Science.gov

Sample records for cowpox virus combine

  1. Cowpox Virus in Llama, Italy

    PubMed Central

    Brozzi, Alberto; Eleni, Claudia; Polici, Nicola; D’Alterio, Gianlorenzo; Carletti, Fabrizio; Scicluna, Maria Teresa; Castilletti, Concetta; Capobianchi, Maria R.; Di Caro, Antonino; Autorino, Gian Luca; Amaddeo, Demetrio

    2011-01-01

    Cowpox virus (CPXV) was isolated from skin lesions of a llama on a farm in Italy. Transmission electron microscopy showed brick-shaped particles consistent with orthopoxviruses. CPXV-antibodies were detected in llama and human serum samples; a CPXV isolate had a hemagglutinin sequence identical to CPXV-MonKre08/1–2-3 strains isolated from banded mongooses in Germany. PMID:21801638

  2. Fatal Cowpox Virus Infection in an Aborted Foal.

    PubMed

    Franke, Annika; Kershaw, Olivia; Jenckel, Maria; König, Lydia; Beer, Martin; Hoffmann, Bernd; Hoffmann, Donata

    2016-06-01

    The article describes the isolation of a cowpox virus (CPXV) isolate originating from a horse. The skin of a foal, aborted in the third trimester, displayed numerous cutaneous papules. The histological examination showed A-type inclusion bodies within the lesion, typical for CPXV infections. This suspicion was confirmed by real-time PCR where various organs were analyzed. From skin samples, virus isolation was successfully performed. Afterwards, the whole genome of this new isolate "CPXV Amadeus" was sequenced by next-generation technology. Phylogenetic analysis clearly showed that "CPXV Amadeus" belongs to the "CPXV-like 1" clade. To our opinion, the study provides important additional information on rare accidental CPXV infections. From the natural hosts, the voles, species such as rats, cats, or different zoo animals are occasionally infected, but until now only two horse cases are described. In addition, there are new insights toward congenital CPXV infections. PMID:27159333

  3. Genetic diversity of feline cowpox virus, Germany 2000-2008.

    PubMed

    Kaysser, Philipp; von Bomhard, Wolf; Dobrzykowski, Linda; Meyer, Hermann

    2010-03-24

    Recent cowpox virus (CPXV) infections of humans in Europe transmitted from cats and pet rats have risen public awareness of this rare zoonosis. Based on serosurveys wild rodents are regarded as primary reservoir hosts. Cats can become infected while hunting and could therefore serve as a sentinel for CPXV strains circulating in wild rodents. In a retrospective study we analysed 73 formalin-fixed paraffin-embedded skin samples from cats with a histologically proven CPXV infection. Specimens had been collected in different parts of Germany during 2000-2008. Following DNA extraction part of the hemagglutinin gene was amplified and sequenced from 72 samples. A phylogenetic analysis was inferred resulting in a total of 21 different CPXV genetic variants. The geographic distribution was imposed on a map. PMID:19879071

  4. Cowpox virus infection in natural field vole Microtus agrestis populations: significant negative impacts on survival

    PubMed Central

    Burthe, Sarah; Telfer, Sandra; Begon, Michael; Bennett, Malcolm; Smith, Andrew; Lambin, Xavier

    2010-01-01

    Summary Cowpox virus is an endemic virus circulating in populations of wild rodents. It has been implicated as a potential cause of population cycles in field voles Microtus agrestis L., in Britain, owing to a delayed density-dependent pattern in prevalence, but its impact on field vole demographic parameters is unknown. This study tests the hypothesis that wild field voles infected with cowpox virus have a lower probability of survival than uninfected individuals. The effect of cowpox virus infection on the probability of an individual surviving to the next month was investigated using longitudinal data collected over 2 years from four grassland sites in Kielder Forest, UK. This effect was also investigated at the population level, by examining whether infection prevalence explained temporal variation in survival rates, once other factors influencing survival had been controlled for. Individuals with a probability of infection, P(I), of 1 at a time when base survival rate was at median levels had a 22·4% lower estimated probability of survival than uninfected individuals, whereas those with a P(I) of 0·5 had a 10·4% lower survival. At the population level, survival rates also decreased with increasing cowpox prevalence, with lower survival rates in months of higher cowpox prevalence. Simple matrix projection models with 28 day time steps and two stages, with 71% of voles experiencing cowpox infection in their second month of life (the average observed seroprevalence at the end of the breeding season) predict a reduction in 28-day population growth rate during the breeding season from λ = 1·62 to 1·53 for populations with no cowpox infection compared with infected populations. This negative correlation between cowpox virus infection and field vole survival, with its potentially significant effect on population growth rate, is the first for an endemic pathogen in a cyclic population of wild rodents. PMID:18177331

  5. In vivo imaging of cidofovir treatment of cowpox virus infection.

    PubMed

    Goff, Arthur; Twenhafel, Nancy; Garrison, Aura; Mucker, Eric; Lawler, James; Paragas, Jason

    2007-09-01

    Variola virus and other members of the genus Orthopoxviruses constitute a prominent bioterrorism and public health threat. Treatment with the anti-viral drug cidofovir inhibits replication of orthopoxviruses in vitro and in vivo. In this study, we visualized the effect of cidofovir on viral kinetics in orthopoxvirus infected mice by using whole-body fluorescence imaging (FI). We engineered a cowpox virus (CPV) expressing the enhanced green fluorescent protein (GFP). Single-step growth curves and calculated 50% lethal doses (LD(50)) of wild-type CPX (Wt-CPV) and GFP-expressing CPX (GFP-CPV) were comparable. Whole-body FI first detected GFP fluorescence in the mesenteric tissue of untreated animals on post-infection day (PID) 1. On PID 3 GFP signal was detected throughout the mesentery, in all abdominal organs by PID 5 and in most major organs, except for the heart and brain by PID 6. Infected animals treated with 25mg/kg of cidofovir also began showing signs of viral replication on PID 1, however, the fluorescent signal was limited only to discrete foci throughout the course of the infection. This work describes the first use of an established Orthopox model of infection to evaluate drug efficacy and track virus progression on a macroscopic level. PMID:17524511

  6. Amplification of 'variola virus-specific' sequences in German cowpox virus isolates.

    PubMed

    Meyer, H; Neubauer, H; Pfeffer, M

    2002-02-01

    In 1995 a polymerase chain reaction (PCR) protocol describing the specific detection of variola virus, the causative agent of smallpox, was published by Knight and others. Virulent variola major strains could be differentiated from less virulent variola minor strains because of the distinct amplicon sizes. Here, we applied this PCR protocol to DNA from various orthopoxvirus isolates. There was no amplification with the orthopoxvirus species vaccinia, monkeypox, mousepox, or camelpox viruses. However, amplification was observed in six out of 15 cowpox virus strains investigated. The size of the amplicons corresponded exactly with the size described for variola minor strains and the nucleotide sequence identity accounted for 97%. Findings are discussed with respect to the evolution of orthopoxvirus species assuming that variola virus most probably stems from a rodent-transmitted cowpox virus-like progenitor. PMID:11911586

  7. Genome-wide comparison of cowpox viruses reveals a new clade related to Variola virus.

    PubMed

    Dabrowski, Piotr Wojtek; Radonić, Aleksandar; Kurth, Andreas; Nitsche, Andreas

    2013-01-01

    Zoonotic infections caused by several orthopoxviruses (OPV) like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV) is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages. PMID:24312452

  8. Thoracic Duct Cannulation and Hemal Node Formation in Mice Infected with Cowpox Virus

    PubMed Central

    Wallnerova, Zlata; Mims, C. A.

    1970-01-01

    Mice experiencing generalized and fatal infection after i.v. injection of large doses of cowpox virus showed no significant changes in the recirculating pool of thoracic duct lymphocytes. There was little or no growth of virus in lymphoid tissues, but changes associated with the immune response and with stress (mediated by corticosteroid hormones) were substantial. A characteristic feature of fatal cowpox virus infection was the formation of hemal nodes accompanied by the appearance of large numbers of erythrocytes in the thoracic duct lymph from the 3rd day after inoculation. Erythrocytes entered lymphatics to form hemal nodes after extravasation from small blood vessels. Extravasation resulted from vascular damage caused by the growth of virus in vessel walls. ImagesFigs. 2, 6-7Figs. 8-9 PMID:5420988

  9. Survival of a cat with pneumonia due to cowpox virus and feline herpesvirus infection.

    PubMed

    Johnson, M S; Martin, M; Stone, B; Hetzel, U; Kipar, A

    2009-09-01

    Cowpox virus infection in cats is rare and usually leads to cutaneous lesions alone. Pulmonary infection and pneumonia have been documented occasionally but all such cases described to date have been fatal. Although usually affecting the upper respiratory tract, feline herpesvirus can also induce pneumonia. The present report describes the case of a cat that recovered from a pneumonia in which both poxvirus and feline herpesvirus were demonstrated. PMID:19769672

  10. A negative feedback modulator of antigen processing evolved from a frameshift in the cowpox virus genome.

    PubMed

    Lin, Jiacheng; Eggensperger, Sabine; Hank, Susanne; Wycisk, Agnes I; Wieneke, Ralph; Mayerhofer, Peter U; Tampé, Robert

    2014-12-01

    Coevolution of viruses and their hosts represents a dynamic molecular battle between the immune system and viral factors that mediate immune evasion. After the abandonment of smallpox vaccination, cowpox virus infections are an emerging zoonotic health threat, especially for immunocompromised patients. Here we delineate the mechanistic basis of how cowpox viral CPXV012 interferes with MHC class I antigen processing. This type II membrane protein inhibits the coreTAP complex at the step after peptide binding and peptide-induced conformational change, in blocking ATP binding and hydrolysis. Distinct from other immune evasion mechanisms, TAP inhibition is mediated by a short ER-lumenal fragment of CPXV012, which results from a frameshift in the cowpox virus genome. Tethered to the ER membrane, this fragment mimics a high ER-lumenal peptide concentration, thus provoking a trans-inhibition of antigen translocation as supply for MHC I loading. These findings illuminate the evolution of viral immune modulators and the basis of a fine-balanced regulation of antigen processing. PMID:25503639

  11. [Infections with original cowpox virus and cowpox-like agents in humans and animals: a literature review].

    PubMed

    Munz, E; Linckh, S; Renner-Müller, I C

    1992-05-01

    In an evaluation of literature the biological, physical-chemical and antigenic characteristics of cowpoxviruses and cowpox-like agents are presented, the according diseases following a natural and experimental infection are described and their epizootiological and epidemiological aspects discussed. PMID:1642077

  12. Cowpox virus protein CPXV012 eludes CTLs by blocking ATP binding to TAP.

    PubMed

    Luteijn, Rutger D; Hoelen, Hanneke; Kruse, Elisabeth; van Leeuwen, Wouter F; Grootens, Jennine; Horst, Daniëlle; Koorengevel, Martijn; Drijfhout, Jan W; Kremmer, Elisabeth; Früh, Klaus; Neefjes, Jacques J; Killian, Antoinette; Lebbink, Robert Jan; Ressing, Maaike E; Wiertz, Emmanuel J H J

    2014-08-15

    CD8(+) CTLs detect virus-infected cells through recognition of virus-derived peptides presented at the cell surface by MHC class I molecules. The cowpox virus protein CPXV012 deprives the endoplasmic reticulum (ER) lumen of peptides for loading onto newly synthesized MHC class I molecules by inhibiting the transporter associated with Ag processing (TAP). This evasion strategy allows the virus to avoid detection by the immune system. In this article, we show that CPXV012, a 9-kDa type II transmembrane protein, prevents peptide transport by inhibiting ATP binding to TAP. We identified a segment within the ER-luminal domain of CPXV012 that imposes the block in peptide transport by TAP. Biophysical studies show that this domain has a strong affinity for phospholipids that are also abundant in the ER membrane. We discuss these findings in an evolutionary context and show that a frameshift deletion in the CPXV012 gene in an ancestral cowpox virus created the current form of CPXV012 that is capable of inhibiting TAP. In conclusion, our findings indicate that the ER-luminal domain of CPXV012 inserts into the ER membrane, where it interacts with TAP. CPXV012 presumably induces a conformational arrest that precludes ATP binding to TAP and, thus, activity of TAP, thereby preventing the presentation of viral peptides to CTLs. PMID:25024387

  13. Crystal structure of the cowpox virus-encoded NKG2D ligand OMCP.

    PubMed

    Lazear, Eric; Peterson, Lance W; Nelson, Chris A; Fremont, Daved H

    2013-01-01

    The NKG2D receptor is expressed on the surface of NK, T, and macrophage lineage cells and plays an important role in antiviral and antitumor immunity. To evade NKG2D recognition, herpesviruses block the expression of NKG2D ligands on the surface of infected cells using a diverse repertoire of sabotage methods. Cowpox and monkeypox viruses have taken an alternate approach by encoding a soluble NKG2D ligand, the orthopoxvirus major histocompatibility complex (MHC) class I-like protein (OMCP), which can block NKG2D-mediated cytotoxicity. This approach has the advantage of targeting a single conserved receptor instead of numerous host ligands that exhibit significant sequence diversity. Here, we show that OMCP binds the NKG2D homodimer as a monomer and competitively blocks host ligand engagement. We have also determined the 2.25-Å-resolution crystal structure of OMCP from the cowpox virus Brighton Red strain, revealing a truncated MHC class I-like platform domain consisting of a beta sheet flanked with two antiparallel alpha helices. OMCP is generally similar in structure to known host NKG2D ligands but has notable variations in regions typically used to engage NKG2D. Additionally, the determinants responsible for the 14-fold-higher affinity of OMCP for human than for murine NKG2D were mapped to a single loop in the NKG2D ligand-binding pocket. PMID:23115291

  14. The effect of cowpox virus infection on fecundity in bank voles and wood mice.

    PubMed Central

    Feore, S M; Bennett, M; Chantrey, J; Jones, T; Baxby, D; Begon, M

    1997-01-01

    Although epidemic infectious diseases are a recognized cause of changes in host population dynamics, there is little direct evidence for the effect of endemic infections on populations. Cowpox virus is an orthopoxvirus which is endemic in bank voles (Clethrionomys glareolus), wood mice (Apodemus sylvaticus) and field voles (Microtus agrestis) in Great Britain. It does not cause obvious signs of disease nor does it affect survival, but in this study we demonstrate experimentally that it can reduce the fecundity of bank voles and wood mice by increasing the time to first litter by 20-30 days. The pathogenic mechanisms causing this effect are at present not known, but this finding suggests that natural subclinical infection could have a considerable effect on the dynamics of wild populations. PMID:9364786

  15. Cowpox virus inhibits human dendritic cell immune function by nonlethal, nonproductive infection

    SciTech Connect

    Hansen, Spencer J.; Rushton, John; Dekonenko, Alexander; Chand, Hitendra S.; Olson, Gwyneth K.; Hutt, Julie A.; Pickup, David; Lyons, C. Rick; Lipscomb, Mary F.

    2011-04-10

    Orthopoxviruses encode multiple proteins that modulate host immune responses. We determined whether cowpox virus (CPXV), a representative orthopoxvirus, modulated innate and acquired immune functions of human primary myeloid DCs and plasmacytoid DCs and monocyte-derived DCs (MDDCs). A CPXV infection of DCs at a multiplicity of infection of 10 was nonproductive, altered cellular morphology, and failed to reduce cell viability. A CPXV infection of DCs did not stimulate cytokine or chemokine secretion directly, but suppressed toll-like receptor (TLR) agonist-induced cytokine secretion and a DC-stimulated mixed leukocyte reaction (MLR). LPS-stimulated NF-{kappa}B nuclear translocation and host cytokine gene transcription were suppressed in CPXV-infected MDDCs. Early viral immunomodulatory genes were upregulated in MDDCs, consistent with early DC immunosuppression via synthesis of intracellular viral proteins. We conclude that a nonproductive CPXV infection suppressed DC immune function by synthesizing early intracellular viral proteins that suppressed DC signaling pathways.

  16. Histopathological and Immunohistochemical Studies of Cowpox Virus Replication in a Three-Dimensional Skin Model.

    PubMed

    Tamošiūnaitė, A; Hoffmann, D; Franke, A; Schluckebier, J; Tauscher, K; Tischer, B K; Beer, M; Klopfleisch, R; Osterrieder, N

    2016-07-01

    Human cowpox virus (CPXV) infections are rare, but can result in severe and sometimes fatal outcomes. The majority of recent cases were traced back to contacts with infected domestic cats or pet rats. The aim of the present study was to evaluate a three-dimensional (3D) skin model as a possible replacement for animal experiments. We monitored CPXV lesion formation, viral gene expression and cell cycle patterns after infection of 3D skin cultures with two CPXV strains of different pathogenic potential: a recent pet rat isolate (RatPox09) and the reference Brighton red strain. Infected 3D skin cultures exhibited histological alterations that were similar to those of mammal skin infections, but there were no differences in gene expression patterns and tissue damage between the two CPXV strains in the model system. In conclusion, 3D skin cultures reflect the development of pox lesions in the skin very well, but seem not to allow differentiation between more or less virulent virus strains, a distinction that is made possible by experimental infection in suitable animal models. PMID:27291992

  17. Comparison of the Cowpox Virus and Vaccinia Virus Mature Virion Proteome: Analysis of the Species- and Strain-Specific Proteome.

    PubMed

    Doellinger, Joerg; Schaade, Lars; Nitsche, Andreas

    2015-01-01

    Cowpox virus (CPXV) causes most zoonotic orthopoxvirus (OPV) infections in Europe and Northern as well as Central Asia. The virus has the broadest host range of OPV and is transmitted to humans from rodents and other wild or domestic animals. Increasing numbers of human CPXV infections in a population with declining immunity have raised concerns about the virus' zoonotic potential. While there have been reports on the proteome of other human-pathogenic OPV, namely vaccinia virus (VACV) and monkeypox virus (MPXV), the protein composition of the CPXV mature virion (MV) is unknown. This study focused on the comparative analysis of the VACV and CPXV MV proteome by label-free single-run proteomics using nano liquid chromatography and high-resolution tandem mass spectrometry (nLC-MS/MS). The presented data reveal that the common VACV and CPXV MV proteome contains most of the known conserved and essential OPV proteins and is associated with cellular proteins known to be essential for viral replication. While the species-specific proteome could be linked mainly to less genetically-conserved gene products, the strain-specific protein abundance was found to be of high variance in proteins associated with entry, host-virus interaction and protein processing. PMID:26556597

  18. Comparison of the Cowpox Virus and Vaccinia Virus Mature Virion Proteome: Analysis of the Species- and Strain-Specific Proteome

    PubMed Central

    Doellinger, Joerg; Schaade, Lars; Nitsche, Andreas

    2015-01-01

    Cowpox virus (CPXV) causes most zoonotic orthopoxvirus (OPV) infections in Europe and Northern as well as Central Asia. The virus has the broadest host range of OPV and is transmitted to humans from rodents and other wild or domestic animals. Increasing numbers of human CPXV infections in a population with declining immunity have raised concerns about the virus’ zoonotic potential. While there have been reports on the proteome of other human-pathogenic OPV, namely vaccinia virus (VACV) and monkeypox virus (MPXV), the protein composition of the CPXV mature virion (MV) is unknown. This study focused on the comparative analysis of the VACV and CPXV MV proteome by label-free single-run proteomics using nano liquid chromatography and high-resolution tandem mass spectrometry (nLC-MS/MS). The presented data reveal that the common VACV and CPXV MV proteome contains most of the known conserved and essential OPV proteins and is associated with cellular proteins known to be essential for viral replication. While the species-specific proteome could be linked mainly to less genetically-conserved gene products, the strain-specific protein abundance was found to be of high variance in proteins associated with entry, host-virus interaction and protein processing. PMID:26556597

  19. Properties of the recombinant TNF-binding proteins from variola, monkeypox, and cowpox viruses are different.

    PubMed

    Gileva, Irina P; Nepomnyashchikh, Tatiana S; Antonets, Denis V; Lebedev, Leonid R; Kochneva, Galina V; Grazhdantseva, Antonina V; Shchelkunov, Sergei N

    2006-11-01

    Tumor necrosis factor (TNF), a potent proinflammatory and antiviral cytokine, is a critical extracellular immune regulator targeted by poxviruses through the activity of virus-encoded family of TNF-binding proteins (CrmB, CrmC, CrmD, and CrmE). The only TNF-binding protein from variola virus (VARV), the causative agent of smallpox, infecting exclusively humans, is CrmB. Here we have aligned the amino acid sequences of CrmB proteins from 10 VARV, 14 cowpox virus (CPXV), and 22 monkeypox virus (MPXV) strains. Sequence analyses demonstrated a high homology of these proteins. The regions homologous to cd00185 domain of the TNF receptor family, determining the specificity of ligand-receptor binding, were found in the sequences of CrmB proteins. In addition, a comparative analysis of the C-terminal SECRET domain sequences of CrmB proteins was performed. The differences in the amino acid sequences of these domains characteristic of each particular orthopoxvirus species were detected. It was assumed that the species-specific distinctions between the CrmB proteins might underlie the differences in these physicochemical and biological properties. The individual recombinant proteins VARV-CrmB, MPXV-CrmB, and CPXV-CrmB were synthesized in a baculovirus expression system in insect cells and isolated. Purified VARV-CrmB was detectable as a dimer with a molecular weight of 90 kDa, while MPXV- and CPXV-CrmBs, as monomers when fractioned by non-reducing SDS-PAGE. The CrmB proteins of VARV, MPXV, and CPXV differed in the efficiencies of inhibition of the cytotoxic effects of human, mouse, or rabbit TNFs in L929 mouse fibroblast cell line. Testing of CrmBs in the experimental model of LPS-induced shock using SPF BALB/c mice detected a pronounced protective effect of VARV-CrmB. Thus, our data demonstrated the difference in anti-TNF activities of VARV-, MPXV-, and CPXV-CrmBs and efficiency of VARV-CrmB rather than CPXV- or MPXV-CrmBs against LPS-induced mortality in mice. PMID:17070121

  20. Cowpox Virus Outbreak in Banded Mongooses (Mungos mungo) and Jaguarundis (Herpailurus yagouaroundi) with a Time-Delayed Infection to Humans

    PubMed Central

    Kurth, Andreas; Straube, Martin; Kuczka, Annette; Dunsche, Anton Josef; Meyer, Hermann; Nitsche, Andreas

    2009-01-01

    Background Often described as an extremely rare zoonosis, cowpox virus (CPXV) infections are on the increase in Germany. CPXV is rodent-borne with a broad host range and contains the largest and most complete genome of all poxviruses, including parts with high homology to variola virus (smallpox). So far, most CPXV cases have occurred individually in unvaccinated animals and humans and were caused by genetically distinguishable virus strains. Methodology/Principal Findings Generalized CPXV infections in banded mongooses (Mungos mungo) and jaguarundis (Herpailurus yagouaroundi) at a Zoological Garden were observed with a prevalence of the affected animal group of 100% and a mortality of 30%. A subsequent serological investigation of other exotic animal species provided evidence of subclinical cases before the onset of the outbreak. Moreover, a time-delayed human cowpox virus infection caused by the identical virus strain occurred in a different geographical area indicating that handling/feeding food rats might be the common source of infection. Conclusions/Significance Reports on the increased zoonotic transmission of orthopoxviruses have renewed interest in understanding interactions between these viruses and their hosts. The list of animals known to be susceptible to CPXV is still growing. Thus, the likely existence of unknown CPXV hosts and their distribution may present a risk for other exotic animals but also for the general public, as was shown in this outbreak. Animal breeders and suppliers of food rats represent potential multipliers and distributors of CPXV, in the context of increasingly pan-European trading. Taking the cessation of vaccination against smallpox into account, this situation contributes to the increased incidence of CPXV infections in man, particularly in younger age groups, with more complicated courses of clinical infections. PMID:19727399

  1. Cowpox with severe generalized eruption, Finland.

    PubMed

    Pelkonen, Paula M; Tarvainen, Kyllikki; Hynninen, Arja; Kallio, Eva R K; Henttonen, Keikki; Palva, Airi; Vaheri, Antti; Vapalahti, Olli

    2003-11-01

    Cowpox with a severe, generalized eruption was diagnosed in an atopic 4-year-old girl by electron microscopy, virus isolation, polymerase chain reaction, and immunoglobulin (Ig) M and low-avidity IgG antibodies. The hemagglutinin gene of the isolate clustered with a Russian cowpox virus strain, and more distantly, with other cowpox and vaccinia virus strains. The patient's dog had orthopoxvirus-specific antibodies, indicating a possible transmission route. In Finnish wild rodents, orthopoxvirus seroprevalences were 0%-92%, in humans the seroprevalence was 100% in the age group >50, decreasing towards younger age groups. PMID:14718092

  2. Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus E1B 19K genes.

    PubMed Central

    Ink, B S; Gilbert, C S; Evan, G I

    1995-01-01

    The infection of vaccinia virus in Chinese hamster ovary (CHO) cells produces a rapid shutdown in protein synthesis, and the infection is abortive (R.R. Drillien, D. Spehner, and A. Kirn, Virology 111:488-499, 1978; D.E. Hruby, D.L. Lynn, R. Condit, and J.R. Kates, J. Gen. Virol. 47:485-488, 1980). Cowpox virus, which can productively infect CHO cells, had previously been shown to contain a host range gene, CHOhr, which confers on vaccinia virus the ability to replicate in CHO cells (D. Spehner, S. Gillard, R. Drillien, and A. Kirn, J. Virol. 62:1297-1304, 1988). We found that CHO cells underwent apoptosis when infected with vaccinia virus. The expression of the CHOhr gene in vaccinia virus allowed for the expression of late virus genes. CHOhr also delayed or prevented vaccinia virus-induced apoptosis in CHO cells such that there was sufficient time for replication of the virus before the cell died. The E1B 19K gene from adenovirus also delayed vaccinia virus-induced apoptosis; however, there was no detectable expression of late virus genes. Furthermore, E1B 19K also delayed cell death in CHO cells which had been productively infected with vaccinia virus. This study identifies a new antiapoptotic gene from cowpox virus, CHOhr, for which the protein contains an ankyrin-like repeat and shows no significant homology to other proteins. This work also indicates that an antiapoptotic gene from one virus family can delay cell death in an infection of a virus from a different family. PMID:7815529

  3. Out of the Reservoir: Phenotypic and Genotypic Characterization of a Novel Cowpox Virus Isolated from a Common Vole

    PubMed Central

    Hoffmann, Donata; Franke, Annika; Jenckel, Maria; Tamošiūnaitė, Aistė; Schluckebier, Julia; Granzow, Harald; Hoffmann, Bernd; Fischer, Stefan; Ulrich, Rainer G.; Höper, Dirk; Goller, Katja; Osterrieder, Nikolaus

    2015-01-01

    ABSTRACT The incidence of human cowpox virus (CPXV) infections has increased significantly in recent years. Serological surveys have suggested wild rodents as the main CPXV reservoir. We characterized a CPXV isolated during a large-scale screening from a feral common vole. A comparison of the full-length DNA sequence of this CPXV strain with a highly virulent pet rat CPXV isolate showed a sequence identity of 96%, including a large additional open reading frame (ORF) of about 6,000 nucleotides which is absent in the reference CPXV strain Brighton Red. Electron microscopy analysis demonstrated that the vole isolate, in contrast to the rat strain, forms A-type inclusion (ATI) bodies with incorporated virions, consistent with the presence of complete ati and p4c genes. Experimental infections showed that the vole CPXV strain caused only mild clinical symptoms in its natural host, while all rats developed severe respiratory symptoms followed by a systemic rash. In contrast, common voles infected with a high dose of the rat CPXV showed severe signs of respiratory disease but no skin lesions, whereas infection with a low dose led to virus excretion with only mild clinical signs. We concluded that the common vole is susceptible to infection with different CPXV strains. The spectrum ranges from well-adapted viruses causing limited clinical symptoms to highly virulent strains causing severe respiratory symptoms. In addition, the low pathogenicity of the vole isolate in its eponymous host suggests a role of common voles as a major CPXV reservoir, and future research will focus on the correlation between viral genotype and phenotype/pathotype in accidental and reservoir species. IMPORTANCE We report on the first detection and isolation of CPXV from a putative reservoir host, which enables comparative analyses to understand the infection cycle of these zoonotic orthopox viruses and the relevant genes involved. In vitro studies, including whole-genome sequencing as well as in

  4. The cowpox virus SPI-3 and myxoma virus SERP1 serpins are not functionally interchangeable despite their similar proteinase inhibition profiles in vitro.

    PubMed

    Wang, Y X; Turner, P C; Ness, T L; Moon, K B; Schoeb, T R; Moyer, R W

    2000-07-01

    The myxoma virus (MYX) serpin SERP1 is a secreted glycoprotein with anti-inflammatory activity that is required for full MYX virulence in vivo. The cowpox virus (CPV) serpin SPI-3 (vaccinia virus ORF K2L) is a nonsecreted glycoprotein that blocks cell-cell fusion, independent of serpin activity, and is not required for virulence of vaccinia virus or CPV in mice. Although SPI-3 has only 29% overall identity to SERP1, both serpins have arginine at the P1 position in the reactive center loop, and SPI-3 has a proteinase inhibitory profile strikingly similar to that of SERP1 [Turner, P. C., Baquero, M. T., Yuan, S., Thoennes, S. R., and Moyer, R. W. (2000) Virology 272, 267-280]. To determine whether SPI-3 and SERP1 were functionally equivalent, a CPV variant was constructed where the SPI-3 gene was deleted and replaced with the SERP1 gene regulated by the SPI-3 promoter. Cells infected with CPVDeltaSPI-3::SERP1 secrete SERP1 and show extensive fusion, suggesting that SERP1 is unable to functionally substitute for SPI-3 in fusion inhibition. In the reciprocal experiment, both copies of SERP1 were deleted from MYX and replaced with SPI-3 under the control of the SERP1 promoter. Cells infected with the MYXDeltaSERP1::SPI-3 recombinant unexpectedly secreted SPI-3, suggesting either that the cellular secretory pathway is enhanced by MYX or that CPV encodes a protein that prevents SPI-3 secretion. MYXDeltaSERP1::SPI-3 was as attenuated in rabbits as MYXDeltaSERP1::lacZ, indicating that SPI-3 cannot substitute for SERP1 in MYX pathogenesis. PMID:10873771

  5. Generation of a complete single-gene knockout bacterial artificial chromosome library of cowpox virus and identification of its essential genes.

    PubMed

    Xu, Zhiyong; Zikos, Dimitrios; Osterrieder, Nikolaus; Tischer, B Karsten

    2014-01-01

    Cowpox virus (CPXV) belongs to the genus Orthopoxvirus in the Poxviridae family. It infects a broad range of vertebrates and can cause zoonotic infections. CPXV has the largest genome among the orthopoxviruses and is therefore considered to have the most complete set of genes of all members of the genus. Since CPXV has also become a model for studying poxvirus genetics and pathogenesis, we created and characterized a complete set of single gene knockout bacterial artificial chromosome (BAC) clones of the CPXV strain Brighton Red. These mutants allow a systematic assessment of the contribution of single CPXV genes to the outcome of virus infection and replication, as well as to the virus host range. A full-length BAC clone of CPXV strain Brighton Red (pBRF) harboring the gene expressing the enhanced green fluorescent protein under the control of a viral late promoter was modified by introducing the mrfp1 gene encoding the monomeric red fluorescent protein driven by a synthetic early vaccinia virus promoter. Based on the modified BAC (pBRFseR), a library of targeted knockout mutants for each single viral open reading frame (ORF) was generated. Reconstitution of infectious virus was successful for 109 of the 183 mutant BAC clones, indicating that the deleted genes are not essential for virus replication. In contrast, 74 ORFs were identified as essential because no virus progeny was obtained upon transfection of the mutant BAC clones and in the presence of a helper virus. More than 70% of all late CPXV genes belonged to this latter group of essential genes. PMID:24155400

  6. [The effectiveness of immunization with vaccinia virus type "MVA" against an infection with cowpox virus type "OPV 85" in rabbits].

    PubMed

    Munz, E; Linckh, S; Renner-Müller, I C; Reimann, M

    1993-03-01

    The immunological efficacy of vacciniavirus "MVA" was tested against a dermal and intradermal infection with cowpoxvirus "OPV 85" in rabbits: A single vaccination with "MVA" provided only insufficient immunity, a revaccination induced good immunity. Intramuscular immunizations protected better than subcutaneous applications. Immunized rabbits showed "revaccination reactions" after infection with "OPV 85" indicating a cellular immunity. After immunization with "MVA" and after infection with cowpoxvirus "OPV 85" all rabbits developed N- and ELISA-antibodies. HAI-antibodies were not found after immunization, but indicated a multiplication of cowpoxvirus after challenge. Vacciniavirus "MVA" is suggested for immunization of man and animal against possible infections with cowpoxvirus and cowpoxlike viruses. PMID:8322545

  7. Structural Mechanism of ER Retrieval of MHC Class I by Cowpox

    PubMed Central

    McCoy, William H.; Wang, Xiaoli; Yokoyama, Wayne M.; Hansen, Ted H.; Fremont, Daved H.

    2012-01-01

    One of the hallmarks of viral immune evasion is the capacity to disrupt major histocompatibility complex class I (MHCI) antigen presentation to evade T-cell detection. Cowpox virus encoded protein CPXV203 blocks MHCI surface expression by exploiting the KDEL-receptor recycling pathway, and here we show that CPXV203 directly binds a wide array of fully assembled MHCI proteins, both classical and non-classical. Further, the stability of CPXV203/MHCI complexes is highly pH dependent, with dramatically increased affinities at the lower pH of the Golgi relative to the endoplasmic reticulum (ER). Crystallographic studies reveal that CPXV203 adopts a beta-sandwich fold similar to poxvirus chemokine binding proteins, and binds the same highly conserved MHCI determinants located under the peptide-binding platform that tapasin, CD8, and natural killer (NK)-receptors engage. Mutagenesis of the CPXV203/MHCI interface identified the importance of two CPXV203 His residues that confer low pH stabilization of the complex and are critical to ER retrieval of MHCI. These studies clarify mechanistically how CPXV203 coordinates with other cowpox proteins to thwart antigen presentation. PMID:23209377

  8. Differential role played by the MEK/ERK/EGR-1 pathway in orthopoxviruses vaccinia and cowpox biology

    PubMed Central

    Silva, Patrícia N. G.; Soares, Jamária A. P.; Brasil, Bruno S. A. F.; Nogueira, Sarah V.; Andrade, Anderson A.; de Magalhães, José C.; Bonjardim, Marisa B.; Ferreira, Paulo C. P.; Kroon, Erna G.; Bruna-Romero, Oscar; Bonjardim, Cláudio A.

    2006-01-01

    Appropriation of signalling pathways facilitates poxvirus replication. Poxviruses, as do most viruses, try to modify the host cell environment to achieve favourable replication conditions. In the present study, we show that the early growth response 1 gene (egr-1) is one of the host cell factors intensely modulated by the orthopoxviruses VV (vaccinia virus) and CPV (cowpox virus). These viruses stimulated the generation of both egr-1 mRNA and its gene product, throughout their entire replication cycles, via the requirement of MEK [mitogen-activated protein kinase/ERK (extracellular-signal-regulated kinase) kinase]/ERK pathway. We showed that, upon VV infection, EGR-1 translocates into the nucleus where it binds to the EBS (egr-1-binding site) positioned at the 5′ region of EGR-1-regulated genes. In spite of both viruses belonging to the same genus, several lines of evidence, however, revealed a remarkable contrast between them as far as the roles played by the MEK/ERK/EGR-1 pathway in their biological cycles are concerned. Hence (i) the knocking-down of egr-1 by siRNA (small interfering RNA) proved that this transcription factor is of critical relevance for VV biology, since a decrease of about one log cycle in virus yield was verified, along with a small virus plaque phenotype, whereas the gene silencing did not have a detrimental effect on either CPV multiplication or viral plaque size; (ii) while both pharmacological and genetic inhibition of MEK/ERK resulted in a significant decrease in VV yield, both approaches had no impact on CPV multiplication; and (iii) CPV DNA replication was unaffected by pharmacological inhibition of MEK/ERK, but phosphorylation of MEK/ERK was dependent on CPV DNA replication, contrasting with a significant VV DNA inhibition and VV DNA replication-independence to maintain ERK1/2 phosphorylation, observed under the same conditions. PMID:16686604

  9. Pre-symptomatic Prediction of Illness in Mice Inoculated with Cowpox

    SciTech Connect

    Kercher, J R; Colston, Jr., B W; Langlois, R G; Lyons, C R; Milanovich, F P

    2007-04-19

    We describe here research directed towards early (presyndromic) diagnosis of infection. By using a mouse model and a multi-component blood protein diagnostic tool we detected cowpox infection several days in advance of overt symptoms with high accuracy. We provide details of the experimental design and measurement technique and elaborate on the long-range implication of these results.

  10. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease

    SciTech Connect

    Johnson, Reed F.; Hammoud, Dima A.; Lackemeyer, Matthew G.; Yellayi, Srikanth; Solomon, Jeffrey; Bohannon, Jordan K.; Janosko, Krisztina B.; Jett, Catherine; Cooper, Kurt; Blaney, Joseph E.; Jahrling, Peter B.

    2015-07-15

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log{sub 10} PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. - Highlights: • Small particle aerosol exposure of rhesus results in a severe respiratory disease. • CT findings correlated with peripheral oxygen saturation and monocyte increases. • Virus dissemination was limited and mainly confined to the respiratory tract. • CT provides insight into pathogenesis to aid development of animal models of disease.

  11. Variola Virus-Specific Diagnostic Assays: Characterization, Sensitivity, and Specificity

    PubMed Central

    Kondas, Ashley V.; Olson, Victoria A.; Li, Yu; Abel, Jason; Laker, Miriam; Rose, Laura; Wilkins, Kimberly; Turner, Jonathan; Kline, Richard

    2015-01-01

    A public health response relies upon rapid and reliable confirmation of disease by diagnostic assays. Here, we detail the design and validation of two variola virus-specific real-time PCR assays, since previous assays cross-reacted with newly identified cowpox viruses. The assay specificity must continually be reassessed as other closely related viruses are identified. PMID:25673790

  12. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease

    PubMed Central

    Hammoud, Dima A.; Lackemeyer, Matthew G.; Yellayi, Srikanth; Solomon, Jeffrey; Bohannon, Jordan K.; Janosko, Krisztina B.; Jett, Catherine; Cooper, Kurt; Blaney, Joseph E.; Jahrling, Peter B.

    2015-01-01

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. PMID:25776759

  13. [Johann Gottfried Bremser (1767-1827) as a protagonist of the cowpox vaccine].

    PubMed

    Sattmann, Helmut; Hörweg, Christoph; Stagl, Verena

    2014-04-01

    Vienna was the first city on the European continent where the cowpox vaccination was applied in 1799, shortly after Jenner's (1798) publication of his encouraging results in England. Nevertheless, substantial denial and distrust was evident among doctors and patients in Europe as well, particularly in Austria. The medical doctor Johann Gottfried Bremser remains well known even today among parasitologists as a pioneer of helminthological research in Austria. He founded, in Vienna, one of the richest parasitic worm collections worldwide and published perceptive papers about helminthology. But his role as a protagonist of the cowpox vaccine has been buried in oblivion. In the late 18th and early 19th centuries, Bremser worked as a medical doctor in Vienna and was influenced by the major proponents of the vaccine in Austria, Pascal Joseph Ferro, Jean de Carro, Johann Peter Frank and others. Beyond his practical contribution as vaccinator, he excelled as a propagandist, mainly through his publications on cow pox vaccination. Bremser used his expert knowledge and sophisticated argumentation to prompt people to accept the prophylactic treatment, especially for their children. He argued for an obligatory cowpox vaccination for all. On one hand, his argumentation summarizes the contrarian opinions of that time, on the other hand the discussion shows striking analogies with the controversies of today. In a way, Bremser's commitment was a forerunner for future health policies that led to vaccination laws and ultimately to the eradication of smallpox worldwide in the second half of the 20th century. PMID:24249318

  14. Rodents and Risk in the Mekong Delta of Vietnam: Seroprevalence of Selected Zoonotic Viruses in Rodents and Humans

    PubMed Central

    Van Cuong, Nguyen; Carrique-Mas, Juan; Vo Be, Hien; An, Nguyen Ngoc; Tue, Ngo Tri; Anh, Nguyet Lam; Anh, Pham Hong; Phuc, Nguyen The; Baker, Stephen; Voutilainen, Liina; Jääskeläinen, Anne; Huhtamo, Eili; Utriainen, Mira; Sironen, Tarja; Vaheri, Antti; Henttonen, Heikki; Vapalahti, Olli; Chaval, Yannick

    2015-01-01

    Abstract In the Mekong Delta in southern Vietnam, rats are commonly traded in wet markets and sold live for food consumption. We investigated seroprevalence to selected groups of rodent-borne viruses among human populations with high levels of animal exposure and among co-located rodent populations. The indirect fluorescence antibody test (IFAT) was used to determine seropositivity to representative reference strains of hantaviruses (Dobrava virus [DOBV], Seoul virus [SEOV]), cowpox virus, arenaviruses (lymphocytic choriomeningitis virus [LCMV]), flaviviruses (tick-borne encephalitis virus [TBEV]), and rodent parechoviruses (Ljungan virus), using sera from 245 humans living in Dong Thap Province and 275 rodents representing the five common rodent species sold in wet markets and present in peridomestic and farm settings. Combined seropositivity to DOBV and SEOV among the rodents and humans was 6.9% (19/275) and 3.7% (9/245), respectively; 1.1% (3/275) and 4.5% (11/245) to cowpox virus; 5.4% (15/275) and 47.3% (116/245) for TBEV; and exposure to Ljungan virus was 18.8% (46/245) in humans, but 0% in rodents. Very little seroreactivity was observed to LCMV in either rodents (1/275, 0.4%) or humans (2/245, 0.8%). Molecular screening of rodent liver tissues using consensus primers for flaviviruses did not yield any amplicons, whereas molecular screening of rodent lung tissues for hantavirus yielded one hantavirus sequence (SEOV). In summary, these results indicate low to moderate levels of endemic hantavirus circulation, possible circulation of a flavivirus in rodent reservoirs, and the first available data on human exposures to parechoviruses in Vietnam. Although the current evidence suggests only limited exposure of humans to known rodent-borne diseases, further research is warranted to assess public health implications of the rodent trade. PMID:25629782

  15. [Peter Plett and other discoverers of cowpox vaccination before Edward Jenner].

    PubMed

    Plett, Peter C

    2006-01-01

    Before Edward Jenner tested the possibility of using the cowpox vaccine as an immunisation for smallpox in humans in 1796, at least six people had done the same several years earlier. However, the findings of these six people regarding the cowpox vaccination are either hardly known or have even been forgotten. For the first time, the originally scattered information on the procedures used by these six people has been gathered and will be presented in this article. Detailed attention will be given to the works of the teacher Peter Plett (1766-1823), the only one to recognize the importance of his discovery for mankind. In 1790 and 1791/92, Plett reported his findings to the Medical Faculty of the University of Kiel. The faculty disregarded Plett's reports by neither responding to them nor changing their methods of immunisation, as the faculty at that time was still in favour of variolation. This article contains the available information and references concerning Plett's discovery, including the entire sources from 1802 and 1815 describing his findings. PMID:17338405

  16. Positive Selection Drives Preferred Segment Combinations during Influenza Virus Reassortment

    PubMed Central

    Zeldovich, Konstantin B.; Liu, Ping; Renzette, Nicholas; Foll, Matthieu; Pham, Serena T.; Venev, Sergey V.; Gallagher, Glen R.; Bolon, Daniel N.; Kurt-Jones, Evelyn A.; Jensen, Jeffrey D.; Caffrey, Daniel R.; Schiffer, Celia A.; Kowalik, Timothy F.; Wang, Jennifer P.; Finberg, Robert W.

    2015-01-01

    Influenza A virus (IAV) has a segmented genome that allows for the exchange of genome segments between different strains. This reassortment accelerates evolution by breaking linkage, helping IAV cross species barriers to potentially create highly virulent strains. Challenges associated with monitoring the process of reassortment in molecular detail have limited our understanding of its evolutionary implications. We applied a novel deep sequencing approach with quantitative analysis to assess the in vitro temporal evolution of genomic reassortment in IAV. The combination of H1N1 and H3N2 strains reproducibly generated a new H1N2 strain with the hemagglutinin and nucleoprotein segments originating from H1N1 and the remaining six segments from H3N2. By deep sequencing the entire viral genome, we monitored the evolution of reassortment, quantifying the relative abundance of all IAV genome segments from the two parent strains over time and measuring the selection coefficients of the reassorting segments. Additionally, we observed several mutations coemerging with reassortment that were not found during passaging of pure parental IAV strains. Our results demonstrate how reassortment of the segmented genome can accelerate viral evolution in IAV, potentially enabled by the emergence of a small number of individual mutations. PMID:25713211

  17. Bird viruses in multiple sclerosis: combination of viruses or Marek's alone?

    PubMed

    McHatters, G R; Scham, R G

    1995-03-24

    This is a short report confirming recent articles that birds are very likely involved as vectors of the exogenous causative agent of multiple sclerosis (MS). It also critically reviews the most recent article (MacGregor, H. and Latiwonk, Q., Neurol. Res., 15 (1993) 391-394.) in which a high percentage of serums from MS patients reacted positively with Marek's antigen and it was accidentally discovered that Epstein-Barr virus antibodies also cross-react positively with Marek's antigen. This discovery might help explain the complex epidemiology of MS (an infectious mononucleosis infection would immunize a person against future mononucleosis and a Marek's infection). A table comparing the similarities between MS and Marek's is included. Other possible avian viral candidates are entertained plus the possibility of various viral combinations within a protective chlamydial plasmid including Marek's and avian retroviruses. PMID:7792060

  18. A combination in-ovo vaccine for avian influenza virus and Newcastle disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The protection of poultry from H5N1 highly pathogenic avian influenza A (HPAI) and Newcastle disease virus (NDV) can be achieved through vaccination, as part of a broader disease control strategy. We have previously generated a recombinant influenza virus expressing; (i) an H5N1 hemagglutinin protei...

  19. Combining reverse-transcription multiplex PCR and microfluidic electrophoresis to simultaneously detect seven mosquito-transmitted zoonotic encephalomyelitis viruses.

