Sample records for coverage pig genome

  1. PigGIS: Pig Genomic Informatics System

    PubMed Central

    Ruan, Jue; Guo, Yiran; Li, Heng; Hu, Yafeng; Song, Fei; Huang, Xin; Kristiensen, Karsten; Bolund, Lars; Wang, Jun

    2007-01-01

    Pig Genomic Information System (PigGIS) is a web-based depository of pig (Sus scrofa) genomic learning mainly engineered for biomedical research to locate pig genes from their human homologs and position single nucleotide polymorphisms (SNPs) in different pig populations. It utilizes a variety of sequence data, including whole genome shotgun (WGS) reads and expressed sequence tags (ESTs), and achieves a successful mapping solution to the low-coverage genome problem. With the data presently available, we have identified a total of 15 700 pig consensus sequences covering 18.5 Mb of the homologous human exons. We have also recovered 18 700 SNPs and 20 800 unique 60mer oligonucleotide probes for future pig genome analyses. PigGIS can be freely accessed via the web at and . PMID:17090590

  2. Comparison of the genomic sequence of the microminipig, a novel breed of swine, with the genomic database for conventional pig.

    PubMed

    Miura, Naoki; Kucho, Ken-Ichi; Noguchi, Michiko; Miyoshi, Noriaki; Uchiumi, Toshiki; Kawaguchi, Hiroaki; Tanimoto, Akihide

    2014-01-01

    The microminipig, which weighs less than 10 kg at an early stage of maturity, has been reported as a potential experimental model animal. Its extremely small size and other distinct characteristics suggest the possibility of a number of differences between the genome of the microminipig and that of conventional pigs. In this study, we analyzed the genomes of two healthy microminipigs using a next-generation sequencer SOLiD™ system. We then compared the obtained genomic sequences with a genomic database for the domestic pig (Sus scrofa). The mapping coverage of sequenced tag from the microminipig to conventional pig genomic sequences was greater than 96% and we detected no clear, substantial genomic variance from these data. The results may indicate that the distinct characteristics of the microminipig derive from small-scale alterations in the genome, such as Single Nucleotide Polymorphisms or translational modifications, rather than large-scale deletion or insertion polymorphisms. Further investigation of the entire genomic sequence of the microminipig with methods enabling deeper coverage is required to elucidate the genetic basis of its distinct phenotypic traits. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Lessons learned from the initial sequencing of the pig genome: comparative analysis of an 8 Mb region of pig chromosome 17

    PubMed Central

    Hart, Elizabeth A; Caccamo, Mario; Harrow, Jennifer L; Humphray, Sean J; Gilbert, James GR; Trevanion, Steve; Hubbard, Tim; Rogers, Jane; Rothschild, Max F

    2007-01-01

    Background We describe here the sequencing, annotation and comparative analysis of an 8 Mb region of pig chromosome 17, which provides a useful test region to assess coverage and quality for the pig genome sequencing project. We report our findings comparing the annotation of draft sequence assembled at different depths of coverage. Results Within this region we annotated 71 loci, of which 53 are orthologous to human known coding genes. When compared to the syntenic regions in human (20q13.13-q13.33) and mouse (chromosome 2, 167.5 Mb-178.3 Mb), this region was found to be highly conserved with respect to gene order. The most notable difference between the three species is the presence of a large expansion of zinc finger coding genes and pseudogenes on mouse chromosome 2 between Edn3 and Phactr3 that is absent from pig and human. All of our annotation has been made publicly available in the Vertebrate Genome Annotation browser, VEGA. We assessed the impact of coverage on sequence assembly across this region and found, as expected, that increased sequence depth resulted in fewer, longer contigs. One-third of our annotated loci could not be fully re-aligned back to the low coverage version of the sequence, principally because the transcripts are fragmented over several contigs. Conclusion We have demonstrated the considerable advantages of sequencing at increased read depths and discuss the implications that lower coverage sequence may have on subsequent comparative and functional studies, particularly those involving complex loci such as GNAS. PMID:17705864

  4. Exploiting long read sequencing technologies to establish high quality highly contiguous pig reference genome assemblies

    USDA-ARS?s Scientific Manuscript database

    The current pig reference genome sequence (Sscrofa10.2) was established using Sanger sequencing and following the clone-by-clone hierarchical shotgun sequencing approach used in the public human genome project. However, as sequence coverage was low (4-6x) the resulting assembly was only of draft qua...

  5. A genome-wide scan for signatures of directional selection in domesticated pigs.

    PubMed

    Moon, Sunjin; Kim, Tae-Hun; Lee, Kyung-Tai; Kwak, Woori; Lee, Taeheon; Lee, Si-Woo; Kim, Myung-Jick; Cho, Kyuho; Kim, Namshin; Chung, Won-Hyong; Sung, Samsun; Park, Taesung; Cho, Seoae; Groenen, Martien Am; Nielsen, Rasmus; Kim, Yuseob; Kim, Heebal

    2015-02-25

    Animal domestication involved drastic phenotypic changes driven by strong artificial selection and also resulted in new populations of breeds, established by humans. This study aims to identify genes that show evidence of recent artificial selection during pig domestication. Whole-genome resequencing of 30 individual pigs from domesticated breeds, Landrace and Yorkshire, and 10 Asian wild boars at ~16-fold coverage was performed resulting in over 4.3 million SNPs for 19,990 genes. We constructed a comprehensive genome map of directional selection by detecting selective sweeps using an F ST-based approach that detects directional selection in lineages leading to the domesticated breeds and using a haplotype-based test that detects ongoing selective sweeps within the breeds. We show that candidate genes under selection are significantly enriched for loci implicated in quantitative traits important to pig reproduction and production. The candidate gene with the strongest signals of directional selection belongs to group III of the metabolomics glutamate receptors, known to affect brain functions associated with eating behavior, suggesting that loci under strong selection include loci involved in behaviorial traits in domesticated pigs including tameness. We show that a significant proportion of selection signatures coincide with loci that were previously inferred to affect phenotypic variation in pigs. We further identify functional enrichment related to behavior, such as signal transduction and neuronal activities, for those targets of selection during domestication in pigs.

  6. A 2-D guinea pig lung proteome map

    USDA-ARS?s Scientific Manuscript database

    Guinea pigs represent an important model for a number of infectious and non-infectious pulmonary diseases. The guinea pig genome has recently been sequenced to full coverage, opening up new research avenues using genomics, transcriptomics and proteomics techniques in this species. In order to furth...

  7. Cracking the genomic piggy bank: identifying secrets of the pig genome.

    PubMed

    Mote, B E; Rothschild, M F

    2006-01-01

    Though researchers are uncovering valuable information about the pig genome at unprecedented speed, the porcine genome community is barely scratching the surface as to understanding interactions of the biological code. The pig genetic linkage map has nearly 5,000 loci comprised of genes, microsatellites, and amplified fragment length polymorphism markers. Likewise, the physical map is becoming denser with nearly 6,000 markers. The long awaited sequencing efforts are providing multidimensional benefits with sequence available for comparative genomics and identifying single nucleotide polymorphisms for use in linkage and trait association studies. Scientists are using exotic and commercial breeds for quantitative trait loci scans. Additionally, candidate gene studies continue to identify chromosomal regions or genes associated with economically important traits such as growth rate, leanness, feed intake, meat quality, litter size, and disease resistance. The commercial pig industry is actively incorporating these markers in marker-assisted selection along with traditional performance information to improve said traits. Researchers are utilizing novel tools including pig microarrays along with advanced bioinformatics to identify new candidate genes, understand gene function, and piece together gene networks involved in important biological processes. Advances in pig genomics and implications to the pork industry as well as human health are reviewed.

  8. A decade of pig genome sequencing: a window on pig domestication and evolution.

    PubMed

    Groenen, Martien A M

    2016-03-29

    Insight into how genomes change and adapt due to selection addresses key questions in evolutionary biology and in domestication of animals and plants by humans. In that regard, the pig and its close relatives found in Africa and Eurasia represent an excellent group of species that enables studies of the effect of both natural and human-mediated selection on the genome. The recent completion of the draft genome sequence of a domestic pig and the development of next-generation sequencing technology during the past decade have created unprecedented possibilities to address these questions in great detail. In this paper, I review recent whole-genome sequencing studies in the pig and closely-related species that provide insight into the demography, admixture and selection of these species and, in particular, how domestication and subsequent selection of Sus scrofa have shaped the genomes of these animals.

  9. Genome data from a sixteenth century pig illuminate modern breed relationships

    PubMed Central

    Ramírez, O; Burgos-Paz, W; Casas, E; Ballester, M; Bianco, E; Olalde, I; Santpere, G; Novella, V; Gut, M; Lalueza-Fox, C; Saña, M; Pérez-Enciso, M

    2015-01-01

    Ancient DNA (aDNA) provides direct evidence of historical events that have modeled the genome of modern individuals. In livestock, resolving the differences between the effects of initial domestication and of subsequent modern breeding is not straight forward without aDNA data. Here, we have obtained shotgun genome sequence data from a sixteenth century pig from Northeastern Spain (Montsoriu castle), the ancient pig was obtained from an extremely well-preserved and diverse assemblage. In addition, we provide the sequence of three new modern genomes from an Iberian pig, Spanish wild boar and a Guatemalan Creole pig. Comparison with both mitochondrial and autosomal genome data shows that the ancient pig is closely related to extant Iberian pigs and to European wild boar. Although the ancient sample was clearly domestic, admixture with wild boar also occurred, according to the D-statistics. The close relationship between Iberian, European wild boar and the ancient pig confirms that Asian introgression in modern Iberian pigs has not existed or has been negligible. In contrast, the Guatemalan Creole pig clusters apart from the Iberian pig genome, likely due to introgression from international breeds. PMID:25204303

  10. Analyses of pig genomes provide insight into porcine demography and evolution

    PubMed Central

    Groenen, Martien A. M.; Archibald, Alan L.; Uenishi, Hirohide; Tuggle, Christopher K.; Takeuchi, Yasuhiro; Rothschild, Max F.; Rogel-Gaillard, Claire; Park, Chankyu; Milan, Denis; Megens, Hendrik-Jan; Li, Shengting; Larkin, Denis M.; Kim, Heebal; Frantz, Laurent A. F.; Caccamo, Mario; Ahn, Hyeonju; Aken, Bronwen L.; Anselmo, Anna; Anthon, Christian; Auvil, Loretta; Badaoui, Bouabid; Beattie, Craig W.; Bendixen, Christian; Berman, Daniel; Blecha, Frank; Blomberg, Jonas; Bolund, Lars; Bosse, Mirte; Botti, Sara; Bujie, Zhan; Bystrom, Megan; Capitanu, Boris; Silva, Denise Carvalho; Chardon, Patrick; Chen, Celine; Cheng, Ryan; Choi, Sang-Haeng; Chow, William; Clark, Richard C.; Clee, Christopher; Crooijmans, Richard P. M. A.; Dawson, Harry D.; Dehais, Patrice; De Sapio, Fioravante; Dibbits, Bert; Drou, Nizar; Du, Zhi-Qiang; Eversole, Kellye; Fadista, João; Fairley, Susan; Faraut, Thomas; Faulkner, Geoffrey J.; Fowler, Katie E.; Fredholm, Merete; Fritz, Eric; Gilbert, James G. R.; Giuffra, Elisabetta; Gorodkin, Jan; Griffin, Darren K.; Harrow, Jennifer L.; Hayward, Alexander; Howe, Kerstin; Hu, Zhi-Liang; Humphray, Sean J.; Hunt, Toby; Hornshøj, Henrik; Jeon, Jin-Tae; Jern, Patric; Jones, Matthew; Jurka, Jerzy; Kanamori, Hiroyuki; Kapetanovic, Ronan; Kim, Jaebum; Kim, Jae-Hwan; Kim, Kyu-Won; Kim, Tae-Hun; Larson, Greger; Lee, Kyooyeol; Lee, Kyung-Tai; Leggett, Richard; Lewin, Harris A.; Li, Yingrui; Liu, Wansheng; Loveland, Jane E.; Lu, Yao; Lunney, Joan K.; Ma, Jian; Madsen, Ole; Mann, Katherine; Matthews, Lucy; McLaren, Stuart; Morozumi, Takeya; Murtaugh, Michael P.; Narayan, Jitendra; Nguyen, Dinh Truong; Ni, Peixiang; Oh, Song-Jung; Onteru, Suneel; Panitz, Frank; Park, Eung-Woo; Park, Hong-Seog; Pascal, Geraldine; Paudel, Yogesh; Perez-Enciso, Miguel; Ramirez-Gonzalez, Ricardo; Reecy, James M.; Zas, Sandra Rodriguez; Rohrer, Gary A.; Rund, Lauretta; Sang, Yongming; Schachtschneider, Kyle; Schraiber, Joshua G.; Schwartz, John; Scobie, Linda; Scott, Carol; Searle, Stephen; Servin, Bertrand; Southey, Bruce R.; Sperber, Goran; Stadler, Peter; Sweedler, Jonathan V.; Tafer, Hakim; Thomsen, Bo; Wali, Rashmi; Wang, Jian; Wang, Jun; White, Simon; Xu, Xun; Yerle, Martine; Zhang, Guojie; Zhang, Jianguo; Zhang, Jie; Zhao, Shuhong; Rogers, Jane; Churcher, Carol; Schook, Lawrence B.

    2013-01-01

    For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ~1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model. PMID:23151582

  11. Analysis of pig genomes provide insight into porcine demography and evolution

    USDA-ARS?s Scientific Manuscript database

    For nearly 8,000 years pigs and humans have shared a close and complex relationship, and through domestication and breeding, humans have shaped the genomes of current diverse pig breeds. Here we present the assembly and analysis of the genome sequence of a female domestic pig from the European Duroc...

  12. The pig genome project has plenty to squeal about.

    PubMed

    Fan, B; Gorbach, D M; Rothschild, M F

    2011-01-01

    Significant progress on pig genetics and genomics research has been witnessed in recent years due to the integration of advanced molecular biology techniques, bioinformatics and computational biology, and the collaborative efforts of researchers in the swine genomics community. Progress on expanding the linkage map has slowed down, but the efforts have created a higher-resolution physical map integrating the clone map and BAC end sequence. The number of QTL mapped is still growing and most of the updated QTL mapping results are available through PigQTLdb. Additionally, expression studies using high-throughput microarrays and other gene expression techniques have made significant advancements. The number of identified non-coding RNAs is rapidly increasing and their exact regulatory functions are being explored. A publishable draft (build 10) of the swine genome sequence was available for the pig genomics community by the end of December 2010. Build 9 of the porcine genome is currently available with Ensembl annotation; manual annotation is ongoing. These drafts provide useful tools for such endeavors as comparative genomics and SNP scans for fine QTL mapping. A recent community-wide effort to create a 60K porcine SNP chip has greatly facilitated whole-genome association analyses, haplotype block construction and linkage disequilibrium mapping, which can contribute to whole-genome selection. The future 'systems biology' that integrates and optimizes the information from all research levels can enhance the pig community's understanding of the full complexity of the porcine genome. These recent technological advances and where they may lead are reviewed. Copyright © 2011 S. Karger AG, Basel.

  13. Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing.

    PubMed

    Jeong, Hyeonsoo; Song, Ki-Duk; Seo, Minseok; Caetano-Anollés, Kelsey; Kim, Jaemin; Kwak, Woori; Oh, Jae-Don; Kim, EuiSoo; Jeong, Dong Kee; Cho, Seoae; Kim, Heebal; Lee, Hak-Kyo

    2015-08-20

    Natural and artificial selection following domestication has led to the existence of more than a hundred pig breeds, as well as incredible variation in phenotypic traits. Berkshire pigs are regarded as having superior meat quality compared to other breeds. As the meat production industry seeks selective breeding approaches to improve profitable traits such as meat quality, information about genetic determinants of these traits is in high demand. However, most of the studies have been performed using trained sensory panel analysis without investigating the underlying genetic factors. Here we investigate the relationship between genomic composition and this phenotypic trait by scanning for signatures of positive selection in whole-genome sequencing data. We generated genomes of 10 Berkshire pigs at a total of 100.6 coverage depth, using the Illumina Hiseq2000 platform. Along with the genomes of 11 Landrace and 13 Yorkshire pigs, we identified genomic variants of 18.9 million SNVs and 3.4 million Indels in the mapped regions. We identified several associated genes related to lipid metabolism, intramuscular fatty acid deposition, and muscle fiber type which attribute to pork quality (TG, FABP1, AKIRIN2, GLP2R, TGFBR3, JPH3, ICAM2, and ERN1) by applying between population statistical tests (XP-EHH and XP-CLR). A statistical enrichment test was also conducted to detect breed specific genetic variation. In addition, de novo short sequence read assembly strategy identified several candidate genes (SLC25A14, IGF1, PI4KA, CACNA1A) as also contributing to lipid metabolism. Results revealed several candidate genes involved in Berkshire meat quality; most of these genes are involved in lipid metabolism and intramuscular fat deposition. These results can provide a basis for future research on the genomic characteristics of Berkshire pigs.

  14. Genomic Characterization of Sixteen Yersinia enterocolitica-Infecting Podoviruses of Pig Origin

    PubMed Central

    Salem, Mabruka

    2018-01-01

    Yersinia enterocolitica causes enteric infections in humans and animals. Human infections are often caused by contaminated pork meat. Y. enterocolitica colonizes pig tonsils and pigs secrete both the human pathogen and its specific bacteriophages into the stools. In this work, sixteen Y. enterocolitica—infecting lytic bacteriophages isolated from pig stools originating from several pig farms were characterized. All phages belong to the Podoviridae family and their genomes range between 38,391–40,451 bp in size. The overall genome organization of all the phages resembled that of T7-like phages, having 3–6 host RNA polymerase (RNAP)-specific promoters at the beginning of the genomes and 11–13 phage RNAP-specific promoters as well as 3–5 rho-independent terminators, scattered throughout the genomes. Using a ligation-based approach, the physical termini of the genomes containing direct terminal repeats of 190–224 bp were established. No genes associated with lysogeny nor any toxin, virulence factor or antibiotic resistance genes were present in the genomes. Even though the phages had been isolated from different pig farms the nucleotide sequences of their genomes were 90–97% identical suggesting that the phages were undergoing microevolution within and between the farms. Lipopolysaccharide was found to be the surface receptor of all but one of the phages. The phages are classified as new species within the T7virus genus of Autographivirinae subfamily. PMID:29614052

  15. Mapping and annotating obesity-related genes in pig and human genomes.

    PubMed

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  16. Calibrating genomic and allelic coverage bias in single-cell sequencing.

    PubMed

    Zhang, Cheng-Zhong; Adalsteinsson, Viktor A; Francis, Joshua; Cornils, Hauke; Jung, Joonil; Maire, Cecile; Ligon, Keith L; Meyerson, Matthew; Love, J Christopher

    2015-04-16

    Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1-10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (∼0.1 × ) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples.

  17. Calibrating genomic and allelic coverage bias in single-cell sequencing

    PubMed Central

    Francis, Joshua; Cornils, Hauke; Jung, Joonil; Maire, Cecile; Ligon, Keith L.; Meyerson, Matthew; Love, J. Christopher

    2016-01-01

    Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1–10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (~0.1 ×) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples. PMID:25879913

  18. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies.

    PubMed

    Card, Daren C; Schield, Drew R; Reyes-Velasco, Jacobo; Fujita, Matthew K; Andrew, Audra L; Oyler-McCance, Sara J; Fike, Jennifer A; Tomback, Diana F; Ruggiero, Robert P; Castoe, Todd A

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5-5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  19. Two low coverage bird genomes and a comparison of reference-guided versus de novo genome assemblies

    USGS Publications Warehouse

    Card, Daren C.; Schield, Drew R.; Reyes-Velasco, Jacobo; Fujita, Matthre K.; Andrew, Audra L.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Tomback, Diana F.; Ruggiero, Robert P.; Castoe, Todd A.

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (~3.5–5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies.

  20. A genomic landscape of mitochondrial DNA insertions in the pig nuclear genome provides evolutionary signatures of interspecies admixture.

    PubMed

    Schiavo, Giuseppina; Hoffmann, Orsolya Ivett; Ribani, Anisa; Utzeri, Valerio Joe; Ghionda, Marco Ciro; Bertolini, Francesca; Geraci, Claudia; Bovo, Samuele; Fontanesi, Luca

    2017-10-01

    Nuclear DNA sequences of mitochondrial origin (numts) are derived by insertion of mitochondrial DNA (mtDNA), into the nuclear genome. In this study, we provide, for the first time, a genome picture of numts inserted in the pig nuclear genome. The Sus scrofa reference nuclear genome (Sscrofa10.2) was aligned with circularized and consensus mtDNA sequences using LAST software. A total of 430 numt sequences that may represent 246 different numt integration events (57 numt regions determined by at least two numt sequences and 189 singletons) were identified, covering about 0.0078% of the nuclear genome. Numt integration events were correlated (0.99) to the chromosome length. The longest numt sequence (about 11 kbp) was located on SSC2. Six numts were sequenced and PCR amplified in pigs of European commercial and local pig breeds, of the Chinese Meishan breed and in European wild boars. Three of them were polymorphic for the presence or absence of the insertion. Surprisingly, the estimated age of insertion of two of the three polymorphic numts was more ancient than that of the speciation time of the Sus scrofa, supporting that these polymorphic sites were originated from interspecies admixture that contributed to shape the pig genome. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  1. Immunoglobulin genomics in the guinea pig (Cavia porcellus).

    PubMed

    Guo, Yongchen; Bao, Yonghua; Meng, Qingwen; Hu, Xiaoxiang; Meng, Qingyong; Ren, Liming; Li, Ning; Zhao, Yaofeng

    2012-01-01

    In science, the guinea pig is known as one of the gold standards for modeling human disease. It is especially important as a molecular and cellular biology model for studying the human immune system, as its immunological genes are more similar to human genes than are those of mice. The utility of the guinea pig as a model organism can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the guinea pig immunoglobulin (Ig) heavy and light chain genes. The guinea pig IgH locus is located in genomic scaffolds 54 and 75, and spans approximately 6,480 kb. 507 V(H) segments (94 potentially functional genes and 413 pseudogenes), 41 D(H) segments, six J(H) segments, four constant region genes (μ, γ, ε, and α), and one reverse δ remnant fragment were identified within the two scaffolds. Many V(H) pseudogenes were found within the guinea pig, and likely constituted a potential donor pool for gene conversion during evolution. The Igκ locus mapped to a 4,029 kb region of scaffold 37 and 24 is composed of 349 V(κ) (111 potentially functional genes and 238 pseudogenes), three J(κ) and one C(κ) genes. The Igλ locus spans 1,642 kb in scaffold 4 and consists of 142 V(λ) (58 potentially functional genes and 84 pseudogenes) and 11 J(λ) -C(λ) clusters. Phylogenetic analysis suggested the guinea pig's large germline V(H) gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves.

  2. Identification of copy number variants in whole-genome data using Reference Coverage Profiles

    PubMed Central

    Glusman, Gustavo; Severson, Alissa; Dhankani, Varsha; Robinson, Max; Farrah, Terry; Mauldin, Denise E.; Stittrich, Anna B.; Ament, Seth A.; Roach, Jared C.; Brunkow, Mary E.; Bodian, Dale L.; Vockley, Joseph G.; Shmulevich, Ilya; Niederhuber, John E.; Hood, Leroy

    2015-01-01

    The identification of DNA copy numbers from short-read sequencing data remains a challenge for both technical and algorithmic reasons. The raw data for these analyses are measured in tens to hundreds of gigabytes per genome; transmitting, storing, and analyzing such large files is cumbersome, particularly for methods that analyze several samples simultaneously. We developed a very efficient representation of depth of coverage (150–1000× compression) that enables such analyses. Current methods for analyzing variants in whole-genome sequencing (WGS) data frequently miss copy number variants (CNVs), particularly hemizygous deletions in the 1–100 kb range. To fill this gap, we developed a method to identify CNVs in individual genomes, based on comparison to joint profiles pre-computed from a large set of genomes. We analyzed depth of coverage in over 6000 high quality (>40×) genomes. The depth of coverage has strong sequence-specific fluctuations only partially explained by global parameters like %GC. To account for these fluctuations, we constructed multi-genome profiles representing the observed or inferred diploid depth of coverage at each position along the genome. These Reference Coverage Profiles (RCPs) take into account the diverse technologies and pipeline versions used. Normalization of the scaled coverage to the RCP followed by hidden Markov model (HMM) segmentation enables efficient detection of CNVs and large deletions in individual genomes. Use of pre-computed multi-genome coverage profiles improves our ability to analyze each individual genome. We make available RCPs and tools for performing these analyses on personal genomes. We expect the increased sensitivity and specificity for individual genome analysis to be critical for achieving clinical-grade genome interpretation. PMID:25741365

  3. Indexcov: fast coverage quality control for whole-genome sequencing.

    PubMed

    Pedersen, Brent S; Collins, Ryan L; Talkowski, Michael E; Quinlan, Aaron R

    2017-11-01

    The BAM and CRAM formats provide a supplementary linear index that facilitates rapid access to sequence alignments in arbitrary genomic regions. Comparing consecutive entries in a BAM or CRAM index allows one to infer the number of alignment records per genomic region for use as an effective proxy of sequence depth in each genomic region. Based on these properties, we have developed indexcov, an efficient estimator of whole-genome sequencing coverage to rapidly identify samples with aberrant coverage profiles, reveal large-scale chromosomal anomalies, recognize potential batch effects, and infer the sex of a sample. Indexcov is available at https://github.com/brentp/goleft under the MIT license. © The Authors 2017. Published by Oxford University Press.

  4. Two Low Coverage Bird Genomes and a Comparison of Reference-Guided versus De Novo Genome Assemblies

    PubMed Central

    Card, Daren C.; Schield, Drew R.; Reyes-Velasco, Jacobo; Fujita, Matthew K.; Andrew, Audra L.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Tomback, Diana F.; Ruggiero, Robert P.; Castoe, Todd A.

    2014-01-01

    As a greater number and diversity of high-quality vertebrate reference genomes become available, it is increasingly feasible to use these references to guide new draft assemblies for related species. Reference-guided assembly approaches may substantially increase the contiguity and completeness of a new genome using only low levels of genome coverage that might otherwise be insufficient for de novo genome assembly. We used low-coverage (∼3.5–5.5x) Illumina paired-end sequencing to assemble draft genomes of two bird species (the Gunnison Sage-Grouse, Centrocercus minimus, and the Clark's Nutcracker, Nucifraga columbiana). We used these data to estimate de novo genome assemblies and reference-guided assemblies, and compared the information content and completeness of these assemblies by comparing CEGMA gene set representation, repeat element content, simple sequence repeat content, and GC isochore structure among assemblies. Our results demonstrate that even lower-coverage genome sequencing projects are capable of producing informative and useful genomic resources, particularly through the use of reference-guided assemblies. PMID:25192061

  5. Imputation-Based Genomic Coverage Assessments of Current Human Genotyping Arrays

    PubMed Central

    Nelson, Sarah C.; Doheny, Kimberly F.; Pugh, Elizabeth W.; Romm, Jane M.; Ling, Hua; Laurie, Cecelia A.; Browning, Sharon R.; Weir, Bruce S.; Laurie, Cathy C.

    2013-01-01

    Microarray single-nucleotide polymorphism genotyping, combined with imputation of untyped variants, has been widely adopted as an efficient means to interrogate variation across the human genome. “Genomic coverage” is the total proportion of genomic variation captured by an array, either by direct observation or through an indirect means such as linkage disequilibrium or imputation. We have performed imputation-based genomic coverage assessments of eight current genotyping arrays that assay from ~0.3 to ~5 million variants. Coverage was determined separately in each of the four continental ancestry groups in the 1000 Genomes Project phase 1 release. We used the subset of 1000 Genomes variants present on each array to impute the remaining variants and assessed coverage based on correlation between imputed and observed allelic dosages. More than 75% of common variants (minor allele frequency > 0.05) are covered by all arrays in all groups except for African ancestry, and up to ~90% in all ancestries for the highest density arrays. In contrast, less than 40% of less common variants (0.01 < minor allele frequency < 0.05) are covered by low density arrays in all ancestries and 50–80% in high density arrays, depending on ancestry. We also calculated genome-wide power to detect variant-trait association in a case-control design, across varying sample sizes, effect sizes, and minor allele frequency ranges, and compare these array-based power estimates with a hypothetical array that would type all variants in 1000 Genomes. These imputation-based genomic coverage and power analyses are intended as a practical guide to researchers planning genetic studies. PMID:23979933

  6. Modeling genome coverage in single-cell sequencing

    PubMed Central

    Daley, Timothy; Smith, Andrew D.

    2014-01-01

    Motivation: Single-cell DNA sequencing is necessary for examining genetic variation at the cellular level, which remains hidden in bulk sequencing experiments. But because they begin with such small amounts of starting material, the amount of information that is obtained from single-cell sequencing experiment is highly sensitive to the choice of protocol employed and variability in library preparation. In particular, the fraction of the genome represented in single-cell sequencing libraries exhibits extreme variability due to quantitative biases in amplification and loss of genetic material. Results: We propose a method to predict the genome coverage of a deep sequencing experiment using information from an initial shallow sequencing experiment mapped to a reference genome. The observed coverage statistics are used in a non-parametric empirical Bayes Poisson model to estimate the gain in coverage from deeper sequencing. This approach allows researchers to know statistical features of deep sequencing experiments without actually sequencing deeply, providing a basis for optimizing and comparing single-cell sequencing protocols or screening libraries. Availability and implementation: The method is available as part of the preseq software package. Source code is available at http://smithlabresearch.org/preseq. Contact: andrewds@usc.edu Supplementary information: Supplementary material is available at Bioinformatics online. PMID:25107873

  7. Immunoglobulin Genomics in the Guinea Pig (Cavia porcellus)

    PubMed Central

    Guo, Yongchen; Bao, Yonghua; Meng, Qingwen; Hu, Xiaoxiang; Meng, Qingyong; Ren, Liming; Li, Ning; Zhao, Yaofeng

    2012-01-01

    In science, the guinea pig is known as one of the gold standards for modeling human disease. It is especially important as a molecular and cellular biology model for studying the human immune system, as its immunological genes are more similar to human genes than are those of mice. The utility of the guinea pig as a model organism can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the guinea pig immunoglobulin (Ig) heavy and light chain genes. The guinea pig IgH locus is located in genomic scaffolds 54 and 75, and spans approximately 6,480 kb. 507 VH segments (94 potentially functional genes and 413 pseudogenes), 41 DH segments, six JH segments, four constant region genes (μ, γ, ε, and α), and one reverse δ remnant fragment were identified within the two scaffolds. Many VH pseudogenes were found within the guinea pig, and likely constituted a potential donor pool for gene conversion during evolution. The Igκ locus mapped to a 4,029 kb region of scaffold 37 and 24 is composed of 349 Vκ (111 potentially functional genes and 238 pseudogenes), three Jκ and one Cκ genes. The Igλ locus spans 1,642 kb in scaffold 4 and consists of 142 Vλ (58 potentially functional genes and 84 pseudogenes) and 11 Jλ -Cλ clusters. Phylogenetic analysis suggested the guinea pig’s large germline VH gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves. PMID:22761756

  8. A genome-wide association study of production traits in a commercial population of Large White pigs: evidence of haplotypes affecting meat quality

    PubMed Central

    2014-01-01

    Background Numerous quantitative trait loci (QTL) have been detected in pigs over the past 20 years using microsatellite markers. However, due to the low density of these markers, the accuracy of QTL location has generally been poor. Since 2009, the dense genome coverage provided by the Illumina PorcineSNP60 BeadChip has made it possible to more accurately map QTL using genome-wide association studies (GWAS). Our objective was to perform high-density GWAS in order to identify genomic regions and corresponding haplotypes associated with production traits in a French Large White population of pigs. Methods Animals (385 Large White pigs from 106 sires) were genotyped using the PorcineSNP60 BeadChip and evaluated for 19 traits related to feed intake, growth, carcass composition and meat quality. Of the 64 432 SNPs on the chip, 44 412 were used for GWAS with an animal mixed model that included a regression coefficient for the tested SNPs and a genomic kinship matrix. SNP haplotype effects in QTL regions were then tested for association with phenotypes following phase reconstruction based on the Sscrofa10.2 pig genome assembly. Results Twenty-three QTL regions were identified on autosomes and their effects ranged from 0.25 to 0.75 phenotypic standard deviation units for feed intake and feed efficiency (four QTL), carcass (12 QTL) and meat quality traits (seven QTL). The 10 most significant QTL regions had effects on carcass (chromosomes 7, 10, 16, 17 and 18) and meat quality traits (two regions on chromosome 1 and one region on chromosomes 8, 9 and 13). Thirteen of the 23 QTL regions had not been previously described. A haplotype block of 183 kb on chromosome 1 (six SNPs) was identified and displayed three distinct haplotypes with significant (0.0001 < P < 0.03) associations with all evaluated meat quality traits. Conclusions GWAS analyses with the PorcineSNP60 BeadChip enabled the detection of 23 QTL regions that affect feed consumption, carcass and meat

  9. Genome-wide SNP data unveils the globalization of domesticated pigs.

    PubMed

    Yang, Bin; Cui, Leilei; Perez-Enciso, Miguel; Traspov, Aleksei; Crooijmans, Richard P M A; Zinovieva, Natalia; Schook, Lawrence B; Archibald, Alan; Gatphayak, Kesinee; Knorr, Christophe; Triantafyllidis, Alex; Alexandri, Panoraia; Semiadi, Gono; Hanotte, Olivier; Dias, Deodália; Dovč, Peter; Uimari, Pekka; Iacolina, Laura; Scandura, Massimo; Groenen, Martien A M; Huang, Lusheng; Megens, Hendrik-Jan

    2017-09-21

    Pigs were domesticated independently in Eastern and Western Eurasia early during the agricultural revolution, and have since been transported and traded across the globe. Here, we present a worldwide survey on 60K genome-wide single nucleotide polymorphism (SNP) data for 2093 pigs, including 1839 domestic pigs representing 122 local and commercial breeds, 215 wild boars, and 39 out-group suids, from Asia, Europe, America, Oceania and Africa. The aim of this study was to infer global patterns in pig domestication and diversity related to demography, migration, and selection. A deep phylogeographic division reflects the dichotomy between early domestication centers. In the core Eastern and Western domestication regions, Chinese pigs show differentiation between breeds due to geographic isolation, whereas this is less pronounced in European pigs. The inferred European origin of pigs in the Americas, Africa, and Australia reflects European expansion during the sixteenth to nineteenth centuries. Human-mediated introgression, which is due, in particular, to importing Chinese pigs into the UK during the eighteenth and nineteenth centuries, played an important role in the formation of modern pig breeds. Inbreeding levels vary markedly between populations, from almost no runs of homozygosity (ROH) in a number of Asian wild boar populations, to up to 20% of the genome covered by ROH in a number of Southern European breeds. Commercial populations show moderate ROH statistics. For domesticated pigs and wild boars in Asia and Europe, we identified highly differentiated loci that include candidate genes related to muscle and body development, central nervous system, reproduction, and energy balance, which are putatively under artificial selection. Key events related to domestication, dispersal, and mixing of pigs from different regions are reflected in the 60K SNP data, including the globalization that has recently become full circle since Chinese pig breeders in the past

  10. Whole-genome resequencing reveals candidate mutations for pig prolificacy.

    PubMed

    Li, Wen-Ting; Zhang, Meng-Meng; Li, Qi-Gang; Tang, Hui; Zhang, Li-Fan; Wang, Ke-Jun; Zhu, Mu-Zhen; Lu, Yun-Feng; Bao, Hai-Gang; Zhang, Yuan-Ming; Li, Qiu-Yan; Wu, Ke-Liang; Wu, Chang-Xin

    2017-12-20

    Changes in pig fertility have occurred as a result of domestication, but are not understood at the level of genetic variation. To identify variations potentially responsible for prolificacy, we sequenced the genomes of the highly prolific Taihu pig breed and four control breeds. Genes involved in embryogenesis and morphogenesis were targeted in the Taihu pig, consistent with the morphological differences observed between the Taihu pig and others during pregnancy. Additionally, excessive functional non-coding mutations have been specifically fixed or nearly fixed in the Taihu pig. We focused attention on an oestrogen response element (ERE) within the first intron of the bone morphogenetic protein receptor type-1B gene ( BMPR1B ) that overlaps with a known quantitative trait locus (QTL) for pig fecundity. Using 242 pigs from 30 different breeds, we confirmed that the genotype of the ERE was nearly fixed in the Taihu pig. ERE function was assessed by luciferase assays, examination of histological sections, chromatin immunoprecipitation, quantitative polymerase chain reactions, and western blots. The results suggest that the ERE may control pig prolificacy via the cis-regulation of BMPR1B expression. This study provides new insight into changes in reproductive performance and highlights the role of non-coding mutations in generating phenotypic diversity between breeds. © 2017 The Author(s).

  11. Newspaper coverage of human-pig chimera research: A qualitative study on select media coverage of scientific breakthrough.

    PubMed

    Hagan-Brown, Abena; Favaretto, Maddalena; Borry, Pascal

    2017-07-01

    A recently published article in the journal Cell by scientists from the Salk Institute highlighted the successful integration of stem cells from humans in pig embryos. This marks the first step toward the goal of growing human organs in animals for transplantation. There has, to date, been no research performed on the presentation of this breakthrough in the media. We thus assessed early newspaper coverage of the chimera study, looking into the descriptions as well as the benefits and concerns raised by the study mentioned by newspaper sources. We looked at newspaper coverage of the human-pig chimera study in the two weeks after the publication of the article describing the breakthrough in Cell. This time period spanned from January 26 to February 9, 2017. We used the LexisNexis Academic database and identified articles using the search string "hybrid OR chimera AND pig OR human OR embryo." The relevant articles were analyzed using qualitative content analysis. Two researchers openly coded the articles independently using themes that emerged from the raw texts. Our search yielded 31 unique articles, after extensive screening for relevance and duplicates. Through our analysis, we were able to identify several themes in a majority of the texts. Almost every article gave descriptive information about the chimera experiment with details about the study findings. All of the articles mentioned the benefits of the study, citing both immediate- and long-term goals, which included creating transplantable human organs, disease and drug development, and personalized medicine, among others. Some of the articles highlighted some ethical, social, and health concerns that the study and its future implications pose. Many of the articles also offered reassurances over the concerns brought up by the experiment. Our results appeared to align with similar research performed on the media representation of sensitive scientific news coverage. We also explored the inconsistency between

  12. Coverage of genomic medicine: information gap between lay public and scientists.

    PubMed

    Sugawara, Yuya; Narimatsu, Hiroto; Fukao, Akira

    2012-01-01

    The sharing of information between the lay public and medical professionals is crucial to the conduct of personalized medicine using genomic information in the near future. Mass media, such as newspapers, can play an important role in disseminating scientific information. However, studies on the role of newspaper coverage of genome-related articles are highly limited. We investigated the coverage of genomic medicine in five major Japanese newspapers (Asahi, Mainichi, Yomiuri, Sankei, and Nikkei) using Nikkei Telecom and articles in scientific journals in PubMed from 1995 to 2009. The number of genome-related articles in all five newspapers temporarily increased in 2000, and began continuously decreasing thereafter from 2001 to 2009. Conversely, there was a continuous increasing trend in the number of genome-related articles in PubMed during this period. The numbers of genome-related articles among the five major newspapers from 1995 to 2009 were significantly different (P = 0.002). Commentaries, research articles, and articles about companies were the most frequent in 2001 and 2003, when the number of genome-related articles transiently increased in the five newspapers. This study highlights the significant gap between newspaper coverage and scientific articles in scientific journals.

  13. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing

    PubMed Central

    2011-01-01

    Background Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives

  14. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing.

    PubMed

    Straub, Shannon C K; Fishbein, Mark; Livshultz, Tatyana; Foster, Zachary; Parks, Matthew; Weitemier, Kevin; Cronn, Richard C; Liston, Aaron

    2011-05-04

    Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first

  15. Genomic Diversity in Pig (Sus scrofa) and its Comparison with Human and other Livestock

    PubMed Central

    Zhang, Chunyan; Plastow, Graham

    2011-01-01

    We have reviewed the current pig (Sus scrofa) genomic diversity within and between sites and compared them with human and other livestock. The current Porcine 60K single nucleotide polymorphism (SNP) panel has an average SNP distance in a range of 30 - 40 kb. Most of genetic variation was distributed within populations, and only a small proportion of them existed between populations. The average heterozygosity was lower in pig than in human and other livestock. Genetic inbreeding coefficient (FIS), population differentiation (FST), and Nei’s genetic distance between populations were much larger in pig than in human and other livestock. Higher average genetic distance existed between European and Asian populations than between European or between Asian populations. Asian breeds harboured much larger variability and higher average heterozygosity than European breeds. The samples of wild boar that have been analyzed displayed more extensive genetic variation than domestic breeds. The average linkage disequilibrium (LD) in improved pig breeds extended to 1 - 3 cM, much larger than that in human (~ 30 kb) and cattle (~ 100 kb), but smaller than that in sheep (~ 10 cM). European breeds showed greater LD that decayed more slowly than Asian breeds. We briefly discuss some processes for maintaining genomic diversity in pig, including migration, introgression, selection, and drift. We conclude that, due to the long time of domestication, the pig possesses lower heterozygosity, higher FIS, and larger LD compared with human and cattle. This implies that a smaller effective population size and less informative markers are needed in pig for genome wide association studies. PMID:21966252

  16. A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds.

    PubMed

    Yang, Songbai; Li, Xiuling; Li, Kui; Fan, Bin; Tang, Zhonglin

    2014-01-15

    Modern breeding and artificial selection play critical roles in pig domestication and shape the genetic variation of different breeds. China has many indigenous pig breeds with various characteristics in morphology and production performance that differ from those of foreign commercial pig breeds. However, the signatures of selection on genes implying for economic traits between Chinese indigenous and commercial pigs have been poorly understood. We identified footprints of positive selection at the whole genome level, comprising 44,652 SNPs genotyped in six Chinese indigenous pig breeds, one developed breed and two commercial breeds. An empirical genome-wide distribution of Fst (F-statistics) was constructed based on estimations of Fst for each SNP across these nine breeds. We detected selection at the genome level using the High-Fst outlier method and found that 81 candidate genes show high evidence of positive selection. Furthermore, the results of network analyses showed that the genes that displayed evidence of positive selection were mainly involved in the development of tissues and organs, and the immune response. In addition, we calculated the pairwise Fst between Chinese indigenous and commercial breeds (CHN VS EURO) and between Northern and Southern Chinese indigenous breeds (Northern VS Southern). The IGF1R and ESR1 genes showed evidence of positive selection in the CHN VS EURO and Northern VS Southern groups, respectively. In this study, we first identified the genomic regions that showed evidences of selection between Chinese indigenous and commercial pig breeds using the High-Fst outlier method. These regions were found to be involved in the development of tissues and organs, the immune response, growth and litter size. The results of this study provide new insights into understanding the genetic variation and domestication in pigs.

  17. A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds

    PubMed Central

    2014-01-01

    Background Modern breeding and artificial selection play critical roles in pig domestication and shape the genetic variation of different breeds. China has many indigenous pig breeds with various characteristics in morphology and production performance that differ from those of foreign commercial pig breeds. However, the signatures of selection on genes implying for economic traits between Chinese indigenous and commercial pigs have been poorly understood. Results We identified footprints of positive selection at the whole genome level, comprising 44,652 SNPs genotyped in six Chinese indigenous pig breeds, one developed breed and two commercial breeds. An empirical genome-wide distribution of Fst (F-statistics) was constructed based on estimations of Fst for each SNP across these nine breeds. We detected selection at the genome level using the High-Fst outlier method and found that 81 candidate genes show high evidence of positive selection. Furthermore, the results of network analyses showed that the genes that displayed evidence of positive selection were mainly involved in the development of tissues and organs, and the immune response. In addition, we calculated the pairwise Fst between Chinese indigenous and commercial breeds (CHN VS EURO) and between Northern and Southern Chinese indigenous breeds (Northern VS Southern). The IGF1R and ESR1 genes showed evidence of positive selection in the CHN VS EURO and Northern VS Southern groups, respectively. Conclusions In this study, we first identified the genomic regions that showed evidences of selection between Chinese indigenous and commercial pig breeds using the High-Fst outlier method. These regions were found to be involved in the development of tissues and organs, the immune response, growth and litter size. The results of this study provide new insights into understanding the genetic variation and domestication in pigs. PMID:24422716

  18. A unique circovirus-like genome detected in pig feces

    USDA-ARS?s Scientific Manuscript database

    Using a metagenomic approach and molecular cloning methods, we identified, cloned, and sequenced the complete genome of a novel circular DNA virus, porcine stool-associated virus (PoSCV4), from pig feces. Phylogenetic analysis of the deduced replication initiator protein showed that PoSCV4 is most r...

  19. Analysis of genome-wide copy number variations in Chinese indigenous and western pig breeds by 60 K SNP genotyping arrays.

    PubMed

    Wang, Yanan; Tang, Zhonglin; Sun, Yaqi; Wang, Hongyang; Wang, Chao; Yu, Shaobo; Liu, Jing; Zhang, Yu; Fan, Bin; Li, Kui; Liu, Bang

    2014-01-01

    Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs.

  20. Analysis of Genome-Wide Copy Number Variations in Chinese Indigenous and Western Pig Breeds by 60 K SNP Genotyping Arrays

    PubMed Central

    Sun, Yaqi; Wang, Hongyang; Wang, Chao; Yu, Shaobo; Liu, Jing; Zhang, Yu; Fan, Bin; Li, Kui; Liu, Bang

    2014-01-01

    Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs. PMID:25198154

  1. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla.

    PubMed

    Lin, C S; Sun, Y L; Liu, C Y; Yang, P C; Chang, L C; Cheng, I C; Mao, S J; Huang, M C

    1999-08-05

    The complete nucleotide sequence of the pig (Sus scrofa) mitochondrial genome, containing 16613bp, is presented in this report. The genome is not a specific length because of the presence of the variable numbers of tandem repeats, 5'-CGTGCGTACA in the displacement loop (D-loop). Genes responsible for 12S and 16S rRNAs, 22 tRNAs, and 13 protein-coding regions are found. The genome carries very few intergenic nucleotides with several instances of overlap between protein-coding or tRNA genes, except in the D-loop region. For evaluating the possible evolutionary relationships between Artiodactyla and Cetacea, the nucleotide substitutions and amino acid sequences of 13 protein-coding genes were aligned by pairwise comparisons of the pig, cow, and fin whale. By comparing these sequences, we suggest that there is a closer relationship between the pig and cow than that between either of these species and fin whale. In addition, the accumulation of transversions and gaps in pig 12S and 16S rRNA genes was compared with that in other eutherian species, including cow, fin whale, human, horse, and harbor seal. The results also reveal a close phylogenetic relationship between pig and cow, as compared to fin whale and others. Thus, according to the sequence differences of mitochondrial rRNA genes in eutherian species, the evolutionary separation of pig and cow occurred about 53-60 million years ago.

  2. AD-LIBS: inferring ancestry across hybrid genomes using low-coverage sequence data.

    PubMed

    Schaefer, Nathan K; Shapiro, Beth; Green, Richard E

    2017-04-04

    Inferring the ancestry of each region of admixed individuals' genomes is useful in studies ranging from disease gene mapping to speciation genetics. Current methods require high-coverage genotype data and phased reference panels, and are therefore inappropriate for many data sets. We present a software application, AD-LIBS, that uses a hidden Markov model to infer ancestry across hybrid genomes without requiring variant calling or phasing. This approach is useful for non-model organisms and in cases of low-coverage data, such as ancient DNA. We demonstrate the utility of AD-LIBS with synthetic data. We then use AD-LIBS to infer ancestry in two published data sets: European human genomes with Neanderthal ancestry and brown bear genomes with polar bear ancestry. AD-LIBS correctly infers 87-91% of ancestry in simulations and produces ancestry maps that agree with published results and global ancestry estimates in humans. In brown bears, we find more polar bear ancestry than has been published previously, using both AD-LIBS and an existing software application for local ancestry inference, HAPMIX. We validate AD-LIBS polar bear ancestry maps by recovering a geographic signal within bears that mirrors what is seen in SNP data. Finally, we demonstrate that AD-LIBS is more effective than HAPMIX at inferring ancestry when preexisting phased reference data are unavailable and genomes are sequenced to low coverage. AD-LIBS is an effective tool for ancestry inference that can be used even when few individuals are available for comparison or when genomes are sequenced to low coverage. AD-LIBS is therefore likely to be useful in studies of non-model or ancient organisms that lack large amounts of genomic DNA. AD-LIBS can therefore expand the range of studies in which admixture mapping is a viable tool.

  3. On the distance of genetic relationships and the accuracy of genomic prediction in pig breeding.

    PubMed

    Meuwissen, Theo H E; Odegard, Jorgen; Andersen-Ranberg, Ina; Grindflek, Eli

    2014-08-01

    With the advent of genomic selection, alternative relationship matrices are used in animal breeding, which vary in their coverage of distant relationships due to old common ancestors. Relationships based on pedigree (A) and linkage analysis (GLA) cover only recent relationships because of the limited depth of the known pedigree. Relationships based on identity-by-state (G) include relationships up to the age of the SNP (single nucleotide polymorphism) mutations. We hypothesised that the latter relationships were too old, since QTL (quantitative trait locus) mutations for traits under selection were probably more recent than the SNPs on a chip, which are typically selected for high minor allele frequency. In addition, A and GLA relationships are too recent to cover genetic differences accurately. Thus, we devised a relationship matrix that considered intermediate-aged relationships and compared all these relationship matrices for their accuracy of genomic prediction in a pig breeding situation. Haplotypes were constructed and used to build a haplotype-based relationship matrix (GH), which considers more intermediate-aged relationships, since haplotypes recombine more quickly than SNPs mutate. Dense genotypes (38 453 SNPs) on 3250 elite breeding pigs were combined with phenotypes for growth rate (2668 records), lean meat percentage (2618), weight at three weeks of age (7387) and number of teats (5851) to estimate breeding values for all animals in the pedigree (8187 animals) using the aforementioned relationship matrices. Phenotypes on the youngest 424 to 486 animals were masked and predicted in order to assess the accuracy of the alternative genomic predictions. Correlations between the relationships and regressions of older on younger relationships revealed that the age of the relationships increased in the order A, GLA, GH and G. Use of genomic relationship matrices yielded significantly higher prediction accuracies than A. GH and G, differed not significantly

  4. Strong signatures of selection in the domestic pig genome.

    PubMed

    Rubin, Carl-Johan; Megens, Hendrik-Jan; Martinez Barrio, Alvaro; Maqbool, Khurram; Sayyab, Shumaila; Schwochow, Doreen; Wang, Chao; Carlborg, Örjan; Jern, Patric; Jørgensen, Claus B; Archibald, Alan L; Fredholm, Merete; Groenen, Martien A M; Andersson, Leif

    2012-11-27

    Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig--the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection.

  5. Germline Transgenic Pigs by Sleeping Beauty Transposition in Porcine Zygotes and Targeted Integration in the Pig Genome

    PubMed Central

    Garrels, Wiebke; Mátés, Lajos; Holler, Stephanie; Dalda, Anna; Taylor, Ulrike; Petersen, Björn; Niemann, Heiner; Izsvák, Zsuzsanna; Ivics, Zoltán; Kues, Wilfried A.

    2011-01-01

    Genetic engineering can expand the utility of pigs for modeling human diseases, and for developing advanced therapeutic approaches. However, the inefficient production of transgenic pigs represents a technological bottleneck. Here, we assessed the hyperactive Sleeping Beauty (SB100X) transposon system for enzyme-catalyzed transgene integration into the embryonic porcine genome. The components of the transposon vector system were microinjected as circular plasmids into the cytoplasm of porcine zygotes, resulting in high frequencies of transgenic fetuses and piglets. The transgenic animals showed normal development and persistent reporter gene expression for >12 months. Molecular hallmarks of transposition were confirmed by analysis of 25 genomic insertion sites. We demonstrate germ-line transmission, segregation of individual transposons, and continued, copy number-dependent transgene expression in F1-offspring. In addition, we demonstrate target-selected gene insertion into transposon-tagged genomic loci by Cre-loxP-based cassette exchange in somatic cells followed by nuclear transfer. Transposase-catalyzed transgenesis in a large mammalian species expands the arsenal of transgenic technologies for use in domestic animals and will facilitate the development of large animal models for human diseases. PMID:21897845

  6. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes

    PubMed Central

    2012-01-01

    Background Carcass fatness is an important trait in most pig breeding programs. Following market requests, breeding plans for fresh pork consumption are usually designed to reduce carcass fat content and increase lean meat deposition. However, the Italian pig industry is mainly devoted to the production of Protected Designation of Origin dry cured hams: pigs are slaughtered at around 160 kg of live weight and the breeding goal aims at maintaining fat coverage, measured as backfat thickness to avoid excessive desiccation of the hams. This objective has shaped the genetic pool of Italian heavy pig breeds for a few decades. In this study we applied a selective genotyping approach within a population of ~ 12,000 performance tested Italian Large White pigs. Within this population, we selectively genotyped 304 pigs with extreme and divergent backfat thickness estimated breeding value by the Illumina PorcineSNP60 BeadChip and performed a genome wide association study to identify loci associated to this trait. Results We identified 4 single nucleotide polymorphisms with P≤5.0E-07 and additional 119 ones with 5.0E-07genome wide association studies for human obesity. Conclusions Further investigations are needed to evaluate the effects of the identified single nucleotide polymorphisms associated with backfat thickness on other traits as a pre-requisite for practical applications in breeding programs. Reported results could improve our understanding of the

  7. Strong signatures of selection in the domestic pig genome

    PubMed Central

    Rubin, Carl-Johan; Megens, Hendrik-Jan; Barrio, Alvaro Martinez; Maqbool, Khurram; Sayyab, Shumaila; Schwochow, Doreen; Wang, Chao; Carlborg, Örjan; Jern, Patric; Jørgensen, Claus B.; Archibald, Alan L.; Fredholm, Merete; Groenen, Martien A. M.; Andersson, Leif

    2012-01-01

    Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection. PMID:23151514

  8. Rapid non-genomic effects of glucocorticoids on oxidative stress in a guinea pig model of asthma.

    PubMed

    Long, Fei; Wang, Yan; Qi, Hui-Hui; Zhou, Xin; Jin, Xian-Qiao

    2008-03-01

    Glucocorticoids (GC) may exert therapeutic effects in asthma by a rapid non-genomic mechanism. The lungs of asthmatic patients are exposed to oxidative stress, which is believed to be critical in the pathogenesis of asthma. The aim of this study was to investigate whether GC exert a rapid non-genomic effect on oxidative stress in asthmatic guinea pigs. The guinea pig asthma model was used to assess inhibitory effects of budesonide (BUD) on oxidative stress. BAL fluid (BALF), trolox equivalent antioxidant capacity and lung manganese superoxide dismutase (MnSOD) activity were measured by spectrophotometry. Superoxide anion production was measured by cytochrome c reduction assay. Oxidative stress occurred within minutes following antigen challenge and BUD reduced the severity of oxidative stress in asthmatic guinea pigs within 15 min. BUD significantly decreased BALF trolox equivalent antioxidant capacity and lung MnSOD activity, as compared with those of vehicle-treated asthmatic guinea pigs (P < 0.05). Additionally, BUD rapidly inhibited in vitro superoxide anion production by BALF cells and bronchi harvested from sensitized animals. These rapid effects were not blocked by the GC receptor antagonist RU486 and/or the protein synthesis inhibitor cycloheximide. BUD reduced oxidative stress in a guinea pig model of asthma by a rapid non-genomic mechanism. These data suggest new mechanisms whereby GC treatments may benefit asthma.

  9. Whole Genome Sequence Analysis of Pig Respiratory Bacterial Pathogens with Elevated Minimum Inhibitory Concentrations for Macrolides.

    PubMed

    Dayao, Denise Ann Estarez; Seddon, Jennifer M; Gibson, Justine S; Blackall, Patrick J; Turni, Conny

    2016-10-01

    Macrolides are often used to treat and control bacterial pathogens causing respiratory disease in pigs. This study analyzed the whole genome sequences of one clinical isolate of Actinobacillus pleuropneumoniae, Haemophilus parasuis, Pasteurella multocida, and Bordetella bronchiseptica, all isolated from Australian pigs to identify the mechanism underlying the elevated minimum inhibitory concentrations (MICs) for erythromycin, tilmicosin, or tulathromycin. The H. parasuis assembled genome had a nucleotide transition at position 2059 (A to G) in the six copies of the 23S rRNA gene. This mutation has previously been associated with macrolide resistance but this is the first reported mechanism associated with elevated macrolide MICs in H. parasuis. There was no known macrolide resistance mechanism identified in the other three bacterial genomes. However, strA and sul2, aminoglycoside and sulfonamide resistance genes, respectively, were detected in one contiguous sequence (contig 1) of A. pleuropneumoniae assembled genome. This contig was identical to plasmids previously identified in Pasteurellaceae. This study has provided one possible explanation of elevated MICs to macrolides in H. parasuis. Further studies are necessary to clarify the mechanism causing the unexplained macrolide resistance in other Australian pig respiratory pathogens including the role of efflux systems, which were detected in all analyzed genomes.

  10. A High-Coverage Yersinia pestis Genome from a Sixth-Century Justinianic Plague Victim

    PubMed Central

    Feldman, Michal; Harbeck, Michaela; Keller, Marcel; Spyrou, Maria A.; Rott, Andreas; Trautmann, Bernd; Scholz, Holger C.; Päffgen, Bernd; Peters, Joris; McCormick, Michael; Bos, Kirsten; Herbig, Alexander; Krause, Johannes

    2016-01-01

    The Justinianic Plague, which started in the sixth century and lasted to the mid eighth century, is thought to be the first of three historically documented plague pandemics causing massive casualties. Historical accounts and molecular data suggest the bacterium Yersinia pestis as its etiological agent. Here we present a new high-coverage (17.9-fold) Y. pestis genome obtained from a sixth-century skeleton recovered from a southern German burial site close to Munich. The reconstructed genome enabled the detection of 30 unique substitutions as well as structural differences that have not been previously described. We report indels affecting a lacl family transcription regulator gene as well as nonsynonymous substitutions in the nrdE, fadJ, and pcp genes, that have been suggested as plague virulence determinants or have been shown to be upregulated in different models of plague infection. In addition, we identify 19 false positive substitutions in a previously published lower-coverage Y. pestis genome from another archaeological site of the same time period and geographical region that is otherwise genetically identical to the high-coverage genome sequence reported here, suggesting low-genetic diversity of the plague during the sixth century in rural southern Germany. PMID:27578768

  11. Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing.

    PubMed

    Lee, Carol; Moroldo, Marco; Perdomo-Sabogal, Alvaro; Mach, Núria; Marthey, Sylvain; Lecardonnel, Jérôme; Wahlberg, Per; Chong, Amanda Y; Estellé, Jordi; Ho, Simon Y W; Rogel-Gaillard, Claire; Gongora, Jaime

    2018-06-01

    The major histocompatibility complex (MHC) is a key genomic model region for understanding the evolution of gene families and the co-evolution between host and pathogen. To date, MHC studies have mostly focused on species from major vertebrate lineages. The evolution of MHC classical (Ia) and non-classical (Ib) genes in pigs has attracted interest because of their antigen presentation roles as part of the adaptive immune system. The pig family Suidae comprises over 18 extant species (mostly wild), but only the domestic pig has been extensively sequenced and annotated. To address this, we used a DNA-capture approach, with probes designed from the domestic pig genome, to generate MHC data for 11 wild species of pigs and their closest living family, Tayassuidae. The approach showed good efficiency for wild pigs (~80% reads mapped, ~87× coverage), compared to tayassuids (~12% reads mapped, ~4× coverage). We retrieved 145 MHC loci across both families. Phylogenetic analyses show that the class Ia and Ib genes underwent multiple duplications and diversifications before suids and tayassuids diverged from their common ancestor. The histocompatibility genes mostly form orthologous groups and there is genetic differentiation for most of these genes between Eurasian and sub-Saharan African wild pigs. Tests of selection showed that the peptide-binding region of class Ib genes was under positive selection. These findings contribute to better understanding of the evolutionary history of the MHC, specifically, the class I genes, and provide useful data for investigating the immune response of wild populations against pathogens.

  12. Can multi-subpopulation reference sets improve the genomic predictive ability for pigs?

    PubMed

    Fangmann, A; Bergfelder-Drüing, S; Tholen, E; Simianer, H; Erbe, M

    2015-12-01

    In most countries and for most livestock species, genomic evaluations are obtained from within-breed analyses. To achieve reliable breeding values, however, a sufficient reference sample size is essential. To increase this size, the use of multibreed reference populations for small populations is considered a suitable option in other species. Over decades, the separate breeding work of different pig breeding organizations in Germany has led to stratified subpopulations in the breed German Large White. Due to this fact and the limited number of Large White animals available in each organization, there was a pressing need for ascertaining if multi-subpopulation genomic prediction is superior compared with within-subpopulation prediction in pigs. Direct genomic breeding values were estimated with genomic BLUP for the trait "number of piglets born alive" using genotype data (Illumina Porcine 60K SNP BeadChip) from 2,053 German Large White animals from five different commercial pig breeding companies. To assess the prediction accuracy of within- and multi-subpopulation reference sets, a random 5-fold cross-validation with 20 replications was performed. The five subpopulations considered were only slightly differentiated from each other. However, the prediction accuracy of the multi-subpopulations approach was not better than that of the within-subpopulation evaluation, for which the predictive ability was already high. Reference sets composed of closely related multi-subpopulation sets performed better than sets of distantly related subpopulations but not better than the within-subpopulation approach. Despite the low differentiation of the five subpopulations, the genetic connectedness between these different subpopulations seems to be too small to improve the prediction accuracy by applying multi-subpopulation reference sets. Consequently, resources should be used for enlarging the reference population within subpopulation, for example, by adding genotyped females.

  13. Variant calling in low-coverage whole genome sequencing of a Native American population sample.

    PubMed

    Bizon, Chris; Spiegel, Michael; Chasse, Scott A; Gizer, Ian R; Li, Yun; Malc, Ewa P; Mieczkowski, Piotr A; Sailsbery, Josh K; Wang, Xiaoshu; Ehlers, Cindy L; Wilhelmsen, Kirk C

    2014-01-30

    The reduction in the cost of sequencing a human genome has led to the use of genotype sampling strategies in order to impute and infer the presence of sequence variants that can then be tested for associations with traits of interest. Low-coverage Whole Genome Sequencing (WGS) is a sampling strategy that overcomes some of the deficiencies seen in fixed content SNP array studies. Linkage-disequilibrium (LD) aware variant callers, such as the program Thunder, may provide a calling rate and accuracy that makes a low-coverage sequencing strategy viable. We examined the performance of an LD-aware variant calling strategy in a population of 708 low-coverage whole genome sequences from a community sample of Native Americans. We assessed variant calling through a comparison of the sequencing results to genotypes measured in 641 of the same subjects using a fixed content first generation exome array. The comparison was made using the variant calling routines GATK Unified Genotyper program and the LD-aware variant caller Thunder. Thunder was found to improve concordance in a coverage dependent fashion, while correctly calling nearly all of the common variants as well as a high percentage of the rare variants present in the sample. Low-coverage WGS is a strategy that appears to collect genetic information intermediate in scope between fixed content genotyping arrays and deep-coverage WGS. Our data suggests that low-coverage WGS is a viable strategy with a greater chance of discovering novel variants and associations than fixed content arrays for large sample association analyses.

  14. A HIGH COVERAGE GENOME SEQUENCE FROM AN ARCHAIC DENISOVAN INDIVIDUAL

    PubMed Central

    Meyer, Matthias; Kircher, Martin; Gansauge, Marie-Theres; Li, Heng; Racimo, Fernando; Mallick, Swapan; Schraiber, Joshua G.; Jay, Flora; Prüfer, Kay; de Filippo, Cesare; Sudmant, Peter H.; Alkan, Can; Fu, Qiaomei; Do, Ron; Rohland, Nadin; Tandon, Arti; Siebauer, Michael; Green, Richard E.; Bryc, Katarzyna; Briggs, Adrian W.; Stenzel, Udo; Dabney, Jesse; Shendure, Jay; Kitzman, Jacob; Hammer, Michael F.; Shunkov, Michael V.; Derevianko, Anatoli P.; Patterson, Nick; Andrés, Aida M.; Eichler, Evan E.; Slatkin, Montgomery; Reich, David; Kelso, Janet; Pääbo, Svante

    2013-01-01

    We present a DNA library preparation method that has allowed us to reconstruct a high coverage (30X) genome sequence of a Denisovan, an extinct relative of Neandertals. The quality of this genome allows a direct estimation of Denisovan heterozygosity indicating that genetic diversity in these archaic hominins was extremely low. It also allows tentative dating of the specimen on the basis of “missing evolution” in its genome, detailed measurements of Denisovan and Neandertal admixture into present-day human populations, and the generation of a near-complete catalog of genetic changes that swept to high frequency in modern humans since their divergence from Denisovans. PMID:22936568

  15. Complete genome analysis of porcine kobuviruses from the feces of pigs in Japan.

    PubMed

    Akagami, Masataka; Ito, Mika; Niira, Kazutaka; Kuroda, Moegi; Masuda, Tsuneyuki; Haga, Kei; Tsuchiaka, Shinobu; Naoi, Yuki; Kishimoto, Mai; Sano, Kaori; Omatsu, Tsutomu; Aoki, Hiroshi; Katayama, Yukie; Oba, Mami; Oka, Tomoichiro; Ichimaru, Toru; Yamasato, Hiroshi; Ouchi, Yoshinao; Shirai, Junsuke; Katayama, Kazuhiko; Mizutani, Tetsuya; Nagai, Makoto

    2017-08-01

    Porcine kobuviruses (PoKoVs) are ubiquitously distributed in pig populations worldwide and are thought to be enteric viruses in swine. Although PoKoVs have been detected in pigs in Japan, no complete genome data for Japanese PoKoVs are available. In the present study, 24 nearly complete or complete sequences of the PoKoV genome obtained from 10 diarrheic feces and 14 non-diarrheic feces of Japanese pigs were analyzed using a metagenomics approach. Japanese PoKoVs shared 85.2-100% identity with the complete coding nucleotide (nt) sequences and the closest relationship of 85.1-98.3% with PoKoVs from other countries. Twenty of 24 Japanese PoKoVs carried a deletion of 90 nt in the 2B coding region. Phylogenetic tree analyses revealed that PoKoVs were not grouped according to their geographical region of origin and the phylogenetic trees of the L, P1, P2, and P3 genetic regions showed topologies different from each other. Similarity plot analysis using strains from a single farm revealed partially different similarity patterns among strains from identical farm origins, suggesting that recombination events had occurred. These results indicate that various PoKoV strains are prevalent and not restricted geographically on pig farms worldwide and the coexistence of multiple strains leads to recombination events of PoKoVs and contributes to the genetic diversity and evolution of PoKoVs.

  16. Comparison of dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs.

    PubMed

    Azevedo, C F; Nascimento, M; Silva, F F; Resende, M D V; Lopes, P S; Guimarães, S E F; Glória, L S

    2015-10-09

    A significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs.

  17. A High-Coverage Yersinia pestis Genome from a Sixth-Century Justinianic Plague Victim.

    PubMed

    Feldman, Michal; Harbeck, Michaela; Keller, Marcel; Spyrou, Maria A; Rott, Andreas; Trautmann, Bernd; Scholz, Holger C; Päffgen, Bernd; Peters, Joris; McCormick, Michael; Bos, Kirsten; Herbig, Alexander; Krause, Johannes

    2016-11-01

    The Justinianic Plague, which started in the sixth century and lasted to the mid eighth century, is thought to be the first of three historically documented plague pandemics causing massive casualties. Historical accounts and molecular data suggest the bacterium Yersinia pestis as its etiological agent. Here we present a new high-coverage (17.9-fold) Y. pestis genome obtained from a sixth-century skeleton recovered from a southern German burial site close to Munich. The reconstructed genome enabled the detection of 30 unique substitutions as well as structural differences that have not been previously described. We report indels affecting a lacl family transcription regulator gene as well as nonsynonymous substitutions in the nrdE, fadJ, and pcp genes, that have been suggested as plague virulence determinants or have been shown to be upregulated in different models of plague infection. In addition, we identify 19 false positive substitutions in a previously published lower-coverage Y. pestis genome from another archaeological site of the same time period and geographical region that is otherwise genetically identical to the high-coverage genome sequence reported here, suggesting low-genetic diversity of the plague during the sixth century in rural southern Germany. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes.

    PubMed

    Frantz, Laurent A F; Schraiber, Joshua G; Madsen, Ole; Megens, Hendrik-Jan; Cagan, Alex; Bosse, Mirte; Paudel, Yogesh; Crooijmans, Richard P M A; Larson, Greger; Groenen, Martien A M

    2015-10-01

    Traditionally, the process of domestication is assumed to be initiated by humans, involve few individuals and rely on reproductive isolation between wild and domestic forms. We analyzed pig domestication using over 100 genome sequences and tested whether pig domestication followed a traditional linear model or a more complex, reticulate model. We found that the assumptions of traditional models, such as reproductive isolation and strong domestication bottlenecks, are incompatible with the genetic data. In addition, our results show that, despite gene flow, the genomes of domestic pigs have strong signatures of selection at loci that affect behavior and morphology. We argue that recurrent selection for domestic traits likely counteracted the homogenizing effect of gene flow from wild boars and created 'islands of domestication' in the genome. Our results have major ramifications for the understanding of animal domestication and suggest that future studies should employ models that do not assume reproductive isolation.

  19. Genome Sequencing of Extended-Spectrum β-Lactamase (ESBL)-Producing Klebsiella pneumoniae Isolated from Pigs and Abattoir Workers in Cameroon

    PubMed Central

    Founou, Luria L.; Founou, Raspail C.; Allam, Mushal; Ismail, Arshad; Djoko, Cyrille F.; Essack, Sabiha Y.

    2018-01-01

    Background and objectives: Extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae is a serious public health issue globally. In this study, the antibiotic resistance genes, virulence factors, mobile genetic elements, and genetic lineages of circulating ESBL-producing K. pneumoniae strains isolated from pigs and humans in Cameroonian abattoirs were investigated using whole genome sequencing (WGS), in order to ascertain zoonotic transmission (viz. from animals to humans and/or vice-versa) in the food chain. Methods: During March–October 2016, 288 nasal and rectal pooled samples from 432 pigs as well as nasal and hand swabs from 82 humans were collected from Cameroon and South Africa. Seven ESBL-producing K. pneumoniae circulating in Cameroonian pig abattoirs were selected and their genomic DNA sequenced using an Illumina MiSeq platform. Generated reads were de novo assembled using the Qiagen CLC Genomics Workbench and SPAdes. The assembled contigs were annotated using RAST and antibiotic resistance genes, virulence factors, plasmids, and bacteriophages were identified with ResFinder, Virulence Finder, PlasmidFinder, and PHAST, respectively. Results: ESBL-producing K. pneumoniae were detected in pigs (34/158; 21.52%) and exposed workers (8/71; 11.26%) in Cameroon only. The circulating K. pneumoniae strains were dominated principally by the sequence type (ST) 14 and 39. In addition, the “high-risk” ST307 clone and two novel STs assigned ST2958 and ST2959 were detected. Genomic analysis identified various antibiotic resistance genes associated with resistance to β-lactams, aminoglycosides, fluoroquinolones, macrolide, lincosamide and streptogramins, rifampicin, sulfonamides, trimethoprim, phenicols and tetracycline. None of the ESBL-producing K. pneumoniae harbored virulence genes. Intermingled K. pneumoniae populations were observed between pig- and human-source within and across abattoirs in the country. Conclusion: Our study shows that ESBL

  20. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing

    Treesearch

    Shannon C.K. Straub; Mark Fishbein; Tatyana Livshult; Zachary Foster; Matthew Parks; Kevin Weitemier; Richard C. Cronn; Aaron Liston

    2011-01-01

    Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in...

  1. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization

    USDA-ARS?s Scientific Manuscript database

    Meishan is a famous Chinese indigenous pig breed known for its extremely high fecundity. To explore if Meishan has unique evolutionary process and genome characteristics differing from other pig breeds, we systematically analyzed its genetic divergence, and demographic history by large-scale reseque...

  2. Genome-wide detection of selection signatures in Chinese indigenous Laiwu pigs revealed candidate genes regulating fat deposition in muscle.

    PubMed

    Chen, Minhui; Wang, Jiying; Wang, Yanping; Wu, Ying; Fu, Jinluan; Liu, Jian-Feng

    2018-05-18

    Currently, genome-wide scans for positive selection signatures in commercial breed have been investigated. However, few studies have focused on selection footprints of indigenous breeds. Laiwu pig is an invaluable Chinese indigenous pig breed with extremely high proportion of intramuscular fat (IMF), and an excellent model to detect footprint as the result of natural and artificial selection for fat deposition in muscle. In this study, based on GeneSeek Genomic profiler Porcine HD data, three complementary methods, F ST , iHS (integrated haplotype homozygosity score) and CLR (composite likelihood ratio), were implemented to detect selection signatures in the whole genome of Laiwu pigs. Totally, 175 candidate selected regions were obtained by at least two of the three methods, which covered 43.75 Mb genomic regions and corresponded to 1.79% of the genome sequence. Gene annotation of the selected regions revealed a list of functionally important genes for feed intake and fat deposition, reproduction, and immune response. Especially, in accordance to the phenotypic features of Laiwu pigs, among the candidate genes, we identified several genes, NPY1R, NPY5R, PIK3R1 and JAKMIP1, involved in the actions of two sets of neurons, which are central regulators in maintaining the balance between food intake and energy expenditure. Our results identified a number of regions showing signatures of selection, as well as a list of functionally candidate genes with potential effect on phenotypic traits, especially fat deposition in muscle. Our findings provide insights into the mechanisms of artificial selection of fat deposition and further facilitate follow-up functional studies.

  3. Detection of genomic structural variations in Guizhou indigenous pigs and the comparison with other breeds

    PubMed Central

    Ran, Xueqin; Wang, Jiafu; Li, Sheng; Liu, Jianfeng

    2018-01-01

    Genomic structural variation (SV) is noticed for the contribution to genetic diversity and phenotypic changes. Guizhou indigenous pig (GZP) has been raised for hundreds of years with many special characteristics. The present paper aimed to uncover the influence of SV on gene polymorphism and the genetic mechanisms of phenotypic traits for GZP. Eighteen GZPs were chosen for resequencing by Illumina sequencing platform. The confident SVs of GZP were called out by both programs of pindel and softSV simultaneously and compared with the SVs deduced from the genomic data of European pig (EUP) and the native pig outside of Guizhou, China (NPOG). A total of 39,166 SVs were detected and covered 27.37 Mb of pig genome. All of 76 SVs were confirmed in GZP pig population by PCR method. The SVs numbers in NPOG and GZP were about 1.8 to 1.9 times higher than that in EUP. And a SV hotspot was found out from the 20 Mb of chromosome X of GZP, which harbored 29 genes and focused on histone modification. More than half of SVs was positioned in the intergenic regions and about one third of SVs in the introns of genes. And we found that SVs tended to locate in genes produced multi-transcripts, in which a positive correlation was found out between the numbers of SV and the gene transcripts. It illustrated that the primary mode of SVs might function on the regulation of gene expression or the transcripts splicing process. A total of 1,628 protein-coding genes were disturbed by 1,956 SVs specific in GZP, in which 93 GZP-specific SV-related genes would lose their functions due to the SV interference and gathered in reproduction ability. Interestingly, the 1,628 protein-coding genes were mainly enriched in estrogen receptor binding, steroid hormone receptor binding, retinoic acid receptor binding, oxytocin signaling pathway, mTOR signaling pathway, axon guidance and cholinergic synapse pathways. It suggested that SV might be a reason for the strong adaptability and low fecundity of GZP, and

  4. Detection of genomic structural variations in Guizhou indigenous pigs and the comparison with other breeds.

    PubMed

    Liu, Chang; Ran, Xueqin; Wang, Jiafu; Li, Sheng; Liu, Jianfeng

    2018-01-01

    Genomic structural variation (SV) is noticed for the contribution to genetic diversity and phenotypic changes. Guizhou indigenous pig (GZP) has been raised for hundreds of years with many special characteristics. The present paper aimed to uncover the influence of SV on gene polymorphism and the genetic mechanisms of phenotypic traits for GZP. Eighteen GZPs were chosen for resequencing by Illumina sequencing platform. The confident SVs of GZP were called out by both programs of pindel and softSV simultaneously and compared with the SVs deduced from the genomic data of European pig (EUP) and the native pig outside of Guizhou, China (NPOG). A total of 39,166 SVs were detected and covered 27.37 Mb of pig genome. All of 76 SVs were confirmed in GZP pig population by PCR method. The SVs numbers in NPOG and GZP were about 1.8 to 1.9 times higher than that in EUP. And a SV hotspot was found out from the 20 Mb of chromosome X of GZP, which harbored 29 genes and focused on histone modification. More than half of SVs was positioned in the intergenic regions and about one third of SVs in the introns of genes. And we found that SVs tended to locate in genes produced multi-transcripts, in which a positive correlation was found out between the numbers of SV and the gene transcripts. It illustrated that the primary mode of SVs might function on the regulation of gene expression or the transcripts splicing process. A total of 1,628 protein-coding genes were disturbed by 1,956 SVs specific in GZP, in which 93 GZP-specific SV-related genes would lose their functions due to the SV interference and gathered in reproduction ability. Interestingly, the 1,628 protein-coding genes were mainly enriched in estrogen receptor binding, steroid hormone receptor binding, retinoic acid receptor binding, oxytocin signaling pathway, mTOR signaling pathway, axon guidance and cholinergic synapse pathways. It suggested that SV might be a reason for the strong adaptability and low fecundity of GZP, and

  5. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing

    PubMed Central

    Staton, Margaret; Best, Teodora; Khodwekar, Sudhir; Owusu, Sandra; Xu, Tao; Xu, Yi; Jennings, Tara; Cronn, Richard; Arumuganathan, A. Kathiravetpilla; Coggeshall, Mark; Gailing, Oliver; Liang, Haiying; Romero-Severson, Jeanne; Schlarbaum, Scott; Carlson, John E.

