nonlinear price schedules, such as progressive income tax rates and multi-tier electricity prices, complicate economic decisions by creating multiple marginal prices for the same good. Evidence from laboratory experiments suggests that consumers facing such price schedules may respond to average price as a heuristic. I empirically test this prediction using field data by exploiting price variation across a spatial discontinuity in electric utility service areas. The territory border of two electric utilities lies within several city boundaries in southern California. As a result, nearly identical households experience substantially different nonlinear electricity price schedules. Using monthly household-level panel data from 1999 to 2008, I find strong evidence that consumers respond to average price rather than marginal or expected marginal price. I show that even though this sub-optimizing behavior has a minimal impact on individual welfare, it can critically alter the policy implications of nonlinear pricing. The second chapter " How Do

  7. Modelling of filariasis in East Java with Poisson regression and generalized Poisson regression models

    NASA Astrophysics Data System (ADS)

    Darnah

    2016-04-01

    Poisson regression has been used if the response variable is count data that based on the Poisson distribution. The Poisson distribution assumed equal dispersion. In fact, a situation where count data are over dispersion or under dispersion so that Poisson regression inappropriate because it may underestimate the standard errors and overstate the significance of the regression parameters, and consequently, giving misleading inference about the regression parameters. This paper suggests the generalized Poisson regression model to handling over dispersion and under dispersion on the Poisson regression model. The Poisson regression model and generalized Poisson regression model will be applied the number of filariasis cases in East Java. Based regression Poisson model the factors influence of filariasis are the percentage of families who don't behave clean and healthy living and the percentage of families who don't have a healthy house. The Poisson regression model occurs over dispersion so that we using generalized Poisson regression. The best generalized Poisson regression model showing the factor influence of filariasis is percentage of families who don't have healthy house. Interpretation of result the model is each additional 1 percentage of families who don't have healthy house will add 1 people filariasis patient.

  8. A comparison of regression and regression-kriging for soil characterization using remote sensing imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In precision agriculture regression has been used widely to quality the relationship between soil attributes and other environmental variables. However, spatial correlation existing in soil samples usually makes the regression model suboptimal. In this study, a regression-kriging method was attemp...

  9. Investigating bias in squared regression structure coefficients

    PubMed Central

    Nimon, Kim F.; Zientek, Linda R.; Thompson, Bruce

    2015-01-01

    The importance of structure coefficients and analogs of regression weights for analysis within the general linear model (GLM) has been well-documented. The purpose of this study was to investigate bias in squared structure coefficients in the context of multiple regression and to determine if a formula that had been shown to correct for bias in squared Pearson correlation coefficients and coefficients of determination could be used to correct for bias in squared regression structure coefficients. Using data from a Monte Carlo simulation, this study found that squared regression structure coefficients corrected with Pratt's formula produced less biased estimates and might be more accurate and stable estimates of population squared regression structure coefficients than estimates with no such corrections. While our findings are in line with prior literature that identified multicollinearity as a predictor of bias in squared regression structure coefficients but not coefficients of determination, the findings from this study are unique in that the level of predictive power, number of predictors, and sample size were also observed to contribute bias in squared regression structure coefficients. PMID:26217273

  10. A Regression Algorithm for Model Reduction of Large-Scale Multi-Dimensional Problems

    NASA Astrophysics Data System (ADS)

    Rasekh, Ehsan

    2011-11-01

    Model reduction is an approach for fast and cost-efficient modelling of large-scale systems governed by Ordinary Differential Equations (ODEs). Multi-dimensional model reduction has been suggested for reduction of the linear systems simultaneously with respect to frequency and any other parameter of interest. Multi-dimensional model reduction is also used to reduce the weakly nonlinear systems based on Volterra theory. Multiple dimensions degrade the efficiency of reduction by increasing the size of the projection matrix. In this paper a new methodology is proposed to efficiently build the reduced model based on regression analysis. A numerical example confirms the validity of the proposed regression algorithm for model reduction.