    PubMed

    Wang, Yu; Ostlund, Eileen N; Jun, Yang; Nie, Fu-Ping; Li, Ying-Guo; Johnson, Donna J; Lin, Rui; Li, Zheng-Guo

    2016-06-01

    Several mosquito-transmitted viruses are causative agents for zoonotic encephalomyelitis. Rapid identification of these viruses in mosquito populations is an effective method for surveying these diseases. To detect multiple mosquito-transmitted viral agents, including West Nile virus, Saint Louis encephalitis virus, Venezuelan equine encephalomyelitis virus, Western equine encephalomyelitis virus, Eastern equine encephalomyelitis virus, Highlands J virus and Japanese encephalitis virus, an assay using multiplex reverse-transcription PCR combined with microfluidic electrophoresis was developed and evaluated. Tailed nested primers were used in the assay to amplify specific viral genomic segments, and products with specific length were further analyzed by using a microfluidic electrophoresis chip. The assay exhibited good specificity and analytical sensitivity (10(2) copies/µL). This technology can be helpful in the quarantine and surveillance of exotic encephalomyelitis viruses which are transmitted by mosquitoes. PMID:27256022

  20. Combining mutualistic yeast and pathogenic virus - a novel method for control for codling moth control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies evaluated the lethal effectiveness of combining yeasts isolated from larvae of codling moth, Cydia pomonella (L.) with the codling moth granulosis virus (CpGV). Apples were treated with CpGV and three yeast species, including Metschnikowia pulcherrima Pitt and Miller, Cryptococcus tephrensis...

  1. EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses

    PubMed Central

    Molero-Abraham, Magdalena; Glutting, John-Paul; Flower, Darren R.; Lafuente, Esther M.; Reche, Pedro A.

    2015-01-01

    Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes. PMID:26605344

  2. A vaccinia virus renaissance

    PubMed Central

    Verardi, Paulo H.; Titong, Allison; Hagen, Caitlin J.

    2012-01-01

    In 1796, Edward Jenner introduced the concept of vaccination with cowpox virus, an Orthopoxvirus within the family Poxviridae that elicits cross protective immunity against related orthopoxviruses, including smallpox virus (variola virus). Over time, vaccinia virus (VACV) replaced cowpox virus as the smallpox vaccine, and vaccination efforts eventually led to the successful global eradication of smallpox in 1979. VACV has many characteristics that make it an excellent vaccine and that were crucial for the successful eradication of smallpox, including (1) its exceptional thermal stability (a very important but uncommon characteristic in live vaccines), (2) its ability to elicit strong humoral and cell-mediated immune responses, (3) the fact that it is easy to propagate, and (4) that it is not oncogenic, given that VACV replication occurs exclusively within the host cell cytoplasm and there is no evidence that the viral genome integrates into the host genome. Since the eradication of smallpox, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies, and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This revival is mainly due to the successful use and extensive characterization of VACV as a vaccine during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity and immunogenicity, its wide mammalian host range, and its natural tropism for tumor cells that allows its use as an oncolytic vector. This review provides an overview of new uses of VACV that are currently being explored for the development of vaccines, immunotherapeutics, and oncolytic virotherapies. PMID:22777090

  3. Detecting Newcastle disease virus in combination of RT-PCR with red blood cell absorption.

    PubMed

    Yi, Jianzhong; Liu, Chengqian

    2011-01-01

    Reverse transcription-polymerase chain reaction (RT-PCR) has limited sensitivity when treating complicated samples, such as feces, waste-water in farms, and nucleic acids, protein rich tissue samples, all the factors may interfere with the sensitivity of PCR test or generate false results. In this study, we developed a sensitive RT-PCR, combination of red blood cell adsorption, for detecting Newcastle disease virus (NDV). One pair of primers which was highly homologous to three NDV pathotypes was designed according to the consensus nucleocapsid protein (NP) gene sequence. To eliminate the interfere of microbes and toxic substances, we concentrated and purified NDV from varied samples utilizing the ability of NDV binding red blood cells (RBCs). The RT-PCR coupled with red blood cell adsorption was much more sensitive in comparison with regular RT-PCR. The approach could also be used to detect other viruses with the property of hemagglutination, such as influenza viruses. PMID:21535888

  4. Combination of CCR5 and CXCR4 Inhibitors in Therapy of Human Immunodeficiency Virus Type 1 Infection: In Vitro Studies of Mixed Virus Infections†

    PubMed Central

    Rusconi, Stefano; La Seta Catamancio, Simona; Citterio, Paola; Bulgheroni, Elisabetta; Croce, Francesco; Herrmann, Steven H.; Offord, Robin E.; Galli, Massimo; Hirsch, Martin S.

    2000-01-01

    We studied the combined anti-human immunodeficiency virus type 1 (HIV-1) effects of a derivative of stroma-derived factor 1β (SDF-1β), Met-SDF-1β, and a modified form of RANTES, aminooxypentane (AOP)-RANTES. The antiviral agents were tested singly or in combination at 95 and 99% virus inhibitory concentrations. Clinical R5 and X4 HIV-1 isolates were used. AOP-RANTES inhibited R5 but not X4 viruses, whereas Met-SDF-1β had the opposite effect. Combinations of these compounds inhibited mixed infections with R5 and X4 viruses (95 to 99%), whereas single drugs were less inhibitory (32 to 61%). Combinations of R5 and X4 inhibitors are promising and deserve further evaluation. PMID:10982382

  5. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses.

    PubMed

    Yanagisawa, Hironobu; Tomita, Reiko; Katsu, Koji; Uehara, Takuya; Atsumi, Go; Tateda, Chika; Kobayashi, Kappei; Sekine, Ken-Taro

    2016-03-01

    The presence of high molecular weight double-stranded RNA (dsRNA) within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing) analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS) would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV), a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt) that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT)-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as "DECS-C," is a powerful method for detecting novel plant viruses. PMID:27072419

  6. Combined DECS Analysis and Next-Generation Sequencing Enable Efficient Detection of Novel Plant RNA Viruses

    PubMed Central

    Yanagisawa, Hironobu; Tomita, Reiko; Katsu, Koji; Uehara, Takuya; Atsumi, Go; Tateda, Chika; Kobayashi, Kappei; Sekine, Ken-Taro

    2016-01-01

    The presence of high molecular weight double-stranded RNA (dsRNA) within plant cells is an indicator of infection with RNA viruses as these possess genomic or replicative dsRNA. DECS (dsRNA isolation, exhaustive amplification, cloning, and sequencing) analysis has been shown to be capable of detecting unknown viruses. We postulated that a combination of DECS analysis and next-generation sequencing (NGS) would improve detection efficiency and usability of the technique. Here, we describe a model case in which we efficiently detected the presumed genome sequence of Blueberry shoestring virus (BSSV), a member of the genus Sobemovirus, which has not so far been reported. dsRNAs were isolated from BSSV-infected blueberry plants using the dsRNA-binding protein, reverse-transcribed, amplified, and sequenced using NGS. A contig of 4,020 nucleotides (nt) that shared similarities with sequences from other Sobemovirus species was obtained as a candidate of the BSSV genomic sequence. Reverse transcription (RT)-PCR primer sets based on sequences from this contig enabled the detection of BSSV in all BSSV-infected plants tested but not in healthy controls. A recombinant protein encoded by the putative coat protein gene was bound by the BSSV-antibody, indicating that the candidate sequence was that of BSSV itself. Our results suggest that a combination of DECS analysis and NGS, designated here as “DECS-C,” is a powerful method for detecting novel plant viruses. PMID:27072419

  7. Protection induced by infectious laryngotracheitis virus vaccines alone and combined with Newcastle disease virus and/or infectious bronchitis virus vaccines.

    PubMed

    Vagnozzi, Ariel; García, Maricarmen; Riblet, Sylva M; Zavala, Guillermo

    2010-12-01

    Two types of live attenuated vaccines have been used worldwide for the control of infectious laryngotracheitis virus (ILTV): 1) chicken embryo origin (CEO) vaccines; and 2) tissue culture origin vaccines (TCO). However, the disease persists in spite of extensive use of vaccination, particularly in areas of intense broiler production. Among the factors that may influence the efficiency of ILTV live attenuated vaccines is a possible interference of Newcastle Disease virus (NDV) and infectious bronchitis virus (IBV) vaccines with the protection induced by ILTV vaccines. The protection induced by CEO and TCO vaccines was evaluated when administered at 14 days of age alone or in combination with the B1 type strain of NDV (B1) and/or the Arkansas (ARK) and Massachusetts (MASS) serotypes of IBV vaccines. Two weeks after vaccination (28 days of age), the chickens were challenged with a virulent ILTV field strain (63140 isolate, group V genotype). Protection was evaluated at 5 and 7 days postchallenge by scoring clinical signs and quantifying the challenge virus load in the trachea using real-time PCR (qPCR). In addition, the viral load of the vaccine viruses (ILTV, NDV, and IBV) was quantified 3 and 5 days postvaccination also using qPCR. The results of this study indicate that the NDV (B1) and IBV (ARK) vaccines and a multivalent vaccine constituted by NDV (B1) and IBV (ARK and MASS) did not interfere with the protection induced by the CEO ILTV vaccine. However, the NDV (BI) and the multivalent (B1/MASS/ARK) vaccines interfered with the protection induced by the TCO vaccine (P < 0.05). Either in combination or by themselves, the NDV and IBV vaccines decreased the tracheal replication of the TCO vaccine and the protection induced by this vaccine, since the ILTV-vaccinated and -challenged chickens displayed significantly more severe clinical signs and ILTV load (P < 0.05) than chickens vaccinated with the TCO vaccine alone. Although NDV and IBV challenges were not performed

  8. [New betulin derivatives in combination with rimantadine for inhibition of influenza virus reproduction].

    PubMed

    Savinova, O V; Pavlova, N I; Boreko, E I

    2009-01-01

    The preliminary studies mainly revealed comparable inhibition activities of 3-oxime of betulonic acid, 3beta-O-acetyl-28-O-hemiphthalate of betulin and 3,28-dioxime of betulin against reproduction of influenza viruses A (H1N1), A (H7N1), A (H3N2) and B, as well as against the strains of influenza virus A (H1N1) with intrinsic resistance to rimantadine and A (H7N1) with acquired resistance to the drug. The level of the activity depended on the system used for the virus reproduction. The highest level was observed under conditions providing higher permissibivity, i.e. in the chick embryo fibroblast cell culture for A (H7N1) and in fragments of chick embryo chorioallantoic membranes (for all the viruses). In the experiments with virus A/FPV/Rostock/34 (H7N1) in the chick embryo fibroblast cell culture the average effective concentrations (EC50) of the triterpene compounds were 10.4-17.5 mcM in comparison to EC50 of rimantadine (0.014 mcM). The use of every of the compounds in combination with rimantadine resulted in a 2-16 times decrease of their EC50 and correction of the concentration-effect relation of rimantadine. However, when rimantadine was used alone within the higher range of the nontoxic concentrations (11.6-57.6 mcM). its antiviral properties were significantly less pronounced. As a result the virus titer difference in comparison to the control within the above range of the rimantadine concentrations increased from < 1 to > 2.35 Ig PPU/ml and the relations of the maximal tolerance concentrations of the compounds to their EC50 increased 1.7-15.9 times. PMID:20052912

  9. Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches

    PubMed Central

    Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing

    2016-01-01

    The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722

  10. Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches.

    PubMed

    Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing

    2016-01-01

    The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722

  11. Combination therapy with daclatasvir and asunaprevir for dialysis patients infected with hepatitis C virus.

    PubMed

    Sato, Ken; Yamazaki, Yuichi; Ohyama, Tatsuya; Kobayashi, Takeshi; Horiguchi, Norio; Kakizaki, Satoru; Kusano, Motoyasu; Yamada, Masanobu

    2016-03-16

    The standard antiviral therapy for dialysis patients infected with hepatitis C virus (HCV) is (pegylated) interferon monotherapy, but its efficacy is insufficient. Oral direct-acting antiviral agents (DAAs) have recently been developed for chronic hepatitis C patients. However, some DAAs have contraindications for chronic renal failure (CRF). Daclatasvir and asunaprevir are metabolized largely in the liver and are not contraindicated in CRF. Combination therapy with daclatasvir and asunaprevir was used for 4 dialysis patients infected with genotype 1b HCV. One patient had viral breakthrough, and the 3 others had sustained virological response 12. One patient was admitted for heart failure and percutaneous coronary intervention due to concomitant ischemic disease. Heart failure was unlikely to be caused by the combination therapy, as it was probably due to water overload. The patient continued to receive the combination therapy after the remission of the heart failure. The combination therapy was well tolerated in the other patients. PMID:26989674

  12. Combination therapy with daclatasvir and asunaprevir for dialysis patients infected with hepatitis C virus

    PubMed Central

    Sato, Ken; Yamazaki, Yuichi; Ohyama, Tatsuya; Kobayashi, Takeshi; Horiguchi, Norio; Kakizaki, Satoru; Kusano, Motoyasu; Yamada, Masanobu

    2016-01-01

    The standard antiviral therapy for dialysis patients infected with hepatitis C virus (HCV) is (pegylated) interferon monotherapy, but its efficacy is insufficient. Oral direct-acting antiviral agents (DAAs) have recently been developed for chronic hepatitis C patients. However, some DAAs have contraindications for chronic renal failure (CRF). Daclatasvir and asunaprevir are metabolized largely in the liver and are not contraindicated in CRF. Combination therapy with daclatasvir and asunaprevir was used for 4 dialysis patients infected with genotype 1b HCV. One patient had viral breakthrough, and the 3 others had sustained virological response 12. One patient was admitted for heart failure and percutaneous coronary intervention due to concomitant ischemic disease. Heart failure was unlikely to be caused by the combination therapy, as it was probably due to water overload. The patient continued to receive the combination therapy after the remission of the heart failure. The combination therapy was well tolerated in the other patients. PMID:26989674

  13. Diurnal fluctuation of indicator microorganisms and intestinal viruses in combined sewer system.

    PubMed

    Kim, W J; Managaki, S; Furumai, H; Nakajima, F

    2009-01-01

    Combined sewer overflow (CSO) has been considered to be a source of pathogenic microorganisms for aquatic environment. For the effective control and treatment of CSOs, the microbial behavior in combined sewer system (CSS) needs to be investigated. In this study, whole-day extensive monitoring of indicator microorganisms and intestinal viruses in dry weather flow (DWF) was conducted at a small residential urban drainage area with CSS. All indicator bacteria represented similar diurnal variations in the two different monitoring campaigns; their concentrations gradually decreased to the minimum at the dawn (around 5 a.m.), increased sharply to the maximum around 7 to 8 a.m., and remained rather constant from noon to midnight. On the other hand, neither coliphages nor intestinal viruses showed any concentration peaks in the morning. The maximum/minimum load ratios ranged from 18 to 42 for total coliforms, fecal coliforms and E. coli, whereas those ratios for coliphages, enteroviruses and noroviruses G2 showed greater values than those for indicator bacteria. These results indicate that the diurnal variation patterns of bacterial and viral concentrations in DWF should be considered, which affect the discharge characteristics of each microorganism and the loads of bacteria and viruses in CSOs significantly vary with the overflow time as well. PMID:19934500

  14. Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips.

    PubMed

    Wang, Qiaochun; Cuellar, Wilmer J; Rajamäki, Minna-Liisa; Hirata, Yukimasa; Valkonen, Jari P T

    2008-03-01

    Accumulation of viruses in vegetatively propagated plants causes heavy yield losses. Therefore, supply of virus-free planting materials is pivotal to sustainable crop production. In previous studies, Raspberry bushy dwarf virus (RBDV) was difficult to eradicate from raspberry (Rubus idaeus) using the conventional means of meristem tip culture. As shown in the present study, it was probably because this pollen-transmitted virus efficiently invades leaf primordia and all meristematic tissues except the least differentiated cells of the apical dome. Subjecting plants to thermotherapy prior to meristem tip culture heavily reduced viral RNA2, RNA3 and the coat protein in the shoot tips, but no virus-free plants were obtained. Therefore, a novel method including thermotherapy followed by cryotherapy was developed for efficient virus eradication. Heat treatment caused subcellular alterations such as enlargement of vacuoles in the more developed, virus-infected cells, which were largely eliminated following subsequent cryotherapy. Using this protocol, 20-36% of the treated shoot tips survived, 30-40% regenerated and up to 35% of the regenerated plants were virus-free, as tested by ELISA and reverse transcription loop-mediated isothermal amplification. Novel cellular and molecular insights into RBDV-host interactions and the factors influencing virus eradication were obtained, including invasion of shoot tips and meristematic tissues by RBDV, enhanced viral RNA degradation and increased sensitivity to freezing caused by thermotherapy, and subcellular changes and subsequent death of cells caused by cryotherapy. This novel procedure should be helpful with many virus-host combinations in which virus eradication by conventional means has proven difficult. PMID:18705855

  15. Rational Design and Adaptive Management of Combination Therapies for Hepatitis C Virus Infection

    PubMed Central

    Ke, Ruian; Loverdo, Claude; Qi, Hangfei; Sun, Ren; Lloyd-Smith, James O.

    2015-01-01

    Recent discoveries of direct acting antivirals against Hepatitis C virus (HCV) have raised hopes of effective treatment via combination therapies. Yet rapid evolution and high diversity of HCV populations, combined with the reality of suboptimal treatment adherence, make drug resistance a clinical and public health concern. We develop a general model incorporating viral dynamics and pharmacokinetics/ pharmacodynamics to assess how suboptimal adherence affects resistance development and clinical outcomes. We derive design principles and adaptive treatment strategies, identifying a high-risk period when missing doses is particularly risky for de novo resistance, and quantifying the number of additional doses needed to compensate when doses are missed. Using data from large-scale resistance assays, we demonstrate that the risk of resistance can be reduced substantially by applying these principles to a combination therapy of daclatasvir and asunaprevir. By providing a mechanistic framework to link patient characteristics to the risk of resistance, these findings show the potential of rational treatment design. PMID:26125950

  16. Role of ledipasvir/sofosbuvir combination for genotype 1 hepatitis C virus infection

    PubMed Central

    Sundaram, Vinay; Kowdley, Kris V

    2016-01-01

    Chronic hepatitis C virus (HCV) infection is one of the most common etiologies of liver-related mortality throughout the world. Among the six HCV genotypes, genotype 1 was significantly more aggressive when utilizing the combination of pegylated interferon and ribavirin, as genotype 1-infected patients had the lowest likelihood of achieving cure (40%–50%) and required twice as long duration of treatment, as compared to genotypes 2 and 3. Recently, however, significant advances have been made with the advent of all-oral direct-acting antiviral agents, which have significantly improved the safety, efficacy, and tolerability of the treatment of HCV genotype 1. Among the available treatments for HCV genotype 1, the combination therapy of ledipasvir/sofosbuvir provides several advantages compared to other regimens, including use of a single-pill regimen, possibility to shorten the duration of treatment to 8 weeks, efficacy in patients exposed to protease inhibitors, safety in decompensated cirrhosis, and potential to avoid ribavirin. In this review, we discuss the pharmacotherapy of the combination of ledipasvir/sofosbuvir therapy and summarize the results of the Phase III clinical trials for this treatment in HCV genotype 1 patients. We will also discuss the data for special populations, including decompensated cirrhosis, human immunodeficiency virus (HIV) coinfected patients, African-Americans, the elderly, and those who failed sofosbuvir-containing regimens. PMID:27418860

  17. Role of ledipasvir/sofosbuvir combination for genotype 1 hepatitis C virus infection.

    PubMed

    Sundaram, Vinay; Kowdley, Kris V

    2016-01-01

    Chronic hepatitis C virus (HCV) infection is one of the most common etiologies of liver-related mortality throughout the world. Among the six HCV genotypes, genotype 1 was significantly more aggressive when utilizing the combination of pegylated interferon and ribavirin, as genotype 1-infected patients had the lowest likelihood of achieving cure (40%-50%) and required twice as long duration of treatment, as compared to genotypes 2 and 3. Recently, however, significant advances have been made with the advent of all-oral direct-acting antiviral agents, which have significantly improved the safety, efficacy, and tolerability of the treatment of HCV genotype 1. Among the available treatments for HCV genotype 1, the combination therapy of ledipasvir/sofosbuvir provides several advantages compared to other regimens, including use of a single-pill regimen, possibility to shorten the duration of treatment to 8 weeks, efficacy in patients exposed to protease inhibitors, safety in decompensated cirrhosis, and potential to avoid ribavirin. In this review, we discuss the pharmacotherapy of the combination of ledipasvir/sofosbuvir therapy and summarize the results of the Phase III clinical trials for this treatment in HCV genotype 1 patients. We will also discuss the data for special populations, including decompensated cirrhosis, human immunodeficiency virus (HIV) coinfected patients, African-Americans, the elderly, and those who failed sofosbuvir-containing regimens. PMID:27418860

  18. Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response

    PubMed Central

    2013-01-01

    Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104–120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope’s critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox. PMID:23842430

  19. Effects of rainfall events on the occurrence and detection efficiency of viruses in river water impacted by combined sewer overflows.

    PubMed

    Hata, Akihiko; Katayama, Hiroyuki; Kojima, Keisuke; Sano, Shoichi; Kasuga, Ikuro; Kitajima, Masaaki; Furumai, Hiroaki

    2014-01-15

    Rainfall events can introduce large amount of microbial contaminants including human enteric viruses into surface water by intermittent discharges from combined sewer overflows (CSOs). The present study aimed to investigate the effect of rainfall events on viral loads in surface waters impacted by CSO and the reliability of molecular methods for detection of enteric viruses. The reliability of virus detection in the samples was assessed by using process controls for virus concentration, nucleic acid extraction and reverse transcription (RT)-quantitative PCR (qPCR) steps, which allowed accurate estimation of virus detection efficiencies. Recovery efficiencies of poliovirus in river water samples collected during rainfall events (<10%) were lower than those during dry weather conditions (>10%). The log10-transformed virus concentration efficiency was negatively correlated with suspended solid concentration (r(2)=0.86) that increased significantly during rainfall events. Efficiencies of DNA extraction and qPCR steps determined with adenovirus type 5 and a primer sharing control, respectively, were lower in dry weather. However, no clear relationship was observed between organic water quality parameters and efficiencies of these two steps. Observed concentrations of indigenous enteric adenoviruses, GII-noroviruses, enteroviruses, and Aichi viruses increased during rainfall events even though the virus concentration efficiency was presumed to be lower than in dry weather. The present study highlights the importance of using appropriate process controls to evaluate accurately the concentration of water borne enteric viruses in natural waters impacted by wastewater discharge, stormwater, and CSOs. PMID:24064345

  20. Griffithsin and Carrageenan Combination To Target Herpes Simplex Virus 2 and Human Papillomavirus

    PubMed Central

    Levendosky, Keith; Mizenina, Olga; Martinelli, Elena; Jean-Pierre, Ninochka; Kizima, Larisa; Rodriguez, Aixa; Kleinbeck, Kyle; Bonnaire, Thierry; Robbiani, Melissa; Zydowsky, Thomas M.; O'Keefe, Barry R.

    2015-01-01

    Extensive preclinical evaluation of griffithsin (GRFT) has identified this lectin to be a promising broad-spectrum microbicide. We set out to explore the antiviral properties of a GRFT and carrageenan (CG) combination product against herpes simplex virus 2 (HSV-2) and human papillomavirus (HPV) as well as determine the mechanism of action (MOA) of GRFT against both viruses. We performed the experiments in different cell lines, using time-of-addition and temperature dependence experiments to differentiate inhibition of viral attachment from entry and viral receptor internalization. Surface plasmon resonance (SPR) was used to assess GRFT binding to viral glycoproteins, and immunoprecipitation and immunohistochemistry were used to identify the specific glycoprotein involved. We determined the antiviral activity of GRFT against HSV-2 to be a 50% effective concentration (EC50) of 230 nM and provide the first evidence that GRFT has moderate anti-HPV activity (EC50 = 0.429 to 1.39 μM). GRFT blocks the entry of HSV-2 and HPV into target cells but not the adsorption of HSV-2 and HPV onto target cells. The results of the SPR, immunoprecipitation, and immunohistochemistry analyses of HSV-2 combined suggest that GRFT may block viral entry by binding to HSV-2 glycoprotein D. Cell-based assays suggest anti-HPV activity through α6 integrin internalization. The GRFT-CG combination product but not GRFT or CG alone reduced HSV-2 vaginal infection in mice when given an hour before challenge (P = 0.0352). While GRFT significantly protected mice against vaginal HPV infection when dosed during and after HPV16 pseudovirus challenge (P < 0.026), greater CG-mediated protection was afforded by the GRFT-CG combination for up to 8 h (P < 0.0022). These findings support the development of the GRFT-CG combination as a broad-spectrum microbicide. PMID:26369967

  1. Griffithsin and Carrageenan Combination To Target Herpes Simplex Virus 2 and Human Papillomavirus.

    PubMed

    Levendosky, Keith; Mizenina, Olga; Martinelli, Elena; Jean-Pierre, Ninochka; Kizima, Larisa; Rodriguez, Aixa; Kleinbeck, Kyle; Bonnaire, Thierry; Robbiani, Melissa; Zydowsky, Thomas M; O'Keefe, Barry R; Fernández-Romero, José A

    2015-12-01

    Extensive preclinical evaluation of griffithsin (GRFT) has identified this lectin to be a promising broad-spectrum microbicide. We set out to explore the antiviral properties of a GRFT and carrageenan (CG) combination product against herpes simplex virus 2 (HSV-2) and human papillomavirus (HPV) as well as determine the mechanism of action (MOA) of GRFT against both viruses. We performed the experiments in different cell lines, using time-of-addition and temperature dependence experiments to differentiate inhibition of viral attachment from entry and viral receptor internalization. Surface plasmon resonance (SPR) was used to assess GRFT binding to viral glycoproteins, and immunoprecipitation and immunohistochemistry were used to identify the specific glycoprotein involved. We determined the antiviral activity of GRFT against HSV-2 to be a 50% effective concentration (EC50) of 230 nM and provide the first evidence that GRFT has moderate anti-HPV activity (EC50 = 0.429 to 1.39 μM). GRFT blocks the entry of HSV-2 and HPV into target cells but not the adsorption of HSV-2 and HPV onto target cells. The results of the SPR, immunoprecipitation, and immunohistochemistry analyses of HSV-2 combined suggest that GRFT may block viral entry by binding to HSV-2 glycoprotein D. Cell-based assays suggest anti-HPV activity through α6 integrin internalization. The GRFT-CG combination product but not GRFT or CG alone reduced HSV-2 vaginal infection in mice when given an hour before challenge (P = 0.0352). While GRFT significantly protected mice against vaginal HPV infection when dosed during and after HPV16 pseudovirus challenge (P < 0.026), greater CG-mediated protection was afforded by the GRFT-CG combination for up to 8 h (P < 0.0022). These findings support the development of the GRFT-CG combination as a broad-spectrum microbicide. PMID:26369967

  2. Newcastle disease virus, rituximab, and doxorubicin combination as anti-hematological malignancy therapy

    PubMed Central

    Al-Shammari, Ahmed Majeed; Rameez, Huda; Al-Taee, Maha F

    2016-01-01

    Hematological malignancies are important diseases that need more powerful therapeutics. Even with current targeting therapies, such as rituximab and other chemotherapeutic agents, there is a need to develop new treatment strategies. Combination therapy seems the best option to target the tumor cells by different mechanisms. Virotherapy is a very promising treatment modality, as it is selective, safe, and causes cancer destruction. The Iraqi strain of Newcastle disease virus (NDV) has proved to be effective both in vitro and in vivo. In the current work, we tested its ability on anti-hematological tumors and enhanced current treatments with combination therapy, and studied this combination using Chou–Talalay analysis. p53 concentration was measured to evaluate the mechanism of this proposed synergism. The results showed that NDV was synergistic with doxorubicin in low doses on plasmacytoma cells, with no involvement of p53 pathways, but involved p53 when the combination was used on non-Hodgkin lymphoma cells. NDV in combination with rituximab showed enhanced cytotoxicity that was p53-independent. In conclusion, this work proposes a novel combination modality for treatment of some hematological malignancies. PMID:27579294

  3. Newcastle disease virus, rituximab, and doxorubicin combination as anti-hematological malignancy therapy.

    PubMed

    Al-Shammari, Ahmed Majeed; Rameez, Huda; Al-Taee, Maha F

    2016-01-01

    Hematological malignancies are important diseases that need more powerful therapeutics. Even with current targeting therapies, such as rituximab and other chemotherapeutic agents, there is a need to develop new treatment strategies. Combination therapy seems the best option to target the tumor cells by different mechanisms. Virotherapy is a very promising treatment modality, as it is selective, safe, and causes cancer destruction. The Iraqi strain of Newcastle disease virus (NDV) has proved to be effective both in vitro and in vivo. In the current work, we tested its ability on anti-hematological tumors and enhanced current treatments with combination therapy, and studied this combination using Chou-Talalay analysis. p53 concentration was measured to evaluate the mechanism of this proposed synergism. The results showed that NDV was synergistic with doxorubicin in low doses on plasmacytoma cells, with no involvement of p53 pathways, but involved p53 when the combination was used on non-Hodgkin lymphoma cells. NDV in combination with rituximab showed enhanced cytotoxicity that was p53-independent. In conclusion, this work proposes a novel combination modality for treatment of some hematological malignancies. PMID:27579294

  4. Outcomes after liver transplantation for combined alcohol and hepatitis C virus infection.

    PubMed

    Khan, Rashid; Singal, Ashwani K; Anand, Bhupinderjit S

    2014-09-14

    Alcohol abuse and chronic hepatitis C virus (HCV) infection are two major causes of chronic liver disease in the United States. About 10%-15% of liver transplants performed in the United States are for patients with cirrhosis due to combined alcohol and HCV infection. Data on outcomes on graft and patient survival, HCV recurrence, and relapse of alcohol use comparing transplants in hepatitis C positive drinkers compared to alcohol abuse or hepatitis C alone are conflicting in the literature. Some studies report a slightly better overall outcome in patients who were transplanted for alcoholic cirrhosis vs those transplanted for HCV alone or for combined HCV and alcohol related cirrhosis. However, some other studies do not support these observations. However, most studies are limited to a retrospective design or small sample size. Larger prospective multicenter studies are needed to better define the outcomes in hepatitis C drinkers. PMID:25232228

  5. Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with ectromelia virus.

    PubMed

    Parker, Scott; Crump, Ryan; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Lanier, E Randall; Painter, George; Schriewer, Jill; Trost, Lawrence C; Buller, R Mark

    2014-11-01

    Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox virus's broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCV's mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered

  6. Detection of shrimp infectious myonecrosis virus by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick.

    PubMed

    Puthawibool, Teeranart; Senapin, Saengchan; Kiatpathomchai, Wansika; Flegel, Timothy W

    2009-03-01

    Infectious myonecrosis virus (IMNV) has caused a slowly progressive disease with cumulative mortalities of up to 70% or more in cultured Penaeus (Litopenaeus) vannamei in Northeast Brazil and Indonesia. Rapid detection of viruses by loop-mediated isothermal amplification (LAMP) of genomic material with high specificity and sensitivity can be applied for diagnosis, monitoring and control of diseases in shrimp aquaculture. Using an IMNV template, successful detection was achieved after a 60-min RT-LAMP reaction using biotin-labeled primers followed by 5min hybridization with an FITC-labeled DNA probe and 5min assay using a chromatographic lateral flow dipstick (LFD). Thus, the combined system of RT-LAMP and LFD required a total assay interval of less than 75min, excluding the RNA extraction time. The sensitivity of detection was comparable to that of other commonly used methods for nested RT-PCR detection of IMNV. In addition to reducing amplicon detection time when compared to electrophoresis, LFD confirmed amplicon identity by hybridization and eliminated the need to handle carcinogenic ethidium bromide. The RT-LAMP-LFD method gave negative test results with nucleic acid extracts from normal shrimp and from shrimp infected with other viruses including infectious hypodermal hematopoietic necrosis virus (IHHNV), monodon baculovirus (MBV), a hepatopancreatic parvovirus from P. monodon (PmDNV), white spot syndrome virus (WSSV), yellow head virus (YHV), Taura syndrome virus (TSV), Macrobrachium rosenbergii nodavirus (MrNV) and gill associated virus (GAV). PMID:19022295

  7. Impact of Short-Term Combined Antiretroviral Therapy on Brain Virus Burden in Simian Immunodeficiency Virus-Infected and CD8+ Lymphocyte-Depleted Rhesus Macaques

    PubMed Central

    Annamalai, Lakshmanan; Bhaskar, Veena; Pauley, Douglas R.; Knight, Heather; Williams, Kenneth; Lentz, Margaret; Ratai, Eva; Westmoreland, Susan V.; González, R. Gilberto; O'Neil, Shawn P.

    2010-01-01

    Antiretroviral drugs suppress virus burden in the cerebrospinal fluid of HIV-infected individuals; however, the direct effect of antiretrovirals on virus replication in brain parenchyma is poorly understood. We investigated the effect of short-term combined antiretroviral therapy (CART) on brain virus burden in rhesus monkeys using the CD8-depletion model of accelerated simian immunodeficiency virus (SIV) encephalitis. Four monkeys received CART (consisting of the nonpenetrating agents PMPA and RCV) for four weeks, beginning 28 days after SIV inoculation. Lower virus burdens were measured by real-time RT-PCR in four of four regions of brain from monkeys that received CART as compared with four SIV-infected, untreated controls; however, the difference was only significant for the frontal cortex (P < 0.05). In contrast, significantly lower virus burdens were measured in plasma and four of five lymphoid compartments from animals that received CART. Surprisingly, despite normalization of neuronal function in treated animals, the numbers of activated macrophages/microglia and the magnitude of TNF-α mRNA expression in brain were similar between treated animals and controls. These results suggest that short-term therapy with antiretrovirals that fail to penetrate the blood–cerebrospinal fluid barrier can reduce brain virus burden provided systemic virus burden is suppressed; however, longer treatment may be required to completely resolve encephalitic lesions and microglial activation, which may reflect the longer half-life of the principal target cells of HIV/SIV in the brain (macrophages) versus lymphoid tissues (T lymphocytes). PMID:20595631

  8. Combination ledipasvir-sofosbuvir for the treatment of chronic hepatitis C virus infection: a review and clinical perspective.

    PubMed

    Nkuize, Marcel; Sersté, Thomas; Buset, Michel; Mulkay, Jean-Pierre

    2016-01-01

    Chronic hepatitis C treatment has continued to evolve, and interferon-free, oral treatment with direct-acting antiviral agents is the current standard of care. Recently, a new treatment, which is a combination of two direct-acting antiviral agents, ledipasvir 90 mg (anti-NS5A) and sofosbuvir 400 mg (anti-NS5B), has been approved in the US and the European Union for the treatment of chronic hepatitis C viral infection. In Phase III trials among chronic hepatitis C virus genotype 1 monoinfected (treatment-naïve, treatment-experienced, and with advanced liver disease or posttransplant) patients and HIV-hepatitis C virus coinfected patients, the ledipasvir-sofosbuvir fixed-dose combination is associated with a higher rate of sustained virologic response at 12 weeks after therapy has ceased. According to preliminary data, the ledipasvir-sofosbuvir combination also may be effective against hepatitis C genotype 4 virus infection. The ledipasvir-sofosbuvir combination taken orally is generally well-tolerated. Moreover, the combination treatment may suppress the effect of predictive factors of chronic hepatitis C that have historically been known to be associated with treatment failure. Thus, the fixed-dose single-tablet combination of ledipasvir-sofosbuvir offers a new era for the effective treatment of a variety of patients suffering from chronic hepatitis C virus infection. PMID:27350749

  9. Combination ledipasvir-sofosbuvir for the treatment of chronic hepatitis C virus infection: a review and clinical perspective

    PubMed Central

    Nkuize, Marcel; Sersté, Thomas; Buset, Michel; Mulkay, Jean-Pierre

    2016-01-01

    Chronic hepatitis C treatment has continued to evolve, and interferon-free, oral treatment with direct-acting antiviral agents is the current standard of care. Recently, a new treatment, which is a combination of two direct-acting antiviral agents, ledipasvir 90 mg (anti-NS5A) and sofosbuvir 400 mg (anti-NS5B), has been approved in the US and the European Union for the treatment of chronic hepatitis C viral infection. In Phase III trials among chronic hepatitis C virus genotype 1 monoinfected (treatment-naïve, treatment-experienced, and with advanced liver disease or posttransplant) patients and HIV–hepatitis C virus coinfected patients, the ledipasvir-sofosbuvir fixed-dose combination is associated with a higher rate of sustained virologic response at 12 weeks after therapy has ceased. According to preliminary data, the ledipasvir-sofosbuvir combination also may be effective against hepatitis C genotype 4 virus infection. The ledipasvir-sofosbuvir combination taken orally is generally well-tolerated. Moreover, the combination treatment may suppress the effect of predictive factors of chronic hepatitis C that have historically been known to be associated with treatment failure. Thus, the fixed-dose single-tablet combination of ledipasvir-sofosbuvir offers a new era for the effective treatment of a variety of patients suffering from chronic hepatitis C virus infection. PMID:27350749

  10. An inquiry into the causes and effects of the variolae (or Cow-pox. 1798).

    PubMed

    Jenson, Alfred B; Ghim, Shin-Je; Sundberg, John P

    2016-03-01

    Few papers have had a greater impact on the health of the human species than the simple, yet elegant, observations and clinical trials of Edward Jenner with what was at the time called the Cow Pox. In fact, this was a naturally attenuated rodent (probably rat) pox that could infect horses and, through farriers and farm hands, dairy cattle. While commonly called the Cow Pox at the time, Jenner's transmission studies between humans used infectious materials from horses. His methods provided protection from the serious effects of smallpox infections. In 1977, smallpox was considered to be eradicated, although people continue to be infected by pox viruses from other mammalian species. We consider this to be our 'favorite historical paper' because it emphasizes careful clinical observation followed by relatively simple clinical testing can have a profound influence on human health, even when almost nothing is known about the underlying molecular mechanisms. Continued follow-up with strict attention to detail resulted in a crude but effective way to deal with an epidemic, methods still used today for containing infectious diseases. PMID:26740456

  11. Alternating versus continuous drug regimens in combination chemotherapy of human immunodeficiency virus type 1 infection in vitro.

    PubMed Central

    Mazzulli, T; Rusconi, S; Merrill, D P; D'Aquila, R T; Moonis, M; Chou, T C; Hirsch, M S

    1994-01-01

    We compared the in vitro efficacies of two-, three-, and four-drug combinations given continuously or in alternating regimens against a clinical isolate of human immunodeficiency virus type 1. In H9 cells and peripheral blood mononuclear cells, at the drug concentrations used in this study, there was greater suppression of human immunodeficiency virus type 1 infection as the number of drugs in the regimen was increased from one to four simultaneously administered agents. Although alternating drug regimens were effective, they were not better than continuous administration of either single drugs or combinations of agents and were less effective than giving all drugs of an alternating regimen simultaneously. PMID:8031028

  12. One-step detection of pathogens and viruses: combining magnetic relaxation switching and magnetic separation.

    PubMed

    Chen, Yiping; Xianyu, Yunlei; Wang, Yu; Zhang, Xiaoqing; Cha, Ruitao; Sun, Jiashu; Jiang, Xingyu

    2015-03-24

    We report a sensing methodology that combines magnetic separation (MS) and magnetic relaxation switching (MS-MRS) for one-step detection of bacteria and viruses with high sensitivity and reproducibility. We first employ a magnetic field of 0.01 T to separate the magnetic beads of large size (250 nm in diameter) from those of small size (30 nm in diameter) and use the transverse relaxation time (T2) of the water molecules around the 30 nm magnetic beads (MB30) as the signal readout of the immunoassay. An MS-MRS sensor integrates target enrichment, extraction, and detection into one step, and the entire immunoassay can be completed within 30 min. Compared with a traditional MRS sensor, an MS-MRS sensor shows enhanced sensitivity, better reproducibility, and convenient operation, thus providing a promising platform for point-of-care testing. PMID:25743636

  13. Rational design and adaptive management of combination therapies for Hepatitis C virus infection

    SciTech Connect

    Ke, Ruian; Loverdo, Claude; Qi, Hangfei; Sun, Ren; Lloyd-Smith, James O.; Kouyos, Roger Dimitri

    2015-06-30

    Recent discoveries of direct acting antivirals against Hepatitis C virus (HCV) have raised hopes of effective treatment via combination therapies. Yet rapid evolution and high diversity of HCV populations, combined with the reality of suboptimal treatment adherence, make drug resistance a clinical and public health concern. We develop a general model incorporating viral dynamics and pharmacokinetics/ pharmacodynamics to assess how suboptimal adherence affects resistance development and clinical outcomes. We derive design principles and adaptive treatment strategies, identifying a high-risk period when missing doses is particularly risky for de novo resistance, and quantifying the number of additional doses needed to compensate when doses are missed. Using data from large-scale resistance assays, we demonstrate that the risk of resistance can be reduced substantially by applying these principles to a combination therapy of daclatasvir and asunaprevir. By providing a mechanistic framework to link patient characteristics to the risk of resistance, these findings show the potential of rational treatment design.

  14. Rational design and adaptive management of combination therapies for Hepatitis C virus infection

    DOE PAGESBeta

    Ke, Ruian; Loverdo, Claude; Qi, Hangfei; Sun, Ren; Lloyd-Smith, James O.; Kouyos, Roger Dimitri

    2015-06-30

    Recent discoveries of direct acting antivirals against Hepatitis C virus (HCV) have raised hopes of effective treatment via combination therapies. Yet rapid evolution and high diversity of HCV populations, combined with the reality of suboptimal treatment adherence, make drug resistance a clinical and public health concern. We develop a general model incorporating viral dynamics and pharmacokinetics/ pharmacodynamics to assess how suboptimal adherence affects resistance development and clinical outcomes. We derive design principles and adaptive treatment strategies, identifying a high-risk period when missing doses is particularly risky for de novo resistance, and quantifying the number of additional doses needed to compensatemore » when doses are missed. Using data from large-scale resistance assays, we demonstrate that the risk of resistance can be reduced substantially by applying these principles to a combination therapy of daclatasvir and asunaprevir. By providing a mechanistic framework to link patient characteristics to the risk of resistance, these findings show the potential of rational treatment design.« less

  15. Combination of Two Marek's Disease Virus Vectors Shows Effective Vaccination Against Marek's Disease, Infectious Bursal Disease, and Newcastle Disease.