    2015-01-01

    Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence. PMID:26698853

  6. Genomic Characteristics of Bifidobacterium thermacidophilum Pig Isolates and Wild Boar Isolates Reveal the Unique Presence of a Putative Mobile Genetic Element with tetW for Pig Farm Isolates

    PubMed Central

    Tsuchida, Sayaka; Maruyama, Fumito; Ogura, Yoshitoshi; Toyoda, Atsushi; Hayashi, Tetsuya; Okuma, Moriya; Ushida, Kazunari

    2017-01-01

    Genomic analysis was performed on seven strains of Bifidobacterium thermacidophilum, a Sus-associated Bifidobacterium. Three strains from the feces of domestic pigs (Sus scrofa domesticus) and four strains from the rectal feces of free-range Japanese wild boars (S. s. scrofa) were compared. The phylogenetic position of these isolates suggested by genomic analyses were not concordant with that suggested by 16S rRNA sequence. There was biased distribution of genes for virulence, phage, metabolism of aromatic compounds, iron acquisition, cell division, and DNA metabolism. In particular four wild boar isolates harbored fiber-degrading enzymes, such as endoglucanase, while two of the pig isolates obtained from those grown under an intensive feeding practice with routine use of antimicrobials, particularly tetracycline harbored a tetracycline resistance gene, which was further proved functional by disk diffusion test. The tetW gene is associated with a serine recombinase of an apparently non-bifidobacterial origin. The insertion site of the tetW cassette was precisely defined by analyzing the corresponding genomic regions in the other tetracycline-susceptible isolates. The cassette may have been transferred from some other bacteria in the pig gut. PMID:28861055

  7. Evidence of evolutionary history and selective sweeps in the genome of Meishan pig reveals its genetic and phenotypic characterization.

    PubMed

    Zhao, Pengju; Yu, Ying; Feng, Wen; Du, Heng; Yu, Jian; Kang, Huimin; Zheng, Xianrui; Wang, Zhiquan; Liu, George E; Ernst, Catherine W; Ran, Xueqin; Wang, Jiafu; Liu, Jian-Feng

    2018-05-01

    Meishan is a pig breed indigenous to China and famous for its high fecundity. The traits of Meishan are strongly associated with its distinct evolutionary history and domestication. However, the genomic evidence linking the domestication of Meishan pigs with its unique features is still poorly understood. The goal of this study is to investigate the genomic signatures and evolutionary evidence related to the phenotypic traits of Meishan via large-scale sequencing. We found that the unique domestication of Meishan pigs occurred in the Taihu Basin area between the Majiabang and Liangzhu Cultures, during which 300 protein-coding genes have underwent positive selection. Notably, enrichment of the FoxO signaling pathway with significant enrichment signal and the harbored gene IGF1R were likely associated with the high fertility of Meishan pigs. Moreover, NFKB1 exhibited strong selective sweep signals and positively participated in hyaluronan biosynthesis as the key gene of NF-kB signaling, which may have resulted in the wrinkled skin and face of Meishan pigs. Particularly, three population-specific synonymous single-nucleotide variants occurred in PYROXD1, MC1R, and FAM83G genes; the T305C substitution in the MCIR gene explained the black coat of the Meishan pigs well. In addition, the shared haplotypes between Meishan and Duroc breeds confirmed the previous Asian-derived introgression and demonstrated the specific contribution of Meishan pigs. These findings will help us explain the unique genetic and phenotypic characteristics of Meishan pigs and offer a plausible method for their utilization of Meishan pigs as valuable genetic resources in pig breeding and as an animal model for human wrinkled skin disease research.

  8. Low-coverage, whole-genome sequencing of Artocarpus camansi (Moraceae) for phylogenetic marker development and gene discovery1

    PubMed Central

    Gardner, Elliot M.; Johnson, Matthew G.; Ragone, Diane; Wickett, Norman J.; Zerega, Nyree J. C.

    2016-01-01

    Premise of the study: We used moderately low-coverage (17×) whole-genome sequencing of Artocarpus camansi (Moraceae) to develop genomic resources for Artocarpus and Moraceae. Methods and Results: A de novo assembly of Illumina short reads (251,378,536 pairs, 2 × 100 bp) accounted for 93% of the predicted genome size. Predicted coding regions were used in a three-way orthology search with published genomes of Morus notabilis and Cannabis sativa. Phylogenetic markers for Moraceae were developed from 333 inferred single-copy exons. Ninety-eight putative MADS-box genes were identified. Analysis of all predicted coding regions resulted in preliminary annotation of 49,089 genes. An analysis of synonymous substitutions for pairs of orthologs (Ks analysis) in M. notabilis and A. camansi strongly suggested a lineage-specific whole-genome duplication in Artocarpus. Conclusions: This study substantially increases the genomic resources available for Artocarpus and Moraceae and demonstrates the value of low-coverage de novo assemblies for nonmodel organisms with moderately large genomes. PMID:27437173

  9. Persistency of accuracy of genomic breeding values for different simulated pig breeding programs in developing countries.

    PubMed

    Akanno, E C; Schenkel, F S; Sargolzaei, M; Friendship, R M; Robinson, J A B

    2014-10-01

    Genetic improvement of pigs in tropical developing countries has focused on imported exotic populations which have been subjected to intensive selection with attendant high population-wide linkage disequilibrium (LD). Presently, indigenous pig population with limited selection and low LD are being considered for improvement. Given that the infrastructure for genetic improvement using the conventional BLUP selection methods are lacking, a genome-wide selection (GS) program was proposed for developing countries. A simulation study was conducted to evaluate the option of using 60 K SNP panel and observed amount of LD in the exotic and indigenous pig populations. Several scenarios were evaluated including different size and structure of training and validation populations, different selection methods and long-term accuracy of GS in different population/breeding structures and traits. The training set included previously selected exotic population, unselected indigenous population and their crossbreds. Traits studied included number born alive (NBA), average daily gain (ADG) and back fat thickness (BFT). The ridge regression method was used to train the prediction model. The results showed that accuracies of genomic breeding values (GBVs) in the range of 0.30 (NBA) to 0.86 (BFT) in the validation population are expected if high density marker panels are utilized. The GS method improved accuracy of breeding values better than pedigree-based approach for traits with low heritability and in young animals with no performance data. Crossbred training population performed better than purebreds when validation was in populations with similar or a different structure as in the training set. Genome-wide selection holds promise for genetic improvement of pigs in the tropics. © 2014 Blackwell Verlag GmbH.

  10. A genome-wide association study of social genetic effects in Landrace pigs.

    PubMed

    Hong, Joon Ki; Jeong, Yong Dae; Cho, Eun Seok; Choi, Tae Jeong; Kim, Yong Min; Cho, Kyu Ho; Lee, Jae Bong; Lim, Hyun Tae; Lee, Deuk Hwan

    2018-06-01

    The genetic effects of an individual on the phenotypes of its social partners, such as its pen mates, are known as social genetic effects. This study aims to identify the candidate genes for social (pen-mates') average daily gain (ADG) in pigs by using the genome-wide association approach. Social ADG (sADG) was the average ADG of unrelated pen-mates (strangers). We used the phenotype data (16,802 records) after correcting for batch (week), sex, pen, number of strangers (1 to 7 pigs) in the pen, full-sib rate (0% to 80%) within pen, and age at the end of the test. A total of 1,041 pigs from Landrace breeds were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel, which comprised 61,565 single nucleotide polymorphism (SNP) markers. After quality control, 909 individuals and 39,837 markers remained for sADG in genome-wide association study. We detected five new SNPs, all on chromosome 6, which have not been associated with social ADG or other growth traits to date. One SNP was inside the prostaglandin F2α receptor ( PTGFR ) gene, another SNP was located 22 kb upstream of gene interferon-induced protein 44 ( IFI44 ), and the last three SNPs were between 161 kb and 191 kb upstream of the EGF latrophilin and seven transmembrane domain-containing protein 1 ( ELTD1 ) gene. PTGFR, IFI44, and ELTD1 were never associated with social interaction and social genetic effects in any of the previous studies. The identification of several genomic regions, and candidate genes associated with social genetic effects reported here, could contribute to a better understanding of the genetic basis of interaction traits for ADG. In conclusion, we suggest that the PTGFR, IFI44, and ELTD1 may be used as a molecular marker for sADG, although their functional effect was not defined yet. Thus, it will be of interest to execute association studies in those genes.

  11. Twenty years of artificial directional selection have shaped the genome of the Italian Large White pig breed.

    PubMed

    Schiavo, G; Galimberti, G; Calò, D G; Samorè, A B; Bertolini, F; Russo, V; Gallo, M; Buttazzoni, L; Fontanesi, L

    2016-04-01

    In this study, we investigated at the genome-wide level if 20 years of artificial directional selection based on boar genetic evaluation obtained with a classical BLUP animal model shaped the genome of the Italian Large White pig breed. The most influential boars of this breed (n = 192), born from 1992 (the beginning of the selection program of this breed) to 2012, with an estimated breeding value reliability of >0.85, were genotyped with the Illumina Porcine SNP60 BeadChip. After grouping the boars in eight classes according to their year of birth, filtered single nucleotide polymorphisms (SNPs) were used to evaluate the effects of time on genotype frequency changes using multinomial logistic regression models. Of these markers, 493 had a PBonferroni  < 0.10. However, there was an increasing number of SNPs with a decreasing level of allele frequency changes over time, representing a continuous profile across the genome. The largest proportion of the 493 SNPs was on porcine chromosome (SSC) 7, SSC2, SSC8 and SSC18 for a total of 204 haploblocks. Functional annotations of genomic regions, including the 493 shifted SNPs, reported a few Gene Ontology terms that might underly the biological processes that contributed to increase performances of the pigs over the 20 years of the selection program. The obtained results indicated that the genome of the Italian Large White pigs was shaped by a directional selection program derived by the application of methodologies assuming the infinitesimal model that captured a continuous trend of allele frequency changes in the boar population. © 2015 Stichting International Foundation for Animal Genetics.

  12. Genome and transcriptome of the porcine whipworm Trichuris suis.

    PubMed

    Jex, Aaron R; Nejsum, Peter; Schwarz, Erich M; Hu, Li; Young, Neil D; Hall, Ross S; Korhonen, Pasi K; Liao, Shengguang; Thamsborg, Stig; Xia, Jinquan; Xu, Pengwei; Wang, Shaowei; Scheerlinck, Jean-Pierre Y; Hofmann, Andreas; Sternberg, Paul W; Wang, Jun; Gasser, Robin B

    2014-07-01

    Trichuris (whipworm) infects 1 billion people worldwide and causes a disease (trichuriasis) that results in major socioeconomic losses in both humans and pigs. Trichuriasis relates to an inflammation of the large intestine manifested in bloody diarrhea, and chronic disease can cause malnourishment and stunting in children. Paradoxically, Trichuris of pigs has shown substantial promise as a treatment for human autoimmune disorders, including inflammatory bowel disease (IBD) and multiple sclerosis. Here we report whole-genome sequencing at ∼140-fold coverage of adult male and female T. suis and ∼80-Mb draft assemblies. We explore stage-, sex- and tissue-specific transcription of mRNAs and small noncoding RNAs.

  13. Genome-wide association study and accuracy of genomic prediction for teat number in Duroc pigs using genotyping-by-sequencing.

    PubMed

    Tan, Cheng; Wu, Zhenfang; Ren, Jiangli; Huang, Zhuolin; Liu, Dewu; He, Xiaoyan; Prakapenka, Dzianis; Zhang, Ran; Li, Ning; Da, Yang; Hu, Xiaoxiang

    2017-03-29

    The number of teats in pigs is related to a sow's ability to rear piglets to weaning age. Several studies have identified genes and genomic regions that affect teat number in swine but few common results were reported. The objective of this study was to identify genetic factors that affect teat number in pigs, evaluate the accuracy of genomic prediction, and evaluate the contribution of significant genes and genomic regions to genomic broad-sense heritability and prediction accuracy using 41,108 autosomal single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing on 2936 Duroc boars. Narrow-sense heritability and dominance heritability of teat number estimated by genomic restricted maximum likelihood were 0.365 ± 0.030 and 0.035 ± 0.019, respectively. The accuracy of genomic predictions, calculated as the average correlation between the genomic best linear unbiased prediction and phenotype in a tenfold validation study, was 0.437 ± 0.064 for the model with additive and dominance effects and 0.435 ± 0.064 for the model with additive effects only. Genome-wide association studies (GWAS) using three methods of analysis identified 85 significant SNP effects for teat number on chromosomes 1, 6, 7, 10, 11, 12 and 14. The region between 102.9 and 106.0 Mb on chromosome 7, which was reported in several studies, had the most significant SNP effects in or near the PTGR2, FAM161B, LIN52, VRTN, FCF1, AREL1 and LRRC74A genes. This region accounted for 10.0% of the genomic additive heritability and 8.0% of the accuracy of prediction. The second most significant chromosome region not reported by previous GWAS was the region between 77.7 and 79.7 Mb on chromosome 11, where SNPs in the FGF14 gene had the most significant effect and accounted for 5.1% of the genomic additive heritability and 5.2% of the accuracy of prediction. The 85 significant SNPs accounted for 28.5 to 28.8% of the genomic additive heritability and 35.8 to 36.8% of the accuracy of

  14. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNVs) are large insertions, deletions or duplications in the genome that vary between members of a species and are known to affect a wide variety of phenotypic traits. In this study, we identified CNVs in a population of bulls using low coverage next-generation sequence data....

  15. Exploring Pandora's Box: Potential and Pitfalls of Low Coverage Genome Surveys for Evolutionary Biology

    PubMed Central

    Leese, Florian; Mayer, Christoph; Agrawal, Shobhit; Dambach, Johannes; Dietz, Lars; Doemel, Jana S.; Goodall-Copstake, William P.; Held, Christoph; Jackson, Jennifer A.; Lampert, Kathrin P.; Linse, Katrin; Macher, Jan N.; Nolzen, Jennifer; Raupach, Michael J.; Rivera, Nicole T.; Schubart, Christoph D.; Striewski, Sebastian; Tollrian, Ralph; Sands, Chester J.

    2012-01-01

    High throughput sequencing technologies are revolutionizing genetic research. With this “rise of the machines”, genomic sequences can be obtained even for unknown genomes within a short time and for reasonable costs. This has enabled evolutionary biologists studying genetically unexplored species to identify molecular markers or genomic regions of interest (e.g. micro- and minisatellites, mitochondrial and nuclear genes) by sequencing only a fraction of the genome. However, when using such datasets from non-model species, it is possible that DNA from non-target contaminant species such as bacteria, viruses, fungi, or other eukaryotic organisms may complicate the interpretation of the results. In this study we analysed 14 genomic pyrosequencing libraries of aquatic non-model taxa from four major evolutionary lineages. We quantified the amount of suitable micro- and minisatellites, mitochondrial genomes, known nuclear genes and transposable elements and searched for contamination from various sources using bioinformatic approaches. Our results show that in all sequence libraries with estimated coverage of about 0.02–25%, many appropriate micro- and minisatellites, mitochondrial gene sequences and nuclear genes from different KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways could be identified and characterized. These can serve as markers for phylogenetic and population genetic analyses. A central finding of our study is that several genomic libraries suffered from different biases owing to non-target DNA or mobile elements. In particular, viruses, bacteria or eukaryote endosymbionts contributed significantly (up to 10%) to some of the libraries analysed. If not identified as such, genetic markers developed from high-throughput sequencing data for non-model organisms may bias evolutionary studies or fail completely in experimental tests. In conclusion, our study demonstrates the enormous potential of low-coverage genome survey sequences and suggests

  16. Whole mitochondrial genome sequence for an osteoarthritis model of Guinea pig (Caviidae; Cavia).

    PubMed

    Cui, Xin-Gang; Liu, Cheng-Yao; Wei, Bo; Zhao, Wen-Jian; Zhang, Wen-Feng

    2016-11-01

    Animal models played an important role in osteoarthritis studies. Here, the complete mitochondrial genome sequence of the Guinea pig was reported for the first time. The total length of the mitogenome was 16,797 bp. It contained the typical structure, including two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and one non-coding control region (D-loop region). The overall composition of the mitogenome was estimated to be 34.9% for A, 26.1% for T, 26.0% for C and 13.0% for G showing an A-T (61.0%)-rich feature. This mitochondrial genome sequence will provide new genetic resource into osteoarthritis disease.

  17. Horizontal gene transfer does not occur between sFat-1 transgenic pigs and nontransgenic pigs.

    PubMed

    Tang, M X; Zheng, X M; Hou, J; Qian, L L; Jiang, S W; Cui, W T; Li, K

    2013-03-01

    We previously generated and characterized synthesized fatty acid desaturase-1 (sFat-1) transgenic pigs that had increased concentrations of ω-3 unsaturated fatty acid in their meat. The objective was to assess whether the inserted foreign gene in sFat-1 transgenic pigs was able to transfer and integrate into the genome of nontransgenic pigs by suckling or mating. Tests for suckling-mediated horizontal gene transfer (HGT) included sFat-1 transgenic sows nursing nontransgenic piglets and sFat-1 transgenic piglets suckling nontransgenic sows. Tests for mating-mediated HGT were performed by male sFat-1 transgenic pigs mated with nontransgenic females and female sFat-1 transgenic pigs mated with nontransgenic males. Polymerase chain reaction was used to detect the sFat-1 gene fragment in various tissues sampled from nontransgenic pigs. The foreign target gene sFat-1 was not detected in the genomic DNA of various tissues and organs sampled from nontransgenic pigs. Therefore, we concluded that HGT from transgenic pigs to wild type pigs via suckling or mating was unlikely. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana.

    PubMed

    Nowell, Reuben W; Elsworth, Ben; Oostra, Vicencio; Zwaan, Bas J; Wheat, Christopher W; Saastamoinen, Marjo; Saccheri, Ilik J; Van't Hof, Arjen E; Wasik, Bethany R; Connahs, Heidi; Aslam, Muhammad L; Kumar, Sujai; Challis, Richard J; Monteiro, Antónia; Brakefield, Paul M; Blaxter, Mark

    2017-07-01

    The mycalesine butterfly Bicyclus anynana, the "Squinting bush brown," is a model organism in the study of lepidopteran ecology, development, and evolution. Here, we present a draft genome sequence for B. anynana to serve as a genomics resource for current and future studies of this important model species. Seven libraries with insert sizes ranging from 350 bp to 20 kb were constructed using DNA from an inbred female and sequenced using both Illumina and PacBio technology; 128 Gb of raw Illumina data was filtered to 124 Gb and assembled to a final size of 475 Mb (∼×260 assembly coverage). Contigs were scaffolded using mate-pair, transcriptome, and PacBio data into 10 800 sequences with an N50 of 638 kb (longest scaffold 5 Mb). The genome is comprised of 26% repetitive elements and encodes a total of 22 642 predicted protein-coding genes. Recovery of a BUSCO set of core metazoan genes was almost complete (98%). Overall, these metrics compare well with other recently published lepidopteran genomes. We report a high-quality draft genome sequence for Bicyclus anynana. The genome assembly and annotated gene models are available at LepBase (http://ensembl.lepbase.org/index.html). © The Authors 2017. Published by Oxford University Press.

  19. A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana

    PubMed Central

    Elsworth, Ben; Oostra, Vicencio; Zwaan, Bas J.; Wheat, Christopher W.; Saastamoinen, Marjo; Saccheri, Ilik J.; van’t Hof, Arjen E.; Wasik, Bethany R.; Connahs, Heidi; Aslam, Muhammad L.; Kumar, Sujai; Challis, Richard J.; Monteiro, Antónia; Brakefield, Paul M.

    2017-01-01

    Abstract The mycalesine butterfly Bicyclus anynana, the “Squinting bush brown,” is a model organism in the study of lepidopteran ecology, development, and evolution. Here, we present a draft genome sequence for B. anynana to serve as a genomics resource for current and future studies of this important model species. Seven libraries with insert sizes ranging from 350 bp to 20 kb were constructed using DNA from an inbred female and sequenced using both Illumina and PacBio technology; 128 Gb of raw Illumina data was filtered to 124 Gb and assembled to a final size of 475 Mb (∼×260 assembly coverage). Contigs were scaffolded using mate-pair, transcriptome, and PacBio data into 10 800 sequences with an N50 of 638 kb (longest scaffold 5 Mb). The genome is comprised of 26% repetitive elements and encodes a total of 22 642 predicted protein-coding genes. Recovery of a BUSCO set of core metazoan genes was almost complete (98%). Overall, these metrics compare well with other recently published lepidopteran genomes. We report a high-quality draft genome sequence for Bicyclus anynana. The genome assembly and annotated gene models are available at LepBase (http://ensembl.lepbase.org/index.html). PMID:28486658

  20. Error and Error Mitigation in Low-Coverage Genome Assemblies

    PubMed Central

    Hubisz, Melissa J.; Lin, Michael F.; Kellis, Manolis; Siepel, Adam

    2011-01-01

    The recent release of twenty-two new genome sequences has dramatically increased the data available for mammalian comparative genomics, but twenty of these new sequences are currently limited to ∼2× coverage. Here we examine the extent of sequencing error in these 2× assemblies, and its potential impact in downstream analyses. By comparing 2× assemblies with high-quality sequences from the ENCODE regions, we estimate the rate of sequencing error to be 1–4 errors per kilobase. While this error rate is fairly modest, sequencing error can still have surprising effects. For example, an apparent lineage-specific insertion in a coding region is more likely to reflect sequencing error than a true biological event, and the length distribution of coding indels is strongly distorted by error. We find that most errors are contributed by a small fraction of bases with low quality scores, in particular, by the ends of reads in regions of single-read coverage in the assembly. We explore several approaches for automatic sequencing error mitigation (SEM), making use of the localized nature of sequencing error, the fact that it is well predicted by quality scores, and information about errors that comes from comparisons across species. Our automatic methods for error mitigation cannot replace the need for additional sequencing, but they do allow substantial fractions of errors to be masked or eliminated at the cost of modest amounts of over-correction, and they can reduce the impact of error in downstream phylogenomic analyses. Our error-mitigated alignments are available for download. PMID:21340033

  1. Genome-wide association study reveals a QTL and strong candidate genes for umbilical hernia in pigs on SSC14.

    PubMed

    Grindflek, Eli; Hansen, Marianne H S; Lien, Sigbjørn; van Son, Maren

    2018-05-29

    Umbilical hernia is one of the most prevalent congenital defect in pigs, causing economic losses and substantial animal welfare problems. Identification and implementation of genomic regions controlling umbilical hernia in breeding is of great interest to reduce incidences of hernia in commercial pig production. The aim of this study was to identify such regions and possibly identify causative variation affecting umbilical hernia in pigs. A case/control material consisting of 739 Norwegian Landrace pigs was collected and applied in a GWAS study with a genome-wide distributed panel of 60 K SNPs. Additionally candidate genes were sequenced to detect additional polymorphisms that were used for single SNP and haplotype association analyses in 453 of the pigs. The GWAS in this report detected a highly significant region affecting umbilical hernia around 50 Mb on SSC14 (P < 0.0001) explaining up to 8.6% of the phenotypic variance of the trait. The region is rather broad and includes 62 significant SNPs in high linkage disequilibrium with each other. Targeted sequencing of candidate genes within the region revealed polymorphisms within the Leukemia inhibitory factor (LIF) and Oncostatin M (OSM) that were significantly associated with umbilical hernia (P < 0.001). A highly significant QTL for umbilical hernia in Norwegian Landrace pigs was detected around 50 Mb on SSC14. Resequencing of candidate genes within the region revealed SNPs within LIF and OSM highly associated with the trait. However, because of extended LD within the region, studies in other populations and functional studies are needed to determine whether these variants are causal or not. Still without this knowledge, SNPs within the region can be used as genetic markers to reduce incidences of umbilical hernia in Norwegian Landrace pigs.

  2. A sequence of 'factishes': the media-metaphorical knowledge dynamics structuring the German press coverage of the human genome.

    PubMed

    Doring, Martin

    2005-12-01

    This article deals with the cultural framing of the near sequencing of the human genome and its impact on the media coverage in Germany. It investigates in particular the way in which the weekly journal Die Zeit and the daily newspaper Frankfurter Rundschau reported this media event and its aftermath between June 2000 and June 2001. Both newspapers are quality papers that played an essential role in framing the human genome debate--alongside the Frankfurter Allgemeine Zeitung--which became the most prominent genomic forum. The decoding of the human genome prompted a huge controversy concerning the ethics of human engineering, research on stem cells and Preimplantation Genetic Diagnosis. The main aim of this article is to show how this controversy was structured by metaphor. The media coverage of the genome generated DNA-factishes--a neologism designating the ambivalence of something as fact (fait) and as a fetish (fetiche)--that mostly propagated images of a new DNA-scienticism or biological determinism. Mediated by cultural experiences, the human genome became a highly artificial and social construct of a 'NatureCulture'.

  3. Improving production efficiency in the presence of genotype by environment interactions in pig genomic selection breeding programmes.

    PubMed

    Nirea, K G; Meuwissen, T H E

    2017-04-01

    We simulated a genomic selection pig breeding schemes containing nucleus and production herds to improve feed efficiency of production pigs that were cross-breed. Elite nucleus herds had access to high-quality feed, and production herds were fed low-quality feed. Feed efficiency in the nucleus herds had a heritability of 0.3 and 0.25 in the production herds. It was assumed the genetic relationships between feed efficiency in the nucleus and production were low (r g  = 0.2), medium (r g  = 0.5) and high (r g  = 0.8). In our alternative breeding schemes, different proportion of production animals were recorded for feed efficiency and genotyped with high-density panel of genetic markers. Genomic breeding value of the selection candidates for feed efficiency was estimated based on three different approaches. In one approach, genomic breeding value was estimated including nucleus animals in the reference population. In the second approach, the reference population was containing a mixture of nucleus and production animals. In the third approach, the reference population was only consisting of production herds. Using a mixture reference population, we generated 40-115% more genetic gain in the production environment as compared to only using nucleus reference population that were fed high-quality feed sources when the production animals were offspring of the nucleus animals. When the production animals were grand offspring of the nucleus animals, 43-104% more genetic gain was generated. Similarly, a higher genetic gain generated in the production environment when mixed reference population was used as compared to only using production animals. This was up to 19 and 14% when the production animals were offspring and grand offspring of nucleus animals, respectively. Therefore, in genomic selection pig breeding programmes, feed efficiency traits could be improved by properly designing the reference population. © 2016 Blackwell Verlag GmbH.

  4. Use of low-coverage, large-insert, short-read data for rapid and accurate generation of enhanced-quality draft Pseudomonas genome sequences.

    PubMed

    O'Brien, Heath E; Gong, Yunchen; Fung, Pauline; Wang, Pauline W; Guttman, David S

    2011-01-01

    Next-generation genomic technology has both greatly accelerated the pace of genome research as well as increased our reliance on draft genome sequences. While groups such as the Genomics Standards Consortium have made strong efforts to promote genome standards there is a still a general lack of uniformity among published draft genomes, leading to challenges for downstream comparative analyses. This lack of uniformity is a particular problem when using standard draft genomes that frequently have large numbers of low-quality sequencing tracts. Here we present a proposal for an "enhanced-quality draft" genome that identifies at least 95% of the coding sequences, thereby effectively providing a full accounting of the genic component of the genome. Enhanced-quality draft genomes are easily attainable through a combination of small- and large-insert next-generation, paired-end sequencing. We illustrate the generation of an enhanced-quality draft genome by re-sequencing the plant pathogenic bacterium Pseudomonas syringae pv. phaseolicola 1448A (Pph 1448A), which has a published, closed genome sequence of 5.93 Mbp. We use a combination of Illumina paired-end and mate-pair sequencing, and surprisingly find that de novo assemblies with 100x paired-end coverage and mate-pair sequencing with as low as low as 2-5x coverage are substantially better than assemblies based on higher coverage. The rapid and low-cost generation of large numbers of enhanced-quality draft genome sequences will be of particular value for microbial diagnostics and biosecurity, which rely on precise discrimination of potentially dangerous clones from closely related benign strains.

  5. GStream: Improving SNP and CNV Coverage on Genome-Wide Association Studies

    PubMed Central

    Alonso, Arnald; Marsal, Sara; Tortosa, Raül; Canela-Xandri, Oriol; Julià, Antonio

    2013-01-01

    We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method. PMID:23844243

  6. Genome Pool Strategy for Structural Coverage of Protein Families

    PubMed Central

    Jaroszewski, Lukasz; Slabinski, Lukasz; Wooley, John; Deacon, Ashley M.; Lesley, Scott A.; Wilson, Ian. A.; Godzik, Adam

    2010-01-01

    As noticed by generations of structural biologists, closely homologous proteins may have substantially different crystallization properties and propensities. These observations can be used to systematically introduce additional dimensionality into crystallization trials by targeting homologous proteins from multiple genomes in a “genome pool” strategy. Through extensive use of our recently introduced “crystallization feasibility score” (Slabinski et al., 2007a), we can explain that the genome pool strategy works well because the crystallization feasibility scores are surprisingly broad within families of homologous proteins, with most families containing a range of optimal to very difficult targets. We also show that some families can be regarded as relatively “easy”, where a significant number of proteins are predicted to have optimal crystallization features, and others are “very difficult”, where almost none are predicted to result in a crystal structure. Thus, the outcome of such variable distributions of such crystallizability' preferences leads to uneven structural coverage of known families, with “easier” or “optimal” families having several times more solved structures than “very difficult” ones. Nevertheless, this latter category can be successfully targeted by increasing the number of genomes that are used to select targets from a given family. On average, adding 10 new genomes to the “genome pool” provides more promising targets for 7 “very difficult” families. In contrast, our crystallization feasibility score does not indicate that any specific microbial genomes can be readily classified as “easier” or “very difficult” with respect to providing suitable candidates for crystallization and structure determination. Finally, our analyses show that specific physicochemical properties of the protein sequence favor successful outcomes for structure determination and, hence, the group of proteins with known 3D

  7. Guinea Pig ID-Like Families of SINEs

    PubMed Central

    Kass, David H.; Schaetz, Brian A.; Beitler, Lindsey; Bonney, Kevin M.; Jamison, Nicole; Wiesner, Cathy

    2009-01-01

    Previous studies have indicated a paucity of SINEs within the genomes of the guinea pig and nutria, representatives of the Hystricognathi suborder of rodents. More recent work has shown that the guinea pig genome contains a large number of B1 elements, expanding to various levels among different rodents. In this work we utilized A–B PCR and screened GenBank with sequences from isolated clones to identify potentially uncharacterized SINEs within the guinea pig genome, and identified numerous sequences with a high degree of similarity (>92%) specific to the guinea pig. The presence of A-tails and flanking direct repeats associated with these sequences supported the identification of a full-length SINE, with a consensus sequence notably distinct from other rodent SINEs. Although most similar to the ID SINE, it clearly was not derived from the known ID master gene (BC1), hence we refer to this element as guinea pig ID-like (GPIDL). Using the consensus to screen the guinea pig genomic database (Assembly CavPor2) with Ensembl BlastView, we estimated at least 100,000 copies, which contrasts markedly to just over 100 copies of ID elements. Additionally we provided evidence of recent integrations of GPIDL as two of seven analyzed conserved GPIDL-containing loci demonstrated presence/absence variants in Cavia porcellus and C. aperea. Using intra-IDL PCR and sequence analyses we also provide evidence that GPIDL is derived from a hystricognath-specific SINE family. These results demonstrate that this SINE family continues to contribute to the dynamics of genomes of hystricognath rodents. PMID:19232383

  8. Guinea pig ID-like families of SINEs.

    PubMed

    Kass, David H; Schaetz, Brian A; Beitler, Lindsey; Bonney, Kevin M; Jamison, Nicole; Wiesner, Cathy

    2009-05-01

    Previous studies have indicated a paucity of SINEs within the genomes of the guinea pig and nutria, representatives of the Hystricognathi suborder of rodents. More recent work has shown that the guinea pig genome contains a large number of B1 elements, expanding to various levels among different rodents. In this work we utilized A-B PCR and screened GenBank with sequences from isolated clones to identify potentially uncharacterized SINEs within the guinea pig genome, and identified numerous sequences with a high degree of similarity (>92%) specific to the guinea pig. The presence of A-tails and flanking direct repeats associated with these sequences supported the identification of a full-length SINE, with a consensus sequence notably distinct from other rodent SINEs. Although most similar to the ID SINE, it clearly was not derived from the known ID master gene (BC1), hence we refer to this element as guinea pig ID-like (GPIDL). Using the consensus to screen the guinea pig genomic database (Assembly CavPor2) with Ensembl BlastView, we estimated at least 100,000 copies, which contrasts markedly to just over 100 copies of ID elements. Additionally we provided evidence of recent integrations of GPIDL as two of seven analyzed conserved GPIDL-containing loci demonstrated presence/absence variants in Cavia porcellus and C. aperea. Using intra-IDL PCR and sequence analyses we also provide evidence that GPIDL is derived from a hystricognath-specific SINE family. These results demonstrate that this SINE family continues to contribute to the dynamics of genomes of hystricognath rodents.

  9. Efficient Genome-Wide Sequencing and Low-Coverage Pedigree Analysis from Noninvasively Collected Samples

    PubMed Central

    Snyder-Mackler, Noah; Majoros, William H.; Yuan, Michael L.; Shaver, Amanda O.; Gordon, Jacob B.; Kopp, Gisela H.; Schlebusch, Stephen A.; Wall, Jeffrey D.; Alberts, Susan C.; Mukherjee, Sayan; Zhou, Xiang; Tung, Jenny

    2016-01-01

    Research on the genetics of natural populations was revolutionized in the 1990s by methods for genotyping noninvasively collected samples. However, these methods have remained largely unchanged for the past 20 years and lag far behind the genomics era. To close this gap, here we report an optimized laboratory protocol for genome-wide capture of endogenous DNA from noninvasively collected samples, coupled with a novel computational approach to reconstruct pedigree links from the resulting low-coverage data. We validated both methods using fecal samples from 62 wild baboons, including 48 from an independently constructed extended pedigree. We enriched fecal-derived DNA samples up to 40-fold for endogenous baboon DNA and reconstructed near-perfect pedigree relationships even with extremely low-coverage sequencing. We anticipate that these methods will be broadly applicable to the many research systems for which only noninvasive samples are available. The lab protocol and software (“WHODAD”) are freely available at www.tung-lab.org/protocols-and-software.html and www.xzlab.org/software.html, respectively. PMID:27098910

  10. Genome-Wide Association Study of Meat Quality Traits in a White Duroc×Erhualian F2 Intercross and Chinese Sutai Pigs

    PubMed Central

    Ma, Junwu; Yang, Jie; Zhou, Lisheng; Zhang, Zhiyan; Ma, Huanban; Xie, Xianhua; Zhang, Feng; Xiong, Xinwei; Cui, Leilei; Yang, Hui; Liu, Xianxian; Duan, Yanyu; Xiao, Shijun; Ai, Huashui; Ren, Jun; Huang, Lusheng

    2013-01-01

    Thousands of QTLs for meat quality traits have been identified by linkage mapping studies, but most of them lack precise position or replication between populations, which hinder their application in pig breeding programs. To localize QTLs for meat quality traits to precise genomic regions, we performed a genome-wide association (GWA) study using the Illumina PorcineSNP60K Beadchip in two swine populations: 434 Sutai pigs and 933 F2 pigs from a White Duroc×Erhualian intercross. Meat quality traits, including pH, color, drip loss, moisture content, protein content and intramuscular fat content (IMF), marbling and firmness scores in the M. longissimus (LM) and M. semimembranosus (SM) muscles, were recorded on the two populations. In total, 127 chromosome-wide significant SNPs for these traits were identified. Among them, 11 SNPs reached genome-wise significance level, including 1 on SSC3 for pH, 1 on SSC3 and 3 on SSC15 for drip loss, 3 (unmapped) for color a*, and 2 for IMF each on SSC9 and SSCX. Except for 11 unmapped SNPs, 116 significant SNPs fell into 28 genomic regions of approximately 10 Mb or less. Most of these regions corresponded to previously reported QTL regions and spanned smaller intervals than before. The loci on SSC3 and SSC7 appeared to have pleiotropic effects on several related traits. Besides them, a few QTL signals were replicated between the two populations. Further, we identified thirteen new candidate genes for IMF, marbling and firmness, on the basis of their positions, functional annotations and reported expression patterns. The findings will contribute to further identification of the causal mutation underlying these QTLs and future marker-assisted selection in pigs. PMID:23724019

  11. Use of Genome Sequence Information for Meat Quality Trait QTL Mining for Causal Genes and Mutations on Pig Chromosome 17

    PubMed Central

    Hu, Zhi-Liang; Ramos, Antonio M.; Humphray, Sean J.; Rogers, Jane; Reecy, James M.; Rothschild, Max F.

    2011-01-01

    The newly available pig genome sequence has provided new information to fine map quantitative trait loci (QTL) in order to eventually identify causal variants. With targeted genomic sequencing efforts, we were able to obtain high quality BAC sequences that cover a region on pig chromosome 17 where a number of meat quality QTL have been previously discovered. Sequences from 70 BAC clones were assembled to form an 8-Mbp contig. Subsequently, we successfully mapped five previously identified QTL, three for meat color and two for lactate related traits, to the contig. With an additional 25 genetic markers that were identified by sequence comparison, we were able to carry out further linkage disequilibrium analysis to narrow down the genomic locations of these QTL, which allowed identification of the chromosomal regions that likely contain the causative variants. This research has provided one practical approach to combine genetic and molecular information for QTL mining. PMID:22303339

  12. Comparative genomics approach to detecting split-coding regions in a low-coverage genome: lessons from the chimaera Callorhinchus milii (Holocephali, Chondrichthyes).

    PubMed

    Dessimoz, Christophe; Zoller, Stefan; Manousaki, Tereza; Qiu, Huan; Meyer, Axel; Kuraku, Shigehiro

    2011-09-01

    Recent development of deep sequencing technologies has facilitated de novo genome sequencing projects, now conducted even by individual laboratories. However, this will yield more and more genome sequences that are not well assembled, and will hinder thorough annotation when no closely related reference genome is available. One of the challenging issues is the identification of protein-coding sequences split into multiple unassembled genomic segments, which can confound orthology assignment and various laboratory experiments requiring the identification of individual genes. In this study, using the genome of a cartilaginous fish, Callorhinchus milii, as test case, we performed gene prediction using a model specifically trained for this genome. We implemented an algorithm, designated ESPRIT, to identify possible linkages between multiple protein-coding portions derived from a single genomic locus split into multiple unassembled genomic segments. We developed a validation framework based on an artificially fragmented human genome, improvements between early and recent mouse genome assemblies, comparison with experimentally validated sequences from GenBank, and phylogenetic analyses. Our strategy provided insights into practical solutions for efficient annotation of only partially sequenced (low-coverage) genomes. To our knowledge, our study is the first formulation of a method to link unassembled genomic segments based on proteomes of relatively distantly related species as references.

  13. Comparative genomics approach to detecting split-coding regions in a low-coverage genome: lessons from the chimaera Callorhinchus milii (Holocephali, Chondrichthyes)

    PubMed Central

    Zoller, Stefan; Manousaki, Tereza; Qiu, Huan; Meyer, Axel; Kuraku, Shigehiro

    2011-01-01

    Recent development of deep sequencing technologies has facilitated de novo genome sequencing projects, now conducted even by individual laboratories. However, this will yield more and more genome sequences that are not well assembled, and will hinder thorough annotation when no closely related reference genome is available. One of the challenging issues is the identification of protein-coding sequences split into multiple unassembled genomic segments, which can confound orthology assignment and various laboratory experiments requiring the identification of individual genes. In this study, using the genome of a cartilaginous fish, Callorhinchus milii, as test case, we performed gene prediction using a model specifically trained for this genome. We implemented an algorithm, designated ESPRIT, to identify possible linkages between multiple protein-coding portions derived from a single genomic locus split into multiple unassembled genomic segments. We developed a validation framework based on an artificially fragmented human genome, improvements between early and recent mouse genome assemblies, comparison with experimentally validated sequences from GenBank, and phylogenetic analyses. Our strategy provided insights into practical solutions for efficient annotation of only partially sequenced (low-coverage) genomes. To our knowledge, our study is the first formulation of a method to link unassembled genomic segments based on proteomes of relatively distantly related species as references. PMID:21712341

  14. Mitochondrial Genome Analyses Suggest Multiple Trichuris Species in Humans, Baboons, and Pigs from Different Geographical Regions.

    PubMed

    Hawash, Mohamed B F; Andersen, Lee O; Gasser, Robin B; Stensvold, Christen Rune; Nejsum, Peter

    2015-01-01

    The whipworms Trichuris trichiura and Trichuris suis are two parasitic nematodes of humans and pigs, respectively. Although whipworms in human and non-human primates historically have been referred to as T. trichiura, recent reports suggest that several Trichuris spp. are found in primates. We sequenced and annotated complete mitochondrial genomes of Trichuris recovered from a human in Uganda, an olive baboon in the US, a hamadryas baboon in Denmark, and two pigs from Denmark and Uganda. Comparative analyses using other published mitochondrial genomes of Trichuris recovered from a human and a porcine host in China and from a françois' leaf-monkey (China) were performed, including phylogenetic analyses and pairwise genetic and amino acid distances. Genetic and protein distances between human Trichuris in Uganda and China were high (~19% and 15%, respectively) suggesting that they represented different species. Trichuris from the olive baboon in US was genetically related to human Trichuris in China, while the other from the hamadryas baboon in Denmark was nearly identical to human Trichuris from Uganda. Baboon-derived Trichuris was genetically distinct from Trichuris from françois' leaf monkey, suggesting multiple whipworm species circulating among non-human primates. The genetic and protein distances between pig Trichuris from Denmark and other regions were roughly 9% and 6%, respectively, while Chinese and Ugandan whipworms were more closely related. Our results indicate that Trichuris species infecting humans and pigs are phylogenetically distinct across geographical regions, which might have important implications for the implementation of suitable and effective control strategies in different regions. Moreover, we provide support for the hypothesis that Trichuris infecting primates represents a complex of cryptic species with some species being able to infect both humans and non-human primates.

  15. Mitochondrial Genome Analyses Suggest Multiple Trichuris Species in Humans, Baboons, and Pigs from Different Geographical Regions

    PubMed Central

    Hawash, Mohamed B. F.; Andersen, Lee O.; Gasser, Robin B.; Stensvold, Christen Rune; Nejsum, Peter

    2015-01-01

    Background The whipworms Trichuris trichiura and Trichuris suis are two parasitic nematodes of humans and pigs, respectively. Although whipworms in human and non-human primates historically have been referred to as T. trichiura, recent reports suggest that several Trichuris spp. are found in primates. Methods and Findings We sequenced and annotated complete mitochondrial genomes of Trichuris recovered from a human in Uganda, an olive baboon in the US, a hamadryas baboon in Denmark, and two pigs from Denmark and Uganda. Comparative analyses using other published mitochondrial genomes of Trichuris recovered from a human and a porcine host in China and from a françois’ leaf-monkey (China) were performed, including phylogenetic analyses and pairwise genetic and amino acid distances. Genetic and protein distances between human Trichuris in Uganda and China were high (~19% and 15%, respectively) suggesting that they represented different species. Trichuris from the olive baboon in US was genetically related to human Trichuris in China, while the other from the hamadryas baboon in Denmark was nearly identical to human Trichuris from Uganda. Baboon-derived Trichuris was genetically distinct from Trichuris from françois’ leaf monkey, suggesting multiple whipworm species circulating among non-human primates. The genetic and protein distances between pig Trichuris from Denmark and other regions were roughly 9% and 6%, respectively, while Chinese and Ugandan whipworms were more closely related. Conclusion and Significance Our results indicate that Trichuris species infecting humans and pigs are phylogenetically distinct across geographical regions, which might have important implications for the implementation of suitable and effective control strategies in different regions. Moreover, we provide support for the hypothesis that Trichuris infecting primates represents a complex of cryptic species with some species being able to infect both humans and non-human primates

  16. Application of single-step genomic evaluation for crossbred performance in pig.

    PubMed

    Xiang, T; Nielsen, B; Su, G; Legarra, A; Christensen, O F

    2016-03-01

    Crossbreding is predominant and intensively used in commercial meat production systems, especially in poultry and swine. Genomic evaluation has been successfully applied for breeding within purebreds but also offers opportunities of selecting purebreds for crossbred performance by combining information from purebreds with information from crossbreds. However, it generally requires that all relevant animals are genotyped, which is costly and presently does not seem to be feasible in practice. Recently, a novel single-step BLUP method for genomic evaluation of both purebred and crossbred performance has been developed that can incorporate marker genotypes into a traditional animal model. This new method has not been validated in real data sets. In this study, we applied this single-step method to analyze data for the maternal trait of total number of piglets born in Danish Landrace, Yorkshire, and two-way crossbred pigs in different scenarios. The genetic correlation between purebred and crossbred performances was investigated first, and then the impact of (crossbred) genomic information on prediction reliability for crossbred performance was explored. The results confirm the existence of a moderate genetic correlation, and it was seen that the standard errors on the estimates were reduced when including genomic information. Models with marker information, especially crossbred genomic information, improved model-based reliabilities for crossbred performance of purebred boars and also improved the predictive ability for crossbred animals and, to some extent, reduced the bias of prediction. We conclude that the new single-step BLUP method is a good tool in the genetic evaluation for crossbred performance in purebred animals.

  17. Whole genome analysis of porcine astroviruses detected in Japanese pigs reveals genetic diversity and possible intra-genotypic recombination.

    PubMed

    Ito, Mika; Kuroda, Moegi; Masuda, Tsuneyuki; Akagami, Masataka; Haga, Kei; Tsuchiaka, Shinobu; Kishimoto, Mai; Naoi, Yuki; Sano, Kaori; Omatsu, Tsutomu; Katayama, Yukie; Oba, Mami; Aoki, Hiroshi; Ichimaru, Toru; Mukono, Itsuro; Ouchi, Yoshinao; Yamasato, Hiroshi; Shirai, Junsuke; Katayama, Kazuhiko; Mizutani, Tetsuya; Nagai, Makoto

    2017-06-01

    Porcine astroviruses (PoAstVs) are ubiquitous enteric virus of pigs that are distributed in several countries throughout the world. Since PoAstVs are detected in apparent healthy pigs, the clinical significance of infection is unknown. However, AstVs have recently been associated with a severe neurological disorder in animals, including humans, and zoonotic potential has been suggested. To date, little is known about the epidemiology of PoAstVs among the pig population in Japan. In this report, we present an analysis of nearly complete genomes of 36 PoAstVs detected by a metagenomics approach in the feces of Japanese pigs. Based on a phylogenetic analysis and pairwise sequence comparison, 10, 5, 15, and 6 sequences were classified as PoAstV2, PoAstV3, PoAstV4, and PoAstV5, respectively. Co-infection with two or three strains was found in individual fecal samples from eight pigs. The phylogenetic trees of ORF1a, ORF1b, and ORF2 of PoAstV2 and PoAstV4 showed differences in their topologies. The PoAstV3 and PoAstV5 strains shared high sequence identities within each genotype in all ORFs; however, one PoAstV3 strain and one PoAstV5 strain showed considerable sequence divergence from the other PoAstV3 and PoAstV5 strains, respectively, in ORF2. Recombination analysis using whole genomes revealed evidence of multiple possible intra-genotype recombination events in PoAstV2 and PoAstV4, suggesting that recombination might have contributed to the genetic diversity and played an important role in the evolution of Japanese PoAstVs. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Construction of a Llama Bacterial Artificial Chromosome Library with Approximately 9-Fold Genome Equivalent Coverage

    PubMed Central

    Airmet, K. W.; Hinckley, J. D.; Tree, L. T.; Moss, M.; Blumell, S.; Ulicny, K.; Gustafson, A. K.; Weed, M.; Theodosis, R.; Lehnardt, M.; Genho, J.; Stevens, M. R.; Kooyman, D. L.

    2012-01-01

    The Ilama is an important agricultural livestock in much of South America. The llama is increasing in popularity in the United States as a companion animal. Little work has been done to improve llama production using modern technology. A paucity of information is available regarding the llama genome. We report the construction of a llama bacterial artificial chromosome (BAC) library of about 196,224 clones in the vector pECBAC1. Using flow cytometry and bovine, human, mouse, and chicken as controls, we determined the llama genome size to be 2.4 × 109 bp. The average insert size of the library is 137.8 kb corresponding to approximately 9-fold genome coverage. Further studies are needed to further characterize the library and llama genome. We anticipate that this new library will help facilitate future genomic studies in the llama. PMID:22811594

  19. Pigs taking wing with transposons and recombinases

    PubMed Central

    Clark, Karl J; Carlson, Daniel F; Fahrenkrug, Scott C

    2007-01-01

    Swine production has been an important part of our lives since the late Mesolithic or early Neolithic periods, and ranks number one in world meat production. Pig production also contributes to high-value-added medical markets in the form of pharmaceuticals, heart valves, and surgical materials. Genetic engineering, including the addition of exogenous genetic material or manipulation of the endogenous genome, holds great promise for changing pig phenotypes for agricultural and medical applications. Although the first transgenic pigs were described in 1985, poor survival of manipulated embryos; inefficiencies in the integration, transmission, and expression of transgenes; and expensive husbandry costs have impeded the widespread application of pig genetic engineering. Sequencing of the pig genome and advances in reproductive technologies have rejuvenated efforts to apply transgenesis to swine. Pigs provide a compelling new resource for the directed production of pharmaceutical proteins and the provision of cells, vascular grafts, and organs for xenotransplantation. Additionally, given remarkable similarities in the physiology and size of people and pigs, swine will increasingly provide large animal models of human disease where rodent models are insufficient. We review the challenges facing pig transgenesis and discuss the utility of transposases and recombinases for enhancing the success and sophistication of pig genetic engineering. 'The paradise of my fancy is one where pigs have wings.' (GK Chesterton). PMID:18047690

  20. A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans.

    PubMed

    Romanenko, Svetlana A; Perelman, Polina L; Trifonov, Vladimir A; Serdyukova, Natalia A; Li, Tangliang; Fu, Beiyuan; O'Brien, Patricia C M; Ng, Bee L; Nie, Wenhui; Liehr, Thomas; Stanyon, Roscoe; Graphodatsky, Alexander S; Yang, Fengtang

    2015-01-01

    The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents.

  1. A First Generation Comparative Chromosome Map between Guinea Pig (Cavia porcellus) and Humans

    PubMed Central

    Romanenko, Svetlana A.; Perelman, Polina L.; Trifonov, Vladimir A.; Serdyukova, Natalia A.; Li, Tangliang; Fu, Beiyuan; O’Brien, Patricia C. M.; Ng, Bee L.; Nie, Wenhui; Liehr, Thomas; Stanyon, Roscoe; Graphodatsky, Alexander S.; Yang, Fengtang

    2015-01-01

    The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents. PMID:26010445

  2. Current Progress of Genetically Engineered Pig Models for Biomedical Research

    PubMed Central

    Gün, Gökhan

    2014-01-01

    Abstract The first transgenic pigs were generated for agricultural purposes about three decades ago. Since then, the micromanipulation techniques of pig oocytes and embryos expanded from pronuclear injection of foreign DNA to somatic cell nuclear transfer, intracytoplasmic sperm injection-mediated gene transfer, lentiviral transduction, and cytoplasmic injection. Mechanistically, the passive transgenesis approach based on random integration of foreign DNA was developed to active genetic engineering techniques based on the transient activity of ectopic enzymes, such as transposases, recombinases, and programmable nucleases. Whole-genome sequencing and annotation of advanced genome maps of the pig complemented these developments. The full implementation of these tools promises to immensely increase the efficiency and, in parallel, to reduce the costs for the generation of genetically engineered pigs. Today, the major application of genetically engineered pigs is found in the field of biomedical disease modeling. It is anticipated that genetically engineered pigs will increasingly be used in biomedical research, since this model shows several similarities to humans with regard to physiology, metabolism, genome organization, pathology, and aging. PMID:25469311

  3. Somatic cell nuclear transfer followed by CRIPSR/CAS9 microinjection results in highly efficient genome editing in cloned pigs

    USDA-ARS?s Scientific Manuscript database

    The domestic pig is an ideal “dual purpose” animal model for agricultural and biomedical research. With the availability of genome editing tools [e.g. clustered regularly interspersed short palindromic repeat (CRISPR) and associated nuclease Cas9 (CRISPR/Cas9)] it is now possible to perform site-sp...

  4. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life

    DOE PAGES

    Mukherjee, Supratim; Seshadri, Rekha; Varghese, Neha J.; ...

    2017-06-12

    We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster withmore » potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.« less

  5. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Supratim; Seshadri, Rekha; Varghese, Neha J.

    We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster withmore » potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.« less

  6. Advances in Swine Biomedical Model Genomics

    PubMed Central

    Lunney, Joan K.

    2007-01-01

    This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, detailed mucosal tissues. The ability to use pigs from the same litter, or cloned or transgenic pigs, facilitates comparative analyses and genetic mapping. The availability of numerous well defined cell lines, representing a broad range of tissues, further facilitates testing of gene expression, drug susceptibility, etc. Thus the pig is an excellent biomedical model for humans. For genomic applications it is an asset that the pig genome has high sequence and chromosome structure homology with humans. With the swine genome sequence now well advanced there are improving genetic and proteomic tools for these comparative analyses. The review will discuss some of the genomic approaches used to probe these models. The review will highlight genomic studies of melanoma and of infectious disease resistance, discussing issues to consider in designing such studies. It will end with a short discussion of the potential for genomic approaches to develop new alternatives for control of the most economically important disease of pigs, porcine reproductive and respiratory syndrome (PRRS), and the potential for applying knowledge gained with this virus for human viral infectious disease studies. PMID:17384736

  7. Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs

    PubMed Central

    Yang, Jie; Huang, Lusheng; Yang, Ming; Fan, Yin; Li, Lin; Fang, Shaoming; Deng, Wenjiang; Cui, Leilei; Zhang, Zhen; Ai, Huashui; Wu, Zhenfang; Gao, Jun; Ren, Jun

    2016-01-01

    Vertnin (VRTN) variants have been associated with the number of thoracic vertebrae in European pigs, but the association has not been evidenced in Chinese indigenous pigs. In this study, we first performed a genome-wide association study in Chinese Erhualian pigs using one VRTN candidate causative mutation and the Illumina Porcine 60K SNP Beadchips. The VRTN mutation is significantly associated with thoracic vertebral number in this population. We further show that the VRTN mutation has pleiotropic and desirable effects on teat number and carcass (body) length across four diverse populations, including Erhualian, White Duroc × Erhualian F2 population, Duroc and Landrace pigs. No association was observed between VRTN genotype and growth and fatness traits in these populations. Therefore, testing for the VRTN mutation in pig breeding schemes would not only increase the number of vertebrae and nipples, but also enlarge body size without undesirable effects on growth and fatness traits, consequently improving pork production. Further, by using whole-genome sequence data, we show that the VRTN mutation was possibly introgressed from Chinese pigs into European pigs. Our results provide another example showing that introgressed Chinese genes greatly contributed to the development and production of modern European pig breeds. PMID:26781738

  8. LoRTE: Detecting transposon-induced genomic variants using low coverage PacBio long read sequences.

    PubMed

    Disdero, Eric; Filée, Jonathan

    2017-01-01

    Population genomic analysis of transposable elements has greatly benefited from recent advances of sequencing technologies. However, the short size of the reads and the propensity of transposable elements to nest in highly repeated regions of genomes limits the efficiency of bioinformatic tools when Illumina or 454 technologies are used. Fortunately, long read sequencing technologies generating read length that may span the entire length of full transposons are now available. However, existing TE population genomic softwares were not designed to handle long reads and the development of new dedicated tools is needed. LoRTE is the first tool able to use PacBio long read sequences to identify transposon deletions and insertions between a reference genome and genomes of different strains or populations. Tested against simulated and genuine Drosophila melanogaster PacBio datasets, LoRTE appears to be a reliable and broadly applicable tool to study the dynamic and evolutionary impact of transposable elements using low coverage, long read sequences. LoRTE is an efficient and accurate tool to identify structural genomic variants caused by TE insertion or deletion. LoRTE is available for download at http://www.egce.cnrs-gif.fr/?p=6422.

  9. Accuracy of Predicted Genomic Breeding Values in Purebred and Crossbred Pigs.

    PubMed

    Hidalgo, André M; Bastiaansen, John W M; Lopes, Marcos S; Harlizius, Barbara; Groenen, Martien A M; de Koning, Dirk-Jan

    2015-05-26

    Genomic selection has been widely implemented in dairy cattle breeding when the aim is to improve performance of purebred animals. In pigs, however, the final product is a crossbred animal. This may affect the efficiency of methods that are currently implemented for dairy cattle. Therefore, the objective of this study was to determine the accuracy of predicted breeding values in crossbred pigs using purebred genomic and phenotypic data. A second objective was to compare the predictive ability of SNPs when training is done in either single or multiple populations for four traits: age at first insemination (AFI); total number of piglets born (TNB); litter birth weight (LBW); and litter variation (LVR). We performed marker-based and pedigree-based predictions. Within-population predictions for the four traits ranged from 0.21 to 0.72. Multi-population prediction yielded accuracies ranging from 0.18 to 0.67. Predictions across purebred populations as well as predicting genetic merit of crossbreds from their purebred parental lines for AFI performed poorly (not significantly different from zero). In contrast, accuracies of across-population predictions and accuracies of purebred to crossbred predictions for LBW and LVR ranged from 0.08 to 0.31 and 0.11 to 0.31, respectively. Accuracy for TNB was zero for across-population prediction, whereas for purebred to crossbred prediction it ranged from 0.08 to 0.22. In general, marker-based outperformed pedigree-based prediction across populations and traits. However, in some cases pedigree-based prediction performed similarly or outperformed marker-based prediction. There was predictive ability when purebred populations were used to predict crossbred genetic merit using an additive model in the populations studied. AFI was the only exception, indicating that predictive ability depends largely on the genetic correlation between PB and CB performance, which was 0.31 for AFI. Multi-population prediction was no better than within

  10. Practical implementation of cost-effective genomic selection in commercial pig breeding using imputation.

    PubMed

    Cleveland, M A; Hickey, J M

    2013-08-01

    Genomic selection can be implemented in pig breeding at a reduced cost using genotype imputation. Accuracy of imputation and the impact on resulting genomic breeding values (gEBV) was investigated. High-density genotype data was available for 4,763 animals from a single pig line. Three low-density genotype panels were constructed with SNP densities of 450 (L450), 3,071 (L3k) and 5,963 (L6k). Accuracy of imputation was determined using 184 test individuals with no genotyped descendants in the data but with parents and grandparents genotyped using the Illumina PorcineSNP60 Beadchip. Alternative genotyping scenarios were created in which parents, grandparents, and individuals that were not direct ancestors of test animals (Other) were genotyped at high density (S1), grandparents were not genotyped (S2), dams and granddams were not genotyped (S3), and dams and granddams were genotyped at low density (S4). Four additional scenarios were created by excluding Other animal genotypes. Test individuals were always genotyped at low density. Imputation was performed with AlphaImpute. Genomic breeding values were calculated using the single-step genomic evaluation. Test animals were evaluated for the information retained in the gEBV, calculated as the correlation between gEBV using imputed genotypes and gEBV using true genotypes. Accuracy of imputation was high for all scenarios but decreased with fewer SNP on the low-density panel (0.995 to 0.965 for S1) and with reduced genotyping of ancestors, where the largest changes were for L450 (0.965 in S1 to 0.914 in S3). Exclusion of genotypes for Other animals resulted in only small accuracy decreases. Imputation accuracy was not consistent across the genome. Information retained in the gEBV was related to genotyping scenario and thus to imputation accuracy. Reducing the number of SNP on the low-density panel reduced the information retained in the gEBV, with the largest decrease observed from L3k to L450. Excluding Other animal

  11. Coverage Bias and Sensitivity of Variant Calling for Four Whole-genome Sequencing Technologies

    PubMed Central

    Lasitschka, Bärbel; Jones, David; Northcott, Paul; Hutter, Barbara; Jäger, Natalie; Kool, Marcel; Taylor, Michael; Lichter, Peter; Pfister, Stefan; Wolf, Stephan; Brors, Benedikt; Eils, Roland

    2013-01-01

    The emergence of high-throughput, next-generation sequencing technologies has dramatically altered the way we assess genomes in population genetics and in cancer genomics. Currently, there are four commonly used whole-genome sequencing platforms on the market: Illumina’s HiSeq2000, Life Technologies’ SOLiD 4 and its completely redesigned 5500xl SOLiD, and Complete Genomics’ technology. A number of earlier studies have compared a subset of those sequencing platforms or compared those platforms with Sanger sequencing, which is prohibitively expensive for whole genome studies. Here we present a detailed comparison of the performance of all currently available whole genome sequencing platforms, especially regarding their ability to call SNVs and to evenly cover the genome and specific genomic regions. Unlike earlier studies, we base our comparison on four different samples, allowing us to assess the between-sample variation of the platforms. We find a pronounced GC bias in GC-rich regions for Life Technologies’ platforms, with Complete Genomics performing best here, while we see the least bias in GC-poor regions for HiSeq2000 and 5500xl. HiSeq2000 gives the most uniform coverage and displays the least sample-to-sample variation. In contrast, Complete Genomics exhibits by far the smallest fraction of bases not covered, while the SOLiD platforms reveal remarkable shortcomings, especially in covering CpG islands. When comparing the performance of the four platforms for calling SNPs, HiSeq2000 and Complete Genomics achieve the highest sensitivity, while the SOLiD platforms show the lowest false positive rate. Finally, we find that integrating sequencing data from different platforms offers the potential to combine the strengths of different technologies. In summary, our results detail the strengths and weaknesses of all four whole-genome sequencing platforms. It indicates application areas that call for a specific sequencing platform and disallow other platforms

  12. Low-coverage MiSeq next generation sequencing reveals the mitochondrial genome of the Eastern Rock Lobster, Sagmariasus verreauxi.

    PubMed

    Doyle, Stephen R; Griffith, Ian S; Murphy, Nick P; Strugnell, Jan M

    2015-01-01

    The complete mitochondrial genome of the Eastern Rock lobster, Sagmariasus verreauxi, is reported for the first time. Using low-coverage, long read MiSeq next generation sequencing, we constructed and determined the mtDNA genome organization of the 15,470 bp sequence from two isolates from Eastern Tasmania, Australia and Northern New Zealand, and identified 46 polymorphic nucleotides between the two sequences. This genome sequence and its genetic polymorphisms will likely be useful in understanding the distribution and population connectivity of the Eastern Rock Lobster, and in the fisheries management of this commercially important species.

  13. Experimental evidence of hepatitis A virus infection in pigs.

    PubMed

    Song, Young-Jo; Park, Woo-Jung; Park, Byung-Joo; Kwak, Sang-Woo; Kim, Yong-Hyeon; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Lee, Sang-Won; Seo, Kun-Ho; Kang, Young-Sun; Park, Choi-Kyu; Song, Jae-Young; Choi, In-Soo

    2016-04-01

    Hepatitis A virus (HAV) is the leading cause of acute viral hepatitis worldwide, with HAV infection being restricted to humans and nonhuman primates. In this study, HAV infection status was serologically determined in domestic pigs and experimental infections of HAV were attempted to verify HAV infectivity in pigs. Antibodies specific to HAV or HAV-like agents were detected in 3.5% of serum samples collected from pigs in swine farms. When the pigs were infected intravenously with 2 × 10(5) 50% tissue culture infectious dose (TCID50 ) of HAV, shedding of the virus in feces, viremia, and seroconversion were detected. In pigs orally infected with the same quantity of HAV, viral shedding was detected only in feces. HAV genomic RNA was detected in the liver and bile of intravenously infected pigs, but only in the bile of orally infected pigs. In further experiments, pigs were intravenously infected with 6 × 10(5) TCID50 of HAV. Shedding of HAV in feces, along with viremia and seroconversion, were confirmed in infected pigs but not in sentinel pigs. HAV genomic RNA was detected in the liver, bile, spleen, lymph node, and kidney of the infected pigs. HAV antigenomic RNA was detected in the spleen of one HAV-infected pig, suggesting HAV replication in splenic cells. Infiltration of inflammatory cells was observed in the livers of infected pigs but not in controls. This is the first experimental evidence to demonstrate that human HAV strains can infect pigs. © 2015 Wiley Periodicals, Inc.

  14. A Quantitative Analysis of the Mass Media Coverage of Genomics Medicine in China: A Call for Science Journalism in the Developing World

    PubMed Central

    Zhao, Feifei; Chen, Yan; Ge, Siqi; Yu, Xinwei; Shao, Shuang; Black, Michael; Wang, Youxin; Zhang, Jie; Wang, Wei

    2014-01-01

    Abstract Science journalism is a previously neglected but rapidly growing area of scholarship in postgenomics medicine and socio-technical studies of knowledge-based innovations. Science journalism can help evaluate the quantity and quality of information flux between traditional scientific expert communities and the broader public, for example, in personalized medicine education. Newspapers can play a crucial role in science and health communication, and more importantly, in framing public engagement. However, research on the role of newspaper coverage of genomics-related articles has not been readily available in resource-limited settings. As genomics is rapidly expanding worldwide, this gap in newspaper reportage in China is therefore an important issue. In order to bridge this gap, we investigated the coverage of genomics medicine in eight major Chinese national newspapers, using the China Core Newspapers Full-text Database (CCND) and articles in scientific journals in PubMed from 2000 to 2011. Coverage of genomics medicine in these eight official government Chinese newspapers has remained low, with only 12 articles published per newspaper per year between 2000 and 2011. Between 2000 and 2011, over a 40-fold difference was observed in the number of genomics medicine-related articles in PubMed, as compared to that in newspapers. The numbers of genomics-related articles among the eight major newspapers from 2000 to 2011 were significantly different (p=0.001). Commentary/mini reviews and articles about gene therapy for specific diseases were most frequently published in 2006 and 2011. In parallel, we observed that “cancer gene therapy,” “new susceptibility gene locus,” and “gene technology revolution” were the top three thematic strands addressed in the newspapers, even though their volume remained low. This study reports on the under-representation of newspaper coverage of genomics medicine in China, despite the vast growth of scientific articles in

  15. A quantitative analysis of the mass media coverage of genomics medicine in China: a call for science journalism in the developing world.

    PubMed

    Zhao, Feifei; Chen, Yan; Ge, Siqi; Yu, Xinwei; Shao, Shuang; Black, Michael; Wang, Youxin; Zhang, Jie; Song, Manshu; Wang, Wei

    2014-04-01

    Science journalism is a previously neglected but rapidly growing area of scholarship in postgenomics medicine and socio-technical studies of knowledge-based innovations. Science journalism can help evaluate the quantity and quality of information flux between traditional scientific expert communities and the broader public, for example, in personalized medicine education. Newspapers can play a crucial role in science and health communication, and more importantly, in framing public engagement. However, research on the role of newspaper coverage of genomics-related articles has not been readily available in resource-limited settings. As genomics is rapidly expanding worldwide, this gap in newspaper reportage in China is therefore an important issue. In order to bridge this gap, we investigated the coverage of genomics medicine in eight major Chinese national newspapers, using the China Core Newspapers Full-text Database (CCND) and articles in scientific journals in PubMed from 2000 to 2011. Coverage of genomics medicine in these eight official government Chinese newspapers has remained low, with only 12 articles published per newspaper per year between 2000 and 2011. Between 2000 and 2011, over a 40-fold difference was observed in the number of genomics medicine-related articles in PubMed, as compared to that in newspapers. The numbers of genomics-related articles among the eight major newspapers from 2000 to 2011 were significantly different (p=0.001). Commentary/mini reviews and articles about gene therapy for specific diseases were most frequently published in 2006 and 2011. In parallel, we observed that "cancer gene therapy," "new susceptibility gene locus," and "gene technology revolution" were the top three thematic strands addressed in the newspapers, even though their volume remained low. This study reports on the under-representation of newspaper coverage of genomics medicine in China, despite the vast growth of scientific articles in journals in this

  16. Study of a chimeric foot-and-mouth disease virus DNA vaccine containing structural genes of serotype O in a genome backbone of serotype Asia 1 in guinea pigs.

    PubMed

    Chockalingam, A K; Thiyagarajan, S; Govindasamy, N; Patnaikuni, R; Garlapati, S; Golla, R R; Joyappa, D H; Krishnamshetty, P; Veluvarti, V V S; Veluvati, V V S

    2010-01-01

    Since foot-and-mouth disease virus (FMDV) serotypes display a great genetic and antigenic diversity, there is a constant requirement to monitor the performance of FMDV vaccines in the field with respect to their antigenic coverage. To avoid possible antigenic changes in field FMDV isolates during their adaptation to BHK-21 cells, a standard step used in production of conventional FMDV vaccines, the custom-made chimeric conventional or DNA vaccines, in which antigenic determinants are replaced with those of appropriate field strains, should be constructed. Using this approach, we made a plasmid-based chimeric FMDV DNA vaccine containing structural genes of serotype O in the genome backbone of serotype Asia 1, all under the control of Human cytomegalovirus (HCMV) immediate early gene promoter. BHK-21 cells transfected with the chimeric DNA vaccine did not show cytopathic effect (CPE), but expressed virus-specific proteins as demonstrated by 35S-methionine labeling and immunoprecipitation. Guinea pigs immunized with the chimeric DNA vaccine produced virus-specific antibodies assayed by ELISA and virus neutralization test (VNT), respectively. The chimeric DNA vaccine showed a partial protection of guinea pigs challenged with the virulent FMDV. Although the chimeric DNA vaccine, in general, was not as effective as a conventional one, this study encourages further work towards the development of genetically engineered custom-made chimeric vaccines against FMDV.

  17. Artificial selection on introduced Asian haplotypes shaped the genetic architecture in European commercial pigs.

    PubMed

    Bosse, Mirte; Lopes, Marcos S; Madsen, Ole; Megens, Hendrik-Jan; Crooijmans, Richard P M A; Frantz, Laurent A F; Harlizius, Barbara; Bastiaansen, John W M; Groenen, Martien A M

    2015-12-22

    Early pig farmers in Europe imported Asian pigs to cross with their local breeds in order to improve traits of commercial interest. Current genomics techniques enabled genome-wide identification of these Asian introgressed haplotypes in modern European pig breeds. We propose that the Asian variants are still present because they affect phenotypes that were important for ancient traditional, as well as recent, commercial pig breeding. Genome-wide introgression levels were only weakly correlated with gene content and recombination frequency. However, regions with an excess or absence of Asian haplotypes (AS) contained genes that were previously identified as phenotypically important such as FASN, ME1, and KIT. Therefore, the Asian alleles are thought to have an effect on phenotypes that were historically under selection. We aimed to estimate the effect of AS in introgressed regions in Large White pigs on the traits of backfat (BF) and litter size. The majority of regions we tested that retained Asian deoxyribonucleic acid (DNA) showed significantly increased BF from the Asian alleles. Our results suggest that the introgression in Large White pigs has been strongly determined by the selective pressure acting upon the introgressed AS. We therefore conclude that human-driven hybridization and selection contributed to the genomic architecture of these commercial pigs. © 2015 The Author(s).

  18. Host Genome Influence on Gut Microbial Composition and Microbial Prediction of Complex Traits in Pigs.

    PubMed

    Camarinha-Silva, Amelia; Maushammer, Maria; Wellmann, Robin; Vital, Marius; Preuss, Siegfried; Bennewitz, Jörn

    2017-07-01

    The aim of the present study was to analyze the interplay between gastrointestinal tract (GIT) microbiota, host genetics, and complex traits in pigs using extended quantitative-genetic methods. The study design consisted of 207 pigs that were housed and slaughtered under standardized conditions, and phenotyped for daily gain, feed intake, and feed conversion rate. The pigs were genotyped with a standard 60 K SNP chip. The GIT microbiota composition was analyzed by 16S rRNA gene amplicon sequencing technology. Eight from 49 investigated bacteria genera showed a significant narrow sense host heritability, ranging from 0.32 to 0.57. Microbial mixed linear models were applied to estimate the microbiota variance for each complex trait. The fraction of phenotypic variance explained by the microbial variance was 0.28, 0.21, and 0.16 for daily gain, feed conversion, and feed intake, respectively. The SNP data and the microbiota composition were used to predict the complex traits using genomic best linear unbiased prediction (G-BLUP) and microbial best linear unbiased prediction (M-BLUP) methods, respectively. The prediction accuracies of G-BLUP were 0.35, 0.23, and 0.20 for daily gain, feed conversion, and feed intake, respectively. The corresponding prediction accuracies of M-BLUP were 0.41, 0.33, and 0.33. Thus, in addition to SNP data, microbiota abundances are an informative source of complex trait predictions. Since the pig is a well-suited animal for modeling the human digestive tract, M-BLUP, in addition to G-BLUP, might be beneficial for predicting human predispositions to some diseases, and, consequently, for preventative and personalized medicine. Copyright © 2017 by the Genetics Society of America.

  19. Genomic selection for slaughter age in pigs using the Cox frailty model.

    PubMed

    Santos, V S; Martins Filho, S; Resende, M D V; Azevedo, C F; Lopes, P S; Guimarães, S E F; Glória, L S; Silva, F F

    2015-10-19

    The aim of this study was to compare genomic selection methodologies using a linear mixed model and the Cox survival model. We used data from an F2 population of pigs, in which the response variable was the time in days from birth to the culling of the animal and the covariates were 238 markers [237 single nucleotide polymorphism (SNP) plus the halothane gene]. The data were corrected for fixed effects, and the accuracy of the method was determined based on the correlation of the ranks of predicted genomic breeding values (GBVs) in both models with the corrected phenotypic values. The analysis was repeated with a subset of SNP markers with largest absolute effects. The results were in agreement with the GBV prediction and the estimation of marker effects for both models for uncensored data and for normality. However, when considering censored data, the Cox model with a normal random effect (S1) was more appropriate. Since there was no agreement between the linear mixed model and the imputed data (L2) for the prediction of genomic values and the estimation of marker effects, the model S1 was considered superior as it took into account the latent variable and the censored data. Marker selection increased correlations between the ranks of predicted GBVs by the linear and Cox frailty models and the corrected phenotypic values, and 120 markers were required to increase the predictive ability for the characteristic analyzed.

  20. Rescue of a Porcine Anellovirus (Torque Teno Sus Virus 2) from Cloned Genomic DNA in Pigs

    PubMed Central

    Huang, Yao-Wei; Patterson, Abby R.; Opriessnig, Tanja; Dryman, Barbara A.; Gallei, Andreas; Harrall, Kylie K.; Vaughn, Eric M.; Roof, Michael B.

    2012-01-01

    Anelloviruses are a group of single-stranded circular DNA viruses infecting humans and other animal species. Animal models combined with reverse genetic systems of anellovirus have not been developed. We report here the construction and initial characterization of full-length DNA clones of a porcine anellovirus, torque teno sus virus 2 (TTSuV2), in vitro and in vivo. We first demonstrated that five cell lines, including PK-15 cells, are free of TTSuV1 or TTSuV2 contamination, as determined by a real-time PCR and an immunofluorescence assay (IFA) using anti-TTSuV antibodies. Recombinant plasmids harboring monomeric or tandem-dimerized genomic DNA of TTSuV2 from the United States and Germany were constructed. Circular TTSuV2 genomic DNA with or without introduced genetic markers and tandem-dimerized TTSuV2 plasmids were transfected into PK-15 cells, respectively. Splicing of viral mRNAs was identified in transfected cells. Expression of TTSuV2-specific open reading frame 1 (ORF1) in cell nuclei, especially in nucleoli, was detected by IFA. However, evidence of productive TTSuV2 infection was not observed in 12 different cell lines transfected with the TTSuV2 DNA clones. Transfection with circular DNA from a TTSuV2 deletion mutant did not produce ORF1 protein, suggesting that the observed ORF1 expression is driven by TTSuV2 DNA replication in cells. Pigs inoculated with either the tandem-dimerized clones or circular genomic DNA of U.S. TTSuV2 developed viremia, and the introduced genetic markers were retained in viral DNA recovered from the sera of infected pigs. The availability of an infectious DNA clone of TTSuV2 will facilitate future study of porcine anellovirus pathogenesis and biology. PMID:22491450

  1. Genome-wide association studies identify susceptibility loci affecting respiratory disease in Chinese Erhualian pigs under natural conditions.

    PubMed

    Huang, X; Huang, T; Deng, W; Yan, G; Qiu, H; Huang, Y; Ke, S; Hou, Y; Zhang, Y; Zhang, Z; Fang, S; Zhou, L; Yang, B; Ren, J; Ai, H; Huang, L

    2017-02-01

    Prevalence of swine respiratory disease causes poor growth performance in and serious economic losses to the swine industry. In this study, a categorical trait of enzootic pneumonia-like (EPL) score representing the infection gradient of a respiratory disease, more likely enzootic pneumonia, was recorded in a herd of 332 Chinese Erhualian pigs. According to their EPL scores and the disease effect on weight gains, these pigs were grouped into controls (EPL score ≤ 1) and cases (EPL score > 1). The weight gain of the case group reduced significantly at days 180, 210, 240 and 300 as compared to the control group. The heritability of EPL score was estimated to be 0.24 based on the pedigree information using a linear mixed model. All 332 Erhualian pigs and their nine sire parents were genotyped with Illumina Porcine 60K SNP chips. Two genome-wide association studies were performed under a generalized linear mixed model and a case-control model respectively. In total, five loci surpassed the suggestive significance level (P = 2.98 × 10 -5 ) on chromosomes 2, 8, 12 and 14. CXCL6, CXCL8, KIT and CTBP2 were highlighted as candidate genes that might play important roles in determining resistance/susceptibility to swine EP-like respiratory disease. The findings advance understanding of the genetic basis of resistance/susceptibility to respiratory disease in pigs. © 2016 Stichting International Foundation for Animal Genetics.

  2. Accuracy of estimation of genomic breeding values in pigs using low-density genotypes and imputation.

    PubMed

    Badke, Yvonne M; Bates, Ronald O; Ernst, Catherine W; Fix, Justin; Steibel, Juan P

    2014-04-16

    Genomic selection has the potential to increase genetic progress. Genotype imputation of high-density single-nucleotide polymorphism (SNP) genotypes can improve the cost efficiency of genomic breeding value (GEBV) prediction for pig breeding. Consequently, the objectives of this work were to: (1) estimate accuracy of genomic evaluation and GEBV for three traits in a Yorkshire population and (2) quantify the loss of accuracy of genomic evaluation and GEBV when genotypes were imputed under two scenarios: a high-cost, high-accuracy scenario in which only selection candidates were imputed from a low-density platform and a low-cost, low-accuracy scenario in which all animals were imputed using a small reference panel of haplotypes. Phenotypes and genotypes obtained with the PorcineSNP60 BeadChip were available for 983 Yorkshire boars. Genotypes of selection candidates were masked and imputed using tagSNP in the GeneSeek Genomic Profiler (10K). Imputation was performed with BEAGLE using 128 or 1800 haplotypes as reference panels. GEBV were obtained through an animal-centric ridge regression model using de-regressed breeding values as response variables. Accuracy of genomic evaluation was estimated as the correlation between estimated breeding values and GEBV in a 10-fold cross validation design. Accuracy of genomic evaluation using observed genotypes was high for all traits (0.65-0.68). Using genotypes imputed from a large reference panel (accuracy: R(2) = 0.95) for genomic evaluation did not significantly decrease accuracy, whereas a scenario with genotypes imputed from a small reference panel (R(2) = 0.88) did show a significant decrease in accuracy. Genomic evaluation based on imputed genotypes in selection candidates can be implemented at a fraction of the cost of a genomic evaluation using observed genotypes and still yield virtually the same accuracy. On the other side, using a very small reference panel of haplotypes to impute training animals and candidates for

  3. The Use of Genomics in Conservation Management of the Endangered Visayan Warty Pig (Sus cebifrons).

    PubMed

    Nuijten, Rascha J M; Bosse, Mirte; Crooijmans, Richard P M A; Madsen, Ole; Schaftenaar, Willem; Ryder, Oliver A; Groenen, Martien A M; Megens, Hendrik-Jan

    2016-01-01

    The list of threatened and endangered species is growing rapidly, due to various anthropogenic causes. Many endangered species are present in captivity and actively managed in breeding programs in which often little is known about the founder individuals. Recent developments in genetic research techniques have made it possible to sequence and study whole genomes. In this study we used the critically endangered Visayan warty pig (Sus cebifrons) as a case study to test the use of genomic information as a tool in conservation management. Two captive populations of S. cebifrons exist, which originated from two different Philippine islands. We found some evidence for a recent split between the two island populations; however all individuals that were sequenced show a similar demographic history. Evidence for both past and recent inbreeding indicated that the founders were at least to some extent related. Together with this, the low level of nucleotide diversity compared to other Sus species potentially poses a threat to the viability of the captive populations. In conclusion, genomic techniques answered some important questions about this critically endangered mammal and can be a valuable toolset to inform future conservation management in other species as well.

  4. Full-length and defective enterovirus G genomes with distinct torovirus protease insertions are highly prevalent on a Chinese pig farm.

    PubMed

    Wang, Yan; Zhang, Wen; Liu, Zhijian; Fu, Xingli; Yuan, Jiaqi; Zhao, Jieji; Lin, Yuan; Shen, Quan; Wang, Xiaochun; Deng, Xutao; Delwart, Eric; Shan, Tongling; Yang, Shixing

    2018-05-21

    Recombination occurs frequently between enteroviruses (EVs) which are classified within the same species of the Picornaviridae family. Here, using viral metagenomics, the genomes of two recombinant EV-Gs (strains EVG 01/NC_CHI/2014 and EVG 02/NC_CHI/2014) found in the feces of pigs from a swine farm in China are described. The two strains are characterized by distinct insertion of a papain-like protease gene from toroviruses classified within the Coronaviridae family. According to recent reports the site of the torovirus protease insertion was located at the 2C/3A junction region in EVG 02/NC_CHI/2014. For the other variant EVG 01/NC_CHI/2014, the inserted protease sequence replaced the entire viral capsid protein region up to the VP1/2A junction. These two EV-G strains were highly prevalent in the same pig farm with all animals shedding the full-length genome (EVG 02/NC_CHI/2014) while 65% also shed the capsid deletion mutant (EVG 01/NC_CHI/2014). A helper-defective virus relationship between the two co-circulating EV-G recombinants is hypothesized.

  5. The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing

    PubMed Central

    2010-01-01

    Background Food supply from the ocean is constrained by the shortage of domesticated and selected fish. Development of genomic models of economically important fishes should assist with the removal of this bottleneck. European sea bass Dicentrarchus labrax L. (Moronidae, Perciformes, Teleostei) is one of the most important fishes in European marine aquaculture; growing genomic resources put it on its way to serve as an economic model. Results End sequencing of a sea bass genomic BAC-library enabled the comparative mapping of the sea bass genome using the three-spined stickleback Gasterosteus aculeatus genome as a reference. BAC-end sequences (102,690) were aligned to the stickleback genome. The number of mappable BACs was improved using a two-fold coverage WGS dataset of sea bass resulting in a comparative BAC-map covering 87% of stickleback chromosomes with 588 BAC-contigs. The minimum size of 83 contigs covering 50% of the reference was 1.2 Mbp; the largest BAC-contig comprised 8.86 Mbp. More than 22,000 BAC-clones aligned with both ends to the reference genome. Intra-chromosomal rearrangements between sea bass and stickleback were identified. Size distributions of mapped BACs were used to calculate that the genome of sea bass may be only 1.3 fold larger than the 460 Mbp stickleback genome. Conclusions The BAC map is used for sequencing single BACs or BAC-pools covering defined genomic entities by second generation sequencing technologies. Together with the WGS dataset it initiates a sea bass genome sequencing project. This will allow the quantification of polymorphisms through resequencing, which is important for selecting highly performing domesticated fish. PMID:20105308

  6. A Genetic Analysis of Taoyuan Pig and Its Phylogenetic Relationship to Eurasian Pig Breeds

    PubMed Central

    Li, Kuan-Yi; Li, Kuang-Ti; Cheng, Chun-Chun; Chen, Chia-Hsuan; Hung, Chien-Yi; Ju, Yu-Ten

    2015-01-01

    Taoyuan pig is a native Taiwan breed. According to the historical record, the breed was first introduced to Taiwan from Guangdong province, Southern China, around 1877. The breed played an important role in Taiwan’s early swine industry. It was classified as an indigenous breed in 1986. After 1987, a conserved population of Taoyuan pig was collected and reared in isolation. In this study, mitochondrial DNA sequences and 18 microsatellite markers were used to investigate maternal lineage and genetic diversity within the Taoyuan pig population. Population differentiation among Taoyuan, Asian type, and European type pig breeds was also evaluated using differentiation indices. Only one D-loop haplotype of the Taoyuan pig was found. It clustered with Lower Changjiang River Basin and Central China Type pig breeds. Based on the polymorphism of microsatellite markers, a positive fixation index value (FIS) indicates that the conserved Taoyuan population suffers from inbreeding. In addition, high FST values (>0.2105) were obtained, revealing high differentiation among these breeds. Non-metric multi-dimensional scaling showed a clear geometric structure among 7 breeds. Together these results indicate that maternally Taoyuan pig originated in the Lower Changjiang River Basin and Central China; however, since being introduced to Taiwan differentiation has occurred. In addition, Taoyuan pig has lost genetic diversity in both its mitochondrial and nuclear genomes. PMID:25656199

  7. Genome-wide ancestry and divergence patterns from low-coverage sequencing data reveal a complex history of admixture in wild baboons

    PubMed Central

    Wall, Jeffrey D; Schlebusch, Stephen A; Alberts, Susan C; Cox, Laura A; Snyder-Mackler, Noah; Nevonen, Kimberly; Carbone, Lucia; Tung, Jenny

    2017-01-01

    Naturally occurring admixture has now been documented in every major primate lineage, suggesting its key role in primate evolutionary history. Active primate hybrid zones can provide valuable insight into this process. Here, we investigate the history of admixture in one of the best-studied natural primate hybrid zones, between yellow baboons (Papio cynocephalus) and anubis baboons (Papio anubis) in the Amboseli ecosystem of Kenya. We generated a new genome assembly for yellow baboon and low coverage genome-wide resequencing data from yellow baboons, anubis baboons, and known hybrids (n=44). Using a novel composite likelihood method for estimating local ancestry from low coverage data, we found high levels of genetic diversity and genetic differentiation between the parent taxa, and excellent agreement between genome-scale ancestry estimates and a priori pedigree, life history, and morphology-based estimates (r2=0.899). However, even putatively unadmixed Amboseli yellow individuals carried a substantial proportion of anubis ancestry, presumably due to historical admixture. Further, the distribution of shared versus fixed differences between a putatively unadmixed Amboseli yellow baboon and an unadmixed anubis baboon, both sequenced at high coverage, are inconsistent with simple isolation-migration or equilibrium migration models. Our findings suggest a complex process of intermittent contact that has occurred multiple times in baboon evolutionary history, despite no obvious fitness costs to hybrids or major geographic or behavioral barriers. In combination with the extensive phenotypic data available for baboon hybrids, our results provide valuable context for understanding the history of admixture in primates, including in our own lineage. PMID:27145036

  8. Wuhan large pig roundworm virus identified in human feces in Brazil.

    PubMed

    Luchs, Adriana; Leal, Elcio; Komninakis, Shirley Vasconcelos; de Pádua Milagres, Flavio Augusto; Brustulin, Rafael; da Aparecida Rodrigues Teles, Maria; Gill, Danielle Elise; Deng, Xutao; Delwart, Eric; Sabino, Ester Cerdeira; da Costa, Antonio Charlys

    2018-03-28

    We report here the complete genome sequence of a bipartite virus, herein denoted WLPRV/human/BRA/TO-34/201, from a sample collected in 2015 from a two-year-old child in Brazil presenting acute gastroenteritis. The virus has 98-99% identity (segments 2 and 1, respectively) with the Wuhan large pig roundworm virus (unclassified RNA virus) that was recently discovered in the stomachs of pigs from China. This is the first report of a Wuhan large pig roundworm virus detected in human specimens, and the second genome described worldwide. However, the generation of more sequence data and further functional studies are required to fully understand the ecology, epidemiology, and evolution of this new unclassified virus.

  9. Expanded microbial genome coverage and improved protein family annotation in the COG database

    PubMed Central

    Galperin, Michael Y.; Makarova, Kira S.; Wolf, Yuri I.; Koonin, Eugene V.

    2015-01-01

    Microbial genome sequencing projects produce numerous sequences of deduced proteins, only a small fraction of which have been or will ever be studied experimentally. This leaves sequence analysis as the only feasible way to annotate these proteins and assign to them tentative functions. The Clusters of Orthologous Groups of proteins (COGs) database (http://www.ncbi.nlm.nih.gov/COG/), first created in 1997, has been a popular tool for functional annotation. Its success was largely based on (i) its reliance on complete microbial genomes, which allowed reliable assignment of orthologs and paralogs for most genes; (ii) orthology-based approach, which used the function(s) of the characterized member(s) of the protein family (COG) to assign function(s) to the entire set of carefully identified orthologs and describe the range of potential functions when there were more than one; and (iii) careful manual curation of the annotation of the COGs, aimed at detailed prediction of the biological function(s) for each COG while avoiding annotation errors and overprediction. Here we present an update of the COGs, the first since 2003, and a comprehensive revision of the COG annotations and expansion of the genome coverage to include representative complete genomes from all bacterial and archaeal lineages down to the genus level. This re-analysis of the COGs shows that the original COG assignments had an error rate below 0.5% and allows an assessment of the progress in functional genomics in the past 12 years. During this time, functions of many previously uncharacterized COGs have been elucidated and tentative functional assignments of many COGs have been validated, either by targeted experiments or through the use of high-throughput methods. A particularly important development is the assignment of functions to several widespread, conserved proteins many of which turned out to participate in translation, in particular rRNA maturation and tRNA modification. The new version of the

  10. Genomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs.

    PubMed

    Vitezica, Zulma G; Varona, Luis; Elsen, Jean-Michel; Misztal, Ignacy; Herring, William; Legarra, Andrès

    2016-01-29

    Most developments in quantitative genetics theory focus on the study of intra-breed/line concepts. With the availability of massive genomic information, it becomes necessary to revisit the theory for crossbred populations. We propose methods to construct genomic covariances with additive and non-additive (dominance) inheritance in the case of pure lines and crossbred populations. We describe substitution effects and dominant deviations across two pure parental populations and the crossbred population. Gene effects are assumed to be independent of the origin of alleles and allelic frequencies can differ between parental populations. Based on these assumptions, the theoretical variance components (additive and dominant) are obtained as a function of marker effects and allelic frequencies. The additive genetic variance in the crossbred population includes the biological additive and dominant effects of a gene and a covariance term. Dominance variance in the crossbred population is proportional to the product of the heterozygosity coefficients of both parental populations. A genomic BLUP (best linear unbiased prediction) equivalent model is presented. We illustrate this approach by using pig data (two pure lines and their cross, including 8265 phenotyped and genotyped sows). For the total number of piglets born, the dominance variance in the crossbred population represented about 13 % of the total genetic variance. Dominance variation is only marginally important for litter size in the crossbred population. We present a coherent marker-based model that includes purebred and crossbred data and additive and dominant actions. Using this model, it is possible to estimate breeding values, dominant deviations and variance components in a dataset that comprises data on purebred and crossbred individuals. These methods can be exploited to plan assortative mating in pig, maize or other species, in order to generate superior crossbred individuals in terms of performance.

  11. Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data.

    PubMed

    Zanella, Ricardo; Peixoto, Jane O; Cardoso, Fernando F; Cardoso, Leandro L; Biegelmeyer, Patrícia; Cantão, Maurício E; Otaviano, Antonio; Freitas, Marcelo S; Caetano, Alexandre R; Ledur, Mônica C

    2016-03-30

    Genetic improvement in livestock populations can be achieved without significantly affecting genetic diversity if mating systems and selection decisions take genetic relationships among individuals into consideration. The objective of this study was to examine the genetic diversity of two commercial breeds of pigs. Genotypes from 1168 Landrace (LA) and 1094 Large White (LW) animals from a commercial breeding program in Brazil were obtained using the Illumina PorcineSNP60 Beadchip. Inbreeding estimates based on pedigree (F x) and genomic information using runs of homozygosity (F ROH) and the single nucleotide polymorphisms (SNP) by SNP inbreeding coefficient (F SNP) were obtained. Linkage disequilibrium (LD), correlation of linkage phase (r) and effective population size (N e ) were also estimated. Estimates of inbreeding obtained with pedigree information were lower than those obtained with genomic data in both breeds. We observed that the extent of LD was slightly larger at shorter distances between SNPs in the LW population than in the LA population, which indicates that the LW population was derived from a smaller N e . Estimates of N e based on genomic data were equal to 53 and 40 for the current populations of LA and LW, respectively. The correlation of linkage phase between the two breeds was equal to 0.77 at distances up to 50 kb, which suggests that genome-wide association and selection should be performed within breed. Although selection intensities have been stronger in the LA breed than in the LW breed, levels of genomic and pedigree inbreeding were lower for the LA than for the LW breed. The use of genomic data to evaluate population diversity in livestock animals can provide new and more precise insights about the effects of intense selection for production traits. Resulting information and knowledge can be used to effectively increase response to selection by appropriately managing the rate of inbreeding, minimizing negative effects of inbreeding

  12. Creating genetically modified pigs by using nuclear transfer

    PubMed Central

    Lai, Liangxue; Prather, Randall S

    2003-01-01

    Nuclear transfer (NT) is a procedure by which genetically identical individuals can be created. The technology of pig somatic NT, including in vitro maturation of oocytes, isolation and treatment of donor cells, artificial activation of reconstructed oocytes, embryo culture and embryo transfer, has been intensively studied in recent years, resulting in birth of cloned pigs in many labs. While it provides an efficient method for producing transgenic pigs, more importantly, it is the only way to produce gene-targeted pigs. So far pig cloning has been successfully used to produce transgenic pigs expressing the green fluorescence protein, expand transgenic pig groups and create gene targeted pigs which are deficient of alpha-1,3-galactosyltransferase. The production of pigs with genetic modification by NT is now in the transition from investigation to practical use. Although the efficiency of somatic cell NT in pig, when measured as development to term as a proportion of oocytes used, is not high, it is anticipated that the ability of making specific modifications to the swine genome will result in this technology having a large impact not only on medicine but also on agriculture. PMID:14613542

  13. Genetic relationships among Vietnamese local pigs investigated using genome-wide SNP markers.

    PubMed

    Ishihara, S; Arakawa, A; Taniguchi, M; Luu, Q M; Pham, D L; Nguyen, B V; Mikawa, S; Kikuchi, K

    2018-02-01

    Vietnam is one of the most important countries for pig domestication, and a total of 26 local breeds have been reported. In the present study, genetic relationships among the various pig breeds were investigated using 90 samples collected from local pigs (15 breeds) in 15 distantly separated, distinct areas of the country and six samples from Landrace pigs in Hanoi as an out-group of a common Western breed. All samples were genotyped using the Illumina Porcine SNP60 v2 Genotyping BeadChip. We used 15 160-15 217 SNPs that showed a high degree of polymorphism in the Vietnamese breeds for identifying genetic relationships among the Vietnamese breeds. Principal components analysis showed that most pigs indigenous to Vietnam formed clusters correlated with their original geographic locations. Some Vietnamese breeds formed a cluster that was genetically related to the Western breed Landrace, suggesting the possibility of crossbreeding. These findings will be useful for the conservation and management of Vietnamese local pig breeds. © 2018 Stichting International Foundation for Animal Genetics.

  14. Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain.

    PubMed

    Guinat, C; Gubbins, S; Vergne, T; Gonzales, J L; Dixon, L; Pfeiffer, D U

    2016-01-01

    African swine fever virus (ASFV) continues to cause outbreaks in domestic pigs and wild boar in Eastern European countries. To gain insights into its transmission dynamics, we estimated the pig-to-pig basic reproduction number (R 0) for the Georgia 2007/1 ASFV strain using a stochastic susceptible-exposed-infectious-recovered (SEIR) model with parameters estimated from transmission experiments. Models showed that R 0 is 2·8 [95% confidence interval (CI) 1·3-4·8] within a pen and 1·4 (95% CI 0·6-2·4) between pens. The results furthermore suggest that ASFV genome detection in oronasal samples is an effective diagnostic tool for early detection of infection. This study provides quantitative information on transmission parameters for ASFV in domestic pigs, which are required to more effectively assess the potential impact of strategies for the control of between-farm epidemic spread in European countries.

  15. Using microarrays to identify positional candidate genes for QTL: the case study of ACTH response in pigs.

    PubMed

    Jouffe, Vincent; Rowe, Suzanne; Liaubet, Laurence; Buitenhuis, Bart; Hornshøj, Henrik; SanCristobal, Magali; Mormède, Pierre; de Koning, D J

    2009-07-16

    Microarray studies can supplement QTL studies by suggesting potential candidate genes in the QTL regions, which by themselves are too large to provide a limited selection of candidate genes. Here we provide a case study where we explore ways to integrate QTL data and microarray data for the pig, which has only a partial genome sequence. We outline various procedures to localize differentially expressed genes on the pig genome and link this with information on published QTL. The starting point is a set of 237 differentially expressed cDNA clones in adrenal tissue from two pig breeds, before and after treatment with adrenocorticotropic hormone (ACTH). Different approaches to localize the differentially expressed (DE) genes to the pig genome showed different levels of success and a clear lack of concordance for some genes between the various approaches. For a focused analysis on 12 genes, overlapping QTL from the public domain were presented. Also, differentially expressed genes underlying QTL for ACTH response were described. Using the latest version of the draft sequence, the differentially expressed genes were mapped to the pig genome. This enabled co-location of DE genes and previously studied QTL regions, but the draft genome sequence is still incomplete and will contain many errors. A further step to explore links between DE genes and QTL at the pathway level was largely unsuccessful due to the lack of annotation of the pig genome. This could be improved by further comparative mapping analyses but this would be time consuming. This paper provides a case study for the integration of QTL data and microarray data for a species with limited genome sequence information and annotation. The results illustrate the challenges that must be addressed but also provide a roadmap for future work that is applicable to other non-model species.

  16. Construction and Analysis of Siberian Tiger Bacterial Artificial Chromosome Library with Approximately 6.5-Fold Genome Equivalent Coverage

    PubMed Central

    Liu, Changqing; Bai, Chunyu; Guo, Yu; Liu, Dan; Lu, Taofeng; Li, Xiangchen; Ma, Jianzhang; Ma, Yuehui; Guan, Weijun

    2014-01-01

    Bacterial artificial chromosome (BAC) libraries are extremely valuable for the genome-wide genetic dissection of complex organisms. The Siberian tiger, one of the most well-known wild primitive carnivores in China, is an endangered animal. In order to promote research on its genome, a high-redundancy BAC library of the Siberian tiger was constructed and characterized. The library is divided into two sub-libraries prepared from blood cells and two sub-libraries prepared from fibroblasts. This BAC library contains 153,600 individually archived clones; for PCR-based screening of the library, BACs were placed into 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 116.5 kb, representing approximately 6.46 genome equivalents of the haploid genome and affording a 98.86% statistical probability of obtaining at least one clone containing a unique DNA sequence. Screening the library with 19 microsatellite markers and a SRY sequence revealed that each of these markers were present in the library; the average number of positive clones per marker was 6.74 (range 2 to 12), consistent with 6.46 coverage of the tiger genome. Additionally, we identified 72 microsatellite markers that could potentially be used as genetic markers. This BAC library will serve as a valuable resource for physical mapping, comparative genomic study and large-scale genome sequencing in the tiger. PMID:24608928

  17. Genome-wide association study for the level of serum electrolytes in Italian Large White pigs.

    PubMed

    Bovo, S; Schiavo, G; Mazzoni, G; Dall'Olio, S; Galimberti, G; Calò, D G; Scotti, E; Bertolini, F; Buttazzoni, L; Samorè, A B; Fontanesi, L

    2016-10-01

    Calcium, magnesium and phosphorus are essential electrolytes involved in a large number of biological processes. Imbalance of these minerals in blood may indicate clinically relevant conditions and are important in inferring acute or chronic pathologies in humans and animals. In this work, we carried out a genome-wide association study (GWAS) for the level of these three electrolytes in the serum of 843 performance-tested Italian Large White pigs. All pigs were genotyped with the Illumina PorcineSNP60 BeadChip, and GWAS was carried out using genome-wide efficient mixed-model association. For the level of Ca(2+) , eight single nucleotide polymorphisms (SNPs) were significant, considering a false discovery rate (FDR) < 0.05, and another eight were above the moderate association threshold (Pnominal value  < 5.00E-05). These SNPs are distributed in four porcine chromosomes (SSC): SSC8, SSC11, SSC12 and SSC13. In particular, a few putative different signals of association detected on SSC13 and one on SSC12 were in genes or close to genes involved in calcium metabolism (P2RY1, RAP2B, SLC9A9, C3orf58, TSC22D2, PLCH1 and CACNB1). Only one SNP (on SSC7) and six SNPs (on SSC2 and SSC7) showed moderate association with the level of magnesium and phosphorus respectively. The association signals for these two latter minerals might identify genes not known thus far for playing a role in their biological functions and regulations. In conclusion, our GWAS contributed to increased knowledge on the role that calcium, magnesium and phosphorus may play in the genetically determined physiological mechanisms affecting the natural variability of mineral levels in mammalian blood. © 2016 Stichting International Foundation for Animal Genetics.

  18. Expanded microbial genome coverage and improved protein family annotation in the COG database.

    PubMed

    Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2015-01-01

    Microbial genome sequencing projects produce numerous sequences of deduced proteins, only a small fraction of which have been or will ever be studied experimentally. This leaves sequence analysis as the only feasible way to annotate these proteins and assign to them tentative functions. The Clusters of Orthologous Groups of proteins (COGs) database (http://www.ncbi.nlm.nih.gov/COG/), first created in 1997, has been a popular tool for functional annotation. Its success was largely based on (i) its reliance on complete microbial genomes, which allowed reliable assignment of orthologs and paralogs for most genes; (ii) orthology-based approach, which used the function(s) of the characterized member(s) of the protein family (COG) to assign function(s) to the entire set of carefully identified orthologs and describe the range of potential functions when there were more than one; and (iii) careful manual curation of the annotation of the COGs, aimed at detailed prediction of the biological function(s) for each COG while avoiding annotation errors and overprediction. Here we present an update of the COGs, the first since 2003, and a comprehensive revision of the COG annotations and expansion of the genome coverage to include representative complete genomes from all bacterial and archaeal lineages down to the genus level. This re-analysis of the COGs shows that the original COG assignments had an error rate below 0.5% and allows an assessment of the progress in functional genomics in the past 12 years. During this time, functions of many previously uncharacterized COGs have been elucidated and tentative functional assignments of many COGs have been validated, either by targeted experiments or through the use of high-throughput methods. A particularly important development is the assignment of functions to several widespread, conserved proteins many of which turned out to participate in translation, in particular rRNA maturation and tRNA modification. The new version of the

  19. Prolactin family of the guinea pig, Cavia porcellus.

    PubMed

    Alam, S M Khorshed; Konno, Toshihiro; Rumi, M A Karim; Dong, Yafeng; Weiner, Carl P; Soares, Michael J

    2010-08-01

    Prolactin (PRL) is a multifunctional hormone with prominent roles in regulating growth and reproduction. The guinea pig (Cavia porcellus) has been extensively used in endocrine and reproduction research. Thus far, the PRL cDNA and protein have not been isolated from the guinea pig. In the present study, we used information derived from the public guinea pig genome database as a tool for identifying guinea pig PRL and PRL-related proteins. Guinea pig PRL exhibits prominent nucleotide and amino acid sequence differences when compared with PRLs of other eutherian mammals. In contrast, guinea pig GH is highly conserved. Expression of PRL and GH in the guinea pig is prominent in the anterior pituitary, similar to known expression patterns of PRL and GH for other species. Two additional guinea pig cDNAs were identified and termed PRL-related proteins (PRLRP1, PRLRP2). They exhibited a more distant relationship to PRL and their expression was restricted to the placenta. Recombinant guinea pig PRL protein was generated and shown to be biologically active in the PRL-responsive Nb2 lymphoma cell bioassay. In contrast, recombinant guinea pig PRLRP1 protein did not exhibit PRL-like bioactivity. In summary, we have developed a new set of research tools for investigating the biology of the PRL family in an important animal model, the guinea pig.

  20. Development of genomic tools in a widespread tropical tree, Symphonia globulifera L.f.: a new low-coverage draft genome, SNP and SSR markers.

    PubMed

    Olsson, Sanna; Seoane-Zonjic, Pedro; Bautista, Rocío; Claros, M Gonzalo; González-Martínez, Santiago C; Scotti, Ivan; Scotti-Saintagne, Caroline; Hardy, Olivier J; Heuertz, Myriam

    2017-07-01

    Population genetic studies in tropical plants are often challenging because of limited information on taxonomy, phylogenetic relationships and distribution ranges, scarce genomic information and logistic challenges in sampling. We describe a strategy to develop robust and widely applicable genetic markers based on a modest development of genomic resources in the ancient tropical tree species Symphonia globulifera L.f. (Clusiaceae), a keystone species in African and Neotropical rainforests. We provide the first low-coverage (11X) fragmented draft genome sequenced on an individual from Cameroon, covering 1.027 Gbp or 67.5% of the estimated genome size. Annotation of 565 scaffolds (7.57 Mbp) resulted in the prediction of 1046 putative genes (231 of them containing a complete open reading frame) and 1523 exact simple sequence repeats (SSRs, microsatellites). Aligning a published transcriptome of a French Guiana population against this draft genome produced 923 high-quality single nucleotide polymorphisms. We also preselected genic SSRs in silico that were conserved and polymorphic across a wide geographical range, thus reducing marker development tests on rare DNA samples. Of 23 SSRs tested, 19 amplified and 18 were successfully genotyped in four S. globulifera populations from South America (Brazil and French Guiana) and Africa (Cameroon and São Tomé island, F ST  = 0.34). Most loci showed only population-specific deviations from Hardy-Weinberg proportions, pointing to local population effects (e.g. null alleles). The described genomic resources are valuable for evolutionary studies in Symphonia and for comparative studies in plants. The methods are especially interesting for widespread tropical or endangered taxa with limited DNA availability. © 2016 John Wiley & Sons Ltd.

  1. A genome-wide association study points out the causal implication of SOX9 in the sex-reversal phenotype in XX pigs.

    PubMed

    Rousseau, Sarah; Iannuccelli, Nathalie; Mercat, Marie-José; Naylies, Claire; Thouly, Jean-Claude; Servin, Bertrand; Milan, Denis; Pailhoux, Eric; Riquet, Juliette

    2013-01-01

    Among farm animals, pigs are known to show XX sex-reversal. In such cases the individuals are genetically female but exhibit a hermaphroditism, or a male phenotype. While the frequency of this congenital disease is quite low (less than 1%), the economic losses are significant for pig breeders. These losses result from sterility, urogenital infections and the carcasses being downgraded because of the risk of boar taint. It has been clearly demonstrated that the SRY gene is not involved in most cases of sex-reversal in pigs, and that autosomal recessive mutations remain to be discovered. A whole-genome scan analysis was performed in the French Large-White population to identify candidate genes: 38 families comprising the two non-affected parents and 1 to 11 sex-reversed full-sib piglets were genotyped with the PorcineSNP60 BeadChip. A Transmission Disequilibrium Test revealed a highly significant candidate region on SSC12 (most significant p-value<4.65.10(-10)) containing the SOX9 gene. SOX9, one of the master genes involved in testis differentiation, was sequenced together with one of its main regulatory region Tesco. However, no causal mutations could be identified in either of the two sequenced regions. Further haplotype analyses did not identify a shared homozygous segment between the affected pigs, suggesting either a lack of power due to the SNP properties of the chip, or a second causative locus. Together with information from humans and mice, this study in pigs adds to the field of knowledge, which will lead to characterization of novel molecular mechanisms regulating sexual differentiation and dysregulation in cases of sex reversal.

  2. A Genome-Wide Association Study Points out the Causal Implication of SOX9 in the Sex-Reversal Phenotype in XX Pigs

    PubMed Central

    Rousseau, Sarah; Iannuccelli, Nathalie; Mercat, Marie-José; Naylies, Claire; Thouly, Jean-Claude; Servin, Bertrand; Milan, Denis; Pailhoux, Eric; Riquet, Juliette

    2013-01-01

    Among farm animals, pigs are known to show XX sex-reversal. In such cases the individuals are genetically female but exhibit a hermaphroditism, or a male phenotype. While the frequency of this congenital disease is quite low (less than 1%), the economic losses are significant for pig breeders. These losses result from sterility, urogenital infections and the carcasses being downgraded because of the risk of boar taint. It has been clearly demonstrated that the SRY gene is not involved in most cases of sex-reversal in pigs, and that autosomal recessive mutations remain to be discovered. A whole-genome scan analysis was performed in the French Large-White population to identify candidate genes: 38 families comprising the two non-affected parents and 1 to 11 sex-reversed full-sib piglets were genotyped with the PorcineSNP60 BeadChip. A Transmission Disequilibrium Test revealed a highly significant candidate region on SSC12 (most significant p-value<4.65.10-10) containing the SOX9 gene. SOX9, one of the master genes involved in testis differentiation, was sequenced together with one of its main regulatory region Tesco. However, no causal mutations could be identified in either of the two sequenced regions. Further haplotype analyses did not identify a shared homozygous segment between the affected pigs, suggesting either a lack of power due to the SNP properties of the chip, or a second causative locus. Together with information from humans and mice, this study in pigs adds to the field of knowledge, which will lead to characterization of novel molecular mechanisms regulating sexual differentiation and dysregulation in cases of sex reversal. PMID:24223201

  3. Deep whole-genome sequencing of 90 Han Chinese genomes.

    PubMed

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency < 5%), including 5 813 503 single nucleotide polymorphisms, 1 169 199 InDels, and 17 927 structural variants. Using deep sequencing data, we have built a greatly expanded spectrum of genetic variation for the Han Chinese genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the

  4. Genetic diversity, breed composition and admixture of Kenyan domestic pigs.

    PubMed

    Mujibi, Fidalis Denis; Okoth, Edward; Cheruiyot, Evans K; Onzere, Cynthia; Bishop, Richard P; Fèvre, Eric M; Thomas, Lian; Masembe, Charles; Plastow, Graham; Rothschild, Max

    2018-01-01

    The genetic diversity of African pigs, whether domestic or wild has not been widely studied and there is very limited published information available. Available data suggests that African domestic pigs originate from different domestication centers as opposed to international commercial breeds. We evaluated two domestic pig populations in Western Kenya, in order to characterize the genetic diversity, breed composition and admixture of the pigs in an area known to be endemic for African swine fever (ASF). One of the reasons for characterizing these specific populations is the fact that a proportion of indigenous pigs have tested ASF virus (ASFv) positive but do not present with clinical symptoms of disease indicating some form of tolerance to infection. Pigs were genotyped using either the porcine SNP60 or SNP80 chip. Village pigs were sourced from Busia and Homabay counties in Kenya. Because bush pigs (Potamochoerus larvatus) and warthogs (Phacochoerus spp.) are known to be tolerant to ASFv infection (exhibiting no clinical symptoms despite infection), they were included in the study to assess whether domestic pigs have similar genomic signatures. Additionally, samples representing European wild boar and international commercial breeds were included as references, given their potential contribution to the genetic make-up of the target domestic populations. The data indicate that village pigs in Busia are a non-homogenous admixed population with significant introgression of genes from international commercial breeds. Pigs from Homabay by contrast, represent a homogenous population with a "local indigenous' composition that is distinct from the international breeds, and clusters more closely with the European wild boar than African wild pigs. Interestingly, village pigs from Busia that tested negative by PCR for ASFv genotype IX, had significantly higher local ancestry (>54%) compared to those testing positive, which contained more commercial breed gene introgression

  5. Complete Genome Sequence of Pig-Tailed Macaque Rhadinovirus 2 and Its Evolutionary Relationship with Rhesus Macaque Rhadinovirus and Human Herpesvirus 8/Kaposi's Sarcoma-Associated Herpesvirus

    PubMed Central

    Bruce, A. Gregory; Thouless, Margaret E.; Haines, Anthony S.; Pallen, Mark J.; Grundhoff, Adam

    2015-01-01

    ABSTRACT Two rhadinovirus lineages have been identified in Old World primates. The rhadinovirus 1 (RV1) lineage consists of human herpesvirus 8, Kaposi's sarcoma-associated herpesvirus (KSHV), and closely related rhadinoviruses of chimpanzees, gorillas, macaques and other Old World primates. The RV2 rhadinovirus lineage is distinct and consists of closely related viruses from the same Old World primate species. Rhesus macaque rhadinovirus (RRV) is the RV2 prototype, and two RRV isolates, 26-95 and 17577, were sequenced. We determined that the pig-tailed macaque RV2 rhadinovirus, MneRV2, is highly associated with lymphomas in macaques with simian AIDS. To further study the role of rhadinoviruses in the development of lymphoma, we sequenced the complete genome of MneRV2 and identified 87 protein coding genes and 17 candidate microRNAs (miRNAs). A strong genome colinearity and sequence homology were observed between MneRV2 and RRV26-95, although the open reading frame (ORF) encoding the KSHV ORFK15 homolog was disrupted in RRV26-95. Comparison with MneRV2 revealed several genomic anomalies in RRV17577 that were not present in other rhadinovirus genomes, including an N-terminal duplication in ORF4 and a recombinative exchange of more distantly related homologs of the ORF22/ORF47 interacting glycoprotein genes. The comparison with MneRV2 has revealed novel genes and important conservation of protein coding domains and transcription initiation, termination, and splicing signals, which have added to our knowledge of RV2 rhadinovirus genetics. Further comparisons with KSHV and other RV1 rhadinoviruses will provide important avenues for dissecting the biology, evolution, and pathology of these closely related tumor-inducing viruses in humans and other Old World primates. IMPORTANCE This work provides the sequence characterization of MneRV2, the pig-tailed macaque homolog of rhesus rhadinovirus (RRV). MneRV2 and RRV belong to the rhadinovirus 2 (RV2) rhadinovirus lineage of

  6. Taking advantage from phenotype variability in a local animal genetic resource: identification of genomic regions associated with the hairless phenotype in Casertana pigs.

    PubMed

    Schiavo, G; Bertolini, F; Utzeri, V J; Ribani, A; Geraci, C; Santoro, L; Óvilo, C; Fernández, A I; Gallo, M; Fontanesi, L

    2018-04-19

    Casertana is an endangered autochthonous pig breed (raised in south-central Italy) that is considered to be the descendant of the influential Neapolitan pig population that was used to improve British breeds in the 19th century. Casertana pigs are characterized by a typical, almost complete, hairless phenotype, even though a few Casertana pigs are normal haired. In this work, using Illumina PorcineSNP60 BeadChip data, we carried out a genome-wide association study and an F ST analysis with this breed by comparing animals showing the classical hairless phenotype (n = 81) versus pigs classified as haired (n = 15). Combining the results obtained with the two approaches, we identified two significant regions: one on porcine chromosome (SSC) 7 and one on SSC15. The SSC7 region contains the forkhead box N3 (FOXN3) gene, the most plausible candidate gene of this region, considering that mutations in another gene of the same family (forkhead box N1; Foxn1 or FOXN1) are responsible for the nude locus in rodents and alopecia in humans. Another potential candidate gene, rho guanine nucleotide exchange factor 10 (ARHGEF10), is located in the SSC15 region. FOXN3 and ARHGEF10 have been detected as differentially expressed in androgenetic and senescent alopecia respectively. This study on an autochthonous pig breed contributes to shed some light on novel genes potentially involved in hair development and growth and demonstrates that local animal breeds can be valuable genetic resources for disclosing genetic factors affecting unique traits, taking advantage of phenotype variability segregating in small populations. © 2018 Stichting International Foundation for Animal Genetics.

  7. Genome sequence of Phytophthora ramorum: implications for management

    Treesearch

    Brett Tyler; Sucheta Tripathy; Nik Grunwald; Kurt Lamour; Kelly Ivors; Matteo Garbelotto; Daniel Rokhsar; Nik Putnam; Igor Grigoriev; Jeffrey Boore

    2006-01-01

    A draft genome sequence has been determined for Phytophthora ramorum, together with a draft sequence of the soybean pathogen Phytophthora sojae. The P. ramorum genome was sequenced to a depth of 7-fold coverage, while the P. sojae genome was sequenced to a depth of 9-fold coverage. The genome...

  8. Substantial variation in the extent of mitochondrial genome fragmentation among blood-sucking lice of mammals.

    PubMed

    Jiang, Haowei; Barker, Stephen C; Shao, Renfu

    2013-01-01

    Blood-sucking lice of humans have extensively fragmented mitochondrial (mt) genomes. Human head louse and body louse have their 37 mt genes on 20 minichromosomes. In human pubic louse, the 34 mt genes known are on 14 minichromosomes. To understand the process of mt genome fragmentation in the blood-sucking lice of mammals, we sequenced the mt genomes of the domestic pig louse, Haematopinus suis, and the wild pig louse, H. apri, which diverged from human lice approximately 65 Ma. The 37 mt genes of the pig lice are on nine circular minichromosomes; each minichromosome is 3-4 kb in size. The pig lice have four genes per minichromosome on average, in contrast to two genes per minichromosome in the human lice. One minichromosome of the pig lice has eight genes and is the most gene-rich minichromosome found in the sucking lice. Our results indicate substantial variation in the rate and extent of mt genome fragmentation among different lineages of the sucking lice.

  9. Substantial Variation in the Extent of Mitochondrial Genome Fragmentation among Blood-Sucking Lice of Mammals

    PubMed Central

    Jiang, Haowei; Barker, Stephen C.; Shao, Renfu

    2013-01-01

    Blood-sucking lice of humans have extensively fragmented mitochondrial (mt) genomes. Human head louse and body louse have their 37 mt genes on 20 minichromosomes. In human pubic louse, the 34 mt genes known are on 14 minichromosomes. To understand the process of mt genome fragmentation in the blood-sucking lice of mammals, we sequenced the mt genomes of the domestic pig louse, Haematopinus suis, and the wild pig louse, H. apri, which diverged from human lice approximately 65 Ma. The 37 mt genes of the pig lice are on nine circular minichromosomes; each minichromosome is 3–4 kb in size. The pig lice have four genes per minichromosome on average, in contrast to two genes per minichromosome in the human lice. One minichromosome of the pig lice has eight genes and is the most gene-rich minichromosome found in the sucking lice. Our results indicate substantial variation in the rate and extent of mt genome fragmentation among different lineages of the sucking lice. PMID:23781098

  10. Lessons for livestock genomics from genome and transcriptome sequencing in cattle and other mammals.

    PubMed

    Taylor, Jeremy F; Whitacre, Lynsey K; Hoff, Jesse L; Tizioto, Polyana C; Kim, JaeWoo; Decker, Jared E; Schnabel, Robert D

    2016-08-17

    Decreasing sequencing costs and development of new protocols for characterizing global methylation, gene expression patterns and regulatory regions have stimulated the generation of large livestock datasets. Here, we discuss experiences in the analysis of whole-genome and transcriptome sequence data. We analyzed whole-genome sequence (WGS) data from 132 individuals from five canid species (Canis familiaris, C. latrans, C. dingo, C. aureus and C. lupus) and 61 breeds, three bison (Bison bison), 64 water buffalo (Bubalus bubalis) and 297 bovines from 17 breeds. By individual, data vary in extent of reference genome depth of coverage from 4.9X to 64.0X. We have also analyzed RNA-seq data for 580 samples representing 159 Bos taurus and Rattus norvegicus animals and 98 tissues. By aligning reads to a reference assembly and calling variants, we assessed effects of average depth of coverage on the actual coverage and on the number of called variants. We examined the identity of unmapped reads by assembling them and querying produced contigs against the non-redundant nucleic acids database. By imputing high-density single nucleotide polymorphism data on 4010 US registered Angus animals to WGS using Run4 of the 1000 Bull Genomes Project and assessing the accuracy of imputation, we identified misassembled reference sequence regions. We estimate that a 24X depth of coverage is required to achieve 99.5 % coverage of the reference assembly and identify 95 % of the variants within an individual's genome. Genomes sequenced to low average coverage (e.g., <10X) may fail to cover 10 % of the reference genome and identify <75 % of variants. About 10 % of genomic DNA or transcriptome sequence reads fail to align to the reference assembly. These reads include loci missing from the reference assembly and misassembled genes and interesting symbionts, commensal and pathogenic organisms. Assembly errors and a lack of annotation of functional elements significantly limit the utility of

  11. Expressed sequence tag analysis of guinea pig (Cavia porcellus) eye tissues for NEIBank

    PubMed Central

    Simpanya, Mukoma F.; Wistow, Graeme; Gao, James; David, Larry L.; Giblin, Frank J.

    2008-01-01

    Purpose To characterize gene expression patterns in guinea pig ocular tissues and identify orthologs of human genes from NEIBank expressed sequence tags. Methods RNA was extracted from dissected eye tissues of 2.5-month-old guinea pigs to make three unamplified and unnormalized cDNA libraries in the pCMVSport-6 vector for the lens, retina, and eye minus lens and retina. Over 4,000 clones were sequenced from each library and were analyzed using GRIST for clustering and gene identification. Lens crystallin EST data were validated using two-dimensional electrophoresis (2-DE), matrix assisted laser desorption (MALDI), and electrospray ionization mass spectrometry (ESIMS). Results Combined data from the three libraries generated a total of 6,694 distinctive gene clusters, with each library having between 1,000 and 3,000 clusters. Approximately 60% of the total gene clusters were novel cDNA sequences and had significant homologies to other mammalian sequences in GenBank. Complete cDNA sequences were obtained for many guinea pig lens proteins, including αA/αAinsert-, γN-, and γS-crystallins, lengsin and GRIFIN. The ratio of αA- to αB-crystallin on 2-DE gels was 8: 1 in the lens nucleus and 6.5: 1 in the cortex. Analysis of ESTs, genome sequence, and proteins (by MALDI), did not reveal any evidence for the presence of γD-, γE-, and γF-crystallin in the guinea pig. Predicted masses of many guinea pig lens crystallins were confirmed by ESIMS analysis. For the retina, orthologs of human phototransduction genes were found, such as Rhodopsin, S-antigen (Sag, Arrestin), and Transducin. The guinea-pig ortholog of NRL, a key rod photoreceptor-specific transcription factor, was also represented in EST data. In the ‘rest-of-eye’ library, the most abundant transcripts included decorin and keratin 12, representative of the cornea. Conclusions Genomic analysis of guinea pig eye tissues provides sequence-verified clones for future studies. Guinea pig orthologs of many human

  12. Hybrid origin of European commercial pigs examined by an in-depth haplotype analysis on chromosome 1

    PubMed Central

    Bosse, Mirte; Madsen, Ole; Megens, Hendrik-Jan; Frantz, Laurent A. F.; Paudel, Yogesh; Crooijmans, Richard P. M. A.; Groenen, Martien A. M.

    2014-01-01

    Although all farm animals have an original source of domestication, a large variety of modern breeds exist that are phenotypically highly distinct from the ancestral wild population. This phenomenon can be the result of artificial selection or gene flow from other sources into the domesticated population. The Eurasian wild boar (Sus scrofa) has been domesticated at least twice in two geographically distinct regions during the Neolithic revolution when hunting shifted to farming. Prior to the establishment of the commercial European pig breeds we know today, some 200 years ago Chinese pigs were imported into Europe to improve local European pigs. Commercial European domesticated pigs are genetically more diverse than European wild boars, although historically the latter represents the source population for domestication. In this study we examine the cause of the higher diversity within the genomes of European commercial pigs compared to their wild ancestors by testing two different hypotheses. In the first hypothesis we consider that European commercial pigs are a mix of different European wild populations as a result of movement throughout Europe, hereby acquiring haplotypes from all over the European continent. As an alternative hypothesis, we examine whether the introgression of Asian haplotypes into European breeds during the Industrial Revolution caused the observed increase in diversity. By using re-sequence data for chromosome 1 of 136 pigs and wild boars, we show that an Asian introgression of about 20% into the genome of European commercial pigs explains the majority of the increase in genetic diversity. These findings confirm that the Asian hybridization, that was used to improve production traits of local breeds, left its signature in the genome of the commercial pigs we know today. PMID:25601878

  13. A GWAS of teat number in pigs

    USDA-ARS?s Scientific Manuscript database

    Number of functional teats is an important trait in commercial swine production. As litter size continues to increase, the number of teats must also increase to supply nutrition to all piglets. The pig displays considerable variation for number of teats; therefore, a genome-wide association (GWA) an...

  14. Characterization of the acute heat stress response in gilts: III. Genome-wide association studies of thermotolerance traits in pigs.

    PubMed

    Kim, Kwan-Suk; Seibert, Jacob T; Edea, Zewde; Graves, Kody L; Kim, Eui-Soo; Keating, Aileen F; Baumgard, Lance H; Ross, Jason W; Rothschild, Max F

    2018-06-04

    Heat stress is one of the limiting factors negatively affecting pig production, health, and fertility. Characterizing genomic regions responsible for variation in HS tolerance would be useful in identifying important genetic factor(s) regulating physiological responses to HS. In the present study, we performed genome-wide association analyses for respiration rate (RR), rectal temperature (TR), and skin temperature (TS) during HS in 214 crossbred gilts genotyped for 68,549 single nucleotide polymorphisms (SNP) using the Porcine SNP 70K BeadChip. Considering the top 0.1% smoothed phenotypic variances explained by SNP windows, we detected 26, 26, 21, and 14 genes that reside within SNPs explaining the largest proportion of variance (top 25 SNP windows) and associated with change in RR (ΔRR) from thermoneutral (TN) conditions to HS environment, as well as the change in prepubertal TR (ΔTR), change in postpubertal ΔTR, and change in TS (ΔTS), respectively. The region between 28.85 Mb and 29.10 Mb on chromosome 16 explained about 0.05% of the observed variation for ΔRR. The growth hormone receptor (GHR) gene resides in this region and is associated with the HS response. The other important candidate genes associated with ΔRR (PAIP1, NNT, and TEAD4), ΔTR (LIMS2, TTR, and TEAD4), and ΔTS (ERBB4, FKBP1B, NFATC2, and ATP9A) have reported roles in the cellular stress response. The SNP explaining the largest proportion of variance and located within and in the vicinity of genes were related to apoptosis or cellular stress and are potential candidates that underlie the physiological response to HS in pigs.

  15. Phylogenetic Conflict in Bears Identified by Automated Discovery of Transposable Element Insertions in Low-Coverage Genomes

    PubMed Central

    Gallus, Susanne; Janke, Axel

    2017-01-01

    Abstract Phylogenetic reconstruction from transposable elements (TEs) offers an additional perspective to study evolutionary processes. However, detecting phylogenetically informative TE insertions requires tedious experimental work, limiting the power of phylogenetic inference. Here, we analyzed the genomes of seven bear species using high-throughput sequencing data to detect thousands of TE insertions. The newly developed pipeline for TE detection called TeddyPi (TE detection and discovery for Phylogenetic Inference) identified 150,513 high-quality TE insertions in the genomes of ursine and tremarctine bears. By integrating different TE insertion callers and using a stringent filtering approach, the TeddyPi pipeline produced highly reliable TE insertion calls, which were confirmed by extensive in vitro validation experiments. Analysis of single nucleotide substitutions in the flanking regions of the TEs shows that these substitutions correlate with the phylogenetic signal from the TE insertions. Our phylogenomic analyses show that TEs are a major driver of genomic variation in bears and enabled phylogenetic reconstruction of a well-resolved species tree, despite strong signals for incomplete lineage sorting and introgression. The analyses show that the Asiatic black, sun, and sloth bear form a monophyletic clade, in which phylogenetic incongruence originates from incomplete lineage sorting. TeddyPi is open source and can be adapted to various TE and structural variation callers. The pipeline makes it possible to confidently extract thousands of TE insertions even from low-coverage genomes (∼10×) of nonmodel organisms. This opens new possibilities for biologists to study phylogenies and evolutionary processes as well as rates and patterns of (retro-)transposition and structural variation. PMID:28985298

  16. Breaking Lander-Waterman’s Coverage Bound

    PubMed Central

    Nashta-ali, Damoun; Motahari, Seyed Abolfazl; Hosseinkhalaj, Babak

    2016-01-01

    Lander-Waterman’s coverage bound establishes the total number of reads required to cover the whole genome of size G bases. In fact, their bound is a direct consequence of the well-known solution to the coupon collector’s problem which proves that for such genome, the total number of bases to be sequenced should be O(G ln G). Although the result leads to a tight bound, it is based on a tacit assumption that the set of reads are first collected through a sequencing process and then are processed through a computation process, i.e., there are two different machines: one for sequencing and one for processing. In this paper, we present a significant improvement compared to Lander-Waterman’s result and prove that by combining the sequencing and computing processes, one can re-sequence the whole genome with as low as O(G) sequenced bases in total. Our approach also dramatically reduces the required computational power for the combined process. Simulation results are performed on real genomes with different sequencing error rates. The results support our theory predicting the log G improvement on coverage bound and corresponding reduction in the total number of bases required to be sequenced. PMID:27806058

  17. A survey of single nucleotide polymorphisms identified from whole-genome sequencing and their functional effect in the porcine genome.

    PubMed

    Keel, B N; Nonneman, D J; Rohrer, G A

    2017-08-01

    Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole-genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire-Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss-of-function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss-of-function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  18. Regularized quantile regression for SNP marker estimation of pig growth curves.

    PubMed

    Barroso, L M A; Nascimento, M; Nascimento, A C C; Silva, F F; Serão, N V L; Cruz, C D; Resende, M D V; Silva, F L; Azevedo, C F; Lopes, P S; Guimarães, S E F

    2017-01-01

    Genomic growth curves are generally defined only in terms of population mean; an alternative approach that has not yet been exploited in genomic analyses of growth curves is the Quantile Regression (QR). This methodology allows for the estimation of marker effects at different levels of the variable of interest. We aimed to propose and evaluate a regularized quantile regression for SNP marker effect estimation of pig growth curves, as well as to identify the chromosome regions of the most relevant markers and to estimate the genetic individual weight trajectory over time (genomic growth curve) under different quantiles (levels). The regularized quantile regression (RQR) enabled the discovery, at different levels of interest (quantiles), of the most relevant markers allowing for the identification of QTL regions. We found the same relevant markers simultaneously affecting different growth curve parameters (mature weight and maturity rate): two (ALGA0096701 and ALGA0029483) for RQR(0.2), one (ALGA0096701) for RQR(0.5), and one (ALGA0003761) for RQR(0.8). Three average genomic growth curves were obtained and the behavior was explained by the curve in quantile 0.2, which differed from the others. RQR allowed for the construction of genomic growth curves, which is the key to identifying and selecting the most desirable animals for breeding purposes. Furthermore, the proposed model enabled us to find, at different levels of interest (quantiles), the most relevant markers for each trait (growth curve parameter estimates) and their respective chromosomal positions (identification of new QTL regions for growth curves in pigs). These markers can be exploited under the context of marker assisted selection while aiming to change the shape of pig growth curves.

  19. Sex Genotyping of Archival Fixed and Immunolabeled Guinea Pig Cochleas.

    PubMed

    Depreux, Frédéric F; Czech, Lyubov; Whitlon, Donna S

    2018-03-26

    For decades, outbred guinea pigs (GP) have been used as research models. Various past research studies using guinea pigs used measures that, unknown at the time, may be sex-dependent, but from which today, archival tissues may be all that remain. We aimed to provide a protocol for sex-typing archival guinea pig tissue, whereby past experiments could be re-evaluated for sex effects. No PCR sex-genotyping protocols existed for GP. We found that published sequence of the GP Sry gene differed from that in two separate GP stocks. We used sequences from other species to deduce PCR primers for Sry. After developing a genomic DNA extraction for archival, fixed, decalcified, immunolabeled, guinea pig cochlear half-turns, we used a multiplex assay (Y-specific Sry; X-specific Dystrophin) to assign sex to tissue as old as 3 years. This procedure should allow reevaluation of prior guinea pig studies in various research areas for the effects of sex on experimental outcomes.

  20. Pathway analysis in blood cells of pigs infected with classical swine fever virus: comparison of pigs that develop a chronic form of infection or recover.

    PubMed

    Hulst, Marcel; Loeffen, Willie; Weesendorp, Eefke

    2013-02-01

    Infection of pigs with CSFV can lead to either acute disease, resulting in death or recovery, or chronic disease. The mechanisms by which CSFV manipulates the pig's first line of defence to establish a chronic infection are poorly understood. Therefore, pigs were infected with moderately virulent CSFV, and whole blood was collected on a regular basis during a period of 18 days. Using whole-genome microarrays, time-dependent changes in gene expression were recorded in blood cells of chronically diseased pigs and pigs that recovered. Bioinformatics analysis of regulated genes indicated that different immunological pathways were regulated in chronically diseased pigs compared to recovered pigs. In recovered pigs, antiviral defence mechanisms were rapidly activated, whereas in chronically diseased pigs, several genes with the potential to inhibit NF-κB- and IRF3/7-mediated transcription of type I interferons were up-regulated. Compared to recovered pigs, chronically diseased pigs failed to activate NK or cytotoxic T-cell pathways, and they showed decreased gene activity in antigen-presenting monocytes/macrophages. Remarkably, in chronically diseased pigs, genes related to the human autoimmune disease systemic lupus erythematosus (SLE) were up-regulated during the whole period of 18 days. CSFV pathology in kidney and skin resembles that of SLE. Furthermore, enzymes involved in the degradation of 1,25-dihydroxyvitamin D3 and of tryptophan to kynurenines were expressed at different levels in chronically diseased and recovered pigs. Both of these chemical processes may affect the functions of T helper/regulatory cells that are crucial for tempering the inflammatory response after a viral infection.

  1. Targeted Mutagenesis of Guinea Pig Cytomegalovirus Using CRISPR/Cas9-Mediated Gene Editing.

    PubMed

    Bierle, Craig J; Anderholm, Kaitlyn M; Wang, Jian Ben; McVoy, Michael A; Schleiss, Mark R

    2016-08-01

    The cytomegaloviruses (CMVs) are among the most genetically complex mammalian viruses, with viral genomes that often exceed 230 kbp. Manipulation of cytomegalovirus genomes is largely performed using infectious bacterial artificial chromosomes (BACs), which necessitates the maintenance of the viral genome in Escherichia coli and successful reconstitution of virus from permissive cells after transfection of the BAC. Here we describe an alternative strategy for the mutagenesis of guinea pig cytomegalovirus that utilizes clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing to introduce targeted mutations to the viral genome. Transient transfection and drug selection were used to restrict lytic replication of guinea pig cytomegalovirus to cells that express Cas9 and virus-specific guide RNA. The result was highly efficient editing of the viral genome that introduced targeted insertion or deletion mutations to nonessential viral genes. Cotransfection of multiple virus-specific guide RNAs or a homology repair template was used for targeted, markerless deletions of viral sequence or to introduce exogenous sequence by homology-driven repair. As CRISPR/Cas9 mutagenesis occurs directly in infected cells, this methodology avoids selective pressures that may occur during propagation of the viral genome in bacteria and may facilitate genetic manipulation of low-passage or clinical CMV isolates. The cytomegalovirus genome is complex, and viral adaptations to cell culture have complicated the study of infection in vivo Recombineering of viral bacterial artificial chromosomes enabled the study of recombinant cytomegaloviruses. Here we report the development of an alternative approach using CRISPR/Cas9-based mutagenesis in guinea pig cytomegalovirus, a small-animal model of congenital cytomegalovirus disease. CRISPR/Cas9 mutagenesis can introduce the same types of mutations to the viral genome as bacterial

  2. Identification of positive selection signatures in pigs by comparing linkage disequilibrium variances.

    PubMed

    Li, X; Yang, S; Dong, K; Tang, Z; Li, K; Fan, B; Wang, Z; Liu, B

    2017-10-01

    Selection affects the patterns of linkage disequilibrium (LD) around the site of a beneficial allele with an increase in LD among the hitchhiking alleles. Comparing the differences in regional LD between pig populations could help to identify putative genomic regions with potential adaptations for economic traits. In this study, using Illumina Porcine SNP60K BeadChip genotyping data from 207 Chinese indigenous, 117 South American village and 408 Large White pigs, we estimated the variation of genome-wide LD between populations using the varld program. The top 0.1% standardized VarLD scores were used as a criterion for all comparisons, and compared with LD blocks, a total of four selection signatures on Sus scrofa chromosome (SSC) 7, 9, 13 and 14 were identified in all populations. These signatures overlapped with quantitative trait loci for linoleic acid content, age at puberty, number of muscle fibers per unit area, hip structure and body weight traits in pigs. Among them, one of the signatures (56.5-56.6 Mb on SSC7) in Large White pigs harbored the ADAMTSL3 gene, which is known to affect body length. The findings of this study seem to point toward recent selection in different pig populations. Further investigations are encouraged to confirm the selection signatures detected by varld in the present study. © 2017 Stichting International Foundation for Animal Genetics.

  3. Coverage and efficiency in current SNP chips

    PubMed Central

    Ha, Ngoc-Thuy; Freytag, Saskia; Bickeboeller, Heike

    2014-01-01

    To answer the question as to which commercial high-density SNP chip covers most of the human genome given a fixed budget, we compared the performance of 12 chips of different sizes released by Affymetrix and Illumina for the European, Asian, and African populations. These include Affymetrix' relatively new population-optimized arrays, whose SNP sets are each tailored toward a specific ethnicity. Our evaluation of the chips included the use of two measures, efficiency and cost–benefit ratio, which we developed as supplements to genetic coverage. Unlike coverage, these measures factor in the price of a chip or its substitute size (number of SNPs on chip), allowing comparisons to be drawn between differently priced chips. In this fashion, we identified the Affymetrix population-optimized arrays as offering the most cost-effective coverage for the Asian and African population. For the European population, we established the Illumina Human Omni 2.5-8 as the preferred choice. Interestingly, the Affymetrix chip tailored toward an Eastern Asian subpopulation performed well for all three populations investigated. However, our coverage estimates calculated for all chips proved much lower than those advertised by the producers. All our analyses were based on the 1000 Genome Project as reference population. PMID:24448550

  4. Complete Genome Sequences of Getah Virus Strains Isolated from Horses in 2016 in Japan.

    PubMed

    Nemoto, Manabu; Bannai, Hiroshi; Ochi, Akihiro; Niwa, Hidekazu; Murakami, Satoshi; Tsujimura, Koji; Yamanaka, Takashi; Kokado, Hiroshi; Kondo, Takashi

    2017-08-03

    Getah virus is mosquito-borne and causes disease in horses and pigs. We sequenced and analyzed the complete genomes of three strains isolated from horses in Ibaraki Prefecture, eastern Japan, in 2016. They were almost identical to the genomes of strains recently isolated from horses, pigs, and mosquitoes in Japan. Copyright © 2017 Nemoto et al.

  5. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing.

    PubMed

    Sachsenröder, Jana; Twardziok, Sven; Hammerl, Jens A; Janczyk, Pawel; Wrede, Paul; Hertwig, Stefan; Johne, Reimar

    2012-01-01

    Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2) with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9%) and mammalian viruses (23.9%); 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV), represents a novel pig virus. The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures comparability of the method and may be used for

  6. Association mapping identifies loci for canopy coverage in diverse soybean genotypes

    USDA-ARS?s Scientific Manuscript database

    Rapid establishment of canopy coverage decreases soil evaporation relative to transpiration (T), improves water use efficiency (WUE) and light interception, and increases soybean competitiveness against weeds. The objective of this study was to identify genomic loci associated with canopy coverage (...

  7. Phylogenetic Conflict in Bears Identified by Automated Discovery of Transposable Element Insertions in Low-Coverage Genomes.

    PubMed

    Lammers, Fritjof; Gallus, Susanne; Janke, Axel; Nilsson, Maria A

    2017-10-01

    Phylogenetic reconstruction from transposable elements (TEs) offers an additional perspective to study evolutionary processes. However, detecting phylogenetically informative TE insertions requires tedious experimental work, limiting the power of phylogenetic inference. Here, we analyzed the genomes of seven bear species using high-throughput sequencing data to detect thousands of TE insertions. The newly developed pipeline for TE detection called TeddyPi (TE detection and discovery for Phylogenetic Inference) identified 150,513 high-quality TE insertions in the genomes of ursine and tremarctine bears. By integrating different TE insertion callers and using a stringent filtering approach, the TeddyPi pipeline produced highly reliable TE insertion calls, which were confirmed by extensive in vitro validation experiments. Analysis of single nucleotide substitutions in the flanking regions of the TEs shows that these substitutions correlate with the phylogenetic signal from the TE insertions. Our phylogenomic analyses show that TEs are a major driver of genomic variation in bears and enabled phylogenetic reconstruction of a well-resolved species tree, despite strong signals for incomplete lineage sorting and introgression. The analyses show that the Asiatic black, sun, and sloth bear form a monophyletic clade, in which phylogenetic incongruence originates from incomplete lineage sorting. TeddyPi is open source and can be adapted to various TE and structural variation callers. The pipeline makes it possible to confidently extract thousands of TE insertions even from low-coverage genomes (∼10×) of nonmodel organisms. This opens new possibilities for biologists to study phylogenies and evolutionary processes as well as rates and patterns of (retro-)transposition and structural variation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Investigation of Influenza Virus Polymerase Activity in Pig Cells

    PubMed Central

    Moncorgé, Olivier; Long, Jason S.; Cauldwell, Anna V.; Zhou, Hongbo; Lycett, Samantha J.

    2013-01-01

    Reassortant influenza viruses with combinations of avian, human, and/or swine genomic segments have been detected frequently in pigs. As a consequence, pigs have been accused of being a “mixing vessel” for influenza viruses. This implies that pig cells support transcription and replication of avian influenza viruses, in contrast to human cells, in which most avian influenza virus polymerases display limited activity. Although influenza virus polymerase activity has been studied in human and avian cells for many years by use of a minigenome assay, similar investigations in pig cells have not been reported. We developed the first minigenome assay for pig cells and compared the activities of polymerases of avian or human influenza virus origin in pig, human, and avian cells. We also investigated in pig cells the consequences of some known mammalian host range determinants that enhance influenza virus polymerase activity in human cells, such as PB2 mutations E627K, D701N, G590S/Q591R, and T271A. The two typical avian influenza virus polymerases used in this study were poorly active in pig cells, similar to what is seen in human cells, and mutations that adapt the avian influenza virus polymerase for human cells also increased activity in pig cells. In contrast, a different pattern was observed in avian cells. Finally, highly pathogenic avian influenza virus H5N1 polymerase activity was tested because this subtype has been reported to replicate only poorly in pigs. H5N1 polymerase was active in swine cells, suggesting that other barriers restrict these viruses from becoming endemic in pigs. PMID:23077313

  9. Low coverage sequencing of three echinoderm genomes: the brittle star Ophionereis fasciata, the sea star Patiriella regularis, and the sea cucumber Australostichopus mollis.

    PubMed

    Long, Kyle A; Nossa, Carlos W; Sewell, Mary A; Putnam, Nicholas H; Ryan, Joseph F

    2016-01-01

    There are five major extant groups of Echinodermata: Crinoidea (feather stars and sea lillies), Ophiuroidea (brittle stars and basket stars), Asteroidea (sea stars), Echinoidea (sea urchins, sea biscuits, and sand dollars), and Holothuroidea (sea cucumbers). These animals are known for their pentaradial symmetry as adults, unique water vascular system, mutable collagenous tissues, and endoskeletons of high magnesium calcite. To our knowledge, the only echinoderm species with a genome sequence available to date is Strongylocentrotus pupuratus (Echinoidea). The availability of additional echinoderm genome sequences is crucial for understanding the biology of these animals. Here we present assembled draft genomes of the brittle star Ophionereis fasciata, the sea star Patiriella regularis, and the sea cucumber Australostichopus mollis from Illumina sequence data with coverages of 12.5x, 22.5x, and 21.4x, respectively. These data provide a resource for mining gene superfamilies, identifying non-coding RNAs, confirming gene losses, and designing experimental constructs. They will be important comparative resources for future genomic studies in echinoderms.

  10. SUSCEPTIBILITY LOCI FOR UMBILICAL HERNIA IN SWINE DETECTED BY GENOME-WIDE ASSOCIATION.

    PubMed

    Liao, X J; Lia, L; Zhang, Z Y; Long, Y; Yang, B; Ruan, G R; Su, Y; Ai, H S; Zhang, W C; Deng, W Y; Xiao, S J; Ren, J; Ding, N S; Huang, L S

    2015-10-01

    Umbilical hernia (UH) is a complex disorder caused by both genetic and environmental factors. UH brings animal welfare problems and severe economic loss to the pig industry. Until now, the genetic basis of UH is poorly understood. The high-density 60K porcine SNP array enables the rapid application of genome-wide association study (GWAS) to identify genetic loci for phenotypic traits at genome wide scale in pigs. The objective of this research was to identify susceptibility loci for swine umbilical hernia using the GWAS approach. We genotyped 478 piglets from 142 families representing three Western commercial breeds with the Illumina PorcineSNP60 BeadChip. Then significant SNPs were detected by GWAS using ROADTRIPS (Robust Association-Detection Test for Related Individuals with Population Substructure) software base on a Bonferroni corrected threshold (P = 1.67E-06) or suggestive threshold (P = 3.34E-05) and false discovery rate (FDR = 0.05). After quality control, 29,924 qualified SNPs and 472 piglets were used for GWAS. Two suggestive loci predisposing to pig UH were identified at 44.25MB on SSC2 (rs81358018, P = 3.34E-06, FDR = 0.049933) and at 45.90MB on SSC17 (rs81479278, P = 3.30E-06, FDR = 0.049933) in Duroc population, respectively. And no SNP was detected to be associated with pig UH at significant level in neither Landrace nor Large White population. Furthermore, we carried out a meta-analysis in the combined pure-breed population containing all the 472 piglets. rs81479278 (P = 1.16E-06, FDR = 0.022475) was identified to associate with pig UH at genome-wide significant level. SRC was characterized as plausible candidate gene for susceptibility to pig UH according to its genomic position and biological functions. To our knowledge, this study gives the first description of GWAS identifying susceptibility loci for umbilical hernia in pigs. Our findings provide deeper insights to the genetic architecture of umbilical hernia in pigs.

  11. Host genetics of response to porcine reproductive and respiratory syndrome in nursery pigs.

    PubMed

    Dekkers, Jack; Rowland, Raymond R R; Lunney, Joan K; Plastow, Graham

    2017-09-01

    PRRS is the most costly disease in the US pig industry. While vaccination, biosecurity and eradication effort have had some success, the variability and infectiousness of PRRS virus strains have hampered the effectiveness of these measures. We propose the use of genetic selection of pigs as an additional and complementary effort. Several studies have shown that host response to PRRS infection has a sizeable genetic component and recent advances in genomics provide opportunities to capitalize on these genetic differences and improve our understanding of host response to PRRS. While work is also ongoing to understand the genetic basis of host response to reproductive PRRS, the focus of this review is on research conducted on host response to PRRS in the nursery and grow-finish phase as part of the PRRS Host Genetics Consortium. Using experimental infection of large numbers of commercial nursery pigs, combined with deep phenotyping and genomics, this research has identified a major gene that is associated with host response to PRRS. Further functional genomics work identified the GBP5 gene as harboring the putative causative mutation. GBP5 is associated with innate immune response. Subsequent work has validated the effect of this genomic region on host response to a second PRRSV strain and to PRRS vaccination and co-infection of nursery pigs with PRRSV and PCV2b. A genetic marker near GBP5 is available to the industry for use in selection. Genetic differences in host response beyond GBP5 appear to be highly polygenic, i.e. controlled by many genes across the genome, each with a small effect. Such effects can by capitalized on in a selection program using genomic prediction on large numbers of genetic markers across the genome. Additional work has also identified the genetic basis of antibody response to PRRS, which could lead to the use of vaccine response as an indicator trait to select for host response to PRRS. Other genomic analyses, including gene expression

  12. Transposon fingerprinting using low coverage whole genome shotgun sequencing in Cacao (Theobroma cacao L.) and related species

    PubMed Central

    2013-01-01

    Background Transposable elements (TEs) and other repetitive elements are a large and dynamically evolving part of eukaryotic genomes, especially in plants where they can account for a significant proportion of genome size. Their dynamic nature gives them the potential for use in identifying and characterizing crop germplasm. However, their repetitive nature makes them challenging to study using conventional methods of molecular biology. Next generation sequencing and new computational tools have greatly facilitated the investigation of TE variation within species and among closely related species. Results (i) We generated low-coverage Illumina whole genome shotgun sequencing reads for multiple individuals of cacao (Theobroma cacao) and related species. These reads were analysed using both an alignment/mapping approach and a de novo (graph based clustering) approach. (ii) A standard set of ultra-conserved orthologous sequences (UCOS) standardized TE data between samples and provided phylogenetic information on the relatedness of samples. (iii) The mapping approach proved highly effective within the reference species but underestimated TE abundance in interspecific comparisons relative to the de novo methods. (iv) Individual T. cacao accessions have unique patterns of TE abundance indicating that the TE composition of the genome is evolving actively within this species. (v) LTR/Gypsy elements are the most abundant, comprising c.10% of the genome. (vi) Within T. cacao the retroelement families show an order of magnitude greater sequence variability than the DNA transposon families. (vii) Theobroma grandiflorum has a similar TE composition to T. cacao, but the related genus Herrania is rather different, with LTRs making up a lower proportion of the genome, perhaps because of a massive presence (c. 20%) of distinctive low complexity satellite-like repeats in this genome. Conclusions (i) Short read alignment/mapping to reference TE contigs provides a simple and effective

  13. Transposon fingerprinting using low coverage whole genome shotgun sequencing in cacao (Theobroma cacao L.) and related species.

    PubMed

    Sveinsson, Saemundur; Gill, Navdeep; Kane, Nolan C; Cronk, Quentin

    2013-07-24

    Transposable elements (TEs) and other repetitive elements are a large and dynamically evolving part of eukaryotic genomes, especially in plants where they can account for a significant proportion of genome size. Their dynamic nature gives them the potential for use in identifying and characterizing crop germplasm. However, their repetitive nature makes them challenging to study using conventional methods of molecular biology. Next generation sequencing and new computational tools have greatly facilitated the investigation of TE variation within species and among closely related species. (i) We generated low-coverage Illumina whole genome shotgun sequencing reads for multiple individuals of cacao (Theobroma cacao) and related species. These reads were analysed using both an alignment/mapping approach and a de novo (graph based clustering) approach. (ii) A standard set of ultra-conserved orthologous sequences (UCOS) standardized TE data between samples and provided phylogenetic information on the relatedness of samples. (iii) The mapping approach proved highly effective within the reference species but underestimated TE abundance in interspecific comparisons relative to the de novo methods. (iv) Individual T. cacao accessions have unique patterns of TE abundance indicating that the TE composition of the genome is evolving actively within this species. (v) LTR/Gypsy elements are the most abundant, comprising c.10% of the genome. (vi) Within T. cacao the retroelement families show an order of magnitude greater sequence variability than the DNA transposon families. (vii) Theobroma grandiflorum has a similar TE composition to T. cacao, but the related genus Herrania is rather different, with LTRs making up a lower proportion of the genome, perhaps because of a massive presence (c. 20%) of distinctive low complexity satellite-like repeats in this genome. (i) Short read alignment/mapping to reference TE contigs provides a simple and effective method of investigating

  14. Whole genome sequence analysis of BT-474 using complete Genomics' standard and long fragment read technologies.

    PubMed

    Ciotlos, Serban; Mao, Qing; Zhang, Rebecca Yu; Li, Zhenyu; Chin, Robert; Gulbahce, Natali; Liu, Sophie Jia; Drmanac, Radoje; Peters, Brock A

    2016-01-01

    The cell line BT-474 is a popular cell line for studying the biology of cancer and developing novel drugs. However, there is no complete, published genome sequence for this highly utilized scientific resource. In this study we sought to provide a comprehensive and useful data set for the scientific community by generating a whole genome sequence for BT-474. Five μg of genomic DNA, isolated from an early passage of the BT-474 cell line, was used to generate a whole genome sequence (114X coverage) using Complete Genomics' standard sequencing process. To provide additional variant phasing and structural variation data we also processed and analyzed two separate libraries of 5 and 6 individual cells to depths of 99X and 87X, respectively, using Complete Genomics' Long Fragment Read (LFR) technology. BT-474 is a highly aneuploid cell line with an extremely complex genome sequence. This ~300X total coverage genome sequence provides a more complete understanding of this highly utilized cell line at the genomic level.

  15. Accuracy of genomic prediction using deregressed breeding values estimated from purebred and crossbred offspring phenotypes in pigs.

    PubMed

    Hidalgo, A M; Bastiaansen, J W M; Lopes, M S; Veroneze, R; Groenen, M A M; de Koning, D-J

    2015-07-01

    Genomic selection is applied to dairy cattle breeding to improve the genetic progress of purebred (PB) animals, whereas in pigs and poultry the target is a crossbred (CB) animal for which a different strategy appears to be needed. The source of information used to estimate the breeding values, i.e., using phenotypes of CB or PB animals, may affect the accuracy of prediction. The objective of our study was to assess the direct genomic value (DGV) accuracy of CB and PB pigs using different sources of phenotypic information. Data used were from 3 populations: 2,078 Dutch Landrace-based, 2,301 Large White-based, and 497 crossbreds from an F1 cross between the 2 lines. Two female reproduction traits were analyzed: gestation length (GLE) and total number of piglets born (TNB). Phenotypes used in the analyses originated from offspring of genotyped individuals. Phenotypes collected on CB and PB animals were analyzed as separate traits using a single-trait model. Breeding values were estimated separately for each trait in a pedigree BLUP analysis and subsequently deregressed. Deregressed EBV for each trait originating from different sources (CB or PB offspring) were used to study the accuracy of genomic prediction. Accuracy of prediction was computed as the correlation between DGV and the DEBV of the validation population. Accuracy of prediction within PB populations ranged from 0.43 to 0.62 across GLE and TNB. Accuracies to predict genetic merit of CB animals with one PB population in the training set ranged from 0.12 to 0.28, with the exception of using the CB offspring phenotype of the Dutch Landrace that resulted in an accuracy estimate around 0 for both traits. Accuracies to predict genetic merit of CB animals with both parental PB populations in the training set ranged from 0.17 to 0.30. We conclude that prediction within population and trait had good predictive ability regardless of the trait being the PB or CB performance, whereas using PB population(s) to predict

  16. A Haplotype Information Theory Method Reveals Genes of Evolutionary Interest in European vs. Asian Pigs.

    PubMed

    Hudson, Nicholas J; Naval-Sánchez, Marina; Porto-Neto, Laercio; Pérez-Enciso, Miguel; Reverter, Antonio

    2018-06-05

    Asian and European wild boars were independently domesticated ca. 10,000 years ago. Since the 17th century, Chinese breeds have been imported to Europe to improve the genetics of European animals by introgression of favourable alleles, resulting in a complex mosaic of haplotypes. To interrogate the structure of these haplotypes further, we have run a new haplotype segregation analysis based on information theory, namely compression efficiency (CE). We applied the approach to sequence data from individuals from each phylogeographic region (n = 23 from Asia and Europe) including a number of major pig breeds. Our genome-wide CE is able to discriminate the breeds in a manner reflecting phylogeography. Furthermore, 24,956 non-overlapping sliding windows (each comprising 1,000 consecutive SNP) were quantified for extent of haplotype sharing within and between Asia and Europe. The genome-wide distribution of extent of haplotype sharing was quite different between groups. Unlike European pigs, Asian pigs haplotype sharing approximates a normal distribution. In line with this, we found the European breeds possessed a number of genomic windows of dramatically higher haplotype sharing than the Asian breeds. Our CE analysis of sliding windows capture some of the genomic regions reported to contain signatures of selection in domestic pigs. Prominent among these regions, we highlight the role of a gene encoding the mitochondrial enzyme LACTB which has been associated with obesity, and the gene encoding MYOG a fundamental transcriptional regulator of myogenesis. The origin of these regions likely reflects either a population bottleneck in European animals, or selective targets on commercial phenotypes reducing allelic diversity in particular genes and/or regulatory regions.