    PubMed

    Ishihara, Yukari; Esaki, Motoyuki; Saitoh, Shuji; Yasuda, Atsushi

    2016-06-01

    Herpesvirus of turkeys (HVT) is a widely used vector for poultry vaccines. However, different HVTs expressing different foreign antigens cannot always be used simultaneously because of the risk of recombination and interference. In this study, we inoculated a mixture of an HVT-expressing the antigen of Newcastle disease virus (NDV; HVT/ND) and Marek's disease virus (MDV) serotype 1 Rispens virus expressing the antigen of infectious bursal disease virus (IBD; Ripens/IBD) into chickens. This mixture showed 94%, 100%, or 94% protection against MDV, IBDV, or NDV challenge, respectively. In conclusion, the combination of Rispens/IBD and HVT/ND is effective for vaccination against MDV, IBDV, and NDV without significant interference. PMID:27309290

  16. Ledipasvir/sofosbuvir fixed-dose combination for treatment of hepatitis C virus genotype 4 infection.

    PubMed

    Nehra, V; Tan, E M; Rizza, S A; Temesgen, Z

    2016-02-01

    Hepatitis C virus (HCV) genotype 4 accounts for 8-13% of all chronic HCV infections worldwide. Patients with HCV genotype 4 have been reported to have poor treatment responses to PEGylated interferon and ribavirin regimens. Recently a single tablet, fixed-dose combination of sofosbuvir, an RNA-directed RNA polymerase (NS5B) inhibitor, and ledipasvir, a nonstructural protein 5A (NS5A) inhibitor, has been approved for treatment of chronic HCV infection. Two studies using the fixed-dose combination in chronic HCV genotype 4 for 12 weeks reported sustained virologic response rates at 12 weeks (SVR12) of 93-95%. Data also support the use of ledipasvir/sofosbuvir in chronic HCV genotype 4 and HIV co-infection. Administered as a single once-daily oral regimen, this ribavirin- and interferon-free regimen is well tolerated, with low potential for adverse effects and represents a significant advancement in the treatment of chronic HCV genotype 4 infection. PMID:27092340

  17. Enhanced Mucosal Immune Responses Induced by a Combined Candidate Mucosal Vaccine Based on Hepatitis A Virus and Hepatitis E Virus Structural Proteins Linked to Tuftsin

    PubMed Central

    Gao, Yan; Su, Qiudong; Yi, Yao; Jia, Zhiyuan; Wang, Hao; Lu, Xuexin; Qiu, Feng; Bi, Shengli

    2015-01-01

    Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are the most common causes of infectious hepatitis. These viruses are spread largely by the fecal-oral route and lead to clinically important disease in developing countries. To evaluate the potential of targeting hepatitis A and E infection simultaneously, a combined mucosal candidate vaccine was developed with the partial open reading frame 2 (ORF2) sequence (aa 368–607) of HEV (HE-ORF2) and partial virus protein 1 (VP1) sequence (aa 1–198) of HAV (HA-VP1), which included the viral neutralization epitopes. Tuftsin is an immunostimulatory peptide which can enhance the immunogenicity of a protein by targeting it to macrophages and dendritic cells. Here, we developed a novel combined protein vaccine by conjugating tuftsin to HE-ORF2 and HA-VP1 and used synthetic CpG oligodeoxynucleotides (ODNs) as the adjuvant. Subsequent experiments in BALB/c mice demonstrated that tuftsin enhanced the serum-specific IgG and IgA antibodies against HEV and HAV at the intestinal, vaginal and pulmonary interface when delivered intranasally. Moreover, mice from the intranasally immunized tuftsin group (HE-ORF2-tuftsin + HA-VP1-tuftsin + CpG) showed higher levels of IFN-γ-secreting splenocytes (Th1 response) and ratio of CD4+/CD8+ T cells than those of the no-tuftsin group (HE-ORF2 + HA-VP1 + CpG). Thus, the tuftsin group generated stronger humoral and cellular immune responses compared with the no-tuftsin group. Moreover, enhanced responses to the combined protein vaccine were obtained by intranasal immunization compared with intramuscular injection. By integrating HE-ORF2, HA-VP1 and tuftsin in a vaccine, this study validated an important concept for further development of a combined mucosal vaccine against hepatitis A and E infection. PMID:25875115

  18. Inhibition of Hepatitis C Virus in Chimeric Mice by Short Synthetic Hairpin RNAs: Sequence Analysis of Surviving Virus Shows Added Selective Pressure of Combination Therapy

    PubMed Central

    Dallas, Anne; Ilves, Heini; Ma, Han; Chin, Daniel J.; MacLachlan, Ian; Klumpp, Klaus

    2014-01-01

    ABSTRACT We have recently shown that a cocktail of two short synthetic hairpin RNAs (sshRNAs), targeting the internal ribosome entry site of hepatitis C virus (HCV) formulated with lipid nanoparticles, was able to suppress viral replication in chimeric mice infected with HCV GT1a by up to 2.5 log10 (H. Ma et al., Gastroenterology 146:63–66.e5, http://dx.doi.org/10.1053/j.gastro.2013.09.049) Viral load remained about 1 log10 below pretreatment levels 21 days after the end of dosing. We have now sequenced the HCV viral RNA amplified from serum of treated mice after the 21-day follow-up period. Viral RNA from the HCV sshRNA-treated groups was altered in sequences complementary to the sshRNAs and nowhere else in the 500-nucleotide sequenced region, while the viruses from the control group that received an irrelevant sshRNA had no mutations in that region. The ability of the most commonly selected mutations to confer resistance to the sshRNAs was confirmed in vitro by introducing those mutations into HCV-luciferase reporters. The mutations most frequently selected by sshRNA treatment within the sshRNA target sequence occurred at the most polymorphic residues, as identified from an analysis of available clinical isolates. These results demonstrate a direct antiviral activity with effective HCV suppression, demonstrate the added selective pressure of combination therapy, and confirm an RNA interference (RNAi) mechanism of action. IMPORTANCE This study presents a detailed analysis of the impact of treating a hepatitis C virus (HCV)-infected animal with synthetic hairpin-shaped RNAs that can degrade the virus's RNA genome. These RNAs can reduce the viral load in these animals by over 99% after 1 to 2 injections. The study results confirm that the viral rebound that often occurred a few weeks after treatment is due to emergence of a virus whose genome is mutated in the sequences targeted by the RNAs. The use of two RNA inhibitors, which is more effective than use of either

  19. Single virus detection by means of atomic force microscopy in combination with advanced image analysis.

    PubMed

    Bocklitz, Thomas; Kämmer, Evelyn; Stöckel, Stephan; Cialla-May, Dana; Weber, Karina; Zell, Roland; Deckert, Volker; Popp, Jürgen

    2014-10-01

    In the present contribution virions of five different virus species, namely Varicella-zoster virus, Porcine teschovirus, Tobacco mosaic virus, Coliphage M13 and Enterobacteria phage PsP3, are investigated using atomic force microscopy (AFM). From the resulting height images quantitative features like maximal height, area and volume of the viruses could be extracted and compared to reference values. Subsequently, these features were accompanied by image moments, which quantify the morphology of the virions. Both types of features could be utilized for an automatic discrimination of the five virus species. The accuracy of this classification model was 96.8%. Thus, a virus detection on a single-particle level using AFM images is possible. Due to the application of advanced image analysis the morphology could be quantified and used for further analysis. Here, an automatic recognition by means of a classification model could be achieved in a reliable and objective manner. PMID:25196422

  20. Companion Animals as a Source of Viruses for Human Beings and Food Production Animals.

    PubMed

    Reperant, L A; Brown, I H; Haenen, O L; de Jong, M D; Osterhaus, A D M E; Papa, A; Rimstad, E; Valarcher, J-F; Kuiken, T

    2016-07-01

    Companion animals comprise a wide variety of species, including dogs, cats, horses, ferrets, guinea pigs, reptiles, birds and ornamental fish, as well as food production animal species, such as domestic pigs, kept as companion animals. Despite their prominent place in human society, little is known about the role of companion animals as sources of viruses for people and food production animals. Therefore, we reviewed the literature for accounts of infections of companion animals by zoonotic viruses and viruses of food production animals, and prioritized these viruses in terms of human health and economic importance. In total, 138 virus species reportedly capable of infecting companion animals were of concern for human and food production animal health: 59 of these viruses were infectious for human beings, 135 were infectious for food production mammals and birds, and 22 were infectious for food production fishes. Viruses of highest concern for human health included hantaviruses, Tahyna virus, rabies virus, West Nile virus, tick-borne encephalitis virus, Crimean-Congo haemorrhagic fever virus, Aichi virus, European bat lyssavirus, hepatitis E virus, cowpox virus, G5 rotavirus, influenza A virus and lymphocytic choriomeningitis virus. Viruses of highest concern for food production mammals and birds included bluetongue virus, African swine fever virus, foot-and-mouth disease virus, lumpy skin disease virus, Rift Valley fever virus, porcine circovirus, classical swine fever virus, equine herpesvirus 9, peste des petits ruminants virus and equine infectious anaemia virus. Viruses of highest concern for food production fishes included cyprinid herpesvirus 3 (koi herpesvirus), viral haemorrhagic septicaemia virus and infectious pancreatic necrosis virus. Of particular concern as sources of zoonotic or food production animal viruses were domestic carnivores, rodents and food production animals kept as companion animals. The current list of viruses provides an objective

  1. Gene Therapy Model of X-linked Severe Combined Immunodeficiency Using a Modified Foamy Virus Vector

    PubMed Central

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1. PMID:23990961

  2. Baculovirus-expressed virus-like particle vaccine in combination with DNA encoding the fusion protein confers protection against respiratory syncytial virus.

    PubMed

    Lee, Jong Seok; Kwon, Young-Man; Hwang, Hye Suk; Lee, Yu-Na; Ko, Eun-Ju; Yoo, Si-Eun; Kim, Min-Chul; Kim, Ki-Hye; Cho, Min Kyoung; Lee, Young-Tae; Lee, You Ri; Quan, Fu-Shi; Kang, Sang-Moo

    2014-10-01

    Respiratory syncytial virus (RSV) is a major viral agent causing significant morbidity and mortality in young infants and the elderly. There is no licensed vaccine against RSV and it is a high priority to develop a safe RSV vaccine. We determined the immunogenicity and protective efficacy of combined virus-like particle and DNA vaccines presenting RSV glycoproteins (Fd.VLP) in comparison with formalin inactivated RSV (FI-RSV). Immunization of mice with Fd.VLP induced higher ratios of IgG2a/IgG1 antibody responses compared to those with FI-RSV. Upon live RSV challenge, Fd.VLP and FI-RSV vaccines were similarly effective in clearing lung viral loads. However, FI-RSV immunized mice showed a substantial weight loss and high levels of T helper type 2 (Th2) cytokines as well as extensive lung histopathology and eosinophil infiltration. In contrast, Fd.VLP immunized mice did not exhibit Th2 type cytokines locally and systemically, which might contribute to preventing vaccine-associated RSV lung disease. These results indicate that virus-like particles in combination with DNA vaccines represent a potential approach for developing a safe and effective RSV vaccine. PMID:25173478

  3. Mitochondrial alternative oxidase is involved in both compatible and incompatible host-virus combinations in Nicotiana benthamiana.

    PubMed

    Zhu, Feng; Deng, Xing-Guang; Xu, Fei; Jian, Wei; Peng, Xing-Ji; Zhu, Tong; Xi, De-Hui; Lin, Hong-Hui

    2015-10-01

    The alternative oxidase (AOX) functions in the resistance to biotic stress. However, the mechanisms of AOX in the systemic antiviral defense response and N (a typical resistance gene)-mediated resistance to Tobacco mosaic virus (TMV) are elusive. A chemical approach was undertaken to investigate the role of NbAOX in the systemic resistance to RNA viruses. Furthermore, we used a virus-induced gene-silencing (VIGS)-based genetics approach to investigate the function of AOX in the N-mediated resistance to TMV. The inoculation of virus significantly increased the NbAOX transcript and protein levels and the cyanide-resistant respiration in the upper un-inoculated leaves. Pretreatment with potassium cyanide greatly increased the plant's systemic resistance, whereas the application of salicylhydroxamic acid significantly compromised the plant's systemic resistance. Additionally, in NbAOX1a-silenced N-transgenic Nicotiana benthamiana plants, the inoculated leaf collapsed and the movement of TMV into the systemic tissue eventually led to the spreading of HR-PCD and the death of the whole plant. The hypersensitive response marker gene HIN1 was significantly increased in the NbAOX1a-silenced plants. Significant amounts of TMV-CP mRNA and protein were detected in the NbAOX1a-silenced plants but not in the control plants. Overall, evidence is provided that AOX plays important roles in both compatible and incompatible plant-virus combinations. PMID:26398788

  4. Fatal combined infection with canine distemper virus and orthopoxvirus in a group of Asian marmots (Marmota caudata).

    PubMed

    Origgi, F C; Sattler, U; Pilo, P; Waldvogel, A S

    2013-09-01

    A fatal combined infection with canine distemper virus (CDV) and orthopoxvirus (OPXV) in Asian marmots (Marmota caudata) is reported in this article. A total of 7 Asian marmots from a small zoological garden in Switzerland were found dead in hibernation during a routine check in the winter of 2011. The marmots died in February 2011. No clinical signs of disease were observed at any time. The viruses were detected in all individuals for which the tissues were available (n = 3). Detection of the viruses was performed by reverse transcription polymerase chain reaction. The most consistent gross lesion was a neck and thorax edema. A necrotizing pharyngitis and a multifocal necrotizing pneumonia were observed histologically. Numerous large intracytoplasmic eosinophilic inclusions were seen in the epithelial cells of the pharynx, of the airways, and in the skin keratinocytes. Brain lesions were limited to mild multifocal gliosis. Phylogenetic analysis revealed that the marmot CDV strain was closely related to the clusters of CDVs detected in Switzerland in wild carnivores during a local outbreak in 2002 and the 2009-2010 nationwide epidemic, suggesting a spillover of this virus from wildlife. The OPXV was most closely related to a strain of cowpoxvirus, a poxvirus species considered endemic in Europe. This is the first reported instance of CDV infection in a rodent species and of a combined CDV and OPXV infection. PMID:23381928

  5. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  6. Hemoglobin Decrease with Iron Deficiency Induced by Daclatasvir plus Asunaprevir Combination Therapy for Chronic Hepatitis C Virus Genotype 1b

    PubMed Central

    Shigefuku, Ryuta; Hattori, Nobuhiro; Watanabe, Tsunamasa; Matsunaga, Kotaro; Hiraishi, Tetsuya; Tamura, Tomohiro; Noguchi, Yohei; Fukuda, Yasunobu; Ishii, Toshiya; Okuse, Chiaki; Sato, Akira; Suzuki, Michihiro; Itoh, Fumio

    2016-01-01

    Background Decreased hemoglobin (Hb) level has been supposed to be a relatively rare side effect of a combination therapy against hepatitis C virus that consists of the NS5A inhibitor daclatasvir (DCV) and the NS3/4A protease inhibitor asunaprevir (ASV). Methods The study was conducted in 75 patients with genotype 1b chronic hepatitis C virus infection who had started combination therapy with DCV and ASV at St. Marianna University School of Medicine Hospital between September 2014 and December 2014. Results Among the patients examined, decreased Hb level by ≥1.5 g/dL from the values at treatment initiation was observed in 11 individuals. This was accompanied by decreased mean corpuscular volume, and iron and ferritin levels. Conclusions These findings suggest that the mechanism of the phenomenon is caused by iron deficiency. The underlying mechanism and clinical impacts will need to be further examined. PMID:26990758

  7. Virtual screening of eighteen million compounds against dengue virus: Combined molecular docking and molecular dynamics simulations study.

    PubMed

    Mirza, Shaher Bano; Salmas, Ramin Ekhteiari; Fatmi, M Qaiser; Durdagi, Serdar

    2016-05-01

    Dengue virus is a major issue of tropical and sub-tropical regions. Dengue virus has been the cause behind the major alarming epidemics in the history with mass causalities from the decades. Unavailability of on-shelf drugs for the prevention of further proliferation of virus inside the human body results in immense number of deaths each year. This issue necessitates the design of novel anti-dengue drug. The protease enzyme pathway is the critical target for drug design due to its significance in the replication, survival and other cellular activities of dengue virus. Therefore, approximately eighteen million compounds from the ZINC database have been virtually screened against nonstructural protein 3 (NS3). The incremental construction algorithm of Glide docking program has been used with its features high throughput virtual screening (HTVS), standard precision (SP), extra precision (XP) and in combination of Prime module, induced fit docking (IFD) approach has also been applied. Five top-ranked compounds were then selected from the IFD results with better predicted binding energies with the catalytic triad residues (His51, Asp75, and Ser135) that may act as potential inhibitors for the underlying target protease enzyme. The top-ranked compounds ZINC95518765, ZINC44921800, ZINC71917414, ZINC39500661, ZINC36681949 have shown the predicted binding energies of -7.55, -7.36, -8.04, -8.41, -9.18kcal/mol, respectively, forming binding interactions with three catalytically important amino acids. Top-docking poses of compounds are then used in molecular dynamics (MD) simulations. In computational studies, our proposed compounds confirm promising results against all the four serotypes of dengue virus, strengthening the opportunity of these compounds to work as potential on-shelf drugs against dengue virus. Further experimentation on the proposed compounds can result in development of strong inhibitors. PMID:27054972

  8. Rabies vaccination: comparison of neutralizing antibody responses after priming and boosting with different combinations of DNA, inactivated virus, or recombinant vaccinia virus vaccines.

    PubMed

    Lodmell, D L; Ewalt, L C

    2000-05-01

    Long-term levels of neutralizing antibody were evaluated in mice after a single immunization with experimental DNA or recombinant vaccinia virus (RVV) vaccines encoding the rabies virus glycoprotein (G), or the commercially available inactivated virus human diploid cell vaccine (HDCV). Anamnestic antibody titers were also evaluated after two booster immunizations with vaccines that were identical to or different from the priming vaccine. Five hundred and forty days (1.5 year) after a single immunization with any of the three vaccines, neutralizing antibody titers remained greater than the minimal acceptable human level of antibody titer (0.5 International Units (IU)/ml). In addition, either an HDCV or DNA booster elicited early and elevated anamnestic antibody responses in mice that had been primed with any of the three vaccines. In contrast, RVV boosters failed to elevate titers in mice that had been previously primed with RVV, and elicited slowly rising titers in mice that had been primed with either DNA or HDCV. Thus, a single vaccination with any of the three different vaccines elicited long-term levels of neutralizing antibody that exceeded 0.5 IU/ml. In contrast, different prime-booster vaccine combinations elicited anamnestic neutralizing antibody responses that increased quickly, increased slowly or failed to increase. PMID:10738096

  9. Enhancement of antiviral protection against encephalomyocarditis virus by a combination of isoprinosine and interferon.

    PubMed

    Chany, C; Cerutti, I

    1977-01-01

    The antiviral effect of interferon against encephalomyocarditis (EMC) virus infection in mice was enhanced by isoprinosine. However, the enhancement was only obtained when both interferon and the virus were inoculated into the peritoneum; the inoculation route of isoprinosone did not modify significantly the final results. In addition, the time sequence of injections was of great importance; generally the injection of isoprinosine had to precede that of interferon by a few hours. PMID:74245

  10. Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lytic bacteriophages, viruses which infect and lyse bacterial cells, can provide a natural method to reduce bacterial pathogens on produce commodities. The use of multi-phage cocktails is most likely to be effective against bacterial pathogens on produce commodities, and minimize the development of...

  11. Discrimination of infectious hepatitis A virus and rotavirus by combining dyes and surfactants with RT-qPCR

    PubMed Central

    2013-01-01

    Background Human enteric viruses are major agents of foodborne diseases. Because of the absence of a reliable cell culture method for most of the enteric viruses involved in outbreaks, real-time reverse transcriptase PCR is now widely used for the detection of RNA viruses in food samples. However this approach detects viral nucleic acids of both infectious and non infectious viruses, which limits the impact of conclusions with regard to public health concern. The aim of the study was to develop a method to discriminate between infectious and non-infectious particles of hepatitis A virus (HAV) and two strains of rotavirus (RV) following thermal inactivation by using intercalating dyes combined with RT-qPCR. Results Once the binding of propidium monoazide (PMA) or ethidium monoazide (EMA) was shown to be effective on the viral ssRNA of HAV and dsRNA of two strains of RV (SA11 and Wa), their use in conjunction with three surfactants (IGEPAL CA-630, Tween 20, Triton X-100) prior to RT-qPCR assays was evaluated to quantify the infectious particles remaining following heat treatment. The most promising conditions were EMA (20 μM) and IGEPAL CA-630 (0.5%) for HAV, EMA (20 μM) for RV (WA) and PMA (50 μM) for RV (SA11). The effectiveness of the pre-treatment RT-qPCR developed for each virus was evaluated with three RT-qPCR assays (A, B, C) during thermal inactivation kinetics (at 37°C, 68 C, 72°C, 80°C) through comparison with data obtained by RT-qPCR and by infectious titration in cell culture. At 37°C, the quantity of virus (RV, HAV) remained constant regardless of the method used. The genomic titers following heat treatment at 68°C to 80°C became similar to the infectious titers only when a pre-treatment RT-qPCR was used. Moreover, the most effective decrease was obtained by RT-qPCR assay A or B for HAV and RT-qPCR assay B or C for RV. Conclusions We concluded that effectiveness of the pre-treatment RT-qPCR is influenced by the viral target and by the choice

  12. Elevated Plasma Viral Loads in Romidepsin-Treated Simian Immunodeficiency Virus-Infected Rhesus Macaques on Suppressive Combination Antiretroviral Therapy.

    PubMed

    Del Prete, Gregory Q; Oswald, Kelli; Lara, Abigail; Shoemaker, Rebecca; Smedley, Jeremy; Macallister, Rhonda; Coalter, Vicky; Wiles, Adam; Wiles, Rodney; Li, Yuan; Fast, Randy; Kiser, Rebecca; Lu, Bing; Zheng, Jim; Alvord, W Gregory; Trubey, Charles M; Piatak, Michael; Deleage, Claire; Keele, Brandon F; Estes, Jacob D; Hesselgesser, Joseph; Geleziunas, Romas; Lifson, Jeffrey D

    2016-03-01

    Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4(+) T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy. PMID:26711758

  13. In vitro human immunodeficiency virus type 1 resistance selections with combinations of tenofovir and emtricitabine or abacavir and lamivudine.

    PubMed

    Margot, N A; Waters, J M; Miller, M D

    2006-12-01

    Human immunodeficiency virus type 1 (HIV-1) resistance development was evaluated in vitro by using combinations of the drugs tenofovir and emtricitabine or abacavir and lamivudine, as well as by using the compounds individually. Emtricitabine- and lamivudine-resistant HIV-1 isolates with the M184I or M184V mutation in reverse transcriptase were readily selected in the cultures with emtricitabine alone, lamivudine alone, and the two drug combinations and conferred high-level resistance to emtricitabine and lamivudine. Tenofovir-resistant HIV-1 isolates with the K65R mutation occurred in both the culture with tenofovir alone and the culture with the combination of emtricitabine and tenofovir. The S68N and S68K mutations were also observed in the tenofovir cultures, with no detectable impact on resistance, suggesting a possible compensatory role in viral fitness. At low concentrations of emtricitabine and tenofovir, the M184I mutation appeared first, followed by the K65R mutation, in a subset of viruses. At intermediate concentrations of emtricitabine and tenofovir, viruses harboring the K65R mutation or a novel K65N and K70R double mutation grew before they gave rise to mutants with K65R and M184V/I double mutations at higher emtricitabine concentrations. Abacavir resistance was characterized by the accumulation of the M184V, Y115F, and K65R mutations in the abacavir culture, while the M184V and L74V mutations were selected in combination with lamivudine. In the presence of the abacavir resistance mutations, viral growth was strong even in the presence of high concentrations of abacavir. In contrast, viral growth was markedly impaired in the cultures with high tenofovir concentrations, even in the presence of K65R. In conclusion, these studies show that HIV-1 mutants with a K65R and M184V genotype are generated under maximum selection pressure from the combination of tenofovir and emtricitabine. PMID:16982781

  14. Efficacy and Safety of Tenofovir and Lamivudine in Combination with Efavirenz in Patients Co-infected with Human Immunodeficiency Virus and Hepatitis B Virus in China

    PubMed Central

    Wu, Ya-Song; Zhang, Wei-Wei; Ling, Xue-Mei; Yang, Lian; Huang, Shao-Biao; Wang, Xi-Cheng; Wu, Hao; Cai, Wei-Ping; Wang, Min; Wang, Hui; Liu, Yan-Fen; He, Hao-Lan; Wei, Fei-Li; Wu, Zun-You; Zhang, Fu-Jie

    2016-01-01

    Background: The prevalence of hepatitis B virus (HBV) infection is high among individuals infected with human immunodeficiency virus (HIV) in China. Both HIV and HBV can be treated with tenofovir disoproxil fumarate (TDF) and lamivudine (3TC), so we evaluated the safety and efficacy of combination antiretroviral therapy (ART) that included TDF, 3TC, and efavirenz (EFV) among ART-naive individuals who were co-infected with HIV and HBV. Methods: One hundred HIV/HBV co-infected ARV-naive individuals were started on the regimen of TDF, 3TC, and EFV, and the levels of plasma HBV DNA, HIV RNA, and biochemical evaluation related to the function of liver and kidney were analyzed. Results: Concerning efficacy, this study found that by week 48, the vast majority co-infected participants receiving this ART regimen had undetectable HBV DNA levels (71%) and/or HIV RNA levels (90%). Concerning safety, this study found that the median estimated glomerular filtration rate of participants decreased from baseline (109 ml·min−1·1.73 m−2) to week 12 (104 ml·min−1·1.73 m−2) but was almost back to baseline at week 48 (111 ml·min−1·1.73 m−2). Conclusion: This combination ART regimen is safe and effective for patients with HIV/HBV co-infection. Trial Registration: ClinicalTrials.gov, NCT01751555; https://clinicaltrials.gov/ct2/show/NCT01751555. PMID:26831232

  15. Characterization of Clonality of Epstein-Barr Virus-Induced Human B Lymphoproliferative Disease in Mice with Severe Combined Immunodeficiency

    PubMed Central

    Nakamine, Hirokazu; Masih, Aneal S.; Okano, Motohiko; Taguchi, Yuichi; Pirruccello, Samuel J.; Davis, Jack R.; Mahloch, Mark L.; Beisel, Kirk W.; Kleveland, Kimberly; Sanger, Warren G.; Purtilo, David T.

    1993-01-01

    To improve the diagnostic accuracy and understanding of the pathogenesis of lymphoproliferative diseases (LPDs) occurring in immunosuppressed transplant recipients (post-transplantation LPD), clonality of Epstein-Barr virus-induced human LPDs in mice with severe combined immunodeficiency was examined by analyzing: 1) human immunoglobulin genes and their products, 2) the clonality of Epstein-Barr virus DNA, and 3) genetic alteration of c-myc or bcl-2 genes. A spectrum of clonality was found in the LPDs comparable with that reported for post-transplantation LPDs, although rearrangements of c-myc or bcl-2 genes were not detected. It is confirmed that this system is useful in terms of clonality for understanding the early phases in the pathogenesis of post-transplantation LPD or LPD in immune deficient patients. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:8380952

  16. Avian influenza virus with Hemagglutinin-Neuraminidase combination H8N8, isolated in Russia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study reports the genome sequence of an avian influenza virus (AIV) subtype H8N8 isolated in Russia. The genome analysis shows that all genes belong to AIV Eurasian lineages. The PB2 gene was similar to a Mongolian low pathogenic (LP) AIV H7N1 and a Chinese high pathogenic (HP) AIV H5N2....

  17. Replication-Competent Herpes Simplex Virus Vector G207 and Cisplatin Combination Therapy for Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Chahlavi, Ali; Todo, Tomoki; Martuza, Robert L; Rabkin, Samuel D

    1999-01-01

    Abstract Replication-competent virus vectors are attractive therapeutic agents for cancer. G207, a second-generation, multimutated herpes simplex virus type 1 (HSV-1), is one such vector that is safe in primates and efficacious against human tumors in athymic mice. Squamous cell carcinoma is the most frequently encountered malignancy of the head and neck, and the chemotherapeutic agent cisplatin is a standard treatment for recurrent head and neck cancer. In this study we examine the therapeutic potential of G207, alone and in combination with cisplatin, against squamous cell carcinoma. Human squamous cell carcinoma cell lines are sensitive to G207 replication and cytotoxicity in vitro at a multiplicity of infection of 0.01, including cisplatin sensitive (UMSCC-22A), moderately sensitive (UMSCC-38), and weakly sensitive (SQ20B) cell lines. Cisplatin did not inhibit the cytopathic effect of G207. G207 inhibited the growth of established subcutaneous head and neck tumors in athymic mice. The therapeutic effects of cisplatin and G207 in vivo were independent. However, in cisplatin-sensitive tumors (UMSCC-38), combination therapy resulted in 100% cures in contrast to 42% with G207 or 14% with cisplatin alone. We conclude that G207 should be considered for the treatment of head and neck cancer and that combination with chemotherapeutic agents may improve efficacy. PMID:10933051

  18. Combined virus-like particle and fusion protein-encoding DNA vaccination of cotton rats induces protection against respiratory syncytial virus without causing vaccine-enhanced disease.

    PubMed

    Hwang, Hye Suk; Lee, Young-Tae; Kim, Ki-Hye; Park, Soojin; Kwon, Young-Man; Lee, Youri; Ko, Eun-Ju; Jung, Yu-Jin; Lee, Jong Seok; Kim, Yu-Jin; Lee, Yu-Na; Kim, Min-Chul; Cho, Minkyoung; Kang, Sang-Moo

    2016-07-01

    A safe and effective vaccine against respiratory syncytial virus (RSV) should confer protection without causing vaccine-enhanced disease. Here, using a cotton rat model, we investigated the protective efficacy and safety of an RSV combination vaccine composed of F-encoding plasmid DNA and virus-like particles containing RSV fusion (F) and attachment (G) glycoproteins (FFG-VLP). Cotton rats with FFG-VLP vaccination controlled lung viral replication below the detection limit, and effectively induced neutralizing activity and antibody-secreting cell responses. In comparison with formalin inactivated RSV (FI-RSV) causing severe RSV disease after challenge, FFG-VLP vaccination did not cause weight loss, airway hyper-responsiveness, IL-4 cytokines, histopathology, and infiltrates of proinflammatory cells such as eosinophils. FFG-VLP was even more effective in preventing RSV-induced pulmonary inflammation than live RSV infections. This study provides evidence that FFG-VLP can be developed into a safe and effective RSV vaccine candidate. PMID:27123586

  19. Similar hepatitis C virus RNA kinetics in HIV/hepatitis C virus monoinfected genotype 2 or 3 matched controls during hepatitis C virus combination therapy.

    PubMed

    Karlström, Olle; Sönnerborg, Anders; Weiland, Ola

    2008-04-23

    We prospectively studied early hepatitis C virus kinetics and sustained virological response rates in HIV/HCV coinfected (n = 13) and HCV monoinfected matched controls (n = 26) with HCV genotype 2/3 treated with pegylated interferon (peg-IFN) alpha-2a 135 microg/week plus ribavirin 11 mg/kg daily during 24 weeks. No significant difference in HCV-RNA decay was seen at any time point during the initial 12 weeks of therapy. Sustained virological response was achieved in 9/13 (69%) versus 20/26 (77%) patients (intent-to-treat), respectively. The lower-than-standard peg-IFN dose offered high compliance and reasonable sustained virological response rates. PMID:18427210

  20. Efficacy of combined vaccination against Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus in dually infected pigs.

    PubMed

    Bourry, Olivier; Fablet, Christelle; Simon, Gaëlle; Marois-Créhan, Corinne

    2015-11-18

    Porcine respiratory disease complex (PRDC) is one of the main causes of economic losses for swine producers. This complex is due to a combination of different pathogens and their interactions. Two major pathogens involved in PRDC are Mycoplasma hyopneumoniae (Mhp) and porcine reproductive and respiratory syndrome virus (PRRSV). The objectives of this study were (i) to develop an experimental model of dual Mhp/PRRSV infection in SPF pigs with European strains of Mhp and PRRSV and (ii) to assess and compare the effects of single Mhp, single PRRSV or combined Mhp/PRRSV vaccination against this dual infection. Pigs dually infected with Mhp and PRRSV showed a combination of symptoms characteristic of each pathogen but no significant exacerbation of pathogenicity. Thus, the co-infected pigs displayed coughing and pneumonia typical of Mhp infection in addition to PRRSV-related hyperthermia and decrease in average daily gain (ADG). Hyperthermia was reduced in PRRSV vaccinated animals (single or combined vaccination), whereas ADG was restored in Mhp/PRRSV vaccinated pigs only. Regarding respiratory symptoms and lung lesions, no vaccine decreased coughing. However, all vaccines reduced the pneumonia score but more so in animals receiving the Mhp vaccine, whether single or combined. This vaccine also decreased the Mhp load in the respiratory tract. In conclusion, combined vaccination against both Mhp and PRRSV efficiently pooled the efficacy of each single PRRSV and Mhp vaccination and could be an interesting tool to control PRDC in European swine production. PMID:26422712

  1. Combination treatment with oncolytic Vaccinia virus and cyclophosphamide results in synergistic antitumor effects in human lung adenocarcinoma bearing mice

    PubMed Central

    2014-01-01

    Background The capacity of the recombinant Vaccinia virus GLV-1h68 as a single agent to efficiently treat different human or canine cancers has been shown in several preclinical studies. Currently, its human safety and efficacy are investigated in phase I/II clinical trials. In this study we set out to evaluate the oncolytic activity of GLV-1h68 in the human lung adenocarcinoma cell line PC14PE6-RFP in cell cultures and analyzed the antitumor potency of a combined treatment strategy consisting of GLV-1h68 and cyclophosphamide (CPA) in a mouse model of PC14PE6-RFP lung adenocarcinoma. Methods PC14PE6-RFP cells were treated in cell culture with GLV-1h68. Viral replication and cell survival were determined by plaque assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, respectively. Subcutaneously implanted PC14PE6-RFP xenografts were treated by systemic injection of GLV-1h68, CPA or a combination of both. Tumor growth and viral biodistribution were monitored and immune-related antigen profiling of tumor lysates was performed. Results GLV-1h68 efficiently infected, replicated in and lysed human PC14PE6-RFP cells in cell cultures. PC14PE6-RFP tumors were efficiently colonized by GLV-1h68 leading to much delayed tumor growth in PC14PE6-RFP tumor-bearing nude mice. Combination treatment with GLV-1h68 and CPA significantly improved the antitumor efficacy of GLV-1h68 and led to an increased viral distribution within the tumors. Pro-inflammatory cytokines and chemokines were distinctly elevated in tumors of GLV-1h68-treated mice. Factors expressed by endothelial cells or present in the blood were decreased after combination treatment. A complete loss in the hemorrhagic phenotype of the PC14PE6-RFP tumors and a decrease in the number of blood vessels after combination treatment could be observed. Conclusions CPA and GLV-1h68 have synergistic antitumor effects on PC14PE6-RFP xenografts. We strongly suppose that in the PC14PE6-RFP model the

  2. A Pilot Study of Raltegravir Plus Combination Antiretroviral Therapy in Early Human Immunodeficiency Virus Infection: Challenges and Lessons Learned

    PubMed Central

    Collier, Ann C.; Chun, Tae-Wook; Maenza, Janine; Coombs, Robert W.; Tapia, Kenneth; Chang, Ming; Stevens, Claire E.; Justement, J. Shawn; Murray, Danielle; Stekler, Joanne D.; Mullins, James I; Holte, Sarah E.

    2016-01-01

    Abstract Availability of integrase strand transfer inhibitors created interest in determining whether their use would decrease persistently infected cell numbers. This study hypothesized that adding raltegravir (RAL) to standard antiretroviral therapy (ART) would decrease human immunodeficiency virus (HIV)-infected CD4+ T cells more than standard combination ART. This was a pilot, randomized study comparing open-label standard triple ART to standard triple ART plus RAL over 96 weeks in ART-naive adults with early HIV infection. The primary objective was to compare quantity and trajectory of HIV DNA. Eighty-two persons were referred. A diverse set of reasons precluded the enrollment of all but 10. Those who enrolled and completed the study had an estimated median duration of HIV infection of 74 days at ART start. The groups had similar baseline characteristics. The RAL group had more rapid first phase plasma HIV RNA decay (0.67 log10 copies/mL/day) than with combination ART (0.34 log10copies/mL/day), p = 0.037. Second phase HIV RNA decay, residual viremia, cell-associated RNA, HIV DNA, CD4+ T-cells with replication-competent virus, and 2LTR circle levels did not differ between groups. Among those with entry plasma HIV RNA levels above the median, 2LTR circles were significantly lower over time than in those with lower entry HIV RNA levels (p = 0.02). Our results suggest homogeneity of responses in cell-associated RNA, HIV DNA, CD4+ T-cells with replication-competent virus, and 2LTR circles with early HIV in both ART groups. The kinetics of 2LTR DNA did not reflect the kinetics of plasma HIV RNA decline following ART initiation. PMID:26862469

  3. A Pilot Study of Raltegravir Plus Combination Antiretroviral Therapy in Early Human Immunodeficiency Virus Infection: Challenges and Lessons Learned.

    PubMed

    Collier, Ann C; Chun, Tae-Wook; Maenza, Janine; Coombs, Robert W; Tapia, Kenneth; Chang, Ming; Stevens, Claire E; Justement, J Shawn; Murray, Danielle; Stekler, Joanne D; Mullins, James I; Holte, Sarah E

    2016-01-01

    Availability of integrase strand transfer inhibitors created interest in determining whether their use would decrease persistently infected cell numbers. This study hypothesized that adding raltegravir (RAL) to standard antiretroviral therapy (ART) would decrease human immunodeficiency virus (HIV)-infected CD4(+) T cells more than standard combination ART. This was a pilot, randomized study comparing open-label standard triple ART to standard triple ART plus RAL over 96 weeks in ART-naive adults with early HIV infection. The primary objective was to compare quantity and trajectory of HIV DNA. Eighty-two persons were referred. A diverse set of reasons precluded the enrollment of all but 10. Those who enrolled and completed the study had an estimated median duration of HIV infection of 74 days at ART start. The groups had similar baseline characteristics. The RAL group had more rapid first phase plasma HIV RNA decay (0.67 log10 copies/mL/day) than with combination ART (0.34 log10copies/mL/day), p = 0.037. Second phase HIV RNA decay, residual viremia, cell-associated RNA, HIV DNA, CD4(+) T-cells with replication-competent virus, and 2LTR circle levels did not differ between groups. Among those with entry plasma HIV RNA levels above the median, 2LTR circles were significantly lower over time than in those with lower entry HIV RNA levels (p = 0.02). Our results suggest homogeneity of responses in cell-associated RNA, HIV DNA, CD4(+) T-cells with replication-competent virus, and 2LTR circles with early HIV in both ART groups. The kinetics of 2LTR DNA did not reflect the kinetics of plasma HIV RNA decline following ART initiation. PMID:26862469

  4. Superior Efficacy of a Human Immunodeficiency Virus Vaccine Combined with Antiretroviral Prevention in Simian-Human Immunodeficiency Virus-Challenged Nonhuman Primates

    PubMed Central

    Le Grand, Roger; Dereuddre-Bosquet, Nathalie; Dispinseri, Stefania; Gosse, Leslie; Desjardins, Delphine; Shen, Xiaoying; Tolazzi, Monica; Ochsenbauer, Christina; Saidi, Hela; Tomaras, Georgia; Prague, Mélanie; Barnett, Susan W.; Thiebaut, Rodolphe; Scarlatti, Gabriella

    2016-01-01

    ABSTRACT Although vaccines and antiretroviral (ARV) prevention have demonstrated partial success against human immunodeficiency virus (HIV) infection in clinical trials, their combined introduction could provide more potent protection. Furthermore, combination approaches could ameliorate the potential increased risk of infection following vaccination in the absence of protective immunity. We used a nonhuman primate model to determine potential interactions of combining a partially effective ARV microbicide with an envelope-based vaccine. The vaccine alone provided no protection from infection following 12 consecutive low-dose intravaginal challenges with simian-HIV strain SF162P3, with more animals infected compared to naive controls. The microbicide alone provided a 68% reduction in the risk of infection relative to that of the vaccine group and a 45% reduction relative to that of naive controls. The vaccine-microbicide combination provided an 88% reduction in the per-exposure risk of infection relative to the vaccine alone and a 79% reduction relative to that of the controls. Protected animals in the vaccine-microbicide group were challenged a further 12 times in the absence of microbicide and demonstrated a 98% reduction in the risk of infection. A total risk reduction of 91% was observed in this group over 24 exposures (P = 0.004). These important findings suggest that combined implementation of new biomedical prevention strategies may provide significant gains in HIV prevention. IMPORTANCE There is a pressing need to maximize the impact of new biomedical prevention tools in the face of the 2 million HIV infections that occur each year. Combined implementation of complementary biomedical approaches could create additive or synergistic effects that drive improved reduction of HIV incidence. Therefore, we assessed a combination of an untested vaccine with an ARV-based microbicide in a nonhuman primate vaginal challenge model. The vaccine alone provided no

  5. Combination therapy of oncolytic herpes simplex virus HF10 and bevacizumab against experimental model of human breast carcinoma xenograft.

    PubMed

    Tan, Gewen; Kasuya, Hideki; Sahin, Tevfik Tolga; Yamamura, Kazuo; Wu, Zhiwen; Koide, Yusuke; Hotta, Yoshihiro; Shikano, Toshio; Yamada, Suguru; Kanzaki, Akiyuki; Fujii, Tsutomu; Sugimoto, Hiroyuki; Nomoto, Shuji; Nishikawa, Yoko; Tanaka, Maki; Tsurumaru, Naoko; Kuwahara, Toshie; Fukuda, Saori; Ichinose, Toru; Kikumori, Toyone; Takeda, Shin; Nakao, Akimasa; Kodera, Yasuhiro

    2015-04-01

    Breast cancer is one of the most common and feared cancers faced by women. The prognosis of patients with advanced or recurrent breast cancer remains poor despite refinements in multimodality therapies involving chemotherapeutic and hormonal agents. Multimodal therapy with more specific and effective strategy is urgently needed. The oncolytic herpes simplex virus (HSV) has potential to become a new effective treatment option because of its broad host range and tumor selective viral distribution. Bevacizumab is a monoclonal antibody against VEGFA, which inhibits angiogenesis and therefore tumor growth. Our approach to enhance the antitumor effect of the oncolytic HSV is to combine oncolytic HSV HF10 and bevacizumab in the treatment of breast cancer. Our results showed that bevacizumab enhanced viral distribution as well as tumor hypoxia and expanded the population of apoptotic cells and therefore induced a synergistic antitumor effect. HF10 is expected to be a promising agent in combination with bevacizumab in the anticancer treatment. PMID:25156870

  6. Development of double-generation gold nanoparticle chip-based dengue virus detection system combining fluorescence turn-on probes.

    PubMed

    Tung, Yen-Ting; Chang, Cheng-Chung; Lin, Yi-Ling; Hsieh, Shie-Liang; Wang, Gou-Jen

    2016-03-15

    A sensing platform, combined amino acid labeling kit and a double-generation gold nanoparticle (DG-AuNP) chip, was designed to prove the existence of weak but crucial binding between the DV (dengue virus) and its CLEC5A receptor. At first, we have designed a kit combining the novel fluorescence turn-on sensors for lysine, arginine and cysteine amino acids. Advantages of this kit are that emission on-off switching can increase the signal-to-noise ratio and the virus must be fluorescently labelled with sufficient numbers of fluorophores because the lysine, arginine and cysteine residues of viral proteins are labelled simultaneously. Consequently, this kit can be used to light-on single DV spot both in solution and in cell under fluorescence microscopy. Second, the labeling kit was used to examine the DV binding to the CLEC5A-coated DG-AuNP chip. Based on our study, the double-generation gold nanoparticle construction of chip can support more coating areas for receptor CLEC5A and then, support more binding opportunities for DV. Meanwhile, the grooves between nanohemispheres will provide the extra driving force for DV stacking. We try to give a proof that this sensing platform is very useful for detection of weak binding mechanism. PMID:26397419

  7. Systemic Combination Virotherapy for Melanoma with Tumor Antigen-Expressing Vesicular Stomatitis Virus and Adoptive T-cell Transfer

    PubMed Central

    Rommelfanger, Diana M.; Wongthida, Phonphimon; Diaz, Rosa M.; Kaluza, Karen M.; Thompson, Jill M.; Kottke, Timothy J.; Vile, Richard G.

    2013-01-01

    Oncolytic virotherapy offers the potential to treat tumors both as a single agent and in combination with traditional modalities such as chemotherapy and radiotherapy. Here we describe an effective, fully systemic treatment regimen, which combines virotherapy, acting essentially as an adjuvant immunotherapy, with adoptive cell transfer (ACT). The combination of ACT with systemic administration of a vesicular stomatitis virus (VSV) engineered to express the endogenous melanocyte antigen glycoprotein 100 (gp100) resulted in regression of established melanomas and generation of antitumor immunity. Tumor response was associated with in vivo T-cell persistence and activation as well as treatment-related vitiligo. However, in a proportion of treated mice, initial tumor regressions were followed by recurrences. Therapy was further enhanced by targeting an additional tumor antigen with the VSV-antigen + ACT combination strategy, leading to sustained response in 100% of mice. Together, our findings suggest that systemic virotherapy combined with antigen-expressing VSV could be used to support and enhance clinical immunotherapy protocols with adoptive T-cell transfer, which are already used in the clinic. PMID:22836753

  8. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions.

    PubMed

    Chow, Cheryl-Emiliane T; Winget, Danielle M; White, Richard A; Hallam, Steven J; Suttle, Curtis A

    2015-01-01

    Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant "nr" database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems. PMID:25914678

  9. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions

    PubMed Central

    Chow, Cheryl-Emiliane T.; Winget, Danielle M.; White, Richard A.; Hallam, Steven J.; Suttle, Curtis A.

    2015-01-01

    Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant “nr” database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems. PMID:25914678

  10. Bovine Viral Diarrhea Virus: Prevention of Persistent Fetal Infection by a Combination of Two Mutations Affecting Erns RNase and Npro Protease▿

    PubMed Central

    Meyers, Gregor; Ege, Andreas; Fetzer, Christiane; von Freyburg, Martina; Elbers, Knut; Carr, Veronica; Prentice, Helen; Charleston, Bryan; Schürmann, Eva-Maria

    2007-01-01

    Different genetically engineered mutants of bovine viral diarrhea virus (BVDV) were analyzed for the ability to establish infection in the fetuses of pregnant heifers. The virus mutants exhibited either a deletion of the overwhelming part of the genomic region coding for the N-terminal protease Npro, a deletion of codon 349, which abrogates the RNase activity of the structural glycoprotein Erns, or a combination of both mutations. Two months after infection of pregnant cattle with wild-type virus or either of the single mutants, the majority of the fetuses contained virus or were aborted or found dead in the uterus. In contrast, the double mutant was not recovered from fetal tissues after a similar challenge, and no dead fetuses were found. This result was verified with a nonrelated BVDV containing similar mutations. After intrauterine challenge with wild-type virus, mutated viruses, and cytopathogenic BVDV, all viruses could be detected in fetal tissue after 5, 7, and 14 days. Type 1 interferon (IFN) could be detected in fetal serum after challenge, except with wild-type noncytopathogenic BVDV. On days 7 and 14 after challenge, the largest quantities of IFN in fetal serum were induced by the Npro and RNase-negative double mutant virus. The longer duration of fetal infection with the double mutant resulted in abortion. Therefore, for the first time, we have demonstrated the essential role of both Npro and Erns RNase in blocking interferon induction and establishing persistent infection by a pestivirus in the natural host. PMID:17215285

  11. Replication-Competent Influenza Virus and Respiratory Syncytial Virus Luciferase Reporter Strains Engineered for Co-Infections Identify Antiviral Compounds in Combination Screens.

    PubMed

    Yan, Dan; Weisshaar, Marco; Lamb, Kristen; Chung, Hokyung K; Lin, Michael Z; Plemper, Richard K

    2015-09-15

    Myxoviruses such as influenza A virus (IAV) and respiratory syncytial virus (RSV) are major human pathogens, mandating the development of novel therapeutics. To establish a high-throughput screening protocol for the simultaneous identification of pathogen- and host-targeted hit candidates against either pathogen or both, we have attempted co-infection of cells with IAV and RSV. However, viral replication kinetics were incompatible, RSV signal window was low, and an IAV-driven minireplicon reporter assay used in initial screens narrowed the host cell range and restricted the assay to single-cycle infections. To overcome these limitations, we developed an RSV strain carrying firefly luciferase fused to an innovative universal small-molecule assisted shut-off domain, which boosted assay signal window, and a hyperactive fusion protein that synchronized IAV and RSV reporter expression kinetics and suppressed the identification of RSV entry inhibitors sensitive to a recently reported RSV pan-resistance mechanism. Combined with a replication-competent recombinant IAV strain harboring nanoluciferase, the assay performed well on a human respiratory cell line and supports multicycle infections. Miniaturized to 384-well format, the protocol was validated through screening of a set of the National Institutes of Health Clinical Collection (NCC) in quadruplicate. These test screens demonstrated favorable assay parameters and reproducibility. Application to a LOPAC library of bioactive compounds in a proof-of-concept campaign detected licensed antimyxovirus therapeutics, ribavirin and the neuraminidase inhibitor zanamivir, and identified two unexpected RSV-specific hit candidates, Fenretinide and the opioid receptor antagonist BNTX-7. Hits were evaluated in direct and orthogonal dose-response counterscreens using a standard recRSV reporter strain expressing Renilla luciferase. PMID:26307636

  12. Combined use of the ASK and SHK-1 cell lines to enhance the detection of infectious salmon anemia virus

    USGS Publications Warehouse

    Rolland, J.B.; Bouchard, D.; Coll, J.; Winton, J.R.