  17. Detecting selection signatures between Duroc and Duroc synthetic pig populations using high-density SNP chip.

    PubMed

    Edea, Z; Hong, J-K; Jung, J-H; Kim, D-W; Kim, Y-M; Kim, E-S; Shin, S S; Jung, Y C; Kim, K-S

    2017-08-01

    The development of high throughput genotyping techniques has facilitated the identification of selection signatures of pigs. The detection of genomic selection signals in a population subjected to differential selection pressures may provide insights into the genes associated with economically and biologically important traits. To identify genomic regions under selection, we genotyped 488 Duroc (D) pigs and 155 D × Korean native pigs (DKNPs) using the Porcine SNP70K BeadChip. By applying the F ST and extended haplotype homozygosity (EHH-Rsb) methods, we detected genes under directional selection associated with growth/stature (DOCK7, PLCB4, HS2ST1, FBP2 and TG), carcass and meat quality (TG, COL14A1, FBXO5, NR3C1, SNX7, ARHGAP26 and DPYD), number of teats (LOC100153159 and LRRC1), pigmentation (MME) and ear morphology (SOX5), which are all mostly near or at fixation. These results could be a basis for investigating the underlying mutations associated with observed phenotypic variation. Validation using genome-wide association analysis would also facilitate the inclusion of some of these markers in genetic evaluation programs. © 2017 Stichting International Foundation for Animal Genetics.

  18. Pilot study of large-scale production of mutant pigs by ENU mutagenesis.

    PubMed

    Hai, Tang; Cao, Chunwei; Shang, Haitao; Guo, Weiwei; Mu, Yanshuang; Yang, Shulin; Zhang, Ying; Zheng, Qiantao; Zhang, Tao; Wang, Xianlong; Liu, Yu; Kong, Qingran; Li, Kui; Wang, Dayu; Qi, Meng; Hong, Qianlong; Zhang, Rui; Wang, Xiupeng; Jia, Qitao; Wang, Xiao; Qin, Guosong; Li, Yongshun; Luo, Ailing; Jin, Weiwu; Yao, Jing; Huang, Jiaojiao; Zhang, Hongyong; Li, Menghua; Xie, Xiangmo; Zheng, Xuejuan; Guo, Kenan; Wang, Qinghua; Zhang, Shibin; Li, Liang; Xie, Fei; Zhang, Yu; Weng, Xiaogang; Yin, Zhi; Hu, Kui; Cong, Yimei; Zheng, Peng; Zou, Hailong; Xin, Leilei; Xia, Jihan; Ruan, Jinxue; Li, Hegang; Zhao, Weiming; Yuan, Jing; Liu, Zizhan; Gu, Weiwang; Li, Ming; Wang, Yong; Wang, Hongmei; Yang, Shiming; Liu, Zhonghua; Wei, Hong; Zhao, Jianguo; Zhou, Qi; Meng, Anming

    2017-06-22

    N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research.

  19. Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs

    PubMed Central

    Ros-Freixedes, Roger; Gol, Sofia; Pena, Ramona N.; Tor, Marc; Ibáñez-Escriche, Noelia; Dekkers, Jack C. M.; Estany, Joan

    2016-01-01

    Intramuscular fat (IMF) content and fatty acid composition affect the organoleptic quality and nutritional value of pork. A genome-wide association study was performed on 138 Duroc pigs genotyped with a 60k SNP chip to detect biologically relevant genomic variants influencing fat content and composition. Despite the limited sample size, the genome-wide association study was powerful enough to detect the association between fatty acid composition and a known haplotypic variant in SCD (SSC14) and to reveal an association of IMF and fatty acid composition in the LEPR region (SSC6). The association of LEPR was later validated with an independent set of 853 pigs using a candidate quantitative trait nucleotide. The SCD gene is responsible for the biosynthesis of oleic acid (C18:1) from stearic acid. This locus affected the stearic to oleic desaturation index (C18:1/C18:0), C18:1, and saturated (SFA) and monounsaturated (MUFA) fatty acids content. These effects were consistently detected in gluteus medius, longissimus dorsi, and subcutaneous fat. The association of LEPR with fatty acid composition was detected only in muscle and was, at least in part, a consequence of its effect on IMF content, with increased IMF resulting in more SFA, less polyunsaturated fatty acids (PUFA), and greater SFA/PUFA ratio. Marker substitution effects estimated with a subset of 65 animals were used to predict the genomic estimated breeding values of 70 animals born 7 years later. Although predictions with the whole SNP chip information were in relatively high correlation with observed SFA, MUFA, and C18:1/C18:0 (0.48–0.60), IMF content and composition were in general better predicted by using only SNPs at the SCD and LEPR loci, in which case the correlation between predicted and observed values was in the range of 0.36 to 0.54 for all traits. Results indicate that markers in the SCD and LEPR genes can be useful to select for optimum fatty acid profiles of pork. PMID:27023885

  20. Emergence of 2.1. subgenotype of classical swine fever virus in pig population of India in 2011.

    PubMed

    Rajkhowa, T K; Hauhnar, Lalthapui; Lalrohlua, Isaac; Mohanarao G, Jagan

    2014-01-01

    Limited studies are available on molecular epidemiology of classical swine fever virus (CSFV) in India and are restricted to domestic pigs. These studies show the presence of 1.1. genotype. The aim of the present study was to subgenotype four CSFV isolates, two each from the outbreaks of CSF in wild (Sus scrofa) and domestic pigs of Mizoram state, India, in 2011. CSFV isolates were subjected to nucleotide sequencing in E2 and NS5B genomic regions. Phylogenetic analysis of the isolates in both genomic regions was carried out with 39 Indian isolates (4 isolates from the present study of Mizoram state and 35 isolates from the other states of India) and 57 reference sequences retrieved from the GenBank database. Two of the 39 isolates from India were collected from wild boar and were subgenotyped as 2.1. Out of 37 isolates from domestic pigs, only two were subgenotyped as 2.1. The analysis revealed the emergence of 2.1. subgenotype of CSFV in both wild and domestic pigs in India. The isolates from domestic pigs of Mizoram state (CSF/MZ/KOL/73 and CSF/MZ/AIZ/115) were grouped in genotype 1 and subgenotype 1.1., thus confirming that the source of CSF outbreaks in domesticated pigs in Mizoram was not from wild pigs. The current study forms an essential step for better understanding of the epidemiology of 2.1 subgroup as well as the movement and spread of the disease in India.

  1. Genetics of Adiposity in Large Animal Models for Human Obesity-Studies on Pigs and Dogs.

    PubMed

    Stachowiak, M; Szczerbal, I; Switonski, M

    2016-01-01

    The role of domestic mammals in the development of human biomedical sciences has been widely documented. Among these model species the pig and dog are of special importance. Both are useful for studies on the etiology of human obesity. Genome sequences of both species are known and advanced genetic tools [eg, microarray SNP for genome wide association studies (GWAS), next generation sequencing (NGS), etc.] are commonly used in such studies. In the domestic pig the accumulation of adipose tissue is an important trait, which influences meat quality and fattening efficiency. Numerous quantitative trait loci (QTLs) for pig fatness traits were identified, while gene polymorphisms associated with these traits were also described. The situation is different in dog population. Generally, excessive accumulation of adipose tissue is considered, similar to humans, as a complex disease. However, research on the genetic background of canine obesity is still in its infancy. Between-breed differences in terms of adipose tissue accumulation are well known in both animal species. In this review we show recent advances of studies on adipose tissue accumulation in pigs and dogs, and their potential importance for studies on human obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. An integrated approach of comparative genomics and heritability analysis of pig and human on obesity trait: evidence for candidate genes on human chromosome 2.

    PubMed

    Kim, Jaemin; Lee, Taeheon; Kim, Tae-Hun; Lee, Kyung-Tai; Kim, Heebal

    2012-12-19

    Traditional candidate gene approach has been widely used for the study of complex diseases including obesity. However, this approach is largely limited by its dependence on existing knowledge of presumed biology of the phenotype under investigation. Our combined strategy of comparative genomics and chromosomal heritability estimate analysis of obesity traits, subscapular skinfold thickness and back-fat thickness in Korean cohorts and pig (Sus scrofa), may overcome the limitations of candidate gene analysis and allow us to better understand genetic predisposition to human obesity. We found common genes including FTO, the fat mass and obesity associated gene, identified from significant SNPs by association studies of each trait. These common genes were related to blood pressure and arterial stiffness (P = 1.65E-05) and type 2 diabetes (P = 0.00578). Through the estimation of variance of genetic component (heritability) for each chromosome by SNPs, we observed a significant positive correlation (r = 0.479) between genetic contributions of human and pig to obesity traits. Furthermore, we noted that human chromosome 2 (syntenic to pig chromosomes 3 and 15) was most important in explaining the phenotypic variance for obesity. Obesity genetics still awaits further discovery. Navigating syntenic regions suggests obesity candidate genes on chromosome 2 that are previously known to be associated with obesity-related diseases: MRPL33, PARD3B, ERBB4, STK39, and ZNF385B.

  3. Allele-Specific Transcription Factor Binding in Pig Calpastatin Promoter Regions

    USDA-ARS?s Scientific Manuscript database

    The identification of predictive DNA markers for pork quality would allow U.S. pork producers and breeders to more quickly and efficiently select genetically superior animals for production of consistent, high quality meat. Genome scans have identified QTL for tenderness on pig chromosome 2 which ha...

  4. Predictive markers in calpastatin for tenderness in commercial pig populations

    USDA-ARS?s Scientific Manuscript database

    The identification of predictive DNA markers for pork quality would allow U.S. pork producers and breeders to more quickly and efficiently select genetically superior animals for production of consistent, high quality meat. Genome scans have identified QTL for tenderness on pig chromosome 2 which ha...

  5. The whole genome sequences and experimentally phased haplotypes of over 100 personal genomes.

    PubMed

    Mao, Qing; Ciotlos, Serban; Zhang, Rebecca Yu; Ball, Madeleine P; Chin, Robert; Carnevali, Paolo; Barua, Nina; Nguyen, Staci; Agarwal, Misha R; Clegg, Tom; Connelly, Abram; Vandewege, Ward; Zaranek, Alexander Wait; Estep, Preston W; Church, George M; Drmanac, Radoje; Peters, Brock A

    2016-10-11

    Since the completion of the Human Genome Project in 2003, it is estimated that more than 200,000 individual whole human genomes have been sequenced. A stunning accomplishment in such a short period of time. However, most of these were sequenced without experimental haplotype data and are therefore missing an important aspect of genome biology. In addition, much of the genomic data is not available to the public and lacks phenotypic information. As part of the Personal Genome Project, blood samples from 184 participants were collected and processed using Complete Genomics' Long Fragment Read technology. Here, we present the experimental whole genome haplotyping and sequencing of these samples to an average read coverage depth of 100X. This is approximately three-fold higher than the read coverage applied to most whole human genome assemblies and ensures the highest quality results. Currently, 114 genomes from this dataset are freely available in the GigaDB repository and are associated with rich phenotypic data; the remaining 70 should be added in the near future as they are approved through the PGP data release process. For reproducibility analyses, 20 genomes were sequenced at least twice using independent LFR barcoded libraries. Seven genomes were also sequenced using Complete Genomics' standard non-barcoded library process. In addition, we report 2.6 million high-quality, rare variants not previously identified in the Single Nucleotide Polymorphisms database or the 1000 Genomes Project Phase 3 data. These genomes represent a unique source of haplotype and phenotype data for the scientific community and should help to expand our understanding of human genome evolution and function.

  6. Qualitative and quantitative distribution of PCV2 in wild boars and domestic pigs in Germany.

    PubMed

    Reiner, Gerald; Bronnert, Bastian; Hohloch, Corinna; Fresen, Christina; Haack, Ingo; Willems, Hermann; Reinacher, Manfred

    2010-09-28

    Porcine circovirus 2 (PCV2), the causative agent of postweaning multisystemic wasting syndrome (PMWS), has been detected in North American and European wild boars at prevalences arguing for high circulation rates among populations. Systematic data on the qualitative distribution of PCV2 infections and on PCVD (PCV2 diseases) in wild boars are rare, however, and quantitative data about viral loads are missing. To be able to judge the PCV2/PCVD situation in wild boars, evaluation of the nationwide qualitative and quantitative distribution of PCV2 and PCVD in Germany was the objective of the present study. Wild boar samples were compared with domestic pig samples of the same greater areas, including tonsils, lungs, spleen, Lnn. bronchiales and Lnn. mesenterici of 349 wild boars and 348 domestic pigs. All of the wild boars and 308 of the domestic pigs have been apparently free of PCVD, 40 of the domestic pigs had been rejected from slaughter due to health problems (i.e. wasting). Tissues were examined by pathohistology, immunohistology (IHC), nested PCR (nPCR and quantitative PCR (qPCR). One wild boar (0.3%) and 8.7% of the domestic pigs were classified as PCVD-affected, based on pathohistology and IHC. PCV2 DNA was detected in 63.1% and 45.4% of the wild boars by nPCR and qPCR, respectively, and in 100% and 98.8% of the domestic pigs. PCV2 loads differed significantly between wild boars (average: 10(2.8) PCV2 genomes/microg extracted sample DNA) and domestic pigs (average: 10(4.2) PCV2 genomes/microg of sample DNA). The qualitative detection of PCV2 DNA in tissues of wild boars and domestic pigs was abundant and not of any pathological relevance. The overall load of PCV2 in domestic pigs was relatively high and borderline with respect to PCVD, and there was no difference between apparently healthy pigs and pigs rejected from slaughter in this respect. Most of the wild boars were infected with PCV2 at loads less relevant for PCVD. (c) 2010 Elsevier B.V. All rights

  7. Identification and analysis of pig chimeric mRNAs using RNA sequencing data

    PubMed Central

    2012-01-01

    Background Gene fusion is ubiquitous over the course of evolution. It is expected to increase the diversity and complexity of transcriptomes and proteomes through chimeric sequence segments or altered regulation. However, chimeric mRNAs in pigs remain unclear. Here we identified some chimeric mRNAs in pigs and analyzed the expression of them across individuals and breeds using RNA-sequencing data. Results The present study identified 669 putative chimeric mRNAs in pigs, of which 251 chimeric candidates were detected in a set of RNA-sequencing data. The 618 candidates had clear trans-splicing sites, 537 of which obeyed the canonical GU-AG splice rule. Only two putative pig chimera variants whose fusion junction was overlapped with that of a known human chimeric mRNA were found. A set of unique chimeric events were considered middle variances in the expression across individuals and breeds, and revealed non-significant variance between sexes. Furthermore, the genomic region of the 5′ partner gene shares a similar DNA sequence with that of the 3′ partner gene for 458 putative chimeric mRNAs. The 81 of those shared DNA sequences significantly matched the known DNA-binding motifs in the JASPAR CORE database. Four DNA motifs shared in parental genomic regions had significant similarity with known human CTCF binding sites. Conclusions The present study provided detailed information on some pig chimeric mRNAs. We proposed a model that trans-acting factors, such as CTCF, induced the spatial organisation of parental genes to the same transcriptional factory so that parental genes were coordinatively transcribed to give birth to chimeric mRNAs. PMID:22925561

  8. Pilot study of large-scale production of mutant pigs by ENU mutagenesis

    PubMed Central

    Hai, Tang; Cao, Chunwei; Shang, Haitao; Guo, Weiwei; Mu, Yanshuang; Yang, Shulin; Zhang, Ying; Zheng, Qiantao; Zhang, Tao; Wang, Xianlong; Liu, Yu; Kong, Qingran; Li, Kui; Wang, Dayu; Qi, Meng; Hong, Qianlong; Zhang, Rui; Wang, Xiupeng; Jia, Qitao; Wang, Xiao; Qin, Guosong; Li, Yongshun; Luo, Ailing; Jin, Weiwu; Yao, Jing; Huang, Jiaojiao; Zhang, Hongyong; Li, Menghua; Xie, Xiangmo; Zheng, Xuejuan; Guo, Kenan; Wang, Qinghua; Zhang, Shibin; Li, Liang; Xie, Fei; Zhang, Yu; Weng, Xiaogang; Yin, Zhi; Hu, Kui; Cong, Yimei; Zheng, Peng; Zou, Hailong; Xin, Leilei; Xia, Jihan; Ruan, Jinxue; Li, Hegang; Zhao, Weiming; Yuan, Jing; Liu, Zizhan; Gu, Weiwang; Li, Ming; Wang, Yong; Wang, Hongmei; Yang, Shiming; Liu, Zhonghua; Wei, Hong; Zhao, Jianguo; Zhou, Qi; Meng, Anming

    2017-01-01

    N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research. DOI: http://dx.doi.org/10.7554/eLife.26248.001 PMID:28639938

  9. Metagenomic Assembly Reveals Hosts of Antibiotic Resistance Genes and the Shared Resistome in Pig, Chicken, and Human Feces.

    PubMed

    Ma, Liping; Xia, Yu; Li, Bing; Yang, Ying; Li, Li-Guan; Tiedje, James M; Zhang, Tong

    2016-01-05

    The risk associated with antibiotic resistance disseminating from animal and human feces is an urgent public issue. In the present study, we sought to establish a pipeline for annotating antibiotic resistance genes (ARGs) based on metagenomic assembly to investigate ARGs and their co-occurrence with associated genetic elements. Genetic elements found on the assembled genomic fragments include mobile genetic elements (MGEs) and metal resistance genes (MRGs). We then explored the hosts of these resistance genes and the shared resistome of pig, chicken and human fecal samples. High levels of tetracycline, multidrug, erythromycin, and aminoglycoside resistance genes were discovered in these fecal samples. In particular, significantly high level of ARGs (7762 ×/Gb) was detected in adult chicken feces, indicating higher ARG contamination level than other fecal samples. Many ARGs arrangements (e.g., macA-macB and tetA-tetR) were discovered shared by chicken, pig and human feces. In addition, MGEs such as the aadA5-dfrA17-carrying class 1 integron were identified on an assembled scaffold of chicken feces, and are carried by human pathogens. Differential coverage binning analysis revealed significant ARG enrichment in adult chicken feces. A draft genome, annotated as multidrug resistant Escherichia coli, was retrieved from chicken feces metagenomes and was determined to carry diverse ARGs (multidrug, acriflavine, and macrolide). The present study demonstrates the determination of ARG hosts and the shared resistome from metagenomic data sets and successfully establishes the relationship between ARGs, hosts, and environments. This ARG annotation pipeline based on metagenomic assembly will help to bridge the knowledge gaps regarding ARG-associated genes and ARG hosts with metagenomic data sets. Moreover, this pipeline will facilitate the evaluation of environmental risks in the genetic context of ARGs.

  10. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network, and pathway analyses

    PubMed Central

    Kogelman, Lisette J. A.; Pant, Sameer D.; Fredholm, Merete; Kadarmideen, Haja N.

    2014-01-01

    Obesity is a complex condition with world-wide exponentially rising prevalence rates, linked with severe diseases like Type 2 Diabetes. Economic and welfare consequences have led to a raised interest in a better understanding of the biological and genetic background. To date, whole genome investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation of haplotype blocks. We built Weighted Interaction SNP Hub (WISH) and differentially wired (DW) networks using genotypic correlations amongst obesity-associated SNPs resulting from GWA analysis. GWA results and SNP modules detected by WISH and DW analyses were further investigated by functional enrichment analyses. The functional annotation of SNPs revealed several genes associated with obesity, e.g., NPC2 and OR4D10. Moreover, gene enrichment analyses identified several significantly associated pathways, over and above the GWA study results, that may influence obesity and obesity related diseases, e.g., metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index and employ systems genetics in a porcine model to provide important insights into the complex genetic architecture associated with obesity and many biological pathways that underlie

  11. A genome-wide association study of copy number variations with umbilical hernia in swine.

    PubMed

    Long, Yi; Su, Ying; Ai, Huashui; Zhang, Zhiyan; Yang, Bin; Ruan, Guorong; Xiao, Shijun; Liao, Xinjun; Ren, Jun; Huang, Lusheng; Ding, Nengshui

    2016-06-01

    Umbilical hernia (UH) is one of the most common congenital defects in pigs, leading to considerable economic loss and serious animal welfare problems. To test whether copy number variations (CNVs) contribute to pig UH, we performed a case-control genome-wide CNV association study on 905 pigs from the Duroc, Landrace and Yorkshire breeds using the Porcine SNP60 BeadChip and penncnv algorithm. We first constructed a genomic map comprising 6193 CNVs that pertain to 737 CNV regions. Then, we identified eight CNVs significantly associated with the risk for UH in the three pig breeds. Six of seven significantly associated CNVs were validated using quantitative real-time PCR. Notably, a rare CNV (CNV14:13030843-13059455) encompassing the NUGGC gene was strongly associated with UH (permutation-corrected P = 0.0015) in Duroc pigs. This CNV occurred exclusively in seven Duroc UH-affected individuals. SNPs surrounding the CNV did not show association signals, indicating that rare CNVs may play an important role in complex pig diseases such as UH. The NUGGC gene has been implicated in human omphalocele and inguinal hernia. Our finding supports that CNVs, including the NUGGC CNV, contribute to the pathogenesis of pig UH. © 2016 Stichting International Foundation for Animal Genetics.

  12. Genome-wide association study using deregressed breeding values for cryptorchidism and scrotal/inguinal hernia in two pig lines.

    PubMed

    Sevillano, Claudia A; Lopes, Marcos S; Harlizius, Barbara; Hanenberg, Egiel H A T; Knol, Egbert F; Bastiaansen, John W M

    2015-03-21

    Cryptorchidism and scrotal/inguinal hernia are the most frequent congenital defects in pigs. Identification of genomic regions that control these congenital defects is of great interest to breeding programs, both from an animal welfare point of view as well as for economic reasons. The aim of this genome-wide association study (GWAS) was to identify single nucleotide polymorphisms (SNPs) that are strongly associated with these congenital defects. Genotypes were available for 2570 Large White (LW) and 2272 Landrace (LR) pigs. Breeding values were estimated based on 1 359 765 purebred and crossbred male offspring, using a binary trait animal model. Estimated breeding values were deregressed (DEBV) and taken as the response variable in the GWAS. Heritability estimates were equal to 0.26 ± 0.02 for cryptorchidism and to 0.31 ± 0.01 for scrotal/inguinal hernia. Seven and 31 distinct QTL regions were associated with cryptorchidism in the LW and LR datasets, respectively. The top SNP per region explained between 0.96% and 1.10% and between 0.48% and 2.77% of the total variance of cryptorchidism incidence in the LW and LR populations, respectively. Five distinct QTL regions associated with scrotal/inguinal hernia were detected in both LW and LR datasets. The top SNP per region explained between 1.22% and 1.60% and between 1.15% and 1.46% of the total variance of scrotal/inguinal hernia incidence in the LW and LR populations, respectively. For each trait, we identified one overlapping region between the LW and LR datasets, i.e. a region on SSC8 (Sus scrofa chromosome) between 65 and 73 Mb for cryptorchidism and a region on SSC13 between 34 and 37 Mb for scrotal/inguinal hernia. The use of DEBV in combination with a binary trait model was a powerful approach to detect regions associated with difficult traits such as cryptorchidism and scrotal/inguinal hernia that have a low incidence and for which affected animals are generally not available for genotyping. Several novel

  13. A study of alternative splicing in the pig

    PubMed Central

    2010-01-01

    Background Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs) provide evidence of a great number of possible alternative isoforms. With the EST resource for the domestic pig now containing more than one million porcine ESTs, it is possible to identify alternative splice forms of the individual transcripts in this species from the EST data with some confidence. Results The pig EST data generated by the Sino-Danish Pig Genome project has been assembled with publicly available ESTs and made available in the PigEST database. Using the Distiller package 2,515 EST clusters with candidate alternative isoforms were identified in the EST data with high confidence. In agreement with general observations in human and mouse, we find putative splice variants in about 30% of the contigs with more than 50 ESTs. Based on the criteria that a minimum of two EST sequences confirmed each splice event, a list of 100 genes with the most distinct tissue-specific alternative splice events was generated from the list of candidates. To confirm the tissue specificity of the splice events, 10 genes with functional annotation were randomly selected from which 16 individual splice events were chosen for experimental verification by quantitative PCR (qPCR). Six genes were shown to have tissue specific alternatively spliced transcripts with expression patterns matching those of the EST data. The remaining four genes had tissue-restricted expression of alternative spliced transcripts. Five out of the 16 splice events that were experimentally verified were found to be putative pig specific. Conclusions In accordance with human and rodent studies we estimate that approximately 30% of the porcine genes undergo alternative splicing. We found a good correlation between EST predicted tissue-specificity and experimentally

  14. Genetic variations associated with six-white-point coat pigmentation in Diannan small-ear pigs

    PubMed Central

    Lü, Meng-Die; Han, Xu-Man; Ma, Yun-Fei; Irwin, David M.; Gao, Yun; Deng, Jia-Kun; Adeola, Adeniyi C.; Xie, Hai-Bing; Zhang, Ya-Ping

    2016-01-01

    A common phenotypic difference among domestic animals is variation in coat color. Six-white-point is a pigmentation pattern observed in varying pig breeds, which seems to have evolved through several different mechanistic pathways. Herein, we re-sequenced whole genomes of 31 Diannan small-ear pigs from China and found that the six-white-point coat color in Diannan small-ear pigs is likely regulated by polygenic loci, rather than by the MC1R locus. Strong associations were observed at three loci (EDNRB, CNTLN, and PINK1), which explain about 20 percent of the total coat color variance in the Diannan small-ear pigs. We found a mutation that is highly differentiated between six-white-point and black Diannan small-ear pigs, which is located in a conserved noncoding sequence upstream of the EDNRB gene and is a putative binding site of the CEBPB protein. This study advances our understanding of coat color evolution in Diannan small-ear pigs and expands our traditional knowledge of coat color being a monogenic trait. PMID:27270507

  15. Association of Functional SNPs in Pig Calpastatin Regulatory Regions with Tenderness

    USDA-ARS?s Scientific Manuscript database

    The identification of predictive DNA markers for pork quality would allow U.S. pork producers and breeders to more quickly and efficiently select genetically superior animals for production of consistent, high quality meat. Genome scans have identified QTL for tenderness on pig chromosome 2 which ha...

  16. Comparative genomic analysis shows that Streptococcus suis meningitis isolate SC070731 contains a unique 105K genomic island.

    PubMed

    Wu, Zongfu; Wang, Weixue; Tang, Min; Shao, Jing; Dai, Chen; Zhang, Wei; Fan, Hongjie; Yao, Huochun; Zong, Jie; Chen, Dai; Wang, Junning; Lu, Chengping

    2014-02-10

    Streptococcus suis (SS) is an important swine pathogen worldwide that occasionally causes serious infections in humans. SS infection may result in meningitis in pigs and humans. The pathogenic mechanisms of SS are poorly understood. Here, we provide the complete genome sequence of S. suis serotype 2 (SS2) strain SC070731 isolated from a pig with meningitis. The chromosome is 2,138,568bp in length. There are 1933 predicted protein coding sequences and 96.7% (57/59) of the known virulence-associated genes are present in the genome. Strain SC070731 showed similar virulence with SS2 virulent strains HA9801 and ZY05719, but was more virulent than SS2 virulent strain P1/7 in the zebrafish infection model. Comparative genomic analysis revealed a unique 105K genomic island in strain SC070731 that is absent in seven other sequenced SS2 strains. Further analysis of the 105K genomic island indicated that it contained a complete nisin locus similar to the nisin U locus in S. uberis strain 42, a prophage similar to S. oralis phage PH10 and several antibiotic resistance genes. Several proteins in the 105K genomic island, including nisin and RelBE toxin-antitoxin system, contribute to the bacterial fitness and virulence in other pathogenic bacteria. Further investigation of newly identified gene products, including four putative new virulence-associated surface proteins, will improve our understanding of SS pathogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake

    PubMed Central

    Do, Duy N.; Strathe, Anders B.; Ostersen, Tage; Pant, Sameer D.; Kadarmideen, Haja N.

    2014-01-01

    Residual feed intake (RFI) is a complex trait that is economically important for livestock production; however, the genetic and biological mechanisms regulating RFI are largely unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms (SNPs), candidate genes and biological pathways involved in regulating RFI using Genome-wide association (GWA) and pathway analyses. A total of 596 Yorkshire boars with phenotypes for two different measures of RFI (RFI1 and 2) and 60k genotypic data was used. GWA analysis was performed using a univariate mixed model and 12 and 7 SNPs were found to be significantly associated with RFI1 and RFI2, respectively. Several genes such as xin actin-binding repeat-containing protein 2 (XIRP2),tetratricopeptide repeat domain 29 (TTC29),suppressor of glucose, autophagy associated 1 (SOGA1),MAS1,G-protein-coupled receptor (GPCR) kinase 5 (GRK5),prospero-homeobox protein 1 (PROX1),GPCR 155 (GPR155), and FYVE domain containing the 26 (ZFYVE26) were identified as putative candidates for RFI based on their genomic location in the vicinity of these SNPs. Genes located within 50 kbp of SNPs significantly associated with RFI and RFI2 (q-value ≤ 0.2) were subsequently used for pathway analyses. These analyses were performed by assigning genes to biological pathways and then testing the association of individual pathways with RFI using a Fisher’s exact test. Metabolic pathway was significantly associated with both RFIs. Other biological pathways regulating phagosome, tight junctions, olfactory transduction, and insulin secretion were significantly associated with both RFI traits when relaxed threshold for cut-off p-value was used (p ≤ 0.05). These results implied porcine RFI is regulated by multiple biological mechanisms, although the metabolic processes might be the most important. Olfactory transduction pathway controlling the perception of feed via smell, insulin pathway controlling food intake might be important

  18. Estimating genotype error rates from high-coverage next-generation sequence data.

    PubMed

    Wall, Jeffrey D; Tang, Ling Fung; Zerbe, Brandon; Kvale, Mark N; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil

    2014-11-01

    Exome and whole-genome sequencing studies are becoming increasingly common, but little is known about the accuracy of the genotype calls made by the commonly used platforms. Here we use replicate high-coverage sequencing of blood and saliva DNA samples from four European-American individuals to estimate lower bounds on the error rates of Complete Genomics and Illumina HiSeq whole-genome and whole-exome sequencing. Error rates for nonreference genotype calls range from 0.1% to 0.6%, depending on the platform and the depth of coverage. Additionally, we found (1) no difference in the error profiles or rates between blood and saliva samples; (2) Complete Genomics sequences had substantially higher error rates than Illumina sequences had; (3) error rates were higher (up to 6%) for rare or unique variants; (4) error rates generally declined with genotype quality (GQ) score, but in a nonlinear fashion for the Illumina data, likely due to loss of specificity of GQ scores greater than 60; and (5) error rates increased with increasing depth of coverage for the Illumina data. These findings, especially (3)-(5), suggest that caution should be taken in interpreting the results of next-generation sequencing-based association studies, and even more so in clinical application of this technology in the absence of validation by other more robust sequencing or genotyping methods. © 2014 Wall et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Perspectives for artificial insemination and genomics to improve global swine populations.

    PubMed

    Gerrits, Roger J; Lunney, Joan K; Johnson, Lawrence A; Pursel, Vernon G; Kraeling, Robert R; Rohrer, Gary A; Dobrinsky, John R

    2005-01-15

    Civilizations throughout the world continue to depend on pig meat as an important food source. Approximately 40% of the red meat consumed annually worldwide (94 million metric tons) is pig meat. Pig numbers (940 million) and consumption have increased consistent with the increasing world population (FAO 2002). In the past 50 years, research guided genetic selection and nutrition programs have had a major impact on improving carcass composition and efficiency of production in swine. The use of artificial insemination (AI) in Europe has also had a major impact on pig improvement in the past 35 years and more recently in the USA. Several scientific advances in gamete physiology and/or manipulation have been successfully utilized while others are just beginning to be applied at the production level. Semen extenders that permit the use of fresh semen for more than 5 days post-collection are largely responsible for the success of AI in pigs worldwide. Transfer of the best genetics has been enabled by use of AI with fresh semen, and to some extent, by use of AI with frozen semen over the past 25 years. Sexed semen, now a reality, has the potential for increasing the rate of genetic progress in AI programs when used in conjunction with newly developed low sperm number insemination technology. Embryo cryopreservation provides opportunities for international transport of maternal germplasm worldwide; non-surgical transfer of viable embryos in practice is nearing reality. While production of transgenic animals has been successful, the low level of efficiency in producing these animals and lack of information on multigene interactions limit the use of the technology in applied production systems. Technologies based on research in functional genomics, proteomics and cloning have significant potential, but considerable research effort will be required before they can be utilized for AI in pig production. In the past 15 years, there has been a coordinated worldwide scientific

  20. visPIG--a web tool for producing multi-region, multi-track, multi-scale plots of genetic data.

    PubMed

    Scales, Matthew; Jäger, Roland; Migliorini, Gabriele; Houlston, Richard S; Henrion, Marc Y R

    2014-01-01

    We present VISual Plotting Interface for Genetics (visPIG; http://vispig.icr.ac.uk), a web application to produce multi-track, multi-scale, multi-region plots of genetic data. visPIG has been designed to allow users not well versed with mathematical software packages and/or programming languages such as R, Matlab®, Python, etc., to integrate data from multiple sources for interpretation and to easily create publication-ready figures. While web tools such as the UCSC Genome Browser or the WashU Epigenome Browser allow custom data uploads, such tools are primarily designed for data exploration. This is also true for the desktop-run Integrative Genomics Viewer (IGV). Other locally run data visualisation software such as Circos require significant computer skills of the user. The visPIG web application is a menu-based interface that allows users to upload custom data tracks and set track-specific parameters. Figures can be downloaded as PDF or PNG files. For sensitive data, the underlying R code can also be downloaded and run locally. visPIG is multi-track: it can display many different data types (e.g association, functional annotation, intensity, interaction, heat map data,…). It also allows annotation of genes and other custom features in the plotted region(s). Data tracks can be plotted individually or on a single figure. visPIG is multi-region: it supports plotting multiple regions, be they kilo- or megabases apart or even on different chromosomes. Finally, visPIG is multi-scale: a sub-region of particular interest can be 'zoomed' in. We describe the various features of visPIG and illustrate its utility with examples. visPIG is freely available through http://vispig.icr.ac.uk under a GNU General Public License (GPLv3).

  1. [Study of the functional role of mutation in the guinea pig-adapted Ebola virus genome on a Drosophila melanogaster model].

    PubMed

    Shelemba-Chepurnova, A A; Omel'ianchuk, L V; Chepurnov, A A

    2011-01-01

    Ebola virus virulence in guinea pigs, which appears through virus adaptation to this animal host, correlates with substitutions in the gene encoding vp24 protein. In particular, the substitution His-->Tyr186 was found when obtaining strain 8 ms. An attempt was made to clarify the functional role of this substitution in a transgenic fruit fly model. Using the drosophila transformation technique provided transgenic strains that contained genomic insertions of wild-type Ebola virus vp24 gene and the mutant gene with the His-->Tyr substitution at the above position. Thus, the drosophila strains carrying the sequences encoding for the vp24 proteins of Ebola virus Zaire and 8 ms in pUAST vector were obtained. This makes it possible to study the expression of transgenic constructs in various D. melanogaster organs and tissues.

  2. Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs.

    PubMed

    Davis, Bryan T; Wang, Xiao-Jun; Rohret, Judy A; Struzynski, Jason T; Merricks, Elizabeth P; Bellinger, Dwight A; Rohret, Frank A; Nichols, Timothy C; Rogers, Christopher S

    2014-01-01

    Recent progress in engineering the genomes of large animals has spurred increased interest in developing better animal models for diseases where current options are inadequate. Here, we report the creation of Yucatan miniature pigs with targeted disruptions of the low-density lipoprotein receptor (LDLR) gene in an effort to provide an improved large animal model of familial hypercholesterolemia and atherosclerosis. Yucatan miniature pigs are well established as translational research models because of similarities to humans in physiology, anatomy, genetics, and size. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, male and female LDLR+/- pigs were generated. Subsequent breeding of heterozygotes produced LDLR-/- pigs. When fed a standard swine diet (low fat, no cholesterol), LDLR+/- pigs exhibited a moderate, but consistent increase in total and LDL cholesterol, while LDLR-/- pigs had considerably elevated levels. This severe hypercholesterolemia in homozygote animals resulted in atherosclerotic lesions in the coronary arteries and abdominal aorta that resemble human atherosclerosis. These phenotypes were more severe and developed over a shorter time when fed a diet containing natural sources of fat and cholesterol. LDLR-targeted Yucatan miniature pigs offer several advantages over existing large animal models including size, consistency, availability, and versatility. This new model of cardiovascular disease could be an important resource for developing and testing novel detection and treatment strategies for coronary and aortic atherosclerosis and its complications.

  3. Classical swine fever virus replicated poorly in cells from MxA transgenic pigs.

    PubMed

    Zhao, Yicheng; Wang, Tiedong; Yao, Li; Liu, Bo; Teng, Chunbo; Ouyang, Hongsheng

    2016-08-17

    In addition to their value as livestock, pigs are susceptible to classical swine fever virus (CSFV) and can serve as reservoirs for CSFV, allowing it to develop into an epizootic. CSFV, a pestivirus of the Flaviviridae family, has a single-stranded RNA genome. Recent research has indicated that the human MxA protein inhibits the life cycles of certain RNA viruses, such as members of the Bunyaviridae family, the Flaviviridae family and others. To produce pigs with antiviral protection against CSFV, transgenic pigs expressing human MxA were generated by nuclear transplantation. Cells from three MxA transgenic piglets were used to investigate in vitro antiviral activity of MxA aganist CSFV, and the results of in vitro indirect immunofluorescence assays, virus titration and real-time PCR indicated that the MxA transgenic pig has an antiviral capacity against CSFV. Transgene with human MxA on pigs is feasible. High levels of MxA expression do inhibit CSFV in vitro at early time points post-infection at 60-96dpi.

  4. Indirect Transmission of Influenza A Virus between Pig Populations under Two Different Biosecurity Settings

    PubMed Central

    Allerson, Matt W.; Cardona, Carol J.; Torremorell, Montserrat

    2013-01-01

    Respiratory disease due to influenza virus is common in both human and swine populations around the world with multiple transmission routes capable of transmitting influenza virus, including indirect routes. The objective of this study was to evaluate the role of fomites in influenza A virus (IAV) transmission between pig populations separated by two different biosecurity settings. Thirty-five pigs were divided into four experimental groups: 10 pigs (1 replicate) were assigned to the infected group (I), 10 pigs (2 replicates of 5 pigs) were assigned to the low biosecurity sentinel group (LB), 10 pigs (2 replicates of 5 pigs) were assigned to the medium biosecurity sentinel group (MB), and 5 pigs (1 replicate) were assigned to the negative control group (NC). Eight of 10 pigs in the infected group were inoculated with IAV and 36 hours following inoculation, personnel movement events took place in order to move potentially infectious clothing and personal protective equipment (PPE) to sentinel pig rooms. Following contact with the infected group, personnel moved to the MB group after designated hygiene measures while personnel moved directly to the LB group. Nasal swabs and blood samples were collected from pigs to assess IAV infection status and fomites were sampled and tested via RRT-PCR. All experimentally inoculated pigs were infected with IAV and 11 of the 144 fomite samples collected following contact with infected pigs were low level positive for IAV genome. One replicate of each sentinel groups LB and MB became infected with IAV and all five pigs were infected over time. This study provides evidence that fomites can serve as an IAV transmission route from infected to sentinel pigs and highlights the need to focus on indirect routes as well as direct routes of transmission for IAV. PMID:23805306

  5. Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes.

    PubMed

    Haiminen, Niina; Feltus, F Alex; Parida, Laxmi

    2011-04-15

    We investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS) approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using in silico simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence. The best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size) reads (15L-5P) on Arabidopsis. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most. BAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies.

  6. Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes

    PubMed Central

    2011-01-01

    Background We investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS) approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using in silico simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence. Results The best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size) reads (15L-5P) on Arabidopsis. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most. Conclusions BAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies. PMID:21496274

  7. A Pathway-Centered Analysis of Pig Domestication and Breeding in Eurasia

    PubMed Central

    Leno-Colorado, Jordi; Hudson, Nick J.; Reverter, Antonio; Pérez-Enciso, Miguel

    2017-01-01

    Ascertaining the molecular and physiological basis of domestication and breeding is an active area of research. Due to the current wide distribution of its wild ancestor, the wild boar, the pig (Sus scrofa) is an excellent model to study these processes, which occurred independently in East Asia and Europe ca. 9000 yr ago. Analyzing genome variability patterns in terms of metabolic pathways is attractive since it considers the impact of interrelated functions of genes, in contrast to genome-wide scans that treat genes or genome windows in isolation. To that end, we studied 40 wild boars and 123 domestic pig genomes from Asia and Europe when metabolic pathway was the unit of analysis. We computed statistical significance for differentiation (Fst) and linkage disequilibrium (nSL) statistics at the pathway level. In terms of Fst, we found 21 and 12 pathways significantly differentiated at a q-value < 0.05 in Asia and Europe, respectively; five were shared across continents. In Asia, we found six significant pathways related to behavior, which involved essential neurotransmitters like dopamine and serotonin. Several significant pathways were interrelated and shared a variable percentage of genes. There were 12 genes present in >10 significant pathways (in terms of Fst), comprising genes involved in the transduction of a large number of signals, like phospholipase PCLB1, which is expressed in the brain, or ITPR3, which has an important role in taste transduction. In terms of nSL, significant pathways were mainly related to reproductive performance (ovarian steroidogenesis), a similarly important target trait during domestication and modern animal breeding. Different levels of recombination cannot explain these results, since we found no correlation between Fst and recombination rate. However, we did find an increased ratio of deleterious mutations in domestic vs. wild populations, suggesting a relaxed functional constraint associated with the domestication and breeding

  8. A Pathway-Centered Analysis of Pig Domestication and Breeding in Eurasia.

    PubMed

    Leno-Colorado, Jordi; Hudson, Nick J; Reverter, Antonio; Pérez-Enciso, Miguel

    2017-07-05

    Ascertaining the molecular and physiological basis of domestication and breeding is an active area of research. Due to the current wide distribution of its wild ancestor, the wild boar, the pig ( Sus scrofa ) is an excellent model to study these processes, which occurred independently in East Asia and Europe ca. 9000 yr ago. Analyzing genome variability patterns in terms of metabolic pathways is attractive since it considers the impact of interrelated functions of genes, in contrast to genome-wide scans that treat genes or genome windows in isolation. To that end, we studied 40 wild boars and 123 domestic pig genomes from Asia and Europe when metabolic pathway was the unit of analysis. We computed statistical significance for differentiation (Fst) and linkage disequilibrium (nSL) statistics at the pathway level. In terms of Fst, we found 21 and 12 pathways significantly differentiated at a q -value < 0.05 in Asia and Europe, respectively; five were shared across continents. In Asia, we found six significant pathways related to behavior, which involved essential neurotransmitters like dopamine and serotonin. Several significant pathways were interrelated and shared a variable percentage of genes. There were 12 genes present in >10 significant pathways (in terms of Fst), comprising genes involved in the transduction of a large number of signals, like phospholipase PCLB1, which is expressed in the brain, or ITPR3, which has an important role in taste transduction. In terms of nSL, significant pathways were mainly related to reproductive performance (ovarian steroidogenesis), a similarly important target trait during domestication and modern animal breeding. Different levels of recombination cannot explain these results, since we found no correlation between Fst and recombination rate. However, we did find an increased ratio of deleterious mutations in domestic vs. wild populations, suggesting a relaxed functional constraint associated with the domestication and

  9. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  10. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE PAGES

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.; ...

    2014-01-01

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Eachmore » group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  11. In Vivo Rat T-Lymphocyte Pig-a Assay: Detection and Expansion of Cells Deficient in the GPI-Anchored CD48 Surface Marker for Analysis of Mutation in the Endogenous Pig-a Gene.

    PubMed

    Dobrovolsky, Vasily N; Revollo, Javier; Petibone, Dayton M; Heflich, Robert H

    2017-01-01

    The Pig-a assay is being developed as an in vivo gene mutation assay for regulatory safety assessments. The assay is based on detecting mutation in the endogenous Pig-a gene of treated rats by using flow cytometry to measure changes in cell surface markers of peripheral blood cells. Here we present a methodology for demonstrating that phenotypically mutant rat T-cells identified by flow cytometry contain mutations in the Pig-a gene, an important step for validating the assay. In our approach, the mutant phenotype T-cells are sorted into individual wells of 96-well plates and expanded into clones. Subsequent sequencing of genomic DNA from the expanded clones confirms that the Pig-a assay detects exactly what it claims to detect-cells with mutations in the endogenous Pig-a gene. In addition, determining the spectra of Pig-a mutations provides information for better understanding the mutational mechanism of compounds of interest. Our methodology of combining phenotypic antibody labeling, magnetic enrichment, sorting, and single-cell clonal expansion can be used in genotoxicity/mutagenicity studies and in other general immunotoxicology research requiring identification, isolation, and expansion of extremely rare subpopulations of T-cells.

  12. Simultaneous and complete genome sequencing of influenza A and B with high coverage by Illumina MiSeq Platform.

    PubMed

    Rutvisuttinunt, Wiriya; Chinnawirotpisan, Piyawan; Simasathien, Sriluck; Shrestha, Sanjaya K; Yoon, In-Kyu; Klungthong, Chonticha; Fernandez, Stefan

    2013-11-01

    Active global surveillance and characterization of influenza viruses are essential for better preparation against possible pandemic events. Obtaining comprehensive information about the influenza genome can improve our understanding of the evolution of influenza viruses and emergence of new strains, and improve the accuracy when designing preventive vaccines. This study investigated the use of deep sequencing by the next-generation sequencing (NGS) Illumina MiSeq Platform to obtain complete genome sequence information from influenza virus isolates. The influenza virus isolates were cultured from 6 respiratory acute clinical specimens collected in Thailand and Nepal. DNA libraries obtained from each viral isolate were mixed and all were sequenced simultaneously. Total information of 2.6 Gbases was obtained from a 455±14 K/mm2 density with 95.76% (8,571,655/8,950,724 clusters) of the clusters passing quality control (QC) filters. Approximately 93.7% of all sequences from Read1 and 83.5% from Read2 contained high quality sequences that were ≥Q30, a base calling QC score standard. Alignments analysis identified three seasonal influenza A H3N2 strains, one 2009 pandemic influenza A H1N1 strain and two influenza B strains. The nearly entire genomes of all six virus isolates yielded equal or greater than 600-fold sequence coverage depth. MiSeq Platform identified seasonal influenza A H3N2, 2009 pandemic influenza A H1N1and influenza B in the DNA library mixtures efficiently. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Serological and Molecular Investigation of Swine Hepatitis E Virus in Pigs Raised in Southern Italy.

    PubMed

    Costanzo, Nicola; Sarno, Eleonora; Peretti, Vincenzo; Ciambrone, Lucia; Casalinuovo, Francesco; Santoro, Adriano

    2015-11-01

    Hepatitis E virus (HEV) infection is a common acute hepatitis transmitted by the fecal-oral route. In developed countries, the virus has a zoonotic potential, and domestic pigs and wild boars are considered main reservoirs. To assess the prevalence of HEV-positive animals in the Calabria region (southern Italy) on a serological and molecular level, a total of 216 autochthonous healthy pigs (Apulo-Calabrese breed) were sampled. Both sera and feces were collected. Pigs were grouped based on age: 117 pigs <6 months and 99 pigs >6 months. By using a commercial enzyme-linked immunosorbent assay system, a total of 173 (80%) of the 216 pigs tested seropositive. In all sampled farms (n = 8), pigs with antibodies (immunoglobulin G) against HEV were detected at a level higher than 60%, with a significant difference among age groups (P < 0.0001). Moreover, 16 fattening pigs were found to be nested reverse transcription PCR positive and thus to shed viral genomes in their feces. These positive findings resulted in a prevalence of 48.4% on the farm level (16 of 35 pigs) and an overall prevalence of 7.4% at the animal level (16 of 216 pigs). Based on the present study, HEV seems to circulate among the autochthonous domestic pig population of southern Italy with a low sharing rate. Further studies exploring the origin of infection are needed to minimize the risk of human exposure and to reduce consequences for public health.

  14. Improving draft genome contiguity with reference-derived in silico mate-pair libraries.

    PubMed

    Grau, José Horacio; Hackl, Thomas; Koepfli, Klaus-Peter; Hofreiter, Michael

    2018-05-01

    Contiguous genome assemblies are a highly valued biological resource because of the higher number of completely annotated genes and genomic elements that are usable compared to fragmented draft genomes. Nonetheless, contiguity is difficult to obtain if only low coverage data and/or only distantly related reference genome assemblies are available. In order to improve genome contiguity, we have developed Cross-Species Scaffolding-a new pipeline that imports long-range distance information directly into the de novo assembly process by constructing mate-pair libraries in silico. We show how genome assembly metrics and gene prediction dramatically improve with our pipeline by assembling two primate genomes solely based on ∼30x coverage of shotgun sequencing data.

  15. Phylogenomics from Whole Genome Sequences Using aTRAM.

    PubMed

    Allen, Julie M; Boyd, Bret; Nguyen, Nam-Phuong; Vachaspati, Pranjal; Warnow, Tandy; Huang, Daisie I; Grady, Patrick G S; Bell, Kayce C; Cronk, Quentin C B; Mugisha, Lawrence; Pittendrigh, Barry R; Leonardi, M Soledad; Reed, David L; Johnson, Kevin P

    2017-09-01

    Novel sequencing technologies are rapidly expanding the size of data sets that can be applied to phylogenetic studies. Currently the most commonly used phylogenomic approaches involve some form of genome reduction. While these approaches make assembling phylogenomic data sets more economical for organisms with large genomes, they reduce the genomic coverage and thereby the long-term utility of the data. Currently, for organisms with moderate to small genomes ($<$1000 Mbp) it is feasible to sequence the entire genome at modest coverage ($10-30\\times$). Computational challenges for handling these large data sets can be alleviated by assembling targeted reads, rather than assembling the entire genome, to produce a phylogenomic data matrix. Here we demonstrate the use of automated Target Restricted Assembly Method (aTRAM) to assemble 1107 single-copy ortholog genes from whole genome sequencing of sucking lice (Anoplura) and out-groups. We developed a pipeline to extract exon sequences from the aTRAM assemblies by annotating them with respect to the original target protein. We aligned these protein sequences with the inferred amino acids and then performed phylogenetic analyses on both the concatenated matrix of genes and on each gene separately in a coalescent analysis. Finally, we tested the limits of successful assembly in aTRAM by assembling 100 genes from close- to distantly related taxa at high to low levels of coverage.Both the concatenated analysis and the coalescent-based analysis produced the same tree topology, which was consistent with previously published results and resolved weakly supported nodes. These results demonstrate that this approach is successful at developing phylogenomic data sets from raw genome sequencing reads. Further, we found that with coverages above $5-10\\times$, aTRAM was successful at assembling 80-90% of the contigs for both close and distantly related taxa. As sequencing costs continue to decline, we expect full genome sequencing

  16. Quantitation of Porcine Cytomegalovirus in Pig Tissues by PCR

    PubMed Central

    Fryer, Jacqueline F. L.; Griffiths, Paul D.; Fishman, Jay A.; Emery, Vincent C.; Clark, Duncan A.

    2001-01-01

    A quantitative-competitive PCR for the quantification of porcine cytomegalovirus (PCMV) was developed. The virus was detected in a variety of pig organs (including potential xenotransplant donations), with viral loads ranging from <10 to 97 genome copies/μg of DNA. This assay will have significant utility for studying the activation and replication of PCMV and in swine models for allo- and xenotransplantation. PMID:11230447

  17. Initial sequence and comparative analysis of the cat genome

    PubMed Central

    Pontius, Joan U.; Mullikin, James C.; Smith, Douglas R.; Lindblad-Toh, Kerstin; Gnerre, Sante; Clamp, Michele; Chang, Jean; Stephens, Robert; Neelam, Beena; Volfovsky, Natalia; Schäffer, Alejandro A.; Agarwala, Richa; Narfström, Kristina; Murphy, William J.; Giger, Urs; Roca, Alfred L.; Antunes, Agostinho; Menotti-Raymond, Marilyn; Yuhki, Naoya; Pecon-Slattery, Jill; Johnson, Warren E.; Bourque, Guillaume; Tesler, Glenn; O’Brien, Stephen J.

    2007-01-01

    The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing ∼65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence. PMID:17975172

  18. β2-microglobulin gene duplication in cetartiodactyla remains intact only in pigs and possibly confers selective advantage to the species.

    PubMed

    Le, Thong Minh; Le, Quy Van Chanh; Truong, Dung Minh; Lee, Hye-Jeong; Choi, Min-Kyeung; Cho, Hyesun; Chung, Hak-Jae; Kim, Jin-Hoi; Do, Jeong-Tae; Song, Hyuk; Park, Chankyu

    2017-01-01

    Several β2-microglobulin (B2M) -bound protein complexes undertake key roles in various immune system pathways, including the neonatal Fc receptor (FcRn), cluster of differentiation 1 (CD1) protein, non-classical major histocompatibility complex (MHC), and well-known MHC class I molecules. Therefore, the duplication of B2M may lead to an increase in the biological competence of organisms to the environment. Based on the pig genome assembly SSC10.2, a segmental duplication of ~45.5 kb, encoding the entire B2M protein, was identified in pig chromosome 1. Through experimental validation, we confirmed the functional duplication of the B2M gene with a completely identical coding sequence between two copies in pigs. Considering the importance of B2M in the immune system, we performed the phylogenetic analysis of B2M duplication in ten mammalian species, confirming the presence of B2M duplication in cetartioldactyls, like cattle, sheep, goats, pigs and whales, but non-cetartiodactyl species, like mice, cats, dogs, horses, and humans. The density of long interspersed nuclear element (LINE) at the edges of duplicated blocks (39 to 66%) was found to be 2 to 3-fold higher than the average (20.12%) of the pig genome, suggesting its role in the duplication event. The B2M mRNA expression level in pigs was 12.71 and 7.57 times (2-ΔΔCt values) higher than humans and mice, respectively. However, we were unable to experimentally demonstrate the difference in the level of B2M protein because species specific anti-B2M antibodies are not available. We reported, for the first time, the functional duplication of the B2M gene in animals. The identification of partially remaining duplicated B2M sequences in the genomes of only cetartiodactyls indicates that the event was lineage specific. B2M duplication could be beneficial to the immune system of pigs by increasing the availability of MHC class I light chain protein, B2M, to complex with the proteins encoded by the relatively large

  19. Functional architecture and global properties of the Corynebacterium glutamicum regulatory network: Novel insights from a dataset with a high genomic coverage.

    PubMed

    Freyre-González, Julio A; Tauch, Andreas

    2017-09-10

    Corynebacterium glutamicum is a Gram-positive, anaerobic, rod-shaped soil bacterium able to grow on a diversity of carbon sources like sugars and organic acids. It is a biotechnological relevant organism because of its highly efficient ability to biosynthesize amino acids, such as l-glutamic acid and l-lysine. Here, we reconstructed the most complete C. glutamicum regulatory network to date and comprehensively analyzed its global organizational properties, systems-level features and functional architecture. Our analyses show the tremendous power of Abasy Atlas to study the functional organization of regulatory networks. We created two models of the C. glutamicum regulatory network: all-evidences (containing both weak and strong supported interactions, genomic coverage=73%) and strongly-supported (only accounting for strongly supported evidences, genomic coverage=71%). Using state-of-the-art methodologies, we prove that power-law behaviors truly govern the connectivity and clustering coefficient distributions. We found a non-previously reported circuit motif that we named complex feed-forward motif. We highlighted the importance of feedback loops for the functional architecture, beyond whether they are statistically over-represented or not in the network. We show that the previously reported top-down approach is inadequate to infer the hierarchy governing a regulatory network because feedback bridges different hierarchical layers, and the top-down approach disregards the presence of intermodular genes shaping the integration layer. Our findings all together further support a diamond-shaped, three-layered hierarchy exhibiting some feedback between processing and coordination layers, which is shaped by four classes of systems-level elements: global regulators, locally autonomous modules, basal machinery and intermodular genes. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Detection of genome, antigen, and antibodies in oral fluids from pigs infected with foot-and-mouth disease virus.

    PubMed

    Senthilkumaran, Chandrika; Yang, Ming; Bittner, Hilary; Ambagala, Aruna; Lung, Oliver; Zimmerman, Jeffrey; Giménez-Lirola, Luis G; Nfon, Charles

    2017-04-01

    Virus nucleic acids and antibody response to pathogens can be measured using swine oral fluids (OFs). Detection of foot-and-mouth disease virus (FMDV) genome in swine OFs has previously been demonstrated. Virus isolation and viral antigen detection are additional confirmatory assays for diagnosing FMDV, but these methods have not been evaluated using swine OF. The objectives of this study were to further validate the molecular detection of FMDV in oral fluids, evaluate antigen detection and FMDV isolation from swine OFs, and develop an assay for isotypic anti-FMDV antibody detection in OFs. Ribonucleic acid (RNA) from FMDV was detected in OFs from experimentally infected pigs by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) from 1 day post-infection (dpi) to 21 dpi. Foot-and-mouth disease virus (FMDV) was isolated from OFs at 1 to 5 dpi. Additionally, FMDV antigens were detected in OFs from 1 to 6 dpi using a lateral flow immunochromatographic strip test (LFIST), which is a rapid pen-side test, and from 2 to 3 dpi using a double-antibody sandwich enzyme-linked immunosorbent assay (DAS ELISA). Furthermore, FMDV-specific immunoglobulin A (IgA) was detected in OFs using an isotype-specific indirect ELISA starting at dpi 14. These results further demonstrated the potential use of oral fluids for detecting FMDV genome, live virus, and viral antigens, as well as for quantifying mucosal IgA antibody response.

  1. Non-invasive prenatal testing for fetal chromosomal abnormalities by low-coverage whole-genome sequencing of maternal plasma DNA: review of 1982 consecutive cases in a single center.

    PubMed

    Lau, T K; Cheung, S W; Lo, P S S; Pursley, A N; Chan, M K; Jiang, F; Zhang, H; Wang, W; Jong, L F J; Yuen, O K C; Chan, H Y C; Chan, W S K; Choy, K W

    2014-03-01

    To review the performance of non-invasive prenatal testing (NIPT) by low-coverage whole-genome sequencing of maternal plasma DNA at a single center. The NIPT result and pregnancy outcome of 1982 consecutive cases were reviewed. NIPT was based on low coverage (0.1×) whole-genome sequencing of maternal plasma DNA. All subjects were contacted for pregnancy and fetal outcome. Of the 1982 NIPT tests, a repeat blood sample was required in 23 (1.16%). In one case, a conclusive report could not be issued, probably because of an abnormal vanished twin fetus. NIPT was positive for common trisomies in 29 cases (23 were trisomy 21, four were trisomy 18 and two were trisomy 13); all were confirmed by prenatal karyotyping (specificity=100%). In addition, 11 cases were positive for sex-chromosomal abnormalities (SCA), and nine cases were positive for other aneuploidies or deletion/duplication. Fourteen of these 20 subjects agreed to undergo further investigations, and the abnormality was found to be of fetal origin in seven, confined placental mosaicism (CPM) in four, of maternal origin in two and not confirmed in one. Overall, 85.7% of the NIPT-suspected SCA were of fetal origin, and 66.7% of the other abnormalities were caused by CPM. Two of the six cases suspected or confirmed to have CPM were complicated by early-onset growth restriction requiring delivery before 34 weeks. Fetal outcome of the NIPT-negative cases was ascertained in 1645 (85.15%). Three chromosomal abnormalities were not detected by NIPT, including one case each of a balanced translocation, unbalanced translocation and triploidy. There were no known false negatives involving the common trisomies (sensitivity=100%). Low-coverage whole-genome sequencing of maternal plasma DNA was highly accurate in detecting common trisomies. It also enabled the detection of other aneuploidies and structural chromosomal abnormalities with high positive predictive value. Copyright © 2013 ISUOG. Published by John Wiley & Sons

  2. Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative

    PubMed Central

    Khafizov, Kamil; Madrid-Aliste, Carlos; Almo, Steven C.; Fiser, Andras

    2014-01-01

    The exponential growth of protein sequence data provides an ever-expanding body of unannotated and misannotated proteins. The National Institutes of Health-supported Protein Structure Initiative and related worldwide structural genomics efforts facilitate functional annotation of proteins through structural characterization. Recently there have been profound changes in the taxonomic composition of sequence databases, which are effectively redefining the scope and contribution of these large-scale structure-based efforts. The faster-growing bacterial genomic entries have overtaken the eukaryotic entries over the last 5 y, but also have become more redundant. Despite the enormous increase in the number of sequences, the overall structural coverage of proteins—including proteins for which reliable homology models can be generated—on the residue level has increased from 30% to 40% over the last 10 y. Structural genomics efforts contributed ∼50% of this new structural coverage, despite determining only ∼10% of all new structures. Based on current trends, it is expected that ∼55% structural coverage (the level required for significant functional insight) will be achieved within 15 y, whereas without structural genomics efforts, realizing this goal will take approximately twice as long. PMID:24567391

  3. Trends in structural coverage of the protein universe and the impact of the Protein Structure Initiative.

    PubMed

    Khafizov, Kamil; Madrid-Aliste, Carlos; Almo, Steven C; Fiser, Andras

    2014-03-11

    The exponential growth of protein sequence data provides an ever-expanding body of unannotated and misannotated proteins. The National Institutes of Health-supported Protein Structure Initiative and related worldwide structural genomics efforts facilitate functional annotation of proteins through structural characterization. Recently there have been profound changes in the taxonomic composition of sequence databases, which are effectively redefining the scope and contribution of these large-scale structure-based efforts. The faster-growing bacterial genomic entries have overtaken the eukaryotic entries over the last 5 y, but also have become more redundant. Despite the enormous increase in the number of sequences, the overall structural coverage of proteins--including proteins for which reliable homology models can be generated--on the residue level has increased from 30% to 40% over the last 10 y. Structural genomics efforts contributed ∼50% of this new structural coverage, despite determining only ∼10% of all new structures. Based on current trends, it is expected that ∼55% structural coverage (the level required for significant functional insight) will be achieved within 15 y, whereas without structural genomics efforts, realizing this goal will take approximately twice as long.

  4. The Sequenced Angiosperm Genomes and Genome Databases.

    PubMed

    Chen, Fei; Dong, Wei; Zhang, Jiawei; Guo, Xinyue; Chen, Junhao; Wang, Zhengjia; Lin, Zhenguo; Tang, Haibao; Zhang, Liangsheng

    2018-01-01

    Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology.

  5. The Sequenced Angiosperm Genomes and Genome Databases

    PubMed Central

    Chen, Fei; Dong, Wei; Zhang, Jiawei; Guo, Xinyue; Chen, Junhao; Wang, Zhengjia; Lin, Zhenguo; Tang, Haibao; Zhang, Liangsheng

    2018-01-01

    Angiosperms, the flowering plants, provide the essential resources for human life, such as food, energy, oxygen, and materials. They also promoted the evolution of human, animals, and the planet earth. Despite the numerous advances in genome reports or sequencing technologies, no review covers all the released angiosperm genomes and the genome databases for data sharing. Based on the rapid advances and innovations in the database reconstruction in the last few years, here we provide a comprehensive review for three major types of angiosperm genome databases, including databases for a single species, for a specific angiosperm clade, and for multiple angiosperm species. The scope, tools, and data of each type of databases and their features are concisely discussed. The genome databases for a single species or a clade of species are especially popular for specific group of researchers, while a timely-updated comprehensive database is more powerful for address of major scientific mysteries at the genome scale. Considering the low coverage of flowering plants in any available database, we propose construction of a comprehensive database to facilitate large-scale comparative studies of angiosperm genomes and to promote the collaborative studies of important questions in plant biology. PMID:29706973

  6. Increasing Genome Sampling and Improving SNP Genotyping for Genotyping-by-Sequencing with New Combinations of Restriction Enzymes.

    PubMed

    Fu, Yong-Bi; Peterson, Gregory W; Dong, Yibo

    2016-04-07

    Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for exploring genome-wide genetic variation. However, GBS commonly samples a genome unevenly and can generate a substantial amount of missing data. These technical features would limit the power of various GBS-based genetic and genomic analyses. Here we present software called IgCoverage for in silico evaluation of genomic coverage through GBS with an individual or pair of restriction enzymes on one sequenced genome, and report a new set of 21 restriction enzyme combinations that can be applied to enhance GBS applications. These enzyme combinations were developed through an application of IgCoverage on 22 plant, animal, and fungus species with sequenced genomes, and some of them were empirically evaluated with different runs of Illumina MiSeq sequencing in 12 plant species. The in silico analysis of 22 organisms revealed up to eight times more genome coverage for the new combinations consisted of pairing four- or five-cutter restriction enzymes than the commonly used enzyme combination PstI + MspI. The empirical evaluation of the new enzyme combination (HinfI + HpyCH4IV) in 12 plant species showed 1.7-6 times more genome coverage than PstI + MspI, and 2.3 times more genome coverage in dicots than monocots. Also, the SNP genotyping in 12 Arabidopsis and 12 rice plants revealed that HinfI + HpyCH4IV generated 7 and 1.3 times more SNPs (with 0-16.7% missing observations) than PstI + MspI, respectively. These findings demonstrate that these novel enzyme combinations can be utilized to increase genome sampling and improve SNP genotyping in various GBS applications. Copyright © 2016 Fu et al.

  7. The diploid genome sequence of an Asian individual

    PubMed Central

    Wang, Jun; Wang, Wei; Li, Ruiqiang; Li, Yingrui; Tian, Geng; Goodman, Laurie; Fan, Wei; Zhang, Junqing; Li, Jun; Zhang, Juanbin; Guo, Yiran; Feng, Binxiao; Li, Heng; Lu, Yao; Fang, Xiaodong; Liang, Huiqing; Du, Zhenglin; Li, Dong; Zhao, Yiqing; Hu, Yujie; Yang, Zhenzhen; Zheng, Hancheng; Hellmann, Ines; Inouye, Michael; Pool, John; Yi, Xin; Zhao, Jing; Duan, Jinjie; Zhou, Yan; Qin, Junjie; Ma, Lijia; Li, Guoqing; Yang, Zhentao; Zhang, Guojie; Yang, Bin; Yu, Chang; Liang, Fang; Li, Wenjie; Li, Shaochuan; Li, Dawei; Ni, Peixiang; Ruan, Jue; Li, Qibin; Zhu, Hongmei; Liu, Dongyuan; Lu, Zhike; Li, Ning; Guo, Guangwu; Zhang, Jianguo; Ye, Jia; Fang, Lin; Hao, Qin; Chen, Quan; Liang, Yu; Su, Yeyang; san, A.; Ping, Cuo; Yang, Shuang; Chen, Fang; Li, Li; Zhou, Ke; Zheng, Hongkun; Ren, Yuanyuan; Yang, Ling; Gao, Yang; Yang, Guohua; Li, Zhuo; Feng, Xiaoli; Kristiansen, Karsten; Wong, Gane Ka-Shu; Nielsen, Rasmus; Durbin, Richard; Bolund, Lars; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian

    2009-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics. PMID:18987735

  8. Genome-wide association study reveals regions associated with gestation length in two pig populations.

    PubMed

    Hidalgo, A M; Lopes, M S; Harlizius, B; Bastiaansen, J W M

    2016-04-01

    Reproduction traits, such as gestation length (GLE), play an important role in dam line breeding in pigs. The objective of our study was to identify single nucleotide polymorphisms (SNPs) that are associated with GLE in two pig populations. Genotypes and deregressed breeding values were available for 2081 Dutch Landrace-based (DL) and 2301 Large White-based (LW) pigs. We identified two QTL regions for GLE, one in each population. For DL, three associated SNPs were detected in one QTL region spanning 0.52 Mbp on Sus scrofa chromosome (SSC) 2. For LW, four associated SNPs were detected in one region of 0.14 Mbp on SSC5. The region on SSC2 contains the heparin-binding EGF-like growth factor (HBEGF) gene, which promotes embryo implantation and has been described to be involved in embryo survival throughout gestation. The associated SNP can be used for marker-assisted selection in the studied populations, and further studies of the HBEGF gene are warranted to investigate its role in GLE. © 2015 Stichting International Foundation for Animal Genetics.

  9. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.

    PubMed

    Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T

    2013-01-01

    Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal

  10. Detection of Toxoplasma gondii in naturally infected domestic pigs in Northern Serbia.

    PubMed

    Kuruca, Ljiljana; Klun, Ivana; Uzelac, Aleksandra; Nikolić, Aleksandra; Bobić, Branko; Simin, Stanislav; Lalošević, Vesna; Lalošević, Dušan; Djurković-Djaković, Olgica

    2017-11-01

    Insufficiently cooked pork is considered as an important source of human infection with Toxoplasma gondii. The aim of our study was to investigate the presence of T. gondii in pigs intended for human consumption from Northern Serbia. Blood and diaphragm samples were collected from 182 naturally infected market-weight pigs, originating from both commercial farms and smallholdings. Sera were examined using modified agglutination test (MAT), and diaphragms from seropositive, as well as from some MAT-negative pigs, were bioassayed in mice. In addition, digests were examined for the presence of T. gondii DNA using a real-time polymerase chain reaction (qPCR) which was targeted at the 529 bp repetitive element of the T. gondii genome. The overall seroprevalence of T. gondii in pigs was 17% (31/182), with no difference between pigs from large commercial farms (17.8%) and those raised on smallholdings (16.3%). However, the seroprevalence in farm pigs was largely influenced by the findings on a single farm, where all examined animals tested positive. Parasites and/or parasite DNA were detected in the tissues of 15 of the 45 (25 seropositive and 20 seronegative) animals examined by either direct method. Tissue cysts were isolated in eight bioassays and an additional bioassay was positive by serology; all nine were confirmed positive by qPCR. All positive bioassays originated from seropositive pigs, but no correlation was observed between isolation rate and antibody titer. T. gondii DNA was detected in diaphragm tissues of eight pigs, of which three were seronegative. The results of our study provide further evidence for pork as a source of human T. gondii infection.

  11. Insurance Coverage Policies for Pharmacogenomic and Multi-Gene Testing for Cancer.

    PubMed

    Lu, Christine Y; Loomer, Stephanie; Ceccarelli, Rachel; Mazor, Kathleen M; Sabin, James; Clayton, Ellen Wright; Ginsburg, Geoffrey S; Wu, Ann Chen

    2018-05-16

    Insurance coverage policies are a major determinant of patient access to genomic tests. The objective of this study was to examine differences in coverage policies for guideline-recommended pharmacogenomic tests that inform cancer treatment. We analyzed coverage policies from eight Medicare contractors and 10 private payers for 23 biomarkers (e.g., HER2 and EGFR ) and multi-gene tests. We extracted policy coverage and criteria, prior authorization requirements, and an evidence basis for coverage. We reviewed professional society guidelines and their recommendations for use of pharmacogenomic tests. Coverage for KRAS , EGFR , and BRAF tests were common across Medicare contractors and private payers, but few policies covered PML/RARA , CD25 , or G6PD . Thirteen payers cover multi-gene tests for nonsmall lung cancer, citing emerging clinical recommendations. Coverage policies for single and multi-gene tests for cancer treatments are consistent among Medicare contractors despite the lack of national coverage determinations. In contrast, coverage for these tests varied across private payers. Patient access to tests is governed by prior authorization among eight private payers. Substantial variations in how payers address guideline-recommended pharmacogenomic tests and the common use of prior authorization underscore the need for additional studies of the effects of coverage variation on cancer care and patient outcomes.

  12. Systematic evaluation of the impact of ChIP-seq read designs on genome coverage, peak identification, and allele-specific binding detection.

    PubMed

    Zhang, Qi; Zeng, Xin; Younkin, Sam; Kawli, Trupti; Snyder, Michael P; Keleş, Sündüz

    2016-02-24

    Chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiments revolutionized genome-wide profiling of transcription factors and histone modifications. Although maturing sequencing technologies allow these experiments to be carried out with short (36-50 bps), long (75-100 bps), single-end, or paired-end reads, the impact of these read parameters on the downstream data analysis are not well understood. In this paper, we evaluate the effects of different read parameters on genome sequence alignment, coverage of different classes of genomic features, peak identification, and allele-specific binding detection. We generated 101 bps paired-end ChIP-seq data for many transcription factors from human GM12878 and MCF7 cell lines. Systematic evaluations using in silico variations of these data as well as fully simulated data, revealed complex interplay between the sequencing parameters and analysis tools, and indicated clear advantages of paired-end designs in several aspects such as alignment accuracy, peak resolution, and most notably, allele-specific binding detection. Our work elucidates the effect of design on the downstream analysis and provides insights to investigators in deciding sequencing parameters in ChIP-seq experiments. We present the first systematic evaluation of the impact of ChIP-seq designs on allele-specific binding detection and highlights the power of pair-end designs in such studies.

  13. Genetically Engineered Pig Models for Human Diseases

    PubMed Central

    Prather, Randall S.; Lorson, Monique; Ross, Jason W.; Whyte, Jeffrey J.; Walters, Eric

    2015-01-01

    Although pigs are used widely as models of human disease, their utility as models has been enhanced by genetic engineering. Initially, transgenes were added randomly to the genome, but with the application of homologous recombination, zinc finger nucleases, and transcription activator-like effector nuclease (TALEN) technologies, now most any genetic change that can be envisioned can be completed. To date these genetic modifications have resulted in animals that have the potential to provide new insights into human diseases for which a good animal model did not exist previously. These new animal models should provide the preclinical data for treatments that are developed for diseases such as Alzheimer's disease, cystic fibrosis, retinitis pigmentosa, spinal muscular atrophy, diabetes, and organ failure. These new models will help to uncover aspects and treatments of these diseases that were otherwise unattainable. The focus of this review is to describe genetically engineered pigs that have resulted in models of human diseases. PMID:25387017

  14. Improved hybrid de novo genome assembly of domesticated apple (Malus x domestica).

    PubMed

    Li, Xuewei; Kui, Ling; Zhang, Jing; Xie, Yinpeng; Wang, Liping; Yan, Yan; Wang, Na; Xu, Jidi; Li, Cuiying; Wang, Wen; van Nocker, Steve; Dong, Yang; Ma, Fengwang; Guan, Qingmei

    2016-08-08

    Domesticated apple (Malus × domestica Borkh) is a popular temperate fruit with high nutrient levels and diverse flavors. In 2012, global apple production accounted for at least one tenth of all harvested fruits. A high-quality apple genome assembly is crucial for the selection and breeding of new cultivars. Currently, a single reference genome is available for apple, assembled from 16.9 × genome coverage short reads via Sanger and 454 sequencing technologies. Although a useful resource, this assembly covers only ~89 % of the non-repetitive portion of the genome, and has a relatively short (16.7 kb) contig N50 length. These downsides make it difficult to apply this reference in transcriptive or whole-genome re-sequencing analyses. Here we present an improved hybrid de novo genomic assembly of apple (Golden Delicious), which was obtained from 76 Gb (~102 × genome coverage) Illumina HiSeq data and 21.7 Gb (~29 × genome coverage) PacBio data. The final draft genome is approximately 632.4 Mb, representing ~ 90 % of the estimated genome. The contig N50 size is 111,619 bp, representing a 7 fold improvement. Further annotation analyses predicted 53,922 protein-coding genes and 2,765 non-coding RNA genes. The new apple genome assembly will serve as a valuable resource for investigating complex apple traits at the genomic level. It is not only suitable for genome editing and gene cloning, but also for RNA-seq and whole-genome re-sequencing studies.

  15. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variations are an important source of genetic diversity. Copy number variations (CNVs), gains and losses of large regions of genomic sequence between individuals of a species, are known to be associated with both diseases and phenotypic traits. Deeply sequenced genomes are often u...

  16. Using genome wide association studies to identify common QTL regions in three different genetic backgrounds based on Iberian pig breed.

    PubMed

    Martínez-Montes, Ángel M; Fernández, Almudena; Muñoz, María; Noguera, Jose Luis; Folch, Josep M; Fernández, Ana I

    2018-01-01

    One of the major limitation for the application of QTL results in pig breeding and QTN identification has been the limited number of QTL effects validated in different animal material. The aim of the current work was to validate QTL regions through joint and specific genome wide association and haplotype analyses for growth, fatness and premier cut weights in three different genetic backgrounds, backcrosses based on Iberian pigs, which has a major role in the analysis due to its high productive relevance. The results revealed nine common QTL regions, three segregating in all three backcrosses on SSC1, 0-3 Mb, for body weight, on SSC2, 3-9 Mb, for loin bone-in weight, and on SSC7, 3 Mb, for shoulder weight, and six segregating in two of the three backcrosses, on SSC2, SSC4, SSC6 and SSC10 for backfat thickness, shoulder and ham weights. Besides, 18 QTL regions were specifically identified in one of the three backcrosses, five identified only in BC_LD, seven in BC_DU and six in BC_PI. Beyond identifying and validating QTL, candidate genes and gene variants within the most interesting regions have been explored using functional annotation, gene expression data and SNP identification from RNA-Seq data. The results allowed us to propose a promising list of candidate mutations, those identified in PDE10A, DHCR7, MFN2 and CCNY genes located within the common QTL regions and those identified near ssc-mir-103-1 considered PANK3 regulators to be further analysed.

  17. Using genome wide association studies to identify common QTL regions in three different genetic backgrounds based on Iberian pig breed

    PubMed Central

    Martínez-Montes, Ángel M.; Fernández, Almudena; Muñoz, María; Noguera, Jose Luis; Folch, Josep M.

    2018-01-01

    One of the major limitation for the application of QTL results in pig breeding and QTN identification has been the limited number of QTL effects validated in different animal material. The aim of the current work was to validate QTL regions through joint and specific genome wide association and haplotype analyses for growth, fatness and premier cut weights in three different genetic backgrounds, backcrosses based on Iberian pigs, which has a major role in the analysis due to its high productive relevance. The results revealed nine common QTL regions, three segregating in all three backcrosses on SSC1, 0–3 Mb, for body weight, on SSC2, 3–9 Mb, for loin bone-in weight, and on SSC7, 3 Mb, for shoulder weight, and six segregating in two of the three backcrosses, on SSC2, SSC4, SSC6 and SSC10 for backfat thickness, shoulder and ham weights. Besides, 18 QTL regions were specifically identified in one of the three backcrosses, five identified only in BC_LD, seven in BC_DU and six in BC_PI. Beyond identifying and validating QTL, candidate genes and gene variants within the most interesting regions have been explored using functional annotation, gene expression data and SNP identification from RNA-Seq data. The results allowed us to propose a promising list of candidate mutations, those identified in PDE10A, DHCR7, MFN2 and CCNY genes located within the common QTL regions and those identified near ssc-mir-103-1 considered PANK3 regulators to be further analysed. PMID:29522525

  18. Recovering complete and draft population genomes from metagenome datasets

    DOE PAGES

    Sangwan, Naseer; Xia, Fangfang; Gilbert, Jack A.

    2016-03-08

    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem ofmore » chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution.« less

  19. Recovering complete and draft population genomes from metagenome datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangwan, Naseer; Xia, Fangfang; Gilbert, Jack A.

    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem ofmore » chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution.« less

  20. Swine transcriptome characterization by combined Iso-Seq and RNA-seq for annotating the emerging long read-based reference genome

    USDA-ARS?s Scientific Manuscript database

    PacBio long-read sequencing technology is increasingly popular in genome sequence assembly and transcriptome cataloguing. Recently, a new-generation pig reference genome was assembled based on long reads from this technology. To finely annotate this genome assembly, transcriptomes of nine tissues fr...

  1. Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy

    PubMed Central

    Yan, Ziying; Stewart, Zoe A.; Sinn, Patrick L.; Olsen, John C.; Hu, Jim; McCray, Paul B.

    2015-01-01

    Abstract Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies. PMID:25675143

  2. Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy.

    PubMed

    Yan, Ziying; Stewart, Zoe A; Sinn, Patrick L; Olsen, John C; Hu, Jim; McCray, Paul B; Engelhardt, John F

    2015-03-01

    Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies.

  3. Defining functional DNA elements in the human genome

    PubMed Central

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  4. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response.

    PubMed

    Reis, Ana Luisa; Abrams, Charles C; Goatley, Lynnette C; Netherton, Chris; Chapman, Dave G; Sanchez-Cordon, Pedro; Dixon, Linda K

    2016-09-07

    African swine fever virus (ASFV) encodes multiple copies of MGF360 and MGF530/505 gene families. These genes have been implicated in the modulation of the type I interferon (IFN) response. We investigated the effect of modulating the IFN response on virus attenuation and induction of protective immunity by deleting genes MGF360 (MGF360-10L, 11L, 12L, 13L, 14L) and MGF530/505 (MGF530/505-1R, 2R and 3R) and interrupting genes (MGF360-9L and MGF530/505-4R) in the genome of the virulent ASFV isolate Benin 97/1. Replication of this deletion mutant, BeninΔMGF, in porcine macrophages in vitro was similar to that of the parental virulent virus Benin 97/1 and the natural attenuated isolate OURT88/3, which has a similar deletion of MGF360 and 530/505 genes. Levels of IFN-β mRNA in macrophages infected with virulent Benin 97/1 isolate were barely detectable but high levels were detected in macrophages infected with OURT88/3 and intermediate levels in macrophages infected with BeninΔMGF. The data confirms that these MGF360 and MGF530/505 genes have roles in suppressing induction of type I IFN. Immunisation and boost of pigs with BeninΔMGF showed that the virus was attenuated and all pigs (5/5) were protected against challenge with a lethal dose of virulent Benin 97/1. A short transient fever was observed at day 5 or 6 post-immunisation but no other clinical signs. Following immunisation and boost with the OURT88/3 isolate 3 of 4 pigs were protected against challenge. Differences were observed in the cellular and antibody responses in pigs immunised with BeninΔMGF compared to OURT88/3. Deletion of IFN modulators is a promising route for construction of rationally attenuated ASFV candidate vaccine strains. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Analysis of raw meats and fats of pigs using polymerase chain reaction for Halal authentication.

    PubMed

    Aida, A A; Che Man, Y B; Wong, C M V L; Raha, A R; Son, R

    2005-01-01

    A method for species identification from pork and lard samples using polymerase chain reaction (PCR) analysis of a conserved region in the mitochondrial (mt) cytochrome b (cyt b) gene has been developed. Genomic DNA of pork and lard were extracted using Qiagen DNeasy(®) Tissue Kits and subjected to PCR amplification targeting the mt cyt b gene. The genomic DNA from lard was found to be of good quality and produced clear PCR products on the amplification of the mt cyt b gene of approximately 360 base pairs. To distinguish between species, the amplified PCR products were cut with restriction enzyme BsaJI resulting in porcine-specific restriction fragment length polymorphisms (RFLP). The cyt b PCR-RFLP species identification assay yielded excellent results for identification of pig species. It is a potentially reliable technique for detection of pig meat and fat from other animals for Halal authentication.

  6. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle.

    PubMed

    Klymiuk, Nikolai; Blutke, Andreas; Graf, Alexander; Krause, Sabine; Burkhardt, Katinka; Wuensch, Annegret; Krebs, Stefan; Kessler, Barbara; Zakhartchenko, Valeri; Kurome, Mayuko; Kemter, Elisabeth; Nagashima, Hiroshi; Schoser, Benedikt; Herbach, Nadja; Blum, Helmut; Wanke, Rüdiger; Aartsma-Rus, Annemieke; Thirion, Christian; Lochmüller, Hanns; Walter, Maggie C; Wolf, Eckhard

    2013-11-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked dystrophin (DMD) gene. The absence of dystrophin protein leads to progressive muscle weakness and wasting, disability and death. To establish a tailored large animal model of DMD, we deleted DMD exon 52 in male pig cells by gene targeting and generated offspring by nuclear transfer. DMD pigs exhibit absence of dystrophin in skeletal muscles, increased serum creatine kinase levels, progressive dystrophic changes of skeletal muscles, impaired mobility, muscle weakness and a maximum life span of 3 months due to respiratory impairment. Unlike human DMD patients, some DMD pigs die shortly after birth. To address the accelerated development of muscular dystrophy in DMD pigs when compared with human patients, we performed a genome-wide transcriptome study of biceps femoris muscle specimens from 2-day-old and 3-month-old DMD and age-matched wild-type pigs. The transcriptome changes in 3-month-old DMD pigs were in good concordance with gene expression profiles in human DMD, reflecting the processes of degeneration, regeneration, inflammation, fibrosis and impaired metabolic activity. In contrast, the transcriptome profile of 2-day-old DMD pigs showed similarities with transcriptome changes induced by acute exercise muscle injury. Our studies provide new insights into early changes associated with dystrophin deficiency in a clinically severe animal model of DMD.

  7. Identification and genomic characterization of a novel porcine parvovirus (PPV6) in China.

    PubMed

    Ni, Jianqiang; Qiao, Caixia; Han, Xue; Han, Tao; Kang, Wenhua; Zi, Zhanchao; Cao, Zhen; Zhai, Xinyan; Cai, Xuepeng

    2014-12-02

    Parvoviruses are classified into two subfamilies based on their host range: the Parvovirinae, which infect vertebrates, and the Densovirinae, which mainly infect insects and other arthropods. In recent years, a number of novel parvoviruses belonging to the subfamily Parvovirinae have been identified from various animal species and humans, including human parvovirus 4 (PARV4), porcine hokovirus, ovine partetravirus, porcine parvovirus 4 (PPV4), and porcine parvovirus 5 (PPV5). Using sequence-independent single primer amplification (SISPA), a novel parvovirus within the subfamily Parvovirinae that was distinct from any known parvoviruses was identified and five full-length genome sequences were determined and analyzed. A novel porcine parvovirus, provisionally named PPV6, was initially identified from aborted pig fetuses in China. Retrospective studies revealed the prevalence of PPV6 in aborted pig fetuses and piglets(50% and 75%, respectively) was apparently higher than that in finishing pigs and sows (15.6% and 3.8% respectively). Furthermore, the prevalence of PPV6 in finishing pig was similar in affected and unaffected farms (i.e. 16.7% vs. 13.6%-21.7%). This finding indicates that animal age, perhaps due to increased innate immune resistance, strongly influences the level of PPV6 viremia. Complete genome sequencing and multiple alignments have shown that the nearly full-length genome sequences were approximately 6,100 nucleotides in length and shared 20.5%-42.6% DNA sequence identity with other members of the Parvovirinae subfamily. Phylogenetic analysis showed that PPV6 was significantly distinct from other known parvoviruses and was most closely related to PPV4. Our findings and review of published parvovirus sequences suggested that a novel porcine parvovirus is currently circulating in China and might be classified into the novel genus Copiparvovirus within the subfamily Parvovirinae. However, the clinical manifestations of PPV6 are still unknown in that the

  8. Different routes and doses influence protection in pigs immunised with the naturally attenuated African swine fever virus isolate OURT88/3.

    PubMed

    Sánchez-Cordón, Pedro J; Chapman, Dave; Jabbar, Tamara; Reis, Ana L; Goatley, Lynnette; Netherton, Christopher L; Taylor, Geraldine; Montoya, Maria; Dixon, Linda

    2017-02-01

    This study compares different combinations of doses and routes of immunisation of pigs with low virulent African swine fever virus (ASFV) genotype I isolate OURT88/3, including the intramuscular and intranasal route, the latter not previously tested. Intranasal immunisations with low and moderate doses (10 3 and 10 4 TCID 50 ) of OURT88/3 provided complete protection (100%) against challenge with virulent genotype I OURT88/1 isolate. Only mild and transient clinical reactions were observed in protected pigs. Transient moderate virus genome levels were detected in blood samples after challenge that decreased, but persisted until the end of the experiment in some animals. In contrast, pigs immunised intramuscularly with low and moderate doses (10 3 and 10 4 TCID 50 ) displayed lower percentages of protection (50-66%), and low or undetectable levels of virus genome were detected in blood samples throughout the study. In addition, clinical courses observed in protected pigs were asymptomatic. In pigs that were not protected and developed acute ASF, an exacerbated increase of IL-10 sometimes accompanied by an increase of IFNγ was observed before euthanasia. These results showed that factors including delivery route and dose determine the outcome of immunisation with the naturally attenuated isolate OURT88/3. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Empirical analysis of pig welfare levels and their impact on pig breeding efficiency-Based on 773 pig farmers' survey data.

    PubMed

    Li, Yanling; Wu, Nanjun; Xu, Rong; Li, Liqing; Zhou, Wei; Zhou, Xianjun

    2017-01-01

    Few studies of the pig production efficiency are from the perspective of animal welfare. Therefore, this study conducted a comprehensive evaluation of pig welfare levels based on survey data from 773 pig farmers from 23 counties in the Chinese provinces of Hunan, Zhejiang, Guangdong, Guizhou, and Shanxi. This study used the Delphi method, Analytic Hierarchy Process (AHP), and Data Envelopment Analysis (DEA)-Tobit regression model to analyze farmers' pig production efficiency and its influencing factors. This paper found that most farmers' pig production efficiency is low, and the DEA is invalid. Only 2.9% of pig farmers' who breed pigs are at the optimal level in terms of welfare, and their production efficiency is relatively high. In contrast, 49.34% of the farmers are at the medium welfare level, and compared with the farmers at the optimal welfare level, these farmers' pig production efficiency is low. Additionally, the farmers' age, gender, and number of years of experience with pig breeding have a significant effect. Furthermore, the scale of pig breeding and feeding type, the agriculture facilities for the central treatment of waste in local areas, and the availability of local agricultural science and technology personnel have a considerable influence on pig production efficiency.

  10. Hepatitis E Virus of Subtype 3a in a Pig Farm, South-Eastern France.

    PubMed

    Colson, P; Saint-Jacques, P; Ferretti, A; Davoust, B

    2015-12-01

    Hepatitis E virus (HEV) has emerged during the past decade as a causative agent of autochthonous hepatitis and is a clinical concern in Western developed countries. It has been increasingly recognized that pigs are a major reservoir of HEV of genotypes 3 and 4 worldwide and pig-derived food items represent a potential source of infections by these viruses in humans. Hepatitis E virus RNA testing was performed here on faeces from rectal swabs sampled in 2012 from 50 3-month-old farm pigs from the same farm located in south-eastern France than in a previous work conducted in 2007. Pig HEV sequences corresponding to genomic fragments of ORF2 and ORF1 genes were obtained after RT-PCR amplification with in-house protocols. Hepatitis E virus genotype was determined by phylogenetic analysis. Prevalence was similar to that determined 5 years earlier (68% versus 62%). Two robust phylogenetic clusters of HEV subtypes 3a and 3f were identified, and these sequences obtained in 2012 largely differ compared with those obtained in 2007. Notably, HEV sequences obtained in 2012 from a majority (62%) of the infected pigs belonged to subtype 3a, which was not previously described in France, including not being found in any of humans, pigs or wild boars. Further studies are needed to assess the circulation of HEV-3a in pigs and humans in this country. In addition, along with previous findings, this study supports the need for increased information to the public on the risk of HEV infection through contacts with pigs or consumption of pig-derived products in France. © 2015 Blackwell Verlag GmbH.

  11. An Annotated Draft Genome for Radix auricularia (Gastropoda, Mollusca)

    PubMed Central

    Feldmeyer, Barbara; Schmidt, Hanno; Greshake, Bastian; Tills, Oliver; Truebano, Manuela; Rundle, Simon D.; Paule, Juraj; Ebersberger, Ingo; Pfenninger, Markus

    2017-01-01

    Molluscs are the second most species-rich phylum in the animal kingdom, yet only 11 genomes of this group have been published so far. Here, we present the draft genome sequence of the pulmonate freshwater snail Radix auricularia. Six whole genome shotgun libraries with different layouts were sequenced. The resulting assembly comprises 4,823 scaffolds with a cumulative length of 910 Mb and an overall read coverage of 72×. The assembly contains 94.6% of a metazoan core gene collection, indicating an almost complete coverage of the coding fraction. The discrepancy of ∼690 Mb compared with the estimated genome size of R. auricularia (1.6 Gb) results from a high repeat content of 70% mainly comprising DNA transposons. The annotation of 17,338 protein coding genes was supported by the use of publicly available transcriptome data. This draft will serve as starting point for further genomic and population genetic research in this scientifically important phylum. PMID:28204581

  12. Signatures of Diversifying Selection in European Pig Breeds

    PubMed Central

    Wilkinson, Samantha; Lu, Zen H.; Megens, Hendrik-Jan; Archibald, Alan L.; Haley, Chris; Jackson, Ian J.; Groenen, Martien A. M.; Crooijmans, Richard P. M. A.; Ogden, Rob; Wiener, Pamela

    2013-01-01

    Following domestication, livestock breeds have experienced intense selection pressures for the development of desirable traits. This has resulted in a large diversity of breeds that display variation in many phenotypic traits, such as coat colour, muscle composition, early maturity, growth rate, body size, reproduction, and behaviour. To better understand the relationship between genomic composition and phenotypic diversity arising from breed development, the genomes of 13 traditional and commercial European pig breeds were scanned for signatures of diversifying selection using the Porcine60K SNP chip, applying a between-population (differentiation) approach. Signatures of diversifying selection between breeds were found in genomic regions associated with traits related to breed standard criteria, such as coat colour and ear morphology. Amino acid differences in the EDNRB gene appear to be associated with one of these signatures, and variation in the KITLG gene may be associated with another. Other selection signals were found in genomic regions including QTLs and genes associated with production traits such as reproduction, growth, and fat deposition. Some selection signatures were associated with regions showing evidence of introgression from Asian breeds. When the European breeds were compared with wild boar, genomic regions with high levels of differentiation harboured genes related to bone formation, growth, and fat deposition. PMID:23637623

  13. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. Amore » minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.« less

  14. A GWA study reveals genetic loci for body conformation traits in Chinese Laiwu pigs and its implications for human BMI.

    PubMed

    Zhou, Lisheng; Ji, Jiuxiu; Peng, Song; Zhang, Zhen; Fang, Shaoming; Li, Lin; Zhu, Yaling; Huang, Lusheng; Chen, Congying; Ma, Junwu

    2016-12-01

    Pigs share numerous physiological and phenotypic similarities with human and thus have been considered as a good model in nonrodent mammals for the study of genetic basis of human obesity. Researches on candidate genes for obesity traits have successfully identified some common genes between humans and pigs. However, few studies have assessed how many similarities exist between the genetic architecture of obesity in pigs and humans by large-scale comparative genomics. Here, we performed a genome-wide association study (GWAS) using the porcine 60 K SNP Beadchip for BMI and other four conformation traits at three different ages in a Chinese Laiwu pig population, which shows a large variability in fat deposition. In total, 35 SNPs were found to be significant at Bonferroni-corrected 5 % chromosome-wise level (P = 2.13 × 10 -5 ) and 88 SNPs had suggestive (P < 10 -4 ) association with the conformation traits. Some SNPs showed age-dependent association. Intriguingly, out of 32 regions associated with BMI in pigs, 18 were homologous with the loci for BMI in humans. Furthermore, five closest genes to GWAS peaks including HIF1AN, SMYD3, COX10, SLMAP, and GBE1 have been already associated with BMI in humans, which makes them very promising candidates for these QTLs. The result of GO analysis provided strong support to the fact that mitochondria and synapse play important roles in obesity susceptibility, which is consistent with previous findings on human obesity, and it also implicated new gene sets related to chromatin modification and Ig-like C2-type 5 domain. Therefore, these results not only provide new insights into the genetic architecture of BMI in pigs but also highlight that humans and pigs share the significant overlap of obesity-related genes.

  15. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data.

    PubMed

    Sepúlveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G

    2013-02-26

    The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data.

  16. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data

    PubMed Central

    2013-01-01

    Background The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. Results Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. Conclusions In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. PMID:23442253

  17. CNNdel: Calling Structural Variations on Low Coverage Data Based on Convolutional Neural Networks

    PubMed Central

    2017-01-01

    Many structural variations (SVs) detection methods have been proposed due to the popularization of next-generation sequencing (NGS). These SV calling methods use different SV-property-dependent features; however, they all suffer from poor accuracy when running on low coverage sequences. The union of results from these tools achieves fairly high sensitivity but still produces low accuracy on low coverage sequence data. That is, these methods contain many false positives. In this paper, we present CNNdel, an approach for calling deletions from paired-end reads. CNNdel gathers SV candidates reported by multiple tools and then extracts features from aligned BAM files at the positions of candidates. With labeled feature-expressed candidates as a training set, CNNdel trains convolutional neural networks (CNNs) to distinguish true unlabeled candidates from false ones. Results show that CNNdel works well with NGS reads from 26 low coverage genomes of the 1000 Genomes Project. The paper demonstrates that convolutional neural networks can automatically assign the priority of SV features and reduce the false positives efficaciously. PMID:28630866

  18. Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation

    PubMed Central

    Lavitrano, Marialuisa; Bacci, Maria Laura; Forni, Monica; Lazzereschi, Davide; Di Stefano, Carla; Fioretti, Daniela; Giancotti, Paola; Marfé, Gabriella; Pucci, Loredana; Renzi, Luigina; Wang, Hongjun; Stoppacciaro, Antonella; Stassi, Giorgio; Sargiacomo, Massimo; Sinibaldi, Paola; Turchi, Valeria; Giovannoni, Roberto; Della Casa, Giacinto; Seren, Eraldo; Rossi, Giancarlo

    2002-01-01

    A large number of hDAF transgenic pigs to be used for xenotransplantation research were generated by using sperm-mediated gene transfer (SMGT). The efficiency of transgenesis obtained with SMGT was much greater than with any other method. In the experiments reported, up to 80% of pigs had the transgene integrated into the genome. Most of the pigs carrying the hDAF gene transcribed it in a stable manner (64%). The great majority of pigs that transcribed the gene expressed the protein (83%). The hDAF gene was transmitted to progeny. Expression was stable and found in caveolae as it is in human cells. The expressed gene was functional based on in vitro experiments performed on peripheral blood mononuclear cells. These results show that our SMGT approach to transgenesis provides an efficient procedure for studies involving large animal models. PMID:12393815

  19. Performances of Different Fragment Sizes for Reduced Representation Bisulfite Sequencing in Pigs.

    PubMed

    Yuan, Xiao-Long; Zhang, Zhe; Pan, Rong-Yang; Gao, Ning; Deng, Xi; Li, Bin; Zhang, Hao; Sangild, Per Torp; Li, Jia-Qi

    2017-01-01

    Reduced representation bisulfite sequencing (RRBS) has been widely used to profile genome-scale DNA methylation in mammalian genomes. However, the applications and technical performances of RRBS with different fragment sizes have not been systematically reported in pigs, which serve as one of the important biomedical models for humans. The aims of this study were to evaluate capacities of RRBS libraries with different fragment sizes to characterize the porcine genome. We found that the Msp I-digested segments between 40 and 220 bp harbored a high distribution peak at 74 bp, which were highly overlapped with the repetitive elements and might reduce the unique mapping alignment. The RRBS library of 110-220 bp fragment size had the highest unique mapping alignment and the lowest multiple alignment. The cost-effectiveness of the 40-110 bp, 110-220 bp and 40-220 bp fragment sizes might decrease when the dataset size was more than 70, 50 and 110 million reads for these three fragment sizes, respectively. Given a 50-million dataset size, the average sequencing depth of the detected CpG sites in the 110-220 bp fragment size appeared to be deeper than in the 40-110 bp and 40-220 bp fragment sizes, and these detected CpG sties differently located in gene- and CpG island-related regions. In this study, our results demonstrated that selections of fragment sizes could affect the numbers and sequencing depth of detected CpG sites as well as the cost-efficiency. No single solution of RRBS is optimal in all circumstances for investigating genome-scale DNA methylation. This work provides the useful knowledge on designing and executing RRBS for investigating the genome-wide DNA methylation in tissues from pigs.

  20. The production of multi-transgenic pigs: update and perspectives for xenotransplantation.

    PubMed

    Niemann, Heiner; Petersen, Bjoern

    2016-06-01

    The domestic pig shares many genetic, anatomical and physiological similarities to humans and is thus considered to be a suitable organ donor for xenotransplantation. However, prior to clinical application of porcine xenografts, three major hurdles have to be overcome: (1) various immunological rejection responses, (2) physiological incompatibilities between the porcine organ and the human recipient and (3) the risk of transmitting zoonotic pathogens from pig to humans. With the introduction of genetically engineered pigs expressing high levels of human complement regulatory proteins or lacking expression of α-Gal epitopes, the HAR can be consistently overcome. However, none of the transgenic porcine organs available to date was fully protected against the binding of anti-non-Gal xenoreactive natural antibodies. The present view is that long-term survival of xenografts after transplantation into primates requires additional modifications of the porcine genome and a specifically tailored immunosuppression regimen compliant with current clinical standards. This requires the production and characterization of multi-transgenic pigs to control HAR, AVR and DXR. The recent emergence of new sophisticated molecular tools such as Zinc-Finger nucleases, Transcription-activator like endonucleases, and the CRISPR/Cas9 system has significantly increased efficiency and precision of the production of genetically modified pigs for xenotransplantation. Several candidate genes, incl. hTM, hHO-1, hA20, CTLA4Ig, have been explored in their ability to improve long-term survival of porcine xenografts after transplantation into non-human primates. This review provides an update on the current status in the production of multi-transgenic pigs for xenotransplantation which could bring porcine xenografts closer to clinical application.

  1. Genome editing in livestock: Are we ready for a revolution in animal breeding industry?

    PubMed

    Ruan, Jinxue; Xu, Jie; Chen-Tsai, Ruby Yanru; Li, Kui

    2017-12-01

    Genome editing is a powerful technology that can efficiently alter the genome of organisms to achieve targeted modification of endogenous genes and targeted integration of exogenous genes. Current genome-editing tools mainly include ZFN, TALEN and CRISPR/Cas9, which have been successfully applied to all species tested including zebrafish, humans, mice, rats, monkeys, pigs, cattle, sheep, goats and others. The application of genome editing has quickly swept through the entire biomedical field, including livestock breeding. Traditional livestock breeding is associated with rate limiting issues such as long breeding cycle and limitations of genetic resources. Genome editing tools offer solutions to these problems at affordable costs. Generation of gene-edited livestock with improved traits has proven feasible and valuable. For example, the CD163 gene-edited pig is resistant to porcine reproductive and respiratory syndrome (PRRS, also referred to as "blue ear disease"), and a SP110 gene knock-in cow less susceptible to tuberculosis. Given the high efficiency and low cost of genome editing tools, particularly CRISPR/Cas9, it is foreseeable that a significant number of genome edited livestock animals will be produced in the near future; hence it is imperative to comprehensively evaluate the pros and cons they will bring to the livestock breeding industry. Only with these considerations in mind, we will be able to fully take the advantage of the genome editing era in livestock breeding.

  2. Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping

    PubMed Central

    2011-01-01

    Background Integration of genomic variation with phenotypic information is an effective approach for uncovering genotype-phenotype associations. This requires an accurate identification of the different types of variation in individual genomes. Results We report the integration of the whole genome sequence of a single Holstein Friesian bull with data from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was assessed by combining SNPs that were identified to be either in identity by descent (IBD) or in copy number variation (CNV) with results from SNP array genotyping. Coding insertions and deletions (indels) were found to be enriched for size in multiples of 3 and were located near the N- and C-termini of proteins. For larger indels, a combination of split-read and read-pair approaches proved to be complementary in finding different signatures. CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays. Conclusions Our results provide high resolution mapping of diverse classes of genomic variation in an individual bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms that implemented mapping quality were used. IBD regions were found to be instrumental for calculating resequencing SNP accuracy, while SNP detection within CNVs tended to be less reliable. CNV discovery was affected dramatically by platform resolution and coverage biases. The combined data for this study showed that at a moderate level of sequencing coverage, an ensemble of platforms and tools can be applied together to maximize the accurate detection of sequence and structural variants. PMID:22082336

  3. Virus load in pigs affected with different clinical forms of classical swine fever.

    PubMed

    Rout, M; Saikumar, G

    2012-04-01

    Classical swine fever (CSF) is an endemic disease in India, but the real magnitude of the problem is not known as only outbreaks of acute CSF are reported and many cases of chronic and clinically inapparent forms of the disease, which manifest a confusing clinical picture, remain undiagnosed. The real status of classical swine fever virus (CSFV) infection can only be known by testing pigs with highly specific and sensitive diagnostic assays. To obtain the baseline prevalence of CSFV infection among pigs in an endemic region where no vaccination was being performed, a real-time PCR assay was used to detect viral genetic material in tissue samples collected from a slaughterhouse in the northern state of Uttar Pradesh in India. In total, 1120 slaughtered pigs were examined for the presence of CSF suggestive pathological lesions and tissues from suspected cases were tested for the presence of CSFV antigen and nucleic acids by indirect immuno-peroxidase test and real-time PCR, respectively. Based on the detection of viral genetic material in the tonsils, the prevalence of CSFV infection among slaughtered pigs was found to be 7.67%. Pigs detected positive for viral genome by quantitative real-time PCR assay when categorized into different forms of CSF, depending upon the pathological lesions observed, the viral load in the tonsils of some of the pigs with chronic or clinically inapparent form of the disease was similar to that detected in pigs with acute CSF. The results of the study suggested that the risk posed by pigs with chronic disease or those infected but showing no clinical disease may be relatively higher as they can transmit the virus to new susceptible hosts over a longer period of time. © 2011 Blackwell Verlag GmbH.

  4. Comparative proteomic analysis of lung tissue from guinea pigs with Leptospiral Pulmonary Haemorrhage Syndrome (LPHS) reveals a decrease in abundance of host proteins involved in cytoskeletal and cellular organization

    USDA-ARS?s Scientific Manuscript database

    The recent completion of the complete genome sequence of the guinea pig (Cavia porcellus) provides innovative opportunities to apply proteomic technologies to an important animal model of disease. In this study, a 2-D guinea pig proteome lung map was used to investigate the pathogenic mechanisms of ...

  5. Inferring species divergence times using pairwise sequential Markovian coalescent modelling and low-coverage genomic data.

    PubMed

    Cahill, James A; Soares, André E R; Green, Richard E; Shapiro, Beth

    2016-07-19

    Understanding when species diverged aids in identifying the drivers of speciation, but the end of gene flow between populations can be difficult to ascertain from genetic data. We explore the use of pairwise sequential Markovian coalescent (PSMC) modelling to infer the timing of divergence between species and populations. PSMC plots generated using artificial hybrid genomes show rapid increases in effective population size at the time when the two parent lineages diverge, and this approach has been used previously to infer divergence between human lineages. We show that, even without high coverage or phased input data, PSMC can detect the end of significant gene flow between populations by comparing the PSMC output from artificial hybrids to the output of simulations with known demographic histories. We then apply PSMC to detect divergence times among lineages within two real datasets: great apes and bears within the genus Ursus Our results confirm most previously proposed divergence times for these lineages, and suggest that gene flow between recently diverged lineages may have been common among bears and great apes, including up to one million years of continued gene flow between chimpanzees and bonobos after the formation of the Congo River.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).

  6. Helminth parasites in pigs: new challenges in pig production and current research highlights.

    PubMed

    Roepstorff, A; Mejer, H; Nejsum, P; Thamsborg, S M

    2011-08-04

    , the heredity of host resistance to A. suum and T. suis is so high that breeding for resistant pigs may be a possibility. Experimental studies have demonstrated that fermentable dietary carbohydrates have an antagonistic effect on Oesophagostomum and to a lesser extent on T. suis and A. suum, whereas egg-destroying microfungi may be used to inactivate the hard-shelled A. suum and T. suis eggs in the environment. Helminth control in Denmark has previously relied solely on anthelmintic treatment in herds with low helminth transmission. When indoor transmission rates increase, or in outdoor herds with high pasture contamination levels, medication may advantageously be combined with sustainable control measures, such as selected pig genomes, bioactive forages, and egg-destroying microfungi. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Advances in QTL Mapping in Pigs

    PubMed Central

    Rothschild, Max F.; Hu, Zhi-liang; Jiang, Zhihua

    2007-01-01

    Over the past 15 years advances in the porcine genetic linkage map and discovery of useful candidate genes have led to valuable gene and trait information being discovered. Early use of exotic breed crosses and now commercial breed crosses for quantitative trait loci (QTL) scans and candidate gene analyses have led to 110 publications which have identified 1,675 QTL. Additionally, these studies continue to identify genes associated with economically important traits such as growth rate, leanness, feed intake, meat quality, litter size, and disease resistance. A well developed QTL database called PigQTLdb is now as a valuable tool for summarizing and pinpointing in silico regions of interest to researchers. The commercial pig industry is actively incorporating these markers in marker-assisted selection along with traditional performance information to improve traits of economic performance. The long awaited sequencing efforts are also now beginning to provide sequence available for both comparative genomics and large scale single nucleotide polymorphism (SNP) association studies. While these advances are all positive, development of useful new trait families and measurement of new or underlying traits still limits future discoveries. A review of these developments is presented. PMID:17384738

  8. Expression Profile of the Integrin Receptor Subunits in the Guinea Pig Sclera.

    PubMed

    Wang, Kevin K; Metlapally, Ravikanth; Wildsoet, Christine F

    2017-06-01

    The ocular dimensional changes in myopia reflect increased scleral remodeling, and in high myopia, loss of scleral integrity leads to biomechanical weakening and continued scleral creep. As integrins, a type of cell surface receptors, have been linked to scleral remodeling, they represent potential targets for myopia therapies. As a first step, this study aimed to characterize the integrin subunits at the messenger RNA level in the sclera of the guinea pig, a more recently added but increasingly used animal model for myopia research. Primers for α and β integrin subunits were designed using NCBI/UCSC Genome Browser and Primer3 software tools. Total RNA was extracted from normal scleral tissue and isolated cultured scleral fibroblasts, as well as liver and lung, as reference tissues, all from guinea pig. cDNA was produced by reverse transcription, PCR was used to amplify products of predetermined sizes, and products were sequenced using standard methods. Guinea pig scleral tissue expressed all known integrin alpha subunits except αD and αE. The latter integrin subunits were also not expressed by cultured guinea pig scleral fibroblasts; however, their expression was confirmed in guinea pig liver. In addition, isolated cultured fibroblasts did not express integrin subunits αL, αM, and αX. This difference between results for cultured cells and intact sclera presumably reflects the presence in the latter of additional cell types. Both guinea pig scleral tissue and isolated scleral fibroblasts expressed all known integrin beta subunits. All results were verified through sequencing. The possible contributions of integrins to scleral remodeling make them plausible targets for myopia prevention. Data from this study will help guide future ex vivo and in vitro studies directed at understanding the relationship between scleral integrins and ocular growth regulation in the guinea pig model for myopia.

  9. Mammalian genomic regulatory regions predicted by utilizing human genomics, transcriptomics, and epigenetics data

    PubMed Central

    Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P

    2018-01-01

    Abstract Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets. PMID:29618048

  10. Mammalian genomic regulatory regions predicted by utilizing human genomics, transcriptomics, and epigenetics data.

    PubMed

    Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P

    2018-03-01

    Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets.

  11. Genetic Characterization of Porcine Circovirus Type 2 (PCV2) in Pigs of Bhutan.

    PubMed

    Monger, V R; Loeffen, W L A; Kus, K; Stegeman, J A; Dukpa, K; Szymanek, K; Podgórska, K

    2017-04-01

    Porcine circovirus (PCV) is a small non-enveloped virus with a single-stranded circular DNA with two antigenically and genetically different species, PCV1 and PCV2. Among these two, PCV2 is responsible for multifactorial disease syndromes, the most important disease known as PCV2-systemic disease (PCV2-SD), previously known as post-weaning multisystemic wasting syndrome (PMWS). The epidemiological situation is dynamically changing and new strains including recombinant PCV2 have emerged in Asia. In Bhutan, pigs are important livestock and play a very important role in providing meat and income for rural farmers. Although high rate of pigs seropositive against PCV2 was described in Bhutan, there was no virological evidence for PCV2 infections. This study was conducted to confirm the presence of PCV2 through detection of PCV2 DNA and molecular characterization of PCV2 strains in tissue and blood samples collected from Bhutanese pigs. Porcine circovirus type 2 genome was detected in 16 of 34 tissue samples pigs from the government farm. In 9 pigs, very high level of viral replication indicated that PCV2-SD was detected. Phylogenetic analysis performed with a set of GenBank sequences revealed that the Bhutanese PCV2 strains belonged to the PCV2b genotype and grouped with cluster 1C. © 2015 Blackwell Verlag GmbH.

  12. The ecoresponsive genome of Daphnia pulex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colbourne, John K.; Pfrender, Michael E.; Gilbert, Donald

    2011-02-04

    This document provides supporting material related to the sequencing of the ecoresponsive genome of Daphnia pulex. This material includes information on materials and methods and supporting text, as well as supplemental figures, tables, and references. The coverage of materials and methods addresses genome sequence, assembly, and mapping to chromosomes, gene inventory, attributes of a compact genome, the origin and preservation of Daphnia pulex genes, implications of Daphnia's genome structure, evolutionary diversification of duplicated genes, functional significance of expanded gene families, and ecoresponsive genes. Supporting text covers chromosome studies, gene homology among Daphnia genomes, micro-RNA and transposable elements and the 46more » Daphnia pulex opsins. 36 figures, 50 tables, 183 references.« less

  13. Virulence and Draft Genome Sequence Overview of Multiple Strains of the Swine Pathogen Haemophilus parasuis

    PubMed Central

    Brockmeier, Susan L.; Register, Karen B.; Kuehn, Joanna S.; Nicholson, Tracy L.; Loving, Crystal L.; Bayles, Darrell O.; Shore, Sarah M.; Phillips, Gregory J.

    2014-01-01

    Haemophilus parasuis is the cause of Glässer's disease in swine, which is characterized by systemic infection resulting in polyserositis, meningitis, and arthritis. Investigation of this animal disease is complicated by the enormous differences in the severity of disease caused by H. parasuis strains, ranging from lethal systemic disease to subclinical carriage. To identify differences in genotype that could account for virulence phenotypes, we established the virulence of, and performed whole genome sequence analysis on, 11 H. parasuis strains. Virulence was assessed by evaluating morbidity and mortality following intranasal challenge of Caesarean-derived, colostrum-deprived (CDCD) pigs. Genomic DNA from strains Nagasaki (serotype 5), 12939 (serotype 1), SW140 (serotype 2), 29755 (serotype 5), MN-H (serotype 13), 84-15995 (serotype 15), SW114 (serotype 3), H465 (serotype 11), D74 (serotype 9), and 174 (serotype 7) was used to generate Illumina paired-end libraries for genomic sequencing and de novo assembly. H. parasuis strains Nagasaki, 12939, SH0165 (serotype 5), SW140, 29755, and MN-H exhibited a high level of virulence. Despite minor differences in expression of disease among these groups, all pigs challenged with these strains developed clinical signs consistent with Glässer's disease between 1–7 days post-challenge. H. parasuis strains 84-15995 and SW114 were moderately virulent, in that approximately half of the pigs infected with each developed Glässer's disease. H. parasuis strains H465, D74, and 174 were minimally virulent or avirulent in the CDCD pig model. Comparative genomic analysis among strains identified several noteworthy differences in coding regions. These coding regions include predicted outer membrane, metabolism, and pilin or adhesin related genes, some of which likely contributed to the differences in virulence and systemic disease observed following challenge. These data will be useful for identifying H. parasuis virulence factors and

  14. Virulence and draft genome sequence overview of multiple strains of the swine pathogen Haemophilus parasuis.

    PubMed

    Brockmeier, Susan L; Register, Karen B; Kuehn, Joanna S; Nicholson, Tracy L; Loving, Crystal L; Bayles, Darrell O; Shore, Sarah M; Phillips, Gregory J

    2014-01-01

    Haemophilus parasuis is the cause of Glässer's disease in swine, which is characterized by systemic infection resulting in polyserositis, meningitis, and arthritis. Investigation of this animal disease is complicated by the enormous differences in the severity of disease caused by H. parasuis strains, ranging from lethal systemic disease to subclinical carriage. To identify differences in genotype that could account for virulence phenotypes, we established the virulence of, and performed whole genome sequence analysis on, 11 H. parasuis strains. Virulence was assessed by evaluating morbidity and mortality following intranasal challenge of Caesarean-derived, colostrum-deprived (CDCD) pigs. Genomic DNA from strains Nagasaki (serotype 5), 12939 (serotype 1), SW140 (serotype 2), 29755 (serotype 5), MN-H (serotype 13), 84-15995 (serotype 15), SW114 (serotype 3), H465 (serotype 11), D74 (serotype 9), and 174 (serotype 7) was used to generate Illumina paired-end libraries for genomic sequencing and de novo assembly. H. parasuis strains Nagasaki, 12939, SH0165 (serotype 5), SW140, 29755, and MN-H exhibited a high level of virulence. Despite minor differences in expression of disease among these groups, all pigs challenged with these strains developed clinical signs consistent with Glässer's disease between 1-7 days post-challenge. H. parasuis strains 84-15995 and SW114 were moderately virulent, in that approximately half of the pigs infected with each developed Glässer's disease. H. parasuis strains H465, D74, and 174 were minimally virulent or avirulent in the CDCD pig model. Comparative genomic analysis among strains identified several noteworthy differences in coding regions. These coding regions include predicted outer membrane, metabolism, and pilin or adhesin related genes, some of which likely contributed to the differences in virulence and systemic disease observed following challenge. These data will be useful for identifying H. parasuis virulence factors and

  15. Discovery of the porcine NGN3 gene and testing its endocrine function in the pig

    USDA-ARS?s Scientific Manuscript database

    Neurogenin 3 (NGN3) is a member of the basic helix-loop-helix transcription factor family. NGN3 is both necessary and sufficient to drive endocrine differentiation in the developing pancreas in mouse and humans. Until now, the sequence for NGN3 eluded discovery despite completion of the pig genome a...

  16. Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?

    PubMed

    Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F

    2006-06-01

    Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs.

  17. Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species.

    PubMed

    Kersey, Paul J; Staines, Daniel M; Lawson, Daniel; Kulesha, Eugene; Derwent, Paul; Humphrey, Jay C; Hughes, Daniel S T; Keenan, Stephan; Kerhornou, Arnaud; Koscielny, Gautier; Langridge, Nicholas; McDowall, Mark D; Megy, Karine; Maheswari, Uma; Nuhn, Michael; Paulini, Michael; Pedro, Helder; Toneva, Iliana; Wilson, Derek; Yates, Andrew; Birney, Ewan

    2012-01-01

    Ensembl Genomes (http://www.ensemblgenomes.org) is an integrative resource for genome-scale data from non-vertebrate species. The project exploits and extends technology (for genome annotation, analysis and dissemination) developed in the context of the (vertebrate-focused) Ensembl project and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. Since its launch in 2009, Ensembl Genomes has undergone rapid expansion, with the goal of providing coverage of all major experimental organisms, and additionally including taxonomic reference points to provide the evolutionary context in which genes can be understood. Against the backdrop of a continuing increase in genome sequencing activities in all parts of the tree of life, we seek to work, wherever possible, with the communities actively generating and using data, and are participants in a growing range of collaborations involved in the annotation and analysis of genomes.

  18. Epigenetics, Media Coverage, and Parent Responsibilities in the Post-Genomic Era

    PubMed Central

    Lappé, Martine

    2016-01-01

    Environmental epigenetics is the study of how exposures and experiences can turn genes “on” or “off” without changing DNA sequence. By examining the influence that environmental conditions including diet, stress, trauma, toxins, and care can have on gene expression, this science suggests molecular connections between the environment, genetics, and how acquired characteristics may be inherited across generations. The rapid expansion of research in this area has attracted growing media attention. This coverage has implications for how parents and prospective parents understand health and their perceived responsibilities for children’s wellbeing. This review provides insight into epigenetic research, its coverage in the media, and the social and ethical implications of this science for patients and clinicians. As epigenetic findings continue to elucidate the complex relationships between nature and nurture, it becomes critical to examine how representations of this science may influence patient experiences of risk and responsibility. This review describes some of the social and ethical implications of epigenetic research today. PMID:27867757

  19. Epigenetics, Media Coverage, and Parent Responsibilities in the Post-Genomic Era.

    PubMed

    Lappé, Martine

    2016-09-01

    Environmental epigenetics is the study of how exposures and experiences can turn genes "on" or "off" without changing DNA sequence. By examining the influence that environmental conditions including diet, stress, trauma, toxins, and care can have on gene expression, this science suggests molecular connections between the environment, genetics, and how acquired characteristics may be inherited across generations. The rapid expansion of research in this area has attracted growing media attention. This coverage has implications for how parents and prospective parents understand health and their perceived responsibilities for children's wellbeing. This review provides insight into epigenetic research, its coverage in the media, and the social and ethical implications of this science for patients and clinicians. As epigenetic findings continue to elucidate the complex relationships between nature and nurture, it becomes critical to examine how representations of this science may influence patient experiences of risk and responsibility. This review describes some of the social and ethical implications of epigenetic research today.

  20. Advancing Genomics through the Global Invertebrate Genomics Alliance (GIGA).

    PubMed

    Voolstra, Christian R; Wörheide, Gert; Lopez, Jose V

    2017-03-01

    The Global Invertebrate Genomics Alliance (GIGA), a collaborative network of diverse scientists, marked its second anniversary with a workshop in Munich, Germany, where international attendees focused on discussing current progress, milestones and bioinformatics resources. The community determined the recruitment and training talented researchers as one of the most pressing future needs and identified opportunities for network funding. GIGA also promotes future research efforts to prioritize taxonomic diversity and create new synergies. Here, we announce the generation of a central and simple data repository portal with a wide coverage of available sequence data, via the compagen platform, in parallel with more focused and specialized organism databases to globally advance invertebrate genomics. Therefore this article serves the objectives of GIGA by disseminating current progress and future prospects in the science of invertebrate genomics with the aim of promotion and facilitation of interdisciplinary and international research.

  1. A genome-wide association study of limb bone length using a Large White × Minzhu intercross population.

    PubMed

    Zhang, Long-Chao; Li, Na; Liu, Xin; Liang, Jing; Yan, Hua; Zhao, Ke-Bin; Pu, Lei; Shi, Hui-Bi; Zhang, Yue-Bo; Wang, Li-Gang; Wang, Li-Xian

    2014-11-04

    In pig, limb bone length influences ham yield and body height to a great extent and has important economic implications for pig industry. In this study, an intercross population was constructed between the indigenous Chinese Minzhu pig breed and the western commercial Large White pig breed to examine the genetic basis for variation in limb bone length. The aim of this study was to detect potential genetic variants associated with porcine limb bone length. A total of 571 F2 individuals from a Large White and Minzhu intercross population were genotyped using the Illumina PorcineSNP60K Beadchip, and phenotyped for femur length (FL), humerus length (HL), hipbone length (HIPL), scapula length (SL), tibia length (TL), and ulna length (UL). A genome-wide association study was performed by applying the previously reported approach of genome-wide rapid association using mixed model and regression. Statistical significance of the associations was based on Bonferroni-corrected P-values. A total of 39 significant SNPs were mapped to a 11.93 Mb long region on pig chromosome 7 (SSC7). Linkage analysis of these significant SNPs revealed three haplotype blocks of 495 kb, 376 kb and 492 kb, respectively, in the 11.93 Mb region. Annotation based on the pig reference genome identified 15 genes that were located near or contained the significant SNPs in these linkage disequilibrium intervals. Conditioned analysis revealed that four SNPs, one on SSC2 and three on SSC4, showed significant associations with SL and HL, respectively. Analysis of the 15 annotated genes that were identified in these three haplotype blocks indicated that HMGA1 and PPARD, which are expressed in limbs and influence chondrocyte cell growth and differentiation, could be considered as relevant biological candidates for limb bone length in pig, with potential applications in breeding programs. Our results may also be useful for the study of the mechanisms that underlie human limb length and body height.

  2. Enhanced sequencing coverage with digital droplet multiple displacement amplification

    PubMed Central

    Sidore, Angus M.; Lan, Freeman; Lim, Shaun W.; Abate, Adam R.

    2016-01-01

    Sequencing small quantities of DNA is important for applications ranging from the assembly of uncultivable microbial genomes to the identification of cancer-associated mutations. To obtain sufficient quantities of DNA for sequencing, the small amount of starting material must be amplified significantly. However, existing methods often yield errors or non-uniform coverage, reducing sequencing data quality. Here, we describe digital droplet multiple displacement amplification, a method that enables massive amplification of low-input material while maintaining sequence accuracy and uniformity. The low-input material is compartmentalized as single molecules in millions of picoliter droplets. Because the molecules are isolated in compartments, they amplify to saturation without competing for resources; this yields uniform representation of all sequences in the final product and, in turn, enhances the quality of the sequence data. We demonstrate the ability to uniformly amplify the genomes of single Escherichia coli cells, comprising just 4.7 fg of starting DNA, and obtain sequencing coverage distributions that rival that of unamplified material. Digital droplet multiple displacement amplification provides a simple and effective method for amplifying minute amounts of DNA for accurate and uniform sequencing. PMID:26704978

  3. Investigation of the disposal of dead pigs by pig farmers in mainland China by simulation experiment.

    PubMed

    Wu, Linhai; Xu, Guoyan; Li, Qingguang; Hou, Bo; Hu, Wuyang; Wang, Jianhua

    2017-01-01

    Dead pigs are a major waste by-product of pig farming. Thus, safe disposal of dead pigs is important to the protection of consumer health and the ecological environment by preventing marketing of slaughtered and processed dead pigs and improper dumping of dead pigs. In this study, a probability model was constructed for the disposal of dead pigs by pig farmers by selecting factors affecting disposal. To that end, we drew on the definition and meaning of behavior probability based on survey data collected from 654 pig farmers in Funing County, Jiangsu Province, China. Moreover, the role of influencing factors in pig farmers' behavioral choices regarding the disposal of dead pigs was simulated by simulation experiment. The results indicated that years of farming had a positive impact on pig farmers' choice of negative disposal of dead pigs. Moreover, there was not a simple linear relationship between scale of farming and pig farmers' behavioral choices related to the disposal of dead pigs. The probability for farmers to choose the safe disposal of dead pigs increased with the improvement of their knowledge of government policies and relevant laws and regulations. Pig farmers' behavioral choice about the disposal of dead pigs was also affected by government subsidy policies, regulation, and punishment. Government regulation and punishment were more effective than subsidy. The findings of our simulation experiment provide important decision-making support for the governance in preventing the marketing of dead pigs at the source.

  4. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene

    USDA-ARS?s Scientific Manuscript database

    Genome editing tools have revolutionized the generation of genetically modified animals including livestock. In particular, the domestic pig is a proven model of human physiology and an agriculturally important species. In this study, we utilized the CRISPR/Cas9 system to edit the NANOS2 gene in p...

  5. Recovery of a Medieval Brucella melitensis Genome Using Shotgun Metagenomics

    PubMed Central

    Kay, Gemma L.; Sergeant, Martin J.; Giuffra, Valentina; Bandiera, Pasquale; Milanese, Marco; Bramanti, Barbara

    2014-01-01

    ABSTRACT Shotgun metagenomics provides a powerful assumption-free approach to the recovery of pathogen genomes from contemporary and historical material. We sequenced the metagenome of a calcified nodule from the skeleton of a 14th-century middle-aged male excavated from the medieval Sardinian settlement of Geridu. We obtained 6.5-fold coverage of a Brucella melitensis genome. Sequence reads from this genome showed signatures typical of ancient or aged DNA. Despite the relatively low coverage, we were able to use information from single-nucleotide polymorphisms to place the medieval pathogen genome within a clade of B. melitensis strains that included the well-studied Ether strain and two other recent Italian isolates. We confirmed this placement using information from deletions and IS711 insertions. We conclude that metagenomics stands ready to document past and present infections, shedding light on the emergence, evolution, and spread of microbial pathogens. PMID:25028426

  6. Estimating P-coverage of biosynthetic pathways in DNA libraries and screening by genetic selection: biotin biosynthesis in the marine microorganism Chromohalobacter.

    PubMed

    Kim, Eun Jin; Angell, Scott; Janes, Jeff; Watanabe, Coran M H

    2008-06-01

    Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.

  7. Comparative carcass and tissue nutrient composition of transgenic Yorkshire pigs expressing phytase in the saliva and conventional Yorkshire pigs.

    PubMed

    Forsberg, C W; Meidinger, R G; Ajakaiye, A; Murray, D; Fan, M Z; Mandell, I B; Phillips, J P

    2014-10-01

    A transgenic line of Yorkshire (YK) pigs named the Cassie (CA) line was produced with a low copy number phytase transgene inserted in the genome. The transgenic line efficiently digests P, Ca, and other major minerals of plant dietary origin. The objectives of this study were to 1) compare carcass and tissue nutrient composition and meat quality traits for third generation hemizygous CA line market BW finisher pigs (n = 24) with age-matched conventional YK finisher pigs (n = 24) and 2) examine effects of outbreeding with high-index conventional YK boars on modifying carcass leanness from the third to sixth generations in CA line finisher boars (n = 73) and gilts (n = 103). Cassie boars (n = 12) and CA gilts (n = 12) were fed diets without supplemental P and comparable numbers of age-matched YK boars and gilts fed diets containing supplement P were raised throughout the finisher phase. The pigs were slaughtered and then fabricated into commercial pork primals before meat composition and quality evaluation. Proximate and major micronutrient composition was determined on tissues including fat, kidney, lean, liver, and skin. The main difference observed was greater (P = 0.033) crude fat content in CA boar carcasses and increased (P < 0.04) leaf lard in both CA boars and gilts but no differences were observed (P = 0.895 and P = 0.223, respectively) in carcass backfat thickness as compared with YK pigs. There were no substantive differences in tissue composition, except for CA boar kidneys. Numerous changes in the mineral, fatty acid, and indispensable AA composition for CA boar kidneys were not apparent in CA gilts. These changes may point to adaptive physiological changes in the boar kidney necessary for homeostatic regulation of mineral retention related to phytase action rather than to insertion of the transgene. However, from a meat composition perspective, transgenic expression of phytase in the CA line of YK pigs had little overall effect on meat composition

  8. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function

    PubMed Central

    Jackson, Ben; Mileham, Alan J.; Ait-Ali, Tahar; Whitelaw, C. Bruce A.

    2017-01-01

    Porcine Reproductive and Respiratory Syndrome (PRRS) is a panzootic infectious disease of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests differently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV, whereby the scavenger receptor cysteine-rich domain 5 (SRCR5) region was shown to be an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of macrophages, particularly in the respiratory system. Here we describe the application of CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs maintained under standard husbandry conditions with normal growth rates and complete blood counts observed. Pulmonary alveolar macrophages (PAMs) and peripheral blood monocytes (PBMCs) were isolated from the animals and assessed in vitro. Both PAMs and macrophages obtained from PBMCs by CSF1 stimulation (PMMs) show the characteristic differentiation and cell surface marker expression of macrophages of the respective origin. Expression and correct folding of the SRCR5 deletion CD163 on the surface of macrophages and biological activity of the protein as hemoglobin-haptoglobin scavenger was confirmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3 and PMMs with PRRSV genotype 2 showed complete resistance to viral infections assessed by replication. Confocal microscopy revealed the absence of replication structures in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to gene expression, i.e. at entry/fusion or unpacking stages. PMID:28231264

  9. Thermodynamically optimal whole-genome tiling microarray design and validation.

    PubMed

    Cho, Hyejin; Chou, Hui-Hsien

    2016-06-13

    Microarray is an efficient apparatus to interrogate the whole transcriptome of species. Microarray can be designed according to annotated gene sets, but the resulted microarrays cannot be used to identify novel transcripts and this design method is not applicable to unannotated species. Alternatively, a whole-genome tiling microarray can be designed using only genomic sequences without gene annotations, and it can be used to detect novel RNA transcripts as well as known genes. The difficulty with tiling microarray design lies in the tradeoff between probe-specificity and coverage of the genome. Sequence comparison methods based on BLAST or similar software are commonly employed in microarray design, but they cannot precisely determine the subtle thermodynamic competition between probe targets and partially matched probe nontargets during hybridizations. Using the whole-genome thermodynamic analysis software PICKY to design tiling microarrays, we can achieve maximum whole-genome coverage allowable under the thermodynamic constraints of each target genome. The resulted tiling microarrays are thermodynamically optimal in the sense that all selected probes share the same melting temperature separation range between their targets and closest nontargets, and no additional probes can be added without violating the specificity of the microarray to the target genome. This new design method was used to create two whole-genome tiling microarrays for Escherichia coli MG1655 and Agrobacterium tumefaciens C58 and the experiment results validated the design.

  10. Molecular, biological, and antigenic characterization of a Border disease virus isolated from a pig during classical swine fever surveillance in Japan.

    PubMed

    Nagai, Makoto; Aoki, Hiroshi; Sakoda, Yoshihiro; Kozasa, Takashi; Tominaga-Teshima, Kaho; Mine, Junki; Abe, Yuri; Tamura, Tomokazu; Kobayashi, Tsubasa; Nishine, Kaoru; Tateishi, Kentaro; Suzuki, Yudai; Fukuhara, Mai; Ohmori, Keitaro; Todaka, Reiko; Katayama, Kazuhiko; Mizutani, Tetsuya; Nakamura, Shigeyuki; Kida, Hiroshi; Shirai, Junsuke

    2014-07-01

    In the current study, molecular, biological, and antigenic analyses were performed to characterize Border disease virus (BDV) strain FNK2012-1 isolated from a pig in 2012 in Japan. The complete genome comprises 12,327 nucleotides (nt), including a large open reading frame of 11,685 nt. Phylogenetic analysis revealed that FNK2012-1 was clustered into BDV genotype 1 with ovine strains. FNK2012-1 grew in porcine, bovine, and ovine primary cells and cell lines, but grew better in bovine and ovine cells than in porcine cells. Specific pathogen-free pigs inoculated with FNK2012-1 did not show any clinical signs. Noninoculated contact control pigs also did not show clinical signs and did not seroconvert. The results suggest that FNK2012-1 may be of ruminant origin and is poorly adapted to pigs. Such observations can provide important insights into evidence for infection and transmission of BDV, which may be of ruminant origin, among pigs.

  11. Prevalence, genetic diversity and recombination of species G enteroviruses infecting pigs in Vietnam

    PubMed Central

    Van Dung, Nguyen; Anh, Pham Hong; Van Cuong, Nguyen; Hoa, Ngo Thi; Carrique-Mas, Juan; Hien, Vo Be; Campbell, James; Baker, Stephen; Farrar, Jeremy; Woolhouse, Mark E.; Bryant, Juliet E.

    2014-01-01

    Picornaviruses infecting pigs, described for many years as ‘porcine enteroviruses’, have recently been recognized as distinct viruses within three distinct genera (Teschovirus, Sapelovirus and Enterovirus). To better characterize the epidemiology and genetic diversity of members of the Enterovirus genus, faecal samples from pigs from four provinces in Vietnam were screened by PCR using conserved enterovirus (EV)-specific primers from the 5′ untranslated region (5′ UTR). High rates of infection were recorded in pigs on all farms, with detection frequencies of approximately 90 % in recently weaned pigs but declining to 40 % in those aged over 1 year. No differences in EV detection rates were observed between pigs with and without diarrhoea [74 % (n = 70) compared with 72 % (n = 128)]. Genetic analysis of consensus VP4/VP2 and VP1 sequences amplified from a subset of EV-infected pigs identified species G EVs in all samples. Among these, VP1 sequence comparisons identified six type 1 and seven type 6 variants, while four further VP1 sequences failed to group with any previously identified EV-G types. These have now been formally assigned as EV-G types 8–11 by the Picornavirus Study Group. Comparison of VP1, VP4/VP2, 3Dpol and 5′ UTRs of study samples and those available on public databases showed frequent, bootstrap-supported differences in their phylogenies indicative of extensive within-species recombination between genome regions. In summary, we identified extremely high frequencies of infection with EV-G in pigs in Vietnam, substantial genetic diversity and recombination within the species, and evidence for a much larger number of circulating EV-G types than currently described. PMID:24323635

  12. Serological evidence of hepatitis E virus infection in pigs and jaundice among pig handlers in Bangladesh.

    PubMed

    Haider, N; Khan, M S U; Hossain, M B; Sazzad, H M S; Rahman, M Z; Ahmed, F; Zeidner, N S

    2017-11-01

    Hepatitis E virus (HEV) is the most common cause of viral hepatitis in humans. Pigs may act as a reservoir of HEV, and pig handlers were frequently identified with a higher prevalence of antibodies to HEV. The objectives of this study were to identify evidence of HEV infection in pigs and compare the history of jaundice between pig handlers and people not exposed to pigs and pork. Blood and faecal samples were collected from 100 pigs derived from three slaughterhouses in the Gazipur district of Bangladesh from January to June, 2011. We also interviewed 200 pig handlers and 250 non-exposed people who did not eat pork or handled pigs in the past 2 years. We tested the pig sera for HEV-specific antibodies using a competitive ELISA and pig faecal samples for HEV RNA using real-time RT-PCR. Of 100 pig sera, 82% (n = 82) had detectable antibody against HEV. Of the 200 pig handlers, 28% (56/200) demonstrated jaundice within the past 2 years, whereas only 17% (43/250) of controls had a history of jaundice (p < .05). Compared to non-exposed people, those who slaughtered pigs (31% versus 15%, p < .001), reared pigs (37% versus 20%, p < .001), butchered pigs (35% versus 19%, p < .001) or involved in pork transportation (28% versus 13%, p < .001) were more likely to be affected with jaundice in the preceding 2 years. In multivariate logistic regression analysis, exposure to pigs (odds ratio [OR]: 2.2, 95% CI: 1.2-3.9) and age (OR: 0.97, 95% CI: 0.95-0.99) was significantly associated with jaundice in the past 2 years. Pigs in Bangladesh demonstrated evidence of HEV infection, and a history of jaundice was significantly more frequent in pig handlers. Identifying and genotyping HEV in pigs and pig handlers may provide further evidence of the pig's role in zoonotic HEV transmission in Bangladesh. © 2017 Blackwell Verlag GmbH.

  13. Geospatial and temporal associations of Getah virus circulation among pigs and horses around the perimeter of outbreaks in Japanese racehorses in 2014 and 2015.

    PubMed

    Bannai, Hiroshi; Nemoto, Manabu; Niwa, Hidekazu; Murakami, Satoshi; Tsujimura, Koji; Yamanaka, Takashi; Kondo, Takashi

    2017-06-19

    We studied a recent epizootic of Getah virus infection among pigs in the southern part of Ibaraki Prefecture and the northern part of Chiba Prefecture, Japan, focusing on its possible association with outbreaks in racehorses in 2014 and 2015. The genomic sequence of a Getah virus strain from an infected pig was analyzed to evaluate the degree of identity with the strains from horses. Sera were collected from pigs from September to December 2012 to 2015 in south Ibaraki (380 pigs in 29 batches), and from September to December 2010 to 2015 in north Chiba (538 pigs in 104 batches). They were examined by using a virus-neutralizing test for Getah virus. Seropositivity rates in 2012-2013 in south Ibaraki and 2010-2012 in north Chiba ranged from 0% to 1.6%. In south Ibaraki, seropositivity rates in 2014 (28.8%) and 2015 (65.0%) were significantly higher than those in the previous years (P < 0.01); 4/5 batches had positive sera in 2014 and 7/7 in 2015. In north Chiba, seropositivity rates in 2013 (14.1%), 2014 (17.8%), and 2015 (48.0%) were significantly higher than those in the previous years (P < 0.01); 6/27 batches had positive sera in 2013, 3/9 in 2014, and 5/5 in 2015. Complete genome analysis revealed that the virus isolated from an infected pig had 99.89% to 99.94% nucleotide identity to the strains isolated from horses during the outbreaks in 2014 and 2015. Serological surveillance of Getah virus in pigs revealed that the virus was circulating in south Ibaraki and north Chiba in 2014 and 2015; this was concomitant with the outbreaks in racehorses. The Getah virus strain isolated from a pig was closely related to the ones from horses during the 2014 and 2015 outbreaks. To our knowledge, this is the first convincing case of simultaneous circulation of Getah virus both among pigs and horses in specific areas.

  14. Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus BeninΔMGF by different doses and routes.

    PubMed

    Sánchez-Cordón, Pedro J; Jabbar, Tamara; Berrezaie, Margot; Chapman, Dave; Reis, Ana; Sastre, Patricia; Rueda, Paloma; Goatley, Lynnette; Dixon, Linda K

    2018-01-29

    A live attenuated African swine fever virus (ASFV) vaccine candidate, produced by deletion of several genes belonging to multi-gene families MGF360 and 505 from virulent Benin 97/1 strain (BeninΔMGF), induces protection in pigs against parental virulent strain. In order to better define the safety and efficacy of this attenuated vaccine candidate and to understand protective mechanisms, we extended previous studies by intramuscular immunisation of pigs with the deletion mutant BeninΔMFG at different doses (10 2 , 10 3 , 10 4 TCID 50 ), together with intranasal immunisation at the 10 3 dose. Results demonstrated a strong correlation between both doses and routes of immunisation of BeninΔMFG and the percentage of protection achieved, the onset of clinical signs, the viremia levels reached and the onset of death in non-protected pigs. The results show that the intramuscular route using high doses (10 4 TCID 50 ) is the best option for immunisation. Only transient increase in temperature associated with a peak of virus genome levels was observed in most pigs after immunisation. Then, virus genome levels progressively decreased throughout the experiment until reaching low or undetectable levels in those protected pigs that survived after challenge. The IgM antibody responses following immunisation were detected between day 7-10 post-immunisation and remained at elevated levels for 10-18 days in most pigs before dropping. IgG was detected from day 15 to 21 post-immunisation and maintained at increased levels for the remainder of the experiment in most pigs. Induction of IFNγ and IL-10 was detected by ELISA in sera from some pigs immunised with 10 3 TCID 50 by intramuscular or intranasal route at early times post-immunisation. IL-10 was also detected in serum from some non-protected pigs included in these groups after challenge. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Experimental aerosolized guinea pig-adapted Zaire ebolavirus (variant: Mayinga) causes lethal pneumonia in guinea pigs.

    PubMed

    Twenhafel, N A; Shaia, C I; Bunton, T E; Shamblin, J D; Wollen, S E; Pitt, L M; Sizemore, D R; Ogg, M M; Johnston, S C

    2015-01-01

    Eight guinea pigs were aerosolized with guinea pig-adapted Zaire ebolavirus (variant: Mayinga) and developed lethal interstitial pneumonia that was distinct from lesions described in guinea pigs challenged subcutaneously, nonhuman primates challenged by the aerosol route, and natural infection in humans. Guinea pigs succumbed with significant pathologic changes primarily restricted to the lungs. Intracytoplasmic inclusion bodies were observed in many alveolar macrophages. Perivasculitis was noted within the lungs. These changes are unlike those of documented subcutaneously challenged guinea pigs and aerosolized filoviral infections in nonhuman primates and human cases. Similar to findings in subcutaneously challenged guinea pigs, there were only mild lesions in the liver and spleen. To our knowledge, this is the first report of aerosol challenge of guinea pigs with guinea pig-adapted Zaire ebolavirus (variant: Mayinga). Before choosing this model for use in aerosolized ebolavirus studies, scientists and pathologists should be aware that aerosolized guinea pig-adapted Zaire ebolavirus (variant: Mayinga) causes lethal pneumonia in guinea pigs. © The Author(s) 2014.

  16. Similarities and differences among the chromosomes of the wild guinea pig Cavia tschudii and the domestic guinea pig Cavia porcellus (Rodentia, Caviidae)

    PubMed Central

    Walker, Laura I.; Soto, Miguel A.; Spotorno, Ángel E.

    2014-01-01

    Abstract Cavia tschudii Fitzinger, 1867 is a wild guinea pig species living in South America that according to the analysis of mitochondrial genes is the closest wild form of the domestic guinea pig. To investigate the genetic divergence between the wild and domestic species of guinea pigs from a cytogenetic perspective, we characterized and compared the C, G and AgNOR banded karyotypes of molecularly identified Cavia tschudii and Cavia porcellus Linnaeus, 1758 specimens for the first time. Both species showed 64 chromosomes of similar morphology, although C. tschudii had four medium size submetacentric pairs that were not observed in the C. porcellus karyotype. Differences in the C bands size and the mean number of AgNOR bands between the karyotypes of the two species were detected. Most of the two species chromosomes showed total G band correspondence, suggesting that they probably represent large syntenic blocks conserved over time. Partial G band correspondence detected among the four submetacentric chromosomes present only in the C. tschudii karyotype and their subtelocentric homologues in C. porcellus may be explained by the occurrence of four pericentric inversions that probably emerged and were fixed in the C. tschudii populations under domestication. The role of the chromosomal and genomic differences in the divergence of these two Cavia species is discussed. PMID:25147626

  17. Hybrid pig versus Gottingen minipig-derived cartilage and chondrocytes show pig line-dependent differences.

    PubMed

    Müller, Claudia; Marzahn, Ulrike; Kohl, Benjamin; El Sayed, Karym; Lohan, Anke; Meier, Carola; Ertel, Wolfgang; Schulze-Tanzil, Gundula

    2013-11-01

    Minipigs are widely used as a large animal model for cartilage repair. However, many in vitro studies are based on porcine chondrocytes derived from abundantly available premature hybrid pigs. It remains unclear whether pig line-dependent differences exist which could limit the comparability between in vitro and in vivo results using either hybrid or miniature pig articular chondrocytes. Porcine knee joint femoral cartilage was isolated from 3- to 5-month-old hybrid pigs and Göttingen minipigs. Cartilage from both pig lines was analysed for thickness, zonality, cell content, size and proteoglycan deposition. Cultured articular chondrocytes from both pig lines were investigated for gene and/or protein expression of cartilage-specific proteins such as type II collagen, aggrecan, the chondrogenic transcription factor Sox9, non-specific type I collagen and the cell-matrix receptor β1-integrin. Cartilage was significantly thinner in the miniature pig compared to the hybrid pig, but the differences between the medial and lateral femur condyles did not reach a significant level. Knee joint cartilage zone formation started only in the minipig, whereas cellularity and cell diameters were comparable in both pig lines. Blood vessels could be detected in the hybrid pig but not the minipig cartilage. Sulphated proteoglycan deposition was more pronounced in cartilage zones II-IV of both pig lines. Minipig chondrocytes expressed type II and I collagen, Sox9 and β1-integrin at a higher level than hybrid pig chondrocytes. These distinct line-dependent differences should be considered when using hybrid pig-derived chondrocytes for tissue engineering and Göttingen minipigs as a large animal model.

  18. Genome wide association of changes in feeding behavior due to heat stress in pigs

    USDA-ARS?s Scientific Manuscript database

    Heat stress negatively impacts pork production, losses include decreased growth, reduced feed intake, and mortality. Therefore, the objective of this study was to identify genetic markers associated with changes in feeding behavior due to heat stress in grow-finish pigs. Data were collected on grow-...

  19. Identification of an EMS-induced causal mutation in a gene required for boron-mediated root development by low-coverage genome re-sequencing in Arabidopsis

    PubMed Central

    Tabata, Ryo; Kamiya, Takehiro; Shigenobu, Shuji; Yamaguchi, Katsushi; Yamada, Masashi; Hasebe, Mitsuyasu; Fujiwara, Toru; Sawa, Shinichiro

    2013-01-01

    Next-generation sequencing (NGS) technologies enable the rapid production of an enormous quantity of sequence data. These powerful new technologies allow the identification of mutations by whole-genome sequencing. However, most reported NGS-based mapping methods, which are based on bulked segregant analysis, are costly and laborious. To address these limitations, we designed a versatile NGS-based mapping method that consists of a combination of low- to medium-coverage multiplex SOLiD (Sequencing by Oligonucleotide Ligation and Detection) and classical genetic rough mapping. Using only low to medium coverage reduces the SOLiD sequencing costs and, since just 10 to 20 mutant F2 plants are required for rough mapping, the operation is simple enough to handle in a laboratory with limited space and funding. As a proof of principle, we successfully applied this method to identify the CTR1, which is involved in boron-mediated root development, from among a population of high boron requiring Arabidopsis thaliana mutants. Our work demonstrates that this NGS-based mapping method is a moderately priced and versatile method that can readily be applied to other model organisms. PMID:23104114

  20. Advancing Genomics through the Global Invertebrate Genomics Alliance (GIGA)

    PubMed Central

    Voolstra, Christian R.; Wörheide, Gert; Lopez, Jose V.

    2017-01-01

    The Global Invertebrate Genomics Alliance (GIGA), a collaborative network of diverse scientists, marked its second anniversary with a workshop in Munich, Germany, where international attendees focused on discussing current progress, milestones and bioinformatics resources. The community determined the recruitment and training talented researchers as one of the most pressing future needs and identified opportunities for network funding. GIGA also promotes future research efforts to prioritize taxonomic diversity and create new synergies. Here, we announce the generation of a central and simple data repository portal with a wide coverage of available sequence data, via the compagen platform, in parallel with more focused and specialized organism databases to globally advance invertebrate genomics. Therefore this article serves the objectives of GIGA by disseminating current progress and future prospects in the science of invertebrate genomics with the aim of promotion and facilitation of interdisciplinary and international research. PMID:28603454

  1. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    PubMed

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  2. Production of Human Albumin in Pigs Through CRISPR/Cas9-Mediated Knockin of Human cDNA into Swine Albumin Locus in the Zygotes.

    PubMed

    Peng, Jin; Wang, Yong; Jiang, Junyi; Zhou, Xiaoyang; Song, Lei; Wang, Lulu; Ding, Chen; Qin, Jun; Liu, Liping; Wang, Weihua; Liu, Jianqiao; Huang, Xingxu; Wei, Hong; Zhang, Pumin

    2015-11-12

    Precise genome modification in large domesticated animals is desirable under many circumstances. In the past it is only possible through lengthy and burdensome cloning procedures. Here we attempted to achieve that goal through the use of the newest genome-modifying tool CRISPR/Cas9. We set out to knockin human albumin cDNA into pig Alb locus for the production of recombinant human serum albumin (rHSA). HSA is a widely used human blood product and is in high demand. We show that homologous recombination can occur highly efficiently in swine zygotes. All 16 piglets born from the manipulated zygotes carry the expected knockin allele and we demonstrated the presence of human albumin in the blood of these piglets. Furthermore, the knockin allele was successfully transmitted through germline. This success in precision genomic engineering is expected to spur exploration of pigs and other large domesticated animals to be used as bioreactors for the production of biomedical products or creation of livestock strains with more desirable traits.

  3. Genome and transcriptome of the porcine whipworm Trichuris suis

    PubMed Central

    Jex, Aaron R.; Nejsum, Peter; Schwarz, Erich M.; Hu, Li; Young, Neil D.; Hall, Ross S.; Korhonen, Pasi K.; Liao, Shengguang; Thamsborg, Stig; Xia, Jinquan; Xu, Pengwei; Wang, Shaowei; Scheerlinck, Jean-Pierre Y.; Hofmann, Andreas; Sternberg, Paul W.; Wang, Jun; Gasser, Robin B.

    2014-01-01

    Trichuris (whipworm) infects 1 billion people worldwide, and causes a disease (trichuriasis) that results in major socioeconomic losses in both humans and pigs. Trichuriasis relates to an inflammation of the large intestine manifested in bloody diarrhoea, and chronic disease can cause malnourishment and stunting in children. Paradoxically, Trichuris of pigs has shown substantial promise as a treatment for human autoimmune disorders, including inflammatory bowel disease (IBD) and multiple sclerosis (MS). Here, we report ~80 megabase (Mb) draft assemblies of the genomes of adult male and female T. suis, and explore stage-, sex- and tissue-specific transcription of messenger and small non-coding RNAs. PMID:24929829

  4. Insights from Human/Mouse genome comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestrymore » of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.« less

  5. Immunization of African Indigenous Pigs with Attenuated Genotype I African Swine Fever Virus OURT88/3 Induces Protection Against Challenge with Virulent Strains of Genotype I.

    PubMed

    Mulumba-Mfumu, L K; Goatley, L C; Saegerman, C; Takamatsu, H-H; Dixon, L K

    2016-10-01

    The attenuated African swine fever virus genotype I strain OURT88/3 has previously been shown to induce protection of European breeds of domestic pigs against challenge with virulent isolates. To determine whether protective immune responses could also be induced in indigenous breeds of pigs from the Kinshassa region in Democratic Republic of Congo, we immunized a group of eight pigs with OURT88/3 strain and challenged the pigs 3 weeks later with virulent genotype I strain OURT88/1. Four of the pigs were protected against challenge. Three of the eight pigs died from African swine fever virus and a fourth from an unknown cause. The remaining four pigs all survived challenge with a recent virulent genotype I strain from the Democratic Republic of Congo, DRC 085/10. Control groups of non-immune pigs challenged with OURT88/1 or DRC 085/10 developed signs of acute ASFV as expected and had high levels of virus genome in blood. © 2015 Blackwell Verlag GmbH.

  6. Pig but not Human Interferon-γ Initiates Human Cell-Mediated Rejection of Pig Tissue in vivo

    NASA Astrophysics Data System (ADS)

    Sultan, Parvez; Murray, Allan G.; McNiff, Jennifer M.; Lorber, Marc I.; Askenase, Philip W.; Bothwell, Alfred L. M.; Pober, Jordan S.

    1997-08-01

    Split-thickness pig skin was transplanted on severe combined immunodeficient mice so that pig dermal microvessels spontaneously inosculated with mouse microvessels and functioned to perfuse the grafts. Pig endothelial cells in the healed grafts constitutively expressed class I and class II major histocompatibility complex molecules. Major histocompatibility complex molecule expression could be further increased by intradermal injection of pig interferon-γ (IFN-γ ) but not human IFN-γ or tumor necrosis factor. Grafts injected with pig IFN-γ also developed a sparse infiltrate of mouse neutrophils and eosinophils without evidence of injury. Introduction of human peripheral blood mononuclear cells into the animals by intraperitoneal inoculation resulted in sparse perivascular mononuclear cell infiltrates in the grafts confined to the pig dermis. Injection of pig skin grafts on mice that received human peripheral blood mononuclear cells with pig IFN-γ (but not human IFN-γ or heat-inactivated pig IFN-γ ) induced human CD4+ and CD8+ T cells and macrophages to more extensively infiltrate the pig skin grafts and injure pig dermal microvessels. These findings suggest that human T cell-mediated rejection of xenotransplanted pig organs may be prevented if cellular sources of pig interferon (e.g., passenger lymphocytes) are eliminated from the graft.