    2005-01-01

    Infectious salmon anemia (ISA) is a severe disease primarily affecting commercially farmed Atlantic salmon (Salmo salar) in seawater. The disease has been reported in portions of Canada, the United Kingdom, the Faroe Islands, and the United States. Infectious salmon anemia virus (ISAV), the causative agent of ISA, has also been isolated from several asymptomatic marine and salmonid fish species. Diagnostic assays for the detection of ISAV include virus isolation in cell culture, a reverse transcriptase-PCR, an enzyme-linked immunosorbent assay, and an indirect fluorescent antibody test. Virus isolation is considered the gold standard, and 5 salmonid cell lines are known to support growth of ISAV. In this study, the relative performance of the salmon head kidney 1 (SHK-1), Atlantic salmon kidney (ASK), and CHSE-214 cell lines in detecting ISAV was evaluated using samples from both experimentally and naturally infected Atlantic salmon. Interlaboratory comparisons were conducted using a quality control-quality assurance ring test. Both the ASK and SHK-1 cell lines performed well in detecting ISAV, although the SHK-1 line was more variable in its sensitivity to infection and somewhat slower in the appearance of cytopathic effect. Relative to the SHK-1 and ASK lines, the CHSE-214 cell line performed poorly. Although the ASK line appeared to represent a good alternative to the more commonly used SHK-1 line, use of a single cell line for diagnostic assays may increase the potential for false-negative results. Thus, the SHK-1 and ASK cell lines can be used in combination to provide enhanced ability to detect ISAV.

  13. Herpes simplex virus 1 tropism for human sensory ganglion neurons in the severe combined immunodeficiency mouse model of neuropathogenesis.

    PubMed

    Zerboni, Leigh; Che, Xibing; Reichelt, Mike; Qiao, Yanli; Gu, Haidong; Arvin, Ann

    2013-03-01

    The tropism of herpes simplex virus (HSV-1) for human sensory neurons infected in vivo was examined using dorsal root ganglion (DRG) xenografts maintained in mice with severe combined immunodeficiency (SCID). In contrast to the HSV-1 lytic infectious cycle in vitro, replication of the HSV-1 F strain was restricted in human DRG neurons despite the absence of adaptive immune responses in SCID mice, allowing the establishment of neuronal latency. At 12 days after DRG inoculation, 26.2% of human neurons expressed HSV-1 protein and 13.1% expressed latency-associated transcripts (LAT). Some infected neurons showed cytopathic changes, but HSV-1, unlike varicella-zoster virus (VZV), only rarely infected satellite cells and did not induce fusion of neuronal and satellite cell plasma membranes. Cell-free enveloped HSV-1 virions were observed, indicating productive infection. A recombinant HSV-1-expressing luciferase exhibited less virulence than HSV-1 F in the SCID mouse host, enabling analysis of infection in human DRG xenografts for a 61-day interval. At 12 days after inoculation, 4.2% of neurons expressed HSV-1 proteins; frequencies increased to 32.1% at 33 days but declined to 20.8% by 61 days. Frequencies of LAT-positive neurons were 1.2% at 12 days and increased to 40.2% at 33 days. LAT expression remained at 37% at 61 days, in contrast to the decline in neurons expressing viral proteins. These observations show that the progression of HSV-1 infection is highly restricted in human DRG, and HSV-1 genome silencing occurs in human neurons infected in vivo as a consequence of virus-host cell interactions and does not require adaptive immune control. PMID:23269807

  14. Single-tube multiplexed molecular detection of endemic porcine viruses in combination with background screening for transboundary diseases.

    PubMed

    Wernike, Kerstin; Hoffmann, Bernd; Beer, Martin

    2013-03-01

    Detection of several pathogens with multiplexed real-time quantitative PCR (qPCR) assays in a one-step setup allows the simultaneous detection of two endemic porcine and four different selected transboundary viruses. Reverse transcription (RT)-qPCR systems for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2), two of the most economically important pathogens of swine worldwide, were combined with a screening system for diseases notifiable to the World Organization of Animal Health, namely, classical and African swine fever, foot-and-mouth disease, and Aujeszky's disease. Background screening was implemented using the identical fluorophore for all four different RT-qPCR assays. The novel multiplex RT-qPCR system was validated with a large panel of different body fluids and tissues from pigs and other animal species. Both reference samples and clinical specimens were used for a complete evaluation. It could be demonstrated that a highly sensitive and specific parallel detection of the different viruses was possible. The assays for the notifiable diseases were even not affected by the simultaneous amplification of very high loads of PRRSV- and PCV2-specific sequences. The novel broad-spectrum multiplex assay allows in a unique form the routine investigation for endemic porcine pathogens with exclusion diagnostics of the most important transboundary diseases in samples from pigs with unspecific clinical signs, such as fever or hemorrhages. The new system could significantly improve early detection of the most important notifiable diseases of swine and could lead to a new approach in syndromic surveillance. PMID:23303496

  15. Insecticidal activity of the granulosis virus in combination with neem products and talc powder against the potato tuberworm Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae).

    PubMed

    Mascarin, G M; Delalibera, I

    2012-06-01

    The potato tuberworm Phthorimaea operculella (Zeller) is an important agricultural pest that causes significant economic losses to potato growers worldwide. The addition of an effective method of biological control for the potato tuberworm is greatly needed, and is currently unavailable in Brazil. The granulosis virus (Baculoviridae) is a promising biological control agent to protect post-harvest potatoes and in storage from the potato tuberworm. However, the control measure must be economically feasible. Liquid suspensions of a granulosis virus applied alone or in mixture with two commercial neem oil-based products (DalNeem™ and NeemAzal™), and a dry powder formulation of viral granules were evaluated for control of potato tuberworm larvae by treating potato tubers under laboratory conditions. High larval mortality (86.7%) was achieved when DalNeem and virus were applied together at 4 mg of azadirachtin/L and 10(4) occlusion bodies (OBs)/mL, respectively. This combination resulted in ≥50% efficacy in relation to their counterparts alone. Conversely, NeemAzal did not enhance virus effectiveness against larvae of the potato tuberworm. The talc-based virus formulation was used for dusting seed tubers at different concentrations and resulted in 100% larval mortality at 5 × 10(8) OBs/g. Formulated and unformulated virus provided 50% mortality at 166 OBs/g and at 5.0 × 10(5) OBs/mL, respectively. As a result, talc-based virus formulation had a better control efficiency on potato tuberworm than the aqueous virus suspension. The granulosis virus combined with DalNeem at low rates or formulated with talc powder is a viable option to control the potato tuberworm under storage conditions. PMID:23950047

  16. A Combination of HA and PA Mutations Enhances Virulence in a Mouse-Adapted H6N6 Influenza A Virus

    PubMed Central

    Tan, Likai; Smith, David K.; He, Shuyi; Zheng, Yun; Shao, Zhenwen; Ma, Jun; Zhu, Huachen

    2014-01-01

    ABSTRACT H6N6 viruses are commonly isolated from domestic ducks, and avian-to-swine transmissions of H6N6 viruses have been detected in China. Whether subsequent adaptation of H6N6 viruses in mammals would increase their pathogenicity toward humans is not known. To address this, we generated a mouse-adapted (MA) swine influenza H6N6 virus (A/swine/Guangdong/K6/2010 [GDK6-MA]) which exhibited greater virulence than the wild-type virus (GDK6). Amino acid substitutions in PB2 (E627K), PA (I38M), and hemagglutinin ([HA] L111F, H156N, and S263R) occurred in GDK6-MA. HA with the H156N mutation [HA(H156N)] resulted in enlarged plaque sizes on MDCK cells and enhanced early-stage viral replication in mammalian cells. PA(I38M) raised polymerase activity in vitro but did not change virus replication in either mammalian cells or mice. These single substitutions had only limited effects on virulence; however, a combination of HA(H156N S263R) with PA(I38M) in the GDK6 backbone led to a significantly more virulent variant. This suggests that these substitutions can compensate for the lack of PB2(627K) and modulate virulence, revealing a new determinant of pathogenicity for H6N6 viruses in mice, which might also pose a threat to human health. IMPORTANCE Avian H6N6 influenza viruses are enzootic in domestic ducks and have been detected in swine in China. Infections of mammals by H6N6 viruses raise the possibility of viral adaptation and increasing pathogenicity in the new hosts. To examine the molecular mechanisms of adaptation, a mouse-adapted avian-origin swine influenza H6N6 virus (GDK6-MA), which had higher virulence than its parental virus, was generated. Specific mutations were found in PB2 (E627K), PA (I38M), and HA (L111F, H156N, and S263R) and were assessed for their virulence in mice. The combination of HA(H156N S263R) and PA(I38M) compensated for the lack of PB2(627K) and showed increased pathogenicity in mice, revealing a novel mechanism that can affect the virulence of

  17. The Combined Influence of Oral Contraceptives and Human Papillomavirus Virus on Cutaneous Squamous Cell Carcinoma

    PubMed Central

    Efird, Jimmy T.; Toland, Amanda E.; Lea, C. Suzanne; Phillips, Christopher J.

    2011-01-01

    The vast majority of cutaneous squamous cell carcinoma (CSCC) will occur in those with fair complexion, tendency to burn, and high ultraviolet radiation (UVR) exposure. Organ transplant recipients also are an important population at great risk for CSCC. An association has been reported between oral contraceptive (OC) use, human papillomavirus virus (HPV) and cervical cancer, and there could be a similar association for CSCC. The cutaneous HPV β-E6 protein, a close cousin of the transformative E6 protein underlying anogenital cancers, has been shown to inhibit apoptosis in response to UVR damage and stimulate morphologic transformation in rodent fibroblast cell lines. Furthermore, OC use has been shown to enhance HPV transcription and may contribute to CSCC risk through this pathway. PMID:21499554

  18. Visual detection of Ebola virus using reverse transcription loop-mediated isothermal amplification combined with nucleic acid strip detection.

    PubMed

    Xu, Changping; Wang, Hualei; Jin, Hongli; Feng, Na; Zheng, Xuexing; Cao, Zengguo; Li, Ling; Wang, Jianzhong; Yan, Feihu; Wang, Lina; Chi, Hang; Gai, Weiwei; Wang, Chong; Zhao, Yongkun; Feng, Yan; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Ebola virus (species Zaire ebolavirus) (EBOV) is highly virulent in humans. The largest recorded outbreak of Ebola hemorrhagic fever in West Africa to date was caused by EBOV. Therefore, it is necessary to develop a detection method for this virus that can be easily distributed and implemented. In the current study, we developed a visual assay that can detect EBOV-associated nucleic acids. This assay combines reverse transcription loop-mediated isothermal amplification and nucleic acid strip detection (RT-LAMP-NAD). Nucleic acid amplification can be achieved in a one-step process at a constant temperature (58 °C, 35 min), and the amplified products can be visualized within 2-5 min using a nucleic acid strip detection device. The assay is capable of detecting 30 copies of artificial EBOV glycoprotein (GP) RNA and RNA encoding EBOV GP from 10(2) TCID50 recombinant viral particles per ml with high specificity. Overall, the RT-LAMP-NAD method is simple and has high sensitivity and specificity; therefore, it is especially suitable for the rapid detection of EBOV in African regions. PMID:26831931

  19. Optimal therapy for chronic hepatitis B: hepatitis B virus combination therapy?

    PubMed

    Petersen, Jorg; Dandri, Maura

    2015-01-01

    Currently available antiviral treatment for chronic hepatitis B can be divided into two classes of therapeutic agents: pegylated interferon alpha (PEG-IFN) and nucleos(t)ide analogues (NAs). The major advantages of NAs are good tolerance and potent antiviral activity associated with high rates of on-treatment response to therapy. The advantages of PEG-IFN include a finite course of treatment, the absence of drug resistance, and an opportunity to obtain a durable post-treatment response to therapy. The use of these two antiviral agents with different mechanisms of action in combination is theoretically an attractive approach for treatment, either simultaneously, as sequential combination therapy (add-on), or even as an immediate switch from one agent to the other. Different NAs have also been combined in certain clinical situations. At present, several studies have confirmed certain virological advantages to combination therapies, but pivotal prospective studies demonstrating long-term clinical benefit to patients are still missing. Therefore, combination treatment, especially with PEG-IFN plus NAs, is not indicated and was not recommended by the European Association for the Study of the Liver Clinical Practice Guidelines written in 2012, while the guidelines for the use of combination NAs is limited to very few clinical situations. PMID:25529096

  20. The in vitro and in vivo antiviral properties of combined monoterpene alcohols against West Nile virus infection.

    PubMed

    Pliego Zamora, Adriana; Edmonds, Judith H; Reynolds, Maxwell J; Khromykh, Alexander A; Ralph, Stephen J

    2016-08-01

    West Nile Virus (WNV) is a mosquito-borne flavivirus that can cause neuroinvasive disease in humans and animals for which no therapies are currently available. We studied an established combination of monoterpene alcohols (CMA) derived from Melaleuca alternifolia, against WNV infection. The in vitro results show that CMA exhibits virucidal activity, as well as reduces the viral titres and percentage of infected cells. The antiviral mechanism of action of CMA was studied. We found that CMA did not alter the intracellular pH, neither induced apoptosis, but did induce cell cycle arrest in the G0/G1-phase although that was not the antiviral mechanism. Furthermore, we tested CMA in vivo using IRF 3(-)(/)(-)/7(-/-)mice and it was found that CMA treatment significantly delayed morbidity due to WNV infection, reduced the loss of body weight and reduced the viral titres in brain. These findings suggest that CMA could be a therapeutic agent against WNV infection. PMID:27152479

  1. Non-viral adeno-associated virus-based platform for stable expression of antibody combination therapeutics.

    PubMed

    Wilmes, Gwendolyn M; Carey, Kimberly L; Hicks, Stuart W; Russell, Hugh H; Stevenson, Jesse A; Kocjan, Paulina; Lutz, Stephen R; Quesenberry, Rachel S; Shulga-Morskoy, Sergey V; Lewis, Megan E; Clark, Ethan; Medik, Violetta; Cooper, Anthony B; Reczek, Elizabeth E

    2014-01-01

    Antibody combination therapeutics (ACTs) are polyvalent biopharmaceuticals that are uniquely suited for the control of complex diseases, including antibiotic resistant infectious diseases, autoimmune disorders and cancers. However, ACTs also represent a distinct manufacturing challenge because the independent manufacture and subsequent mixing of monoclonal antibodies quickly becomes cost prohibitive as more complex mixtures are envisioned. We have developed a virus-free recombinant protein expression platform based on adeno-associated viral (AAV) elements that is capable of rapid and consistent production of complex antibody mixtures in a single batch format. Using both multiplexed immunoassays and cation exchange (CIEX) chromatography, cell culture supernatants generated using our system were assessed for stability of expression and ratios of the component antibodies over time. Cultures expressing combinations of three to ten antibodies maintained consistent expression levels and stable ratios of component antibodies for at least 60 days. Cultures showed remarkable reproducibility following cell banking, and AAV-based cultures showed higher stability and productivity than non-AAV based cultures. Therefore, this non-viral AAV-based expression platform represents a predictable, reproducible, quick and cost effective method to manufacture or quickly produce for preclinical testing recombinant antibody combination therapies and other recombinant protein mixtures. PMID:24758837

  2. Non-viral adeno-associated virus-based platform for stable expression of antibody combination therapeutics

    PubMed Central

    Wilmes, Gwendolyn M; Carey, Kimberly L; Hicks, Stuart W; Russell, Hugh H; Stevenson, Jesse A; Kocjan, Paulina; Lutz, Stephen R; Quesenberry, Rachel S; Shulga-Morskoy, Sergey V; Lewis, Megan E; Clark, Ethan; Medik, Violetta; Cooper, Anthony B; Reczek, Elizabeth E

    2014-01-01

    Antibody combination therapeutics (ACTs) are polyvalent biopharmaceuticals that are uniquely suited for the control of complex diseases, including antibiotic resistant infectious diseases, autoimmune disorders and cancers. However, ACTs also represent a distinct manufacturing challenge because the independent manufacture and subsequent mixing of monoclonal antibodies quickly becomes cost prohibitive as more complex mixtures are envisioned. We have developed a virus-free recombinant protein expression platform based on adeno-associated viral (AAV) elements that is capable of rapid and consistent production of complex antibody mixtures in a single batch format. Using both multiplexed immunoassays and cation exchange (CIEX) chromatography, cell culture supernatants generated using our system were assessed for stability of expression and ratios of the component antibodies over time. Cultures expressing combinations of three to ten antibodies maintained consistent expression levels and stable ratios of component antibodies for at least 60 days. Cultures showed remarkable reproducibility following cell banking, and AAV-based cultures showed higher stability and productivity than non-AAV based cultures. Therefore, this non-viral AAV-based expression platform represents a predictable, reproducible, quick and cost effective method to manufacture or quickly produce for preclinical testing recombinant antibody combination therapies and other recombinant protein mixtures. PMID:24758837

  3. Real-Time PCR System for Detection of Orthopoxviruses and Simultaneous Identification of Smallpox Virus

    PubMed Central

    Olson, Victoria A.; Laue, Thomas; Laker, Miriam T.; Babkin, Igor V.; Drosten, Christian; Shchelkunov, Sergei N.; Niedrig, Matthias; Damon, Inger K.; Meyer, Hermann

    2004-01-01

    A screening assay for real-time LightCycler (Roche Applied Science, Mannheim, Germany) PCR identification of smallpox virus DNA was developed and compiled in a kit system under good manufacturing practice conditions with standardized reagents. In search of a sequence region unique to smallpox virus, the nucleotide sequence of the 14-kDa fusion protein gene of each of 14 variola virus isolates of the Russian World Health Organization smallpox virus repository was determined and compared to published sequences. PCR primers were designed to detect all Eurasian-African species of the genus Orthopoxvirus. A single nucleotide mismatch resulting in a unique amino acid substitution in smallpox virus was used to design a hybridization probe pair with a specific sensor probe that allows reliable differentiation of smallpox virus from other orthopoxviruses by melting-curve analysis. The applicability was demonstrated by successful amplification of 120 strains belonging to the orthopoxvirus species variola, vaccinia, camelpox, mousepox, cowpox, and monkeypox virus. The melting temperatures (Tms) determined for 46 strains of variola virus (Tms, 55.9 to 57.8°C) differed significantly (P = 0.005) from those obtained for 11 strains of vaccinia virus (Tms, 61.7 to 62.7°C), 15 strains of monkeypox virus (Tms, 61.9 to 62.2°C), 40 strains of cowpox virus (Tms, 61.3 to 63.7°C), 8 strains of mousepox virus (Tm, 61.9°C), and 8 strains of camelpox virus (Tms, 64.0 to 65.0°C). As most of the smallpox virus samples were derived from infected cell cultures and tissues, smallpox virus DNA could be detected in a background of human DNA. By applying probit regression analysis, the analytical sensitivity was determined to be 4 copies of smallpox virus target DNA per sample. The DNAs of several human herpesviruses as well as poxviruses other than orthopoxviruses were not detected by this method. The assay proved to be a reliable technique for the detection of orthopoxviruses, with the

  4. Combinations of Polyclonal or Monoclonal Antibodies to Proteins of the Outer Membranes of the Two Infectious Forms of Vaccinia Virus Protect Mice against a Lethal Respiratory Challenge

    PubMed Central

    Lustig, Shlomo; Fogg, Christiana; Whitbeck, J. Charles; Eisenberg, Roselyn J.; Cohen, Gary H.; Moss, Bernard

    2005-01-01

    Previous studies demonstrated that antibodies to live vaccinia virus infection are needed for optimal protection against orthopoxvirus infection. The present report is the first to compare the protective abilities of individual and combinations of specific polyclonal and monoclonal antibodies that target proteins of the intracellular (IMV) and extracellular (EV) forms of vaccinia virus. The antibodies were directed to one IMV membrane protein, L1, and to two outer EV membrane proteins, A33 and B5. In vitro studies showed that the antibodies to L1 neutralized IMV and that the antibodies to A33 and B5 prevented the spread of EV in liquid medium. Prophylactic administration of individual antibodies to BALB/c mice partially protected them against disease following intranasal challenge with lethal doses of vaccinia virus. Combinations of antibodies, particularly anti-L1 and -A33 or -L1 and -B5, provided enhanced protection when administered 1 day before or 2 days after challenge. Furthermore, the protection was superior to that achieved with pooled immune gamma globulin from human volunteers inoculated with live vaccinia virus. In addition, single injections of anti-L1 plus anti-A33 antibodies greatly delayed the deaths of severe combined immunodeficiency mice challenged with vaccinia virus. These studies suggest that antibodies to two or three viral membrane proteins optimally derived from the outer membranes of IMV and EV, may be beneficial for prophylaxis or therapy of orthopoxvirus infections. PMID:16227266

  5. A clinical pilot study of lignin--ascorbic acid combination treatment of herpes simplex virus.

    PubMed

    Lopez, Blanca Silvia Gonzalez; Yamamoto, Masaji; Utsumi, Katsuaki; Aratsu, Chiaki; Sakagami, Hiroshi

    2009-01-01

    Antiviral drugs as well as natural remedies have been used to reduce symptoms and the rate of recurrences of herpes simplex virus type 1 (HSV-1) infection, a common disease. To evaluate anti-HSV-1 activity of a pine cone lignin and ascorbic acid treatment, a clinical pilot study was carried out. Forty-eight healthy patients of both genders between 4 and 61 years old (mean: 31+/-16 years), with active lesions of HSV-1, took part in the study. According to the HSV-1 stage at the presentation, the patients were classified into the prodromic (16 patients), erythema (11 patients), papule edema (1 patient), vesicle/pustule (13 patients) and ulcer stages (7 patients). One mg of lignin-ascorbic acid tablet or solution was orally administered three times daily for a month. Clinical evaluations were made daily the first week and at least three times a week during the second week after the onset and every six months during the subsequent year to identify recurrence episodes. The patients who began the lignin-ascorbic acid treatment within the first 48 hours of symptom onset did not develop HSV-1 characteristic lesions, whereas those patients who began the treatment later experienced a shorter duration of cold sore lesions and a decrease in the symptoms compared with previous episodes. The majority of the patients reported the reduction in the severity of symptoms and the reduction in the recurrence episodes after the lignin-ascorbic acid treatment compared with previous episodes, suggesting its possible applicability for the prevention and treatment of HSV-1 infection. PMID:20023248

  6. Combinations of oseltamivir and peramivir for the treatment of influenza A (H1N1) virus infections in cell culture and in mice

    PubMed Central

    Smee, Donald F.; Hurst, Brett L.; Wong, Min-Hui; Tarbet, E. Bart; Babu, Y.S.; Klumpp, Klaus; Morrey, John D.

    2010-01-01

    Oseltamivir and peramivir are being considered for combination treatment of serious influenza virus infections in humans. Both compounds are influenza virus neuraminidase inhibitors, and since peramivir binds tighter to the enzyme than oseltamivir carboxylate (the active form of oseltamivir), the possibility exists that antagonistic interactions might result when using the two compounds together. To study this possibility, combination chemotherapy experiments were conducted in vitro and in mice infected with influenza A/NWS/33 (H1N1) virus. Treatment of infected MDCK cells was performed with combinations of oseltamivir carboxylate and peramivir at 0.32-100 μM for 3 days, followed by virus yield determinations. Additive drug interactions with a narrow region of synergy were found using the MacSynergy method. In a viral neuraminidase assay with combinations of inhibitors at 0.01-10 nM, no significant antagonistic or synergistic interactions were observed across the range of concentrations. Infected mice were treated twice-daily for 5 days starting 2 hours prior to virus challenge using drug doses of 0.05-0.4 mg/kg/day. Consistent and statistically significant increases in the numbers of survivors were seen when twice daily oral oseltamivir (0.4 mg/kg/day) was combined with twice daily intramuscular peramivir (0.1 and 0.2 mg/kg/day) compared to single drug treatments The data demonstrate that combinations of oseltamivir and peramivir perform better than suboptimal doses of each compound alone to treat influenza infections in mice. Treatment with these two compounds should be considered as an option. PMID:20633577

  7. A new permanent cell line derived from the bank vole (Myodes glareolus) as cell culture model for zoonotic viruses

    PubMed Central

    2011-01-01

    Background Approximately 60% of emerging viruses are of zoonotic origin, with three-fourths derived from wild animals. Many of these zoonotic diseases are transmitted by rodents with important information about their reservoir dynamics and pathogenesis missing. One main reason for the gap in our knowledge is the lack of adequate cell culture systems as models for the investigation of rodent-borne (robo) viruses in vitro. Therefore we established and characterized a new cell line, BVK168, using the kidney of a bank vole, Myodes glareolus, the most abundant member of the Arvicolinae trapped in Germany. Results BVK168 proved to be of epithelial morphology expressing tight junctions as well as adherence junction proteins. The BVK168 cells were analyzed for their infectability by several arbo- and robo-viruses: Vesicular stomatitis virus, vaccinia virus, cowpox virus, Sindbis virus, Pixuna virus, Usutu virus, Inkoo virus, Puumalavirus, and Borna disease virus (BDV). The cell line was susceptible for all tested viruses, and most interestingly also for the difficult to propagate BDV. Conclusion In conclusion, the newly established cell line from wildlife rodents seems to be an excellent tool for the isolation and characterization of new rodent-associated viruses and may be used as in vitro-model to study properties and pathogenesis of these agents. PMID:21729307

  8. Combined exposure of Japanese quails to cyanotoxins, Newcastle virus and lead: oxidative stress responses.

    PubMed

    Paskova, Veronika; Veronika, Paskova; Paskerova, Hana; Hana, Paskerova; Pikula, Jiri; Jiri, Pikula; Bandouchova, Hana; Hana, Bandouchova; Sedlackova, Jana; Jana, Sedlackova; Hilscherova, Klara; Klara, Hilscherova

    2011-10-01

    Wild birds are continually exposed to many anthropogenic and natural stressors in their habitats. Over the last decades, mass mortalities of wild birds constitute a serious problem and may possibly have more causations such as natural toxins including cyanotoxins, parasitic diseases, industrial chemicals and other anthropogenic contaminants. This study brings new knowledge on the effects of controlled exposure to multiple stressors in birds. The aim was to test the hypothesis that influence of cyanobacterial biomass, lead and antigenic load may combine to enhance the effects on birds, including modulation of antioxidative and detoxification responses. Eight treatment groups of model species Japanese quail (Coturnix coturnix japonica) were exposed to various combinations of these stressors. The parameters of detoxification and oxidative stress were studied in liver and heart after 30 days of exposure. The antioxidative enzymatic defense in birds seems to be activated quite efficiently, which was documented by the elevated levels and activities of antioxidative and detoxification compounds and by the low incidence of damage to lipid membranes. The greatest modulations of glutathione level and activities of glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase and lipid peroxidation were shown mostly in the groups with combined multiple exposures. The results indicate that the antioxidative system plays an important role in the protective response of the tissues to applied stressors and that its greater induction helps to protect the birds from more serious damage. Most significant changes of these "defense" parameters in case of multiple stressors suggest activation of this universal mechanism in situation with complex exposure and its crucial role in protection of the bird health in the environment. PMID:21855999

  9. Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance.

    PubMed

    Wee, Keng Boon; Lee, Raphael Tze Chuen; Lin, Jing; Pramono, Zacharias Aloysius Dwi; Maurer-Stroh, Sebastian

    2016-01-01

    The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans-H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer) in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment ("Duals") or from two segments ("Doubles"); 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences) represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3), the hedge-factor is maximal (= n- 1) when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for different

  10. Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance

    PubMed Central

    Lin, Jing; Pramono, Zacharias Aloysius Dwi; Maurer-Stroh, Sebastian

    2016-01-01

    The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans–H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer) in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment (“Duals”) or from two segments (“Doubles”); 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences) represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3), the hedge-factor is maximal (= n– 1) when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for

  11. Combinations of 3'-azido-3'-deoxythymidine (zidovudine) and phosphonoformate (foscarnet) against human immunodeficiency virus type 1 and cytomegalovirus replication in vitro.

    PubMed Central

    Eriksson, B F; Schinazi, R F

    1989-01-01

    Combinations of 3'-azido-3'-deoxythymidine and phosphonoformate produced a moderate synergistic inhibitory effect against human immunodeficiency virus type 1 in vitro at concentrations that are easily achieved in humans. The synergistic effect was more pronounced with increasing concentrations and was not secondary to toxic effects of the drugs. 3'-Azido-3'-deoxythymidine neither inhibited the replication of human cytomegalovirus in human embryonic lung fibroblasts nor interfered with the anticytomegalovirus effect of phosphonoformate. By using partially purified reverse transcriptase of human immunodeficiency virus type 1 and human cytomegalovirus DNA polymerase, various combinations of 3'-azido-3'-deoxythymidine-5'-triphosphate and phosphonoformate produced strong indications of additive interactions. The synergistic interactions in infected cells and the additive effects observed at the reverse transcriptase level indicate that mechanisms other than the reverse transcriptase may be of importance for the inhibition of human immunodeficiency virus replication by these two compounds. A concomitant treatment of cytomegalovirus infections, such as cytomegalovirus retinitis, with phosphonoformate in patients with acquired immunodeficiency syndrome receiving 3'-azido-3'-deoxythymidine may be appropriate, and this combination may also be useful in controlling human immunodeficiency virus infection. PMID:2546487

  12. A Polyvalent Clade B Virus-Like Particle HIV Vaccine Combined with Partially Protective Oral Preexposure Prophylaxis Prevents Simian–Human Immunodeficiency Virus Infection in Macaques and Primes for Virus-Amplified Immunity

    PubMed Central

    Ross, Ted M.; Pereira, Lara E.; Luckay, Amara; McNicholl, Janet M.; García-Lerma, J. Gerardo; Heneine, Walid; Eugene, Hermancia S.; Pierce-Paul, Brooke R.; Zhang, Jining; Hendry, R. Michael

    2014-01-01

    Abstract Vaccination and preexposure prophylaxis (PrEP) with antiretrovirals have shown only partial protection from HIV-1 infection in human trials. Oral Truvada (emtricitabine/tenofovir disoproxil fumarate) is FDA approved as PrEP but partial adherence reduces efficacy. If combined as biomedical preventions (CBP), an HIV vaccine could protect when PrEP adherence is low and PrEP could prevent vaccine breakthroughs. The efficacy of combining oral PrEP with an HIV vaccine has not been evaluated in humans. We determined the efficacy of combining a DNA/virus-like particle (VLP) vaccine with partially effective intermittent PrEP in Indian rhesus macaques (RM). Eight RM received intramuscular inoculations of five DNA plasmids encoding four HIV-1 Clade B primary isolate Envs and SIVmac239 Gag (at weeks 0 and 4), followed by intramuscular and intranasal inoculations of homologous Gag VLPs and four Env VLPs (at weeks 12, 16, and 53). At week 61, we initiated weekly rectal exposures with heterologous SHIV162p3 (10 TCID50) along with oral Truvada (TDF, 22 mg/kg; FTC 20 mg/kg) dosing 2 h before and 22 h after each exposure. This PrEP regimen previously demonstrated 50% efficacy. Five controls (no vaccine, no PrEP) received weekly SHIV162p3. All controls were infected after a median of four exposures; the mean peak plasma viral load (VL) was 3.9×107 vRNA copies/ml. CBP protected seven of eight (87.5%) RM. The one infected CBP RM had a reduced peak VL of 8.8×105 copies/ml. SHIV exposures during PrEP amplified Gag and Env antibody titers in protected RM. These results suggest that combining oral PrEP with HIV vaccines could enhance protection against HIV-1 infection. PMID:24914761

  13. A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication.

    PubMed

    Verardi, Paulo H; Titong, Allison; Hagen, Caitlin J

    2012-07-01

    In 1796, Edward Jenner introduced the concept of vaccination with cowpox virus, an Orthopoxvirus within the family Poxviridae that elicits cross protective immunity against related orthopoxviruses, including smallpox virus (variola virus). Over time, vaccinia virus (VACV) replaced cowpox virus as the smallpox vaccine, and vaccination efforts eventually led to the successful global eradication of smallpox in 1979. VACV has many characteristics that make it an excellent vaccine and that were crucial for the successful eradication of smallpox, including (1) its exceptional thermal stability (a very important but uncommon characteristic in live vaccines), (2) its ability to elicit strong humoral and cell-mediated immune responses, (3) the fact that it is easy to propagate, and (4) that it is not oncogenic, given that VACV replication occurs exclusively within the host cell cytoplasm and there is no evidence that the viral genome integrates into the host genome. Since the eradication of smallpox, VACV has experienced a renaissance of interest as a viral vector for the development of recombinant vaccines, immunotherapies, and oncolytic therapies, as well as the development of next-generation smallpox vaccines. This revival is mainly due to the successful use and extensive characterization of VACV as a vaccine during the smallpox eradication campaign, along with the ability to genetically manipulate its large dsDNA genome while retaining infectivity and immunogenicity, its wide mammalian host range, and its natural tropism for tumor cells that allows its use as an oncolytic vector. This review provides an overview of new uses of VACV that are currently being explored for the development of vaccines, immunotherapeutics, and oncolytic virotherapies. PMID:22777090

  14. Co-administration of certain DNA vaccine combinations expressing different H5N1 influenza virus antigens can be beneficial or detrimental to immune protection.

    PubMed

    Patel, Ami; Gray, Michael; Li, Yan; Kobasa, Darwyn; Yao, Xiaojian; Kobinger, Gary P

    2012-01-11

    Achieving broad-spectrum immunity against emerging zoonotic viruses such as avian influenza H5N1 and other possible pandemic viruses will require generation of cross-protective immune responses. Strong antibody responses generated against the H5HA protein are protective, however, antigenic variation between diverging isolates can interfere with virus neutralization. The current study investigates co-administration of an H5 HA DNA vaccine with other variable and conserved influenza antigens (NA, NP, and M2). All antigens were derived from the A/Hanoi/30408/2005 (H5N1) virus and the contribution towards overall protection and immune activation was assessed against lethal homologous and heterologous challenges. An (HA+NA) combination afforded the best protection against homologous challenge and (HA+NP) was comparable to HA alone against heterologous A/Hong Kong/483/1997 challenge. Interestingly, combining all four H5 antigens at a single site did not improve protection against matched challenge and unexpectedly reduced survival by 30% against a heterologous challenge. Survival was also significantly decreased against heterologous challenge following combination of (HA+NP) with an unrelated antigen. Although there were no significant changes in antibody titres, significantly lower T-cell responses were detected against all antigens except HA in each combination. Co-administration of the vaccines at different injection sites restored T-cell responses but did not improve overall protection. Similar observations were also recorded following combination of HA and NP antigens using two different adenovirus-based backbones. Overall, the data suggest that co-administering certain H5N1 antigens offer better or comparable protection to HA alone, however, combining extra antigens may be unnecessary and lead to unfavourable immune responses. PMID:22119588

  15. Detection of hepatitis C virus core protein in serum by atomic force microscopy combined with mass spectrometry.

    PubMed

    Ivanov, Yuri D; Kaysheva, Anna L; Frantsuzov, Pavel A; Pleshakova, Tatyana O; Krohin, Nikolay V; Izotov, Alexander A; Shumov, Ivan D; Uchaikin, Vasiliy F; Konev, Vladimir A; Ziborov, Vadim S; Archakov, Alexander I

    2015-01-01

    A method for detection and identification of core antigen of hepatitis C virus (HCVcoreAg)-containing particles in the serum was proposed, with due account taken of the interactions of proteotypic peptides with Na(+), K(+), and Cl(-) ions. The method is based on a combination of reversible biospecific atomic force microscopy (AFM)-fishing and mass spectrometry (MS). AFM-fishing enables concentration, detection, and counting of protein complexes captured on the AFM chip surface, with their subsequent MS identification. Biospecific AFM-fishing of HCVcoreAg-containing particles from serum samples was carried out using AFM chips with immobilized antibodies against HCVcoreAg (HCVcoreAgim). Formation of complexes between anti-HCVcoreAgim and HCVcoreAg-containing particles on the AFM chip surface during the fishing process was demonstrated. These complexes were registered and counted by AFM. Further MS analysis allowed reliable identification of HCVcoreAg within the complexes formed on the AFM chip surface. It was shown that MS data processing, with account taken of the interactions between HCVcoreAg peptides and Na(+), K(+) cations, and Cl(-) anions, allows an increase in the number of peptides identified. PMID:25759582

  16. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus

    PubMed Central

    Uddback, Ida E. M.; Pedersen, Line M. I.; Pedersen, Sara R.; Steffensen, Maria A.; Holst, Peter J.; Thomsen, Allan R.; Christensen, Jan P.

    2016-01-01

    The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months without showing any evidence of fading. Interestingly, the superior ability of the latter group to resist reinfection correlated with a higher number of antigen-specific CD8 T cells in the spleen. Thus, detailed analysis of the underlying CD8 T cell responses highlights the importance of T cells already positioned in the lungs prior to challenge, but at the same time underscores an important back-up role for circulating antigen-specific cells with the capacity to expand and infiltrate the infected lungs. PMID:26831578

  17. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus.

    PubMed

    Uddback, Ida E M; Pedersen, Line M I; Pedersen, Sara R; Steffensen, Maria A; Holst, Peter J; Thomsen, Allan R; Christensen, Jan P

    2016-01-01

    The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months without showing any evidence of fading. Interestingly, the superior ability of the latter group to resist reinfection correlated with a higher number of antigen-specific CD8 T cells in the spleen. Thus, detailed analysis of the underlying CD8 T cell responses highlights the importance of T cells already positioned in the lungs prior to challenge, but at the same time underscores an important back-up role for circulating antigen-specific cells with the capacity to expand and infiltrate the infected lungs. PMID:26831578

  18. Combination effect of oncolytic adenovirus therapy and herpes simplex virus thymidine kinase/ganciclovir in hepatic carcinoma animal models

    PubMed Central

    Zheng, Fei-qun; Xu, Yin; Yang, Ren-jie; Wu, Bin; Tan, Xiao-hua; Qin, Yi-de; Zhang, Qun-wei

    2009-01-01

    Aim: Oncolytic adenovirus, also called conditionally replicating adenovirus (CRAD), can selectively propagate in tumor cells and cause cell lysis. The released viral progeny can infect neighboring cancer cells, initiating a cascade that can lead to the ultimate destruction of the tumor. Suicide gene therapy using herpes simplex virus thymidine kinase (HSV-TK) and ganciclovir (GCV) offers a potential treatment strategy for cancer and is undergoing preclinical trials for a variety of tumors. We hypothesized that HSV-TK gene therapy combined with oncolytic adenoviral therapy would have an enhanced effect compared with the individual effects of the therapies and is a potential novel therapeutic strategy to treat liver cancer. Methods: To address our hypothesis, a novel CRAD was created, which consisted of a telomerase-dependent oncolytic adenovirus engineered to express E1A and HSV-TK genes (Ad-ETK). The combined effect of Ad-ETK and GCV was assessed both in vitro and in vivo in nude mice bearing HepG2 cell-derived tumors. Expression of the therapeutic genes by the transduced tumor cells was analyzed by RT-PCR and Western blotting. Results: We confirmed that Ad-ETK had antitumorigenic effects on human hepatocellular carcinoma (HCC) both in vitro and in vivo, and the TK/GCV system enhanced oncolytic adenoviral therapy. We confirmed that both E1A and HSV-TK genes were expressed in vivo. Conclusion: The Ad-ETK construct should provide a relatively safe and selective approach to killing cancer cells and should be investigated as an adjuvant therapy for hepatocellular carcinoma. PMID:19363518

  19. Exploiting the combination of natural and genetically engineered resistance to cassava mosaic and cassava brown streak viruses impacting cassava production in Africa.

    PubMed

    Vanderschuren, Hervé; Moreno, Isabel; Anjanappa, Ravi B; Zainuddin, Ima M; Gruissem, Wilhelm

    2012-01-01

    Cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) are currently two major viral diseases that severely reduce cassava production in large areas of Sub-Saharan Africa. Natural resistance has so far only been reported for CMD in cassava. CBSD is caused by two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). A sequence of the CBSV coat protein (CP) highly conserved between the two virus species was used to demonstrate that a CBSV-CP hairpin construct sufficed to generate immunity against both viral species in the cassava model cultivar (cv. 60444). Most of the transgenic lines showed high levels of resistance under increasing viral loads using a stringent top-grafting method of inoculation. No viral replication was observed in the resistant transgenic lines and they remained free of typical CBSD root symptoms 7 month post-infection. To generate transgenic cassava lines combining resistance to both CBSD and CMD the hairpin construct was transferred to a CMD-resistant farmer-preferred Nigerian landrace TME 7 (Oko-Iyawo). An adapted protocol allowed the efficient Agrobacterium-based transformation of TME 7 and the regeneration of transgenic lines with high levels of CBSV-CP hairpin-derived small RNAs. All transgenic TME 7 lines were immune to both CBSV and UCBSV infections. Further evaluation of the transgenic TME 7 lines revealed that CBSD resistance was maintained when plants were co-inoculated with East African cassava mosaic virus (EACMV), a geminivirus causing CMD. The innovative combination of natural and engineered virus resistance in farmer-preferred landraces will be particularly important to reducing the increasing impact of cassava viral diseases in Africa. PMID:23049780

  20. A Combination DNA and Attenuated Simian Immunodeficiency Virus Vaccine Strategy Provides Enhanced Protection from Simian/Human Immunodeficiency Virus-Induced Disease†

    PubMed Central

    Amara, Rama Rao; Patel, Kalpana; Niedziela, Genevieve; Nigam, Pragati; Sharma, Sunita; Staprans, Silvija I.; Montefiori, David C.; Chenareddi, Lakshmi; Herndon, James G.; Robinson, Harriet L.; McClure, Harold M.; Novembre, Francis J.

    2005-01-01

    Among the most effective vaccine candidates tested in the simian immunodeficiency virus (SIV)/macaque system, live attenuated viruses have been shown to provide the best protection from challenge. To investigate if preimmunization would increase the level of protection afforded by live attenuated SIVmac239Δnef (Δnef), macaques were given two priming immunizations of DNA encoding SIV Gag and Pol proteins, with control macaques receiving vector DNA immunizations. In macaques receiving the SIV DNA inoculation, SIV-specific cellular but not humoral responses were readily detectable 2 weeks after the second DNA inoculation. Following boosting with live attenuated virus, control of Δnef replication was superior in SIV-DNA-primed macaques versus vector-DNA-primed macaques and was correlated with higher levels of CD8+/gamma-interferon-positive and/or interleukin-2-positive cells. Challenge with an intravenous inoculation of simian/human immunodeficiency virus (SHIV) strain SHIV89.6p resulted in infection of all animals. However, macaques receiving SIV DNA as the priming immunizations had statistically lower viral loads than control animals and did not develop signs of disease, whereas three of seven macaques receiving vector DNA showed severe CD4+ T-cell decline, with development of AIDS in one of these animals. No correlation of immune responses to protection from disease could be derived from our analyses. These results demonstrate that addition of a DNA prime to a live attenuated virus provided better protection from disease following challenge than live attenuated virus alone. PMID:16306607

  1. Effect of combinations of acyclovir with vidarabine or its 5'-monophosphate on herpes simplex viruses in cell culture and in mice.

    PubMed Central

    Schinazi, R F; Peters, J; Williams, C C; Chance, D; Nahmias, A J

    1982-01-01

    The combination of various concentrations of acyclovir and vidarabine or its 5'-monophosphate usually produced an additive interaction with various strains of herpes simplex virus types 1 and 2 in Vero cells. Similarly, certain combinations of these drugs were more effective than the individual drugs in decreasing the mortality and increasing the mean day of death of mice inoculated intracerebrally with herpes simplex virus type 2. Neither antagonism nor interference was noted for any of the in vitro or in vivo combinations. The increased antiviral activity was determined not to be secondary to toxic effects of the drugs. Although viruses resistant to either vidarabine or acyclovir developed readily in cell culture, no evidence of cross-resistance was obtained. Furthermore, in the presence of the two drugs, mutants resistant to vidarabine, acyclovir, or vidarabine/acyclovir could not be isolated. These findings suggest that combinations with these antivirals, which are currently being evaluated singly for the therapy of severe forms of herpetic infection, could prove clinically useful if increasing numbers of resistant viral strains are observed. PMID:6182836

  2. Daclatasvir–sofosbuvir combination therapy with or without ribavirin for hepatitis C virus infection: from the clinical trials to real life

    PubMed Central

    Pol, Stanislas; Corouge, Marion; Vallet-Pichard, Anaïs

    2016-01-01

    The treatment of hepatitis C virus has changed dramatically with the rapid advent of numerous new antiviral agents, including direct-acting antivirals and agents with non-viral targets (cyclophilin inhibitors, interferon-lambda, vaccine therapy). Given the better safety profile and high antiviral potency of direct-acting antivirals, their combination in interferon-free oral regimens is becoming the standard of care for hepatitis C virus infection, tailored to individual patients according to the degree of disease progression (fibrosis), hepatitis C virus genotype and subtype, resistance profile, and prior therapeutic history. Results from clinical studies as well as preliminary real-life data regarding the combination of sofosbuvir (a nucleotide polymerase inhibitor) and daclatasvir, a first-in-class NS5A replication complex inhibitor, demonstrate that it is one of the most promising antiviral therapies, with once-daily oral dosing, a low pill burden, good tolerability, and limited drug–drug interactions, in addition to high antiviral potency, with >90% sustained virologic response rates. This combination has high pangenotypic antiviral potency regardless of the severity and patient characteristics. The combination of sofosbuvir and an NS5A inhibitor with ribavirin for 12 weeks appears to be a very good further treatment option in both cirrhotic and treatment-experienced patients whatever the stage of fibrosis. PMID:27019602

  3. Daclatasvir-sofosbuvir combination therapy with or without ribavirin for hepatitis C virus infection: from the clinical trials to real life.

    PubMed

    Pol, Stanislas; Corouge, Marion; Vallet-Pichard, Anaïs

    2016-01-01

    The treatment of hepatitis C virus has changed dramatically with the rapid advent of numerous new antiviral agents, including direct-acting antivirals and agents with non-viral targets (cyclophilin inhibitors, interferon-lambda, vaccine therapy). Given the better safety profile and high antiviral potency of direct-acting antivirals, their combination in interferon-free oral regimens is becoming the standard of care for hepatitis C virus infection, tailored to individual patients according to the degree of disease progression (fibrosis), hepatitis C virus genotype and subtype, resistance profile, and prior therapeutic history. Results from clinical studies as well as preliminary real-life data regarding the combination of sofosbuvir (a nucleotide polymerase inhibitor) and daclatasvir, a first-in-class NS5A replication complex inhibitor, demonstrate that it is one of the most promising antiviral therapies, with once-daily oral dosing, a low pill burden, good tolerability, and limited drug-drug interactions, in addition to high antiviral potency, with >90% sustained virologic response rates. This combination has high pangenotypic antiviral potency regardless of the severity and patient characteristics. The combination of sofosbuvir and an NS5A inhibitor with ribavirin for 12 weeks appears to be a very good further treatment option in both cirrhotic and treatment-experienced patients whatever the stage of fibrosis. PMID:27019602

  4. Intranasal immunization with live recombinant Lactococcus lactis combined with heat-labile toxin B subunit protects chickens from highly pathogenic avian influenza H5N1 virus.