  7. Assessing pig body language: agreement and consistency between pig farmers, veterinarians, and animal activists.

    PubMed

    Wemelsfelder, F; Hunter, A E; Paul, E S; Lawrence, A B

    2012-10-01

    This study investigates the interobserver and intraobserver reliability of qualitative behavior assessments (QBA) of individual pigs by 3 observer groups selected for their diverging backgrounds, experience, and views of pigs. Qualitative behavior assessment is a "whole animal" assessment approach that characterizes the demeanor of an animal as an expressive body language, using descriptors such as relaxed, anxious, or content. This paper addresses the concern that use of such descriptors in animal science may be prone to distortion by observer-related bias. Using a free-choice profiling methodology, 12 pig farmers, 10 large animal veterinarians, and 10 animal protectionists were instructed to describe and score the behavioral expressions of 10 individual pigs (sus scrofa) in 2 repeat sets of 10 video clips, showing these pigs in interaction with a human female. They were also asked to fill in a questionnaire gauging their experiences with and views on pigs. Pig scores were analyzed with generalized procrustes analysis and effect of treatment on these scores with ANOVA. Questionnaire scores were analyzed with a χ(2) test or ANOVA. Observers achieved consensus both within and among observer groups (P < 0.001), identifying 2 main dimensions of pig expression (dim1: playful/confident-cautious/timid; dim2: aggressive/nervous-relaxed/bored), on which pig scores for different observer groups were highly correlated (pearson r > 0.90). The 3 groups also repeated their assessments of individual pigs with high precision (r > 0.85). Animal protectionists used a wider quantitative range in scoring individual pigs on dimension 2 than the other groups (P < 0.001); however, this difference did not distort the strong overall consistency of characterizations by observers of individual pigs. Questionnaire results indicated observer groups to differ in various ways, such as daily and lifetime contact with pigs (P < 0.001), some aspects of affection and empathy for pigs (P < 0

  8. The Fecal Virome of Pigs on a High-Density Farm ▿ †

    PubMed Central

    Shan, Tongling; Li, Linlin; Simmonds, Peter; Wang, Chunlin; Moeser, Adam; Delwart, Eric

    2011-01-01

    Swine are an important source of proteins worldwide but are subject to frequent viral outbreaks and numerous infections capable of infecting humans. Modern farming conditions may also increase viral transmission and potential zoonotic spread. We describe here the metagenomics-derived virome in the feces of 24 healthy and 12 diarrheic piglets on a high-density farm. An average of 4.2 different mammalian viruses were shed by healthy piglets, reflecting a high level of asymptomatic infections. Diarrheic pigs shed an average of 5.4 different mammalian viruses. Ninety-nine percent of the viral sequences were related to the RNA virus families Picornaviridae, Astroviridae, Coronaviridae, and Caliciviridae, while 1% were related to the small DNA virus families Circoviridae, and Parvoviridae. Porcine RNA viruses identified, in order of decreasing number of sequence reads, consisted of kobuviruses, astroviruses, enteroviruses, sapoviruses, sapeloviruses, coronaviruses, bocaviruses, and teschoviruses. The near-full genomes of multiple novel species of porcine astroviruses and bocaviruses were generated and phylogenetically analyzed. Multiple small circular DNA genomes encoding replicase proteins plus two highly divergent members of the Picornavirales order were also characterized. The possible origin of these viral genomes from pig-infecting protozoans and nematodes, based on closest sequence similarities, is discussed. In summary, an unbiased survey of viruses in the feces of intensely farmed animals revealed frequent coinfections with a highly diverse set of viruses providing favorable conditions for viral recombination. Viral surveys of animals can readily document the circulation of known and new viruses, facilitating the detection of emerging viruses and prospective evaluation of their pathogenic and zoonotic potentials. PMID:21900163

  9. Characterization and phylogenetic analysis of the swine leukocyte antigen 3 gene from Korean native pigs.

    PubMed

    Chung, H Y; Choi, Y C; Park, H N

    2015-05-18

    We investigated the phylogenetic relationships between pig breeds, compared the genetic similarity between humans and pigs, and provided basic genetic information on Korean native pigs (KNPs), using genetic variants of the swine leukocyte antigen 3 (SLA-3) gene. Primers were based on sequences from GenBank (accession Nos. AF464010 and AF464009). Polymerase chain reaction analysis amplified approximately 1727 bp of segments, which contained 1086 bp of coding regions and 641 bp of the 3'- and 5'-untranslated regions. Bacterial artificial chromosome clones of miniature pigs were used for sequencing the SLA-3 genomic region, which was 3114 bp in total length, including the coding (1086 bp) and non-coding (2028 bp) regions. Sequence analysis detected 53 single nucleotide polymorphisms (SNPs), based on a minor allele frequency greater than 0.01, which is low compared with other pig breeds, and the results suggest that there is low genetic variability in KNPs. Comparative analysis revealed that humans possess approximately three times more genetic variation than do pigs. Approximately 71% of SNPs in exons 2 and 3 were detected in KNPs, and exon 5 in humans is a highly polymorphic region. Newly identified sequences of SLA-3 using KNPs were submitted to GenBank (accession No. DQ992512-18). Cluster analysis revealed that KNPs were grouped according to three major alleles: SLA-3*0502 (DQ992518), SLA-3*0302 (DQ992513 and DQ992516), and SLA-3*0303 (DQ992512, DQ992514, DQ992515, and DQ992517). Alignments revealed that humans have a relatively close genetic relationship with pigs and chimpanzees. The information provided by this study may be useful in KNP management.

  10. High depth, whole-genome sequencing of cholera isolates from Haiti and the Dominican Republic.

    PubMed

    Sealfon, Rachel; Gire, Stephen; Ellis, Crystal; Calderwood, Stephen; Qadri, Firdausi; Hensley, Lisa; Kellis, Manolis; Ryan, Edward T; LaRocque, Regina C; Harris, Jason B; Sabeti, Pardis C

    2012-09-11

    Whole-genome sequencing is an important tool for understanding microbial evolution and identifying the emergence of functionally important variants over the course of epidemics. In October 2010, a severe cholera epidemic began in Haiti, with additional cases identified in the neighboring Dominican Republic. We used whole-genome approaches to sequence four Vibrio cholerae isolates from Haiti and the Dominican Republic and three additional V. cholerae isolates to a high depth of coverage (>2000x); four of the seven isolates were previously sequenced. Using these sequence data, we examined the effect of depth of coverage and sequencing platform on genome assembly and identification of sequence variants. We found that 50x coverage is sufficient to construct a whole-genome assembly and to accurately call most variants from 100 base pair paired-end sequencing reads. Phylogenetic analysis between the newly sequenced and thirty-three previously sequenced V. cholerae isolates indicates that the Haitian and Dominican Republic isolates are closest to strains from South Asia. The Haitian and Dominican Republic isolates form a tight cluster, with only four variants unique to individual isolates. These variants are located in the CTX region, the SXT region, and the core genome. Of the 126 mutations identified that separate the Haiti-Dominican Republic cluster from the V. cholerae reference strain (N16961), 73 are non-synonymous changes, and a number of these changes cluster in specific genes and pathways. Sequence variant analyses of V. cholerae isolates, including multiple isolates from the Haitian outbreak, identify coverage-specific and technology-specific effects on variant detection, and provide insight into genomic change and functional evolution during an epidemic.

  11. Genome Sequences of Marine Shrimp Exopalaemon carinicauda Holthuis Provide Insights into Genome Size Evolution of Caridea.

    PubMed

    Yuan, Jianbo; Gao, Yi; Zhang, Xiaojun; Wei, Jiankai; Liu, Chengzhang; Li, Fuhua; Xiang, Jianhai

    2017-07-05

    Crustacea, particularly Decapoda, contains many economically important species, such as shrimps and crabs. Crustaceans exhibit enormous (nearly 500-fold) variability in genome size. However, limited genome resources are available for investigating these species. Exopalaemon carinicauda Holthuis, an economical caridean shrimp, is a potential ideal experimental animal for research on crustaceans. In this study, we performed low-coverage sequencing and de novo assembly of the E. carinicauda genome. The assembly covers more than 95% of coding regions. E. carinicauda possesses a large complex genome (5.73 Gb), with size twice higher than those of many decapod shrimps. As such, comparative genomic analyses were implied to investigate factors affecting genome size evolution of decapods. However, clues associated with genome duplication were not identified, and few horizontally transferred sequences were detected. Ultimately, the burst of transposable elements, especially retrotransposons, was determined as the major factor influencing genome expansion. A total of 2 Gb repeats were identified, and RTE-BovB, Jockey, Gypsy, and DIRS were the four major retrotransposons that significantly expanded. Both recent (Jockey and Gypsy) and ancestral (DIRS) originated retrotransposons responsible for the genome evolution. The E. carinicauda genome also exhibited potential for the genomic and experimental research of shrimps.

  12. Sequence adaptations during growth of rescued classical swine fever viruses in cell culture and within infected pigs.

    PubMed

    Hadsbjerg, Johanne; Friis, Martin B; Fahnøe, Ulrik; Nielsen, Jens; Belsham, Graham J; Rasmussen, Thomas Bruun

    2016-08-30

    Classical swine fever virus (CSFV) causes an economically important disease of swine. Four different viruses were rescued from full-length cloned cDNAs derived from the Paderborn strain of CSFV. Three of these viruses had been modified by mutagenesis (with 7 or 8 nt changes) within stem 2 of the subdomain IIIf of the internal ribosome entry site (IRES) that directs the initiation of protein synthesis. Rescued viruses were inoculated into pigs. The rescued vPader10 virus, without modifications in the IRES, induced clinical disease in pigs that was very similar to that observed previously with the parental field strain and transmission to in-contact pigs occurred. Two sequence reversions, in the NS2 and NS5B coding regions, became dominant within the virus populations in these infected pigs. Rescued viruses, with mutant IRES elements, did not induce disease and only very limited circulation of viral RNA could be detected. However, the animals inoculated with these mutant viruses seroconverted against CSFV. Thus, these mutant viruses were highly attenuated in vivo. All 4 rescued viruses were also passaged up to 20 times in cell culture. Using full genome sequencing, the same two adaptations within each of four independent virus populations were observed that restored the coding sequence to that of the parental field strain. These adaptations occurred with different kinetics. The combination of reverse genetics and in depth, full genome sequencing provides a powerful approach to analyse virus adaptation and to identify key determinants of viral replication efficiency in cells and within host animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comparison and quantitative verification of mapping algorithms for whole genome bisulfite sequencing

    USDA-ARS?s Scientific Manuscript database

    Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitat...

  14. High coverage of the complete mitochondrial genome of the rare Gray's beaked whale (Mesoplodon grayi) using Illumina next generation sequencing.

    PubMed

    Thompson, Kirsten F; Patel, Selina; Williams, Liam; Tsai, Peter; Constantine, Rochelle; Baker, C Scott; Millar, Craig D

    2016-01-01

    Using an Illumina platform, we shot-gun sequenced the complete mitochondrial genome of Gray's beaked whale (Mesoplodon grayi) to an average coverage of 152X. We performed a de novo assembly using SOAPdenovo2 and determined the total mitogenome length to be 16,347 bp. The nucleotide composition was asymmetric (33.3% A, 24.6% C, 12.6% G, 29.5% T) with an overall GC content of 37.2%. The gene organization was similar to that of other cetaceans with 13 protein-coding genes, 2 rRNAs (12S and 16S), 22 predicted tRNAs and 1 control region or D-loop. We found no evidence of heteroplasmy or nuclear copies of mitochondrial DNA in this individual. Beaked whales within the genus Mesoplodon are rarely seen at sea and their basic biology is poorly understood. These data will contribute to resolving the phylogeography and population ecology of this speciose group.

  15. Analysis of Existing International Policy Evidence in Public Health Genomics: Mapping Exercise

    PubMed Central

    Syurina, Elena V.; in den Bäumen, Tobias Schulte; Feron, Frans J.M.; Brand, Angela

    2012-01-01

    Background In the last decades we have seen a constant growth in the fields of science related to the use of genome-based health information. However, there is a gap between basic science research and the Public Health everyday practice. For a successful introduction of genome-based technologies policy actions on the international level are needed. This work represents the initial stage of the PHGEN II (Public Health Genomics European Network II) project. In order to prepare a base for bridging genomics and Public Health, an inventory study of the existing legislative base dealing with controversies of genome-based knowledge was conducted. The work results in the mapping of the most and the least legislatively covered areas and some preliminary conclusions about the existing gaps. Design and Methods The collection of the evidence-based policies was done through the PHGEN II project. The mapping covered the meta-level (international, European general guidelines). The expert opinion of the partners of the project was required to reflect on and grade the collected evidence. Results An analysis of the evidence was made by the area of coverage: using the list of important policy areas for successful introduction of genome-based technologies into Public Health and the Public Health Genomics Wheel (originally Public Health Wheel developed by Institute of Medicine). Conclusions Severe inequalities in coverage of important issues of Public Health Genomics were found. The most attention was paid to clinical utility and clinical validity of the screening and the protection of human subjects. Important areas such as trade agreements, Public Health Genomics literacy, insurance issues, behaviour modification in response to genomics results etc. were paid less attention to. For the successful adoption of new technologies on the Public Health level the focus should be not only on the translation to clinical practice, but the translation from bench to Public Health policy and back

  16. Characterization of growth and reproduction performance, transgene integration, expression and transmission patterns in transgenic pigs produced by piggyBac transposition-mediated gene transfer

    PubMed Central

    Zeng, Fang; Li, Zicong; Cai, Gengyuan; Gao, Wenchao; Jiang, Gelong; Liu, Dewu; Urschitz, Johann; Moisyadi, Stefan; Wu, Zhenfang

    2016-01-01

    Previously we successfully produced a group of EGFP-expressing founder transgenic pigs by a newly developed efficient and simple pig transgenesis method based on cytoplasmic injection of piggyBac plasmids. In this study, we investigated the growth and reproduction performance, and characterized the transgene insertion, transmission and expression patterns in transgenic pigs generated by piggyBac transposition. Results showed that transgene has no injurious effect on the growth and reproduction of transgenic pigs. Multiple copies of monogenic EGFP transgene were inserted at noncoding sequences of host genome, and passed from founder transgenic pigs to their transgenic offspring in segregation or linkage manner. The EGFP transgene was ubiquitously expressed in transgenic pigs, and its expression intensity was associated with transgene copy number but not related to its promoter DNA methylation level. To the best of our knowledge, this is first study that fully described the growth and reproduction performance, transgene insertion, expression and transmission profiles in transgenic pigs produced by piggyBac system. It not only demonstrates that piggyBac transposition-mediated gene transfer is an effective and favourable approach for pig transgenesis, but also provides scientific information for understanding the transgene insertion, expression and transmission patterns in transgenic animals produced by piggyBac transposition. PMID:27565868

  17. Genome wide analysis reveals single nucleotide polymorphisms associated with fatness and putative novel copy number variants in three pig breeds

    PubMed Central

    2013-01-01

    Background Obesity, excess fat tissue in the body, can underlie a variety of medical complaints including heart disease, stroke and cancer. The pig is an excellent model organism for the study of various human disorders, including obesity, as well as being the foremost agricultural species. In order to identify genetic variants associated with fatness, we used a selective genomic approach sampling DNA from animals at the extreme ends of the fat and lean spectrum using estimated breeding values derived from a total population size of over 70,000 animals. DNA from 3 breeds (Sire Line Large White, Duroc and a white Pietrain composite line (Titan)) was used to interrogate the Illumina Porcine SNP60 Genotyping Beadchip in order to identify significant associations in terms of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs). Results By sampling animals at each end of the fat/lean EBV (estimate breeding value) spectrum the whole population could be assessed using less than 300 animals, without losing statistical power. Indeed, several significant SNPs (at the 5% genome wide significance level) were discovered, 4 of these linked to genes with ontologies that had previously been correlated with fatness (NTS, FABP6, SST and NR3C2). Quantitative analysis of the data identified putative CNV regions containing genes whose ontology suggested fatness related functions (MCHR1, PPARα, SLC5A1 and SLC5A4). Conclusions Selective genotyping of EBVs at either end of the phenotypic spectrum proved to be a cost effective means of identifying SNPs and CNVs associated with fatness and with estimated major effects in a large population of animals. PMID:24225222

  18. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data

    PubMed Central

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-01

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data—previously only browseable through our FTP site—by focusing on particular samples, populations or data sets of interest. PMID:27638885

  19. Avian influenza H9N2 seroprevalence among pig population and pig farm staff in Shandong, China.

    PubMed

    Li, Song; Zhou, Yufa; Zhao, Yuxin; Li, Wenbo; Song, Wengang; Miao, Zengmin

    2015-03-01

    Shandong province of China has a large number of pig farms with the semi-enclosed houses, allowing crowds of wild birds to seek food in the pig houses. As the carriers of avian influenza virus (AIV), these wild birds can easily pass the viruses to the pigs and even the occupational swine-exposed workers. However, thus far, serological investigation concerning H9N2 AIV in pig population and pig farm staff in Shandong is sparse. To better understand the prevalence of H9N2 AIV in pig population and pig farm staff in Shandong, the serum samples of pigs and occupational pig-exposed workers were collected and tested for the antibodies for H9N2 AIV by both hemagglutination inhibition (HI) and micro-neutralization (MN) assays. When using the antibody titers ≥40 as cut-off value, 106 (HI: 106/2176, 4.87%) and 84 (MN: 84/2176, 3.86%) serum samples of pigs were tested positive, respectively; 6 (HI: 6/287, 2.09%) and 4 (MN: 4/287, 1.39%) serum samples of the pig farm staff were positive, respectively; however, serum samples from the control humans were tested negative in both HI and MN assays. These findings revealed that there were H9N2 AIV infections in pig population and pig farm staff in Shandong, China. Therefore, it is of utmost importance to conduct the long-term surveillance of AIV in pig population and the pig farm staff.

  20. Whole genome analysis provides evidence for porcine-to-simian interspecies transmission of rotavirus-A.

    PubMed

    Navarro, Ryan; Aung, Meiji Soe; Cruz, Katalina; Ketzis, Jennifer; Gallagher, Christa Ann; Beierschmitt, Amy; Malik, Yashpal Singh; Kobayashi, Nobumichi; Ghosh, Souvik

    2017-04-01

    We report here whole genome analysis of a porcine rotavirus-A (RVA) strain RVA/Pig-wt/KNA/ET8B/2015/G5P[13] detected in a diarrheic piglet, and nearly whole genome (except for VP4 gene) analysis of a simian RVA strain RVA/Simian-wt/KNA/08979/2015/G5P[X] detected in a non-diarrheic African green monkey (AGM) on the island of St. Kitts, Caribbean region. Strain ET8B exhibited a G5-P[13]-I5-R1-C1-M1-A8-N1-T7-E1-H1 genotype constellation that was identical to those of Brazilian porcine RVA G5P[13] strains RVA/Pig-wt/BRA/ROTA01/2013/G5P[13] and RVA/Pig-wt/BRA/ROTA07/2013/G5P[13], the only porcine G5P[13] RVAs that have been analyzed for the whole genome so far. Phylogenetically, all the 11 gene segments of ET8B were closely related to those of porcine and porcine-like human RVAs within the respective genotypes. Although the porcine G5P[13] RVAs exhibited identical genotype constellations, ET8B did not appear to share common evolutionary pathways with the Brazilian porcine G5P[13] RVAs. Interestingly, the VP2, VP3, VP6, VP7, and NSP1-NSP5 genes of simian RVA strain 08979 were closely related to those of porcine and porcine-like human RVA strains, exhibiting 99%-100% nucleotide sequence identities to cognate genes of co-circulating porcine RVA strain ET8B. On the other hand, the VP1 of 08979 appeared to be genetically divergent from porcine and human RVAs within the R1 genotype, and its exact origin could not be ascertained. Taken together, these observations suggested that simian strain 08979 might have been derived from interspecies transmission events involving transmission of ET8B-like RVAs from pigs to AGMs. In St. Kitts, AGMs often stray from the wild into livestock farms. Therefore, it may be possible that the AGM acquired the infection from a pig farm on the island. To our knowledge, this is the first report on detection of porcine-like RVAs in monkeys. Also, the present study is the first to report whole genomic analysis of a porcine RVA strain from the Caribbean

  1. The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution

    USDA-ARS?s Scientific Manuscript database

    As a major step toward understanding the biology and evolution of ruminants, the cattle genome was sequenced to ~7x coverage using a combined whole genome shotgun and BAC skim approach. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs found in seven mammalian...

  2. Pig has no uncoupling protein 1.

    PubMed

    Hou, Lianjie; Shi, Jia; Cao, Lingbo; Xu, Guli; Hu, Chingyuan; Wang, Chong

    2017-06-10

    Brown adipose tissue (BAT) is critical for mammal's survival in the cold environment. Uncoupling protein 1 (UCP1) is responsible for the non-shivering thermogenesis in the BAT. Pig is important economically as a meat-producing livestock. However, whether BAT or more precisely UCP1 protein exists in pig remains a controversy. The objective of this study was to ascertain whether pig has UCP1 protein. In this study, we used rapid amplification of cDNA ends (RACE) technique to obtain the UCP1 mRNA 3' end sequence, confirmed only exons 1 and 2 of the UCP1 gene are transcribed in the pig. Then we cloned the pig UCP1 gene exons 1 and 2, and expressed the UCP1 protein from the truncated pig gene using E. coli BL21. We used the expressed pig UCP1 protein as antigen for antibody production in a rabbit. We could not detect any UCP1 protein expression in different pig adipose tissues by the specific pig UCP1 antibody, while our antibody can detect the cloned pig UCP1 as well as the mice adipose UCP1 protein. This result shows although exons 1 and 2 of the pig UCP1 gene were transcribed but not translated in the pig adipose tissue. Furthermore, we detected no uncoupled respiration in the isolated pig adipocytes. Thus, these results unequivocally demonstrate that pig has no UCP1 protein. Our results have resolved the controversy of whether pigs have the brown adipose tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Enhancing genome assemblies by integrating non-sequence based data

    PubMed Central

    2011-01-01

    Introduction Many genome projects were underway before the advent of high-throughput sequencing and have thus been supported by a wealth of genome information from other technologies. Such information frequently takes the form of linkage and physical maps, both of which can provide a substantial amount of data useful in de novo sequencing projects. Furthermore, the recent abundance of genome resources enables the use of conserved synteny maps identified in related species to further enhance genome assemblies. Methods The tammar wallaby (Macropus eugenii) is a model marsupial mammal with a low coverage genome. However, we have access to extensive comparative maps containing over 14,000 markers constructed through the physical mapping of conserved loci, chromosome painting and comprehensive linkage maps. Using a custom Bioperl pipeline, information from the maps was aligned to assembled tammar wallaby contigs using BLAT. This data was used to construct pseudo paired-end libraries with intervals ranging from 5-10 MB. We then used Bambus (a program designed to scaffold eukaryotic genomes by ordering and orienting contigs through the use of paired-end data) to scaffold our libraries. To determine how map data compares to sequence based approaches to enhance assemblies, we repeated the experiment using a 0.5× coverage of unique reads from 4 KB and 8 KB Illumina paired-end libraries. Finally, we combined both the sequence and non-sequence-based data to determine how a combined approach could further enhance the quality of the low coverage de novo reconstruction of the tammar wallaby genome. Results Using the map data alone, we were able order 2.2% of the initial contigs into scaffolds, and increase the N50 scaffold size to 39 KB (36 KB in the original assembly). Using only the 0.5× paired-end sequence based data, 53% of the initial contigs were assigned to scaffolds. Combining both data sets resulted in a further 2% increase in the number of initial contigs integrated

  4. Enhancing genome assemblies by integrating non-sequence based data.

    PubMed

    Heider, Thomas N; Lindsay, James; Wang, Chenwei; O'Neill, Rachel J; Pask, Andrew J

    2011-05-28

    Many genome projects were underway before the advent of high-throughput sequencing and have thus been supported by a wealth of genome information from other technologies. Such information frequently takes the form of linkage and physical maps, both of which can provide a substantial amount of data useful in de novo sequencing projects. Furthermore, the recent abundance of genome resources enables the use of conserved synteny maps identified in related species to further enhance genome assemblies. The tammar wallaby (Macropus eugenii) is a model marsupial mammal with a low coverage genome. However, we have access to extensive comparative maps containing over 14,000 markers constructed through the physical mapping of conserved loci, chromosome painting and comprehensive linkage maps. Using a custom Bioperl pipeline, information from the maps was aligned to assembled tammar wallaby contigs using BLAT. This data was used to construct pseudo paired-end libraries with intervals ranging from 5-10 MB. We then used Bambus (a program designed to scaffold eukaryotic genomes by ordering and orienting contigs through the use of paired-end data) to scaffold our libraries. To determine how map data compares to sequence based approaches to enhance assemblies, we repeated the experiment using a 0.5× coverage of unique reads from 4 KB and 8 KB Illumina paired-end libraries. Finally, we combined both the sequence and non-sequence-based data to determine how a combined approach could further enhance the quality of the low coverage de novo reconstruction of the tammar wallaby genome. Using the map data alone, we were able order 2.2% of the initial contigs into scaffolds, and increase the N50 scaffold size to 39 KB (36 KB in the original assembly). Using only the 0.5× paired-end sequence based data, 53% of the initial contigs were assigned to scaffolds. Combining both data sets resulted in a further 2% increase in the number of initial contigs integrated into a scaffold (55% total

  5. High-resolution characterization of a hepatocellular carcinoma genome.

    PubMed

    Totoki, Yasushi; Tatsuno, Kenji; Yamamoto, Shogo; Arai, Yasuhito; Hosoda, Fumie; Ishikawa, Shumpei; Tsutsumi, Shuichi; Sonoda, Kohtaro; Totsuka, Hirohiko; Shirakihara, Takuya; Sakamoto, Hiromi; Wang, Linghua; Ojima, Hidenori; Shimada, Kazuaki; Kosuge, Tomoo; Okusaka, Takuji; Kato, Kazuto; Kusuda, Jun; Yoshida, Teruhiko; Aburatani, Hiroyuki; Shibata, Tatsuhiro

    2011-05-01

    Hepatocellular carcinoma, one of the most common virus-associated cancers, is the third most frequent cause of cancer-related death worldwide. By massively parallel sequencing of a primary hepatitis C virus-positive hepatocellular carcinoma (36× coverage) and matched lymphocytes (>28× coverage) from the same individual, we identified more than 11,000 somatic substitutions of the tumor genome that showed predominance of T>C/A>G transition and a decrease of the T>C substitution on the transcribed strand, suggesting preferential DNA repair. Gene annotation enrichment analysis of 63 validated non-synonymous substitutions revealed enrichment of phosphoproteins. We further validated 22 chromosomal rearrangements, generating four fusion transcripts that had altered transcriptional regulation (BCORL1-ELF4) or promoter activity. Whole-exome sequencing at a higher sequence depth (>76× coverage) revealed a TSC1 nonsense substitution in a subpopulation of the tumor cells. This first high-resolution characterization of a virus-associated cancer genome identified previously uncharacterized mutation patterns, intra-chromosomal rearrangements and fusion genes, as well as genetic heterogeneity within the tumor.

  6. Effects of Increasing Space Allowance by Removing a Pig or Gate Adjustment on Finishing Pig Growth Performance.

    PubMed

    Carpenter, Corey B; Holder, Cheyenne J; Wu, Fanghou; Woodworth, Jason C; DeRouchey, Joel M; Tokach, Mike D; Goodband, Robert D; Dritz, Steve S

    2018-05-03

    A total of 256 pigs (initially 55.9 ± 4.88 kg) were used in a 71-d study to determine the effects of increasing space allowance and pig removal on pig growth performance. Pens of pigs were blocked by body weight (BW) and allotted to one of four space allowance treatments, initially with 8 pigs per pen and 8 pens per treatment. First two treatments included pens with 0.91 m2 per pig or 0.63 m2 per pig for the entire study; two additional treatments initially provided 0.63 m2 per pig, but either a gate was adjusted on d 28, 45, and 62 or the heaviest pig in the pen was removed from the pen on d 28 and 45 to provide more space and keep pigs in accordance with their predicted minimum space requirement [(m2) = 0.0336 × (BW, kg)0.67]. From d 0 to 14 (56 to 69 kg), there was no effect of stocking density observed for average daily gain (ADG), average daily feed intake (ADFI), and gain:feed (G:F). From d 14 to 28 (69 to 83 kg), pigs provided 0.91 m2 had increased (P < 0.05) ADG and G:F compared with those allowed 0.63 m2. Pigs provided 0.91 m2 were marginally heavier (P = 0.081) on d 28 and had greater ADFI (P = 0.025) during d 28 to 45 than those provided 0.63 m2 or those that had the heaviest pig removed. From d 45 to 62 (98 to 116 kg), pigs provided 0.91 m2 were heavier (P < 0.01) than all others, while pigs provided 0.63 m2 had reduced ADFI compared to other treatments. From d 62 to 71 (116 to 124 kg), pigs provided 0.91 m2 and those with space adjustment treatments had greater (P < 0.05) ADG and ADFI than those provided 0.63 m2. Overall (56 to 124 kg), pigs provided 0.91 m2 had increased (P = 0.001) ADG compared with those allowed 0.63 m2 with pigs provided space adjustments intermediate. In summary, pigs with 0.91 m2 grew faster and consumed more feed than pigs restricted in space. As pigs reached the critical k value, gate adjustments and pig removals affected growth similarly. As pigs grew to the predicted space requirement and were subsequently allowed more

  7. Association between microbiological and serological prevalence of human pathogenic Yersinia spp. in pigs and pig batches.

    PubMed

    Vanantwerpen, Gerty; Berkvens, Dirk; De Zutter, Lieven; Houf, Kurt

    2015-07-09

    Pigs are the main reservoir of human pathogenic Y. enterocolitica, and the microbiological and serological prevalence of this pathogen differs between pig farms. The infection status of pig batches at moment of slaughter is unknown while it is a possibility to classify batches. A relation between the presence of human pathogenic Yersinia spp. and the presence of antibodies could help to predict the infection of the pigs prior to slaughter. Pigs from 100 different batches were sampled. Tonsils and pieces of diaphragm were collected from 7047 pigs (on average 70 pigs per batch). The tonsils were analyzed using a direct plating method and the meat juice collected from the pieces of diaphragm was analyzed by Enzyme Linked ImmunoSorbent Assay. The microbiological and serological results were compared using a mixed-effects logistic regression at pig and batch level. Yersinia spp. were found in 2031 (28.8%) pigs, antibodies were present in 4692 (66.6%) pigs. According to the logistic regression, there was no relation at pig level between the presence of Yersinia spp. in tonsils and the presence of antibodies. Contrarily, at batch level, a mean activity value of 37 Optical Density (OD)% indicated a Yersinia spp. positive farm and the microbiological prevalence in pig batches could be estimated before shipment to the slaughterhouse. This offers the opportunity to classify batches based on their potential risk to contaminate carcasses with human pathogenic Yersinia spp. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Transcriptomics Analysis on Excellent Meat Quality Traits of Skeletal Muscles of the Chinese Indigenous Min Pig Compared with the Large White Breed

    PubMed Central

    Liu, Yingzi; Yang, Xiuqin; Jing, Xiaoyan; He, Xinmiao; Wang, Liang; Liu, Yang; Liu, Di

    2017-01-01

    The Min pig (Sus scrofa) is a well-known indigenous breed in China. One of its main advantages over European breeds is its high meat quality. Additionally, different cuts of pig also show some different traits of meat quality. To explore the underlying mechanism responsible for the differences of meat quality between different breeds or cuts, the longissimus dorsi muscle (LM) and the biceps femoris muscle (BF) from Min and Large White pigs were investigated using transcriptome analysis. The gene expression profiling identified 1371 differentially expressed genes (DEGs) between LM muscles from Min and Large White pigs, and 114 DEGs between LM and BF muscles from the same Min pigs. Gene Ontology (GO) enrichment of biological functions and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the gene products were mainly involved in the IRS1/Akt/FoxO1 signaling pathway, adenosine 5′-monophosphate-activated protein kinase (AMPK) cascade effects, lipid metabolism and amino acid metabolism pathway. Such pathways contributed to fatty acid metabolism, intramuscular fat deposition, and skeletal muscle growth in Min pig. These results give an insight into the mechanisms underlying the formation of skeletal muscle and provide candidate genes for improving meat quality. It will contribute to improving meat quality of pigs through molecular breeding. PMID:29271915

  9. Protein family clustering for structural genomics.

    PubMed

    Yan, Yongpan; Moult, John

    2005-10-28

    A major goal of structural genomics is the provision of a structural template for a large fraction of protein domains. The magnitude of this task depends on the number and nature of protein sequence families. With a large number of bacterial genomes now fully sequenced, it is possible to obtain improved estimates of the number and diversity of families in that kingdom. We have used an automated clustering procedure to group all sequences in a set of genomes into protein families. Bench-marking shows the clustering method is sensitive at detecting remote family members, and has a low level of false positives. This comprehensive protein family set has been used to address the following questions. (1) What is the structure coverage for currently known families? (2) How will the number of known apparent families grow as more genomes are sequenced? (3) What is a practical strategy for maximizing structure coverage in future? Our study indicates that approximately 20% of known families with three or more members currently have a representative structure. The study indicates also that the number of apparent protein families will be considerably larger than previously thought: We estimate that, by the criteria of this work, there will be about 250,000 protein families when 1000 microbial genomes have been sequenced. However, the vast majority of these families will be small, and it will be possible to obtain structural templates for 70-80% of protein domains with an achievable number of representative structures, by systematically sampling the larger families.

  10. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads.

    PubMed

    Wang, Zhiwen; Hobson, Neil; Galindo, Leonardo; Zhu, Shilin; Shi, Daihu; McDill, Joshua; Yang, Linfeng; Hawkins, Simon; Neutelings, Godfrey; Datla, Raju; Lambert, Georgina; Galbraith, David W; Grassa, Christopher J; Geraldes, Armando; Cronk, Quentin C; Cullis, Christopher; Dash, Prasanta K; Kumar, Polumetla A; Cloutier, Sylvie; Sharpe, Andrew G; Wong, Gane K-S; Wang, Jun; Deyholos, Michael K

    2012-11-01

    Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole-genome shotgun sequencing of the nuclear genome of flax. Seven paired-end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep-coverage (approximately 94× raw, approximately 69× filtered) short-sequence reads (44-100 bp), produced a set of scaffolds with N(50) =694 kb, including contigs with N(50)=20.1 kb. The contig assembly contained 302 Mb of non-redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole-genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis-assembly of regions at the genome scale. A total of 43384 protein-coding genes were predicted in the whole-genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (K(s) ) observed within duplicate gene pairs was consistent with a recent (5-9 MYA) whole-genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam-A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole-genome shotgun short-sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  11. Complete Genome Sequence of a Porcine Polyomavirus from Nasal Swabs of Pigs with Respiratory Disease

    PubMed Central

    Smith, Catherine; Bishop, Brian; Stewart, Chelsea; Simonson, Randy

    2018-01-01

    ABSTRACT Metagenomic sequencing of pooled nasal swabs from pigs with unexplained respiratory disease identified a large number of reads mapping to a previously uncharacterized porcine polyomavirus. Sus scrofa polyomavirus 2 was most closely related to betapolyomaviruses frequently detected in mammalian respiratory samples. PMID:29700160

  12. Construction and sequence sampling of deep-coverage, large-insert BAC libraries for three model lepidopteran species

    PubMed Central

    Wu, Chengcang; Proestou, Dina; Carter, Dorothy; Nicholson, Erica; Santos, Filippe; Zhao, Shaying; Zhang, Hong-Bin; Goldsmith, Marian R

    2009-01-01

    Background Manduca sexta, Heliothis virescens, and Heliconius erato represent three widely-used insect model species for genomic and fundamental studies in Lepidoptera. Large-insert BAC libraries of these insects are critical resources for many molecular studies, including physical mapping and genome sequencing, but not available to date. Results We report the construction and characterization of six large-insert BAC libraries for the three species and sampling sequence analysis of the genomes. The six BAC libraries were constructed with two restriction enzymes, two libraries for each species, and each has an average clone insert size ranging from 152–175 kb. We estimated that the genome coverage of each library ranged from 6–9 ×, with the two combined libraries of each species being equivalent to 13.0–16.3 × haploid genomes. The genome coverage, quality and utility of the libraries were further confirmed by library screening using 6~8 putative single-copy probes. To provide a first glimpse into these genomes, we sequenced and analyzed the BAC ends of ~200 clones randomly selected from the libraries of each species. The data revealed that the genomes are AT-rich, contain relatively small fractions of repeat elements with a majority belonging to the category of low complexity repeats, and are more abundant in retro-elements than DNA transposons. Among the species, the H. erato genome is somewhat more abundant in repeat elements and simple repeats than those of M. sexta and H. virescens. The BLAST analysis of the BAC end sequences suggested that the evolution of the three genomes is widely varied, with the genome of H. virescens being the most conserved as a typical lepidopteran, whereas both genomes of H. erato and M. sexta appear to have evolved significantly, resulting in a higher level of species- or evolutionary lineage-specific sequences. Conclusion The high-quality and large-insert BAC libraries of the insects, together with the identified BACs

  13. Functional analysis and transcriptional output of the Göttingen minipig genome.

    PubMed

    Heckel, Tobias; Schmucki, Roland; Berrera, Marco; Ringshandl, Stephan; Badi, Laura; Steiner, Guido; Ravon, Morgane; Küng, Erich; Kuhn, Bernd; Kratochwil, Nicole A; Schmitt, Georg; Kiialainen, Anna; Nowaczyk, Corinne; Daff, Hamina; Khan, Azinwi Phina; Lekolool, Isaac; Pelle, Roger; Okoth, Edward; Bishop, Richard; Daubenberger, Claudia; Ebeling, Martin; Certa, Ulrich

    2015-11-14

    In the past decade the Göttingen minipig has gained increasing recognition as animal model in pharmaceutical and safety research because it recapitulates many aspects of human physiology and metabolism. Genome-based comparison of drug targets together with quantitative tissue expression analysis allows rational prediction of pharmacology and cross-reactivity of human drugs in animal models thereby improving drug attrition which is an important challenge in the process of drug development. Here we present a new chromosome level based version of the Göttingen minipig genome together with a comparative transcriptional analysis of tissues with pharmaceutical relevance as basis for translational research. We relied on mapping and assembly of WGS (whole-genome-shotgun sequencing) derived reads to the reference genome of the Duroc pig and predict 19,228 human orthologous protein-coding genes. Genome-based prediction of the sequence of human drug targets enables the prediction of drug cross-reactivity based on conservation of binding sites. We further support the finding that the genome of Sus scrofa contains about ten-times less pseudogenized genes compared to other vertebrates. Among the functional human orthologs of these minipig pseudogenes we found HEPN1, a putative tumor suppressor gene. The genomes of Sus scrofa, the Tibetan boar, the African Bushpig, and the Warthog show sequence conservation of all inactivating HEPN1 mutations suggesting disruption before the evolutionary split of these pig species. We identify 133 Sus scrofa specific, conserved long non-coding RNAs (lncRNAs) in the minipig genome and show that these transcripts are highly conserved in the African pigs and the Tibetan boar suggesting functional significance. Using a new minipig specific microarray we show high conservation of gene expression signatures in 13 tissues with biomedical relevance between humans and adult minipigs. We underline this relationship for minipig and human liver where we

  14. An Exploration into Fern Genome Space.

    PubMed

    Wolf, Paul G; Sessa, Emily B; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J; Sigel, Erin M; Gitzendanner, Matthew A; Visger, Clayton J; Banks, Jo Ann; Soltis, Douglas E; Soltis, Pamela S; Pryer, Kathleen M; Der, Joshua P

    2015-08-26

    Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Immune Response in Male Guinea Pigs Infected with the Guinea Pig Inclusion Conjunctivitis Agent of Chlamydia Psittaci

    DTIC Science & Technology

    1994-01-01

    Dist, ibution I Availability Codes Avail and/or Dist Special IMMUNE RESPONSE IN MALE GUINEA PIGS INFECTED WITH THE GUINEA PIG INCLUSION...CONJUNCTIVITIS AGENT OF CHLAM"DIA PSITTA CI At >- ~tu IMMUNE RESPONSE IN MALE GUINEA PIGS INFECTED WITH THE GUINEA PIG INCLUSION CONJUNCTIVITIS AGENT OF...Stock .................................................................... 15 Infection of Guinea Pigs with GPIC

  16. Beijing Sublineages of Mycobacterium tuberculosis Differ in Pathogenicity in the Guinea Pig

    PubMed Central

    Shanley, Crystal A.; Ackart, David; Jarlsberg, Leah G.; Shang, Shaobin; Obregon-Henao, Andres; Harton, Marisabel; Basaraba, Randall J.; Henao-Tamayo, Marcela; Barrozo, Joyce C.; Rose, Jordan; Kawamura, L. Masae; Coscolla, Mireia; Fofanov, Viacheslav Y.; Koshinsky, Heather; Gagneux, Sebastien; Hopewell, Philip C.; Ordway, Diane J.; Orme, Ian M.

    2012-01-01

    The Beijing family of Mycobacterium tuberculosis strains is part of lineage 2 (also known as the East Asian lineage). In clinical studies, we have observed that isolates from the sublineage RD207 of lineage 2 were more readily transmitted among humans. To investigate the basis for this difference, we tested representative strains with the characteristic Beijing spoligotype from four of the five sublineages of lineage 2 in the guinea pig model and subjected these strains to comparative whole-genome sequencing. The results of these studies showed that all of the clinical strains were capable of growing and causing lung pathology in guinea pigs after low-dose aerosol exposure. Differences between the abilities of the four sublineages to grow in the lungs of these animals were not overt, but members of RD207 were significantly more pathogenic, resulting in severe lung damage. The RD207 strains also induced much higher levels of markers associated with regulatory T cells and showed a significant loss of activated T cells in the lungs over the course of the infections. Whole-genome sequencing of the strains revealed mutations specific for RD207 which may explain this difference. Based on these data, we hypothesize that the sublineages of M. tuberculosis are associated with distinct pathological and clinical phenotypes and that these differences influence the transmissibility of particular M. tuberculosis strains in human populations. PMID:22718126

  17. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome.

    PubMed

    González, Leonardo Galindo; Deyholos, Michael K

    2012-11-21

    Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in unassembled repetitive regions of

  18. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome

    PubMed Central

    2012-01-01

    Background Flax (Linum usitatissimum L.) is an important crop for the production of bioproducts derived from its seed and stem fiber. Transposable elements (TEs) are widespread in plant genomes and are a key component of their evolution. The availability of a genome assembly of flax (Linum usitatissimum) affords new opportunities to explore the diversity of TEs and their relationship to genes and gene expression. Results Four de novo repeat identification algorithms (PILER, RepeatScout, LTR_finder and LTR_STRUC) were applied to the flax genome assembly. The resulting library of flax repeats was combined with the RepBase Viridiplantae division and used with RepeatMasker to identify TEs coverage in the genome. LTR retrotransposons were the most abundant TEs (17.2% genome coverage), followed by Long Interspersed Nuclear Element (LINE) retrotransposons (2.10%) and Mutator DNA transposons (1.99%). Comparison of putative flax TEs to flax transcript databases indicated that TEs are not highly expressed in flax. However, the presence of recent insertions, defined by 100% intra-element LTR similarity, provided evidence for recent TE activity. Spatial analysis showed TE-rich regions, gene-rich regions as well as regions with similar genes and TE density. Monte Carlo simulations for the 71 largest scaffolds (≥ 1 Mb each) did not show any regional differences in the frequency of TE overlap with gene coding sequences. However, differences between TE superfamilies were found in their proximity to genes. Genes within TE-rich regions also appeared to have lower transcript expression, based on EST abundance. When LTR elements were compared, Copia showed more diversity, recent insertions and conserved domains than the Gypsy, demonstrating their importance in genome evolution. Conclusions The calculated 23.06% TE coverage of the flax WGS assembly is at the low end of the range of TE coverages reported in other eudicots, although this estimate does not include TEs likely found in

  19. Methicillin-Resistant Staphylococcus aureus CC398 in Humans and Pigs in Norway: A “One Health” Perspective on Introduction and Transmission

    PubMed Central

    Grøntvedt, Carl Andreas; Elstrøm, Petter; Stegger, Marc; Skov, Robert Leo; Skytt Andersen, Paal; Larssen, Kjersti Wik; Urdahl, Anne Margrete; Angen, Øystein; Larsen, Jesper; Åmdal, Solfrid; Løtvedt, Siri Margrete; Sunde, Marianne; Bjørnholt, Jørgen Vildershøj

    2016-01-01

    Background. Emerging livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) persist in livestock populations and represent a reservoir for transmission to humans. Understanding the routes of introduction and further transmission is crucial to control this threat to human health. Methods. All reported cases of livestock-associated MRSA (CC398) in humans and pigs in Norway between 2008 and 2014 were included. Data were collected during an extensive outbreak investigation, including contact tracing and stringent surveillance. Whole-genome sequencing of isolates from all human cases and pig farms was performed to support and expand the epidemiological findings. The national strategy furthermore included a “search-and-destroy” policy at the pig farm level. Results. Three outbreak clusters were identified, including 26 pig farms, 2 slaughterhouses, and 36 humans. Primary introductions likely occurred by human transmission to 3 sow farms with secondary transmission to other pig farms, mainly through animal trade and to a lesser extent via humans or livestock trucks. All MRSA CC398 isolated from humans without an epidemiological link to the outbreaks were genetically distinct from isolates within the outbreak clusters indicating limited dissemination to the general population. Conclusions. This study identified preventable routes of MRSA CC398 introduction and transmission: human occupational exposure, trade of pigs and livestock transport vehicles. These findings are essential for keeping pig populations MRSA free and, from a “One Health” perspective, preventing pig farms from becoming reservoirs for MRSA transmission to humans. PMID:27516381

  20. Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review.

    PubMed

    Barbero, Ana M; Frasch, H Frederick

    2009-02-01

    Both human and animal skin in vitro models are used to predict percutaneous penetration in humans. The objective of this review is a quantitative comparison of permeability and lag time measurements between human and animal skin, including an evaluation of the intra and inter species variability. We limit our focus to domestic pig and rodent guinea pig skin as surrogates for human skin, and consider only studies in which both animal and human penetration of a given chemical were measured jointly in the same lab. When the in vitro permeability of pig and human skin were compared, the Pearson product moment correlation coefficient (r) was 0.88 (P<0.0001), with an intra species average coefficient of variation of skin permeability of 21% for pig and 35% for human, and an inter species average coefficient of variation of 37% for the set of studied compounds (n=41). The lag times of pig skin and human skin did not correlate (r=0.35, P=0.26). When the in vitro permeability of guinea pig and human skin were compared, r=0.96 (P<0.0001), with an average intra species coefficient of variation of 19% for guinea pig and 24% for human, and an inter species coefficient of variation of permeability of 41% for the set of studied compounds (n=15). Lag times of guinea pig and human skin correlated (r=0.90, P<0.0001, n=12). When permeability data was not reported a factor of difference (FOD) of animal to human skin was calculated for pig skin (n=50) and guinea pig skin (n=25). For pig skin, 80% of measurements fell within the range 0.3pig skin, 65% fell within that range. Both pig and guinea pig are good models for human skin permeability and have less variability than the human skin model. The skin model of choice will depend on the final purpose of the study and the compound under investigation.

  1. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs

    PubMed Central

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios. PMID

  2. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs.

    PubMed

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios.

  3. Using single-step genomic best linear unbiased predictor to enhance the mitigation of seasonal losses due to heat stress in pigs.

    PubMed

    Fragomeni, B O; Lourenco, D A L; Tsuruta, S; Bradford, H L; Gray, K A; Huang, Y; Misztal, I

    2016-12-01

    The purposes of this study were to analyze the impact of seasonal losses due to heat stress in pigs from different breeds raised in different environments and to evaluate the accuracy improvement from adding genomic information to genetic evaluations. Data were available for 2 different swine populations: purebred Duroc animals raised in Texas and North Carolina and commercial crosses of Duroc and F females (Landrace × Large White) raised in Missouri and North Carolina; pedigrees provided links for animals from different states. Pedigree information was available for 553,442 animals, of which 8,232 pure breeds were genotyped. Traits were BW at 170 d for purebred animals and HCW for crossbred animals. Analyses were done with an animal model as either single- or 2-trait models using phenotypes measured in different states as separate traits. Additionally, reaction norm models were fitted for 1 or 2 traits using heat load index as a covariable. Heat load was calculated as temperature-humidity index greater than 70 and was averaged over 30 d prior to data collection. Variance components were estimated with average information REML, and EBV and genomic EBV (GEBV) with BLUP or single-step genomic BLUP (ssGBLUP). Validation was assessed for 146 genotyped sires with progeny in the last generation. Accuracy was calculated as a correlation between EBV and GEBV using reduced data (all animals, except the last generation) and using complete data. Heritability estimates for purebred animals were similar across states (varying from 0.23 to 0.26), and reaction norm models did not show evidence of a heat stress effect. Genetic correlations between states for heat loads were always strong (>0.91). For crossbred animals, no differences in heritability were found in single- or 2-trait analysis (from 0.17 to 0.18), and genetic correlations between states were moderate (0.43). In the reaction norm for crossbreeds, heritabilities ranged from 0.15 to 0.30 and genetic correlations

  4. BinSanity: unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation

    PubMed Central

    Heidelberg, John F.; Tully, Benjamin J.

    2017-01-01

    Metagenomics has become an integral part of defining microbial diversity in various environments. Many ecosystems have characteristically low biomass and few cultured representatives. Linking potential metabolisms to phylogeny in environmental microorganisms is important for interpreting microbial community functions and the impacts these communities have on geochemical cycles. However, with metagenomic studies there is the computational hurdle of ‘binning’ contigs into phylogenetically related units or putative genomes. Binning methods have been implemented with varying approaches such as k-means clustering, Gaussian mixture models, hierarchical clustering, neural networks, and two-way clustering; however, many of these suffer from biases against low coverage/abundance organisms and closely related taxa/strains. We are introducing a new binning method, BinSanity, that utilizes the clustering algorithm affinity propagation (AP), to cluster assemblies using coverage with compositional based refinement (tetranucleotide frequency and percent GC content) to optimize bins containing multiple source organisms. This separation of composition and coverage based clustering reduces bias for closely related taxa. BinSanity was developed and tested on artificial metagenomes varying in size and complexity. Results indicate that BinSanity has a higher precision, recall, and Adjusted Rand Index compared to five commonly implemented methods. When tested on a previously published environmental metagenome, BinSanity generated high completion and low redundancy bins corresponding with the published metagenome-assembled genomes. PMID:28289564

  5. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    PubMed Central

    Moore, Michael J; Dhingra, Amit; Soltis, Pamela S; Shaw, Regina; Farmerie, William G; Folta, Kevin M; Soltis, Douglas E

    2006-01-01

    Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae). Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid

  6. Genome-Wide Association Study of Piglet Uniformity and Farrowing Interval

    PubMed Central

    Wang, Yuan; Ding, Xiangdong; Tan, Zhen; Ning, Chao; Xing, Kai; Yang, Ting; Pan, Yongjie; Sun, Dongxiao; Wang, Chuduan

    2017-01-01

    Piglet uniformity (PU) and farrowing interval (FI) are important reproductive traits related to production and economic profits in the pig industry. However, the genetic architecture of the longitudinal trends of reproductive traits still remains elusive. Herein, we performed a genome-wide association study (GWAS) to detect potential genetic variation and candidate genes underlying the phenotypic records at different parities for PU and FI in a population of 884 Large White pigs. In total, 12 significant SNPs were detected on SSC1, 3, 4, 9, and 14, which collectively explained 1–1.79% of the phenotypic variance for PU from parity 1 to 4, and 2.58–4.11% for FI at different stages. Of these, seven SNPs were located within 16 QTL regions related to swine reproductive traits. One QTL region was associated with birth body weight (related to PU) and contained the peak SNP MARC0040730, and another was associated with plasma FSH concentration (related to FI) and contained the SNP MARC0031325. Finally, some positional candidate genes for PU and FI were identified because of their roles in prenatal skeletal muscle development, fetal energy substrate, pre-implantation, and the expression of mammary gland epithelium. Identification of novel variants and candidate genes will greatly advance our understanding of the genetic mechanisms of PU and FI, and suggest a specific opportunity for improving marker assisted selection or genomic selection in pigs. PMID:29234349

  7. Clear genetic distinctiveness between human- and pig-derived Trichuris based on analyses of mitochondrial datasets.

    PubMed

    Liu, Guo-Hua; Gasser, Robin B; Su, Ang; Nejsum, Peter; Peng, Lifei; Lin, Rui-Qing; Li, Ming-Wei; Xu, Min-Jun; Zhu, Xing-Quan

    2012-01-01

    The whipworm, Trichuris trichiura, causes trichuriasis in ∼600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis), dogs (T. vulpis) and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions.

  8. Clear Genetic Distinctiveness between Human- and Pig-Derived Trichuris Based on Analyses of Mitochondrial Datasets

    PubMed Central

    Liu, Guo-Hua; Gasser, Robin B.; Su, Ang; Nejsum, Peter; Peng, Lifei; Lin, Rui-Qing; Li, Ming-Wei; Xu, Min-Jun; Zhu, Xing-Quan

    2012-01-01

    The whipworm, Trichuris trichiura, causes trichuriasis in ∼600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis), dogs (T. vulpis) and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions. PMID:22363831

  9. Genomic analyses inform on migration events during the peopling of Eurasia

    NASA Astrophysics Data System (ADS)

    Pagani, Luca; Lawson, Daniel John; Jagoda, Evelyn; Mörseburg, Alexander; Eriksson, Anders; Mitt, Mario; Clemente, Florian; Hudjashov, Georgi; Degiorgio, Michael; Saag, Lauri; Wall, Jeffrey D.; Cardona, Alexia; Mägi, Reedik; Sayres, Melissa A. Wilson; Kaewert, Sarah; Inchley, Charlotte; Scheib, Christiana L.; Järve, Mari; Karmin, Monika; Jacobs, Guy S.; Antao, Tiago; Iliescu, Florin Mircea; Kushniarevich, Alena; Ayub, Qasim; Tyler-Smith, Chris; Xue, Yali; Yunusbayev, Bayazit; Tambets, Kristiina; Mallick, Chandana Basu; Saag, Lehti; Pocheshkhova, Elvira; Andriadze, George; Muller, Craig; Westaway, Michael C.; Lambert, David M.; Zoraqi, Grigor; Turdikulova, Shahlo; Dalimova, Dilbar; Sabitov, Zhaxylyk; Sultana, Gazi Nurun Nahar; Lachance, Joseph; Tishkoff, Sarah; Momynaliev, Kuvat; Isakova, Jainagul; Damba, Larisa D.; Gubina, Marina; Nymadawa, Pagbajabyn; Evseeva, Irina; Atramentova, Lubov; Utevska, Olga; Ricaut, François-Xavier; Brucato, Nicolas; Sudoyo, Herawati; Letellier, Thierry; Cox, Murray P.; Barashkov, Nikolay A.; Škaro, Vedrana; Mulaha´, Lejla; Primorac, Dragan; Sahakyan, Hovhannes; Mormina, Maru; Eichstaedt, Christina A.; Lichman, Daria V.; Abdullah, Syafiq; Chaubey, Gyaneshwer; Wee, Joseph T. S.; Mihailov, Evelin; Karunas, Alexandra; Litvinov, Sergei; Khusainova, Rita; Ekomasova, Natalya; Akhmetova, Vita; Khidiyatova, Irina; Marjanović, Damir; Yepiskoposyan, Levon; Behar, Doron M.; Balanovska, Elena; Metspalu, Andres; Derenko, Miroslava; Malyarchuk, Boris; Voevoda, Mikhail; Fedorova, Sardana A.; Osipova, Ludmila P.; Lahr, Marta Mirazón; Gerbault, Pascale; Leavesley, Matthew; Migliano, Andrea Bamberg; Petraglia, Michael; Balanovsky, Oleg; Khusnutdinova, Elza K.; Metspalu, Ene; Thomas, Mark G.; Manica, Andrea; Nielsen, Rasmus; Villems, Richard; Willerslev, Eske; Kivisild, Toomas; Metspalu, Mait

    2016-10-01

    High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.

  10. Genomic analyses inform on migration events during the peopling of Eurasia.

    PubMed

    Pagani, Luca; Lawson, Daniel John; Jagoda, Evelyn; Mörseburg, Alexander; Eriksson, Anders; Mitt, Mario; Clemente, Florian; Hudjashov, Georgi; DeGiorgio, Michael; Saag, Lauri; Wall, Jeffrey D; Cardona, Alexia; Mägi, Reedik; Wilson Sayres, Melissa A; Kaewert, Sarah; Inchley, Charlotte; Scheib, Christiana L; Järve, Mari; Karmin, Monika; Jacobs, Guy S; Antao, Tiago; Iliescu, Florin Mircea; Kushniarevich, Alena; Ayub, Qasim; Tyler-Smith, Chris; Xue, Yali; Yunusbayev, Bayazit; Tambets, Kristiina; Mallick, Chandana Basu; Saag, Lehti; Pocheshkhova, Elvira; Andriadze, George; Muller, Craig; Westaway, Michael C; Lambert, David M; Zoraqi, Grigor; Turdikulova, Shahlo; Dalimova, Dilbar; Sabitov, Zhaxylyk; Sultana, Gazi Nurun Nahar; Lachance, Joseph; Tishkoff, Sarah; Momynaliev, Kuvat; Isakova, Jainagul; Damba, Larisa D; Gubina, Marina; Nymadawa, Pagbajabyn; Evseeva, Irina; Atramentova, Lubov; Utevska, Olga; Ricaut, François-Xavier; Brucato, Nicolas; Sudoyo, Herawati; Letellier, Thierry; Cox, Murray P; Barashkov, Nikolay A; Skaro, Vedrana; Mulahasanovic, Lejla; Primorac, Dragan; Sahakyan, Hovhannes; Mormina, Maru; Eichstaedt, Christina A; Lichman, Daria V; Abdullah, Syafiq; Chaubey, Gyaneshwer; Wee, Joseph T S; Mihailov, Evelin; Karunas, Alexandra; Litvinov, Sergei; Khusainova, Rita; Ekomasova, Natalya; Akhmetova, Vita; Khidiyatova, Irina; Marjanović, Damir; Yepiskoposyan, Levon; Behar, Doron M; Balanovska, Elena; Metspalu, Andres; Derenko, Miroslava; Malyarchuk, Boris; Voevoda, Mikhail; Fedorova, Sardana A; Osipova, Ludmila P; Lahr, Marta Mirazón; Gerbault, Pascale; Leavesley, Matthew; Migliano, Andrea Bamberg; Petraglia, Michael; Balanovsky, Oleg; Khusnutdinova, Elza K; Metspalu, Ene; Thomas, Mark G; Manica, Andrea; Nielsen, Rasmus; Villems, Richard; Willerslev, Eske; Kivisild, Toomas; Metspalu, Mait

    2016-10-13

    High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.

  11. GeneImp: Fast Imputation to Large Reference Panels Using Genotype Likelihoods from Ultralow Coverage Sequencing

    PubMed Central

    Spiliopoulou, Athina; Colombo, Marco; Orchard, Peter; Agakov, Felix; McKeigue, Paul

    2017-01-01

    We address the task of genotype imputation to a dense reference panel given genotype likelihoods computed from ultralow coverage sequencing as inputs. In this setting, the data have a high-level of missingness or uncertainty, and are thus more amenable to a probabilistic representation. Most existing imputation algorithms are not well suited for this situation, as they rely on prephasing for computational efficiency, and, without definite genotype calls, the prephasing task becomes computationally expensive. We describe GeneImp, a program for genotype imputation that does not require prephasing and is computationally tractable for whole-genome imputation. GeneImp does not explicitly model recombination, instead it capitalizes on the existence of large reference panels—comprising thousands of reference haplotypes—and assumes that the reference haplotypes can adequately represent the target haplotypes over short regions unaltered. We validate GeneImp based on data from ultralow coverage sequencing (0.5×), and compare its performance to the most recent version of BEAGLE that can perform this task. We show that GeneImp achieves imputation quality very close to that of BEAGLE, using one to two orders of magnitude less time, without an increase in memory complexity. Therefore, GeneImp is the first practical choice for whole-genome imputation to a dense reference panel when prephasing cannot be applied, for instance, in datasets produced via ultralow coverage sequencing. A related future application for GeneImp is whole-genome imputation based on the off-target reads from deep whole-exome sequencing. PMID:28348060

  12. NMR in structural genomics to increase structural coverage of the protein universe: Delivered by Prof. Kurt Wüthrich on 7 July 2013 at the 38th FEBS Congress in St. Petersburg, Russia.

    PubMed

    Serrano, Pedro; Dutta, Samit K; Proudfoot, Andrew; Mohanty, Biswaranjan; Susac, Lukas; Martin, Bryan; Geralt, Michael; Jaroszewski, Lukasz; Godzik, Adam; Elsliger, Marc; Wilson, Ian A; Wüthrich, Kurt

    2016-11-01

    For more than a decade, the Joint Center for Structural Genomics (JCSG; www.jcsg.org) worked toward increased three-dimensional structure coverage of the protein universe. This coordinated quest was one of the main goals of the four high-throughput (HT) structure determination centers of the Protein Structure Initiative (PSI; www.nigms.nih.gov/Research/specificareas/PSI). To achieve the goals of the PSI, the JCSG made use of the complementarity of structure determination by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy to increase and diversify the range of targets entering the HT structure determination pipeline. The overall strategy, for both techniques, was to determine atomic resolution structures for representatives of large protein families, as defined by the Pfam database, which had no structural coverage and could make significant contributions to biological and biomedical research. Furthermore, the experimental structures could be leveraged by homology modeling to further expand the structural coverage of the protein universe and increase biological insights. Here, we describe what could be achieved by this structural genomics approach, using as an illustration the contributions from 20 NMR structure determinations out of a total of 98 JCSG NMR structures, which were selected because they are the first three-dimensional structure representations of the respective Pfam protein families. The information from this small sample is representative for the overall results from crystal and NMR structure determination in the JCSG. There are five new folds, which were classified as domains of unknown functions (DUF), three of the proteins could be functionally annotated based on three-dimensional structure similarity with previously characterized proteins, and 12 proteins showed only limited similarity with previous deposits in the Protein Data Bank (PDB) and were classified as DUFs. © 2016 Federation of European Biochemical Societies.

  13. The international Genome sample resource (IGSR): A worldwide collection of genome variation incorporating the 1000 Genomes Project data.

    PubMed

    Clarke, Laura; Fairley, Susan; Zheng-Bradley, Xiangqun; Streeter, Ian; Perry, Emily; Lowy, Ernesto; Tassé, Anne-Marie; Flicek, Paul

    2017-01-04

    The International Genome Sample Resource (IGSR; http://www.internationalgenome.org) expands in data type and population diversity the resources from the 1000 Genomes Project. IGSR represents the largest open collection of human variation data and provides easy access to these resources. IGSR was established in 2015 to maintain and extend the 1000 Genomes Project data, which has been widely used as a reference set of human variation and by researchers developing analysis methods. IGSR has mapped all of the 1000 Genomes sequence to the newest human reference (GRCh38), and will release updated variant calls to ensure maximal usefulness of the existing data. IGSR is collecting new structural variation data on the 1000 Genomes samples from long read sequencing and other technologies, and will collect relevant functional data into a single comprehensive resource. IGSR is extending coverage with new populations sequenced by collaborating groups. Here, we present the new data and analysis that IGSR has made available. We have also introduced a new data portal that increases discoverability of our data-previously only browseable through our FTP site-by focusing on particular samples, populations or data sets of interest. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Methicillin-Resistant Staphylococcus aureus CC398 in Humans and Pigs in Norway: A "One Health" Perspective on Introduction and Transmission.

    PubMed

    Grøntvedt, Carl Andreas; Elstrøm, Petter; Stegger, Marc; Skov, Robert Leo; Skytt Andersen, Paal; Larssen, Kjersti Wik; Urdahl, Anne Margrete; Angen, Øystein; Larsen, Jesper; Åmdal, Solfrid; Løtvedt, Siri Margrete; Sunde, Marianne; Bjørnholt, Jørgen Vildershøj

    2016-12-01

     Emerging livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) persist in livestock populations and represent a reservoir for transmission to humans. Understanding the routes of introduction and further transmission is crucial to control this threat to human health.  All reported cases of livestock-associated MRSA (CC398) in humans and pigs in Norway between 2008 and 2014 were included. Data were collected during an extensive outbreak investigation, including contact tracing and stringent surveillance. Whole-genome sequencing of isolates from all human cases and pig farms was performed to support and expand the epidemiological findings. The national strategy furthermore included a "search-and-destroy" policy at the pig farm level.  Three outbreak clusters were identified, including 26 pig farms, 2 slaughterhouses, and 36 humans. Primary introductions likely occurred by human transmission to 3 sow farms with secondary transmission to other pig farms, mainly through animal trade and to a lesser extent via humans or livestock trucks. All MRSA CC398 isolated from humans without an epidemiological link to the outbreaks were genetically distinct from isolates within the outbreak clusters indicating limited dissemination to the general population.  This study identified preventable routes of MRSA CC398 introduction and transmission: human occupational exposure, trade of pigs and livestock transport vehicles. These findings are essential for keeping pig populations MRSA free and, from a "One Health" perspective, preventing pig farms from becoming reservoirs for MRSA transmission to humans. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  15. Comparative genomic data of the Avian Phylogenomics Project.

    PubMed

    Zhang, Guojie; Li, Bo; Li, Cai; Gilbert, M Thomas P; Jarvis, Erich D; Wang, Jun

    2014-01-01

    The evolutionary relationships of modern birds are among the most challenging to understand in systematic biology and have been debated for centuries. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders, and used the genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomics analyses (Jarvis et al. in press; Zhang et al. in press). Here we release assemblies and datasets associated with the comparative genome analyses, which include 38 newly sequenced avian genomes plus previously released or simultaneously released genomes of Chicken, Zebra finch, Turkey, Pigeon, Peregrine falcon, Duck, Budgerigar, Adelie penguin, Emperor penguin and the Medium Ground Finch. We hope that this resource will serve future efforts in phylogenomics and comparative genomics. The 38 bird genomes were sequenced using the Illumina HiSeq 2000 platform and assembled using a whole genome shotgun strategy. The 48 genomes were categorized into two groups according to the N50 scaffold size of the assemblies: a high depth group comprising 23 species sequenced at high coverage (>50X) with multiple insert size libraries resulting in N50 scaffold sizes greater than 1 Mb (except the White-throated Tinamou and Bald Eagle); and a low depth group comprising 25 species sequenced at a low coverage (~30X) with two insert size libraries resulting in an average N50 scaffold size of about 50 kb. Repetitive elements comprised 4%-22% of the bird genomes. The assembled scaffolds allowed the homology-based annotation of 13,000 ~ 17000 protein coding genes in each avian genome relative to chicken, zebra finch and human, as well as comparative and sequence conservation analyses. Here we release full genome assemblies of 38 newly sequenced avian species, link genome assembly downloads for the 7 of the remaining 10 species, and provide a guideline of

  16. The effect of Slit homolog 2 (SLIT2) on populations of preantral follicles in cultured cortical tissue from pig ovaries

    USDA-ARS?s Scientific Manuscript database

    SLIT guidance ligands are secreted glycoproteins involved in organogenesis. SLIT proteins and their receptor have been linked to ovarian development in fetal sheep and luteal function in adult humans. In pigs, SLIT proteins have been associated with age at puberty (GWAS) and as a major node in genom...

  17. Experimental Evaluation of Faecal Escherichia coli and Hepatitis E Virus as Biological Indicators of Contacts Between Domestic Pigs and Eurasian Wild Boar.

    PubMed

    Barth, S; Geue, L; Hinsching, A; Jenckel, M; Schlosser, J; Eiden, M; Pietschmann, J; Menge, C; Beer, M; Groschup, M; Jori, F; Etter, E; Blome, S

    2017-04-01

    Domestic pigs and Eurasian wild boar (Sus scrofa) share several important viral and bacterial pathogens. Therefore, direct and indirect contacts between domestic pigs and wild boar present a risk of pathogen spillover and can lead to long-term perpetuation of infection. Biological indicators could be a powerful tool to understand and characterize contacts between wild boar and domestic pigs. Here, faecal Escherichia coli and Hepatitis E virus (HEV) were explored as potential biological indicators under experimental conditions. The data gained in our pilot study suggest that faecal E. coli can be used as biological indicator of contact between wild boar and domestic pig. For HEV, faecal transmission was also confirmed. However, molecular studies on full-genome basis did not reveal markers that would allow tracing of transmission direction. Based on these promising results, future field studies will especially target the practicability of E. coli microbiome molecular typing as surrogate of contacts at the wildlife-livestock interface. © 2015 Blackwell Verlag GmbH.

  18. DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta

    PubMed Central

    Kwon, Seulgi; Park, Da Hye; Kim, Tae Wan; Kang, Deok Gyeong; Yu, Go Eun; Kim, Il-Suk; Park, Hwa Chun; Ha, Jeongim; Kim, Chul Wook

    2017-01-01

    Increasing litter size is of great interest to the pig industry. DNA methylation is an important epigenetic modification that regulates gene expression, resulting in livestock phenotypes such as disease resistance, milk production, and reproduction. We classified Berkshire pigs into two groups according to litter size and estimated breeding value: smaller (SLG) and larger (LLG) litter size groups. Genome-wide DNA methylation and gene expression were analyzed using placenta genomic DNA and RNA to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with litter size. The methylation levels of CpG dinucleotides in different genomic regions were noticeably different between the groups, while global methylation pattern was similar, and excluding intergenic regions they were found the most frequently in gene body regions. Next, we analyzed RNA-Seq data to identify DEGs between the SLG and LLG groups. A total of 1591 DEGs were identified: 567 were downregulated and 1024 were upregulated in LLG compared to SLG. To identify genes that simultaneously exhibited changes in DNA methylation and mRNA expression, we integrated and analyzed the data from bisulfite-Seq and RNA-Seq. Nine DEGs positioned in DMRs were found. The expression of only three of these genes (PRKG2, CLCA4, and PCK1) was verified by RT-qPCR. Furthermore, we observed the same methylation patterns in blood samples as in the placental tissues by PCR-based methylation analysis. Together, these results provide useful data regarding potential epigenetic markers for selecting hyperprolific sows. PMID:28880934

  19. Guidelines for whole genome bisulphite sequencing of intact and FFPET DNA on the Illumina HiSeq X Ten.

    PubMed

    Nair, Shalima S; Luu, Phuc-Loi; Qu, Wenjia; Maddugoda, Madhavi; Huschtscha, Lily; Reddel, Roger; Chenevix-Trench, Georgia; Toso, Martina; Kench, James G; Horvath, Lisa G; Hayes, Vanessa M; Stricker, Phillip D; Hughes, Timothy P; White, Deborah L; Rasko, John E J; Wong, Justin J-L; Clark, Susan J

    2018-05-28

    Comprehensive genome-wide DNA methylation profiling is critical to gain insights into epigenetic reprogramming during development and disease processes. Among the different genome-wide DNA methylation technologies, whole genome bisulphite sequencing (WGBS) is considered the gold standard for assaying genome-wide DNA methylation at single base resolution. However, the high sequencing cost to achieve the optimal depth of coverage limits its application in both basic and clinical research. To achieve 15× coverage of the human methylome, using WGBS, requires approximately three lanes of 100-bp-paired-end Illumina HiSeq 2500 sequencing. It is important, therefore, for advances in sequencing technologies to be developed to enable cost-effective high-coverage sequencing. In this study, we provide an optimised WGBS methodology, from library preparation to sequencing and data processing, to enable 16-20× genome-wide coverage per single lane of HiSeq X Ten, HCS 3.3.76. To process and analyse the data, we developed a WGBS pipeline (METH10X) that is fast and can call SNPs. We performed WGBS on both high-quality intact DNA and degraded DNA from formalin-fixed paraffin-embedded tissue. First, we compared different library preparation methods on the HiSeq 2500 platform to identify the best method for sequencing on the HiSeq X Ten. Second, we optimised the PhiX and genome spike-ins to achieve higher quality and coverage of WGBS data on the HiSeq X Ten. Third, we performed integrated whole genome sequencing (WGS) and WGBS of the same DNA sample in a single lane of HiSeq X Ten to improve data output. Finally, we compared methylation data from the HiSeq 2500 and HiSeq X Ten and found high concordance (Pearson r > 0.9×). Together we provide a systematic, efficient and complete approach to perform and analyse WGBS on the HiSeq X Ten. Our protocol allows for large-scale WGBS studies at reasonable processing time and cost on the HiSeq X Ten platform.

  20. Sequence Analysis of the Genome of Carnation (Dianthus caryophyllus L.)

    PubMed Central

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-01-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. ‘Francesco’ was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568 887 315 bp, consisting of 45 088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16 644 bp and 60 737 bp, respectively, and the longest scaffold was 1 287 144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. PMID:24344172

  1. Genetic characterization of H1N2 influenza a virus isolated from sick pigs in Southern China in 2010.

    PubMed

    Kong, Wei Li; Huang, Liang Zong; Qi, Hai Tao; Cao, Nan; Zhang, Liang Quan; Wang, Heng; Guan, Shang Song; Qi, Wen Bao; Jiao, Pei Rong; Liao, Ming; Zhang, Gui Hong

    2011-10-13

    In China H3N2 and H1N1 swine influenza viruses have been circulating for many years. In January 2010, before swine were infected with foot and mouth disease in Guangdong, some pigs have shown flu-like symptoms: cough, sneeze, runny nose and fever. We collected the nasopharyngeal swab of all sick pigs as much as possible. One subtype H1N2 influenza viruses were isolated from the pig population. The complete genome of one isolate, designated A/swine/Guangdong/1/2010(H1N2), was sequenced and compared with sequences available in GenBank. The nucleotide sequences of all eight viral RNA segments were determined, and then phylogenetic analysis was performed using the neighbor-joining method. HA, NP, M and NS were shown to be closely to swine origin. PB2 and PA were close to avian origin, but NA and PB1were close to human origin. It is a result of a multiple reassortment event. In conclusion, our finding provides further evidence about the interspecies transmission of avian influenza viruses to pigs and emphasizes the importance of reinforcing swine influenza virus (SIV) surveillance, especially before the emergence of highly pathogenic FMDs in pigs in Guangdong.

  2. The Pig--Pet, Pork or Sacrifice?

    ERIC Educational Resources Information Center

    Arnold, Arthur

    1988-01-01

    Discusses the various roles of the pig in children's books, including E. B. White's CHARLOTTE'S WEB and Nina Bawden's PEPPERMINT PIG. Notes that, although pigs are often used as metaphors for greed, gluttony, and squalor, the portrayal of pigs in children's literature is typically positive. (MM)

  3. Detection of a quantitative trait locus associated with resistance to infection with Trichuris suis in pigs.

    PubMed

    Skallerup, P; Thamsborg, S M; Jørgensen, C B; Mejer, H; Göring, H H H; Archibald, A L; Fredholm, M; Nejsum, P

    2015-06-15

    Whipworms (Trichuris spp.) infect a variety of hosts, including domestic animals and humans. Of considerable interest is the porcine whipworm, T. suis, which is particularly prevalent in outdoor production systems. High infection levels may cause growth retardation, anaemia and haemorrhagic diarrhoea. A significant proportion of the variation in Trichuris faecal egg count (FEC) has been attributed to the host's genetic make-up. The aim of the present study was to identify genetic loci associated with resistance to T. suis in pigs. We used single nucleotide polymorphism (SNP) markers to perform a whole-genome scan of an F1 resource population (n = 195) trickle-infected with T. suis. A measured genotype analysis revealed a putative quantitative trait locus (QTL) for T. suis FEC on chromosome 13 covering ∼ 4.5 Mbp, although none of the SNPs reached genome-wide significance. We tested the hypothesis that this region of SSC13 harboured genes with effects on T. suis burden by genotyping three SNPs within the putative QTL in unrelated pigs exposed to either experimental or natural T. suis infections and from which we had FEC (n = 113) or worm counts (n = 178). In these studies, two of the SNPs (rs55618716, ST) were associated with FEC (P < 0.01), thus confirming our initial findings. However, we did not find any of the SNPs to be associated with T. suis worm burden. In conclusion, our study demonstrates that genetic markers for resistance to T. suis as indicated by low FEC can be identified in pigs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Impact of test sensitivity and specificity on pig producer incentives to control Mycobacterium avium infections in finishing pigs.

    PubMed

    van Wagenberg, Coen P A; Backus, Gé B C; Wisselink, Henk J; van der Vorst, Jack G A J; Urlings, Bert A P

    2013-09-01

    In this paper we analyze the impact of the sensitivity and specificity of a Mycobacterium avium (Ma) test on pig producer incentives to control Ma in finishing pigs. A possible Ma control system which includes a serodiagnostic test and a penalty on finishing pigs in herds detected with Ma infection was modelled. Using a dynamic optimization model and a grid search of deliveries of herds from pig producers to slaughterhouse, optimal control measures for pig producers and optimal penalty values for deliveries with increased Ma risk were identified for different sensitivity and specificity values. Results showed that higher sensitivity and lower specificity induced use of more intense control measures and resulted in higher pig producer costs and lower Ma seroprevalence. The minimal penalty value needed to comply with a threshold for Ma seroprevalence in finishing pigs at slaughter was lower at higher sensitivity and lower specificity. With imperfect specificity a larger sample size decreased pig producer incentives to control Ma seroprevalence, because the higher number of false positives resulted in an increased probability of rejecting a batch of finishing pigs irrespective of whether the pig producer applied control measures. We conclude that test sensitivity and specificity must be considered in incentive system design to induce pig producers to control Ma in finishing pigs with minimum negative effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Genotype imputation from various low-density SNP panels and its impact on accuracy of genomic breeding values in pigs.