    PubMed

    Lei, Han; Peng, Xiaojue; Shu, Handing; Zhao, Daxian

    2015-01-01

    Development of safe and effective vaccines to prevent highly pathogenic avian influenza H5N1 virus infection is a challenging goal. Lactococcus lactis (L. lactis) is an ideal delivery vector for vaccine development, and it has been shown previously that oral immunization of encapsulated secretory L. lactis-hemagglutinin (HA) could provide complete protection against homologous H5N1 virus challenge in the mice model. While intranasal immunization is an appealing approach, it is now reported that secretory L. lactis-HA combined with mucosal adjuvant heat-labile toxin B subunit (LTB) could provide protective immunity in the chicken model. As compared to intranasal immunization with L. lactis-HA alone, L. lactis-HA combined with LTB (L. lactis-HA + LTB) could elicit robust neutralizing antibody responses and mucosal IgA responses, as well as strong cellular immune responses in the vaccinated chickens. Importantly, intranasal immunization with L. lactis-HA + LTB could provide 100% protection against H5N1 virus challenge. Taken together, these results suggest that intranasal immunization with L. lactis-HA + LTB can be considered as an effective approach for preventing and controlling infection of H5N1 virus in poultry during an avian influenza A/H5N1 pandemic. PMID:24861477

  5. CD4 Response Up to 5 Years After Combination Antiretroviral Therapy in Human Immunodeficiency Virus-Infected Patients in Latin America and the Caribbean

    PubMed Central

    Luz, Paula M.; Belaunzarán-Zamudio, Pablo F.; Crabtree-Ramírez, Brenda; Caro-Vega, Yanink; Hoces, Daniel; Rebeiro, Peter F.; Blevins, Meridith; Pape, Jean W.; Cortes, Claudia P.; Padgett, Denis; Cahn, Pedro; Veloso, Valdilea G.; McGowan, Catherine C.; Grinsztejn, Beatriz; Shepherd, Bryan E.

    2015-01-01

    We describe CD4 counts at 6-month intervals for 5 years after combination antiretroviral therapy initiation among 12 879 antiretroviral-naive human immunodeficiency virus-infected adults from Latin America and the Caribbean. Median CD4 counts increased from 154 cells/mm3 at baseline (interquartile range [IQR], 60–251) to 413 cells/mm3 (IQR, 234–598) by year 5. PMID:26180829

  6. Antiviral Effects of Lamivudine, Emtricitabine, Adefovir Dipivoxil, and Tenofovir Disoproxil Fumarate Administered Orally Alone and in Combination to Woodchucks with Chronic Woodchuck Hepatitis Virus Infection ▿

    PubMed Central

    Menne, Stephan; Butler, Scott D.; George, Andrea L.; Tochkov, Ilia A.; Zhu, Yuao; Xiong, Shelly; Gerin, John L.; Cote, Paul J.; Tennant, Bud C.

    2008-01-01

    Adefovir dipivoxil (ADV) and tenofovir disoproxil fumarate (TDF) are nucleotide analogs that inhibit the replication of wild-type hepatitis B virus (HBV) and lamivudine (3TC)-resistant virus in HBV-infected patients, including those who are coinfected with human immunodeficiency virus. The combination of ADV or TDF with other nucleoside analogs is a proposed strategy for managing antiviral drug resistance during the treatment of chronic HBV infection. The antiviral effect of oral ADV or TDF, alone or in combination with 3TC or emtricitabine (FTC), against chronic woodchuck hepatitis virus (WHV) infection was evaluated in a placebo-controlled study in the woodchuck, an established and predictive model for antiviral therapy. Once-daily treatment for 48 weeks with ADV plus 3TC or TDF plus FTC significantly reduced serum WHV viremia levels from the pretreatment level by 6.2 log10 and 6.1 log10 genome equivalents/ml serum, respectively, followed by TDF plus 3TC (5.6 log10 genome equivalents/ml), ADV alone (4.8 log10 genome equivalents/ml), ADV plus FTC (one survivor) (4.4 log10 genome equivalents/ml), TDF alone (2.9 log10 genome equivalents/ml), 3TC alone (2.7 log10 genome equivalents/ml), and FTC alone (2.0 log10 genome equivalents/ml). Individual woodchucks across all treatment groups also demonstrated pronounced declines in serum WHV surface antigen, characteristically accompanied by declines in hepatic WHV replication and the hepatic expression of WHV antigens. Most woodchucks had prompt recrudescence of WHV replication after drug withdrawal, but individual woodchucks across treatment groups had sustained effects. No signs of toxicity were observed for any of the drugs or drug combinations administered. In conclusion, the oral administration of 3TC, FTC, ADV, and TDF alone and in combination was safe and effective in the woodchuck model of HBV infection. PMID:18676881

  7. CD4 Response Up to 5 Years After Combination Antiretroviral Therapy in Human Immunodeficiency Virus-Infected Patients in Latin America and the Caribbean.

    PubMed

    Luz, Paula M; Belaunzarán-Zamudio, Pablo F; Crabtree-Ramírez, Brenda; Caro-Vega, Yanink; Hoces, Daniel; Rebeiro, Peter F; Blevins, Meridith; Pape, Jean W; Cortes, Claudia P; Padgett, Denis; Cahn, Pedro; Veloso, Valdilea G; McGowan, Catherine C; Grinsztejn, Beatriz; Shepherd, Bryan E

    2015-04-01

    We describe CD4 counts at 6-month intervals for 5 years after combination antiretroviral therapy initiation among 12 879 antiretroviral-naive human immunodeficiency virus-infected adults from Latin America and the Caribbean. Median CD4 counts increased from 154 cells/mm(3) at baseline (interquartile range [IQR], 60-251) to 413 cells/mm(3) (IQR, 234-598) by year 5. PMID:26180829

  8. Short Communication: Comparative Evaluation of Coformulated Injectable Combination Antiretroviral Therapy Regimens in Simian Immunodeficiency Virus-Infected Rhesus Macaques.

    PubMed

    Del Prete, Gregory Q; Smedley, Jeremy; Macallister, Rhonda; Jones, Gregg S; Li, Bei; Hattersley, Jillian; Zheng, Jim; Piatak, Michael; Keele, Brandon F; Hesselgesser, Joseph; Geleziunas, Romas; Lifson, Jeffrey D

    2016-02-01

    The use of nonhuman primate (NHP) models to study persistent residual virus and viral eradication strategies in combination antiretroviral therapy (cART)-treated individuals requires regimens that effectively suppress SIV replication to clinically relevant levels in macaques. We developed and evaluated two novel cART regimens in SIVmac239-infected rhesus macaques: (1) a "triple regimen" containing the nucleo(s/t)ide reverse transcriptase inhibitors emtricitabine (FTC) and tenofovir disoproxil fumarate [TDF, prodrug of tenofovir (TFV, PMPA)] with the integrase strand transfer inhibitor dolutegravir (DTG) (n = 3), or (2) a "quad regimen" containing the same three drugs plus the protease inhibitor darunavir (DRV) (n = 3), with each regimen coformulated for convenient administration by a single daily subcutaneous injection. Plasma drug concentrations were consistent across animals within the triple and quad regimen-treated groups, although DTG levels were lower in the quad regimen animals. Time to achieve plasma viral loads stably <30 viral RNA copies/ml ranged from 12 to 20 weeks of treatment between animals, and viral loads <30 viral RNA copies/ml plasma were maintained through 40 weeks of follow-up on cART. Notably, although we show virologic suppression and development of viral resistance in a separate cohort of SIV-infected animals treated with oral DRV monotherapy, the addition of DRV in the quad regimen did not confer an apparent virologic benefit during early treatment, hence the quad regimen-treated animals were switched to the triple regimen after 4 weeks. This coformulated triple cART regimen can be safely, conveniently, and sustainably administered to durably suppress SIV replication to clinically relevant levels in rhesus macaques. PMID:26150024

  9. Benefit of hepatitis C virus core antigen assay in prediction of therapeutic response to interferon and ribavirin combination therapy.

    PubMed

    Takahashi, Masahiko; Saito, Hidetsugu; Higashimoto, Makiko; Atsukawa, Kazuhiro; Ishii, Hiromasa

    2005-01-01

    A highly sensitive second-generation hepatitis C virus (HCV) core antigen assay has recently been developed. We compared viral disappearance and first-phase kinetics between commercially available core antigen (Ag) assays, Lumipulse Ortho HCV Ag (Lumipulse-Ag), and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor test, version 2 (Amplicor M), to estimate the predictive benefit of a sustained viral response (SVR) and non-SVR in 44 genotype 1b patients treated with interferon (IFN) and ribavirin. HCV core Ag negativity could predict SVR on day 1 (sensitivity = 100%, specificity = 85.0%, accuracy = 86.4%), whereas RNA negativity could predict SVR on day 7 (sensitivity = 100%, specificity = 87.2%, accuracy = 88.6%). None of the patients who had detectable serum core Ag or RNA on day 14 achieved SVR (specificity = 100%). The predictive accuracy on day 14 was higher by RNA negativity (93.2%) than that by core Ag negativity (75.0%). The combined predictive criterion of both viral load decline during the first 24 h and basal viral load was also predictive for SVR; the sensitivities of Lumipulse-Ag and Amplicor-M were 45.5 and 47.6%, respectively, and the specificity was 100%. Amplicor-M had better predictive accuracy than Lumipulse-Ag in 2-week disappearance tests because it had better sensitivity. On the other hand, estimates of kinetic parameters were similar regardless of the detection method. Although the correlations between Lumipulse-Ag and Amplicor-M were good both before and 24 h after IFN administration, HCV core Ag seemed to be relatively lower 24 h after IFN administration than before administration. Lumipulse-Ag seems to be useful for detecting the HCV concentration during IFN therapy; however, we still need to understand the characteristics of the assay. PMID:15634970

  10. The Risk of West Nile Virus Infection Is Associated with Combined Sewer Overflow Streams in Urban Atlanta, Georgia, USA

    PubMed Central

    Vazquez-Prokopec, Gonzalo M.; Vanden Eng, Jodi L.; Kelly, Rosmarie; Mead, Daniel G.; Kolhe, Priti; Howgate, James; Kitron, Uriel; Burkot, Thomas R.

    2010-01-01

    Background At present, the factors favoring transmission and amplification of West Nile Virus (WNV) within urban environments are poorly understood. In urban Atlanta, Georgia, the highly polluted waters of streams affected by combined sewer overflow (CSO) represent significant habitats for the WNV mosquito vector Culex quinquefasciatus. However, their contribution to the risk of WNV infection in humans and birds remains unclear. Objectives Our goals were to describe and quantify the spatial distribution of WNV infection in mosquitoes, humans, and corvids, such as blue jays and American crows that are particularly susceptible to WNV infection, and to assess the relationship between WNV infection and proximity to CSO-affected streams in the city of Atlanta, Georgia. Materials and methods We applied spatial statistics to human, corvid, and mosquito WNV surveillance data from 2001 through 2007. Multimodel analysis was used to estimate associations of WNV infection in Cx. quinquefasciatus, humans, and dead corvids with selected risk factors including distance to CSO streams and catch basins, land cover, median household income, and housing characteristics. Results We found that WNV infection in mosquitoes, corvids, and humans was spatially clustered and statistically associated with CSO-affected streams. WNV infection in Cx. quinquefasciatus was significantly higher in CSO compared with non-CSO streams, and WNV infection rates among humans and corvids were significantly associated with proximity to CSO-affected streams, the extent of tree cover, and median household income. Conclusions Our study strongly suggests that CSO-affected streams are significant sources of Cx. quinquefasciatus mosquitoes that may facilitate WNV transmission to humans within urban environments. Our findings may have direct implications for the surveillance and control of WNV in other urban centers that continue to use CSO systems as a waste management practice. PMID:20529765

  11. Protective efficacy of baculovirus-derived influenza virus-like particles bearing H5 HA alone or in combination with M1 in chickens.

    PubMed

    Choi, Jun-Gu; Kim, Min-Chul; Kang, Hyun-Mi; Kim, Kwang-Il; Lee, Kyu-Jun; Park, Choi-Kyu; Kwon, Jun-Hun; Kim, Jae-Hong; Lee, Youn-Jeong

    2013-03-23

    Since 2003, the highly pathogenic avian influenza (HPAI) H5N1 has become a serious problem in animals and an increasing threat to public health. To develop effective vaccines for H5 HPAI in chickens, virus-like particles (VLP) were produced using a baculovirus expression system. The particles comprised hemagglutinin (HA) alone (HA-VLP) or HA in combination with a matrix protein (M1; HAM-VLP) derived from a recent clade 2.3.2.1 H5N1 HPAI virus. To compare the immunogenicity and protective efficacy of these VLPs, 10 μg HAM-VLP, the equivalent amounts of HA incorporated HA-VLP or whole inactivated virus (WIV), were emulsified with mineral oil and used to immunize chickens. The serum hemagglutination inhibition antibody levels induced by HA-VLP and HAM-VLP were comparable to WIV. Antibodies to nucleoprotein were detected only in the WIV group. Immunized chickens in each group survived and were protected against a lethal homologous virus challenge, showing no clinical signs of infection. The challenge virus was detected intermittently in some oropharyngeal swabs, but not in cloacal swabs or various organs, which means that VLPs and WIV provide protection against systemic but not local virus replication in chickens. After the challenge, the HA-VLP group showed significantly increased serum antibody levels compared to the HAM-VLP and WIV groups, and some chickens in the HA-VLP group seroconverted with respect to nucleoprotein. Taken together, these results suggest that VLPs may be an effective method for controlling HPAI in chickens. They could be applied to a differentiating infected from vaccinated animals (DIVA) strategy. In addition, it is likely that HAM-VLP is more efficacious than HA-VLP in chickens. PMID:23265240

  12. The combined effects of irradiation and herpes simplex virus type 1 infection on an immortal gingival cell line

    PubMed Central

    2014-01-01

    Background Oral mucosa is frequently exposed to Herpes simplex virus type 1 (HSV-1) infection and irradiation due to dental radiography. During radiotherapy for oral cancer, the surrounding clinically normal tissues are also irradiated. This prompted us to study the effects of HSV-1 infection and irradiation on viability and apoptosis of oral epithelial cells. Methods Immortal gingival keratinocyte (HMK) cells were infected with HSV-1 at a low multiplicity of infection (MOI) and irradiated with 2 Gy 24 hours post infection. The cells were then harvested at 24, 72 and 144 hours post irradiation for viability assays and qRT-PCR analyses for the apoptosis-related genes caspases 3, 8, and 9, bcl-2, NFκB1, and viral gene VP16. Mann–Whitney U-test was used for statistical calculations. Results Irradiation improved the cell viability at 144 hours post irradiation (P = 0.05), which was further improved by HSV-1 infection at MOI of 0.00001 (P = 0.05). Simultaneously, the combined effects of infection at MOI of 0.0001 and irradiation resulted in upregulation in NFκB1 (P = 0.05). The combined effects of irradiation and HSV infection also significantly downregulated the expression of caspases 3, 8, and 9 at 144 hours (P = 0.05) whereas caspase 3 and 8 significantly upregulated in non-irradiated, HSV-infected cells as compared to uninfected controls (P = 0.05). Infection with 0.0001 MOI downregulated bcl-2 in non-irradiated cells but was upregulated by 27% after irradiation when compared to non-irradiated infected cells (P = 0.05). Irradiation had no effect on HSV-1 shedding or HSV gene expression at 144 hours. Conclusions HSV-1 infection may improve the viability of immortal cells after irradiation. The effect might be related to inhibition of apoptosis. PMID:25005804

  13. Combined administration of (L)-cystine and (L)-theanine enhances immune functions and protects against influenza virus infection in aged mice.

    PubMed

    Takagi, Yasuhiro; Kurihara, Shigekazu; Higashi, Natsumi; Morikawa, Saeko; Kase, Tetsuo; Maeda, Akiko; Arisaka, Harumi; Shibahara, Susumu; Akiyama, Yukio

    2010-02-01

    Cell-mediated and humoral immune responses are attenuated with aging. Intracellular glutathione (GSH) levels also decrease with aging. Previously, we have reported that combined administration of (L)-cystine and (L)-theanine enhances antigen-specific IgG production, partly through augmentation of GSH levels and T helper 2-mediated responses in 12-week-old mice. These findings suggest that combined administration of (L)-cystine and (L)-theanine to aged mice improves immune responses via increase of GSH synthesis. Here, we examined the effects of combined administration of (L)-cystine and (L)-theanine on antigen-specific antibody production and influenza virus infection in aged mice. Combined administration of these amino acids for 14 days before primary immunization significantly enhanced the serum antigen-specific IgM and IgG levels in 24-month-old mice. Furthermore, 13-month-old mice co-treated with these amino acids orally for 10 days had significantly lower lung viral titers than controls at 6 days after influenza virus infection. In addition, this co-treatment also significantly prevented the weight loss associated with infection. Enhancement of anti-influenza-virus IgG antibodies by combined administration of (L)-cystine and (L)-theanine was seen 10 days after infection. The significantly elevated serum interleukin-10/interferon-gamma ratio and gamma-glutamylcysteine synthetase mRNA expression, which is the rate-limiting enzyme of GSH synthesis, in the spleen 3 days after infection may have contributed to the observed beneficial effects. These results suggest that combined administration of (L)-cystine and (L)-theanine enhances immune function and GSH synthesis which are compromised with advanced age, and may become a useful strategy in healthy aging. PMID:19940390

  14. Treatment with the smallpox antiviral tecovirimat (ST-246) alone or in combination with ACAM2000 vaccination is effective as a postsymptomatic therapy for monkeypox virus infection.

    PubMed

    Berhanu, Aklile; Prigge, Jonathan T; Silvera, Peter M; Honeychurch, Kady M; Hruby, Dennis E; Grosenbach, Douglas W

    2015-07-01

    The therapeutic efficacies of smallpox vaccine ACAM2000 and antiviral tecovirimat given alone or in combination starting on day 3 postinfection were compared in a cynomolgus macaque model of lethal monkeypox virus infection. Postexposure administration of ACAM2000 alone did not provide any protection against severe monkeypox disease or mortality. In contrast, postexposure treatment with tecovirimat alone or in combination with ACAM2000 provided full protection. Additionally, tecovirimat treatment delayed until day 4, 5, or 6 postinfection was 83% (days 4 and 5) or 50% (day 6) effective. PMID:25896687

  15. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection.

    PubMed

    Liu, Jia; Zhang, Ejuan; Ma, Zhiyong; Wu, Weimin; Kosinska, Anna; Zhang, Xiaoyong; Möller, Inga; Seiz, Pia; Glebe, Dieter; Wang, Baoju; Yang, Dongliang; Lu, Mengji; Roggendorf, Michael

    2014-01-01

    Hepatitis B virus (HBV) persistence is facilitated by exhaustion of CD8 T cells that express the inhibitory receptor programmed cell death-1 (PD-1). Improvement of the HBV-specific T cell function has been obtained in vitro by inhibiting the PD-1/PD-ligand 1 (PD-L1) interaction. In this study, we examined whether in vivo blockade of the PD-1 pathway enhances virus-specific T cell immunity and leads to the resolution of chronic hepadnaviral infection in the woodchuck model. The woodchuck PD-1 was first cloned, characterized, and its expression patterns on T cells from woodchucks with acute or chronic woodchuck hepatitis virus (WHV) infection were investigated. Woodchucks chronically infected with WHV received a combination therapy with nucleoside analogue entecavir (ETV), therapeutic DNA vaccination and woodchuck PD-L1 antibody treatment. The gain of T cell function and the suppression of WHV replication by this therapy were evaluated. We could show that PD-1 expression on CD8 T cells was correlated with WHV viral loads during WHV infection. ETV treatment significantly decreased PD-1 expression on CD8 T cells in chronic carriers. In vivo blockade of PD-1/PD-L1 pathway on CD8 T cells, in combination with ETV treatment and DNA vaccination, potently enhanced the function of virus-specific T cells. Moreover, the combination therapy potently suppressed WHV replication, leading to sustained immunological control of viral infection, anti-WHs antibody development and complete viral clearance in some woodchucks. Our results provide a new approach to improve T cell function in chronic hepatitis B infection, which may be used to design new immunotherapeutic strategies in patients. PMID:24391505

  16. Enhanced cytotoxicity with a novel system combining the paclitaxel-2'-ethylcarbonate prodrug and an HSV amplicon with an attenuated replication-competent virus, HF10 as a helper virus.

    PubMed

    Ishida, Daisuke; Nawa, Akihiro; Tanino, Tadatoshi; Goshima, Fumi; Luo, Chen Hong; Iwaki, Masahiro; Kajiyama, Hiroaki; Shibata, Kiyosumi; Yamamoto, Eiko; Ino, Kazuhiko; Tsurumi, Tatsuya; Nishiyama, Yukihiro; Kikkawa, Fumitaka

    2010-02-01

    We previously demonstrated that HF10, which is a natural, non-engineered HSV-1, has potent oncolytic activity in the treatment of solid malignant tumors in vitro and in vivo [H. Takakuwa, F. Goshima, N. Nozawa, T. Yoshikawa, H. Kimata, A. Nakao, et al., Oncolytic viral therapy using a spontaneously generated herpes simplex virus type 1 variant for disseminated peritoneal tumor in immunocompetent mice, Arch. Virol. 148 (2003) 813-825; S. Kohno, C. Lou, F. Goshima, Y. Nishiyama, T. Sata, Y. Ono, Herpes simplex virus type 1 mutant HF10 oncolytic viral therapy for bladder cancer, Urology 66 (2005) 1116-1121; D. Watanabe, F. Goshima, I. Mori, Y. Tamada, Y. Matsumoto, Y. Nishiyama, Oncolytic virotherapy for malignant melanoma with herpes simplex virus type 1 mutant HF10, J. Dermatol. Sci. 50 (2008) 185-196; A. Nawa, C. Luo, L. Zhang, Y. Ushijima, D. Ishida, M. Kamakura, et al., Non-engineered, naturally oncolytic herpes simplex virus HSV1 HF10: applications for cancer gene therapy, Curr. Gene. Ther. 8 (2008) 208-221]. Previous reports have also shown that a combination of HF10 and paclitaxel (TAX) was more efficacious than either regimen alone for some types of malignant tumors [S. Shimoyama, F. Goshima, O. Teshigahara, H. Kasuya, Y. Kodera, A. Nakao, et al., Enhanced efficacy of herpes simplex virus mutant HF10 combined with paclitaxel in peritoneal cancer dissemination models, Hepatogastroenterology 54 (2007) 1038-1042]. In this study, we investigated the efficacy of gene-directed enzyme prodrug therapy (GDEPT) using a novel system that combines the paclitaxel-2'-ethylcarbonate prodrug (TAX-2'-Et) and an HSV amplicon expressing rabbit-carboxylesterase (CES) with HF10 as a helper virus. This GDEPT system aims to produce high level of CES at the tumor site, resulting in efficient local conversion of the TAX-2'-Et prodrug into the active drug TAX [A. Nawa, T. Tanino, C. Lou, M. Iwaki, H. Kajiyama, K. Shibata, et al., Gene directed enzyme prodrug therapy for ovarian cancer

  17. Replication of chimeric tobacco mosaic viruses which carry heterologous combinations of replicase genes and 3' noncoding regions.

    PubMed

    Ishikawa, M; Meshi, T; Watanabe, Y; Okada, Y

    1988-05-01

    Three tobacco mosaic virus (TMV)-L (tomato strain)-derived chimeras, designated OL1, LG11, or LK31, were constructed by replacing the 3' noncoding region with the corresponding sequence of TMV-OM (common strain), cucumber green mottle mosaic virus (CGMMV), or TMV-Cc (cowpea strain), respectively. The genomic RNAs of TMV-L, -OM, and CGMMV carry histidine-accepting tRNA-like structures at their 3' termini, while the genome of TMV-Cc accepts valine. The three chimeric viruses were able to multiply in both tobacco protoplasts and plants. Multiplication of OL1 in protoplasts was similar to that of the parental strain, L, but in the cases of LG11 and LK31 multiplication was decreased. Sequence analyses of progeny RNAs revealed that viruses with chimeric sequences propagated. These data suggested that TMV-L replicase recognizes the 3' terminal structures of TMV-OM, CGMMV, and TMV-Cc and can initiate minus-strand RNA synthesis. The relationship between the virus-coded component(s) of TMV replicase and the 3' terminal region may not be so stringent. PMID:2452515

  18. The Origin of the Variola Virus

    PubMed Central

    Babkin, Igor V.; Babkina, Irina N.

    2015-01-01

    The question of the origin of smallpox, one of the major menaces to humankind, is a constant concern for the scientific community. Smallpox is caused by the agent referred to as the variola virus (VARV), which belongs to the genus Orthopoxvirus. In the last century, smallpox was declared eradicated from the human community; however, the mechanisms responsible for the emergence of new dangerous pathogens have yet to be unraveled. Evolutionary analyses of the molecular biological genomic data of various orthopoxviruses, involving a wide range of epidemiological and historical information about smallpox, have made it possible to date the emergence of VARV. Comparisons of the VARV genome to the genomes of the most closely related orthopoxviruses and the examination of the distribution their natural hosts’ ranges suggest that VARV emerged 3000 to 4000 years ago in the east of the African continent. The VARV evolution rate has been estimated to be approximately 2 × 10−6 substitutions/site/year for the central conserved genomic region and 4 × 10−6 substitutions/site/year for the synonymous substitutions in the genome. Presumably, the introduction of camels to Africa and the concurrent changes to the climate were the particular factors that triggered the divergent evolution of a cowpox-like ancestral virus and thereby led to the emergence of VARV. PMID:25763864

  19. The origin of the variola virus.

    PubMed

    Babkin, Igor V; Babkina, Irina N

    2015-03-01

    The question of the origin of smallpox, one of the major menaces to humankind, is a constant concern for the scientific community. Smallpox is caused by the agent referred to as the variola virus (VARV), which belongs to the genus Orthopoxvirus. In the last century, smallpox was declared eradicated from the human community; however, the mechanisms responsible for the emergence of new dangerous pathogens have yet to be unraveled. Evolutionary analyses of the molecular biological genomic data of various orthopoxviruses, involving a wide range of epidemiological and historical information about smallpox, have made it possible to date the emergence of VARV. Comparisons of the VARV genome to the genomes of the most closely related orthopoxviruses and the examination of the distribution their natural hosts' ranges suggest that VARV emerged 3000 to 4000 years ago in the east of the African continent. The VARV evolution rate has been estimated to be approximately 2 × 10-6 substitutions/site/year for the central conserved genomic region and 4 × 10-6 substitutions/site/year for the synonymous substitutions in the genome. Presumably, the introduction of camels to Africa and the concurrent changes to the climate were the particular factors that triggered the divergent evolution of a cowpox-like ancestral virus and thereby led to the emergence of VARV. PMID:25763864

  20. Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses

    SciTech Connect

    Bejerman, Nicolás; Giolitti, Fabián; Breuil, Soledad de; Trucco, Verónica; Nome, Claudia; Lenardon, Sergio; Dietzgen, Ralf G.

    2015-09-15

    Summary: We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses. - Highlights: • The complete genome of alfalfa dwarf virus is obtained. • An integrated localization and interaction map for ADV is determined. • ADV has a genome sequence similarity and evolutionary links with cytorhabdoviruses. • ADV protein localization and interaction data show an association with the nucleus. • ADV combines properties of both cytoplasmic and nuclear plant rhabdoviruses.

  1. Combining Regulatory T Cell Depletion and Inhibitory Receptor Blockade Improves Reactivation of Exhausted Virus-Specific CD8+ T Cells and Efficiently Reduces Chronic Retroviral Loads

    PubMed Central

    Dietze, Kirsten K.; Zelinskyy, Gennadiy; Liu, Jia; Kretzmer, Freya; Schimmer, Simone; Dittmer, Ulf

    2013-01-01

    Chronic infections with human viruses, such as HIV and HCV, or mouse viruses, such as LCMV or Friend Virus (FV), result in functional exhaustion of CD8+ T cells. Two main mechanisms have been described that mediate this exhaustion: expression of inhibitory receptors on CD8+ T cells and expansion of regulatory T cells (Tregs) that suppress CD8+ T cell activity. Several studies show that blockage of one of these pathways results in reactivation of CD8+ T cells and partial reduction in chronic viral loads. Using blocking antibodies against PD-1 ligand and Tim-3 and transgenic mice in which Tregs can be selectively ablated, we compared these two treatment strategies and combined them for the first time in a model of chronic retrovirus infection. Blocking inhibitory receptors was more efficient than transient depletion of Tregs in reactivating exhausted CD8+ T cells and reducing viral set points. However, a combination therapy was superior to any single treatment and further augmented CD8+ T cell responses and resulted in a sustained reduction in chronic viral loads. These results demonstrate that Tregs and inhibitory receptors are non-overlapping factors in the maintenance of chronic viral infections and that immunotherapies targeting both pathways may be a promising strategy to treat chronic infectious diseases. PMID:24339778

  2. Combinations of Oseltamivir and T-705 Extend the Treatment Window for Highly Pathogenic Influenza A(H5N1) Virus Infection in Mice.

    PubMed

    Marathe, Bindumadhav M; Wong, Sook-San; Vogel, Peter; Garcia-Alcalde, Fernando; Webster, Robert G; Webby, Richard J; Najera, Isabel; Govorkova, Elena A

    2016-01-01

    Current anti-influenza therapy depends on administering drugs soon after infection, which is often impractical. We assessed whether combinations of oseltamivir (a neuraminidase inhibitor) and T-705 (a nonspecific inhibitor of viral polymerases) could extend the window for treating lethal infection with highly pathogenic A(H5N1) influenza virus in mice. Combination therapy protected 100% of mice, even when delayed until 96 h postinoculation. Compared to animals receiving monotherapy, mice receiving combination therapy had reduced viral loads and restricted viral spread in lung tissues, limited lung damage, and decreased inflammatory cytokine production. Next-generation sequencing showed that virus populations in T-705-treated mice had greater genetic variability, with more frequent transversion events, than did populations in control and oseltamivir-treated mice, but no substitutions associated with resistance to oseltamivir or T-705 were detected. Thus, combination therapy extended the treatment window for A(H5N1) influenza infection in mice and should be considered for evaluation in a clinical setting. PMID:27221530

  3. Combinations of Oseltamivir and T-705 Extend the Treatment Window for Highly Pathogenic Influenza A(H5N1) Virus Infection in Mice

    PubMed Central

    Marathe, Bindumadhav M.; Wong, Sook-San; Vogel, Peter; Garcia-Alcalde, Fernando; Webster, Robert G.; Webby, Richard J.; Najera, Isabel; Govorkova, Elena A.

    2016-01-01

    Current anti-influenza therapy depends on administering drugs soon after infection, which is often impractical. We assessed whether combinations of oseltamivir (a neuraminidase inhibitor) and T-705 (a nonspecific inhibitor of viral polymerases) could extend the window for treating lethal infection with highly pathogenic A(H5N1) influenza virus in mice. Combination therapy protected 100% of mice, even when delayed until 96 h postinoculation. Compared to animals receiving monotherapy, mice receiving combination therapy had reduced viral loads and restricted viral spread in lung tissues, limited lung damage, and decreased inflammatory cytokine production. Next-generation sequencing showed that virus populations in T-705–treated mice had greater genetic variability, with more frequent transversion events, than did populations in control and oseltamivir-treated mice, but no substitutions associated with resistance to oseltamivir or T-705 were detected. Thus, combination therapy extended the treatment window for A(H5N1) influenza infection in mice and should be considered for evaluation in a clinical setting. PMID:27221530

  4. The Combination of Valacyclovir with an Anti-TNF Alpha Antibody Increases Survival Rate Compared to Antiviral Therapy Alone in a Murine Model of Herpes Simplex Virus Encephalitis.

    PubMed

    Boivin, Nicolas; Menasria, Rafik; Piret, Jocelyne; Rivest, Serge; Boivin, Guy

    2013-10-24

    The added benefit of combining valacyclovir (VACV), an antiviral agent, with etanercept (ETA), an anti-tumor necrosis factor alpha (TNF-α) antibody, for the treatment of herpes simplex virus type 1 (HSV-1) encephalitis (HSE) was evaluated in a mouse model. BALB/c mice were infected intranasally with 1.85x10(4) plaque forming units of HSV-1. Groups of mice received a single intraperitoneal injection of vehicle or ETA (400 μg/mouse) on day 3 post-infection combined or not with VACV (1 mg/ml of drinking water) from days 3 to 21 post-infection. On day 5 post-infection, groups of mice were sacrificed for determination of viral DNA load, detection of ETA in brain homogenates and for in situ hybridization. The survival rate of mice was significantly increased when VACV was administered in combination with ETA (38.5% for VACV vs 78.6% for combined treatment; P=0.04) although VACV or ETA alone had no significant effect compared to the vehicle. The benefit of combined therapy was still present when treatment was delayed until day 4 post-infection. The viral DNA load was significantly reduced in mice treated with VACV alone (P<0.01) or combined with ETA (P<0.05) compared to the uninfected group whereas ETA alone had no effect. These results reinforce the notion that both virus-induced and immune-related mechanisms participate in the pathogenesis of HSE and suggest that potent antiviral agent could be combined with immune-based therapy, such as a TNF-α inhibitor, to improve prognosis of HSE. PMID:24513309

  5. The combination of valacyclovir with an anti-TNF alpha antibody increases survival rate compared to antiviral therapy alone in a murine model of herpes simplex virus encephalitis.

    PubMed

    Boivin, Nicolas; Menasria, Rafik; Piret, Jocelyne; Rivest, Serge; Boivin, Guy

    2013-12-01

    The added benefit of combining valacyclovir (VACV), an antiviral agent, with etanercept (ETA), an anti-tumor necrosis factor alpha (TNF-α) antibody, for the treatment of herpes simplex virus type 1 (HSV-1) encephalitis (HSE) was evaluated in a mouse model. BALB/c mice were infected intranasally with 1.85 × 104 plaque forming units of HSV-1. Groups of mice received a single intraperitoneal injection of vehicle or ETA (400 μg/mouse) on day 3 post-infection combined or not with VACV (1 mg/ml of drinking water) from days 3 to 21 post-infection. On day 5 post-infection, groups of mice were sacrificed for determination of viral DNA load, detection of ETA in brain homogenates and for in situ hybridization. The survival rate of mice was significantly increased when VACV was administered in combination with ETA (38.5% for VACV vs 78.6% for combined treatment; P = 0.04) although VACV or ETA alone had no significant effect compared to the vehicle. The benefit of combined therapy was still present when treatment was delayed until day 4 post-infection. The viral DNA load was significantly reduced in mice treated with VACV alone (P < 0.01) or combined with ETA (P < 0.05) compared to the uninfected group whereas ETA alone had no effect. These results reinforce the notion that both virus-induced and immune-related mechanisms participate in the pathogenesis of HSE and suggest that potent antiviral agent could be combined with immune-based therapy, such as a TNF-α inhibitor, to improve prognosis of HSE. PMID:24416771

  6. Enhanced antiviral activity against foot-and-mouth disease virus by the combination of bovine type 1 and 2 interferons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) is the most contagious pathogen of cloven-hoofed animals including swine and bovines. In emergency control of outbreaks, it is fundamental to develop rapid protection to prevent spread of the infection. It has been shown that inoculation of 10^10 pfu of human aden...

  7. Enhanced Antiviral Activity Against Foot-and-Mouth Disease Virus by the Combination of Bovine Type 1 and 2 Interferons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) is the most contagious pathogen of cloven-hoofed animals including swine and bovines. The emergency control of outbreaks is dependent on rapid protection and prevention of spread of the infection. Human adenovirus type 5 expressing porcine interferon alpha (Ad5-pI...

  8. Enhanced Antiviral Activity against Foot-and-Mouth Disease Virus by a Combination of Type 1 and 2 Porcine Interfereons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we showed that type I interferon (IFN alpha/beta) can inhibit foot-and-mouth disease virus (FMDV) replication in cell culture and swine inoculated with 109 pfu human adenovirus type 5 expressing porcine IFN-alpha (Ad5-pIFN alpha) were protected when challenged one day later. In this stud...

  9. Chimeric virus-like particles containing a conserved region of the G protein in combination with a single peptide of the M2 protein confer protection against respiratory syncytial virus infection.

    PubMed

    Qiao, Lei; Zhang, Yuan; Chai, Feng; Tan, Yiluo; Huo, Chunling; Pan, Zishu

    2016-07-01

    To investigate the feasibility and efficacy of a virus-like particle (VLP) vaccine composed of the conserved antigenic epitopes of respiratory syncytial virus (RSV), the chimeric RSV VLPs HBcΔ-tG and HBcΔ-tG/M282-90 were generated based on the truncated hepatitis B virus core protein (HBcΔ). HBcΔ-tG consisted of HBcΔ, the conserved region (aa 144-204) of the RSV G protein. HBcΔ-tG was combined with a single peptide (aa 82-90) of the M2 protein to generate HBcΔ-tG/M282-90. Immunization of mice with the HBcΔ-tG or HBcΔ-tG/M282-90 VLPs elicited RSV-specific IgG and neutralizing antibody production and conferred protection against RSV infection. Compared with HBcΔ-tG, HBcΔ-tG/M282-90 induced decreased Th2 cytokine production (IL-4 and IL-5), increased Th1 cytokine response (IFN-γ, TNF-α, and IL-2), and increased ratios of IgG2a/IgG1 antibodies, thereby relieving pulmonary pathology upon subsequent RSV infection. Our results demonstrated that chimeric HBcΔ-tG/M282-90 VLPs represented an effective RSV subunit vaccine candidate. PMID:27154395

  10. Suppressing Aedes albopictus, an emerging vector of dengue and chikungunya viruses, by a novel combination of a monomolecular film and an insect-growth regulator.

    PubMed

    Nelder, Mark; Kesavaraju, Banugopan; Farajollahi, Ary; Healy, Sean; Unlu, Isik; Crepeau, Taryn; Ragavendran, Ashok; Fonseca, Dina; Gaugler, Randy

    2010-05-01

    The Asian tiger mosquito Aedes albopictus (Skuse) is rapidly increasing its global range and importance in transmission of chikungunya and dengue viruses. We tested pellet formulations of a monomolecular film (Agnique) and (S)-methoprene (Altosid) under laboratory and field conditions. In the laboratory, Agnique provided 80% control for 20 days, whereas Altosid, in combination with Agnique, provided 80% control for > 60 days. During field trials, the 1:1 pellet ratio of combined products provided > 95% control for at least 32 days and 50% control for at least 50 days. Altosid remained effective after a 107-day laboratory-induced drought, suggesting that the product serves as a means of control during drought conditions and against spring broods in temperate regions. Agnique and Altosid, when used in tandem for cryptic, difficult-to-treat locations, can provide long-term control of Ae. albopictus larvae and pupae. The possible additive or synergistic effects of the combined products deserve further investigation. PMID:20439963

  11. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    PubMed

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus). PMID:26381398

  12. Baculovirus vectors expressing F proteins in combination with virus-induced signaling adaptor (VISA) molecules confer protection against respiratory syncytial virus infection.

    PubMed

    Zhang, Yuan; Qiao, Lei; Hu, Xiao; Zhao, Kang; Zhang, Yanwen; Chai, Feng; Pan, Zishu

    2016-01-01

    Baculovirus has been exploited for use as a novel vaccine vector. To investigate the feasibility and efficacy of recombinant baculoviruses (rBVs) expressing respiratory syncytial virus (RSV) fusion (F) proteins, four constructs (Bac-tF/64, Bac-CF, Bac-CF/tF64 and Bac-CF/tF64-VISA) were generated. Bac-tF64 displays the F ectodomain (tF) on the envelope of rBVs, whereas Bac-CF expresses full-length F protein in transduced mammalian cells. Bac-CF/tF64 not only displays tF on the envelope but also expresses F in cells. Bac-CF/tF64-VISA comprises Bac-CF/tF64 harboring the virus-induced signaling adaptor (VISA) gene. After administration to BALB/c mice, all four vectors elicited RSV neutralizing antibody (Ab), systemic Ab (IgG, IgG1, and IgG2a), and cytokine responses. Compared with Bac-tF64, mice inoculated with Bac-CF and Bac-CF/tF64 exhibited an increased mixed Th1/Th2 cytokine response, increased ratios of IgG2a/IgG1 antibody responses, and reduced immunopathology upon RSV challenge. Intriguingly, co-expression of VISA reduced Th2 cytokine (IL-4, IL-5, and IL-10) production induced by Bac-CF/tF64, thus relieving lung pathology upon a subsequent RSV challenge. Our results indicated that the Bac-CF/tF64 vector incorporated with the VISA molecule may provide an effective vaccine strategy for protection against RSV. PMID:26643933

  13. Lack of greater seroconversion of rhesus monkeys after subcutaneous inoculation of dengue type 2 live-virus vaccine combined with infection-enhancing antibodies.

    PubMed Central

    Kraiselburd, E N; Lavergne, J A; Woodall, J P; Kessler, M J; Meier, G; Chiriboga, J; Moore, C G; Sather, G E; Pomales, A; Maldonado, E; Rivera, R

    1981-01-01

    Four groups of six nonimmune male rhesus monkeys were inoculated subcutaneously with formulations of dengue type 2 vaccine virus DEN-2/S-1. Group A received 1.9 x 10(4) plaque-forming units of vaccine in normal human serum albumin diluent. Group B received the same dose combined with a dengue type 2-immune human serum diluted 1:1,600, beyond its neutralization endpoint of 1:300, but having an immune enhancement titer of 250,000. Groups C and D received 10-fold dilutions of these respective formulations. No migration-inhibitory factor was found when peripheral blood mononuclear leukocytes obtained on day 68 post-immunization from monkeys of all experimental groups were tested. No viremia was detected in any of the monkeys when sera taken on postvaccination days 1 through 12 were inoculated into adult Toxorhynchites amboinensis mosquitoes and LLC-MK2 cells. By day 89, four of the six monkeys had seroconverted by the neutralization test in each of groups A, B, and C, and three of five monkeys in group D (one monkey died from cardiac collapse after anesthesia) had seroconverted. Immune enhancement of dengue virus infection is known to occur in humans and monkeys circulating heterologous flavivirus antibodies. In this study, there was no enhancing effect when antibody was mixed with dengue type 2 vaccine virus and injected subcutaneously. PMID:7024129

  14. Combination of crossflow ultrafiltration, monolithic affinity filtration, and quantitative reverse transcriptase PCR for rapid concentration and quantification of model viruses in water.

    PubMed

    Pei, Lu; Rieger, Martin; Lengger, Sandra; Ott, Sonja; Zawadsky, Claudia; Hartmann, Nils Marten; Selinka, Hans-Christoph; Tiehm, Andreas; Niessner, Reinhard; Seidel, Michael

    2012-09-18

    We present a rapid and effective adsorption-elution method based on monolithic affinity filtration (MAF) for the concentration and purification of waterborne viruses. The MAF column consists of a hydrolyzed macroporous epoxy-based polymer. High recoveries were achieved by columns for the bacterial virus (bacteriophage) MS2 110 (±19)%, as model organism, as well as for human adenoviruses 42.4 (±3.4)% and murine noroviruses 42.6 (±1.9)%. This new concentration and purification method was combined with crossflow ultrafiltration (CUF). Because of the adsorption of the examined viruses to the macroporous surface of the MAF column at pH 3, concentrated matrix components by CUF can be removed. Bacteriophages MS2 were spiked in tap water and concentrated with the new CUF-MAF concentration method by a volumetric factor of 10(4) within 33 min. Furthermore, the detection limit for quantification of bacteriophage MS2 by quantitative reverse transcriptase PCR (qRT-PCR) could be improved from 79.47 to 0.0056 GU mL(-1) by a factor of 1.4 × 10(4). In a first study, we have shown that this method could also be applied for river water containing naturally MS2 and MS2-like phages. PMID:22917471

  15. Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining

    PubMed Central

    Catez, Frédéric; Rousseau, Antoine; Labetoulle, Marc; Lomonte, Patrick

    2014-01-01

    Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue. PMID:24514006

  16. Visual Detection of West Nile Virus Using Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Vertical Flow Visualization Strip

    PubMed Central

    Cao, Zengguo; Wang, Hualei; Wang, Lina; Li, Ling; Jin, Hongli; Xu, Changping; Feng, Na; Wang, Jianzhong; Li, Qian; Zhao, Yongkun; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu

    2016-01-01

    West Nile virus (WNV) causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification method for WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF) was developed to detect the envelope (E) gene of WNV. The RT-LAMP-VF assay could detect 102 copies/μl of an WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubation of the amplification product on the visualization strip, and no cross-reaction with other closely related members of the Flavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV. The assay produced sensitivities of 101.5 TCID50/ml and 101.33 TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field. PMID:27148234

  17. Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus

    PubMed Central

    2013-01-01

    Background Vigna mungo, a tropical leguminous plant, highly susceptible to yellow mosaic disease caused by Mungbean Yellow Mosaic India Virus (MYMIV) resulting in high yield penalty. The molecular events occurring during compatible and incompatible interactions between V. mungo and MYMIV pathosystem are yet to be explored. In this study biochemical analyses in conjunction with proteomics of MYMIV-susceptible and -resistant V. mungo genotypes were executed to get an insight in the molecular events during compatible and incompatible plant-virus interactions. Results Biochemical analysis revealed an increase in phenolics, hydrogen peroxide and carbohydrate contents in both compatible and incompatible interactions; but the magnitudes were higher during incompatible interaction. In the resistant genotype the activities of superoxide dismutase and ascorbate peroxidase increased significantly, while catalase activity decreased. Comparative proteome analyses using two-dimensional gel electrophoresis coupled with mass spectrometry identified 109 differentially abundant proteins at 3, 7 and 14 days post MYMIV-inoculation. Proteins of several functional categories were differentially changed in abundance during both compatible and incompatible interactions. Among these, photosynthesis related proteins were mostly affected in the susceptible genotype resulting in reduced photosynthesis rate under MYMIV-stress. Differential intensities of chlorophyll fluorescence and chlorophyll contents are in congruence with proteomics data. It was revealed that Photosystem II electron transports are the primary targets of MYMIV during pathogenesis. Quantitative real time PCR analyses of selected genes corroborates with respective protein abundance during incompatible interaction. The network of various cellular pathways that are involved in inducing defense response contains several conglomerated cores of nodal proteins, of which ascorbate peroxidase, rubisco activase and serine

  18. Efficient Suppression of Hepatitis C Virus Replication by Combination Treatment with miR-122 Antagonism and Direct-acting Antivirals in Cell Culture Systems

    PubMed Central

    Liu, Fanwei; Shimakami, Tetsuro; Murai, Kazuhisa; Shirasaki, Takayoshi; Funaki, Masaya; Honda, Masao; Murakami, Seishi; Yi, Minkyung; Tang, Hong; Kaneko, Shuichi

    2016-01-01

    Direct-acting antivirals (DAAs) against Hepatitis C virus (HCV) show effective antiviral activity with few side effects. However, the selection of DAA-resistance mutants is a growing problem that needs to be resolved. In contrast, miR-122 antagonism shows extensive antiviral effects among all HCV genotypes and a high barrier to drug resistance. In the present study, we evaluated three DAAs (simeprevir, daclatasvir, and sofosbuvir) in combination with anti-miR-122 treatment against HCV genotype 1a in cell cultures. We found that combination treatments with anti-miR-122 and a DAA had additive or synergistic antiviral effects. The EC50 values of simeprevir in simeprevir-resistant mutants were significantly decreased by combining simeprevir with anti-miR-122. A similar reduction in EC50 in daclatasvir-resistant mutants was achieved by combining daclatasvir with anti-miR-122. Combination treatment in HCV-replicating cells with DAA and anti-miR-122 sharply reduced HCV RNA amounts. Conversely, DAA single treatment with simeprevir or daclatasvir reduced HCV RNA levels initially, but the levels later rebounded. DAA-resistant mutants were less frequently observed in combination treatments than in DAA single treatments. In summary, the addition of miR-122 antagonism to DAA single treatments had additive or synergistic antiviral effects and helped to efficiently suppress HCV replication and the emergence of DAA-resistant mutants. PMID:27484655

  19. Insights into the coiled-coil organization of the Hendra virus phosphoprotein from combined biochemical and SAXS studies.

    PubMed

    Beltrandi, Matilde; Blocquel, David; Erales, Jenny; Barbier, Pascale; Cavalli, Andrea; Longhi, Sonia

    2015-03-01

    Nipah and Hendra viruses are recently emerged paramyxoviruses belonging to the Henipavirus genus. The Henipavirus phosphoprotein (P) consists of a large intrinsically disordered domain and a C-terminal domain (PCT) containing alternating disordered and ordered regions. Among these latter is the P multimerization domain (PMD). Using biochemical, analytical ultracentrifugation and small-angle X-ray scattering (SAXS) studies, we show that Hendra virus (HeV) PMD forms an elongated coiled-coil homotrimer in solution, in agreement with our previous findings on Nipah virus (NiV) PMD. However, the orientation of the N-terminal region differs from that observed in solution for NiV PMD, consistent with the ability of this region to adopt different conformations. SAXS studies provided evidence for a trimeric organization also in the case of PCT, thus extending and strengthening our findings on PMD. The present results are discussed in light of conflicting reports in the literature pointing to a tetrameric organization of paramyxoviral P proteins. PMID:25637789

  20. H9N2 influenza whole inactivated virus combined with polyethyleneimine strongly enhances mucosal and systemic immunity after intranasal immunization in mice.

    PubMed

    Qin, Tao; Yin, Yinyan; Huang, Lulu; Yu, Qinghua; Yang, Qian

    2015-04-01

    Influenza whole inactivated virus (WIV) is more immunogenic and induces protective antibody responses compared with other formulations, like split virus or subunit vaccines, after intranasal mucosal delivery. Polyethyleneimine (PEI), an organic polycation, is widely used as a reagent for gene transfection and DNA vaccine delivery. Although PEI recently has demonstrated potent mucosal adjuvant activity for viral subunit glycoprotein antigens, its immune activity with H9N2 WIV is not well demonstrated. Here, mice were immunized intranasally with H9N2 WIV combined with PEI, and the levels of local respiratory tract and systemic immune responses were measured. Compared to H9N2 WIV alone, antigen-specific IgA levels in the local nasal cavity, trachea, and lung, as well as levels of IgG and its subtypes (IgG1 and IgG2a) in the serum, were strongly enhanced with the combination. Similarly, the activation and proliferation of splenocytes were markedly increased. In addition, PEI is superior as an H9N2 WIV delivery system due to its ability to greatly increase the viral adhesion to mucosal epithelial cells and to enhance the cellular uptake and endosomal escape of antigens in dendritic cells (DCs) and further significantly activate DCs to mature. Taken together, these results provided more insights that PEI has potential as an adjuvant for H9N2 particle antigen intranasal vaccination. PMID:25673304

  1. Combined antitumor gene therapy with herpes simplex virus-thymidine kinase and short hairpin RNA specific for mammalian target of rapamycin.

    PubMed

    Woo, Ha-Na; Lee, Won Il; Kim, Ji Hyun; Ahn, Jeonghyun; Han, Jeong Hee; Lim, Sue Yeon; Lee, Won Woo; Lee, Heuiran

    2015-12-01

    A proof-of-concept study is presented using dual gene therapy that employed a small hairpin RNA (shRNA) specific for mammalian target of rapamycin (mTOR) and a herpes simplex virus-thymidine kinase (HSV-TK) gene to inhibit the growth of tumors. Recombinant adeno-associated virus (rAAV) vectors containing a mutant TK gene (sc39TK) were transduced into HeLa cells, and the prodrug ganciclovir (GCV) was administered to establish a suicide gene-therapy strategy. Additionally, rAAV vectors expressing an mTOR-targeted shRNA were employed to suppress mTOR-dependent tumor growth. GCV selectively induced death in tumor cells expressing TK, and the mTOR-targeted shRNA altered the cell cycle to impair tumor growth. Combining the TK-GCV system with mTOR inhibition suppressed tumor growth to a greater extent than that achieved with either treatment alone. Furthermore, HSV-TK expression and mTOR inhibition did not mutually interfere with each other. In conclusion, gene therapy that combines the TK-GCV system and mTOR inhibition shows promise as a novel strategy for cancer therapy. PMID:26459571

  2. Genotypic characterization of Indian isolates of infectious bursal disease virus strains by reverse transcription-polymerase chain reaction combined with restriction fragment length polymorphism analysis.

    PubMed

    Priyadharsini, C V; Senthilkumar, T M A; Raja, P; Kumanan, K

    2016-03-01

    The reverse transcription PCR (RT-PCR) combined with restriction fragment length polymorphism (RFLP) is used for the differentiation of classical virulent (cv), virulent (v) and very virulent (vv) strains of infectious bursal disease virus (IBDV) isolates from chicken bursal tissues in southern states of India. In the present study, six different isolates (MB11, HY12, PY12, BGE14, VCN14 and NKL14) of IBDV strains were subjected for genotyping along with vaccine virus (Georgia, intermediate strain) using RT-PCR for amplification of a 743 bp sequence in the hypervariable region of VP2 gene followed by restriction enzyme digestion with 5 different restriction enzymes (BspMI, SacI, HhaI, StuI and SspI). The RT-PCR products obtained from vvIBDV strains were digested by SspI enzyme except PY12, BGE14 and MB11 isolates. The SacI digested the isolate MB11, PY12 and the vaccine strain, but it did not cleave the very virulent isolates of IBDV. HhaI cleaved all the isolates with different restriction profile patterns. StuI digested all the vvIBDV isolates and BspMI was not able to differentiate field isolates from vaccine strain. Though RT-PCR combined with RFLP is a genotypic method, further confirmation of serotypes to distinguish the vvIBDV from cvIBDV has to be carried out using pathogenicity studies. PMID:26982465

  3. Valacyclovir combined with artesunate or rapamycin improves the outcome of herpes simplex virus encephalitis in mice compared to antiviral therapy alone.

    PubMed

    Canivet, Coraline; Menasria, Rafik; Rhéaume, Chantal; Piret, Jocelyne; Boivin, Guy

    2015-11-01

    Despite antiviral therapy, the mortality rate of herpes simplex virus encephalitis (HSE) remains high and many surviving patients harbor neurological sequelae. Although viral replication is responsible for substantial neurological damages, an exaggerated inflammatory response could also contribute to this process. Artesunate (ART) and rapamycin (RAPA) have shown some benefits in the treatment of herpes simplex virus infections. Herein, we evaluated the benefit of combining ART or RAPA with valacyclovir (VACV) in a murine model of HSE. Infected mice were treated with VACV (1mg/mL in drinking water) from day 3 post-infection (p.i.) combined or not with daily intraperitoneal administration of ART (30mg/kg) or RAPA (20mg/kg) from days 4 to 13 p.i. Viral load, infectious titers, cytokine and chemokine levels were measured in brain homogenates on days 5, 7 and 9. The survival rates of mice treated with VACV and ART or RAPA were higher than with VACV alone (71.9% versus 43.2% for ART and 66.7% versus 43.2% for RAPA; both P⩽0.05) but no significant difference was seen in the brain viral loads. Levels of IL-1β, IL-2 (both P⩽0.05), IL-6, IFN-γ (both P⩽0.01), CCL2 (P⩽0.01), CCL3 and CCL4 (both P⩽0.05) were reduced in mice treated with VACV combined with ART versus VACV alone. Levels of IL-6, IL-1β and IFN-γ slightly increased on day 7 in mice treated with VACV combined with RAPA compared to VACV alone and then decreased on day 9. Our results suggest that immunomodulatory compounds such as ART or RAPA could benefit antiviral therapy in HSE. PMID:26374952

  4. Fighting fire with fire: a patent for the combined application of oncolytic herpes viruses and antiangiogenic agents in the battle against human cancers.

    PubMed

    Karrasch, Matthias; Rehfuess, Christoph

    2015-01-01

    Specific elimination of tumor cells by replication-competent viral vectors is mediated through active viral replication, spread in tumor tissue and direct cytopathic effects. In addition, immune responses are induced against virally infected tumor cells. Recently, oncolytic vectors were constructed with mutations in neurovirulence genes or DNA synthesis genes. Viral replication should only be restricted to malignant cells to prevent severe viral disease. These constructed vectors terminate cells by mechanisms different from standard anti-cancer therapies; they offer another treatment modality which can be used in combination with chemotherapy, radiotherapy and gene therapies with additive or synergistic effects. Combination therapies are usually necessary to control tumorigenic diseases. Inhibiting angiogenesis represents another new field in current anticancer treatment development. Combining an oncolytic virus with antiangiogenesis is able to potentiate both treatment effects compared to each treatment modality alone in both primary and advanced disease. This combination might be beneficial for cancer patients in the future. We have also outlined some relevant patents. PMID:25818280

  5. Containing "The Great Houdini" of viruses: combining direct acting antivirals with the host immune response for the treatment of chronic hepatitis C.

    PubMed

    Ahlén, Gustaf; Frelin, Lars; Brenndörfer, Erwin Daniel; Brass, Anette; Weiland, Ola; Chen, Margaret; Sällberg, Matti

    2013-01-01

    Presently the development of new therapies for hepatitis C virus (HCV) is rapidly moving forward. Almost every week new data appear on how direct acting antivirals (DAAs) succeed or fail in clinical trials. Despite the potency of many of the DAA combinations, the effect exerted by ribavirin (RBV) is still needed for an effective therapy in many new DAA combinations. Due to the strong antiviral effect of DAAs, it is likely that a major complementary therapeutic effect exerted by RBV is immune modulation resulting in an increased barrier to development of resistance. For HCV genotype 1a infections elimination of pegylated interferon, is not possible in many DAA combinations without jeopardizing the results. The host immune response is thus likely to play a key role even during DAA-based therapies. Hence, T cells may recognize and eliminate viral variants with resistance to the DAAs. We herein show several examples where this may be the case, supporting the rationale of including the host response also in the new therapeutic regimens. This review will describe the potential benefits of combining various DAAs with means to activate the specific immune response against HCV. PMID:23911647

  6. A Rapid Screening Assay Identifies Monotherapy with Interferon-ß and Combination Therapies with Nucleoside Analogs as Effective Inhibitors of Ebola Virus

    PubMed Central

    McCarthy, Stephen D. S.; Majchrzak-Kita, Beata; Racine, Trina; Kozlowski, Hannah N.; Baker, Darren P.; Hoenen, Thomas; Kobinger, Gary P.; Fish, Eleanor N.; Branch, Donald R.

    2016-01-01

    To date there are no approved antiviral drugs for the treatment of Ebola virus disease (EVD). While a number of candidate drugs have shown limited efficacy in vitro and/or in non-human primate studies, differences in experimental methodologies make it difficult to compare their therapeutic effectiveness. Using an in vitro model of Ebola Zaire replication with transcription-competent virus like particles (trVLPs), requiring only level 2 biosafety containment, we compared the activities of the type I interferons (IFNs) IFN-α and IFN-ß, a panel of viral polymerase inhibitors (lamivudine (3TC), zidovudine (AZT) tenofovir (TFV), favipiravir (FPV), the active metabolite of brincidofovir, cidofovir (CDF)), and the estrogen receptor modulator, toremifene (TOR), in inhibiting viral replication in dose-response and time course studies. We also tested 28 two- and 56 three-drug combinations against Ebola replication. IFN-α and IFN-ß inhibited viral replication 24 hours post-infection (IC50 0.038μM and 0.016μM, respectively). 3TC, AZT and TFV inhibited Ebola replication when used alone (50–62%) or in combination (87%). They exhibited lower IC50 (0.98–6.2μM) compared with FPV (36.8μM), when administered 24 hours post-infection. Unexpectedly, CDF had a narrow therapeutic window (6.25–25μM). When dosed >50μM, CDF treatment enhanced viral infection. IFN-ß exhibited strong synergy with 3TC (97.3% inhibition) or in triple combination with 3TC and AZT (95.8% inhibition). This study demonstrates that IFNs and viral polymerase inhibitors may have utility in EVD. We identified several 2 and 3 drug combinations with strong anti-Ebola activity, confirmed in studies using fully infectious ZEBOV, providing a rationale for testing combination therapies in animal models of lethal Ebola challenge. These studies open up new possibilities for novel therapeutic options, in particular combination therapies, which could prevent and treat Ebola infection and potentially reduce drug

  7. A Rapid Screening Assay Identifies Monotherapy with Interferon-ß and Combination Therapies with Nucleoside Analogs as Effective Inhibitors of Ebola Virus.

    PubMed

    McCarthy, Stephen D S; Majchrzak-Kita, Beata; Racine, Trina; Kozlowski, Hannah N; Baker, Darren P; Hoenen, Thomas; Kobinger, Gary P; Fish, Eleanor N; Branch, Donald R

    2016-01-01

    To date there are no approved antiviral drugs for the treatment of Ebola virus disease (EVD). While a number of candidate drugs have shown limited efficacy in vitro and/or in non-human primate studies, differences in experimental methodologies make it difficult to compare their therapeutic effectiveness. Using an in vitro model of Ebola Zaire replication with transcription-competent virus like particles (trVLPs), requiring only level 2 biosafety containment, we compared the activities of the type I interferons (IFNs) IFN-α and IFN-ß, a panel of viral polymerase inhibitors (lamivudine (3TC), zidovudine (AZT) tenofovir (TFV), favipiravir (FPV), the active metabolite of brincidofovir, cidofovir (CDF)), and the estrogen receptor modulator, toremifene (TOR), in inhibiting viral replication in dose-response and time course studies. We also tested 28 two- and 56 three-drug combinations against Ebola replication. IFN-α and IFN-ß inhibited viral replication 24 hours post-infection (IC50 0.038μM and 0.016μM, respectively). 3TC, AZT and TFV inhibited Ebola replication when used alone (50-62%) or in combination (87%). They exhibited lower IC50 (0.98-6.2μM) compared with FPV (36.8μM), when administered 24 hours post-infection. Unexpectedly, CDF had a narrow therapeutic window (6.25-25μM). When dosed >50μM, CDF treatment enhanced viral infection. IFN-ß exhibited strong synergy with 3TC (97.3% inhibition) or in triple combination with 3TC and AZT (95.8% inhibition). This study demonstrates that IFNs and viral polymerase inhibitors may have utility in EVD. We identified several 2 and 3 drug combinations with strong anti-Ebola activity, confirmed in studies using fully infectious ZEBOV, providing a rationale for testing combination therapies in animal models of lethal Ebola challenge. These studies open up new possibilities for novel therapeutic options, in particular combination therapies, which could prevent and treat Ebola infection and potentially reduce drug

  8. Liver Fibrosis Regression Measured by Transient Elastography in Human Immunodeficiency Virus (HIV)-Hepatitis B Virus (HBV)-Coinfected Individuals on Long-Term HBV-Active Combination Antiretroviral Therapy

    PubMed Central

    Audsley, Jennifer; Robson, Christopher; Aitchison, Stacey; Matthews, Gail V.; Iser, David; Sasadeusz, Joe; Lewin, Sharon R.

    2016-01-01

    Background. Advanced fibrosis occurs more commonly in human immunodeficiency virus (HIV)-hepatitis B virus (HBV) coinfected individuals; therefore, fibrosis monitoring is important in this population. However, transient elastography (TE) data in HIV-HBV coinfection are lacking. We aimed to assess liver fibrosis using TE in a cross-sectional study of HIV-HBV coinfected individuals receiving combination HBV-active (lamivudine and/or tenofovir/tenofovir-emtricitabine) antiretroviral therapy, identify factors associated with advanced fibrosis, and examine change in fibrosis in those with >1 TE assessment. Methods. We assessed liver fibrosis in 70 HIV-HBV coinfected individuals on HBV-active combination antiretroviral therapy (cART). Change in fibrosis over time was examined in a subset with more than 1 TE result (n = 49). Clinical and laboratory variables at the time of the first TE were collected, and associations with advanced fibrosis (≥F3, Metavir scoring system) and fibrosis regression (of least 1 stage) were examined. Results. The majority of the cohort (64%) had mild to moderate fibrosis at the time of the first TE, and we identified alanine transaminase, platelets, and detectable HIV ribonucleic acid as associated with advanced liver fibrosis. Alanine transaminase and platelets remained independently advanced in multivariate modeling. More than 28% of those with >1 TE subsequently showed liver fibrosis regression, and higher baseline HBV deoxyribonucleic acid was associated with regression. Prevalence of advanced fibrosis (≥F3) decreased 12.3% (32.7%–20.4%) over a median of 31 months. Conclusions. The observed fibrosis regression in this group supports the beneficial effects of cART on liver stiffness. It would be important to study a larger group of individuals with more advanced fibrosis to more definitively assess factors associated with liver fibrosis regression. PMID:27006960

  9. Combined expression of miR-34a and Smac mediated by oncolytic vaccinia virus synergistically promote anti-tumor effects in Multiple Myeloma

    PubMed Central

    Lei, Wen; Wang, Shibing; Yang, Chunmei; Huang, Xianbo; Chen, Zhenzhen; He, Wei; Shen, Jianping; Liu, Xinyuan; Qian, Wenbin

    2016-01-01

    Despite great progress made in the treatment of multiple myeloma (MM), it is still incurable. Promising phase II clinical results have been reported recently for oncolytic vaccinia virus (OVV) clinic therapeutics. One reason for this has focused on the critical therapeutic importance of the immune response raised by these viruses. However, few studies have performed their applications as an optimal delivery system for therapeutic gene, especially miRNA in MM. In this study, we constructed two novel OVVs (TK deletion) that express anti-tumor genes, miR-34a and Smac, respectively, in MM cell lines and xenograft model. The results demonstrated that the novel OVV can effectively infect MM cell lines, and forcefully enhance the exogenous gene (miR-34a or Smac) expression. Furthermore, utilization of VV-miR-34a combined with VV-Smac synergistically inhibited tumor growth and induced apoptosis in vitro and in vivo. The underlying mechanism is proposed that blocking of Bcl-2 by VV-miR-34a increases the release of cytochrome c from mitochondria and then synergistically amplifies the antitumor effects of Smac-induced cell apoptosis. Our study is the first to utilize OVV as the vector for miR-34a or Smac expression to treat MM, and lays the groundwork for future clinical therapy for MM. PMID:27552933

  10. A combination HIV reporter virus system for measuring post-entry event efficiency and viral outcome in primary CD4+ T cell subsets.

    PubMed

    Tilton, Carisa A; Tabler, Caroline O; Lucera, Mark B; Marek, Samantha L; Haqqani, Aiman A; Tilton, John C

    2014-01-01

    Fusion between the viral membrane of human immunodeficiency virus (HIV) and the host cell marks the end of the HIV entry process and the beginning of a series of post-entry events including uncoating, reverse transcription, integration, and viral gene expression. The efficiency of post-entry events can be modulated by cellular factors including viral restriction factors and can lead to several distinct outcomes: productive, latent, or abortive infection. Understanding host and viral proteins impacting post-entry event efficiency and viral outcome is critical for strategies to reduce HIV infectivity and to optimize transduction of HIV-based gene therapy vectors. Here, we report a combination reporter virus system measuring both membrane fusion and viral promoter-driven gene expression. This system enables precise determination of unstimulated primary CD4+ T cell subsets targeted by HIV, the efficiency of post-entry viral events, and viral outcome and is compatible with high-throughput screening and cell-sorting methods. PMID:24025341

  11. Combined expression of miR-34a and Smac mediated by oncolytic vaccinia virus synergistically promote anti-tumor effects in Multiple Myeloma.

    PubMed

    Lei, Wen; Wang, Shibing; Yang, Chunmei; Huang, Xianbo; Chen, Zhenzhen; He, Wei; Shen, Jianping; Liu, Xinyuan; Qian, Wenbin

    2016-01-01

    Despite great progress made in the treatment of multiple myeloma (MM), it is still incurable. Promising phase II clinical results have been reported recently for oncolytic vaccinia virus (OVV) clinic therapeutics. One reason for this has focused on the critical therapeutic importance of the immune response raised by these viruses. However, few studies have performed their applications as an optimal delivery system for therapeutic gene, especially miRNA in MM. In this study, we constructed two novel OVVs (TK deletion) that express anti-tumor genes, miR-34a and Smac, respectively, in MM cell lines and xenograft model. The results demonstrated that the novel OVV can effectively infect MM cell lines, and forcefully enhance the exogenous gene (miR-34a or Smac) expression. Furthermore, utilization of VV-miR-34a combined with VV-Smac synergistically inhibited tumor growth and induced apoptosis in vitro and in vivo. The underlying mechanism is proposed that blocking of Bcl-2 by VV-miR-34a increases the release of cytochrome c from mitochondria and then synergistically amplifies the antitumor effects of Smac-induced cell apoptosis. Our study is the first to utilize OVV as the vector for miR-34a or Smac expression to treat MM, and lays the groundwork for future clinical therapy for MM. PMID:27552933

  12. Combinations of a host resistance gene and the CI gene of turnip mosaic virus differentially regulate symptom expression in Brassica rapa cultivars.

    PubMed

    Fujiwara, Ayaka; Inukai, Tsuyoshi; Kim, Bo Min; Masuta, Chikara

    2011-09-01

    In the pathosystem of Brassica rapa and turnip mosaic virus (TuMV), the type of symptoms expressed by susceptible plants are determined by the gene combinations between the host cultivar and virus strain. In this study, we found that the resistance reaction and symptoms such as systemic lethal necrosis, leaf malformation and mosaic were differentially determined, depending on the combinations of the genotypes for a host locus or two closely linked host loci and the viral CI gene. Systemic necrosis caused by TuMV-UK1 on some B. rapa subsp. pekinensis cultivars is induced in conjunction with a recessive gene, rnt1-2 (resistance and necrosis to tumv 1-2), which is allelic or closely linked to TuMV resistance gene Rnt1-1 on chromosome R6. rnt1-2 is incompletely recessive to rnt1-3, which does not cause any necrotic responses. The genotype rnt1-2/rnt1-3 caused a mild necrosis along leaf veins of severely malformed leaves. A spontaneous mutant, TuMV-UK1 (UK1m), with the amino acid substitution V1827E in CI, broke Rnt1-1 resistance and altered the systemic necrosis and leaf malformation induced by rnt1-2. This single amino acid in the CI protein of UK1 was also associated with severe mosaic and abnormal leaf development, perhaps interacting with unknown host factors. To clarify the relationship between Rnt1-1 and TuRB01b, which was previously reported as a TuMV-UK1 resistance gene on chromosome R6, the B. rapa cultivar Tropical Delight carrying TuRB01b was inoculated with UK1m or the infectious UK1 clone with the CI V1827E mutation. Because Tropical Delight showed resistance to both mutants, Rnt1-1 might be different from TuRB01b. PMID:21625976

  13. Vaccine Efficacy against Malaria by the Combination of Porcine Parvovirus-Like Particles and Vaccinia Virus Vectors Expressing CS of Plasmodium

    PubMed Central

    Rodríguez, Dolores; González-Aseguinolaza, Gloria; Rodríguez, Juan R.; Vijayan, Aneesh; Gherardi, Magdalena; Rueda, Paloma; Casal, J. Ignacio; Esteban, Mariano

    2012-01-01

    With the aim to develop an efficient and cost-effective approach to control malaria, we have generated porcine parvovirus-like particles (PPV-VLPs) carrying the CD8+ T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein from Plasmodium yoelii fused to the PPV VP2 capsid protein (PPV-PYCS), and tested in prime/boost protocols with poxvirus vectors for efficacy in a rodent malaria model. As a proof-of concept, we have characterized the anti-CS CD8+ T cell response elicited by these hybrid PPV-VLPs in BALB/c mice after immunizations with the protein PPV-PYCS administered alone or in combination with recombinant vaccinia virus (VACV) vectors from the Western Reserve (WR) and modified virus Ankara (MVA) strains expressing the entire P. yoelii CS protein. The results of different immunization protocols showed that the combination of PPV-PYCS prime/poxvirus boost was highly immunogenic, inducing specific CD8+ T cell responses to CS resulting in 95% reduction in liver stage parasites two days following sporozoite challenge. In contrast, neither the administration of PPV-PYCS alone nor the immunization with the vectors given in the order poxvirus/VLPs was as effective. The immune profile induced by VLPs/MVA boost was associated with polyfunctional and effector memory CD8+ T cell responses. These findings highlight the use of recombinant parvovirus PPV-PYCS particles as priming agents and poxvirus vectors, like MVA, as booster to enhance specific CD8+ T cell responses to Plasmodium antigens and to control infection. These observations are relevant in the design of T cell-inducing vaccines against malaria. PMID:22529915

  14. Polyethylenimine combined with liposomes and with decreased numbers of primary amine residues strongly enhanced therapeutic antiviral efficiency against herpes simplex virus type 2 in a mouse model.

    PubMed

    Maitani, Yoshie; Ishigaki, Kenji; Nakazawa, Yuta; Aragane, Daisuke; Akimoto, Tomoya; Iwamizu, Masatoshi; Kai, Takashi; Hayashi, Kyoko

    2013-03-10

    The development of antiviral agents that have novel mechanisms of action is urgently required in the topical therapy of herpes simplex virus type 2 (HSV-2) infections. We reported previously that topical application of branched 3610-Da polyethylenimine (PEI) exhibited preventative antiviral activity. In this study, to develop therapeutic anti-HSV-2 agents, the most potent PEI combined with ~200 nm-sized liposomes with or without oleic acid (liposomes/PEI) was selected in vitro and further evaluated using in vivo studies. The mechanism of action in vivo was elucidated using PEIs with decreased numbers of primary amine residues, resulting from ethylene carbonate treatment, and polyallylamine, a linear polyamine consisting of primary amines. Cytotoxicity and antiviral activity in vitro, and the appearance of acute herpetic disease and virus yields in mice intravaginally administered with liposomes/PEI were evaluated in cell culture assays and a mouse genital herpes model, respectively. In addition, the cellular association of liposome/PEI was examined by flow cytometry and confocal microscopy. PEI showed higher antiviral activity postinfection than preinfection in vivo. Liposome/PEI and PEI with decreased numbers of primary amine residues at a dose of 0.2 mg PEI/mouse exhibited more potent therapeutic antiviral activity than acyclovir and PEI alone without acute lesion appearance or toxicity pre- or postinfection, but polyallylamine was moderately effective only preinfection. Liposome concentrations were important for the effectiveness of liposome/PEI. This finding suggests that PEI combined with liposomes and with slightly decreased numbers of primary amines may be an effective vaginally administrated antiviral drug, and secondary and tertiary amine residues of PEI may contribute to the inhibitory efficiency against viral infection. PMID:23298614

  15. Bisheteroarylpiperazine reverse transcriptase inhibitor in combination with 3'-azido-3'-deoxythymidine or 2',3'-dideoxycytidine synergistically inhibits human immunodeficiency virus type 1 replication in vitro.

    PubMed Central

    Chong, K T; Pagano, P J; Hinshaw, R R

    1994-01-01

    Bisheteroarylpiperazine compounds are nonnucleoside reverse transcriptase inhibitors of human immunodeficiency virus type 1 (HIV-1). To provide a rationale for combination therapy with a second-generation bisheteroarylpiperazine, we investigated the effect of U-90152 in combination with 3'-azido-3'-deoxythymidine (AZT) or 2',3'-dideoxycytidine (ddC). HIV-1-infected cells were cultured in the presence of test compounds, and drug effects on p24 core antigen production were measured by an enzyme-linked immunosorbent assay. In a CD4+ T-cell line (H9) infected with HIV-1IIIB, the 50% effective concentrations for U-90152, AZT, and ddC were 6.0, 80.4, and 31.8 nM, respectively. In human peripheral blood mononuclear cells infected with the molecularly cloned clinical isolate HIV-1JRCSF, the 50% effective concentrations for U-90152, AZT, and ddC were 5.3, 5.9, and 25.0 nM, respectively. Over a range of drug concentrations (U-90152 and AZT at 0.3, 1, 3, 10, and 30 nM; ddC at 3, 10, 30, and 100 nM), U-90152 in combination with AZT or ddC synergistically inhibited the replication of a laboratory-adapted strain and a clinical isolate of HIV-1. PMID:7514857

  16. Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize

    PubMed Central

    2013-01-01

    Background Sugarcane mosaic virus (SCMV) disease causes substantial losses of grain yield and forage biomass in susceptible maize cultivars. Maize resistance to SCMV is associated with two dominant genes, Scmv1 and Scmv2, which are located on the short arm of chromosome 6 and near the centromere region of chromosome 3, respectively. We combined both linkage and association mapping to identify positional candidate genes for Scmv1. Results Scmv1 was fine-mapped in a segregating population derived from near-isogenic lines and further validated and fine-mapped using two recombinant inbred line populations. The combined results assigned the Scmv1 locus to a 59.21-kb interval, and candidate genes within this region were predicted based on the publicly available B73 sequence. None of three predicted genes that are possibly involved in the disease resistance response are similar to receptor-like resistance genes. Candidate gene–based association mapping was conducted using a panel of 94 inbred lines with variable resistance to SCMV. A presence/absence variation (PAV) in the Scmv1 region and two polymorphic sites around the Zmtrx-h gene were significantly associated with SCMV resistance. Conclusion Combined linkage and association mapping pinpoints Zmtrx-h as the most likely positional candidate gene for Scmv1. These results pave the way towards cloning of Scmv1 and facilitate marker-assisted selection for potyvirus resistance in maize. PMID:24134222

  17. Identification of Optimal Donor-Recipient Combinations Among Human Immunodeficiency Virus (HIV)-Positive Kidney Transplant Recipients.

    PubMed

    Locke, J E; Shelton, B A; Reed, R D; MacLennan, P A; Mehta, S; Sawinski, D; Segev, D L

    2016-08-01

    For some patient subgroups, human immunodeficiency virus (HIV) infection has been associated with worse outcomes after kidney transplantation (KT); potentially modifiable factors may be responsible. The study goal was to identify factors that predict a higher risk of graft loss among HIV-positive KT recipients compared with a similar transplant among HIV-negative recipients. In this study, 82 762 deceased donor KT recipients (HIV positive: 526; HIV negative: 82 236) reported to the Scientific Registry of Transplant Recipients (SRTR) (2001-2013) were studied by interaction term analysis. Compared to HIV-negative recipients, the hepatitis C virus (HCV) amplified risk 2.72-fold among HIV-positive KT recipients (adjusted hazard ratio [aHR]: 2.72, 95% confidence interval [CI]: 1.75-4.22, p < 0.001). Forty-three percent of the excess risk was attributable to the interaction between HIV and HCV (attributable proportion of risk due to the interaction [AP]: 0.43, 95% CI: 0.23-0.63, p = 0.02). Among HIV-positive recipients with more than three HLA mismatches (MMs), risk was amplified 1.80-fold compared to HIV-negative (aHR: 1.80, 95% CI: 1.31-2.47, p < 0.001); 42% of the excess risk was attributable to the interaction between HIV and more than three HLA MMs (AP: 0.42, 95% CI: 0.24-0.60, p = 0.01). High-HIV-risk (HIV-positive/HCV-positive HLAwith more than three MMs) recipients had a 3.86-fold increased risk compared to low-HIV-risk (HIV-positive/HCV-negative HLA with three or fewer MMs)) recipients (aHR: 3.86, 95% CI: 2.37-6.30, p < 0.001). Avoidance of more than three HLA MMs in HIV-positive KT recipients, particularly among coinfected patients, may mitigate the increased risk of graft loss associated with HIV infection. PMID:27140837

  18. The combination of IκB kinase β inhibitor and everolimus modulates expression of interleukin-10 in human T-cell lymphotropic virus type-1-infected T cells.

    PubMed

    Nishioka, Chie; Ikezoe, Takayuki; Yang, Jing; Udaka, Keiko; Yokoyama, Akihito

    2013-03-01

    Adult T-cell leukaemia-lymphoma (ATLL) is an aggressive malignancy of CD4(+)  CD25(+) T lymphocytes, characterized by a severely compromised immunosystem, in which the human T-cell lymphotropic virus type 1 (HTLV-1) has been recognized as the aetiological agent. This study found that an IκB kinase β (IKKβ) inhibitor Bay11-7082 inactivated mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 and transcription factor nuclear factor-κB in HTLV-1-infected T cells; this was significantly enhanced in the presence of the mTOR inhibitor everolimus. In addition, Bay11-7082 decreased production of the immunosuppressive cytokine interleukin-10 (IL-10), which was further down-regulated when Bay11-7082 was combined with evelolimus in HTLV-1-infected T and ATLL cells isolated from patients. Interleukin-10 is known to inhibit maturation and the antigen-presenting function of dendritic cells (DCs). The culture media of HTLV-1-infected MT-1 cells, which contained a large amout of IL-10, hampered tumour necrosis factor-α-induced maturation of DCs isolated from healthy volunteers. Culture supernatant of MT-1 cells treated with a combination of Bay11-7082 and everolimus augmented maturation of DCs in association with a decrease in production of IL-10 and enhanced the allostimulatory function of DCs. Similarly, when DCs isolated from patients with ATLL were treated with the combination of Bay11-7082 and everolimus, they were fully matured and their capability to stimulate proliferation of lymphocytes was augmented. Taken together, the combination of Bay11-7082 and everolimus might exhibit immunostimulatory properties in HTLV-1-infected T and ATLL cells isolated from patients, and this combination may be potentially therapeutic to regain the compromised immunosystem in ATLL patients. PMID:23278479

  19. Evidence for Persistence of Ectromelia Virus in Inbred Mice, Recrudescence Following Immunosuppression and Transmission to Naïve Mice

    PubMed Central

    Sakala, Isaac G.; Chaudhri, Geeta; Scalzo, Anthony A.; Eldi, Preethi; Newsome, Timothy P.; Buller, Robert M.; Karupiah, Gunasegaran

    2015-01-01

    Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status. PMID

  20. Evidence for Persistence of Ectromelia Virus in Inbred Mice, Recrudescence Following Immunosuppression and Transmission to Naïve Mice.

    PubMed

    Sakala, Isaac G; Chaudhri, Geeta; Scalzo, Anthony A; Eldi, Preethi; Newsome, Timothy P; Buller, Robert M; Karupiah, Gunasegaran

    2015-12-01

    Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status. PMID

  1. Combination therapy with pegylated interferon plus ribavirin in the treatment of hepatitis C virus-related thrombocytopenia

    PubMed Central

    Karakan, Tarkan; Cindoruk, Mehmet; Degertekin, Bulent; Dogan, Ibrahim; Sancak, Alper; Dumlu, Sukru; Gorgul, Ahmet; Unal, Selahattin

    2005-01-01

    Background: Isolated thrombocytopenia is a common manifestation of hepatitis C virus (HCV) infection. There is no established treatment modality for this condition. The efficacy of standard interferon (IFN) monotherapy has been reported in some studies. The major disadvantage of this treatment is the high rate of recurrence due to viral breakthrough during the first 12 weeks of treatment. Pegylated IFNs are now the standard regimen for chronic hepatic disease due to HCV infection. However, due to a lack of evidence, pegylated IFNs are not widely used for HCV-related isolated thrombocytopenia. Objective: The aim of this report was to present the case of a male patientwith severe symptomatic thrombocytopenia due to HCV infection. Methods: Thrombocytopenia was treated with pegylated IFN plus ribavirin. Results: Although standard IFN monotherapy failed to achieve virologic and hematologic improvement, therapy with pegylated IFN alfa-2a plus ribavirin was associated with both virologic and hematologic improvement without any significant adverse effects. Conclusions: Pegylated IFN plus ribavirin was effective in this patient for thetreatment of HCV-related thrombocytopenia. However, further research is needed to define the response rate in different patient populations. PMID:24764593

  2. The Efficacy and Safety of Entecavir and Interferon Combination Therapy for Chronic Hepatitis B Virus Infection: A Meta-Analysis

    PubMed Central

    Xie, Qiao-Ling; Zhu, Ying; Wu, Ling-Hong; Fu, Lin-Lin; Xiang, Yan

    2015-01-01

    The objective of this study was to evaluate the effectiveness and safety of entecavir (ETV) and interferon (IFN) combination therapy in the treatment of chronic hepatitis B (CHB) mono-infection via a meta-analysis of randomized controlled trials (RCTs). All eligible RCTs evaluating combination therapy for treating CHB were identified from nine electronic databases. A meta-analysis was performed in accordance with the Cochrane Systemic Review handbook. Eleven trials encompassing 1010 participants were included in this meta-analysis. It showed that at 12 and ≥ 96 weeks of therapy, the combination of ETV and IFN was not better than ETV in improving the undetectable HBV DNA (12 weeks: RR=1.12, 95% CI=0.88-1.42; ≥ 96 weeks: RR = 0.64, 95% CI=0.21-1.98, respectively) and HBeAg seroconversion rates (12 weeks: RR=1.35, 95% CI=0.60-3.04; ≥ 96 weeks: RR=1.36, 95% CI=0.75-2.64, respectively). But at 48 weeks of therapy and approximately 2 years of follow up, combination therapy was superior to ETV in improving the undetectable HBV DNA (48 weeks: RR=1.46, 95% CI=1.13-1.90; follow up: RR=2.20, 95% CI=1.26-3.81, respectively) and HBeAg seroconversion rates (48 weeks: RR=1.82, 95% CI=1.44-2.30; follow up: RR=1.92, 95% CI=1.19-3.11, respectively). When compared to IFN group, at 24 and 48 weeks of therapy, combination group showed a greater undetectable HBV DNA (24 weeks: RR=2.14, 95% CI=1.59-2.89; 48 weeks: RR=2.28, 95% CI=1.54-3.37, respectively) and ALT normalization rate (24 weeks: RR=1.56, 95% CI= 1.24-1.96; 48 weeks: RR=1.55, 95% CI = 1.16-2.07, respectively). At 48 weeks of therapy, combination group achieved a greater HBeAg seroconversion rate than IFN (48 weeks: RR=1.58, 95% CI=1.24-2.00). No significant differences were observed in the side effects of the three therapies. So we can conclude that ETV and IFN combination therapy is more effective than ETV or IFN mono-therapy in CHB treatment. ETV, IFN, and the combination of the two are safe in CHB treatment. PMID

  3. Beech Fructification and Bank Vole Population Dynamics - Combined Analyses of Promoters of Human Puumala Virus Infections in Germany

    PubMed Central

    Reil, Daniela; Imholt, Christian; Eccard, Jana Anja; Jacob, Jens

    2015-01-01

    The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV) causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus). We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012) time series of the parameters: beech fructification (as food resource for the PUUV host), bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes. PMID:26214509

  4. Enhanced efficacy of combination therapy with adeno-associated virus-delivered pigment epithelium-derived factor and cisplatin in a mouse model of Lewis lung carcinoma

    PubMed Central

    HE, SHA-SHA; WU, QIN-JIE; GONG, CHANG YANG; LUO, SHUN-TAO; ZHANG, SHUANG; LI, MENG; LU, LIAN; WEI, YU-QUAN; YANG, LI

    2014-01-01

    Pigment epithelium-derived factor (PEDF) is a potent inhibitor of angiogenesis, and the antitumor effect of adeno-associated virus (AAV)-mediated PEDF expression has been demonstrated in a range of animal models. The combined treatment of low-dose chemotherapy and gene therapy inhibits the growth of solid tumors more effectively than current traditional therapies or gene therapy alone. In the present study, the effect of treatment with an AAV2 vector harboring the human PEDF (hPEDF) gene in combination with low-dose cisplatin on the growth of Lewis lung carcinoma (LLC) in mice was assessed. LLC cells were infected with AAV-enhanced green fluorescent protein (EGFP) in the presence or absence of cisplatin, and then the effect of cisplatin on AAV-mediated gene expression was evaluated by image and flow cytometric analysis. Tumor growth, survival time, vascular endothelial growth factor (VEGF) expression, microvessel density (MVD) and apoptotic index were analyzed in C57BL/6 mice treated with AAV-hPEDF, cisplatin or cisplatin plus AAV-hPEDF. The results of the present study provide evidence that cisplatin treatment is able to enhance AAV-mediated gene expression in LLC cells. In addition, the combined treatment of cisplatin plus AAV-hPEDF markedly prolonged the survival time of the mice and inhibited tumor growth, resulting in significant suppression of tumor angiogenesis and induction of tumor apoptosis in vivo, and also protected against cisplatin-related toxicity. These findings suggest that combination of AAV-hPEDF and cisplatin has potential as a novel therapeutic strategy for lung cancer. PMID:24714917

  5. Sustained viral response in a hepatitis C virus-infected chimpanzee via a combination of direct-acting antiviral agents.

    PubMed

    Olsen, David B; Davies, Mary-Ellen; Handt, Larry; Koeplinger, Kenneth; Zhang, Nanyan Rena; Ludmerer, Steven W; Graham, Donald; Liverton, Nigel; MacCoss, Malcolm; Hazuda, Daria; Carroll, Steven S

    2011-02-01

    Efforts to develop novel, interferon-sparing therapies for treatment of chronic hepatitis C (HCV) infection are contingent on the ability of combination therapies consisting of direct antiviral inhibitors to achieve a sustained virologic response. This work demonstrates a proof of concept that coadministration of the nucleoside analogue MK-0608 with the protease inhibitor MK-7009, both of which produced robust viral load declines as monotherapy, to an HCV-infected chimpanzee can achieve a cure of infection. PMID:21115793

  6. A Combined Genetic-Proteomic Approach Identifies Residues within Dengue Virus NS4B Critical for Interaction with NS3 and Viral Replication

    PubMed Central

    Chatel-Chaix, Laurent; Fischl, Wolfgang; Scaturro, Pietro; Cortese, Mirko; Kallis, Stephanie; Bartenschlager, Marie; Fischer, Bernd

    2015-01-01

    ABSTRACT Dengue virus (DENV) infection causes the most prevalent arthropod-borne viral disease worldwide. Approved vaccines are not available, and targets suitable for the development of antiviral drugs are lacking. One possible drug target is nonstructural protein 4B (NS4B), because it is absolutely required for virus replication; however, its exact role in the DENV replication cycle is largely unknown. With the aim of mapping NS4B determinants critical for DENV replication, we performed a reverse genetic screening of 33 NS4B mutants in the context of an infectious DENV genome. While the majority of these mutations were lethal, for several of them, we were able to select for second-site pseudoreversions, most often residing in NS4B and restoring replication competence. To identify all viral NS4B interaction partners, we engineered a fully viable DENV genome encoding an affinity-tagged NS4B. Mass spectrometry-based analysis of the NS4B complex isolated from infected cells identified the NS3 protease/helicase as a major interaction partner of NS4B. By combining the genetic complementation map of NS4B with a replication-independent expression system, we identified the NS4B cytosolic loop—more precisely, amino acid residue Q134—as a critical determinant for NS4B-NS3 interaction. An alanine substitution at this site completely abrogated the interaction and DENV RNA replication, and both were restored by pseudoreversions A69S and A137V. This strict correlation between the degree of NS4B-NS3 interaction and DENV replication provides strong evidence that this viral protein complex plays a pivotal role during the DENV replication cycle, hence representing a promising target for novel antiviral strategies. IMPORTANCE With no approved therapy or vaccine against dengue virus infection, the viral nonstructural protein 4B (NS4B) represents a possible drug target, because it is indispensable for virus replication. However, little is known about its precise structure and

  7. Combination of the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus as a new option for epi-virotherapeutic treatment of hepatocellular carcinoma

    PubMed Central

    Ruf, Benjamin; Berchtold, Susanne; Venturelli, Sascha; Burkard, Markus; Smirnow, Irina; Prenzel, Tanja; Henning, Stefan W; Lauer, Ulrich M

    2015-01-01

    Epigenetic therapies such as histone deacetylase inhibitors (HDACi) not only have the capability to decrease tumor cell proliferation and to induce tumor cell death but also to silence antiviral response genes. Here, we investigated whether the combination of an oncolytic measles vaccine virus (MeV) with the novel oral HDACi resminostat (Res), being in clinical testing in patients with hepatocellular carcinoma (HCC), results in an enhanced efficacy of this epi-virotherapeutic approach compared to any of the two corresponding monotherapies. When testing a panel of human hepatoma cell lines, we found (i) a significantly improved rate of primary infections when using oncolytic MeV under concurrent treatment with resminostat, (ii) a boosted cytotoxic effect of the epi-virotherapeutic combination (Res + MeV) with enhanced induction of apoptosis, and, quite importantly, (iii) an absence of any resminostat-induced impairment of MeV replication and spread. Beyond that, we could also show that (iv) resminostat, after hepatoma cell stimulation with exogenous human interferon (IFN)-β, is able to prevent the induction of IFN-stimulated genes, such as IFIT-1. This finding outlines the possible impact of resminostat on cellular innate immunity, being instrumental in overcoming resistances to MeV-mediated viral oncolysis. Thus, our results support the onset of epi-virotherapeutic clinical trials in patients exhibiting advanced stages of HCC. PMID:27119111

  8. Combination of the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus as a new option for epi-virotherapeutic treatment of hepatocellular carcinoma.