    PubMed

    Grossi, D A; Brito, L F; Jafarikia, M; Schenkel, F S; Feng, Z

    2018-04-30

    The uptake of genomic selection (GS) by the swine industry is still limited by the costs of genotyping. A feasible alternative to overcome this challenge is to genotype animals using an affordable low-density (LD) single nucleotide polymorphism (SNP) chip panel followed by accurate imputation to a high-density panel. Therefore, the main objective of this study was to screen incremental densities of LD panels in order to systematically identify one that balances the tradeoffs among imputation accuracy, prediction accuracy of genomic estimated breeding values (GEBVs), and genotype density (directly associated with genotyping costs). Genotypes using the Illumina Porcine60K BeadChip were available for 1378 Duroc (DU), 2361 Landrace (LA) and 3192 Yorkshire (YO) pigs. In addition, pseudo-phenotypes (de-regressed estimated breeding values) for five economically important traits were provided for the analysis. The reference population for genotyping imputation consisted of 931 DU, 1631 LA and 2103 YO animals and the remainder individuals were included in the validation population of each breed. A LD panel of 3000 evenly spaced SNPs (LD3K) yielded high imputation accuracy rates: 93.78% (DU), 97.07% (LA) and 97.00% (YO) and high correlations (>0.97) between the predicted GEBVs using the actual 60 K SNP genotypes and the imputed 60 K SNP genotypes for all traits and breeds. The imputation accuracy was influenced by the reference population size as well as the amount of parental genotype information available in the reference population. However, parental genotype information became less important when the LD panel had at least 3000 SNPs. The correlation of the GEBVs directly increased with an increase in imputation accuracy. When genotype information for both parents was available, a panel of 300 SNPs (imputed to 60 K) yielded GEBV predictions highly correlated (⩾0.90) with genomic predictions obtained based on the true 60 K panel, for all traits and breeds. For a small

  6. Cysticercosis in the pig.

    PubMed

    de Aluja, A S

    2008-01-01

    Taenia solium cysticercosis is still an important parasitosis in rural pigs in many developing countries, México among them. The main causes for the persistence of this condition are lack of hygiene in the rural communities, lack of education of the animal owners, lack of control in the trade of pigs and their meat and lack of conscientious meat inspection. The pig production systems in the marginated areas of Mexico are briefly mentioned and it is stressed that among the important reasons for the persistence of the reproductive cycle of Taenia solium is the fact that appropriate toilet facilities in village dwellings are not mandatory. The diagnostic methods of cysticercosis in the living pigs and in their meat are discussed and the degenerative stages of the larvae as well as methods to test their viability are explained. The treatment of infected pigs and their meat is discussed. Recommendations for control programmes are given.

  7. Malignant transformation of guinea pig cells after exposure to ultraviolet-irradiated guinea pig cytomegalovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isom, H.C.; Mummaw, J.; Kreider, J.W.

    1983-04-30

    Guinea pig cells were malignantly transformed in vitro by ultraviolet (uv)-irradiated guinea pig cytomegalovirus (GPCMV). When guinea pig hepatocyte monolayers were infected with uv-irradiated GPCMV, three continuous epithelioid cell lines which grew in soft agarose were established. Two independently derived GPCMV-transformed liver cells and a cell line derived from a soft agarose clone of one of these lines induced invasive tumors when inoculated subcutaneously or intraperitoneally into nude mice. The tumors were sarcomas possibly derived from hepatic stroma or sinusoid. Transformed cell lines were also established after infection of guinea pig hepatocyte monolayers with human cytomegalovirus (HCMV) or simian virusmore » 40 (SV40). These cell lines also formed colonies in soft agarose and induced sarcomas in nude mice. It is concluded that (i) GPCMV can malignantly transform guinea pig cells; (ii) cloning of GPCMV-transformed cells in soft agarose produced cells that induced tumors with a shorter latency period but with no alteration in growth rate or final tumor size; and (iii) the tumors produced by GPCMV-and HCMV-transformed guinea pig cells were more similar to each other in growth rate than to those induced by SV40-transformed guinea pig cells.« less

  8. Identification of Balanced Chromosomal Rearrangements Previously Unknown Among Participants in the 1000 Genomes Project: Implications for Interpretation of Structural Variation in Genomes and the Future of Clinical Cytogenetics

    PubMed Central

    Dong, Zirui; Wang, Huilin; Chen, Haixiao; Jiang, Hui; Yuan, Jianying; Yang, Zhenjun; Wang, Wen-Jing; Xu, Fengping; Guo, Xiaosen; Cao, Ye; Zhu, Zhenzhen; Geng, Chunyu; Cheung, Wan Chee; Kwok, Yvonne K; Yang, Huangming; Leung, Tak Yeung; Morton, Cynthia C.; Cheung, Sau Wai; Choy, Kwong Wai

    2017-01-01

    Purpose Recent studies demonstrate that whole-genome sequencing (WGS) enables detection of cryptic rearrangements in apparently balanced chromosomal rearrangements (also known as balanced chromosomal abnormalities, BCAs) previously identified by conventional cytogenetic methods. We aimed to assess our analytical tool for detecting BCAs in The 1000 Genomes Project without knowing affected bands. Methods The 1000 Genomes Project provides an unprecedented integrated map of structural variants in phenotypically normal subjects, but there is no information on potential inclusion of subjects with apparently BCAs akin to those traditionally detected in diagnostic cytogenetics laboratories. We applied our analytical tool to 1,166 genomes from the 1000 Genomes Project with sufficient physical coverage (8.25-fold). Results Our approach detected four reciprocal balanced translocations and four inversions ranging in size from 57.9 kb to 13.3 Mb, all of which were confirmed by cytogenetic methods and PCR studies. One of DNAs has a subtle translocation that is not readily identified by chromosome analysis due to similar banding patterns and size of exchanged segments, and another results in disruption of all transcripts of an OMIM gene. Conclusions Our study demonstrates the extension of utilizing low-coverage WGS for unbiased detection of BCAs including translocations and inversions previously unknown in the 1000 Genomes Project. PMID:29095815

  9. Development and characterization of a guinea pig model for Marburg virus.

    PubMed

    Wong, Gary; Cao, Wen-Guang; He, Shi-Hua; Zhang, Zi-Rui; Zhu, Wen-Jun; Moffat, Estella; Ebihara, Hideki; Embury-Hyatt, Carissa; Qiu, Xiang-Guo

    2018-01-18

    The Angolan strain of Marburg virus (MARV/Ang) can cause lethal disease in humans with a case fatality rate of up to 90%, but infection of immunocompetent rodents do not result in any observable symptoms. Our previous work includes the development and characterization of a MARV/Ang variant that can cause lethal disease in mice (MARV/Ang-MA), with the aim of using this tool to screen for promising prophylactic and therapeutic candidates. An intermediate animal model is needed to confirm any findings from mice studies before testing in the gold-standard non-human primate (NHP) model. In this study, we serially passaged the clinical isolate of MARV/Ang in the livers and spleens of guinea pigs until a variant emerged that causes 100% lethality in guinea pigs (MARV/Ang-GA). Animals infected with MARV/Ang-GA showed signs of filovirus infection including lymphocytopenia, thrombocytopenia, and high viremia leading to spread to major organs, including the liver, spleen, lungs, and kidneys. The MARV/Ang-GA guinea pigs died between 7-9 days after infection, and the LD 50 was calculated to be 1.1×10 -1 TCID 50 (median tissue culture infective dose). Mutations in MARV/Ang-GA were identified and compared to sequences of known rodent-adapted MARV/Ang variants, which may benefit future studies characterizing important host adaptation sites in the MARV/Ang viral genome.

  10. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission.

    PubMed

    Guinat, Claire; Reis, Ana Luisa; Netherton, Christopher L; Goatley, Lynnette; Pfeiffer, Dirk U; Dixon, Linda

    2014-09-26

    African swine fever virus (ASFV) is a highly virulent swine pathogen that has spread across Eastern Europe since 2007 and for which there is no effective vaccine or treatment available. The dynamics of shedding and excretion is not well known for this currently circulating ASFV strain. Therefore, susceptible pigs were exposed to pigs intramuscularly infected with the Georgia 2007/1 ASFV strain to measure those dynamics through within- and between-pen transmission scenarios. Blood, oral, nasal and rectal fluid samples were tested for the presence of ASFV by virus titration (VT) and quantitative real-time polymerase chain reaction (qPCR). Serum was tested for the presence of ASFV-specific antibodies. Both intramuscular inoculation and contact transmission resulted in development of acute disease in all pigs although the experiments indicated that the pathogenesis of the disease might be different, depending on the route of infection. Infectious ASFV was first isolated in blood among the inoculated pigs by day 3, and then chronologically among the direct and indirect contact pigs, by day 10 and 13, respectively. Close to the onset of clinical signs, higher ASFV titres were found in blood compared with nasal and rectal fluid samples among all pigs. No infectious ASFV was isolated in oral fluid samples although ASFV genome copies were detected. Only one animal developed antibodies starting after 12 days post-inoculation. The results provide quantitative data on shedding and excretion of the Georgia 2007/1 ASFV strain among domestic pigs and suggest a limited potential of this isolate to cause persistent infection.

  11. Confirmation of Pig-a mutation in flow cytometry-identified CD48-deficient T-lymphocytes from F344 rats.

    PubMed

    Revollo, Javier; Pearce, Mason G; Petibone, Dayton M; Mittelstaedt, Roberta A; Dobrovolsky, Vasily N

    2015-05-01

    The Pig-a assay is used for monitoring somatic cell mutation in laboratory animals and humans. The assay detects haematopoietic cells deficient in glycosylphosphatidylinositol (GPI)-anchored protein surface markers using flow cytometry. However, given that synthesis of the protein markers (and the expression of their genes) is independent of the expression of the X-linked Pig-a gene and the function of its enzyme product, the deficiency of markers at the surface of the cells may be caused by a number of events (e.g. by mutation or epigenetic silencing in the marker gene itself or in any of about two dozen autosomal genes involved in the synthesis of GPI). Here we provide direct evidence that the deficiency of the GPI-anchored surface marker CD48 in rat T-cells is accompanied by mutation in the endogenous X-linked Pig-a gene. We treated male F344 rats with N-ethyl-N-nitrosourea (ENU), and established colonies from flow cytometry-identified and sorted CD48-deficient spleen T-lymphocytes. Molecular analysis confirmed that the expanded sorted cells have mutations in the Pig-a gene. The spectrum of Pig-a mutation in our model was consistent with the spectrum of ENU-induced mutation determined in other in vivo models, mostly base-pair substitutions at A:T with the mutated T on the non-transcribed strand of Pig-a genomic DNA. We also used next generation sequencing to derive a similar mutational spectrum from a pool of 64 clones developed from flow-sorted CD48-deficient lymphocytes. Our findings confirm that Pig-a assays detect what they are designed to detect-gene mutation in the Pig-a gene. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. The porcine translational research database: A manually curated, genomics and proteomics-based research resource

    USDA-ARS?s Scientific Manuscript database

    The use of swine in biomedical research has increased dramatically in the last decade. Diverse genomic- and proteomic databases have been developed to facilitate research using human and rodent models. Current porcine gene databases, however, lack the robust annotation to study pig models that are...

  13. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

    PubMed

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-11-20

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.

  14. Microbiological characterization of a newly established pig breed, Aachen Minipigs.

    PubMed

    Plotzki, Elena; Heinrichs, Gerd; Kubícková, Barbara; Ulrich, Rainer G; Denner, Joachim

    2016-03-01

    To alleviate the shortage of human donor organs or tissues for the treatment of organ and tissue failure including diabetes, pigs are considered suitable donor animals. As organs from conventional pigs are usually too large, those from minipigs may be better suited. We recently characterized the Göttingen Minipigs, a breed well characterized concerning the presence of zoonotic microorganisms and found hepatitis E virus (HEV) and porcine cytomegalovirus (PCMV) in some animals. Here, we characterize another minipig, the Aachen Minipig (AaMP), a pig breed recently established close to the town Aachen in Germany. The animals were tested for the prevalence and expression of porcine endogenous retroviruses (PERVs) and the presence of some selected microorganisms, among them HEV, PCMV, and porcine lymphotropic herpesviruses (PLHVs) using highly sensitive and specific PCR and RT-PCR methods. In addition, we screened for antibodies against HEV and PLHV. PERV-A, PERV-B, and PERV-C sequences were found in the genome of all Aachen Minipigs. HEV RNA was found by real-time RT-PCR in most, and DNA of PCMV, PLHV-2, and PLHV-3 was found by PCR in some animals. The animals were free of eight other microorganisms tested, but some were seropositive for porcine circovirus 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV). Based on medical examinations by veterinarians, the AaMP are in a good health status and seem to harbor only few microorganisms. To improve their status for use as donor pigs in xenotransplantation, the viruses detected might be eliminated by selection of negative animals, Cesarean section, and vaccination. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants

    USDA-ARS?s Scientific Manuscript database

    Next-generation sequencing technology such as genotyping-by-sequencing (GBS) made low-cost, but often low-coverage, whole-genome sequencing widely available. Extensive inbreeding in crop plants provides an untapped, high quality source of phased haplotypes for imputing missing genotypes. We introduc...

  16. Evaluation of nine popular de novo assemblers in microbial genome assembly.

    PubMed

    Forouzan, Esmaeil; Maleki, Masoumeh Sadat Mousavi; Karkhane, Ali Asghar; Yakhchali, Bagher

    2017-12-01

    Next generation sequencing (NGS) technologies are revolutionizing biology, with Illumina being the most popular NGS platform. Short read assembly is a critical part of most genome studies using NGS. Hence, in this study, the performance of nine well-known assemblers was evaluated in the assembly of seven different microbial genomes. Effect of different read coverage and k-mer parameters on the quality of the assembly were also evaluated on both simulated and actual read datasets. Our results show that the performance of assemblers on real and simulated datasets could be significantly different, mainly because of coverage bias. According to outputs on actual read datasets, for all studied read coverages (of 7×, 25× and 100×), SPAdes and IDBA-UD clearly outperformed other assemblers based on NGA50 and accuracy metrics. Velvet is the most conservative assembler with the lowest NGA50 and error rate. Copyright © 2017. Published by Elsevier B.V.

  17. Deep Whole-Genome Sequencing of 100 Southeast Asian Malays

    PubMed Central

    Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2013-01-01

    Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies. PMID:23290073

  18. Whole genome investigation of a divergent clade of the pathogen Streptococcus suis

    PubMed Central

    Baig, Abiyad; Weinert, Lucy A.; Peters, Sarah E.; Howell, Kate J.; Chaudhuri, Roy R.; Wang, Jinhong; Holden, Matthew T. G.; Parkhill, Julian; Langford, Paul R.; Rycroft, Andrew N.; Wren, Brendan W.; Tucker, Alexander W.; Maskell, Duncan J.

    2015-01-01

    Streptococcus suis is a major porcine and zoonotic pathogen responsible for significant economic losses in the pig industry and an increasing number of human cases. Multiple isolates of S. suis show marked genomic diversity. Here, we report the analysis of whole genome sequences of nine pig isolates that caused disease typical of S. suis and had phenotypic characteristics of S. suis, but their genomes were divergent from those of many other S. suis isolates. Comparison of protein sequences predicted from divergent genomes with those from normal S. suis reduced the size of core genome from 793 to only 397 genes. Divergence was clear if phylogenetic analysis was performed on reduced core genes and MLST alleles. Phylogenies based on certain other genes (16S rRNA, sodA, recN, and cpn60) did not show divergence for all isolates, suggesting recombination between some divergent isolates with normal S. suis for these genes. Indeed, there is evidence of recent recombination between the divergent and normal S. suis genomes for 249 of 397 core genes. In addition, phylogenetic analysis based on the 16S rRNA gene and 132 genes that were conserved between the divergent isolates and representatives of the broader Streptococcus genus showed that divergent isolates were more closely related to S. suis. Six out of nine divergent isolates possessed a S. suis-like capsule region with variation in capsular gene sequences but the remaining three did not have a discrete capsule locus. The majority (40/70), of virulence-associated genes in normal S. suis were present in the divergent genomes. Overall, the divergent isolates extend the current diversity of S. suis species but the phenotypic similarities and the large amount of gene exchange with normal S. suis gives insufficient evidence to assign these isolates to a new species or subspecies. Further, sampling and whole genome analysis of more isolates is warranted to understand the diversity of the species. PMID:26583006

  19. The 'Book of Life' in the press: comparing German and Irish media discourse on human genome research.

    PubMed

    O'Mahony, Patrick; Schäfer, Mike Steffen

    2005-02-01

    The essay compares German and Irish media coverage of human genome research in the year 2000, using qualitative and quantitative frame analysis of a print media corpus. Drawing from a media-theoretical account of science communication, the study examines four analytic dimensions: (1) the influence of global and national sources of discourse; (2) the nature of elaboration on important themes; (3) the extent of societal participation in discourse production; (4) the cultural conditions in which the discourse resonates. The analysis shows that a global discursive package, emphasizing claims of scientific achievement and medical progress, dominates media coverage in both countries. However, German coverage is more extensive and elaborate, and includes a wider range of participants. Irish coverage more often incorporates the global package without further elaboration. These finding indicate that the global package is 'localized' differently due to national patterns of interests, German participation in human genome research, traditions of media coverage, and the domestic resonance of the issue.

  20. 33 CFR 154.2104 - Pigging system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pigging system. 154.2104 Section... Facilities-Vcs Design and Installation § 154.2104 Pigging system. (a) If a pigging system is used to clear... system (VCS), the pigging system must be designed with the following safety features: (1) A bypass loop...

  1. No transmission of hepatitis E virus in pigs fed diets containing commercial spray-dried porcine plasma: a retrospective study of samples from several swine trials.

    PubMed

    Pujols, Joan; Rodríguez, Carmen; Navarro, Nuria; Pina-Pedrero, Sonia; Campbell, Joy M; Crenshaw, Joe; Polo, Javier

    2014-12-24

    Hepatitis E virus (HEV) has been reported in the human population and pigs are a recognized reservoir for HEV and a possible source of HEV transmission to humans. Spray-dried porcine plasma (SDPP) is an ingredient commonly used in feed for pigs around the world. Even though processing conditions used to produce SDPP should be adequate to inactivate HEV, it was of interest to analyze commercial SDPP samples for presence of genome and antibodies (AB) against HEV and to retrospectively analyze serum samples collected from pigs used in past experiments that had been fed diets containing either 0% or 8% SDPP to detect potential transmission of HEV as determined by seroconversion. Eighty-five commercial SDPP samples were analyzed by ELISA and 100% of them contained AB against HEV, while 22.4% (11 of 49 samples analyzed) were positive for HEV RNA. Frozen sera samples (n = 140) collected from 70 pigs used in past experiments that had been fed diets containing either 0% or 8% commercial SDPP was analyzed by ELISA for AB against HEV. Age of pigs at sera sampling ranged from 3 to 15 weeks and feeding duration of diets ranged from approximately 4 to 9 weeks. One lot of SDPP used in one experiment was analyzed and confirmed to contain HEV RNA. Regardless of the diet fed, some sera samples collected at the beginning of an experiment contained AB titer against HEV. These sera samples were collected from weaned pigs prior to feeding of the experimental diets and the HEV titer was probably from maternal origin. However, by the end of the experiments, HEV titer was not detected or had declined by more than 50% of the initial titer concentration. To our knowledge, this is the first study reporting presence of HEV AB titer and RNA in SDPP. Retrospective analysis of serum collected from pigs fed diets with SDPP revealed no indication of seroconversion to HEV. The results indicate that feeding SDPP in diets for pigs does not represent a risk of transmitting HEV, even though HEV

  2. Adeno-associated virus transformation into the normal miniature pig and the normal guinea pigs cochlea via scala tympani.

    PubMed

    Shi, Xunbei; Wu, Nan; Zhang, Yue; Guo, Weiwei; Lin, Chang; Yang, Shiming

    2017-09-01

    To investigate the expression of the miniature pig cochlea after AAV1 transfect into the cochlea via round window membrane (RWM). Twenty miniature pigs are equally divided into four experimental groups. Twelve miniature pigs are equally divided into four control groups. Each pig was transfected with the AAV1 in the experimental group via RWM and each pig was transduced with the artificial perilymph in the control group. The expression of green fluorescent protein (GFP) was observed at 2 weeks, 3 weeks and 4 weeks, respectively. Likewise, AAV1 was delivered into the guinea pigs cochleas using the same method, and the results were compared with that of the miniature pigs. The expression was mainly in the inner hair cells of the miniature pig. The expression of GFP began to appear at 2 weeks, reached the peak at 3 weeks. It also expressed in Hensen's cells, inner pillar cells, outer pillar cells, spiral limbus, and spiral ligament. In the meanwhile, AAV1 was delivered into guinea pig cochlea via the same method, and AAV1 was also expressed in the inner hair cells. But the expression peaked at 2 weeks, and the efficiency of the inner hair cell transfection was higher than that of the pig. AAV1 can be transformed into miniature pig cochlea via scala tympani by the RWM method efficiently.

  3. Genome analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of the etiologic agent of tuberculosis

    PubMed Central

    Supply, Philip; Marceau, Michael; Mangenot, Sophie; Roche, David; Rouanet, Carine; Khanna, Varun; Majlessi, Laleh; Criscuolo, Alexis; Tap, Julien; Pawlik, Alexandre; Fiette, Laurence; Orgeur, Mickael; Fabre, Michel; Parmentier, Cécile; Frigui, Wafa; Simeone, Roxane; Boritsch, Eva C.; Debrie, Anne-Sophie; Willery, Eve; Walker, Danielle; Quail, Michael A.; Ma, Laurence; Bouchier, Christiane; Salvignol, Grégory; Sayes, Fadel; Cascioferro, Alessandro; Seemann, Torsten; Barbe, Valérie; Locht, Camille; Gutierrez, Maria-Cristina; Leclerc, Claude; Bentley, Stephen; Stinear, Timothy P.; Brisse, Sylvain; Médigue, Claudine; Parkhill, Julian; Cruveiller, Stéphane; Brosch, Roland

    2013-01-01

    Global spread and genetic monomorphism are hallmarks of Mycobacterium tuberculosis, the agent of human tuberculosis. In contrast, Mycobacterium canettii, and related tubercle bacilli that also cause human tuberculosis and exhibit unusual smooth colony morphology, are restricted to East-Africa. Here, we sequenced and analyzed the genomes of five representative strains of smooth tubercle bacilli (STB) using Sanger (4-5x coverage), 454/Roche (13-18x coverage) and/or Illumina DNA sequencing (45-105x coverage). We show that STB are highly recombinogenic and evolutionary early-branching, with larger genome sizes, 25-fold more SNPs, fewer molecular scars and distinct CRISPR-Cas systems relative to M. tuberculosis. Despite the differences, all tuberculosis-causing mycobacteria share a highly conserved core genome. Mouse-infection experiments revealed that STB are less persistent and virulent than M. tuberculosis. We conclude that M. tuberculosis emerged from an ancestral, STB-like pool of mycobacteria by gain of persistence and virulence mechanisms and we provide genome-wide insights into the molecular events involved. PMID:23291586

  4. Full-length genome sequences of porcine epidemic diarrhoea virus strain CV777; Use of NGS to analyse genomic and sub-genomic RNAs

    PubMed Central

    Rasmussen, Thomas Bruun; Boniotti, Maria Beatrice; Papetti, Alice; Grasland, Béatrice; Frossard, Jean-Pierre; Dastjerdi, Akbar; Hulst, Marcel; Hanke, Dennis; Pohlmann, Anne; Blome, Sandra; van der Poel, Wim H. M.; Steinbach, Falko; Blanchard, Yannick; Lavazza, Antonio; Bøtner, Anette

    2018-01-01

    Porcine epidemic diarrhoea virus, strain CV777, was initially characterized in 1978 as the causative agent of a disease first identified in the UK in 1971. This coronavirus has been widely distributed among laboratories and has been passaged both within pigs and in cell culture. To determine the variability between different stocks of the PEDV strain CV777, sequencing of the full-length genome (ca. 28kb) has been performed in 6 different laboratories, using different protocols. Not surprisingly, each of the different full genome sequences were distinct from each other and from the reference sequence (Accession number AF353511) but they are >99% identical. Unique and shared differences between sequences were identified. The coding region for the surface-exposed spike protein showed the highest proportion of variability including both point mutations and small deletions. The predicted expression of the ORF3 gene product was more dramatically affected in three different variants of this virus through either loss of the initiation codon or gain of a premature termination codon. The genome of one isolate had a substantially rearranged 5´-terminal sequence. This rearrangement was validated through the analysis of sub-genomic mRNAs from infected cells. It is clearly important to know the features of the specific sample of CV777 being used for experimental studies. PMID:29494671

  5. Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools.

    PubMed

    Kisand, Veljo; Lettieri, Teresa

    2013-04-01

    De novo genome sequencing of previously uncharacterized microorganisms has the potential to open up new frontiers in microbial genomics by providing insight into both functional capabilities and biodiversity. Until recently, Roche 454 pyrosequencing was the NGS method of choice for de novo assembly because it generates hundreds of thousands of long reads (<450 bps), which are presumed to aid in the analysis of uncharacterized genomes. The array of tools for processing NGS data are increasingly free and open source and are often adopted for both their high quality and role in promoting academic freedom. The error rate of pyrosequencing the Alcanivorax borkumensis genome was such that thousands of insertions and deletions were artificially introduced into the finished genome. Despite a high coverage (~30 fold), it did not allow the reference genome to be fully mapped. Reads from regions with errors had low quality, low coverage, or were missing. The main defect of the reference mapping was the introduction of artificial indels into contigs through lower than 100% consensus and distracting gene calling due to artificial stop codons. No assembler was able to perform de novo assembly comparable to reference mapping. Automated annotation tools performed similarly on reference mapped and de novo draft genomes, and annotated most CDSs in the de novo assembled draft genomes. Free and open source software (FOSS) tools for assembly and annotation of NGS data are being developed rapidly to provide accurate results with less computational effort. Usability is not high priority and these tools currently do not allow the data to be processed without manual intervention. Despite this, genome assemblers now readily assemble medium short reads into long contigs (>97-98% genome coverage). A notable gap in pyrosequencing technology is the quality of base pair calling and conflicting base pairs between single reads at the same nucleotide position. Regardless, using draft whole genomes

  6. Distribution of ORF2 and ORF3 genotypes of porcine circovirus type 2 (PCV-2) in wild boars and domestic pigs in Germany.

    PubMed

    Reiner, Gerald; Bronnert, Bastian; Hohloch, Corinna; Reinacher, Manfred; Willems, Hermann

    2011-03-24

    Porcine circovirus 2 (PCV-2), the essential infectious agent in PCVD (porcine circovirus diseases) circulates at high rates among domestic pig and wild boar populations. Wild boars may be viremic and shed the virus with excretions and secretions, and thus serve as a reservoir for domestic pig PCV-2 infection. We hypothesize that PCV-2 strains circulating in wild boars and in domestic pigs are significantly different and thus, partially independent. To prove this hypothesis, the present study investigated by sequence analysis the distribution of ORF2 and ORF3 genotypes of the PCV-2 genome within wild boars (n=40) and domestic pigs (n=60) from overlapping greater areas of Germany. The genotypes were compared with PCV-2 sequences from the Genbank database. The dominating genotype in domestic pigs was PCV-2b (98.4% of infected pigs), while only 4.8% of them were infected with PCV-2a. The corresponding prevalences of PCV-2a and -2b genotypes in wild boars were 58% and 70%, respectively. When also ORF3 genotypes were taken into account, more than 50% of wild boar PCV-2 genotypes were rare among German and European domestic pigs. In conclusion, these data provide evidence for a certain independence of PCV-2 infections in both species and a low chance for domestic pigs to be infected with PCV-2 of wild boar origin. On the other hand, PCV-2 genotypes specific for domestic pigs are also common in wild boars, although at lower frequencies, suggesting the spread of domestic pig PCV-2 to the wild boar population. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Draft Genome Sequence of a Novel Lactobacillus salivarius Strain Isolated from Piglet.

    PubMed

    Mackenzie, Donald A; McLay, Kirsten; Roos, Stefan; Walter, Jens; Swarbreck, David; Drou, Nizar; Crossman, Lisa C; Juge, Nathalie

    2014-02-13

    Lactobacillus salivarius is part of the vertebrate indigenous microbiota of the gastrointestinal tract, oral cavity, and milk. The properties associated with some L. salivarius strains have led to their use as probiotics. Here we describe the draft genome of the pig isolate L. salivarius cp400, providing insights into host-niche specialization.

  8. The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs.

    PubMed

    Feng, Wanyou; Dai, Yifan; Mou, Lisha; Cooper, David K C; Shi, Deshun; Cai, Zhiming

    2015-03-23

    Clinical organ allotransplantation is limited by the availability of deceased human donors. However, the transplantation of human organs produced in other species would provide an unlimited number of organs. The pig has been identified as the most suitable source of organs for humans as organs of any size would be available. Genome editing by RNA-guided endonucleases, also known as clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), in combination with induced pluripotent stem cells (iPSC), may have the potential to enable the creation of human organs from genetically-modified chimaeric pigs. These could potentially provide an unlimited supply of organs that would not be rejected by the recipient's immune system. However, substantial research is needed to prove that this approach will work. Genetic modification of chimaeric pigs could also provide useful models for developing therapies for various human diseases, especially in relation to drug development.

  9. Preventing Introduction of Livestock Associated MRSA in a Pig Population – Benefits, Costs, and Knowledge Gaps from the Swedish Perspective

    PubMed Central

    Hæggman, Sara; Mieziewska, Kristina; Nilsson, Svante; Viske, Diana

    2015-01-01

    Antibiotic resistance is a growing concern in human, as well as in veterinary medicine. Part of the problem concerns how to respond to the risk presented by animal reservoirs of resistant bacteria with the potential of spreading to humans. One example is livestock associated methicillin-resistant Staphylococcus aureus (LA-MRSA). In countries where LA-MRSA is endemic in the pig population, people in contact with pigs have a higher risk of being colonised with LA-MRSA, and persons from this group are subjected to precautionary measures when visiting health care facilities. In the present study, it is assumed that, if LA-MRSA was introduced to the Swedish pig population, the prevalence in the risk groups would be the same as in Denmark or the Netherlands (two countries with low human prevalence that have implemented measures to detect, trace and isolate human LA-MRSA cases and, therefore, have comprehensive data with good coverage regarding prevalence of LA-MRSA), and that similar interventions would be taken in Swedish health care facilities. It is also assumed that the Swedish pig population is free of MRSA or that the prevalence is very low. We analyse if it would be efficient for Sweden to prevent its introduction by testing imported live breeding pigs. Given that quarantining and testing at import will prevent introduction to the pig population, the study shows that the preventive measures may indeed generate a societal net benefit. Benefits are estimated to be between € 870 720 and € 1 233 511, and costs to € 211 129. Still, due to gaps in knowledge, the results should be confirmed when more information become available. PMID:25923329

  10. Mycotoxic nephropathy in pigs*

    PubMed Central

    Elling, F.; Møller, T.

    1973-01-01

    In Denmark a nephropathy in pigs characterized by tubular atrophy and interstitial fibrosis has been identified frequently during the last 5 decades in the course of meat inspection in slaughterhouses. The disease was first described by Larsen, who recognized the connexion between feeding mouldy rye to pigs and the development of the nephropathy. In this study kidneys were examined from 19 pigs coming from a farm with an outbreak of nephropathy. The barley fed to the pigs was contaminated with the mycotoxin ochratoxin A. Histological examination revealed different degrees of change ranging from slight regressive changes in the tubular epithelium and periglomerular and interstitial fibrosis to tubular atrophy, thickened basement membranes, glomerular sclerosis, and marked fibrosis. These differences were considered to be due to differences in the length of time of exposure to the mouldy barley and differences in the amount of mycotoxin consumed by the individual pig. However, it will be necessary to carry out experiments using crystalline ochratoxin A in order to prove such a relationship. Mycotoxins have also been suggested as etiological factors in Balkan nephropathy in man, which in the initial stages is characterized by tubular lesions similar to those seen in mycotoxic nephropathy in pigs. ImagesFig. 1Fig. 2Fig. 7Fig. 8Fig. 9Fig. 3Fig. 4Fig. 5Fig. 6Fig. 10Fig. 11 PMID:4546872

  11. Sequencing of a new target genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) genome project.

    PubMed

    Pittendrigh, B R; Clark, J M; Johnston, J S; Lee, S H; Romero-Severson, J; Dasch, G A

    2006-11-01

    The human body louse, Pediculus humanus humanus (L.), and the human head louse, Pediculus humanus capitis, belong to the hemimetabolous order Phthiraptera. The body louse is the primary vector that transmits the bacterial agents of louse-borne relapsing fever, trench fever, and epidemic typhus. The genomes of the bacterial causative agents of several of these aforementioned diseases have been sequenced. Thus, determining the body louse genome will enhance studies of host-vector-pathogen interactions. Although not important as a major disease vector, head lice are of major social concern. Resistance to traditional pesticides used to control head and body lice have developed. It is imperative that new molecular targets be discovered for the development of novel compounds to control these insects. No complete genome sequence exists for a hemimetabolous insect species primarily because hemimetabolous insects often have large (2000 Mb) to very large (up to 16,300 Mb) genomes. Fortuitously, we determined that the human body louse has one of the smallest genome sizes known in insects, suggesting it may be a suitable choice as a minimal hemimetabolous genome in which many genes have been eliminated during its adaptation to human parasitism. Because many louse species infest birds and mammals, the body louse genome-sequencing project will facilitate studies of their comparative genomics. A 6-8X coverage of the body louse genome, plus sequenced expressed sequence tags, should provide the entomological, evolutionary biology, medical, and public health communities with useful genetic information.

  12. BAC mediated transgenic Large White boars with FSHα/β genes from Chinese Erhualian pigs.

    PubMed

    Xu, Pan; Li, Qiuyan; Jiang, Kai; Yang, Qiang; Bi, Mingjun; Jiang, Chao; Wang, Xiaopeng; Wang, Chengbin; Li, Longyun; Qiao, Chuanmin; Gong, Huanfa; Xing, Yuyun; Ren, Jun

    2016-10-01

    Follicle-stimulating hormone (FSH) is a critical hormone regulating reproduction in mammals. Transgenic mice show that overexpression of FSH can improve female fecundity. Using a bacterial artificial chromosome (BAC) system and somatic cell nuclear transfer, we herein generated 67 Large White transgenic (TG) boars harboring FSHα/β genes from Chinese Erhualian pigs, the most prolific breed in the world. We selected two F0 TG boars for further breeding and conducted molecular characterization and biosafety assessment for F1 boars. We showed that 8-9 copies of exogenous FSHα and 5-6 copies of exogenous FSHβ were integrated into the genome of transgenic pigs. The inheritance of exogenous genes conforms to the Mendel's law of segregation. TG boars had higher levels of serum FSH, FSHα mRNA in multiple tissues, FSHβ protein in pituitary and more germ cells per seminiferous tubule compared with their wild-type half sibs without any reproductive defects. Analysis of growth curve, hematological and biochemical parameters and histopathology illustrated that TG boars grew healthily and normally. By applying 16S rRNA gene sequencing, we demonstrated that exogenous genes had no impact on the bacterial community structures of pig guts. Moreover, foreign gene drift did not occur as verified by horizontal gene transfer. Our findings indicate that overexpression of FSH could improve spermatogenesis ability of boars. This work provides insight into the effect of FSHα/β genes on male reproductive performance on pigs by a BAC-mediated transgenic approach.

  13. Scanning the human genome at kilobase resolution.

    PubMed

    Chen, Jun; Kim, Yeong C; Jung, Yong-Chul; Xuan, Zhenyu; Dworkin, Geoff; Zhang, Yanming; Zhang, Michael Q; Wang, San Ming

    2008-05-01

    Normal genome variation and pathogenic genome alteration frequently affect small regions in the genome. Identifying those genomic changes remains a technical challenge. We report here the development of the DGS (Ditag Genome Scanning) technique for high-resolution analysis of genome structure. The basic features of DGS include (1) use of high-frequent restriction enzymes to fractionate the genome into small fragments; (2) collection of two tags from two ends of a given DNA fragment to form a ditag to represent the fragment; (3) application of the 454 sequencing system to reach a comprehensive ditag sequence collection; (4) determination of the genome origin of ditags by mapping to reference ditags from known genome sequences; (5) use of ditag sequences directly as the sense and antisense PCR primers to amplify the original DNA fragment. To study the relationship between ditags and genome structure, we performed a computational study by using the human genome reference sequences as a model, and analyzed the ditags experimentally collected from the well-characterized normal human DNA GM15510 and the leukemic human DNA of Kasumi-1 cells. Our studies show that DGS provides a kilobase resolution for studying genome structure with high specificity and high genome coverage. DGS can be applied to validate genome assembly, to compare genome similarity and variation in normal populations, and to identify genomic abnormality including insertion, inversion, deletion, translocation, and amplification in pathological genomes such as cancer genomes.

  14. 45 CFR 156.602 - Other coverage that qualifies as minimum essential coverage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... Coverage offered to students by an institution of higher education (as defined in the Higher Education Act... essential coverage for plan or policy years beginning on or before December 31, 2014. For coverage beginning... essential coverage for plan or policy years beginning on or before December 31, 2014. For coverage beginning...

  15. 45 CFR 156.602 - Other coverage that qualifies as minimum essential coverage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Coverage offered to students by an institution of higher education (as defined in the Higher Education Act... essential coverage for plan or policy years beginning on or before December 31, 2014. For coverage beginning... essential coverage for plan or policy years beginning on or before December 31, 2014. For coverage beginning...

  16. Protection of Lassa Virus-Infected Guinea Pigs with Lassa-Immune Plasma of Guinea Pig, Primate, and Human Origin

    DTIC Science & Technology

    1983-01-01

    DTICCS OCT 19 1983ora o ek Viroly 12-93-102 (1963) Protection of Lassa Virus-infected Guinea Pigs With Lassa-Immune Plasma of Guinea Pig , Primate...siotrain 13 guinea pigs were infected with a lethal dose of Lassa virus and treated with various Lassa-immune plasmas obtained from guinea pigs , primates...plaque-forming units (PFU) neutralization index (LNI). All guinea pigs treated with immune plasma 6 mI/kg/treatment on days 0, 3, and 6 after virus

  17. Sequence analysis of the genome of carnation (Dianthus caryophyllus L.).

    PubMed

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-06-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16,644 bp and 60,737 bp, respectively, and the longest scaffold was 1,287,144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼ 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. © The Author 2013. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  18. The Mitochondrial Genome of the Guanaco Louse, Microthoracius praelongiceps: Insights into the Ancestral Mitochondrial Karyotype of Sucking Lice (Anoplura, Insecta)

    PubMed Central

    Li, Hu; Barker, Stephen C.

    2017-01-01

    Fragmented mitochondrial (mt) genomes have been reported in 11 species of sucking lice (suborder Anoplura) that infest humans, chimpanzees, pigs, horses, and rodents. There is substantial variation among these lice in mt karyotype: the number of minichromosomes of a species ranges from 9 to 20; the number of genes in a minichromosome ranges from 1 to 8; gene arrangement in a minichromosome differs between species, even in the same genus. We sequenced the mt genome of the guanaco louse, Microthoracius praelongiceps, to help establish the ancestral mt karyotype for sucking lice and understand how fragmented mt genomes evolved. The guanaco louse has 12 mt minichromosomes; each minichromosome has 2–5 genes and a non-coding region. The guanaco louse shares many features with rodent lice in mt karyotype, more than with other sucking lice. The guanaco louse, however, is more closely related phylogenetically to human lice, chimpanzee lice, pig lice, and horse lice than to rodent lice. By parsimony analysis of shared features in mt karyotype, we infer that the most recent common ancestor of sucking lice, which lived ∼75 Ma, had 11 minichromosomes; each minichromosome had 1–6 genes and a non-coding region. As sucking lice diverged, split of mt minichromosomes occurred many times in the lineages leading to the lice of humans, chimpanzees, and rodents whereas merger of minichromosomes occurred in the lineage leading to the lice of pigs and horses. Together, splits and mergers of minichromosomes created a very complex and dynamic mt genome organization in the sucking lice. PMID:28164215

  19. Oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during Salmonella typhimurium infection.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo

    2012-12-01

    It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.

  20. EXPRESSION OF NeuGc ON PIG CORNEAS AND ITS POTENTIAL SIGNIFICANCE IN PIG CORNEAL XENOTRANSPLANTATION

    PubMed Central

    Lee, Whayoung; Miyagawa, Yuko; Long, Cassandra; Ekser, Burcin; Walters, Eric; Ramsoondar, Jagdeece; Ayares, David; Tector, A. Joseph; Cooper, David K. C.; Hara, Hidetaka

    2016-01-01

    Purpose Pigs expressing neither galactose-α1,3-galactose (Gal) nor N-glycolylneuraminic acid (NeuGc) take xenotransplantation one step closer to the clinic. Our aims were (i) to document the lack of NeuGc expression on corneas and aortas, and cultured endothelial cells (aortic [AECs]; corneal [CECs]) of GTKO/NeuGcKO pigs, and (ii) to investigate whether the absence of NeuGc reduced human antibody binding to the tissues and cells. Methods Wild-type (WT), GTKO, and GTKO/NeuGcKO pig were used for the study. Human tissues and cultured cells were negative controls. Immunofluorescence staining was performed using anti-Gal and anti-NeuGc antibodies, and to determine human IgM and IgG binding to tissues. Flow cytometric analysis was used to determine Gal and NeuGc expression on cultured CECs and AECs and to measure human IgM/IgG binding to these cells. Results Both Gal and NeuGc were detected on WT pig corneas and aortas. Although GTKO pigs expressed NeuGc, neither human nor GTKO/NeuGcKO pigs expressed Gal or NeuGc. Human IgM/IgG binding to corneas and aortas from GTKO and GTKO/NeuGcKO pigs was reduced compared to binding to WT pigs. Human antibody binding to GTKO/NeuGcKO AECs was significantly less than to GTKO AECs, but there was no significant difference in binding between GTKO and GTKO/NeuGcKO CECs. Conclusions The absence of NeuGc on GTKO aortic tissue and AECs is associated with reduced human antibody binding, and possibly will provide better outcome in clinical xenotransplantation using vascularized organs. For clinical corneal xenotransplantation, the absence of NeuGc expression on GTKO/NeuGcKO pig corneas may not prove an advantage over GTKO corneas. PMID:26418433

  1. Long non-coding RNAs and mRNAs profiling during spleen development in pig.

    PubMed

    Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2018-01-01

    Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.

  2. Deletion of the African Swine Fever Virus Gene DP148R Does Not Reduce Virus Replication in Culture but Reduces Virus Virulence in Pigs and Induces High Levels of Protection against Challenge

    PubMed Central

    Goatley, Lynnette C.; Jabbar, Tamara; Sanchez-Cordon, Pedro J.; Netherton, Christopher L.; Chapman, David A. G.; Dixon, Linda K.

    2017-01-01

    ABSTRACT Many of the approximately 165 proteins encoded by the African swine fever virus (ASFV) genome do not have significant similarity to known proteins and have not been studied experimentally. One such protein is DP148R. We showed that the DP148R gene is transcribed at early times postinfection. Deletion of this gene did not reduce virus replication in macrophages, showing that it is not essential for replication in these cells. However, deletion of this gene from a virulent isolate, Benin 97/1, producing the BeninΔDP148R virus, dramatically reduced the virulence of the virus in vivo. All pigs infected with the BeninΔDP148R virus survived infection, showing only transient mild clinical signs soon after immunization. Following challenge with the parental virulent virus, all pigs immunized by the intramuscular route (11/11) and all except one immunized by the intranasal route (5/6) survived. Mild or no clinical signs were observed after challenge. As expected, control nonimmune pigs developed signs of acute African swine fever (ASF). The virus genome and infectious virus were observed soon after immunization, coincident with the onset of clinical signs (∼106 genome copies or 50% tissue culture infective doses/ml). The levels of the virus genome declined over an extended period up to 60 days postimmunization. In contrast, infectious virus was no longer detectable by days 30 to 35. Gamma interferon (IFN-γ) was detected in serum between days 4 and 7 postimmunization, and IFN-γ-producing cells were detected in all pigs analyzed following stimulation of immune lymphocytes with whole virus. ASFV-specific antibodies were first detected from day 10 postimmunization. IMPORTANCE African swine fever (ASF) is endemic in Africa, parts of the Trans Caucasus, the Russian Federation, and several European countries. The lack of a vaccine hinders control. Many of the ASF virus genes lack similarity to known genes and have not been characterized. We have shown that one of

  3. Deletion of the African Swine Fever Virus Gene DP148R Does Not Reduce Virus Replication in Culture but Reduces Virus Virulence in Pigs and Induces High Levels of Protection against Challenge.

    PubMed

    Reis, Ana L; Goatley, Lynnette C; Jabbar, Tamara; Sanchez-Cordon, Pedro J; Netherton, Christopher L; Chapman, David A G; Dixon, Linda K

    2017-12-15

    Many of the approximately 165 proteins encoded by the African swine fever virus (ASFV) genome do not have significant similarity to known proteins and have not been studied experimentally. One such protein is DP148R. We showed that the DP148R gene is transcribed at early times postinfection. Deletion of this gene did not reduce virus replication in macrophages, showing that it is not essential for replication in these cells. However, deletion of this gene from a virulent isolate, Benin 97/1, producing the BeninΔDP148R virus, dramatically reduced the virulence of the virus in vivo All pigs infected with the BeninΔDP148R virus survived infection, showing only transient mild clinical signs soon after immunization. Following challenge with the parental virulent virus, all pigs immunized by the intramuscular route (11/11) and all except one immunized by the intranasal route (5/6) survived. Mild or no clinical signs were observed after challenge. As expected, control nonimmune pigs developed signs of acute African swine fever (ASF). The virus genome and infectious virus were observed soon after immunization, coincident with the onset of clinical signs (∼10 6 genome copies or 50% tissue culture infective doses/ml). The levels of the virus genome declined over an extended period up to 60 days postimmunization. In contrast, infectious virus was no longer detectable by days 30 to 35. Gamma interferon (IFN-γ) was detected in serum between days 4 and 7 postimmunization, and IFN-γ-producing cells were detected in all pigs analyzed following stimulation of immune lymphocytes with whole virus. ASFV-specific antibodies were first detected from day 10 postimmunization. IMPORTANCE African swine fever (ASF) is endemic in Africa, parts of the Trans Caucasus, the Russian Federation, and several European countries. The lack of a vaccine hinders control. Many of the ASF virus genes lack similarity to known genes and have not been characterized. We have shown that one of these, DP

  4. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae)

    PubMed Central

    2010-01-01

    Background The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Findings Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. Conclusions This indicated that both BAC libraries

  5. Construction and characterization of two BAC libraries representing a deep-coverage of the genome of chicory (Cichorium intybus L., Asteraceae).

    PubMed

    Gonthier, Lucy; Bellec, Arnaud; Blassiau, Christelle; Prat, Elisa; Helmstetter, Nicolas; Rambaud, Caroline; Huss, Brigitte; Hendriks, Theo; Bergès, Hélène; Quillet, Marie-Christine

    2010-08-11

    The Asteraceae represents an important plant family with respect to the numbers of species present in the wild and used by man. Nonetheless, genomic resources for Asteraceae species are relatively underdeveloped, hampering within species genetic studies as well as comparative genomics studies at the family level. So far, six BAC libraries have been described for the main crops of the family, i.e. lettuce and sunflower. Here we present the characterization of BAC libraries of chicory (Cichorium intybus L.) constructed from two genotypes differing in traits related to sexual and vegetative reproduction. Resolving the molecular mechanisms underlying traits controlling the reproductive system of chicory is a key determinant for hybrid development, and more generally will provide new insights into these traits, which are poorly investigated so far at the molecular level in Asteraceae. Two bacterial artificial chromosome (BAC) libraries, CinS2S2 and CinS1S4, were constructed from HindIII-digested high molecular weight DNA of the contrasting genotypes C15 and C30.01, respectively. C15 was hermaphrodite, non-embryogenic, and S2S2 for the S-locus implicated in self-incompatibility, whereas C30.01 was male sterile, embryogenic, and S1S4. The CinS2S2 and CinS1S4 libraries contain 89,088 and 81,408 clones. Mean insert sizes of the CinS2S2 and CinS1S4 clones are 90 and 120 kb, respectively, and provide together a coverage of 12.3 haploid genome equivalents. Contamination with mitochondrial and chloroplast DNA sequences was evaluated with four mitochondrial and four chloroplast specific probes, and was estimated to be 0.024% and 1.00% for the CinS2S2 library, and 0.028% and 2.35% for the CinS1S4 library. Using two single copy genes putatively implicated in somatic embryogenesis, screening of both libraries resulted in detection of 12 and 13 positive clones for each gene, in accordance with expected numbers. This indicated that both BAC libraries are valuable tools for molecular

  6. Antibiotic resistance and molecular characteristics of Staphylococcus aureus isolated from backyard-raised pigs and pig workers.

    PubMed

    Momoh, Asabe Halimat; Kwaga, Jacob K P; Bello, Mohammed; Sackey, Anthony K B; Larsen, Anders Rhod

    2018-04-19

    Staphylococcus aureus is a commensal and pathogenic bacterium with impact on public health and livestock industry. The study investigated nasal carriage, antibiotic resistance, and molecular characterization of S. aureus in pigs and pig workers. Nasal swabs from 300 backyard-raised pigs and 101 pig workers were used for the study. Resulting isolates were confirmed using MALDI-TOF MS, tested for antibiotic resistance, and three different multiplex PCRs were used to detect enterotoxin, mecA, spaA, scn, and pvl genes. spa typing was used to annotate the isolates into MLST clonal complexes (CC). Structured questionnaire was used to access possible risk factors for S. aureus carriage. The prevalence of S. aureus in pigs and pig workers were 5.3 and 12.9%, respectively. The isolates were resistant to beta-lactams (97%), tetracycline (62%), sulfonamide (52%), aminoglycoside (20.6%), fluoroquinolone (24%), and mupirocin (3.4%). Twenty seven (93%) of the isolates carried scn, 7(24%) pvl, and 12 (41%) enterotoxin genes, respectively. Questionnaire survey showed medical-related occupation of household members was associated (p < 0.5) with S. aureus carriage. This study suggests the presence of human multidrug resistant strains of S. aureus, high carriage of pvl, and enterotoxin genes, and CC5, CC15, and CC152 were the CC-groups shared among pigs and pig workers.

  7. Effect of fenbendazole in water on pigs infected with Ascaris suum in finishing pigs under field conditions.

    PubMed

    Lassen, Brian; Oliviero, Claudio; Orro, Toomas; Jukola, Elias; Laurila, Tapio; Haimi-Hakala, Minna; Heinonen, Mari

    2017-04-15

    The husbandry of pigs for meat production is a constantly developing industry. Most studies on the effects of Ascaris suum infection in pigs and its prevention with anthelmintics are over a decade old. We examined the effect of 2.5mg fenbendazole per kg bodyweight administered in drinking water for two consecutive days on A. suum infection 1 and 6 weeks after pigs arrived to fattening units. We hypothesised that the treatment would reduce the presence of A. suum-infections, improve the average daily weight gain of pigs, reduce the percentage of liver rejections in pens by 50% and increase the lean meat percentage at slaughter by 1%. The study included a placebo group (427 pigs) and a treatment group (420 pigs) spanning four different farms previously reporting ≥15% liver rejection. The treatment was given for 2 consecutive days 1 and 6 weeks after the pigs arrived to the fattening unit. Faecal samples were collected during weeks 1, 6 and 12 from all pigs and examined for A. suum eggs. Blood was collected during weeks 1 and 12 from a subgroup of the pigs and examined for anti-A. suum antibodies and clinical blood parameters. Data on liver rejection and lean meat percentage were collected post-mortem. The proportion of Ascaris seropositive pigs changed from 8.6% to 22.2% and 20.3% to 16.3% in the placebo and treatment group respectively. Fenbendazole reduced the presence of A. suum eggs in faeces the percentage of liver rejections by 69.8%. The treatment did not affect daily weight gain or lean meat percentage. Pigs with A. suum eggs in faeces at week 6 had a lower average daily weight gain of 61.8g/day compared with pigs without parasite eggs. Fenbendazole treatment may be a useful option for farms struggling with persistent A. suum problems and demonstrate a beneficial effect on the weight gain of the animals shedding eggs in faeces and result in fewer condemned livers at slaughter. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Draft Genome Sequence of a Novel Lactobacillus salivarius Strain Isolated from Piglet

    PubMed Central

    MacKenzie, Donald A.; McLay, Kirsten; Roos, Stefan; Walter, Jens; Swarbreck, David; Drou, Nizar; Crossman, Lisa C.

    2014-01-01

    Lactobacillus salivarius is part of the vertebrate indigenous microbiota of the gastrointestinal tract, oral cavity, and milk. The properties associated with some L. salivarius strains have led to their use as probiotics. Here we describe the draft genome of the pig isolate L. salivarius cp400, providing insights into host-niche specialization. PMID:24526652

  9. The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics.

    PubMed

    Gopalakrishnan, Shyam; Samaniego Castruita, Jose A; Sinding, Mikkel-Holger S; Kuderna, Lukas F K; Räikkönen, Jannikke; Petersen, Bent; Sicheritz-Ponten, Thomas; Larson, Greger; Orlando, Ludovic; Marques-Bonet, Tomas; Hansen, Anders J; Dalén, Love; Gilbert, M Thomas P

    2017-06-29

    An increasing number of studies are addressing the evolutionary genomics of dog domestication, principally through resequencing dog, wolf and related canid genomes. There is, however, only one de novo assembled canid genome currently available against which to map such data - that of a boxer dog (Canis lupus familiaris). We generated the first de novo wolf genome (Canis lupus lupus) as an additional choice of reference, and explored what implications may arise when previously published dog and wolf resequencing data are remapped to this reference. Reassuringly, we find that regardless of the reference genome choice, most evolutionary genomic analyses yield qualitatively similar results, including those exploring the structure between the wolves and dogs using admixture and principal component analysis. However, we do observe differences in the genomic coverage of re-mapped samples, the number of variants discovered, and heterozygosity estimates of the samples. In conclusion, the choice of reference is dictated by the aims of the study being undertaken; if the study focuses on the differences between the different dog breeds or the fine structure among dogs, then using the boxer reference genome is appropriate, but if the aim of the study is to look at the variation within wolves and their relationships to dogs, then there are clear benefits to using the de novo assembled wolf reference genome.

  10. Strain/species identification in metagenomes using genome-specific markers

    PubMed Central

    Tu, Qichao; He, Zhili; Zhou, Jizhong

    2014-01-01

    Shotgun metagenome sequencing has become a fast, cheap and high-throughput technology for characterizing microbial communities in complex environments and human body sites. However, accurate identification of microorganisms at the strain/species level remains extremely challenging. We present a novel k-mer-based approach, termed GSMer, that identifies genome-specific markers (GSMs) from currently sequenced microbial genomes, which were then used for strain/species-level identification in metagenomes. Using 5390 sequenced microbial genomes, 8 770 321 50-mer strain-specific and 11 736 360 species-specific GSMs were identified for 4088 strains and 2005 species (4933 strains), respectively. The GSMs were first evaluated against mock community metagenomes, recently sequenced genomes and real metagenomes from different body sites, suggesting that the identified GSMs were specific to their targeting genomes. Sensitivity evaluation against synthetic metagenomes with different coverage suggested that 50 GSMs per strain were sufficient to identify most microbial strains with ≥0.25× coverage, and 10% of selected GSMs in a database should be detected for confident positive callings. Application of GSMs identified 45 and 74 microbial strains/species significantly associated with type 2 diabetes patients and obese/lean individuals from corresponding gastrointestinal tract metagenomes, respectively. Our result agreed with previous studies but provided strain-level information. The approach can be directly applied to identify microbial strains/species from raw metagenomes, without the effort of complex data pre-processing. PMID:24523352

  11. Genomic characterization of H1N2 swine influenza viruses in Italy.

    PubMed

    Moreno, Ana; Chiapponi, Chiara; Boniotti, Maria Beatrice; Sozzi, Enrica; Foni, Emanuela; Barbieri, Ilaria; Zanoni, Maria Grazia; Faccini, Silvia; Lelli, Davide; Cordioli, Paolo

    2012-05-04

    Three subtypes (H1N1, H1N2, and H3N2) are currently diffused worldwide in pigs. The H1N2 subtype was detected for the first time in Italian pigs in 1998. To investigate the genetic characteristics and the molecular evolution of this subtype in Italy, we conducted a phylogenetic analysis of whole genome sequences of 26 strains isolated from 1998 to 2010. Phylogenetic analysis of HA and NA genes showed differences between the older (1998-2003) and the more recent strains (2003-2010). The older isolates were closely related to the established European H1N2 lineage, whereas the more recent isolates possessed a different NA deriving from recent human H3N2 viruses. Two other reassortant H1N2 strains have been detected: A/sw/It/22530/02 has the HA gene that is closely related to H1N1 viruses; A/sw/It/58769/10 is an uncommon strain with an HA that is closely related to H1N1 and an NA similar to H3N2 SIVs. Amino acid analysis revealed interesting features: a deletion of two amino acids (146-147) in the HA gene of the recent isolates and two strains isolated in 1998; the presence of the uncommon aa change (N66S), in the PB1-F2 protein in strains isolated from 2009 to 2010, which is said to have contributed to the increased virulence. These results demonstrate the importance of pigs as mixing vessels for animal and human influenza and show the presence and establishment of reassortant strains involving human viruses in pigs in Italy. These findings also highlighted different genomic characteristics of the NA gene the recent Italian strains compared to circulating European viruses. Published by Elsevier B.V.

  12. Challenges of Generating and Maintaining Protective Vaccine-Induced Immune Responses for Foot-and-Mouth Disease Virus in Pigs

    PubMed Central

    Lyons, Nicholas A.; Lyoo, Young S.; King, Donald P.; Paton, David J.

    2016-01-01

    Vaccination can play a central role in the control of outbreaks of foot-and-mouth disease (FMD) by reducing both the impact of clinical disease and the extent of virus transmission between susceptible animals. Recent incursions of exotic FMD virus lineages into several East Asian countries have highlighted the difficulties of generating and maintaining an adequate immune response in vaccinated pigs. Factors that impact vaccine performance include (i) the potency, antigenic payload, and formulation of a vaccine; (ii) the antigenic match between the vaccine and the heterologous circulating field strain; and (iii) the regime (timing, frequency, and herd-level coverage) used to administer the vaccine. This review collates data from studies that have evaluated the performance of foot-and-mouth disease virus vaccines at the individual and population level in pigs and identifies research priorities that could provide new insights to improve vaccination in the future. PMID:27965966

  13. Next-generation sequencing of the Trichinella murrelli mitochondrial genome allows comprehensive comparison of its divergence from the principal agent of human trichinellosis, Trichinella spiralis.

    PubMed

    Webb, Kristen M; Rosenthal, Benjamin M

    2011-01-01

    The mitochondrial genome's non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been defined for 12 species and genotypes of parasites in the genus Trichinella, but its adequacy in representing the mitochondrial genome as a whole remains unclear, as the complete coding sequence has been characterized only for Trichinella spiralis. Here, we sought to comprehensively describe the extent and nature of divergence between the mitochondrial genomes of T. spiralis (which poses the most appreciable zoonotic risk owing to its capacity to establish persistent infections in domestic pigs) and Trichinella murrelli (which is the most prevalent species in North American wildlife hosts, but which poses relatively little risk to the safety of pork). Next generation sequencing methodologies and scaffold and de novo assembly strategies were employed. The entire protein-coding region was sequenced (13,917 bp), along with a portion of the highly repetitive non-coding region (1524 bp) of the mitochondrial genome of T. murrelli with a combined average read depth of 250 reads. The accuracy of base calling, estimated from coding region sequence was found to exceed 99.3%. Genome content and gene order was not found to be significantly different from that of T. spiralis. An overall inter-species sequence divergence of 9.5% was estimated. Significant variation was identified when the amount of variation between species at each gene is compared to the average amount of variation between species across the coding region. Next generation sequencing is a highly effective means to obtain previously unknown mitochondrial genome sequence. Particular to parasites, the extremely deep coverage achieved through this method allows for the detection of sequence heterogeneity between the multiple

  14. Deep whole-genome sequencing of 100 southeast Asian Malays.

    PubMed

    Wong, Lai-Ping; Ong, Rick Twee-Hee; Poh, Wan-Ting; Liu, Xuanyao; Chen, Peng; Li, Ruoying; Lam, Kevin Koi-Yau; Pillai, Nisha Esakimuthu; Sim, Kar-Seng; Xu, Haiyan; Sim, Ngak-Leng; Teo, Shu-Mei; Foo, Jia-Nee; Tan, Linda Wei-Lin; Lim, Yenly; Koo, Seok-Hwee; Gan, Linda Seo-Hwee; Cheng, Ching-Yu; Wee, Sharon; Yap, Eric Peng-Huat; Ng, Pauline Crystal; Lim, Wei-Yen; Soong, Richie; Wenk, Markus Rene; Aung, Tin; Wong, Tien-Yin; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2013-01-10

    Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Genomic dark matter: the reliability of short read mapping illustrated by the genome mappability score.

    PubMed

    Lee, Hayan; Schatz, Michael C

    2012-08-15

    Genome resequencing and short read mapping are two of the primary tools of genomics and are used for many important applications. The current state-of-the-art in mapping uses the quality values and mapping quality scores to evaluate the reliability of the mapping. These attributes, however, are assigned to individual reads and do not directly measure the problematic repeats across the genome. Here, we present the Genome Mappability Score (GMS) as a novel measure of the complexity of resequencing a genome. The GMS is a weighted probability that any read could be unambiguously mapped to a given position and thus measures the overall composition of the genome itself. We have developed the Genome Mappability Analyzer to compute the GMS of every position in a genome. It leverages the parallelism of cloud computing to analyze large genomes, and enabled us to identify the 5-14% of the human, mouse, fly and yeast genomes that are difficult to analyze with short reads. We examined the accuracy of the widely used BWA/SAMtools polymorphism discovery pipeline in the context of the GMS, and found discovery errors are dominated by false negatives, especially in regions with poor GMS. These errors are fundamental to the mapping process and cannot be overcome by increasing coverage. As such, the GMS should be considered in every resequencing project to pinpoint the 'dark matter' of the genome, including of known clinically relevant variations in these regions. The source code and profiles of several model organisms are available at http://gma-bio.sourceforge.net

  16. Predicting Protein Function by Genomic Context: Quantitative Evaluation and Qualitative Inferences

    PubMed Central

    Huynen, Martijn; Snel, Berend; Lathe, Warren; Bork, Peer

    2000-01-01

    Various new methods have been proposed to predict functional interactions between proteins based on the genomic context of their genes. The types of genomic context that they use are Type I: the fusion of genes; Type II: the conservation of gene-order or co-occurrence of genes in potential operons; and Type III: the co-occurrence of genes across genomes (phylogenetic profiles). Here we compare these types for their coverage, their correlations with various types of functional interaction, and their overlap with homology-based function assignment. We apply the methods to Mycoplasma genitalium, the standard benchmarking genome in computational and experimental genomics. Quantitatively, conservation of gene order is the technique with the highest coverage, applying to 37% of the genes. By combining gene order conservation with gene fusion (6%), the co-occurrence of genes in operons in absence of gene order conservation (8%), and the co-occurrence of genes across genomes (11%), significant context information can be obtained for 50% of the genes (the categories overlap). Qualitatively, we observe that the functional interactions between genes are stronger as the requirements for physical neighborhood on the genome are more stringent, while the fraction of potential false positives decreases. Moreover, only in cases in which gene order is conserved in a substantial fraction of the genomes, in this case six out of twenty-five, does a single type of functional interaction (physical interaction) clearly dominate (>80%). In other cases, complementary function information from homology searches, which is available for most of the genes with significant genomic context, is essential to predict the type of interaction. Using a combination of genomic context and homology searches, new functional features can be predicted for 10% of M. genitalium genes. PMID:10958638

  17. The vascular supply of the thymus in the guinea-pig and pig

    PubMed Central

    Olson, I. A.; Poste, Mary E.

    1973-01-01

    A study of the blood supply of the thymus using intravascular carbon or silver shows that the pig and guinea-pig possess a more extensive vascular system than the current model taken from work on the mouse. ImagesFIG. 1FIG. 2FIG. 3 PMID:4120933

  18. Detection of porcine circovirus type 2 in pigs imported from Indonesia.

    PubMed

    Manokaran, Gayathri; Lin, Yueh-Nuo; Soh, Moi-Lien; Lim, Elizabeth Ai-Sim; Lim, Chee-Wee; Tan, Boon-Huan

    2008-11-25

    We have detected the presence of porcine circovirus (PCV) type 2 in Indonesian pigs imported to Singapore for food consumption. A total of three viral isolates were identified, and to genetically characterise them further, their full genomes were sequenced. Each genome showed a typical organization of PCV type 2, with the three isolates sharing similar genome lengths of 1767 nucleotide (nt) at high nt identities of 99.8-100%, further indicating that the viral isolates were quite homogeneous. Sequence analysis further revealed that the ORF2 genes contain the nt sequence CCCCGC (from nt position 262 to 267) that was previously reported to be associated with PCV type 2, group 1C. The phylogenetic tree was constructed for the ORF2 genes, and the PCV type 2 isolates distributed into two distinctive groups. The Indonesian PCV type 2 clustered tightly with one China isolate, accession number AY035820, as a sub-cluster in group 1C. The sequence and phylogenetic analyses both confirmed that the three Indonesian PCV type 2 isolates belong to group 1C, and that the genetic changes for the three Indonesian isolates were very stable, possibly due to the low-scale evolution.

  19. Coverage of whole proteome by structural genomics observed through protein homology modeling database

    PubMed Central

    Yamaguchi, Akihiro; Go, Mitiko

    2006-01-01

    We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics. PMID:17146617

  20. ON THE CARCINORESISTANCE OF THE GUINEA PIG. PART I. SPONTANEOUS TUMORS IN THE GUINEA PIG,

    DTIC Science & Technology

    Among the rodents, the guinea pig is known for its great carcino-resistance. In analyzing this phenomenon, it is best to study on the one hand the...spontaneous tumors of the guinea pig and on the other, the experimental tumors that one can obtain in the same animal. In this first work, only the spontaneous tumors of the guinea pig are studied. (Author)

  1. Transmissible Gastroenteritis in Feeder Pigs: Observations on the Jejunal Epithelium of Normal Feeder Pigs and Feeder Pigs Infected with TGE Virus

    PubMed Central

    Morin, M.; Morehouse, L. G.

    1974-01-01

    Light and electron microscopy findings in the jejunal mucosa of the normal feeder pig and feeder pigs infected with transmissible gastroenteritis (TGE) virus are reported. Villi in the mid jejunum of the normal feeder pig were elongated, finger shaped and covered with a layer of columnar absorptive cells with a well developed and regular brush border. Severe lesions of villous atrophy were present in all jejunal segments of feeder swine killed 96 hours post infection with TGE virus. Atrophic villi were covered by flat to cuboidal cells with a poorly developed brush border in some areas. In other segments, cells varied in appearance from sub-columnar to columnar type of near normal appearance. The ultrastructure of the jejunal absorptive cells in the normal feeder pig was found to be similar to that described for the jejunal cells of other adult mammals. There were no significant indications of high pinocytotic activity. The epithelial cells covering the atrophic villi of TGE infected pigs had a fine structure similar to that described for the crypt cells, ranging in appearance from very immature to moderately differentiated cells. Microvilli were very short, decreased markedly in number and irregular in arrangement. The terminal web was poorly developed. Strands of rough endoplasmic reticulum were markedly diminished and an increase in free ribosomes was noted. The significance of these observations in explaining pathogenesis of TGE in feeder pigs is discussed. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6.Fig. 7.Fig. 8. PMID:4277743

  2. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes

    PubMed Central

    Xin Liu, Gong; Derst, Christian; Schlichthörl, Günter; Heinen, Steffen; Seebohm, Guiscard; Brüggemann, Andrea; Kummer, Wolfgang; Veh, Rüdiger W; Daut, Jürgen; Preisig-Müller, Regina

    2001-01-01

    The aim of the study was to compare the properties of cloned Kir2 channels with the properties of native rectifier channels in guinea-pig (gp) cardiac muscle. The cDNAs of gpKir2.1, gpKir2.2, gpKir2.3 and gpKir2.4 were obtained by screening a cDNA library from guinea-pig cardiac ventricle. A partial genomic structure of all gpKir2 genes was deduced by comparison of the cDNAs with the nucleotide sequences derived from a guinea-pig genomic library. The cell-specific expression of Kir2 channel subunits was studied in isolated cardiomyocytes using a multi-cell RT-PCR approach. It was found that gpKir2.1, gpKir2.2 and gpKir2.3, but not gpKir2.4, are expressed in cardiomyocytes. Immunocytochemical analysis with polyclonal antibodies showed that expression of Kir2.4 is restricted to neuronal cells in the heart. After transfection in human embryonic kidney cells (HEK293) the mean single-channel conductance with symmetrical K+ was found to be 30.6 pS for gpKir2.1, 40.0 pS for gpKir2.2 and 14.2 pS for Kir2.3. Cell-attached measurements in isolated guinea-pig cardiomyocytes (n = 351) revealed three populations of inwardly rectifying K+ channels with mean conductances of 34.0, 23.8 and 10.7 pS. Expression of the gpKir2 subunits in Xenopus oocytes showed inwardly rectifying currents. The Ba2+ concentrations required for half-maximum block at -100 mV were 3.24 μm for gpKir2.1, 0.51 μm for gpKir2.2, 10.26 μm for gpKir2.3 and 235 μm for gpKir2.4. Ba2+ block of inward rectifier channels of cardiomyocytes was studied in cell-attached recordings. The concentration and voltage dependence of Ba2+ block of the large-conductance inward rectifier channels was virtually identical to that of gpKir2.2 expressed in Xenopus oocytes. Our results suggest that the large-conductance inward rectifier channels found in guinea-pig cardiomyocytes (34.0 pS) correspond to gpKir2.2. The intermediate-conductance (23.8 pS) and low-conductance (10.7 pS) channels described here may correspond to gpKir2

  3. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion.

    PubMed

    Vanwonterghem, Inka; Jensen, Paul D; Rabaey, Korneel; Tyson, Gene W

    2016-09-01

    Our understanding of the complex interconnected processes performed by microbial communities is hindered by our inability to culture the vast majority of microorganisms. Metagenomics provides a way to bypass this cultivation bottleneck and recent advances in this field now allow us to recover a growing number of genomes representing previously uncultured populations from increasingly complex environments. In this study, a temporal genome-centric metagenomic analysis was performed of lab-scale anaerobic digesters that host complex microbial communities fulfilling a series of interlinked metabolic processes to enable the conversion of cellulose to methane. In total, 101 population genomes that were moderate to near-complete were recovered based primarily on differential coverage binning. These populations span 19 phyla, represent mostly novel species and expand the genomic coverage of several rare phyla. Classification into functional guilds based on their metabolic potential revealed metabolic networks with a high level of functional redundancy as well as niche specialization, and allowed us to identify potential roles such as hydrolytic specialists for several rare, uncultured populations. Genome-centric analyses of complex microbial communities across diverse environments provide the key to understanding the phylogenetic and metabolic diversity of these interactive communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Blood from a turnip: tissue origin of low-coverage shotgun sequencing libraries affects recovery of mitogenome sequences

    USGS Publications Warehouse

    Barker, F. Keith; Oyler-McCance, Sara; Tomback, Diana F.

    2015-01-01

    Next generation sequencing methods allow rapid, economical accumulation of data that have many applications, even at relatively low levels of genome coverage. However, the utility of shotgun sequencing data sets for specific goals may vary depending on the biological nature of the samples sequenced. We show that the ability to assemble mitogenomes from three avian samples of two different tissue types varies widely. In particular, data with coverage typical of microsatellite development efforts (∼1×) from DNA extracted from avian blood failed to cover even 50% of the mitogenome, relative to at least 500-fold coverage from muscle-derived data. Researchers should consider possible applications of their data and select the tissue source for their work accordingly. Practitioners analyzing low-coverage shotgun sequencing data (including for microsatellite locus development) should consider the potential benefits of mitogenome assembly, including internal barcode verification of species identity, mitochondrial primer development, and phylogenetics.

  5. Identification of a novel antisense long non-coding RNA PLA2G16-AS that regulates the expression of PLA2G16 in pigs.

    PubMed

    Liu, Pengliang; Jin, Long; Zhao, Lirui; Long, Keren; Song, Yang; Tang, Qianzi; Ma, Jideng; Wang, Xun; Tang, Guoqing; Jiang, Yanzhi; Zhu, Li; Li, Xuewei; Li, Mingzhou

    2018-05-31

    Natural antisense transcripts (NATs) are widely present in mammalian genomes and act as pivotal regulator molecules to control gene expression. However, studies on the NATs of pigs are relatively rare. Here, we identified a novel antisense transcript, designated PLA2G16-AS, transcribed from the phospholipase A2 group XVI locus (PLA2G16) in the porcine genome, which is a well-known regulatory molecule of fat deposition. PLA2G16-AS and PLA2G16 were dominantly expressed in porcine adipose tissue, and were differentially expressed between Tibetan pigs and Rongchang pigs. In addition, PLA2G16-AS has a weak sequence conservation among different vertebrates. PLA2G16-AS was also shown to form an RNA-RNA duplex with PLA2G16, and to regulate PLA2G16 expression at the mRNA level. Moreover, the overexpression of PLA2G16-AS increased the stability of PLA2G16 mRNA in porcine cells. We envision that our findings of a NAT for a regulatory gene associated with lipolysis might further our understanding of the molecular regulation of fat deposition. Copyright © 2017. Published by Elsevier B.V.

  6. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils.

    PubMed

    Fang, Hua; Han, Lingxi; Zhang, Houpu; Long, Zhengnan; Cai, Lin; Yu, Yunlong

    2018-05-29

    The dissemination of antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and antibiotic-resistant HPB (ARHPB) from animal feedlot to nearby environment poses a potentially high risk to environmental ecology and public health. Here, a metagenomic analysis was employed to explore the dissemination of ARGs, HPB, and ARHPB from a pig feedlot to surrounding stream and agricultural soils. In total, not detectable (ND)-1,628.4 μg/kg of antibiotic residues, 18 types of ARGs, 48 HPB species, and 216 ARB isolates were detected in all samples. Antibiotic residues from pig feedlot mainly migrated into stream sediments and greenhouse soil. The dominant ARGs and HPB species from pig feedlot spread into stream sediments (tetracycline resistance genes, Clostridium difficile, and Mycobacterium tuberculosis), stream water (multidrug resistance (MDR) genes, Shigella flexneri, and Bordetella pertussis), and greenhouse soil (MDR genes, Bacillus anthracis, and Brucella melitensis). It is concerning that 54.4% of 216 ARB isolates from all samples were potential ARHPB species, and genome sequencing and functional annotation of 4 MDR HPB isolates showed 9 ARG types. Our findings revealed the potential migration and dissemination of antibiotic residues, ARGs, HPB, and ARHPB from pig feedlot to surrounding stream and agricultural soils via pig sewage discharge and manure fertilization. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Development of the first oligonucleotide microarray for global gene expression profiling in guinea pigs: defining the transcription signature of infectious diseases.

    PubMed

    Jain, Ruchi; Dey, Bappaditya; Tyagi, Anil K

    2012-10-02

    The Guinea pig (Cavia porcellus) is one of the most extensively used animal models to study infectious diseases. However, despite its tremendous contribution towards understanding the establishment, progression and control of a number of diseases in general and tuberculosis in particular, the lack of fully annotated guinea pig genome sequence as well as appropriate molecular reagents has severely hampered detailed genetic and immunological analysis in this animal model. By employing the cross-species hybridization technique, we have developed an oligonucleotide microarray with 44,000 features assembled from different mammalian species, which to the best of our knowledge is the first attempt to employ microarray to study the global gene expression profile in guinea pigs. To validate and demonstrate the merit of this microarray, we have studied, as an example, the expression profile of guinea pig lungs during the advanced phase of M. tuberculosis infection. A significant upregulation of 1344 genes and a marked down regulation of 1856 genes in the lungs identified a disease signature of pulmonary tuberculosis infection. We report the development of first comprehensive microarray for studying the global gene expression profile in guinea pigs and validation of its usefulness with tuberculosis as a case study. An important gap in the area of infectious diseases has been addressed and a valuable molecular tool is provided to optimally harness the potential of guinea pig model to develop better vaccines and therapies against human diseases.

  8. Comparing de novo genome assembly: the long and short of it.

    PubMed

    Narzisi, Giuseppe; Mishra, Bud

    2011-04-29

    Recent advances in DNA sequencing technology and their focal role in Genome Wide Association Studies (GWAS) have rekindled a growing interest in the whole-genome sequence assembly (WGSA) problem, thereby, inundating the field with a plethora of new formalizations, algorithms, heuristics and implementations. And yet, scant attention has been paid to comparative assessments of these assemblers' quality and accuracy. No commonly accepted and standardized method for comparison exists yet. Even worse, widely used metrics to compare the assembled sequences emphasize only size, poorly capturing the contig quality and accuracy. This paper addresses these concerns: it highlights common anomalies in assembly accuracy through a rigorous study of several assemblers, compared under both standard metrics (N50, coverage, contig sizes, etc.) as well as a more comprehensive metric (Feature-Response Curves, FRC) that is introduced here; FRC transparently captures the trade-offs between contigs' quality against their sizes. For this purpose, most of the publicly available major sequence assemblers--both for low-coverage long (Sanger) and high-coverage short (Illumina) reads technologies--are compared. These assemblers are applied to microbial (Escherichia coli, Brucella, Wolbachia, Staphylococcus, Helicobacter) and partial human genome sequences (Chr. Y), using sequence reads of various read-lengths, coverages, accuracies, and with and without mate-pairs. It is hoped that, based on these evaluations, computational biologists will identify innovative sequence assembly paradigms, bioinformaticists will determine promising approaches for developing "next-generation" assemblers, and biotechnologists will formulate more meaningful design desiderata for sequencing technology platforms. A new software tool for computing the FRC metric has been developed and is available through the AMOS open-source consortium.