    PubMed

    Ruf, Benjamin; Berchtold, Susanne; Venturelli, Sascha; Burkard, Markus; Smirnow, Irina; Prenzel, Tanja; Henning, Stefan W; Lauer, Ulrich M

    2015-01-01

    Epigenetic therapies such as histone deacetylase inhibitors (HDACi) not only have the capability to decrease tumor cell proliferation and to induce tumor cell death but also to silence antiviral response genes. Here, we investigated whether the combination of an oncolytic measles vaccine virus (MeV) with the novel oral HDACi resminostat (Res), being in clinical testing in patients with hepatocellular carcinoma (HCC), results in an enhanced efficacy of this epi-virotherapeutic approach compared to any of the two corresponding monotherapies. When testing a panel of human hepatoma cell lines, we found (i) a significantly improved rate of primary infections when using oncolytic MeV under concurrent treatment with resminostat, (ii) a boosted cytotoxic effect of the epi-virotherapeutic combination (Res + MeV) with enhanced induction of apoptosis, and, quite importantly, (iii) an absence of any resminostat-induced impairment of MeV replication and spread. Beyond that, we could also show that (iv) resminostat, after hepatoma cell stimulation with exogenous human interferon (IFN)-β, is able to prevent the induction of IFN-stimulated genes, such as IFIT-1. This finding outlines the possible impact of resminostat on cellular innate immunity, being instrumental in overcoming resistances to MeV-mediated viral oncolysis. Thus, our results support the onset of epi-virotherapeutic clinical trials in patients exhibiting advanced stages of HCC. PMID:27119111

  9. Combined detection of liver stiffness and C-reactive protein in patients with hepatitis B virus-related liver cirrhosis, with and without hepatocellular carcinoma

    PubMed Central

    LIU, XIAO-YAN; MA, LI-NA; YAN, TING-TING; LU, ZHEN-HUI; TANG, YUAN-YUAN; LUO, XIA; DING, XIANG-CHUN

    2016-01-01

    The aim of the present study was to investigate the usefulness of combined detection of liver stiffness (LS) and serum C-reactive protein (CRP) level in patients with hepatitis B virus (HBV)-related liver cirrhosis (LC). A total of 156 cases of previously untreated patients with HBV-related LC were classified into the LC group [LC without hepatocellular carcinoma (HCC)] and the HCC group (LC with HCC). Comparative analyses of LS and serum CRP level were conducted between these two groups. LS values and serum CRP levels were found to be significantly higher in the HCC group compared with those in the LC group (P<0.01). The LS values and serum CRP levels were not significantly different between α-fetoprotein (AFP)-positive and -negative patients. A high LS value was a high-risk factor for HCC in patients with chronic hepatitis B. The CRP-positive rate was significantly higher in the HCC group compared with that in LC group in a subset of patients with high LS values (P<0.01). In conclusion, the combined detection of LS and serum CRP may complement the measurement of AFP in the diagnosis of HBV-related HCC, improve the identification of patients with AFP-negative HCC and help distinguish HCC from LC. PMID:27073669

  10. Combining Linear-Scaling DFT with Subsystem DFT in Born-Oppenheimer and Ehrenfest Molecular Dynamics Simulations: From Molecules to a Virus in Solution.

    PubMed

    Andermatt, Samuel; Cha, Jinwoong; Schiffmann, Florian; VandeVondele, Joost

    2016-07-12

    In this work, methods for the efficient simulation of large systems embedded in a molecular environment are presented. These methods combine linear-scaling (LS) Kohn-Sham (KS) density functional theory (DFT) with subsystem (SS) DFT. LS DFT is efficient for large subsystems, while SS DFT is linear scaling with a smaller prefactor for large sets of small molecules. The combination of SS and LS, which is an embedding approach, can result in a 10-fold speedup over a pure LS simulation for large systems in aqueous solution. In addition to a ground-state Born-Oppenheimer SS+LS implementation, a time-dependent density functional theory-based Ehrenfest molecular dynamics (EMD) using density matrix propagation is presented that allows for performing nonadiabatic dynamics. Density matrix-based EMD in the SS framework is naturally linear scaling and appears suitable to study the electronic dynamics of molecules in solution. In the LS framework, linear scaling results as long as the density matrix remains sparse during time propagation. However, we generally find a less than exponential decay of the density matrix after a sufficiently long EMD run, preventing LS EMD simulations with arbitrary accuracy. The methods are tested on various systems, including spectroscopy on dyes, the electronic structure of TiO2 nanoparticles, electronic transport in carbon nanotubes, and the satellite tobacco mosaic virus in explicit solution. PMID:27244103

  11. Detection of hepatitis A virus in seeded oyster digestive tissue by ricin A-linked magnetic separation combined with reverse transcription PCR.

    PubMed

    Ko, Sang-Mu; Vaidya, Bipin; Kwon, Joseph; Lee, Hee-Min; Oh, Myung-Joo; Shin, Tai-Sun; Cho, Se-Young; Kim, Duwoon

    2015-05-01

    Outbreaks of hepatitis A virus (HAV) infections are most frequently associated with the consumption of contaminated oysters. A rapid and selective concentration method is necessary for the recovery of HAV from contaminated oysters prior to detection using PCR. In this study, ricin extracted from castor beans (Ricinus communis) was tested as an alternative to antibody used in immunomagnetic separation while concentrating HAV prior to its detection using reverse transcription PCR. Initially, the extracted proteins from castor beans were fractionated into 13 fractions by gel filtration chromatography. Pretreatment of different protein fractions showed a variation in binding of HAV viral protein (VP) 1 to oyster digestive tissue in the range of 25.9 to 63.9%. The protein fraction, which caused the highest reduction in binding of VP1 to the tissue, was identified as ricin A by quadrupole time-of-flight mass spectrometry. Ricin A could significantly inhibit binding of VP1 to the tissue with a 50% inhibitory concentration of 4.5 μg/ml and a maximal inhibitory concentration of 105.2%. The result showed that the rate of inhibition of HAV binding to tissue was higher compared to the rate of ricin itself binding to HAV (slope: 0.0029 versus 0.00059). However, ricin A concentration showed a higher correlation to the relative binding of ricin itself to HAV than the inhibition of binding of HAV to the tissue (coefficient of determination, R(2): 0.9739 versus 0.6804). In conclusion, ricin A-linked magnetic bead separation combined with reverse transcription PCR can successfully detect HAV in artificially seeded oyster digestive tissue up to a 10(-4) dilution of the virus stock (titer: 10(4) 50% tissue culture infective dose per ml). PMID:25951406

  12. Effect of Hepatitis C Virus Genotype 1b Core and NS5A Mutations on Response to Peginterferon Plus Ribavirin Combination Therapy.

    PubMed

    Nakamoto, Shingo; Imazeki, Fumio; Arai, Makoto; Yasui, Shin; Nakamura, Masato; Haga, Yuki; Sasaki, Reina; Kanda, Tatsuo; Shirasawa, Hiroshi; Yokosuka, Osamu

    2015-01-01

    We examined whether hepatitis C virus (HCV) genotype 1b core- and NS5A-region mutations are associated with response to peginterferon α-2b plus ribavirin combination therapy. A total of 103 patients with high HCV genotype 1b viral loads (≥ 100 KIU/mL) were treated with the combination therapy. Pretreatment mutations in the core region and interferon sensitivity determining region (ISDR) in the NS5A region were analyzed. In univariate analysis, arginine and leucine at positions 70 and 91 in the core region, defined as double wild (DW)-type, were associated with early virologic response (p = 0.002), sustained virologic response (SVR) (p = 0.004), and non-response (p = 0.005). Non-threonine at position 110 was associated with SVR (p = 0.004). Multivariate analysis showed the following pretreatment predictors of SVR: hemoglobin level ≥ 14 g/dL (odds ratio (OR) 6.2, p = 0.04); platelet count ≥ 14 × 10⁴/mm³ (OR 5.2, p = 0.04); aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio < 0.9 (OR 6.17, p = 0.009); DW-type (OR 6.8, p = 0.02); non-threonine at position 110 (OR 14.5, p = 0.03); and ≥ 2 mutations in the ISDR (OR 12.3, p = 0.02). Patients with non-DW-type, non-threonine at position 110, and < 2 ISDR mutations showed significantly lower SVR rates than others (11/45 (24.4%) vs. 27/37 (73.0%), respectively; p < 0.001). SVR can be predicted through core and NS5A region mutations and host factors like hemoglobin, platelet count, and AST/ALT ratio in HCV genotype 1b-infected patients treated with peginterferon and ribavirin combination therapy. PMID:26370958

  13. Effect of Hepatitis C Virus Genotype 1b Core and NS5A Mutations on Response to Peginterferon Plus Ribavirin Combination Therapy

    PubMed Central

    Nakamoto, Shingo; Imazeki, Fumio; Arai, Makoto; Yasui, Shin; Nakamura, Masato; Haga, Yuki; Sasaki, Reina; Kanda, Tatsuo; Shirasawa, Hiroshi; Yokosuka, Osamu

    2015-01-01

    We examined whether hepatitis C virus (HCV) genotype 1b core- and NS5A-region mutations are associated with response to peginterferon α-2b plus ribavirin combination therapy. A total of 103 patients with high HCV genotype 1b viral loads (≥100 KIU/mL) were treated with the combination therapy. Pretreatment mutations in the core region and interferon sensitivity determining region (ISDR) in the NS5A region were analyzed. In univariate analysis, arginine and leucine at positions 70 and 91 in the core region, defined as double wild (DW)-type, were associated with early virologic response (p = 0.002), sustained virologic response (SVR) (p = 0.004), and non-response (p = 0.005). Non-threonine at position 110 was associated with SVR (p = 0.004). Multivariate analysis showed the following pretreatment predictors of SVR: hemoglobin level ≥ 14 g/dL (odds ratio (OR) 6.2, p = 0.04); platelet count ≥ 14 × 104/mm3 (OR 5.2, p = 0.04); aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio < 0.9 (OR 6.17, p = 0.009); DW-type (OR 6.8, p = 0.02); non-threonine at position 110 (OR 14.5, p = 0.03); and ≥2 mutations in the ISDR (OR 12.3, p = 0.02). Patients with non-DW-type, non-threonine at position 110, and <2 ISDR mutations showed significantly lower SVR rates than others (11/45 (24.4%) vs. 27/37 (73.0%), respectively; p < 0.001). SVR can be predicted through core and NS5A region mutations and host factors like hemoglobin, platelet count, and AST/ALT ratio in HCV genotype 1b-infected patients treated with peginterferon and ribavirin combination therapy. PMID:26370958

  14. Immunological evaluation of Vibrio alginolyticus, Vibrio harveyi, Vibrio vulnificus and infectious spleen and kidney necrosis virus (ISKNV) combined-vaccine efficacy in Epinephelus coioides.

    PubMed

    Huang, Zhijian; Tang, Jingjing; Li, Mei; Fu, Yacheng; Dong, Chuanfu; Zhong, Jiang F; He, Jianguo

    2012-11-15

    Combined vaccines are immunological products intended for immunization against multifactorial infectious diseases caused by different types or variants of pathogens. In this study, the effectiveness of Vibrio alginolyticus (Va), Vibrio harveyi (Vh), Vibrio vulnificus (Vv) and infectious spleen and kidney necrosis virus (ISKNV), an iridovirus, combined-vaccine (Vibrio and ISKNV combined vaccines, VICV), Va+Vh+Vv inactive vaccine (VIV) and ISKNV whole cell inactive vaccine (IWCIV) in Epinephelus coioides were evaluated using various immunological parameters including antibody titer, serum lysozyme activity (LA), respiratory burst (RB) activity, bactericidal activity (BA) and relative percentage survival (RPS). E. coioides immunized with VICV and challenged with Va+Vh+Vv+ISKNV had an RPS of 80%. The RPS was 73.3% in E. coioides immunized with VIV and challenged with Va+Vh+Vv. E. coioides immunized with IWCIV and challenged with ISKNV had an RPS of 69.6%. Serum LA in the vaccinated group was significantly higher than the control group on days 21 and 28 post-vaccination (P<0.01). The RB activity of head kidney cells in the vaccinated group was significantly higher (P<0.01) compared to that in the control group. However, RB activity of spleen cells in the vaccinated group and the control group were not significantly different (P>0.05). After immunization with VICV, BA values of blood leucocytes and head kidney cells increased significantly more than spleen cells. BA value of blood leucocytes was higher than that in head kidney cells. There were distinct difference between BA values in head kidney cells and in spleen cells (P<0.05) as well as between BA value of blood leucocytes and head kidney cells (P<0.01). E. coioides vaccinated with VICV have significantly higher antibody levels than control groupers (P<0.01). Our study suggests that the VICV candidate can effectively protect groupers against multiple bacterial and viral pathogens. PMID:23010220

  15. A virulence factor of myxoma virus colocalizes with NF-kappaB in the nucleus and interferes with inflammation.

    PubMed

    Camus-Bouclainville, Christelle; Fiette, Laurence; Bouchiha, Sophie; Pignolet, Béatrice; Counor, Dorian; Filipe, Cédric; Gelfi, Jacqueline; Messud-Petit, Frédérique

    2004-03-01

    NF-kappaB is one of the most important elements that coordinate stress-induced, immune, and inflammatory responses. Myxoma virus, a member of the Poxviridae family responsible for rabbit myxomatosis, codes for several factors that help its survival in the host. In this study, we focused on the product of the M150R gene. We show that the protein has nine ankyrin repeats (ANKs), with the eighth having a close similarity with the nuclear localization signal-containing ANK of I-kappaBalpha, which regulates NF-kappaB activity by sequestering it in the cytosol. Because the viral protein is targeted to the nucleus, it was named MNF, for myxoma nuclear factor. This localization was lost when the eighth ANK was removed. In tumor necrosis factor alpha-treated cells, MNF and NF-kappaB colocalized as dotted spots in the nucleus. In vivo experiments with a knockout virus showed that MNF is a critical virulence factor, with its deletion generating an almost apathogenic virus. Detailed histological examinations revealed an increase in the inflammatory process in the absence of MNF, consistent with the interference of MNF with the NF-kappaB-induced proinflammatory pathway. Because MNF has homologs in other poxviruses, such as vaccinia, cowpox, and variola viruses, this protein is probably part of a key mechanism that contributes to the immunogenic and pathogenic properties of these viruses. PMID:14963153

  16. Short Communication: Hyperthyroidism in Human Immunodeficiency Virus Patients on Combined Antiretroviral Therapy: Case Series and Literature Review.

    PubMed

    Hsu, Emory; Phadke, Varun K; Nguyen, Minh Ly T

    2016-06-01

    We describe an HIV-infected patient initiated on combined antiretroviral therapy (cART) who subsequently developed immune restoration disease (IRD) hyperthyroidism-this case represents one of five such patients seen at our center within the past year. Similar to previous reports of hyperthyroidism due to IRD, all of our patients experienced a rapid early recovery in total CD4 count, but developed symptoms of hyperthyroidism on average 3 years (38 months) after beginning cART, which represents a longer time frame than previously reported. Awareness and recognition of this potential complication of cART, which may occur years after treatment initiation, will allow patients with immune restorative hyperthyroidism to receive timely therapy and avoid the long-term complications associated with undiagnosed thyroid disease. PMID:26887978

  17. Recombinant adeno-associated virus-mediated gene transfer for the potential therapy of adenosine deaminase-deficient severe combined immune deficiency.

    PubMed

    Silver, Jared N; Elder, Melissa; Conlon, Thomas; Cruz, Pedro; Wright, Amy J; Srivastava, Arun; Flotte, Terence R

    2011-08-01

    Severe combined immune deficiency due to adenosine deaminase (ADA) deficiency is a rare, potentially fatal pediatric disease, which results from mutations within the ADA gene, leading to metabolic abnormalities and ultimately profound immunologic and nonimmunologic defects. In this study, recombinant adeno-associated virus (rAAV) vectors based on serotypes 1 and 9 were used to deliver a secretory version of the human ADA (hADA) gene to various tissues to promote immune reconstitution following enzyme expression in a mouse model of ADA deficiency. Here, we report that a single-stranded rAAV vector, pTR2-CB-Igκ-hADA, (1) facilitated successful gene delivery to multiple tissues, including heart, skeletal muscle, and kidney, (2) promoted ectopic expression of hADA, and (3) allowed enhanced serum-based enzyme activity over time. Moreover, the rAAV-hADA vector packaged in serotype 9 capsid drove partial, prolonged, and progressive immune reconstitution in ADA-deficient mice. Overview Summary Gene therapies for severe combined immune deficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) over two decades have exclusively involved retroviral vectors targeted to lymphocytes and hematopoietic progenitor cells. These groundbreaking gene therapies represented an unprecedented revolution in clinical medicine but in most cases did not fully correct the immune deficiency and came with the potential risk of insertional mutagenesis. Alternatively, recombinant adeno-associated virus (rAAV) vectors have gained attention as valuable tools for gene transfer, having demonstrated no pathogenicity in humans, minimal immunogenicity, long-term efficacy, ease of administration, and broad tissue tropism (Muzyczka, 1992 ; Flotte et al., 1993 ; Kessler et al., 1996 ; McCown et al., 1996 ; Lipkowitz et al., 1999 ; Marshall, 2001 ; Chen et al., 2003 ; Conlon and Flotte, 2004 ; Griffey et al., 2005 ; Pacak et al., 2006 ; Stone et al., 2008 ; Liu et al., 2009 ; Choi et al., 2010

  18. Rapid and sensitive detection of porcine epidemic diarrhea virus by reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip.

    PubMed

    Gou, Hongchao; Deng, Jieru; Wang, Jiaying; Pei, Jingjing; Liu, Wenjun; Zhao, Mingqiu; Chen, Jinding

    2015-02-01

    Porcine epidemic diarrhea virus (PEDV) is an important pathogen that causes vomiting, diarrhea, and dehydration, leading to serious damage to the swine industry worldwide. The establishment of effective diagnostic methods is imperative. However, traditional methods are often unsuitable. In this study, reverse transcription loop-mediated isothermal amplification (RT-LAMP) was combined with a vertical flow (VF) nucleic acid detection strip to detect PEDV. Parameters that affect the RT-LAMP reaction were optimized. The RT-LAMP-VF assay that we established was performed at 62 °C for 40 min, and then directly evaluated on the VF visualization strip cassette. The method demonstrated high specificity for PEDV. The detection limit was 10 pg of ribonucleic acid, consistent with RT-PCR, RT-LAMP detected products on agarose gels and by direct calcein fluorescence. Application of this method to clinical samples yielded a positivity rate that was comparable to that obtained for RT-PCR. This technique saves time and is efficient, and is thus expected to be useful for the diagnosis of PEDV infection in the field. PMID:25444939

  19. Characterization of Epstein-Barr virus-induced lymphoproliferation derived from human peripheral blood mononuclear cells transferred to severe combined immunodeficient mice.

    PubMed

    Okano, M; Taguchi, Y; Nakamine, H; Pirruccello, S J; Davis, J R; Beisel, K W; Kleveland, K L; Sanger, W G; Fordyce, R R; Purtilo, D T

    1990-09-01

    Mice with severe combined immunodeficiency (SCID) received 6 X 10(7) fresh human peripheral blood mononuclear cells (PBMC) intraperitoneally from Epstein-Barr virus (EBV)-seropositive and -seronegative donors. B95-8 EBV was inoculated intraperitoneally and intravenously to the mice 6 weeks after transfer of seronegative PBMC. Three of four mice transferred with PBMC from two EBV-seropositive donors and two of four mice from two EBV-seronegative donors inoculated with EBV developed fatal EBV-induced lymphoproliferative disease within 6 to 10 weeks. These tumors were oligoclonal or polyclonal by cytoplasmic immunoglobulin expression. Furthermore no consistent clonal chromosomal abnormalities were shown. Cell lines established from these tumors showed low cloning efficiency in soft agarose. In addition, latent membrane protein, B-lymphocyte activation antigen (CD23), and cell-adhesion molecules (ICAM-1, CD18) all were expressed in the EBV-positive infiltrating lymphoproliferative lesions in each mouse. These results suggest that lymphoid tumors are comparable to lymphoblastoid cell lines immortalized by EBV and are not malignant lymphomas such as Burkitt's lymphoma. This model may be useful for investigating mechanisms responsible for the growing numbers of lymphoproliferative diseases that are occurring in patients with inherited or acquired immunodeficiencies. PMID:1975985

  20. Systemic Cytokine Levels Do Not Predict CD4(+) T-Cell Recovery After Suppressive Combination Antiretroviral Therapy in Chronic Human Immunodeficiency Virus Infection.

    PubMed

    Norris, Philip J; Zhang, Jinbing; Worlock, Andrew; Nair, Sangeetha V; Anastos, Kathryn; Minkoff, Howard L; Villacres, Maria C; Young, Mary; Greenblatt, Ruth M; Desai, Seema; Landay, Alan L; Gange, Stephen J; Nugent, C Thomas; Golub, Elizabeth T; Keating, Sheila M

    2016-01-01

    Background.  Subjects on suppressive combination antiretroviral therapy (cART) who do not achieve robust reconstitution of CD4(+) T cells face higher risk of complications and death. We studied participants in the Women's Interagency HIV Study with good (immunological responder [IR]) or poor (immunological nonresponder [INR]) CD4(+) T-cell recovery after suppressive cART (n = 50 per group) to determine whether cytokine levels or low-level viral load correlated with INR status. Methods.  A baseline sample prior to viral control and 2 subsequent samples 1 and 2 years after viral control were tested. Serum levels of 30 cytokines were measured at each time point, and low-level human immunodeficiency virus (HIV) viral load and anti-HIV antibody levels were measured 2 years after viral suppression. Results.  There were minimal differences in cytokine levels between IR and INR subjects. At baseline, macrophage inflammatory protein-3β levels were higher in IR subjects; after 1 year of suppressive cART, soluble vascular endothelial growth factor-R3 levels were higher in IR subjects; and after 2 years of suppressive cART, interferon gamma-induced protein 10 levels were higher in INR subjects. Very low-level HIV viral load and anti-HIV antibody levels did not differ between IR and INR subjects. Conclusions.  These results imply that targeting residual viral replication might not be the optimum therapeutic approach for INR subjects. PMID:26966697

  1. Systemic Cytokine Levels Do Not Predict CD4+ T-Cell Recovery After Suppressive Combination Antiretroviral Therapy in Chronic Human Immunodeficiency Virus Infection

    PubMed Central

    Norris, Philip J.; Zhang, Jinbing; Worlock, Andrew; Nair, Sangeetha V.; Anastos, Kathryn; Minkoff, Howard L.; Villacres, Maria C.; Young, Mary; Greenblatt, Ruth M.; Desai, Seema; Landay, Alan L.; Gange, Stephen J.; Nugent, C. Thomas; Golub, Elizabeth T.; Keating, Sheila M.

    2016-01-01

    Background. Subjects on suppressive combination antiretroviral therapy (cART) who do not achieve robust reconstitution of CD4+ T cells face higher risk of complications and death. We studied participants in the Women's Interagency HIV Study with good (immunological responder [IR]) or poor (immunological nonresponder [INR]) CD4+ T-cell recovery after suppressive cART (n = 50 per group) to determine whether cytokine levels or low-level viral load correlated with INR status. Methods. A baseline sample prior to viral control and 2 subsequent samples 1 and 2 years after viral control were tested. Serum levels of 30 cytokines were measured at each time point, and low-level human immunodeficiency virus (HIV) viral load and anti-HIV antibody levels were measured 2 years after viral suppression. Results. There were minimal differences in cytokine levels between IR and INR subjects. At baseline, macrophage inflammatory protein-3β levels were higher in IR subjects; after 1 year of suppressive cART, soluble vascular endothelial growth factor-R3 levels were higher in IR subjects; and after 2 years of suppressive cART, interferon gamma-induced protein 10 levels were higher in INR subjects. Very low-level HIV viral load and anti-HIV antibody levels did not differ between IR and INR subjects. Conclusions. These results imply that targeting residual viral replication might not be the optimum therapeutic approach for INR subjects. PMID:26966697

  2. [Epstein-Barr virus-associated hemophagocytic syndrome during mid-term pregnancy successfully treated with combined methylprednisolone and intravenous immunoglobulin].

    PubMed

    Mihara, H; Kato, Y; Tokura, Y; Hattori, Y; Sato, A; Kobayashi, H; Imamura, A; Daimaru, O; Miwa, H; Nitta, M

    1999-12-01

    A 32-year-old woman in the 16th week of pregnancy was admitted to our hospital because of high fever. Laboratory findings disclosed pancytopenia and extremely elevated serum LDH and ferritin levels. Coagulation tests showed disseminated intravascular coagulation. Serum soluble interleukin-2 receptor, tumor necrosis factor-alpha, and interleukin-6 levels were high, but serum interferon-gamma was below the detectable limit. Reactive Epstein-Barr virus (EBV) infection was diagnosed on the basis of a high titer of IgG antibodies to the EBV capsid antigen and early antigen. EBV was demonstrated in the peripheral blood and bone marrow cells by polymerase chain reaction. Mature histiocytosis and hemophagocytosis were detected in the bone marrow. A diagnosis of EBV-associated hemophagocytic syndrome (EBV-AHS) was made. Neither prednisolone (PSL 30 mg/day, P.O.) nor methylprednisolone (m-PSL) pulse therapy (1,000 mg/day for 3 days) induced a response. Thereafter, treatment with m-PSL pulse therapy (1,000 mg/day for 3 days) and i.v. administrations of high-dose immunoglobulin (20 g/day for 3 days) in combination with acyclovir (750 mg/day) and gabexate mesilate (2 g/day) induced remission of the disease. Maintenance therapy consisted of PSL (5 mg/day, P.O.) and camostat mesilate (600 mg/day, P.O.). The patient delivered a healthy male infant in the 35th week of pregnancy via natural birth. Reports of pregnant women with EBV-AHS are rare, and the choice of therapy has not yet been established. The present case study suggested the above combination treatment is useful and safe, and capable of changing the fulminant course of EBV-AHS during pregnancy without the use of anticancer drugs. PMID:10658479

  3. Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine

    PubMed Central

    Blazevic, Vesna; Malm, Maria; Arinobu, Daisuke; Lappalainen, Suvi; Vesikari, Timo

    2016-01-01

    ABSTRACT Rotavirus (RV) and norovirus (NoV) are the 2 leading causes of acute viral gastroenteritis worldwide. We have developed a non-live NoV and RV vaccine candidate consisting of NoV virus-like particles (VLPs) and recombinant polymeric RV VP6 protein produced in baculovirus-insect cell expression system. Both components have been shown to induce strong potentially protective immune responses. As VP6 nanotubes are highly immunogenic, we investigated here a possible adjuvant effect of these structures on NoV-specific immune responses in vivo. BALB/c mice were immunized intramuscularly with a suboptimal dose (0.3 μg) of GII.4 or GI.3 VLPs either alone or in a combination with 10 μg dose of VP6 and induction of NoV-specific antibodies in sera of experimental animals were measured. Blocking assay using human saliva or synthetic histo-blood group antigens was employed to test NoV blocking antibodies. Suboptimal doses of the VLPs alone did not induce substantial anti-NoV antibodies. When co-administered with the VP6, considerable titers of not only type-specific but also cross-reactive IgG antibodies against NoV VLP genotypes not included in the vaccine composition were induced. Most importantly, NoV-specific blocking antibodies, a surrogate for neutralizing antibodies, were generated. Our results show that RV VP6 protein has an in vivo adjuvant effect on NoV-specific antibody responses and support the use of VP6 protein as a part of the NoV-RV combination vaccine, especially when addition of external adjuvants is not desirable. PMID:26467630

  4. Serum apolipoprotein B-100 concentration predicts the virological response to pegylated interferon plus ribavirin combination therapy in patients infected with chronic hepatitis C virus genotype 1b.

    PubMed

    Yoshizawa, Kai; Abe, Hiroshi; Aida, Yuta; Ishiguro, Haruya; Ika, Makiko; Shimada, Noritomo; Tsubota, Akihito; Aizawa, Yoshio

    2013-07-01

    Host lipoprotein metabolism is associated closely with the life cycle of hepatitis C virus (HCV), and serum lipid profiles have been linked to the response to pegylated interferon (Peg-IFN) plus ribavirin (RBV) therapy. Polymorphisms in the human IL28B gene and amino acid substitutions in the core and interferon sensitivity-determining region (ISDR) in NS5A of HCV genotype 1b (G1b) were also shown to strongly affect the outcome of Peg-IFN plus RBV therapy. In this study, an observational cohort study was performed in 247 HCV G1b-infected patients to investigate whether the response to Peg-IFN and RBV combination therapy in these patients is independently associated with the level of lipid factors, especially apolipoprotein B-100 (apoB-100), an obligatory structural component of very low density lipoprotein and low density lipoprotein. The multivariate logistic analysis subsequently identified apoB-100 (odds ratio (OR), 1.602; 95% confidence interval (CI), 1.046-2.456), alpha-fetoprotein (OR, 0.764; 95% CI, 0.610-0.958), non-wild-type ISDR (OR, 5.617; 95% CI, 1.274-24.754), and the rs8099917 major genotype (OR, 34.188; 95% CI, 10.225-114.308) as independent factors affecting rapid initial virological response (decline in HCV RNA levels by ≥3-log10 at week 4). While lipid factors were not independent predictors of complete early or sustained virological response, the serum apoB-100 level was an independent factor for sustained virological response in patients carrying the rs8099917 hetero/minor genotype. Together, we conclude that serum apoB-100 concentrations could predict virological response to Peg-IFN plus RBV combination therapy in patients infected with HCV G1b, especially in those with the rs8099917 hetero/minor genotype. PMID:23918536

  5. Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine.

    PubMed

    Blazevic, Vesna; Malm, Maria; Arinobu, Daisuke; Lappalainen, Suvi; Vesikari, Timo

    2016-03-01

    Rotavirus (RV) and norovirus (NoV) are the 2 leading causes of acute viral gastroenteritis worldwide. We have developed a non-live NoV and RV vaccine candidate consisting of NoV virus-like particles (VLPs) and recombinant polymeric RV VP6 protein produced in baculovirus-insect cell expression system. Both components have been shown to induce strong potentially protective immune responses. As VP6 nanotubes are highly immunogenic, we investigated here a possible adjuvant effect of these structures on NoV-specific immune responses in vivo. BALB/c mice were immunized intramuscularly with a suboptimal dose (0.3 μg) of GII.4 or GI.3 VLPs either alone or in a combination with 10 μg dose of VP6 and induction of NoV-specific antibodies in sera of experimental animals were measured. Blocking assay using human saliva or synthetic histo-blood group antigens was employed to test NoV blocking antibodies. Suboptimal doses of the VLPs alone did not induce substantial anti-NoV antibodies. When co-administered with the VP6, considerable titers of not only type-specific but also cross-reactive IgG antibodies against NoV VLP genotypes not included in the vaccine composition were induced. Most importantly, NoV-specific blocking antibodies, a surrogate for neutralizing antibodies, were generated. Our results show that RV VP6 protein has an in vivo adjuvant effect on NoV-specific antibody responses and support the use of VP6 protein as a part of the NoV-RV combination vaccine, especially when addition of external adjuvants is not desirable. PMID:26467630

  6. Dual-modality imaging demonstrates the enhanced antitumoral effect of herpes simplex virus-thymidine kinase/ganciclovir plus gemcitabine combination therapy on cholangiocarcinoma

    PubMed Central

    WANG, JIANFENG; LI, ANG; JIN, MEI; ZHANG, FAN; LI, XIAOLING

    2016-01-01

    Herpes simplex virus-thymidine kinase/ganciclovir (HSV-TK/GCV) therapy is one of the most promising therapeutic strategies for the treatment of cholangiocarcinoma, which is the second most common hepatobiliary cancer. The aim of the present study was to evaluate the enhanced therapeutic effects of HSV-TK/GCV with gemcitabine on cholangiocarcinoma. QBC939 cholangiocarcinoma cells and mouse models of cholangiocarcinoma (established via tumor xenografts) received one of the following treatments: i) Gemcitabine therapy (3 µg/ml); ii) HSV-TK/GCV monotherapy; iii) HSV-TK/GCV + gemcitabine; and iv) control group, treated with phosphate-buffered saline. Cell proliferation was quantified using MTT assay and post-treatment tumor alterations were monitored using ultrasound imaging and optical imaging. For the in vitro experiments, the MTT assays demonstrated that the relative cell viabilities in the gene therapy, gemcitabine and gemcitabine + gene groups were 70.37±9.07, 52.64±8.28 and 34.21±6.63%, respectively. For the in vivo experiments, optical imaging indicated significantly decreased optical signals in the combination therapy group, as compared with the gemcitabine and gemcitabine + gene groups (1.68±0.74 vs. 2.27±0.58 and 2.87±0.82, respectively; Р<0.05). As demonstrated by ultrasound imaging, reduced tumor volumes were detected in the combination therapy group, as compared with the three control groups (114.32±17.17 vs. 159±23.74, 201.63±19.26 and 298.23±36.1 mm3, respectively; P<0.05). The results of the present study demonstrated that gemcitabine enhances the antitumoral effects of HSV-TK/GCV on cholangiocarcinoma, which may provide a novel therapeutic strategy for the management and treatment of cholangiocarcinoma using gemcitabine and gene therapy. PMID:27347037

  7. Evaluation of Three Experimental Bovine Viral Diarrhea Virus Killed Vaccines Adjuvanted with Combinations of QuilA Cholesterol and Dimethyldioctadecylammonium (DDA) Bromide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine viral diarrhea virus (BVDV) infections cause respiratory, reproductive, and enteric disease in cattle. Vaccination raises herd resistance and then limits the spread of bovine viral diarrhea viruses (BVDV) among cattle. The goal of this research was to evaluate new adjuvants, consisting of c...

  8. A New Generation of Modified Live-Attenuated Avian Influenza Viruses Using a Two-Strategy Combination as Potential Vaccine Candidates▿

    PubMed Central

    Song, Haichen; Nieto, Gloria Ramirez; Perez, Daniel R.

    2007-01-01

    In light of the recurrent outbreaks of low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza (HPAI), there is a pressing need for the development of vaccines that allow rapid mass vaccination. In this study, we introduced by reverse genetics temperature-sensitive mutations in the PB1 and PB2 genes of an avian influenza virus, A/Guinea Fowl/Hong Kong/WF10/99 (H9N2) (WF10). Further genetic modifications were introduced into the PB1 gene to enhance the attenuated (att) phenotype of the virus in vivo. Using the att WF10 as a backbone, we substituted neuraminidase (NA) for hemagglutinin (HA) for vaccine purposes. In chickens, a vaccination scheme consisting of a single dose of an att H7N2 vaccine virus at 2 weeks of age and subsequent challenge with the wild-type H7N2 LPAI virus resulted in complete protection. We further extended our vaccination strategy against the HPAI H5N1. In this case, we reconstituted an att H5N1 vaccine virus, whose HA and NA genes were derived from an Asian H5N1 virus. A single-dose immunization in ovo with the att H5N1 vaccine virus in 18-day-old chicken embryos resulted in more than 60% protection for 4-week-old chickens and 100% protection for 9- to 12-week-old chickens. Boosting at 2 weeks posthatching provided 100% protection against challenge with the HPAI H5N1 virus for chickens as young as 4 weeks old, with undetectable virus shedding postchallenge. Our results highlight the potential of live att avian influenza vaccines for mass vaccination in poultry. PMID:17596317

  9. Population Pharmacokinetics of Paritaprevir, Ombitasvir, Dasabuvir, Ritonavir, and Ribavirin in Patients with Hepatitis C Virus Genotype 1 Infection: Combined Analysis from 9 Phase 1b/2 Studies.

    PubMed

    Mensing, Sven; Polepally, Akshanth R; König, Denise; Khatri, Amit; Liu, Wei; Podsadecki, Thomas J; Awni, Walid M; Menon, Rajeev M; Dutta, Sandeep

    2016-01-01

    Direct-acting antiviral agents (DAAs) are established as the standard of care for chronic hepatitis C virus (HCV) infection. One of the newest additions to the HCV arsenal is an oral three-DAA combination therapy (i.e., the 3D regimen) that does not require concomitant use of pegylated interferon. The clinical development program for the 3D regimen has yielded a robust dataset that is inclusive of various dosing schemes and a diverse patient population. Using data from nine phase 1b/2a/2b studies that enrolled patients with HCV genotype 1 infection, population pharmacokinetic models were developed for each component of the 3D regimen (ombitasvir, paritaprevir, ritonavir, and dasabuvir) and for ribavirin, an adjunctive therapy used to enhance therapeutic efficacy in some populations. Formulation effects, accumulation, relative bioavailability, and interactions between DAAs were assessed during model development, and demographic and clinical covariates were identified and evaluated for their effects on drug exposures. Proposed models were assessed via goodness-of-fit plots, visual predictive checks, and bootstrap evaluations. Population pharmacokinetic models adequately described their respective plasma concentration-time data with precise and reliable model parameter estimates and with good predictive performance. Covariates, including age, sex, body weight, cytochrome P450 2C8 inhibitor use, non-Hispanic ethnicity, and creatinine clearance, were associated with apparent clearance and/or apparent volume parameters; however, the magnitude of effect on drug exposure was modest and not considered to be clinically significant. No patient-related or clinical parameters were identified that would necessitate dose adjustment of the 3D regimen in patients with HCV genotype 1 infection. PMID:26597291

  10. Predictors of viral kinetics to peginterferon plus ribavirin combination therapy in Japanese patients infected with hepatitis C virus genotype 1b.

    PubMed

    Akuta, Norio; Suzuki, Fumitaka; Kawamura, Yusuke; Yatsuji, Hiromi; Sezaki, Hitomi; Suzuki, Yoshiyuki; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Arase, Yasuji; Ikeda, Kenji; Kumada, Hiromitsu

    2007-11-01

    For chronic hepatitis C virus (HCV) infection, evaluation of response to peginterferon (PEG-IFN) plus ribavirin (RBV) therapy based on viral kinetics is useful as an early predictor of treatment efficacy, but the underlying mechanisms of the different viral kinetics to treatment are still unclear. The response to 48-week PEG-IFN-RBV combination therapy was evaluated in 160 Japanese adult patients infected with HCV genotype 1b and determined the rapid virological response (at 4 weeks), early virological response (at 12 weeks), end-of treatment response, and sustained virological response (6 months after end of treatment). The proportion of patients who showed rapid, early and sustained virological, and end-of treatment responses were 50%, 73%, 47%, and 71%, respectively. Furthermore, 66% of patients who achieved early virological response also showed sustained virological response. Multivariate analysis identified substitutions of amino acid (aa) 70 and 91 in the HCV core region (double-wild-type) as a predictor of early HCV-RNA negativity, rapid, early, and sustained virological responses and end-of treatment response, and lipid metabolic factors (high levels of LDL cholesterol and total cholesterol) as predictors of early and rapid virological responses and end-of treatment response. Male sex and low levels of alpha-fetoprotein were other predictors of sustained virological response. Furthermore, female sex and severity of liver fibrosis were determinants of lack of sustained virological response in spite of early virological response. This study identified predictors of efficacy of PEG-IFN-RBV therapy based on viral kinetics in Japanese patients infected with HCV genotype 1b. PMID:17854035

  11. A Single Quantifiable Viral Load Is Predictive of Virological Failure in Human Immunodeficiency Virus (HIV)-Infected Patients on Combination Antiretroviral Therapy: The Austrian HIV Cohort Study

    PubMed Central

    Leierer, Gisela; Grabmeier-Pfistershammer, Katharina; Steuer, Andrea; Sarcletti, Mario; Geit, Maria; Haas, Bernhard; Taylor, Ninon; Kanatschnig, Manfred; Rappold, Michaela; Ledergerber, Bruno; Zangerle, Robert

    2016-01-01

    Background. Viral loads (VLs) detectable at low levels are not uncommon in patients on combination antiretroviral therapy (cART). We investigated whether a single quantifiable VL predicted virological failure (VF). Methods. We analyzed patients receiving standard regimens with at least 1 VL measurement below the limit of quantification (BLQ) in their treatment history. The first VL measurement after 6 months of unmodified cART served as baseline VL for the subsequent analyses of the time to reach single VL levels of ≥200, ≥400, and ≥1000 copies/mL. Roche TaqMan 2.0 was used to quantify human immunodeficiency virus-1 ribonucleic acid. Factors associated with VF were determined by Cox proportional hazards models. Results. Of 1614 patients included in the study, 68, 44, and 34 experienced VF ≥200, ≥400, and ≥1000 copies/mL, respectively. In multivariable analyses, compared with patients who were BLQ, a detectable VL ≤ 50 and VL 51–199 copies/mL predicted VF ≥ 200 copies/mL (hazards ratio [HR] = 2.19, 95% confidence interval [CI] = 1.06–4.55 and HR = 4.21, 95% CI = 2.15–8.22, respectively). In those with VL 51–199 copies/mL, a trend for an increased risk of VF ≥400 and VF ≥1000 copies/mL could be found (HR = 2.13, 95% CI = 0.84–5.39 and HR = 2.52, 95% CI = 0.96–6.60, respectively). Conclusions. These findings support closer monitoring and adherence counseling for patients with a single measurement of quantifiable VL <200 copies/mL. PMID:27419163

  12. Adeno-Associated Virus Mediated Delivery of An Engineered Protein that Combines the Complement Inhibitory Properties of CD46, CD55 and CD59

    PubMed Central

    Leaderer, Derek; Cashman, Siobhan M.; Kumar-Singh, Rajendra

    2015-01-01

    Background A variety of disorders are associated with the activation of complement. CD46, CD55 and CD59 are the major membrane associated regulators of complement on human cells. Previously, we have found that independent expression of CD55, CD46 or CD59 through gene transfer protects murine tissues against human complement mediated attack. Herein we investigated the potential of combining the complement regulatory properties of CD46, CD55 and CD59 into single gene products expressed from an adeno-associated virus (AAV) vector in a soluble non-membrane anchored form. Methods Minigenes encoding the complement regulatory domains from CD46, CD55 and CD59 (SACT) or CD55 and CD59 (DTAC) were cloned into an AAV vector. The specific regulatory activity of each component of SACT and DTAC was measured in vitro. The recombinant AAV vectors were injected into the peritoneum of mice and the efficacy of the transgene products for being able to protect murine liver vasculature against human complement, specifically the membrane attack complex (MAC) was measured. Results SACT and DTAC exhibited properties similar to CD46, CD55 and CD59 or CD55 and CD59 respectively in vitro. AAV mediated delivery of SACT or DTAC protected murine liver vasculature from human MAC deposition by 63.2% and 56.7% respectively. Conclusions When delivered to mice in vivo via an AAV vector, SACT and DTAC are capable of limiting human complement mediated damage. SACT and DTAC merit further study as potential therapies for complement mediated disorders when delivered via a gene therapy approach. PMID:25917932

  13. Multiple-Dose Pharmacokinetics and Pharmacodynamics of Abacavir Alone and in Combination with Zidovudine in Human Immunodeficiency Virus-Infected Adults

    PubMed Central

    McDowell, James A.; Lou, Yu; Symonds, William S.; Stein, Daniel S.

    2000-01-01

    Abacavir (1592U89) is a nucleoside reverse transcriptase inhibitor with potent activity against human immunodeficiency virus type 1 (HIV-1) when used alone or in combination with other antiretroviral agents. The present study was conducted to determine the multiple-dose pharmacokinetics and pharmacodynamics of abacavir in HIV-1-infected subjects following oral administration of daily doses that ranged from 600 to 1,800 mg, with and without zidovudine. Seventy-nine subjects received abacavir monotherapy for 4 weeks (200, 400, or 600 mg every 8 hours [TID] and 300 mg every 12 h [BID]) and thereafter received either zidovudine (200 mg TID or 300 mg BID) or matching placebo with abacavir for 8 additional weeks. Pharmacokinetic parameters were calculated for abacavir after administration of the first dose and at week 4 and for abacavir, zidovudine, and its glucuronide metabolite at week 12. The concentrations of abacavir in cerebrospinal fluid were determined in a subset of subjects. Steady-state plasma abacavir concentrations were achieved by week 4 of monotherapy and persisted to week 12. At steady state, abacavir pharmacokinetic parameters (area under the plasma concentration-time curve for a dosing interval [AUCtau] and peak concentration [Cmax]) were generally proportional to dose over the range of a 600- to 1,200-mg total daily dose. Coadministration of zidovudine with abacavir produced a small and inconsistent effect on abacavir pharmacokinetic parameters across the different doses. At the clinical abacavir dose (300 mg BID) zidovudine coadministration had no effect on the abacavir AUCtau, which is most closely associated with efficacy. Zidovudine pharmacokinetics appeared to be unaffected by abacavir. Statistically significant but weak relationships were found for the change in the log10 HIV-1 RNA load from the baseline to week 4 versus total daily AUCtau and Ctau (P < 0.05). The incidence of nausea was significantly associated with total daily AUCtau and Cmax

  14. Ability to Work and Employment Rates in Human Immunodeficiency Virus (HIV)-1-Infected Individuals Receiving Combination Antiretroviral Therapy: The Swiss HIV Cohort Study.