  9. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples.

    PubMed

    Liu, Zhandong; Venkatesh, Santosh S; Maley, Carlo C

    2008-10-30

    Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12) genomes. Virtually all possible (> 98%) 12 bp oligomers appear in vertebrate genomes while < 2% of 19 bp oligomers are present. Other species showed different ranges of > 98% to < 2% of possible oligomers in D. melanogaster (12-17 bp), C. elegans (11-17 bp), A. thaliana (11-17 bp), S. cerevisiae (10-16 bp) and E. coli (9-15 bp). Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously

  10. Characterization of an influenza A virus isolated from pigs during an outbreak of respiratory disease in swine and people during a county fair in the United States.

    PubMed

    Vincent, Amy L; Swenson, Sabrina L; Lager, Kelly M; Gauger, Phillip C; Loiacono, Christina; Zhang, Yan

    2009-05-28

    In August 2007, pigs and people became clinically affected by an influenza-like illness during attendance at an Ohio county fair. Influenza A virus was identified from pigs and people, and the virus isolates were characterized as swine H1N1 similar to swine viruses currently circulating in the U.S. pig population. The swine isolate, A/SW/OH/511445/2007 (OH07), was evaluated in an experimental challenge and transmission study reported here. Our results indicate that the OH07 virus was pathogenic in pigs, was transmissible among pigs, and failed to cross-react with many swine H1 anti-sera. Naturally exposed pigs shed virus as early as 3 days and as long as 7 days after contact with experimentally infected pigs. This suggests there was opportunity for exposure of people handling the pigs at the fair. The molecular analysis of the OH07 isolates demonstrated that the eight gene segments were similar to those of currently circulating triple reassortant swine influenza viruses. However, numerous nucleotide changes leading to amino acid changes were demonstrated in the HA gene and throughout the genome as compared to contemporary swine viruses in the same genetic cluster. It remains unknown if any of the amino acid changes were related to the ability of this virus to infect people. The characteristics of the OH07 virus in our pig experimental model as well as the documented human transmission warrant close monitoring of the spread of this virus in pig and human populations.

  11. Genomic profiling of multiple sequentially acquired tumor metastatic sites from an “exceptional responder” lung adenocarcinoma patient reveals extensive genomic heterogeneity and novel somatic variants driving treatment response. | Center for Cancer Research

    Cancer.gov

    Biswas et al. describe an “exceptional responder” lung adenocarcinoma patient who survived with metastatic lung adenocarcinoma for 7 years while undergoing single or combination ERBB2-directed therapies. Whole-genome, whole-exome, and high-coverage ion-torrent targeted sequencing were used to demonstrate extreme genomic heterogeneity between the lung and lymph node metastatic

  12. Metabolomic phenotyping of a cloned pig model

    PubMed Central

    2011-01-01

    Background Pigs are widely used as models for human physiological changes in intervention studies, because of the close resemblance between human and porcine physiology and the high degree of experimental control when using an animal model. Cloned animals have, in principle, identical genotypes and possibly also phenotypes and this offer an extra level of experimental control which could possibly make them a desirable tool for intervention studies. Therefore, in the present study, we address how phenotype and phenotypic variation is affected by cloning, through comparison of cloned pigs and normal outbred pigs. Results The metabolic phenotype of cloned pigs (n = 5) was for the first time elucidated by nuclear magnetic resonance (NMR)-based metabolomic analysis of multiple bio-fluids including plasma, bile and urine. The metabolic phenotype of the cloned pigs was compared with normal outbred pigs (n = 6) by multivariate data analysis, which revealed differences in the metabolic phenotypes. Plasma lactate was higher for cloned vs control pigs, while multiple metabolites were altered in the bile. However a lower inter-individual variability for cloned pigs compared with control pigs could not be established. Conclusions From the present study we conclude that cloned and normal outbred pigs are phenotypically different. However, it cannot be concluded that the use of cloned animals will reduce the inter-individual variation in intervention studies, though this is based on a limited number of animals. PMID:21859467

  13. Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications.

    PubMed

    Huang, Lei; Ma, Fei; Chapman, Alec; Lu, Sijia; Xie, Xiaoliang Sunney

    2015-01-01

    We present a survey of single-cell whole-genome amplification (WGA) methods, including degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), multiple displacement amplification (MDA), and multiple annealing and looping-based amplification cycles (MALBAC). The key parameters to characterize the performance of these methods are defined, including genome coverage, uniformity, reproducibility, unmappable rates, chimera rates, allele dropout rates, false positive rates for calling single-nucleotide variations, and ability to call copy-number variations. Using these parameters, we compare five commercial WGA kits by performing deep sequencing of multiple single cells. We also discuss several major applications of single-cell genomics, including studies of whole-genome de novo mutation rates, the early evolution of cancer genomes, circulating tumor cells (CTCs), meiotic recombination of germ cells, preimplantation genetic diagnosis (PGD), and preimplantation genomic screening (PGS) for in vitro-fertilized embryos.

  14. Guinea Pig Chymase Is Leucine-specific

    PubMed Central

    Caughey, George H.; Beauchamp, Jeremy; Schlatter, Daniel; Raymond, Wilfred W.; Trivedi, Neil N.; Banner, David; Mauser, Harald; Fingerle, Jürgen

    2008-01-01

    To explore guinea pigs as models of chymase biology, we cloned and expressed the guinea pig ortholog of human chymase. In contrast to rats and mice, guinea pigs appear to express just one chymase, which belongs to the α clade, like primate chymases and mouse mast cell protease-5. The guinea pig enzyme autolyzes at Leu residues in the loop where human chymase autolyzes at Phe. In addition, guinea pig α-chymase selects P1 Leu in a combinatorial peptide library and cleaves Ala-Ala-Pro-Leu-4-nitroanilide but has negligible activity toward substrates with P1 Phe and does not cleave angiotensin I. This contrasts with human chymase, which cleaves after Phe or Tyr, prefers P1 Phe in peptidyl 4-nitroanilides, and avidly hydrolyzes angiotensin I at Phe8 to generate bioactive angiotensin II. The guinea pig enzyme also is inactivated more effectively by α1-antichymotrypsin, which features P1 Leu in the reactive loop. Unlike mouse, rat, and hamster α-chymases, guinea pig chymase lacks elastase-like preference for P1 Val or Ala. Partially humanized A216G guinea pig chymase acquires human-like P1 Phe- and angiotensin-cleaving capacity. Molecular models suggest that the wild type active site is crowded by the Ala216 side chain, which potentially blocks access by bulky P1 aromatic residues. On the other hand, the guinea pig pocket is deeper than in Val-selective chymases, explaining the preference for the longer aliphatic side chain of Leu. These findings are evidence that chymase-like peptidase specificity is sensitive to small changes in structure and provide the first example of a vertebrate Leu-selective peptidase. PMID:18353771

  15. A Pan-HIV Strategy for Complete Genome Sequencing

    PubMed Central

    Yamaguchi, Julie; Alessandri-Gradt, Elodie; Tell, Robert W.; Brennan, Catherine A.

    2015-01-01

    Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e., switching mechanism at 5′ end of RNA transcript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance. PMID:26699702

  16. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.

    This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less

  17. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies

    DOE PAGES

    Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.; ...

    2017-07-18

    This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less

  18. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies.

    PubMed

    Utturkar, Sagar M; Klingeman, Dawn M; Hurt, Richard A; Brown, Steven D

    2017-01-01

    This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.

  19. A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies

    PubMed Central

    Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Richard A.; Brown, Steven D.

    2017-01-01

    This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences. PMID:28769883

  20. Is mammalian chromosomal evolution driven by regions of genome fragility?

    PubMed Central

    Ruiz-Herrera, Aurora; Castresana, Jose; Robinson, Terence J

    2006-01-01

    Background A fundamental question in comparative genomics concerns the identification of mechanisms that underpin chromosomal change. In an attempt to shed light on the dynamics of mammalian genome evolution, we analyzed the distribution of syntenic blocks, evolutionary breakpoint regions, and evolutionary breakpoints taken from public databases available for seven eutherian species (mouse, rat, cattle, dog, pig, cat, and horse) and the chicken, and examined these for correspondence with human fragile sites and tandem repeats. Results Our results confirm previous investigations that showed the presence of chromosomal regions in the human genome that have been repeatedly used as illustrated by a high breakpoint accumulation in certain chromosomes and chromosomal bands. We show, however, that there is a striking correspondence between fragile site location, the positions of evolutionary breakpoints, and the distribution of tandem repeats throughout the human genome, which similarly reflect a non-uniform pattern of occurrence. Conclusion These observations provide further evidence that certain chromosomal regions in the human genome have been repeatedly used in the evolutionary process. As a consequence, the genome is a composite of fragile regions prone to reorganization that have been conserved in different lineages, and genomic tracts that do not exhibit the same levels of evolutionary plasticity. PMID:17156441

  1. Proper joint analysis of summary association statistics requires the adjustment of heterogeneity in SNP coverage pattern.

    PubMed

    Zhang, Han; Wheeler, William; Song, Lei; Yu, Kai

    2017-07-07

    As meta-analysis results published by consortia of genome-wide association studies (GWASs) become increasingly available, many association summary statistics-based multi-locus tests have been developed to jointly evaluate multiple single-nucleotide polymorphisms (SNPs) to reveal novel genetic architectures of various complex traits. The validity of these approaches relies on the accurate estimate of z-score correlations at considered SNPs, which in turn requires knowledge on the set of SNPs assessed by each study participating in the meta-analysis. However, this exact SNP coverage information is usually unavailable from the meta-analysis results published by GWAS consortia. In the absence of the coverage information, researchers typically estimate the z-score correlations by making oversimplified coverage assumptions. We show through real studies that such a practice can generate highly inflated type I errors, and we demonstrate the proper way to incorporate correct coverage information into multi-locus analyses. We advocate that consortia should make SNP coverage information available when posting their meta-analysis results, and that investigators who develop analytic tools for joint analyses based on summary data should pay attention to the variation in SNP coverage and adjust for it appropriately. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.

  2. Exploring pig raising in Bangladesh: implications for public health interventions.

    PubMed

    Nahar, Nazmun; Uddin, Main; Sarkar, Rouha Anamika; Gurley, Emily S; Uddin Khan, M Salah; Hossain, M Jahangir; Sultana, Rebeca; Luby, Stephen P

    2013-01-01

    Pigs are intermediate hosts and potential reservoirs of a number of pathogens that can infect humans. The objectives of this manuscript are to understand pig raising patterns in Bangladesh, interactions between pigs and humans, social stigma and discrimination that pig raisers experience and to explore the implications of these findings for public health interventions. The study team conducted an exploratory qualitative study by interviewing backyard pig raisers and nomadic herders (n=34), observing daily interactions between pigs and humans (n=18) and drawing seasonal diagrams (n=6) with herders to understand the reasons for movement of nomadic herds. Pig raisers had regular close interaction with pigs. They often touched, caressed and fed their pigs which exposed them to pigs' saliva and feces. Herders took their pigs close to human settlements for scavenging. Other domestic animals and poultry shared food and sleeping and scavenging places with pigs. Since pigs are taboo in Islam, a majority of Muslims rejected pig raising and stigmatized pig raisers. This study identified several potential ways for pigs to transmit infectious agents to humans in Bangladesh. Poverty and stigmatization of pig raisers make it difficult to implement health interventions to reduce the risk of such transmissions. Interventions that offer social support to reduce stigma and highlight economic benefits of disease control might interest of pig raisers in accepting interventions targeting pig borne zoonoses.

  3. The ethics of creating genetically modified children using genome editing.

    PubMed

    Ishii, Tetsuya

    2017-12-01

    To review the recent ethical, legal, and social issues surrounding human reproduction involving germline genome editing. Genome editing techniques, such as CRISPR/Cas9, have facilitated genetic modification in human embryos. The most likely purpose of germline genome editing is the prevention of serious genetic disease in offspring. However, complex issues still remain, including irremediable risks to fetuses and future generations, the role of women, the availability of alternatives, long-term follow-up, health insurance coverage, misuse for human enhancement, and the potential effects on adoption. Further discussions, a broad consensus, and appropriate regulations are required before human germline genome editing is introduced into the global society. Before germline genome editing is used for disease prevention, a broad consensus must be formed by carefully discussing its ethical, legal, and social issues.

  4. Islet xenotransplantation from genetically engineered pigs.

    PubMed

    Nagaraju, Santosh; Bottino, Rita; Wijkstrom, Martin; Hara, Hidetaka; Trucco, Massimo; Cooper, David K C

    2013-12-01

    Pigs have emerged as potential sources of islets for clinical transplantation. Wild-type porcine islets (adult and neonatal) transplanted into the portal vein have successfully reversed diabetes in nonhuman primates. However, there is a rapid loss of the transplanted islets on exposure to blood, known as the instant blood-mediated inflammatory reaction (IBMIR), as well as a T-cell response that leads to rejection of the graft. Genetically modified pig islets offer a number of potential advantages, particularly with regard to reducing the IBMIR-related graft loss and protecting the islets from the primate immune response. Emerging data indicate that transgenes specifically targeted to pig β cells using an insulin promoter (in order to maximize target tissue expression while limiting host effects) can be achieved without significant effects on the pig's glucose metabolism. Experience with the transplantation of islets from genetically engineered pigs into nonhuman primates is steadily increasing, and has involved the deletion of pig antigenic targets to reduce the primate humoral response, the expression of transgenes for human complement-regulatory and coagulation-regulatory proteins, and manipulations to reduce the effect of the T-cell response. There is increasing evidence of the advantages of using genetically engineered pigs as sources of islets for future clinical trials.

  5. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    PubMed Central

    Liu, Zhandong; Venkatesh, Santosh S; Maley, Carlo C

    2008-01-01

    Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12) genomes. Virtually all possible (> 98%) 12 bp oligomers appear in vertebrate genomes while < 2% of 19 bp oligomers are present. Other species showed different ranges of > 98% to < 2% of possible oligomers in D. melanogaster (12–17 bp), C. elegans (11–17 bp), A. thaliana (11–17 bp), S. cerevisiae (10–16 bp) and E. coli (9–15 bp). Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden

  6. Endocrine tumours in the guinea pig.

    PubMed

    Künzel, Frank; Mayer, Jörg

    2015-12-01

    Functional endocrine tumours have long been thought to be rare in guinea pigs, although conditions such as hyperthyroidism and hyperadrenocorticism have been documented with increasing frequency so the prevalence of hormonal disorders may have been underestimated. Both the clinical signs and diagnosis of hyperthyroidism in guinea pigs appear to be very similar to those described in feline hyperthyroidism, and methimazole has been proven to be a practical therapy option. Hyperadrenocorticism has been confirmed in several guinea pigs with an adrenocorticotropic hormone stimulation test using saliva as a non-invasive sample matrix; trilostane has been successfully used to treat a guinea pig with hyperadrenocorticism. Insulinomas have only rarely been documented in guinea pigs and one animal was effectively treated with diazoxide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Development of a 690K SNP array in catfish and its application for genetic mapping and validation of the reference genome sequence

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphisms (SNPs) are capable of providing the highest level of genome coverage for genomic and genetic analysis because of their abundance and relatively even distribution in the genome. Such a capacity, however, cannot be achieved without an efficient genotyping platform such ...

  8. Cultural and Economic Motivation of Pig Raising Practices in Bangladesh.

    PubMed

    Nahar, Nazmun; Uddin, Main; Gurley, Emily S; Jahangir Hossain, M; Sultana, Rebeca; Luby, Stephen P

    2015-12-01

    The interactions that pig raisers in Bangladesh have with their pigs could increase the risk of zoonotic disease transmission. Since raising pigs is a cultural taboo to Muslims, we aimed at understanding the motivation for raising pigs and resulting practices that could pose the risk of transmitting disease from pigs to humans in Bangladesh, a predominantly Muslim country. These understandings could help identify acceptable strategies to reduce the risk of disease transmission from pigs to people. To achieve this objective, we conducted 34 in-depth interviews among pig herders and backyard pig raisers in eight districts of Bangladesh. Informants explained that pig raising is an old tradition, embedded in cultural and religious beliefs and practices, the primary livelihood of pig herders, and a supplemental income of backyard pig raisers. To secure additional income, pig raisers sell feces, liver, bile, and other pig parts often used as traditional medicine. Pig raisers have limited economic ability to change the current practices that may put them at risk of exposure to diseases from their pigs. An intervention that improves their financial situation and reduces the risk of zoonotic disease may be of interest to pig raisers.

  9. Cultural and Economic Motivation of Pig Raising Practices in Bangladesh

    PubMed Central

    Nahar, Nazmun; Uddin, Main; Gurley, Emily S.; Hossain, M. Jahangir; Sultana, Rebeca; Luby, Stephen P.

    2015-01-01

    The interactions that pig raisers in Bangladesh have with their pigs could increase the risk of zoonotic disease transmission. Since raising pigs is a cultural taboo to Muslims, we aimed at understanding the motivation for raising pigs and resulting practices that could pose the risk of transmitting disease from pigs to humans in Bangladesh, a predominantly Muslim country. These understandings could help identify acceptable strategies to reduce the risk of disease transmission from pigs to people. To achieve this objective, we conducted 34 in-depth interviews among pig herders and backyard pig raisers in eight districts of Bangladesh. Informants explained that pig raising is an old tradition, embedded in cultural and religious beliefs and practices, the primary livelihood of pig herders, and a supplemental income of backyard pig raisers. To secure additional income, pig raisers sell feces, liver, bile, and other pig parts often used as traditional medicine. Pig raisers have limited economic ability to change the current practices that may put them at risk of exposure to diseases from their pigs. An intervention that improves their financial situation and reduces the risk of zoonotic disease may be of interest to pig raisers. PMID:26122206

  10. Behavioural genetic differences between Chinese and European pigs.

    PubMed

    Chu, Qingpo; Liang, Tingting; Fu, Lingling; Li, Huizhi; Zhou, Bo

    2017-09-01

    Aggression is a heritable trait and genetically related to neurotransmitter-related genes. Behavioural characteristics of some pig breeds are different. To compare the genetic differences between breeds, backtest and aggressive behaviour assessments, and genotyped using Sequenom iPLEX platform were performed in 50 Chinese indigenous Mi pigs and 100 landrace-large white (LLW) cross pigs with 32 SNPs localized in 11 neurotransmitter-related genes. The genetic polymorphisms of 26 SNPs had notable differences (P < 0.05) between Mi and LLW. The most frequent haplotypes were different in DBH, HTR2A, GAD1, HTR2B,MAOA and MAOB genes between Mi and LLW. The mean of backtest scores was significantly lower (P < 0.001) for Mi than LLW pigs. Skin lesion scores were greater (P < 0.01) in LLW pigs than Mi pigs. In this study, we have confirmed that Chinese Mi pigs are less active and less aggressive than European LLW pigs, and the genetic polymorphisms of neurotransmitter-related genes, which have been proved previously associated with aggressive behaviour, have considerable differences between Mi and LLW pigs.

  11. Whole Genome Sequencing of Greater Amberjack (Seriola dumerili) for SNP Identification on Aligned Scaffolds and Genome Structural Variation Analysis Using Parallel Resequencing

    PubMed Central

    Aokic, Jun-ya; Kawase, Junya; Hamada, Kazuhisa; Fujimoto, Hiroshi; Yamamoto, Ikki; Usuki, Hironori

    2018-01-01

    Greater amberjack (Seriola dumerili) is distributed in tropical and temperate waters worldwide and is an important aquaculture fish. We carried out de novo sequencing of the greater amberjack genome to construct a reference genome sequence to identify single nucleotide polymorphisms (SNPs) for breeding amberjack by marker-assisted or gene-assisted selection as well as to identify functional genes for biological traits. We obtained 200 times coverage and constructed a high-quality genome assembly using next generation sequencing technology. The assembled sequences were aligned onto a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map by sequence homology. A total of 215 of the longest amberjack sequences, with a total length of 622.8 Mbp (92% of the total length of the genome scaffolds), were lined up on the yellowtail RH map. We resequenced the whole genomes of 20 greater amberjacks and mapped the resulting sequences onto the reference genome sequence. About 186,000 nonredundant SNPs were successfully ordered on the reference genome. Further, we found differences in the genome structural variations between two greater amberjack populations using BreakDancer. We also analyzed the greater amberjack transcriptome and mapped the annotated sequences onto the reference genome sequence. PMID:29785397

  12. Comparative genomic analysis of seven Mycoplasma hyosynoviae strains

    PubMed Central

    Bumgardner, Eric A; Kittichotirat, Weerayuth; Bumgarner, Roger E; Lawrence, Paulraj K

    2015-01-01

    Infection with Mycoplasma hyosynoviae can result in debilitating arthritis in pigs, particularly those aged 10 weeks or older. Strategies for controlling this pathogen are becoming increasingly important due to the rise in the number of cases of arthritis that have been attributed to infection in recent years. In order to begin to develop interventions to prevent arthritis caused by M. hyosynoviae, more information regarding the specific proteins and potential virulence factors that its genome encodes was needed. However, the genome of this emerging swine pathogen had not been sequenced previously. In this report, we present a comparative analysis of the genomes of seven strains of M. hyosynoviae isolated from different locations in North America during the years 2010 to 2013. We identified several putative virulence factors that may contribute to the ability of this pathogen to adhere to host cells. Additionally, we discovered several prophage genes present within the genomes of three strains that show significant similarity to MAV1, a phage isolated from the related species, M. arthritidis. We also identified CRISPR-Cas and type III restriction and modification systems present in two strains that may contribute to their ability to defend against phage infection. PMID:25693846

  13. Genome Wide Characterization of Simple Sequence Repeats in Cucumber

    USDA-ARS?s Scientific Manuscript database

    The whole genome sequence of the cucumber cultivar Gy14 was recently sequenced at 15× coverage with the Roche 454 Titanium technology. The microsatellite DNA sequences (simple sequence repeats, SSRs) in the assembled scaffolds were computationally explored and characterized. A total of 112,073 SSRs ...

  14. Genetic engineering including superseding microinjection: new ways to make GM pigs.

    PubMed

    Galli, Cesare; Perota, Andrea; Brunetti, Dario; Lagutina, Irina; Lazzari, Giovanna; Lucchini, Franco

    2010-01-01

    Techniques for genetic engineering of swine are providing genetically modified animals of importance for the field of xenotransplantation, animal models for human diseases and for a variety of research applications. Many of these modifications have been directed toward avoiding naturally existing cellular and antibody responses to species-specific antigens. A number of techniques are today available to engineering the genome of mammals, these range from the well established less efficient method of DNA microinjection into the zygote, the use of viral vectors, to the more recent use of somatic cell nuclear transfer. The use of enzymatic engineering that are being developed now will refine the precision of the genetic modification combined with the use of new vectors like transposons. The use of somatic cell nuclear transfer is currently the most efficient way to generate genetically modified pigs. The development of enzymatic engineering with zinc-finger nucleases, recombinases and transposons will revolutionize the field. Nevertheless, genetic engineering in large domesticated animals will remain a challenging task. Recent improvements in several fields of cell and molecular biology offer new promises and opportunities toward an easier, cost-effective and efficient generation of transgenic pigs. © 2010 John Wiley & Sons A/S.

  15. Continuous straw provision reduces prevalence of oesophago-gastric ulcer in pigs slaughtered at 170 kg (heavy pigs).

    PubMed

    Di Martino, Guido; Capello, Katia; Scollo, Annalisa; Gottardo, Flaviana; Stefani, Anna Lisa; Rampin, Fabio; Schiavon, Eliana; Marangon, Stefano; Bonfanti, Lebana

    2013-12-01

    Adopting a 2 × 2 × 2 factorial design, this study evaluated whether continuous straw provision by racks, tail docking and gender (barrows vs. females) have an effect on the prevalence of lung lesions and oesophago-gastric ulcer (OGU) visually scored at slaughter in 635 Italian heavy pigs (169 ± 4 kg). The lung lesions were very low (72% of pigs with score 0), and were not significantly different among the experimental groups. Overall, OGU was diagnosed in 47% of the pigs. The consumption of small amounts of straw (70 g/day/pig) represented a protective factor against the onset of OGU (OR: 0.27). Barrows were more likely than females to have OGU (OR: 1.52), while no significant differences between docked and undocked pigs were detected. Nevertheless, the presence of straw acted as a protective factor particularly in undocked pigs (OR: 0.16), suggesting that in this group the absence of rooting material may have a stronger effect on welfare. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Identification of chromosomal locations associated with tail biting and being a victim of tail-biting behaviour in the domestic pig (Sus scrofa domesticus).

    PubMed

    Wilson, Kaitlin; Zanella, Ricardo; Ventura, Carlos; Johansen, Hanne Lind; Framstad, Tore; Janczak, Andrew; Zanella, Adroaldo J; Neibergs, Holly Louise

    2012-11-01

    The objective of this study was to identify loci associated with tail biting or being a victim of tail biting in Norwegian crossbred pigs using a genome-wide association study with PLINK case-control analysis. DNA was extracted from hair or blood samples collected from 98 trios of crossbred pigs located across Norway. Each trio came from the same pen and consisted of one pig observed to initiate tail biting, one pig which was the victim of tail biting and a control pig which was not involved in either behaviour. DNA was genotyped using the Illumina PorcineSNP60 BeadChip whole-genome single-nucleotide polymorphism (SNP) assay. After quality assurance filtering, 53,952 SNPs remained comprising 74 animals (37 pairs) for the tail biter versus control comparison and 53,419 SNPs remained comprising 80 animals (40 pairs) for the victim of tail biting versus control comparison. An association with being a tail biter was observed on Sus scrofa chromosome 16 (SSC16; p = 1.6 × 10(-5)) and an unassigned chromosome (p = 3.9 × 10(-5)). An association with being the victim of tail biting was observed on Sus scrofa chromosomes 1 (SSC1; p = 4.7 × 10(-5)), 9 (SSC9; p = 3.9 × 10(-5)), 18 (SSC18; p = 7 × 10(-5) for 9,602,511 bp, p = 3.4 × 10(-5) for 9,653,881 bp and p = 5.3 × 10(-5) for 29,577,783 bp) and an unassigned chromosome (p = 6.1 × 10(-5)). An r(2) = 0.96 and a D' = 1 between the two SNPs at 9 Mb on SSC18 indicated extremely high linkage disequilibrium, suggesting that these two markers represent a single locus. These results provide evidence of a moderate genetic association between the propensity to participate in tail-biting behaviour and the likelihood of becoming a victim of this behaviour.

  17. Identification of differentially expressed small RNAs and prediction of target genes in Italian Large White pigs with divergent backfat deposition.

    PubMed

    Davoli, R; Gaffo, E; Zappaterra, M; Bortoluzzi, S; Zambonelli, P

    2018-06-01

    The identification of the molecular mechanisms regulating pathways associated with the potential for fat deposition in pigs can lead to the detection of key genes and markers for the genetic improvement of fat traits. Interactions of microRNAs (miRNAs) with target RNAs regulate gene expression and modulate pathway activation in cells and tissues. In pigs, miRNA discovery is far from saturation, and the knowledge of miRNA expression in backfat tissue and particularly of the impact of miRNA variations is still fragmentary. Using RNA-seq, we characterized the small RNA (sRNA) expression profiles in Italian Large White pig backfat tissue. Comparing two groups of pigs divergent for backfat deposition, we detected 31 significant differentially expressed (DE) sRNAs: 14 up-regulated (including ssc-miR-132, ssc-miR-146b, ssc-miR-221-5p, ssc-miR-365-5p and the moRNA ssc-moR-21-5p) and 17 down-regulated (including ssc-miR-136, ssc-miR-195, ssc-miR-199a-5p and ssc-miR-335). To understand the biological impact of the observed miRNA expression variations, we used the expression correlation of DE miRNA target transcripts expressed in the same samples to define a regulatory network of 193 interactions between DE miRNAs and 40 DE target transcripts showing opposite expression profiles and being involved in specific pathways. Several miRNAs and mRNAs in the network were found to be expressed from backfat-related pig QTL. These results are informative for the complex mechanisms influencing fat traits, shed light on a new aspect of the genetic regulation of fat deposition in pigs and facilitate the prospective implementation of innovative strategies of pig genetic improvement based on genomic markers. © 2018 Stichting International Foundation for Animal Genetics.

  18. Recombinant Swinepox Virus Expressing Glycoprotein E2 of Classical Swine Fever Virus Confers Complete Protection in Pigs upon Viral Challenge.

    PubMed

    Lin, Huixing; Ma, Zhe; Chen, Lei; Fan, Hongjie

    2017-01-01

    Classical swine fever (CSF) is a highly contagious and serious viral disease that affects the pig industry worldwide. The glycoprotein E2 of the classical swine fever virus (CSFV) can induce neutralizing antibodies, and it is widely used for novel vaccine development. To explore the development of a vaccine against CSFV infections, the gene of glycoprotein E2 was inserted into the swinepox virus (SPV) genome by homologous recombination. The culture titers of rSPV-E2 remained at about 4.3 × 10 6 TCID 50 for more than 60 passages in PK15 and swine testis cell lines. The rSPV-E2 could not be replicated in Vero, MDBK or other non-porcine cell lines. After two to three passages, the SPV specific gene of rSPV-E2 could not been detected in the non-porcine cell culture. To evaluate the immunogenicity of rSPV-E2, 20 CSFV seronegative minipigs were immunized with rSPV-E2, a commercial C-strain vaccine, wild-type SPV (wtSPV; negative control), or PBS (a no-challenge control). After challenge with CSFV, pigs in the rSPV-E2-immunized group showed significantly shorter fever duration compared with the wtSPV-treated group ( P  < 0.05). E2-specific antibodies in the rSPV-E2-immunized group increased dramatically after vaccination and increased continuously over time. CSFV genomic copies in the serum of rSPV-E2-immunized pigs were significantly less compared with the wtSPV-treated group at all time points after challenge ( P  < 0.01). Significant reduction in gross lung lesion scores, histopathological liver, spleen, lung, and kidney lesion scores were noted in the rSPV-E2-immunized group compared with the wtSPV-treated group ( P  < 0.01). The results suggested that the recombinant rSPV-E2 provided pigs with significant protection from CSFV infections; thus, rSPV-E2 offers proof of principle for the development of a vaccine for the prevention of CSFV infections in pigs.

  19. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps.

    PubMed

    Georges, Arthur; Li, Qiye; Lian, Jinmin; O'Meally, Denis; Deakin, Janine; Wang, Zongji; Zhang, Pei; Fujita, Matthew; Patel, Hardip R; Holleley, Clare E; Zhou, Yang; Zhang, Xiuwen; Matsubara, Kazumi; Waters, Paul; Graves, Jennifer A Marshall; Sarre, Stephen D; Zhang, Guojie

    2015-01-01

    The lizards of the family Agamidae are one of the most prominent elements of the Australian reptile fauna. Here, we present a genomic resource built on the basis of a wild-caught male ZZ central bearded dragon Pogona vitticeps. The genomic sequence for P. vitticeps, generated on the Illumina HiSeq 2000 platform, comprised 317 Gbp (179X raw read depth) from 13 insert libraries ranging from 250 bp to 40 kbp. After filtering for low-quality and duplicated reads, 146 Gbp of data (83X) was available for assembly. Exceptionally high levels of heterozygosity (0.85 % of single nucleotide polymorphisms plus sequence insertions or deletions) complicated assembly; nevertheless, 96.4 % of reads mapped back to the assembled scaffolds, indicating that the assembly included most of the sequenced genome. Length of the assembly was 1.8 Gbp in 545,310 scaffolds (69,852 longer than 300 bp), the longest being 14.68 Mbp. N50 was 2.29 Mbp. Genes were annotated on the basis of de novo prediction, similarity to the green anole Anolis carolinensis, Gallus gallus and Homo sapiens proteins, and P. vitticeps transcriptome sequence assemblies, to yield 19,406 protein-coding genes in the assembly, 63 % of which had intact open reading frames. Our assembly captured 99 % (246 of 248) of core CEGMA genes, with 93 % (231) being complete. The quality of the P. vitticeps assembly is comparable or superior to that of other published squamate genomes, and the annotated P. vitticeps genome can be accessed through a genome browser available at https://genomics.canberra.edu.au.

  20. Improving Microbial Genome Annotations in an Integrated Database Context

    PubMed Central

    Chen, I-Min A.; Markowitz, Victor M.; Chu, Ken; Anderson, Iain; Mavromatis, Konstantinos; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2013-01-01

    Effective comparative analysis of microbial genomes requires a consistent and complete view of biological data. Consistency regards the biological coherence of annotations, while completeness regards the extent and coverage of functional characterization for genomes. We have developed tools that allow scientists to assess and improve the consistency and completeness of microbial genome annotations in the context of the Integrated Microbial Genomes (IMG) family of systems. All publicly available microbial genomes are characterized in IMG using different functional annotation and pathway resources, thus providing a comprehensive framework for identifying and resolving annotation discrepancies. A rule based system for predicting phenotypes in IMG provides a powerful mechanism for validating functional annotations, whereby the phenotypic traits of an organism are inferred based on the presence of certain metabolic reactions and pathways and compared to experimentally observed phenotypes. The IMG family of systems are available at http://img.jgi.doe.gov/. PMID:23424620

  1. On Computing Breakpoint Distances for Genomes with Duplicate Genes.

    PubMed

    Shao, Mingfu; Moret, Bernard M E

    2017-06-01

    A fundamental problem in comparative genomics is to compute the distance between two genomes in terms of its higher level organization (given by genes or syntenic blocks). For two genomes without duplicate genes, we can easily define (and almost always efficiently compute) a variety of distance measures, but the problem is NP-hard under most models when genomes contain duplicate genes. To tackle duplicate genes, three formulations (exemplar, maximum matching, and any matching) have been proposed, all of which aim to build a matching between homologous genes so as to minimize some distance measure. Of the many distance measures, the breakpoint distance (the number of nonconserved adjacencies) was the first one to be studied and remains of significant interest because of its simplicity and model-free property. The three breakpoint distance problems corresponding to the three formulations have been widely studied. Although we provided last year a solution for the exemplar problem that runs very fast on full genomes, computing optimal solutions for the other two problems has remained challenging. In this article, we describe very fast, exact algorithms for these two problems. Our algorithms rely on a compact integer-linear program that we further simplify by developing an algorithm to remove variables, based on new results on the structure of adjacencies and matchings. Through extensive experiments using both simulations and biological data sets, we show that our algorithms run very fast (in seconds) on mammalian genomes and scale well beyond. We also apply these algorithms (as well as the classic orthology tool MSOAR) to create orthology assignment, then compare their quality in terms of both accuracy and coverage. We find that our algorithm for the "any matching" formulation significantly outperforms other methods in terms of accuracy while achieving nearly maximum coverage.

  2. Pig in the Middle.

    ERIC Educational Resources Information Center

    Mills, Sophie

    2000-01-01

    Explores themes relating to human transition as they appear in "Charlotte's Web" and four other stories using pigs as a subject. Discusses the motifs common to all these texts that recur in the film "Babe." Considers how the cycle of life and death is ceaseless, and pigs symbolize the necessary transitions that people must all…

  3. Genome sequence and genetic diversity of the common carp, Cyprinus carpio.

    PubMed

    Xu, Peng; Zhang, Xiaofeng; Wang, Xumin; Li, Jiongtang; Liu, Guiming; Kuang, Youyi; Xu, Jian; Zheng, Xianhu; Ren, Lufeng; Wang, Guoliang; Zhang, Yan; Huo, Linhe; Zhao, Zixia; Cao, Dingchen; Lu, Cuiyun; Li, Chao; Zhou, Yi; Liu, Zhanjiang; Fan, Zhonghua; Shan, Guangle; Li, Xingang; Wu, Shuangxiu; Song, Lipu; Hou, Guangyuan; Jiang, Yanliang; Jeney, Zsigmond; Yu, Dan; Wang, Li; Shao, Changjun; Song, Lai; Sun, Jing; Ji, Peifeng; Wang, Jian; Li, Qiang; Xu, Liming; Sun, Fanyue; Feng, Jianxin; Wang, Chenghui; Wang, Shaolin; Wang, Baosen; Li, Yan; Zhu, Yaping; Xue, Wei; Zhao, Lan; Wang, Jintu; Gu, Ying; Lv, Weihua; Wu, Kejing; Xiao, Jingfa; Wu, Jiayan; Zhang, Zhang; Yu, Jun; Sun, Xiaowen

    2014-11-01

    The common carp, Cyprinus carpio, is one of the most important cyprinid species and globally accounts for 10% of freshwater aquaculture production. Here we present a draft genome of domesticated C. carpio (strain Songpu), whose current assembly contains 52,610 protein-coding genes and approximately 92.3% coverage of its paleotetraploidized genome (2n = 100). The latest round of whole-genome duplication has been estimated to have occurred approximately 8.2 million years ago. Genome resequencing of 33 representative individuals from worldwide populations demonstrates a single origin for C. carpio in 2 subspecies (C. carpio Haematopterus and C. carpio carpio). Integrative genomic and transcriptomic analyses were used to identify loci potentially associated with traits including scaling patterns and skin color. In combination with the high-resolution genetic map, the draft genome paves the way for better molecular studies and improved genome-assisted breeding of C. carpio and other closely related species.

  4. Sequencing of Seven Haloarchaeal Genomes Reveals Patterns of Genomic Flux

    PubMed Central

    Lynch, Erin A.; Langille, Morgan G. I.; Darling, Aaron; Wilbanks, Elizabeth G.; Haltiner, Caitlin; Shao, Katie S. Y.; Starr, Michael O.; Teiling, Clotilde; Harkins, Timothy T.; Edwards, Robert A.; Eisen, Jonathan A.; Facciotti, Marc T.

    2012-01-01

    We report the sequencing of seven genomes from two haloarchaeal genera, Haloferax and Haloarcula. Ease of cultivation and the existence of well-developed genetic and biochemical tools for several diverse haloarchaeal species make haloarchaea a model group for the study of archaeal biology. The unique physiological properties of these organisms also make them good candidates for novel enzyme discovery for biotechnological applications. Seven genomes were sequenced to ∼20×coverage and assembled to an average of 50 contigs (range 5 scaffolds - 168 contigs). Comparisons of protein-coding gene compliments revealed large-scale differences in COG functional group enrichment between these genera. Analysis of genes encoding machinery for DNA metabolism reveals genera-specific expansions of the general transcription factor TATA binding protein as well as a history of extensive duplication and horizontal transfer of the proliferating cell nuclear antigen. Insights gained from this study emphasize the importance of haloarchaea for investigation of archaeal biology. PMID:22848480

  5. Health Technology Assessment and Private Payers' Coverage of Personalized Medicine

    PubMed Central

    Trosman, Julia R.; Van Bebber, Stephanie L.; Phillips, Kathryn A.

    2011-01-01

    Purpose: Health technology assessment (HTA) plays an increasing role in translating emerging technologies into clinical practice and policy. Private payers are important users of HTA whose decisions impact adoption and use of new technologies. We examine the current use of HTA by private payers in coverage decisions for personalized medicine, a field that is increasingly impacting oncology practice. Study Design: Literature review and semistructured interviews. Methods: We reviewed seven HTA organizations used by private payers in decision making and explored how HTA is used by major US private payers (n = 11) for coverage of personalized medicine. Results: All payers used HTA in coverage decisions, but the number of HTA organizations used by an individual payer ranged from one (n = 1) to all seven (n = 1), with the majority of payers (n = 8) using three or more. Payers relied more extensively on HTAs for reviews of personalized medicine (64%) than for other technologies. Most payers (82%) equally valued expertise of reviewers and rigor of evaluation as HTA strengths, whereas genomic-specific methodology was less important. Key reported shortcomings were limited availability of reviews (73%) and limited inclusion of nonclinical factors (91%), such as cost-effectiveness or adoption of technology in clinical practice. Conclusion: Payers use a range of HTAs in their coverage decisions related to personalized medicine, but the current state of HTA to comprehensively guide those decisions is limited. HTA organizations should address current gaps to improve their relevance to payers and clinicians. Current HTA shortcomings may also inform the national HTA agenda. PMID:21886515

  6. Comparative scaffolding and gap filling of ancient bacterial genomes applied to two ancient Yersinia pestis genomes

    PubMed Central

    Doerr, Daniel; Chauve, Cedric

    2017-01-01

    Yersinia pestis is the causative agent of the bubonic plague, a disease responsible for several dramatic historical pandemics. Progress in ancient DNA (aDNA) sequencing rendered possible the sequencing of whole genomes of important human pathogens, including the ancient Y. pestis strains responsible for outbreaks of the bubonic plague in London in the 14th century and in Marseille in the 18th century, among others. However, aDNA sequencing data are still characterized by short reads and non-uniform coverage, so assembling ancient pathogen genomes remains challenging and often prevents a detailed study of genome rearrangements. It has recently been shown that comparative scaffolding approaches can improve the assembly of ancient Y. pestis genomes at a chromosome level. In the present work, we address the last step of genome assembly, the gap-filling stage. We describe an optimization-based method AGapEs (ancestral gap estimation) to fill in inter-contig gaps using a combination of a template obtained from related extant genomes and aDNA reads. We show how this approach can be used to refine comparative scaffolding by selecting contig adjacencies supported by a mix of unassembled aDNA reads and comparative signal. We applied our method to two Y. pestis data sets from the London and Marseilles outbreaks, for which we obtained highly improved genome assemblies for both genomes, comprised of, respectively, five and six scaffolds with 95 % of the assemblies supported by ancient reads. We analysed the genome evolution between both ancient genomes in terms of genome rearrangements, and observed a high level of synteny conservation between these strains. PMID:29114402

  7. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development.

    PubMed

    Merchant, Hamid A; McConnell, Emma L; Liu, Fang; Ramaswamy, Chandrasekaran; Kulkarni, Rucha P; Basit, Abdul W; Murdan, Sudaxshina

    2011-01-18

    Laboratory animals are often used in drug delivery and research. However, basic information about their gastrointestinal pH, fluid volume, and lymphoid tissue is not completely known. We have investigated these post-mortem in healthy guinea pigs, rabbits and pigs, to assess their suitability for pre-clinical studies by comparing the results with reported human literature. The mean gastric pH (fed ad libitum) was 2.9 and 4.4 in guinea pig and pig, respectively. In contrast, a very low pH (1.6) was recorded in the rabbits. The small intestinal pH was found in the range of 6.4-7.4 in the guinea pigs and rabbits, whereas lower pH (6.1-6.7) was recorded in the pig, which may have consequences for ionisable or pH responsive systems when tested in pig. A relatively lower pH than in the small intestine was found in the caecum (6.0-6.4) and colon (6.1-6.6) of the guinea pig, rabbit and the pig. The water content in the gastrointestinal tract of guinea pig, rabbit and pig was 51g, 153g and 1546g, respectively. When normalized to the body weight, the guinea pig, had larger amounts of water compared to the rabbit and the pig (guinea pig>rabbit>pig); in contrast, a reverse order was found when normalized to per unit length of the gut (guinea pig). The lymphoid tissue distribution (lymphoid follicles, Peyer's patches and long strips) along the length of the gut in these animals is presented; in particular, an abundance of lymphoid tissue was found in pig's stomach, small intestine and caecum, and rabbit's appendix. Their ample presence indicated the potential utility of these animal species in oral and colonic vaccination. These differences in the gastrointestinal parameters of the guinea pig, rabbit and pig reiterates the crucial importance of correctly selecting animal models for pre-clinical studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. The genome of woodland strawberry (Fragaria vesca)

    PubMed Central

    Shulaev, Vladimir; Sargent, Daniel J; Crowhurst, Ross N; Mockler, Todd C; Folkerts, Otto; Delcher, Arthur L; Jaiswal, Pankaj; Mockaitis, Keithanne; Liston, Aaron; Mane, Shrinivasrao P; Burns, Paul; Davis, Thomas M; Slovin, Janet P; Bassil, Nahla; Hellens, Roger P; Evans, Clive; Harkins, Tim; Kodira, Chinnappa; Desany, Brian; Crasta, Oswald R; Jensen, Roderick V; Allan, Andrew C; Michael, Todd P; Setubal, Joao Carlos; Celton, Jean-Marc; Rees, D Jasper G; Williams, Kelly P; Holt, Sarah H; Ruiz Rojas, Juan Jairo; Chatterjee, Mithu; Liu, Bo; Silva, Herman; Meisel, Lee; Adato, Avital; Filichkin, Sergei A; Troggio, Michela; Viola, Roberto; Ashman, Tia-Lynn; Wang, Hao; Dharmawardhana, Palitha; Elser, Justin; Raja, Rajani; Priest, Henry D; Bryant, Douglas W; Fox, Samuel E; Givan, Scott A; Wilhelm, Larry J; Naithani, Sushma; Christoffels, Alan; Salama, David Y; Carter, Jade; Girona, Elena Lopez; Zdepski, Anna; Wang, Wenqin; Kerstetter, Randall A; Schwab, Wilfried; Korban, Schuyler S; Davik, Jahn; Monfort, Amparo; Denoyes-Rothan, Beatrice; Arus, Pere; Mittler, Ron; Flinn, Barry; Aharoni, Asaph; Bennetzen, Jeffrey L; Salzberg, Steven L; Dickerman, Allan W; Velasco, Riccardo; Borodovsky, Mark; Veilleux, Richard E; Folta, Kevin M

    2012-01-01

    The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria × ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted. PMID:21186353

  9. The Chlamydia suis Genome Exhibits High Levels of Diversity, Plasticity, and Mobile Antibiotic Resistance: Comparative Genomics of a Recent Livestock Cohort Shows Influence of Treatment Regimes.

    PubMed

    Seth-Smith, Helena M B; Wanninger, Sabrina; Bachmann, Nathan; Marti, Hanna; Qi, Weihong; Donati, Manuela; di Francesco, Antonietta; Polkinghorne, Adam; Borel, Nicole

    2017-03-01

    Chlamydia suis is an endemic pig pathogen, belonging to a fascinating genus of obligate intracellular pathogens. Of particular interest, this is the only chlamydial species to have naturally acquired genes encoding for tetracycline resistance. To date, the distribution and mobility of the Tet-island are not well understood. Our study focused on whole genome sequencing of 29 C. suis isolates from a recent porcine cohort within Switzerland, combined with data from USA tetracycline-resistant isolates. Our findings show that the genome of C. suis is very plastic, with unprecedented diversity, highly affected by recombination and plasmid exchange. A large diversity of isolates circulates within Europe, even within individual Swiss farms, suggesting that C. suis originated around Europe. New World isolates have more restricted diversity and appear to derive from European isolates, indicating that historical strain transfers to the United States have occurred. The architecture of the Tet-island is variable, but the tetA(C) gene is always intact, and recombination has been a major factor in its transmission within C. suis. Selective pressure from tetracycline use within pigs leads to a higher number of Tet-island carrying isolates, which appear to be lost in the absence of such pressure, whereas the loss or gain of the Tet-island from individual strains is not observed. The Tet-island appears to be a recent import into the genome of C. suis, with a possible American origin. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Assessment of Domestic Pigs, Wild Boars and Feral Hybrid Pigs as Reservoirs of Hepatitis E Virus in Corsica, France.

    PubMed

    Jori, Ferran; Laval, Morgane; Maestrini, Oscar; Casabianca, François; Charrier, François; Pavio, Nicole

    2016-08-20

    In Corsica, extensive pig breeding systems allow frequent interactions between wild boars and domestic pigs, which are suspected to act as reservoirs of several zoonotic diseases including hepatitis E virus (HEV). In this context, 370 sera and 166 liver samples were collected from phenotypically characterized as pure or hybrid wild boars, between 2009 and 2012. In addition, serum and liver from 208 domestic pigs belonging to 30 farms were collected at the abattoir during the end of 2013. Anti-HEV antibodies were detected in 26% (21%-31.6%) of the pure wild boar, 43.5% (31%-56.7%) of hybrid wild boar and 88% (82.6%-91.9%) of the domestic pig sera. In addition, HEV RNA was detected in five wild boars, three hybrid wild boars and two domestic pig livers tested. Our findings provide evidence that both domestic pig and wild boar (pure and hybrid) act as reservoirs of HEV in Corsica, representing an important zoonotic risk for Corsican hunters and farmers but also for the large population of consumers of raw pig liver specialties produced in Corsica. In addition, hybrid wild boars seem to play an important ecological role in the dissemination of HEV between domestic pig and wild boar populations, unnoticed to date, that deserves further investigation.

  11. Economic issues involved in integrating genomic testing into clinical care: the case of genomic testing to guide decision-making about chemotherapy for breast cancer patients.

    PubMed

    Marino, Patricia; Siani, Carole; Bertucci, François; Roche, Henri; Martin, Anne-Laure; Viens, Patrice; Seror, Valérie

    2011-09-01

    The use of taxanes to treat node-positive (N+) breast cancer patients is associated with heterogeneous benefits as well as with morbidity and financial costs. This study aimed to assess the economic impact of using gene expression profiling to guide decision-making about chemotherapy, and to discuss the coverage/reimbursement issues involved. Retrospective data on 246 patients included in a randomised trial (PACS01) were analyzed. Tumours were genotyped using DNA microarrays (189-gene signature), and patients were classified depending on whether or not they were likely to benefit from chemotherapy regimens without taxanes. Standard anthracyclines plus taxane chemotherapy (strategy AT) was compared with the innovative strategy based on genomic testing (GEN). Statistical analyses involved bootstrap methods and sensitivity analyses. The AT and GEN strategies yielded similar 5-year metastasis-free survival rates. In comparison with AT, GEN was cost-effective when genomic testing costs were less than 2,090€. With genomic testing costs higher than 2,919€, AT was cost-effective. Considering a 30% decrease in the price of docetaxel (the patent rights being about to expire), GEN was cost-effective if the cost of genomic testing was in the 0€-1,139€, range; whereas AT was cost-effective if genomic testing costs were higher than 1,891€. The use of gene expression profiling to guide decision-making about chemotherapy for N+ breast cancer patients is potentially cost-effective. Since genomic testing and the drugs targeted in these tests yield greater well-being than the sum of those resulting from separate use, questions arise about how to deal with extra well-being in decision-making about coverage/reimbursement.

  12. Constellation Coverage Analysis

    NASA Technical Reports Server (NTRS)

    Lo, Martin W. (Compiler)

    1997-01-01

    The design of satellite constellations requires an understanding of the dynamic global coverage provided by the constellations. Even for a small constellation with a simple circular orbit propagator, the combinatorial nature of the analysis frequently renders the problem intractable. Particularly for the initial design phase where the orbital parameters are still fluid and undetermined, the coverage information is crucial to evaluate the performance of the constellation design. We have developed a fast and simple algorithm for determining the global constellation coverage dynamically using image processing techniques. This approach provides a fast, powerful and simple method for the analysis of global constellation coverage.

  13. Development of a species-specific TaqMan-MGB real-time PCR assay to quantify Olsenella scatoligenes in pigs offered a chicory root-based diet.

    PubMed

    Li, Xiaoqiong; Jensen, Bent Borg; Højberg, Ole; Noel, Samantha Joan; Canibe, Nuria

    2018-06-16

    Olsenella scatoligenes is the only skatole-producing bacterium isolated from the pig gut. Skatole, produced from microbial degradation of l-tryptophan, is the main contributor to boar taint, an off-odor and off-flavor taint, released upon heating meat from some entire male pigs. An appropriate method for quantifying O. scatoligenes would help investigating the relationship between O. scatoligenes abundance and skatole concentration in the pig gut. Thus, the present study aimed at developing a TaqMan-MGB probe-based, species-specific qPCR assay for rapid quantification of O. scatoligenes. The use of a MGB probe allowed discriminating O. scatoligenes from other closely related species. Moreover, the assay allowed quantifying down to three target gene copies per PCR reaction using genomic DNA-constructed standards, or 1.5 × 10 3  cells/g digesta, using O. scatoligenes-spiked digesta samples as reference standards. The developed assay was applied to assess the impact of dietary chicory roots on O. scatoligenes in the hindgut of pigs. Olsenella scatoligenes made up < 0.01% of the microbial population in the pig hindgut. Interestingly, the highest number of O. scatoligenes was found in young entire male pigs fed high levels of chicory roots. This indicates that the known effect of chicory roots for reducing skatole production is not by inhibiting the growth of this skatole-producing bacterium in the pig hindgut. Accordingly, the abundance of O. scatoligenes in the hindgut does not seem to be an appropriate indicator of boar taint. The present study is the first to describe a TaqMan-MGB probe qPCR assay for detection and quantification of O. scatoligenes in pigs.

  14. Coverage of neonatal screening: failure of coverage or failure of information system

    PubMed Central

    Ades, A; Walker, J; Jones, R; Smith, I

    2001-01-01

    OBJECTIVES—To evaluate neonatal screening coverage using data routinely collected on the laboratory computer.
SUBJECTS—90 850 births in 14 North East Thames community provider districts over a 21 month period.
METHODS—Births notified to local child health computers are electronically copied to the neonatal laboratory computer system, and incoming Guthrie cards are matched against these birth records before testing. The computer records for the study period were processed to estimate the coverage of the screening programme.
RESULTS—Out of an estimated 90 850 births notified to child health computers, all but 746 (0.82%) appeared to have been screened or could be otherwise accounted for (0.14% in non-metropolitan districts, 0.39% in suburban districts, and 1.68% in inner city districts). A further 893 resident infants had been tested, but could not be matched to the list of notified resident births. The calculated programme coverage already exceeds the 99.5% National Audit Programme standard in 7/14 districts. Elsewhere it is not clear whether it is coverage or recording of coverage that is low.
CONCLUSION—Previous reports of low coverage may have been exaggerated. High coverage can be shown using routine information systems. Design of information systems that deliver accurate measures of coverage would be more useful than comparison of inadequately measured coverage with a national standard. The new NHS number project will create an opportunity to achieve this.
 PMID:11369561

  15. Evolution and genome specialization of Brucella suis biovar 2 Iberian lineages.

    PubMed

    Ferreira, Ana Cristina; Tenreiro, Rogério; de Sá, Maria Inácia Corrêa; Dias, Ricardo

    2017-09-12

    Swine brucellosis caused by B. suis biovar 2 is an emergent disease in domestic pigs in Europe. The emergence of this pathogen has been linked to the increase of extensive pig farms and the high density of infected wild boars (Sus scrofa). In Portugal and Spain, the majority of strains share specific molecular characteristics, which allowed establishing an Iberian clonal lineage. However, several strains isolated from wild boars in the North-East region of Spain are similar to strains isolated in different Central European countries. Comparative analysis of five newly fully sequenced B. suis biovar 2 strains belonging to the main circulating clones in Iberian Peninsula, with publicly available Brucella spp. genomes, revealed that strains from Iberian clonal lineage share 74% similarity with those reference genomes. Besides the 210 kb translocation event present in all biovar 2 strains, an inversion with 944 kb was presented in chromosome I of strains from the Iberian clone. At left and right crossover points, the inversion disrupted a TRAP dicarboxylate transporter, DctM subunit, and an integral membrane protein TerC. The gene dctM is well conserved in Brucella spp. except in strains from the Iberian clonal lineage. Intraspecies comparative analysis also exposed a number of biovar-, haplotype- and strain-specific insertion-deletion (INDELs) events and single nucleotide polymorphisms (SNPs) that could explain differences in virulence and host specificities. Most discriminative mutations were associated to membrane related molecules (29%) and enzymes involved in catabolism processes (20%). Molecular identification of both B. suis biovar 2 clonal lineages could be easily achieved using the target-PCR procedures established in this work for the evaluated INDELs. Whole-genome analyses supports that the B. suis biovar 2 Iberian clonal lineage evolved from the Central-European lineage and suggests that the genomic specialization of this pathogen in the Iberian Peninsula

  16. 9 CFR 113.38 - Guinea pig safety test.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Guinea pig safety test. 113.38 Section... Standard Procedures § 113.38 Guinea pig safety test. The guinea pig safety test provided in this section... be injected either intramuscularly or subcutaneously into each of two guinea pigs and the animals...

  17. 9 CFR 113.38 - Guinea pig safety test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Guinea pig safety test. 113.38 Section... Standard Procedures § 113.38 Guinea pig safety test. The guinea pig safety test provided in this section... be injected either intramuscularly or subcutaneously into each of two guinea pigs and the animals...

  18. 9 CFR 113.38 - Guinea pig safety test.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Guinea pig safety test. 113.38 Section... Standard Procedures § 113.38 Guinea pig safety test. The guinea pig safety test provided in this section... be injected either intramuscularly or subcutaneously into each of two guinea pigs and the animals...

  19. 9 CFR 113.38 - Guinea pig safety test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Guinea pig safety test. 113.38 Section... Standard Procedures § 113.38 Guinea pig safety test. The guinea pig safety test provided in this section... be injected either intramuscularly or subcutaneously into each of two guinea pigs and the animals...

  20. 9 CFR 113.38 - Guinea pig safety test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Guinea pig safety test. 113.38 Section... Standard Procedures § 113.38 Guinea pig safety test. The guinea pig safety test provided in this section... be injected either intramuscularly or subcutaneously into each of two guinea pigs and the animals...

  1. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei

    PubMed Central

    Yu, Yang; Zhang, Xiaojun; Yuan, Jianbo; Li, Fuhua; Chen, Xiaohan; Zhao, Yongzhen; Huang, Long; Zheng, Hongkun; Xiang, Jianhai

    2015-01-01

    The Pacific white shrimp Litopenaeus vannamei is the dominant crustacean species in global seafood mariculture. Understanding the genome and genetic architecture is useful for deciphering complex traits and accelerating the breeding program in shrimp. In this study, a genome survey was conducted and a high-density linkage map was constructed using a next-generation sequencing approach. The genome survey was used to identify preliminary genome characteristics and to generate a rough reference for linkage map construction. De novo SNP discovery resulted in 25,140 polymorphic markers. A total of 6,359 high-quality markers were selected for linkage map construction based on marker coverage among individuals and read depths. For the linkage map, a total of 6,146 markers spanning 4,271.43 cM were mapped to 44 sex-averaged linkage groups, with an average marker distance of 0.7 cM. An integration analysis linked 5,885 genome scaffolds and 1,504 BAC clones to the linkage map. Based on the high-density linkage map, several QTLs for body weight and body length were detected. This high-density genetic linkage map reveals basic genomic architecture and will be useful for comparative genomics research, genome assembly and genetic improvement of L. vannamei and other penaeid shrimp species. PMID:26503227

  2. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins.

    PubMed

    Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K

    2018-04-15

    African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia

  3. Immunization of Pigs by DNA Prime and Recombinant Vaccinia Virus Boost To Identify and Rank African Swine Fever Virus Immunogenic and Protective Proteins

    PubMed Central

    2018-01-01

    ABSTRACT African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant

  4. Virtual Genome Walking across the 32 Gb Ambystoma mexicanum genome; assembling gene models and intronic sequence.

    PubMed

    Evans, Teri; Johnson, Andrew D; Loose, Matthew

    2018-01-12

    Large repeat rich genomes present challenges for assembly using short read technologies. The 32 Gb axolotl genome is estimated to contain ~19 Gb of repetitive DNA making an assembly from short reads alone effectively impossible. Indeed, this model species has been sequenced to 20× coverage but the reads could not be conventionally assembled. Using an alternative strategy, we have assembled subsets of these reads into scaffolds describing over 19,000 gene models. We call this method Virtual Genome Walking as it locally assembles whole genome reads based on a reference transcriptome, identifying exons and iteratively extending them into surrounding genomic sequence. These assemblies are then linked and refined to generate gene models including upstream and downstream genomic, and intronic, sequence. Our assemblies are validated by comparison with previously published axolotl bacterial artificial chromosome (BAC) sequences. Our analyses of axolotl intron length, intron-exon structure, repeat content and synteny provide novel insights into the genic structure of this model species. This resource will enable new experimental approaches in axolotl, such as ChIP-Seq and CRISPR and aid in future whole genome sequencing efforts. The assembled sequences and annotations presented here are freely available for download from https://tinyurl.com/y8gydc6n . The software pipeline is available from https://github.com/LooseLab/iterassemble .

  5. Genomic analysis of the blood attributed to Louis XVI (1754-1793), king of France.

    PubMed

    Olalde, Iñigo; Sánchez-Quinto, Federico; Datta, Debayan; Marigorta, Urko M; Chiang, Charleston W K; Rodríguez, Juan Antonio; Fernández-Callejo, Marcos; González, Irene; Montfort, Magda; Matas-Lalueza, Laura; Civit, Sergi; Luiselli, Donata; Charlier, Philippe; Pettener, Davide; Ramírez, Oscar; Navarro, Arcadi; Himmelbauer, Heinz; Marquès-Bonet, Tomàs; Lalueza-Fox, Carles

    2014-04-24

    A pyrographically decorated gourd, dated to the French Revolution period, has been alleged to contain a handkerchief dipped into the blood of the French king Louis XVI (1754-1793) after his beheading but recent analyses of living males from two Bourbon branches cast doubts on its authenticity. We sequenced the complete genome of the DNA contained in the gourd at low coverage (~2.5×) with coding sequences enriched at a higher ~7.3× coverage. We found that the ancestry of the gourd's genome does not seem compatible with Louis XVI's known ancestry. From a functional perspective, we did not find an excess of alleles contributing to height despite being described as the tallest person in Court. In addition, the eye colour prediction supported brown eyes, while Louis XVI had blue eyes. This is the first draft genome generated from a person who lived in a recent historical period; however, our results suggest that this sample may not correspond to the alleged king.

  6. Anatomic Peculiarities of Pig and Human Liver.

    PubMed

    Nykonenko, Andriy; Vávra, Petr; Zonča, Pavel

    2017-02-01

    Many investigations on surgical methods and medical treatment are currently done on pigs. This is possible because the pig is sufficiently close genetically to humans. In recent years, progress in liver surgery has opened new possibilities in surgical treatment of liver diseases. Because the methods are relatively novel, various improvements are still needed, and it is thus helpful to conduct experimental surgeries on pig livers. We reviewed the literature to compare the anatomic and functional features of pig and human livers, information that will be of great importance for improving surgical techniques. During the literature review, we used various sources, such as PubMed, Scopus, and veterinary journals. Our results were summarized in diagrams to facilitate understanding of the vascular structure and biliary systems. We conclude that, although the shapes of the human and pig livers are quite different, the pig liver is divided into the same number of segments as the human liver, which also shows a common structure of the vascular system. Thus, with the anatomic and structural features of the pig liver taken into account, this animal model can be used in experimental hepatic surgery.

  7. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics.

    PubMed

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica . All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/.

  8. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics

    PubMed Central

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica. All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/. PMID:28261563

  9. Cyclic cidofovir (cHPMPC) prevents congenital cytomegalovirus infection in a guinea pig model

    PubMed Central

    Schleiss, Mark R; Anderson, Jodi L; McGregor, Alistair

    2006-01-01

    Background Congenital cytomegalovirus (CMV) infection is a major public health problem. Antiviral therapies administered during pregnancy might prevent vertical CMV transmission and disease in newborns, but these agents have not been evaluated in clinical trials. The guinea pig model of congenital CMV infection was therefore used to test the hypothesis that antiviral therapy, using the agent agent cyclic cidofovir (cHPMPC), could prevent congenital CMV infection. Results Pregnant outbred Hartley guinea pigs were challenged in the early-third trimester with guinea pig CMV (GPCMV) and treated with placebo, or the antiviral agent, cyclic cidofovir. To optimize detection of vertical infection, an enhanced green fluorescent protein (eGFP)-tagged virus was employed. Compared to placebo, cyclic cidofovir-treated dams and pups had reduced mortality following GPCMV challenge. The magnitude of GPCMV-induced maternal and fetal mortality in this study was reduced from 5/25 animals in the placebo group to 0/21 animals in the treatment group (p = 0.05, Fisher's exact test). By viral culture assay, antiviral therapy was found to completely prevent GPCMV transmission to the fetus. In control pups, 5/19 (26%) were culture-positive for GPCMV, compared to 0/16 of pups in the cyclic cidofovir treatment group (p < 0.05, Fisher's exact test). Conclusion Antiviral therapy with cyclic cidofovir improves pregnancy outcomes in guinea pigs, and eliminates congenital CMV infection, following viral challenge in the third trimester. This study also demonstrated that an eGFP-tagged recombinant virus, with the reporter gene inserted into a dispensable region of the viral genome, retained virulence, including the potential for congenital transmission, facilitating tissue culture-based detection of congenital infection. These observations provide support for clinical trials of antivirals for reduction of congenital CMV infection. PMID:16509982

  10. ФC31 Integrase-Mediated Isolation and Characterization of Novel Safe Harbors for Transgene Expression in the Pig Genome

    PubMed Central

    Bi, Yanzhen; Hua, Zaidong; Ren, Hongyan; Zhang, Liping; Xiao, Hongwei; Liu, Ximei; Hua, Wenjun; Mei, Shuqi; Molenaar, Adrian; Laible, Götz; Zheng, Xinmin

    2018-01-01

    Programmable nucleases have allowed the rapid development of gene editing and transgenics, but the technology still suffers from the lack of predefined genetic loci for reliable transgene expression and maintenance. To address this issue, we used ФC31 integrase to navigate the porcine genome and identify the pseudo attP sites suitable as safe harbors for sustained transgene expression. The combined ФC31 integrase mRNA and an enhanced green fluorescence protein (EGFP) reporter donor were microinjected into one-cell zygotes for transgene integration. Among the resulting seven EGFP-positive piglets, two had transgene integrations at pseudo attP sites, located in an intergenic region of chromosome 1 (chr1-attP) and the 6th intron of the TRABD2A gene on chromosome 3 (chr3-attP), respectively. The integration structure was determined by TAIL-PCR and Southern blotting. Primary fibroblast cells were isolated from the two piglets and examined using fluorescence-activated cell sorting (FACS) and enzyme-linked immunosorbent assay (ELISA), which demonstrated that the chr1-attP site was more potent than chr3-attP site in supporting the EGFP expression. Both piglets had green feet under the emission of UV light, and pelleted primary fibroblast cells were green-colored under natural light, corroborating that the two pseudo attP sites are beneficial to transgene expression. The discovery of these two novel safe harbors for robust and durable transgene expression will greatly facilitate the use of transgenic pigs for basic, biomedical and agricultural studies and applications. PMID:29300364

  11. Decomposition Rate and Pattern in Hanging Pigs.

    PubMed

    Lynch-Aird, Jeanne; Moffatt, Colin; Simmons, Tal

    2015-09-01

    Accurate prediction of the postmortem interval requires an understanding of the decomposition process and the factors acting upon it. A controlled experiment, over 60 days at an outdoor site in the northwest of England, used 20 freshly killed pigs (Sus scrofa) as human analogues to study decomposition rate and pattern. Ten pigs were hung off the ground and ten placed on the surface. Observed differences in the decomposition pattern required a new decomposition scoring scale to be produced for the hanging pigs to enable comparisons with the surface pigs. The difference in the rate of decomposition between hanging and surface pigs was statistically significant (p=0.001). Hanging pigs reached advanced decomposition stages sooner, but lagged behind during the early stages. This delay is believed to result from lower variety and quantity of insects, due to restricted beetle access to the aerial carcass, and/or writhing maggots falling from the carcass. © 2015 American Academy of Forensic Sciences.

  12. Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the haemagglutinin of pandemic swine origin H1N1 influenza A virus.

    PubMed

    Klingbeil, Katharina; Lange, Elke; Teifke, Jens P; Mettenleiter, Thomas C; Fuchs, Walter

    2014-04-01

    Pigs can be severely harmed by influenza, and represent important reservoir hosts, in which new human pathogens such as the recent pandemic swine-origin H1N1 influenza A virus can arise by mutation and reassortment of genome segments. To obtain novel, safe influenza vaccines for pigs, and to investigate the antigen-specific immune response, we modified an established live-virus vaccine against Aujeszky's disease of swine, pseudorabies virus (PrV) strain Bartha (PrV-Ba), to serve as vector for the expression of haemagglutinin (HA) of swine-origin H1N1 virus. To facilitate transgene insertion, the genome of PrV-Ba was cloned as a bacterial artificial chromosome. HA expression occurred under control of the human or murine cytomegalovirus immediate early promoters (P-HCMV, P-MCMV), but could be substantially enhanced by synthetic introns and adaptation of the codon usage to that of PrV. However, despite abundant expression, the heterologous glycoprotein was not detectably incorporated into mature PrV particles. Replication of HA-expressing PrV in cell culture was only slightly affected compared to that of the parental virus strain. A single immunization of pigs with the PrV vector expressing the codon-optimized HA gene under control of P-MCMV induced high levels of HA-specific antibodies. The vaccinated animals were protected from clinical signs after challenge with a related swine-origin H1N1 influenza A virus, and challenge virus shedding was significantly reduced.

  13. Len Gen: The international lentil genome sequencing project

    USDA-ARS?s Scientific Manuscript database

    We have been sequencing CDC Redberry using NGS of paired-end and mate-pair libraries over a wide range of sizes and technologies. The most recent draft (v0.7) of approximately 150x coverage produced scaffolds covering over half the genome (2.7 Gb of the expected 4.3 Gb). Long reads from PacBio sequ...

  14. Energy and nutrient cycling in pig production systems

    NASA Astrophysics Data System (ADS)

    Lammers, Peter J.

    United States pig production is centered in Iowa and is a major influence on the economic and ecological condition of that community. A pig production system includes buildings, equipment, production of feed ingredients, feed processing, and nutrient management. Although feed is the largest single input into a pig production system, nearly 30% of the non-solar energy use of a conventional--mechanically ventilated buildings with liquid manure handling--pig production system is associated with constructing and operating the pig facility. Using bedded hoop barns for gestating sows and grow-finish pigs reduces construction resource use and construction costs of pig production systems. The hoop based systems also requires approximately 40% less non-solar energy to operate as the conventional system although hoop barn-based systems may require more feed. The total non-solar energy input associated with one 136 kg pig produced in a conventional farrow-to-finish system in Iowa and fed a typical corn-soybean meal diet that includes synthetic lysine and exogenous phytase is 967.9 MJ. Consuming the non-solar energy results in emissions of 79.8 kg CO2 equivalents. Alternatively producing the same pig in a system using bedded hoop barns for gestating sows and grow-finish pigs requires 939.8 MJ/pig and results in emission of 70.2 kg CO2 equivalents, a reduction of 3 and 12% respectively. Hoop barn-based swine production systems can be managed to use similar or less resources than conventional confinement systems. As we strive to optimally allocate non-solar energy reserves and limited resources, support for examining and improving alternative systems is warranted.

  15. Avian Influenza Vaccination in Chickens and Pigs with Replication-Competent Adenovirus–Free Human Recombinant Adenovirus 5

    PubMed Central

    Toro, Haroldo; van Ginkel, Frederik W.; Tang, De-chu C.; Schemera, Bettina; Rodning, Soren; Newton, Joseph

    2010-01-01

    SUMMARY Protective immunity to avian influenza (AI) virus can be elicited in chickens by in ovo or intramuscular vaccination with replication-competent adenovirus (RCA)-free human recombinant adenovirus serotype 5 (Ad5) encoding AI virus H5 (AdTW68.H5) or H7 (AdCN94.H7) hemagglutinins. We evaluated bivalent in ovo vaccination with AdTW68.H5 and AdCN94.H7 and determined that vaccinated chickens developed robust hemagglutination inhibition (HI) antibody levels to both H5 and H7 AI strains. Additionally, we evaluated immune responses of 1-day-old chickens vaccinated via spray with AdCN94.H7. These birds showed increased immunoglobulin A responses in lachrymal fluids and increased interleukin-6 expression in Harderian gland–derived lymphocytes. However, specific HI antibodies were not detected in the sera of these birds. Because pigs might play a role as a “mixing vessel” for the generation of pandemic influenza viruses we explored the use of RCA-free adenovirus technology to immunize pigs against AI virus. Weanling piglets vaccinated intramuscularly with a single dose of RCA-free AdTW68.H5 developed strong systemic antibody responses 3 wk postvaccination. Intranasal application of AdTW68.H5 in piglets resulted in reduced vaccine coverage, i.e., 33% of pigs (2/6) developed an antibody response, but serum antibody levels in those successfully immunized animals were similar to intramuscularly vaccinated animals. PMID:20521636

  16. The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement

    PubMed Central

    Peng, Yanhui; Loparev, Vladimir; Batra, Dhwani; Bowden, Katherine E.; Burroughs, Mark; Cassiday, Pamela K.; Davis, Jamie K.; Johnson, Taccara; Juieng, Phalasy; Knipe, Kristen; Mathis, Marsenia H.; Pruitt, Andrea M.; Rowe, Lori; Sheth, Mili; Tondella, M. Lucia; Williams, Margaret M.

    2017-01-01

    ABSTRACT Despite high pertussis vaccine coverage, reported cases of whooping cough (pertussis) have increased over the last decade in the United States and other developed countries. Although Bordetella pertussis is well known for its limited gene sequence variation, recent advances in long-read sequencing technology have begun to reveal genomic structural heterogeneity among otherwise indistinguishable isolates, even within geographically or temporally defined epidemics. We have compared rearrangements among complete genome assemblies from 257 B. pertussis isolates to examine the potential evolution of the chromosomal structure in a pathogen with minimal gene nucleotide sequence diversity. Discrete changes in gene order were identified that differentiated genomes from vaccine reference strains and clinical isolates of various genotypes, frequently along phylogenetic boundaries defined by single nucleotide polymorphisms. The observed rearrangements were primarily large inversions centered on the replication origin or terminus and flanked by IS481, a mobile genetic element with >240 copies per genome and previously suspected to mediate rearrangements and deletions by homologous recombination. These data illustrate that structural genome evolution in B. pertussis is not limited to reduction but also includes rearrangement. Therefore, although genomes of clinical isolates are structurally diverse, specific changes in gene order are conserved, perhaps due to positive selection, providing novel information for investigating disease resurgence and molecular epidemiology. IMPORTANCE Whooping cough, primarily caused by Bordetella pertussis, has resurged in the United States even though the coverage with pertussis-containing vaccines remains high. The rise in reported cases has included increased disease rates among all vaccinated age groups, provoking questions about the pathogen's evolution. The chromosome of B. pertussis includes a large number of repetitive mobile

  17. Mapping the yeast genome by melting in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Welch, Robert L.; Czolkos, Ilja; Sladek, Rob; Reisner, Walter

    2012-02-01

    Optical mapping of DNA provides large-scale genomic information that can be used to assemble contigs from next-generation sequencing, and to detect re-arrangements between single cells. A recent optical mapping technique called denaturation mapping has the unique advantage of using physical principles rather than the action of enzymes to probe genomic structure. The absence of reagents or reaction steps makes denaturation mapping simpler than other protocols. Denaturation mapping uses fluorescence microscopy to image the pattern of partial melting along a DNA molecule extended in a channel of cross-section ˜100nm at the heart of a nanofluidic device. We successfully aligned melting maps from single DNA molecules to a theoretical map of the yeast genome (11.6Mbp) to identify their location. By aligning hundreds of molecules we assembled a consensus melting map of the yeast genome with 95% coverage.

  18. New phenotypes for new breeding goals in pigs.

    PubMed

    Merks, J W M; Mathur, P K; Knol, E F

    2012-04-01

    Pig breeders in the past have adopted their breeding goals according to the needs of the producers, processors and consumers and have made remarkable genetic improvements in the traits of interest. However, it is becoming more and more challenging to meet the market needs and expectations of consumers and in general of the citizens. In view of the current and future trends, the breeding goals have to include several additional traits and new phenotypes. These phenotypes include (a) vitality from birth to slaughter, (b) uniformity at different levels of production, (c) robustness, (d) welfare and health and (e) phenotypes to reduce carbon footprint. Advancements in management, genomics, statistical models and other technologies provide opportunities for recording these phenotypes. These new developments also provide opportunities for making effective use of the new phenotypes for faster genetic improvement to meet the newly adapted breeding goals.

  19. Drug Coverage (Part D)

    MedlinePlus

    ... insurance Find health & drug plans Drug coverage (Part D) How to get drug coverage Choose from 2 ... drug coverage. You can choose a Medicare Part D plan. Or, you can choose a Medicare Advantage ...

  20. Landscape of genomic diversity and trait discovery in soybean.

    PubMed

    Valliyodan, Babu; Dan Qiu; Patil, Gunvant; Zeng, Peng; Huang, Jiaying; Dai, Lu; Chen, Chengxuan; Li, Yanjun; Joshi, Trupti; Song, Li; Vuong, Tri D; Musket, Theresa A; Xu, Dong; Shannon, J Grover; Shifeng, Cheng; Liu, Xin; Nguyen, Henry T

    2016-03-31

    Cultivated soybean [Glycine max (L.) Merr.] is a primary source of vegetable oil and protein. We report a landscape analysis of genome-wide genetic variation and an association study of major domestication and agronomic traits in soybean. A total of 106 soybean genomes representing wild, landraces, and elite lines were re-sequenced at an average of 17x depth with a 97.5% coverage. Over 10 million high-quality SNPs were discovered, and 35.34% of these have not been previously reported. Additionally, 159 putative domestication sweeps were identified, which includes 54.34 Mbp (4.9%) and 4,414 genes; 146 regions were involved in artificial selection during domestication. A genome-wide association study of major traits including oil and protein content, salinity, and domestication traits resulted in the discovery of novel alleles. Genomic information from this study provides a valuable resource for understanding soybean genome structure and evolution, and can also facilitate trait dissection leading to sequencing-based molecular breeding.