    PubMed

    Elzi, Luigia; Conen, Anna; Patzen, Annalea; Fehr, Jan; Cavassini, Matthias; Calmy, Alexandra; Schmid, Patrick; Bernasconi, Enos; Furrer, Hansjakob; Battegay, Manuel

    2016-01-01

    Background.  Limited data exist on human immunodeficiency virus (HIV)-infected individuals' ability to work after receiving combination antiretroviral therapy (cART). We aimed to investigate predictors of regaining full ability to work at 1 year after starting cART. Methods.  Antiretroviral-naive HIV-infected individuals <60 years who started cART from January 1998 through December 2012 within the framework of the Swiss HIV Cohort Study were analyzed. Inability to work was defined as a medical judgment of the patient's ability to work as 0%. Results.  Of 5800 subjects, 4382 (75.6%) were fully able to work, 471 (8.1%) able to work part time, and 947 (16.3%) were unable to work at baseline. Of the 947 patients unable to work, 439 (46.3%) were able to work either full time or part time at 1 year of treatment. Predictors of recovering full ability to work were non-white ethnicity (odds ratio [OR], 2.06; 95% confidence interval [CI], 1.20-3.54), higher education (OR, 4.03; 95% CI, 2.47-7.48), and achieving HIV-ribonucleic acid <50 copies/mL (OR, 1.83; 95% CI, 1.20-2.80). Older age (OR, 0.55; 95% CI, .42-.72, per 10 years older) and psychiatric disorders (OR, 0.24; 95% CI, .13-.47) were associated with lower odds of ability to work. Recovering full ability to work at 1 year increased from 24.0% in 1998-2001 to 41.2% in 2009-2012, but the employment rates did not increase. Conclusions.  Regaining full ability to work depends primarily on achieving viral suppression, absence of psychiatric comorbidity, and favorable psychosocial factors. The discrepancy between patients' ability to work and employment rates indicates barriers to reintegration of persons infected with HIV. PMID:26955645

  15. Ability to Work and Employment Rates in Human Immunodeficiency Virus (HIV)-1-Infected Individuals Receiving Combination Antiretroviral Therapy: The Swiss HIV Cohort Study

    PubMed Central

    Elzi, Luigia; Conen, Anna; Patzen, Annalea; Fehr, Jan; Cavassini, Matthias; Calmy, Alexandra; Schmid, Patrick; Bernasconi, Enos; Furrer, Hansjakob; Battegay, Manuel

    2016-01-01

    Background. Limited data exist on human immunodeficiency virus (HIV)-infected individuals' ability to work after receiving combination antiretroviral therapy (cART). We aimed to investigate predictors of regaining full ability to work at 1 year after starting cART. Methods. Antiretroviral-naive HIV-infected individuals <60 years who started cART from January 1998 through December 2012 within the framework of the Swiss HIV Cohort Study were analyzed. Inability to work was defined as a medical judgment of the patient's ability to work as 0%. Results. Of 5800 subjects, 4382 (75.6%) were fully able to work, 471 (8.1%) able to work part time, and 947 (16.3%) were unable to work at baseline. Of the 947 patients unable to work, 439 (46.3%) were able to work either full time or part time at 1 year of treatment. Predictors of recovering full ability to work were non-white ethnicity (odds ratio [OR], 2.06; 95% confidence interval [CI], 1.20–3.54), higher education (OR, 4.03; 95% CI, 2.47–7.48), and achieving HIV-ribonucleic acid <50 copies/mL (OR, 1.83; 95% CI, 1.20–2.80). Older age (OR, 0.55; 95% CI, .42–.72, per 10 years older) and psychiatric disorders (OR, 0.24; 95% CI, .13–.47) were associated with lower odds of ability to work. Recovering full ability to work at 1 year increased from 24.0% in 1998–2001 to 41.2% in 2009–2012, but the employment rates did not increase. Conclusions. Regaining full ability to work depends primarily on achieving viral suppression, absence of psychiatric comorbidity, and favorable psychosocial factors. The discrepancy between patients' ability to work and employment rates indicates barriers to reintegration of persons infected with HIV. PMID:26955645

  16. Multiple Viral Ligands Naturally Presented by Different Class I Molecules in Transporter Antigen Processing-Deficient Vaccinia Virus-Infected Cells

    PubMed Central

    Lorente, Elena; Infantes, Susana; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Vilches, Carlos; Lemonnier, François A.; Admon, Arie

    2012-01-01

    The transporter associated with antigen processing (TAP) delivers the viral proteolytic products generated by the proteasome in the cytosol to the endoplasmic reticulum lumen that are subsequently recognized by cytotoxic T lymphocytes (CTLs). However, several viral epitopes have been identified in TAP-deficient models. Using mass spectrometry to analyze complex human leukocyte antigen (HLA)-bound peptide pools isolated from large numbers of TAP-deficient vaccinia virus-infected cells, we identified 11 ligands naturally presented by four different HLA-A, HLA-B, and HLA-C class I molecules. Two of these ligands were presented by two different HLA class I alleles, and, as a result, 13 different HLA-peptide complexes were formed simultaneously in the same vaccinia virus-infected cells. In addition to the high-affinity ligands, one low-affinity peptide restricted by each of the HLA-A, HLA-B, and HLA-C class I molecules was identified. Both high- and low-affinity ligands generated long-term memory CTL responses to vaccinia virus in an HLA-A2-transgenic mouse model. The processing and presentation of two vaccinia virus-encoded HLA-A2-restricted antigens took place via proteasomal and nonproteasomal pathways, which were blocked in infected cells with chemical inhibitors specific for different subsets of metalloproteinases. These data have implications for the study of the effectiveness of early empirical vaccination with cowpox virus against smallpox disease. PMID:22031944

  17. Expression of Secreted Cytokine and Chemokine Inhibitors by Ectromelia Virus

    PubMed Central

    Smith, Vincent P.; Alcami, Antonio

    2000-01-01

    The production of secreted proteins that bind cytokines and block their activity has been well characterized as an immune evasion strategy of the orthopoxviruses vaccinia virus (VV) and cowpox virus (CPV). However, very limited information is available on the expression of similar cytokine inhibitors by ectromelia virus (EV), a virulent natural mouse pathogen that causes mousepox. We have characterized the expression and binding properties of three major secreted immunomodulatory activities in 12 EV strains and isolates. Eleven of the 12 EVs expressed a soluble, secreted 35-kDa viral chemokine binding protein with properties similar to those of homologous proteins from VV and CPV. All of the EVs expressed soluble, secreted receptors that bound to mouse, human, and rat tumor necrosis factor alpha. We also detected the expression of a soluble, secreted interleukin-1β (IL-1β) receptor (vIL-1βR) by all of the EVs. EV differed from VV and CPV in that binding of human 125I-IL-1β to the EV vIL-1βR could not be detected. Nevertheless, the EV vIL-1βR prevented the interaction of human and mouse IL-1β with cellular receptors. There are significant differences in amino acid sequence between the EV vIL-1βR and its VV and CPV homologs which may account for the results of the binding studies. The conservation of these activities in EV suggests evolutionary pressure to maintain them in a natural poxvirus infection. Mousepox represents a useful model for the study of poxvirus pathogenesis and immune evasion. These findings will facilitate future study of the role of EV immunomodulatory factors in the pathogenesis of mousepox. PMID:10954546

  18. Inactivation of the Hutchinson strain of non-A, non-B hepatitis virus by combined use of beta-propiolactone and ultraviolet irradiation

    SciTech Connect

    Prince, A.M.; Stephan, W.; Dichtelmueller, H.B.; Brotman, B.; Huima, T.

    1985-06-01

    A beta-propiolactone/ultraviolet irradiation procedure (beta PL/UV) has been evaluated for its ability to inactivate 30,000 chimpanzee infectious doses of the Hutchinson strain of non-A, non-B (NANB) virus. The chimpanzees were inoculated with plasma to which this dose of the titrated virus had been added prior to application of the beta PL/UV process in accordance with a procedure used for licensed blood derivatives in Germany. Neither animal developed hepatitis. When subsequently challenged with the same contaminated plasma, which had not been sterilized, both animals promptly developed typical NANB hepatitis. This study extends the high (approximately 10(7)-fold) process efficiency of the beta PL/UV procedure previously reported for hepatitis B virus to a blood-borne NANB virus.

  19. A randomized, placebo-controlled trial of combined insulin-like growth factor I and low dose growth hormone therapy for wasting associated with human immunodeficiency virus infection.

    PubMed

    Lee, P D; Pivarnik, J M; Bukar, J G; Muurahainen, N; Berry, P S; Skolnik, P R; Nerad, J L; Kudsk, K A; Jackson, L; Ellis, K J; Gesundheit, N

    1996-08-01

    Loss of body mass, or wasting, is a major cause of morbidity and a contributor to mortality in human immunodeficiency virus-1 (HIV-1) infection. Dietary supplements and appetite adjuvants have had limited effectiveness in treating this condition. GH and insulin-like growth factor I (IGF-I) have been shown to be anabolic in many catabolic conditions, and limited data suggest similar efficacy in HIV wasting. In addition, it appears that GH and IGF-I may have complementary anabolic effects with opposing glucoregulatory effects. We report results from a 12-week randomized, placebo-controlled trial of combination recombinant human GH (rhGH; Nutropin; 0.34 mg, sc, twice daily) and rhIGF-I (5.0 mg, sc, twice daily) in individuals with HIV wasting and without active opportunistic infection, cancer, or gastrointestinal disease. A total of 142 subjects (140 males and 2 females) were randomized using a 2:1, double blind treatment scheme and assigned to receive either active treatment or placebo injections. Eighty subjects completed the 12-week protocol. Nutritional intake and demographic and clinical characteristics did not differ between the groups at any study time point. At 3 weeks, the treatment group had a significantly larger weight increase (P = 0.0003), but this difference was not observed at any later time point. Similarly, fat-free mass, calculated from skinfold measurements, increased transiently in the treatment group at 6 weeks (P = 0.002). No significant differences in isokinetic muscle strength or endurance testing or in quality of life were observed between the groups. Resting heart rate was significantly higher in the treatment group at each time point post-baseline. GH and IGF-binding protein-3 levels did not change; however, IGF-I levels were higher in the treatment group at 6 and 12 weeks. There were no significant between-group differences in any of the measured biochemical or immunological parameters. rhGH plus rhIGF-I treatment was associated with an

  20. Association of ITPA gene polymorphisms and the risk of ribavirin-induced anemia in HIV/hepatitis C virus (HCV)-coinfected patients receiving HCV combination therapy.

    PubMed

    Domingo, Pere; Guardiola, Josep M; Salazar, Juliana; Torres, Ferran; Mateo, M Gracia; Pacho, Cristina; Del Mar Gutierrez, M; Lamarca, Karuna; Fontanet, Angels; Martin, Jordi; Muñoz, Jessica; Vidal, Francesc; Baiget, Montserrat

    2012-06-01

    Polymorphisms of the ITPA gene have been associated with anemia during combination therapy in hepatitis C virus (HCV)-monoinfected patients. Our aim was to confirm this association in HIV/HCV-coinfected patients. In this prospective, observational study, 73 HIV/HCV-coinfected patients treated with pegylated interferon plus ribavirin (RBV) were enrolled. Two single nucleotide polymorphisms within or adjacent to the ITPA gene (rs1127354 and rs7270101) were genotyped. The associations between the ITPA genotype and anemia or treatment outcome were examined. Fifty-nine patients (80.8%) had CC at rs1127354, whereas 14 (19.2%) had a CA/AA ITPA genotype. Percent decreases from baseline hemoglobin level were significantly greater in patients with the CC genotype than in those with the CA/AA genotype at week 4 (P = 0.0003), week 12 (P < 0.0001), and week 36 (P = 0.0102) but not at the end of treatment. RBV dose reduction was more often needed in patients with the CC genotype than in those with the CA/AA genotype (odds ratio [OR] = 11.81; 95% confidence interval [CI] = 1.45 to 256.17; P = 0.0039), as was erythropoietin therapy (OR = 8.28; 95% CI = 1.04 to 371.12; P = 0.0057). Risk factors independently associated with percent hemoglobin nadir decrease were RBV dose reduction (OR = 11.72; 95% CI = 6.82 to 16.63; P < 0.001), baseline hemoglobin (OR = 1.69; 95% CI = 0.23 to 3.15; P = 0.024), and body mass index (OR = -0.7; 95% CI = -1.43 to 0.03; P = 0.061). ITPA polymorphism was not an independent predictor of sustained virological response. Polymorphisms at rs1127354 in the ITPA gene influence hemoglobin levels during combination HCV therapy and the need for RBV dose reduction and erythropoietin use in HIV/HCV-coinfected patients. PMID:22430973

  1. Association of ITPA Gene Polymorphisms and the Risk of Ribavirin-Induced Anemia in HIV/Hepatitis C Virus (HCV)-Coinfected Patients Receiving HCV Combination Therapy

    PubMed Central

    Guardiola, Josep M.; Salazar, Juliana; Torres, Ferran; Mateo, M. Gracia; Pacho, Cristina; del Mar Gutierrez, M.; Lamarca, Karuna; Fontanet, Angels; Martin, Jordi; Muñoz, Jessica; Vidal, Francesc; Baiget, Montserrat

    2012-01-01

    Polymorphisms of the ITPA gene have been associated with anemia during combination therapy in hepatitis C virus (HCV)-monoinfected patients. Our aim was to confirm this association in HIV/HCV-coinfected patients. In this prospective, observational study, 73 HIV/HCV-coinfected patients treated with pegylated interferon plus ribavirin (RBV) were enrolled. Two single nucleotide polymorphisms within or adjacent to the ITPA gene (rs1127354 and rs7270101) were genotyped. The associations between the ITPA genotype and anemia or treatment outcome were examined. Fifty-nine patients (80.8%) had CC at rs1127354, whereas 14 (19.2%) had a CA/AA ITPA genotype. Percent decreases from baseline hemoglobin level were significantly greater in patients with the CC genotype than in those with the CA/AA genotype at week 4 (P = 0.0003), week 12 (P < 0.0001), and week 36 (P = 0.0102) but not at the end of treatment. RBV dose reduction was more often needed in patients with the CC genotype than in those with the CA/AA genotype (odds ratio [OR] = 11.81; 95% confidence interval [CI] = 1.45 to 256.17; P = 0.0039), as was erythropoietin therapy (OR = 8.28; 95% CI = 1.04 to 371.12; P = 0.0057). Risk factors independently associated with percent hemoglobin nadir decrease were RBV dose reduction (OR = 11.72; 95% CI = 6.82 to 16.63; P < 0.001), baseline hemoglobin (OR = 1.69; 95% CI = 0.23 to 3.15; P = 0.024), and body mass index (OR = −0.7; 95% CI = −1.43 to 0.03; P = 0.061). ITPA polymorphism was not an independent predictor of sustained virological response. Polymorphisms at rs1127354 in the ITPA gene influence hemoglobin levels during combination HCV therapy and the need for RBV dose reduction and erythropoietin use in HIV/HCV-coinfected patients. PMID:22430973

  2. Combining Single RNA Sensitive Probes with Subdiffraction-Limited and Live-Cell Imaging Enables the Characterization of Virus Dynamics in Cells

    PubMed Central

    2013-01-01

    The creation of fluorescently labeled viruses is currently limited by the length of imaging observation time (e.g., labeling an envelope protein) and the rescue of viral infectivity (e.g., encoding a GFP protein). Using single molecule sensitive RNA hybridization probes delivered to the cytoplasm of infected cells, we were able to isolate individual, infectious, fluorescently labeled human respiratory syncytial virus virions. This was achieved without affecting viral mRNA expression, viral protein expression, or infectivity. Measurements included the characterization of viral proteins and genomic RNA in a single virion using dSTORM, the development of a GFP fusion assay, and the development of a pulse-chase assay for viral RNA production that allowed for the detection of both initial viral RNA and nascent RNA production at designated times postinfection. Live-cell measurements included imaging and characterization of filamentous virion fusion and the quantification of virus replication within the same cell over an eight-hour period. Using probe-labeled viruses, individual viral particles can be characterized at subdiffraction-limited resolution, and viral infections can be quantified in single cells over an entire cycle of replication. The implication of this development is that MTRIP labeling of viral RNA during virus assembly has the potential to become a general methodology for the labeling and study of many important RNA viruses. PMID:24351207

  3. Treatment of human immunodeficiency virus type 1 (HIV-1)-infected cells with combinations of HIV-1-specific inhibitors results in a different resistance pattern than does treatment with single-drug therapy.

    PubMed Central

    Balzarini, J; Karlsson, A; Pérez-Pérez, M J; Camarasa, M J; Tarpley, W G; De Clercq, E

    1993-01-01

    Human immunodeficiency virus type 1 (HIV-1)-infected CEM cells were treated by the HIV-1-specific inhibitors bis-heteroarylpiperazine (BHAP), 4,5,6,7-tetrahydro-5-methylimidazo[4,5,1-jk][1,4]benzodiazepin-2(1 H)-on e (TIBO) R82913, nevirapine, and the N3-methylthymine derivative of [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro- 5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide) (TSAO-m3T), as single agents or in combination, at escalating concentrations. When used individually, the compounds led to the emergence of drug-resistant virus strains within two to five subcultivations. The resulting strains were designated HIV-1/BHAP, HIV-1/TIBO, HIV-1/Nev, and HIV-1/TSAO-m3T, respectively. The mutant viruses showed the following amino acid substitutions in their reverse transcriptase (RT): Leu-100-->Ile for HIV-1/BHAP; Lys-103-->Asn for HIV-1/TIBO; Val-106-->Ala for HIV-1/Nev; and Glu-138-->Lys for HIV-1/TSAO-m3T. Both the Tyr-181-->Cys and Val-106-->Ala mutations were found in another mutant emerging following treatment with nevirapine at escalating concentrations. The BHAP-resistant virus remained fully sensitive to the inhibitory effects of nevirapine and TSAO-m3T, whereas the TSAO-m3T-resistant virus remained fully sensitive to the inhibitory effects of nevirapine and BHAP. When different pairs of nonnucleoside RT inhibitors (i.e., BHAP plus TSAO-m3T, nevirapine plus TSAO-m3T, TIBO plus TSAO-m3T, nevirapine plus TIBO, and BHAP plus nevirapine) were used, resistant virus emerged as fast as with single-drug therapy. In all cases the Tyr-181-->Cys mutation appeared; the virus showed markedly reduced sensitivity to all HIV-1-specific inhibitors but retained sensitivity to 2',3'-dideoxynucleoside analogs such as zidovudine, ddC, and ddI. Our findings argue against simultaneous combination of two different nonnucleoside RT inhibitors that are unable to inhibit HIV-1 mutant strains containing the Tyr-181-->Cys mutation when administered as single

  4. Use of Vaccinia Virus Smallpox Vaccine in Laboratory and Health Care Personnel at Risk for Occupational Exposure to Orthopoxviruses - Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2015.

    PubMed

    Petersen, Brett W; Harms, Tiara J; Reynolds, Mary G; Harrison, Lee H

    2016-03-18

    On June 25, 2015, the Advisory Committee on Immunization Practices (ACIP) recommended routine vaccination with live smallpox (vaccinia) vaccine (ACAM2000) for laboratory personnel who directly handle 1) cultures or 2) animals contaminated or infected with replication-competent vaccinia virus, recombinant vaccinia viruses derived from replication-competent vaccinia strains (i.e., those that are capable of causing clinical infection and producing infectious virus in humans), or other orthopoxviruses that infect humans (e.g., monkeypox, cowpox, and variola) (recommendation category: A, evidence type 2 [Box]). Health care personnel (e.g., physicians and nurses) who currently treat or anticipate treating patients with vaccinia virus infections and whose contact with replication-competent vaccinia viruses is limited to contaminated materials (e.g., dressings) and persons administering ACAM2000 smallpox vaccine who adhere to appropriate infection prevention measures can be offered vaccination with ACAM2000 (recommendation category: B, evidence type 2 [Box]). These revised recommendations update the previous ACIP recommendations for nonemergency use of vaccinia virus smallpox vaccine for laboratory and health care personnel at risk for occupational exposure to orthopoxviruses (1). Since 2001, when the previous ACIP recommendations were developed, ACAM2000 has replaced Dryvax as the only smallpox vaccine licensed by the U.S. Food and Drug Administration (FDA) and available for use in the United States (2). These recommendations contain information on ACAM2000 and its use in laboratory and health care personnel at risk for occupational exposure to orthopoxviruses. PMID:26985679

  5. Rapid Detection of Hepatitis B Virus Variants Associated with Lamivudine and Adefovir Resistance by Multiplex Ligation-Dependent Probe Amplification Combined with Real-Time PCR

    PubMed Central

    Jia, Shuangrong; Wang, Feng; Li, Fake; Chang, Kai; Yang, Shaojun; Zhang, Kejun; Jiang, Wenbin; Shang, Ya

    2014-01-01

    Drug-resistant mutations of hepatitis B virus (HBV) are the major obstacles to successful therapy for chronic hepatitis B infection. Although there are many methods for detecting the antiviral drug-resistant mutations of HBV, their applications are restricted because of their shortcomings, such as low sensitivity, the time required, and the high cost. For this study, a multiplex ligation-dependent probe real-time PCR (MLP-RT-PCR) method was developed to simultaneously detect lamivudine (LAM)- and adefovir (ADV)-resistant HBV mutants (those with the mutations rtM204V/I, rtA181V/T, and rtN236T). The new method combined the high-throughput nature of multiplex ligation-dependent probe amplification (MLPA) with the rapid and sensitive detection of real-time PCR. In this report, MLP-RT-PCR was evaluated by detecting drug-resistant mutants in 116 patients with chronic hepatitis B infection. By MLP-RT-PCR analysis, LAM-resistant mutations were detected in 41 patients (35.3%), ADV-resistant mutations were detected in 17 patients (14.7%), and LAM- and-ADV-resistant mutations were detected in 5 patients (4.3%). Based on the results of MLP-RT-PCR, the mutations rtM204V, rtM204I, rtA181T, rtA181V, and rtN236T were 95.7% (111/116 patients), 98.3% (114/116 patients), 99.1% (115/116 patients), 98.3% (114/116 patients), and 99.1% (115/116 patients) concordant, respectively, with those of direct sequencing. The MLP-RT-PCR assay was more sensitive than direct sequencing for detecting mutations with low frequencies. Four samples containing the low-frequency (<10%) mutants were identified by MLP-RT-PCR and further confirmed by clonal sequencing. MLP-RT-PCR is a rapid and sensitive method that enables the detection of multidrug-resistant HBV mutations in clinical practice. PMID:24478474

  6. Factors Associated With Cancer Incidence and With All-Cause Mortality After Cancer Diagnosis Among Human Immunodeficiency Virus-Infected Persons During the Combination Antiretroviral Therapy Era

    PubMed Central

    Patel, Pragna; Armon, Carl; Chmiel, Joan S.; Brooks, John T.; Buchacz, Kate; Wood, Kathy; Novak, Richard M.

    2014-01-01

    Background.  Little is known about survival and factors associated with mortality after cancer diagnosis among persons infected with human immunodeficiency virus (HIV). Methods.  Using Poisson regression, we analyzed incidence rates of acquired immune deficiency syndrome (AIDS)-defining cancers (ADC), non-AIDS-defining infection-related cancers (NADCI), and non-AIDS-defining noninfection-related cancers (NADCNI) among HIV Outpatient Study participants seen at least twice from 1996–2010. All-cause mortality within each cancer category and by calendar period (1996–2000, 2001–2005, 2006–2010) were examined using Kaplan-Meier survival methods and log-rank tests. We identified risk factors for all-cause mortality using multivariable Cox proportional hazard models. Results.  Among 8350 patients, 627 were diagnosed with 664 cancers. Over the 3 time periods, the age- and sex-adjusted incidence rates for ADC and NADCNI declined (both P < .001) and for NADCI did not change (P = .13). Five-year survival differed by cancer category (ADC, 54.5%; NADCI, 65.8%; NADCNI, 65.9%; P = .018), as did median CD4 cell count (107, 241, and 420 cells/mm3; P < .001) and median log10 viral load (4.1, 2.3, and 2.0 copies/mL; P < .001) at cancer diagnosis, respectively. Factors independently associated with increased mortality for ADC were lower nadir CD4 cell count (hazard ratio [HR] = 3.02; 95% confidence interval [CI], 1.39–6.59) and detectable viral load (≥400 copies/mL; HR = 1.72 [95% CI, 1.01–2.94]) and for NADCNI, age (HR = 1.50 [95% CI, 1.16–1.94]), non-Hispanic black race (HR = 1.92 [95% CI, 1.15–3.24]), lower nadir CD4 cell count (HR = 1.77 [95% CI, 1.07–2.94]), detectable viral load (HR = 1.96 [95% CI, 1.18–3.24]), and current or prior tobacco use (HR = 3.18 [95% CI, 1.77–5.74]). Conclusions.  Since 1996, ADC and NADCNI incidence rates have declined. Survival after cancer diagnosis has increased with concomitant increases in CD4 cell count in recent

  7. Effect of Suberoylanilide Hydroxamic Acid (SAHA) Administration on the Residual Virus Pool in a Model of Combination Antiretroviral Therapy-Mediated Suppression in SIVmac239-Infected Indian Rhesus Macaques

    PubMed Central

    Del Prete, Gregory Q.; Shoemaker, Rebecca; Oswald, Kelli; Lara, Abigail; Trubey, Charles M.; Fast, Randy; Schneider, Douglas K.; Kiser, Rebecca; Coalter, Vicky; Wiles, Adam; Wiles, Rodney; Freemire, Brandi; Keele, Brandon F.; Estes, Jacob D.; Quiñones, Octavio A.; Smedley, Jeremy; Macallister, Rhonda; Sanchez, Rosa I.; Wai, John S.; Tan, Christopher M.; Alvord, W. Gregory; Hazuda, Daria J.; Piatak, Michael

    2014-01-01

    Nonhuman primate models are needed for evaluations of proposed strategies targeting residual virus that persists in HIV-1-infected individuals receiving suppressive combination antiretroviral therapy (cART). However, relevant nonhuman primate (NHP) models of cART-mediated suppression have proven challenging to develop. We used a novel three-class, six-drug cART regimen to achieve durable 4.0- to 5.5-log reductions in plasma viremia levels and declines in cell-associated viral RNA and DNA in blood and tissues of simian immunodeficiency virus SIVmac239-infected Indian-origin rhesus macaques, then evaluated the impact of treatment with the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA; Vorinostat) on the residual virus pool. Ex vivo SAHA treatment of CD4+ T cells obtained from cART-suppressed animals increased histone acetylation and viral RNA levels in culture supernatants. cART-suppressed animals each received 84 total doses of oral SAHA. We observed SAHA dose-dependent increases in acetylated histones with evidence for sustained modulation as well as refractoriness following prolonged administration. In vivo virologic activity was demonstrated based on the ratio of viral RNA to viral DNA in peripheral blood mononuclear cells, a presumptive measure of viral transcription, which significantly increased in SAHA-treated animals. However, residual virus was readily detected at the end of treatment, suggesting that SAHA alone may be insufficient for viral eradication in the setting of suppressive cART. The effects observed were similar to emerging data for repeat-dose SAHA treatment of HIV-infected individuals on cART, demonstrating the feasibility, utility, and relevance of NHP models of cART-mediated suppression for in vivo assessments of AIDS virus functional cure/eradication approaches. PMID:25182644

  8. ECHO virus

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to ...

  9. Detection of influenza virus by a biosensor based on the method combining electrochemiluminescence on binary SAMs modified Au electrode with an immunoliposome encapsulating Ru (II) complex.

    PubMed

    Katayama, Yumi; Ohgi, Takayuki; Mitoma, Yoshiharu; Hifumi, Emi; Egashira, Naoyoshi

    2016-09-01

    Recently, point of care testing (POCT) used for diagnosis of influenza infection has a problem showing false negative diagnosis because of the low sensitivity. We would like to report detection of influenza virus A (H1N1) by an immunosensor based on electrochemiluminescence (ECL) that uses an immunoliposome encapsulating tris(2,2'-bipyridyl)ruthenium(II) complex. By using the sensor, we could detect the virus that competed with hemagglutinin (HA) peptide immobilized on self-assembled monolayers (SAMs) in immunoreaction of the antibody bound on the surface of liposome. The HA peptide was 19 mer (TGLRNGITNKVNSVIEKAA). We demonstrated great improvement of sensitivity and accuracy by introducing binary SAMs instead of mono SAMs. The binary SAMs was prepared from 3,3'-dithiodipropionic acid and 1-hexanethiol. Use of the binary SAMs enabled to increase the SAMs coverage on Au electrode; the fact was confirmed by observation of the cathodic desorption currents. By using such an electrode, first the detection method of BSA was optimized to lower ECL background signal. Then we applied the method to the detection of influenza virus. We could successfully detect the virus with higher sensitivity compared with that by POCT and ELISA. The detection range was from a concentration of 2.7 × 10(2) to 2.7 × 10(3) PFU/mL. PMID:27173395

  10. Single and combination diagnostic test efficiency and cost analysis for detection and isolation of avian influenza virus from wild bird cloacal swabs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective laboratory methods for identifying avian influenza virus (AIV) in wild bird populations are crucial to understanding the ecology of this pathogen. The gold standard method has been AIV isolation in chorioallantoic sac (CAS) of specific-pathogen-free (SPF) embryonating chicken eggs (ECE), ...

  11. Single-Dose Pharmacokinetics and Safety of Abacavir (1592U89), Zidovudine, and Lamivudine Administered Alone and in Combination in Adults with Human Immunodeficiency Virus Infection

    PubMed Central

    Wang, Laurene H.; Chittick, Gregory E.; McDowell, James A.

    1999-01-01

    Abacavir (1592U89), a nucleoside reverse transcriptase inhibitor with in vitro activity against human immunodeficiency virus type-1 (HIV-1), has been evaluated for efficacy and safety in combination regimens with other nucleoside analogs, including zidovudine (ZDV) and lamivudine (3TC). To evaluate the potential pharmacokinetic interactions between these agents, 15 HIV-1-infected adults with a median CD4+ cell count of 347 cells/mm3 (range, 238 to 570 cells/mm3) were enrolled in a randomized, seven-period crossover study. The pharmacokinetics and safety of single doses of abacavir (600 mg), ZDV (300 mg), and 3TC (150 mg) were evaluated when each drug was given alone or when any two or three drugs were given concurrently. The concentrations of all drugs in plasma and the concentrations of ZDV and its 5′-glucuronide metabolite, GZDV, in urine were measured for up to 24 h postdosing, and pharmacokinetic parameter values were calculated by noncompartmental methods. The maximum drug concentration (Cmax), the area under the concentration-time curve from time zero to infinity (AUC0–∞), time to Cmax (Tmax), and apparent elimination half-life (t1/2) of abacavir in plasma were unaffected by coadministration with ZDV and/or 3TC. Coadministration of abacavir with ZDV (with or without 3TC) decreased the mean Cmax of ZDV by approximately 20% (from 1.5 to 1.2 μg/ml), delayed the median Tmax for ZDV by 0.5 h, increased the mean AUC0–∞ for GZDV by up to 40% (from 11.8 to 16.5 μg · h/ml), and delayed the median Tmax for GZDV by approximately 0.5 h. Coadministration of abacavir with 3TC (with or without ZDV) decreased the mean AUC0–∞ for 3TC by approximately 15% (from 5.1 to 4.3 μg · h/ml), decreased the mean Cmax by approximately 35% (from 1.4 to 0.9 μg/ml), and delayed the median Tmax by approximately 1 h. While these changes were statistically significant, they are similar to the effect of food intake (for ZDV) or affect an inactive metabolite (for GZDV) or are

  12. Combination Emtricitabine and Tenofovir Disoproxil Fumarate Prevents Vaginal Simian/Human Immunodeficiency Virus Infection in Macaques Harboring Chlamydia trachomatis and Trichomonas vaginalis.

    PubMed

    Radzio, Jessica; Henning, Tara; Jenkins, Leecresia; Ellis, Shanon; Farshy, Carol; Phillips, Christi; Holder, Angela; Kuklenyik, Susan; Dinh, Chuong; Hanson, Debra; McNicholl, Janet; Heneine, Walid; Papp, John; Kersh, Ellen N; García-Lerma, J Gerardo

    2016-05-15

    Genital inflammation associated with sexually transmitted infections increases susceptibility to human immunodeficiency virus (HIV), but it is unclear whether the increased risk can reduce the efficacy of pre-exposure prophylaxis (PrEP). We investigated whether coinfection of macaques withChlamydia trachomatisandTrichomonas vaginalisdecreases the prophylactic efficacy of oral emtricitabine (FTC)/tenofovir disoproxil fumarate (TDF). Macaques were exposed to simian/human immunodeficiency virus (SHIV) vaginally each week for up to 16 weeks and received placebo or FTC/TDF pericoitally. All animals in the placebo group were infected with SHIV, while 4 of 6 PrEP recipients remained uninfected (P= .03). Oral FTC/TDF maintains efficacy in a macaque model of sexually transmitted coinfection, although the infection of 2 macaques signals a modest loss of PrEP activity. PMID:26743846

  13. Robust Protection against Highly Virulent Foot-and-Mouth Disease Virus in Swine by Combination Treatment with Recombinant Adenoviruses Expressing Porcine Alpha and Gamma Interferons and Multiple Small Interfering RNAs

    PubMed Central

    Park, Jong-Hyeon; Lee, Kwang-Nyeong; Kim, Se-Kyung; You, Su-Hwa; Kim, Taeseong; Tark, Dongseob; Lee, Hyang-Sim; Seo, Min-Goo; Kim, Byounghan

    2015-01-01

    ABSTRACT Because the currently available vaccines against foot-and-mouth disease (FMD) provide no protection until 4 to 7 days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is the application of antiviral agents. Combination treatment strategies have been used to enhance the efficacy of antiviral agents, and such strategies may be advantageous in overcoming viral mechanisms of resistance to antiviral treatments. We have developed recombinant adenoviruses (Ads) for the simultaneous expression of porcine alpha and gamma interferons (Ad-porcine IFN-αγ) as well as 3 small interfering RNAs (Ad-3siRNA) targeting FMDV mRNAs encoding nonstructural proteins. The antiviral effects of Ad-porcine IFN-αγ and Ad-3siRNA expression were tested in combination in porcine cells, suckling mice, and swine. We observed enhanced antiviral effects in porcine cells and mice as well as robust protection against the highly pathogenic strain O/Andong/SKR/2010 and increased expression of cytokines in swine following combination treatment. In addition, we showed that combination treatment was effective against all serotypes of FMDV. Therefore, we suggest that the combined treatment with Ad-porcine IFN-αγ and Ad-3siRNA may offer fast-acting antiviral protection and be used with a vaccine during the period that the vaccine does not provide protection against FMD. IMPORTANCE The use of current foot-and-mouth disease (FMD) vaccines to induce rapid protection provides limited effectiveness because the protection does not become effective until a minimum of 4 days after vaccination. Therefore, during outbreaks antiviral agents remain the only available treatment to confer rapid protection and reduce the spread of foot-and-mouth disease virus (FMDV) in livestock until vaccine-induced protective immunity can become effective. Interferons (IFNs) and small interfering RNAs (siRNAs) have been reported to be effective antiviral agents against

  14. Intranasal immunization of mice with a bovine respiratory syncytial virus vaccine induces superior immunity and protection compared to those by subcutaneous delivery or combinations of intranasal and subcutaneous prime-boost strategies.

    PubMed

    Mapletoft, John W; Latimer, Laura; Babiuk, Lorne A; van Drunen Littel-van den Hurk, Sylvia

    2010-01-01

    Bovine respiratory syncytial virus (BRSV) infects cells of the respiratory mucosa, so it is desirable to develop a vaccination strategy that induces mucosal immunity. To achieve this, various delivery routes were compared for formalin-inactivated (FI) BRSV formulated with CpG oligodeoxynucleotide (ODN) and polyphosphazene (PP). Intranasal delivery of the FI-BRSV formulation was superior to subcutaneous delivery in terms of antibody, cell-mediated, and mucosal immune responses, as well as reduction in virus replication after BRSV challenge. Although intranasal delivery of FI-BRSV also induced higher serum and lung antibody titers and gamma interferon (IFN-gamma) production in the lungs than intranasal-subcutaneous and/or subcutaneous-intranasal prime-boost strategies, no significant differences were observed in cell-mediated immune responses or virus replication in the lungs of challenged mice. Interleukin 5 (IL-5), eotaxin, and eosinophilia were enhanced after BRSV challenge in the lungs of subcutaneously immunized mice compared to unvaccinated mice, but not in the lungs of mice immunized intranasally or through combinations of the intranasal and subcutaneous routes. These results suggest that two intranasal immunizations with FI-BRSV formulated with CpG ODN and PP are effective and safe as an approach to induce systemic and mucosal responses, as well to reduce virus replication after BRSV challenge. Furthermore, intranasal-subcutaneous and subcutaneous-intranasal prime-boost strategies were also safe and almost as efficacious. In addition to the implications for the development of a protective BRSV vaccine for cattle, formulation with CpG ODN and PP could also prove important in the development of a mucosal vaccine that induces protective immunity against human RSV. PMID:19864487

  15. SR-2P Vaginal Microbicide Gel Provides Protection against Herpes Simplex Virus 2 When Administered as a Combined Prophylactic and Postexposure Therapeutic

    PubMed Central

    Fields, Scott A.; Bhatia, Gaurav; Fong, Julie M.; Liu, Mingtao

    2015-01-01

    Previously, we demonstrated that a single prophylactic dose of SR-2P, a novel dual-component microbicide gel comprising acyclovir and tenofovir, led to a modest increase in mouse survival following a lethal challenge of herpes simplex virus 2 (HSV-2). Here, we show that a dose of SR-2P administered 24 h prior to infection provides some protection against the virus, but to a lesser degree than SR-2P administered either once a day for 2 days or 1 h prior to infection. None of the prophylactic doses blocked infection by the virus, and all resulted in 80 to 100% lethality. However, given that a prophylactic dose still provided a significant reduction in overall clinical score, reduced rate of body weight loss, and increased median survival of the mice, we examined whether a repetitive dose regimen (postinfection) in addition to the prophylactic dose could prevent death and reduce the levels of virus in mice. Nearly all (9 of 10 in each group) of the mice that received SR-2P for 2 days prior to infection or that received SR-2P 1 h prior to infection and were administered SR-2P once a day for 10 days after infection showed no clinical symptoms of infection and no viral loads in vaginal swabs and survived for 28 days postinfection. Conversely, mice receiving no treatment or an identical vehicle treatment demonstrated advanced clinical signs and did not survive past day 9 postinfection. We conclude that SR-2P is an effective anti-HSV-2 agent in mice. PMID:26149989

  16. Isolation and characterization of a Chinese hamster ovary mutant cell line with altered sensitivity to vaccinia virus killing.

    PubMed Central

    Bair, C H; Chung, C S; Vasilevskaya, I A; Chang, W

    1996-01-01

    The Chinese hamster ovary (CHO) cell line is nonpermissive for vaccinia virus, and translation of viral intermediate genes was reported to be blocked (A. Ramsey-Ewing and B. Moss, Virology 206:984-993, 1995). However, cells are readily killed by vaccinia virus. A vaccinia virus-resistant CHO mutant, VV5-4, was isolated by retroviral insertional mutagenesis. Parental CHO cells, upon infection with vaccinia virus, die within 2 to 3 days, whereas VV5-4 cells preferentially survive this cytotoxic effect. The survival phenotype of VV5-4 is partial and in inverse correlation with the multiplicity of infection used. In addition, viral infection fails to shut off host protein synthesis in VV5-4. VV5-4 was used to study the relationship of progression of the virus life cycle and cell fate. We found that in parental CHO cells, vaccinia virus proceeds through expression of viral early genes, uncoating, viral DNA replication, and expression of intermediate and late promoters. In contrast, we detect only expression of early genes and uncoating in VV5-4 cells, whereas viral DNA replication appears to be blocked. Consistent with the cascade regulation model of viral gene expression, we detect little intermediate- and late-gene expression in VV5-4 cells. Since vaccinia virus is known to be cytolytic, isolation of this mutant therefore demonstrates a new mode of the cellular microenvironment that affects progression of the virus life cycle, resulting in a different cell fate. This process appears to be mediated by a general mechanism, since VV5-4 is also resistant to Shope fibroma virus and myxoma virus killing. On the other hand, VV5-4 remains sensitive to cowpox virus killing. To examine the mechanism of VV5-4 survival, we investigated whether apoptosis is involved. DNA laddering and staining of apoptotic nuclei with Hoechst 33258 were observed in both CHO and VV5-4 cells infected with vaccinia virus. We concluded that the cellular pathway, which blocks viral DNA replication and

  17. Foodborne viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Testing for human pathogenic viruses in foods represents a formidable task requiring the extraction, concentration, and assay of a host of viruses from a wide range of food matrices. The enteric viruses, particularly genogroup I and II (GI and GII) noroviruses and hepatitis A virus, are the princip...

  18. Inventing Viruses.

    PubMed

    Summers, William C

    2014-11-01

    In the nineteenth century, "virus" commonly meant an agent (usually unknown) that caused disease in inoculation experiments. By the 1890s, however, some disease-causing agents were found to pass through filters that retained the common bacteria. Such an agent was called "filterable virus," the best known being the virus that caused tobacco mosaic disease. By the 1920s there were many examples of filterable viruses, but no clear understanding of their nature. However, by the 1930s, the term "filterable virus" was being abandoned in favor of simply "virus," meaning an agent other than bacteria. Visualization of viruses by the electron microscope in the late 1930s finally settled their particulate nature. This article describes the ever-changing concept of "virus" and how virologists talked about viruses. These changes reflected their invention and reinvention of the concept of a virus as it was revised in light of new knowledge, new scientific values and interests, and new hegemonic technologies. PMID:26958713

  19. [Hepatitis B virus reactivation after cessation of prophylactic lamivudine therapy in B-cell lymphoma patients treated with rituximab combined CHOP therapy].

    PubMed

    Mimura, Naoya; Tsujimura, Hideki; Ise, Mikiko; Sakai, Chikara; Kojima, Hiroshige; Fukai, Kenichi; Yokosuka, Osamu; Takagi, Toshiyuki; Kumagai, Kyoya

    2009-12-01

    Here we report three cases of hepatitis B virus (HBV) reactivation after cessation of preemptive lamivudine therapy in B-cell lymphoma patients treated with rituximab plus CHOP (R-CHOP). Two patients received eight cycles of R-CHOP, and one received two cycles of R-CHOP followed by two courses of rituximab. As all the patients were HBV surface antigen (HBsAg) positive, lamivudine was administered simultaneously with R-CHOP to prevent virus reactivation. All the patients developed hepatitis due to HBV reactivation 6, 8 and 13 months after completion of chemotherapy, and 4, 2 and 2 months after cessation of lamivudine, respectively. They were treated with either lamivudine or entecavir and all achieved full recovery. When HBV carriers undergo immunosuppressive anticancer treatment, prophylactic antiviral therapy is well recognized as effective. However, the optimal method of prophylaxis has not yet been established. Since the introduction of rituximab, new problems such as delayed HBV reactivation from HBsAg positive patients and de novo hepatitis B from HBsAg negative patients have emerged. Guidelines for prophylactic antiviral therapy in the era of rituximab need to be established. PMID:20068280

  20. The Combination of Grazoprevir, a Hepatitis C Virus (HCV) NS3/4A Protease Inhibitor, and Elbasvir, an HCV NS5A Inhibitor, Demonstrates a High Genetic Barrier to Resistance in HCV Genotype 1a Replicons.

    PubMed

    Lahser, Frederick C; Bystol, Karin; Curry, Stephanie; McMonagle, Patricia; Xia, Ellen; Ingravallo, Paul; Chase, Robert; Liu, Rong; Black, Todd; Hazuda, Daria; Howe, Anita Y M; Asante-Appiah, Ernest

    2016-05-01

    The selection of resistance-associated variants (RAVs) against single agents administered to patients chronically infected with hepatitis C virus (HCV) necessitates that direct-acting antiviral agents (DAAs) targeting multiple viral proteins be developed to overcome failure resulting from emergence of resistance. The combination of grazoprevir (formerly MK-5172), an NS3/4A protease inhibitor, and elbasvir (formerly MK-8742), an NS5A inhibitor, was therefore studied in genotype 1a (GT1a) replicon cells. Both compounds were independently highly potent in GT1a wild-type replicon cells, with 90% effective concentration (EC90) values of 0.9 nM and 0.006 nM for grazoprevir and elbasvir, respectively. No cross-resistance was observed when clinically relevant NS5A and NS3 RAVs were profiled against grazoprevir and elbasvir, respectively. Kinetic analyses of HCV RNA reduction over 14 days showed that grazoprevir and elbasvir inhibited prototypic NS5A Y93H and NS3 R155K RAVs, respectively, with kinetics comparable to those for the wild-type GT1a replicon. In combination, grazoprevir and elbasvir interacted additively in GT1a replicon cells. Colony formation assays with a 10-fold multiple of the EC90 values of the grazoprevir-elbasvir inhibitor combination suppressed emergence of resistant colonies, compared to a 100-fold multiple for the independent agents. The selected resistant colonies with the combination harbored RAVs that required two or more nucleotide changes in the codons. Mutations in the cognate gene caused greater potency losses for elbasvir than for grazoprevir. Replicons bearing RAVs identified from resistant colonies showed reduced fitness for several cell lines and may contribute to the activity of the combination. These studies demonstrate that the combination of grazoprevir and elbasvir exerts a potent effect on HCV RNA replication and presents a high genetic barrier to resistance. The combination of grazoprevir and elbasvir is currently approved for

  1. Evaluation of Drug-Drug Interactions between Direct-Acting Anti-Hepatitis C Virus Combination Regimens and the HIV-1 Antiretroviral Agents Raltegravir, Tenofovir, Emtricitabine, Efavirenz, and Rilpivirine.

    PubMed

    Khatri, Amit; Dutta, Sandeep; Dunbar, Martin; Podsadecki, Thomas; Trinh, Roger; Awni, Walid; Menon, Rajeev

    2016-05-01

    The three direct-acting antiviral agent (3D) regimen is a novel combination of direct-acting antiviral agents (DAAs) that has proven effective for the treatment of hepatitis C virus (HCV) infection. Given the potential for coadministration in patients with human immunodeficiency virus infection, possible drug interactions with antiretroviral drugs must be carefully considered. Four phase 1, multiple-dose pharmacokinetic studies were conducted in healthy volunteers (n = 66). The 3D regimen of 150/100 mg daily paritaprevir/ritonavir, 25 mg daily ombitasvir, and 400 mg twice-daily dasabuvir was administered alone or in combination with 200 mg daily of emtricitabine and 300 mg daily of tenofovir disoproxil fumarate (tenofovir DF), 25 mg daily of rilpivirine, or 400 mg of raltegravir twice daily. A 2-DAA regimen of 150/100 mg daily paritaprevir/ritonavir and 400 mg of dasabuvir twice daily was also studied in combination with efavirenz/emtricitabine/tenofovir DF at 600/200/300 mg daily, respectively (Atripla; Bristol-Myers Squibb). Pharmacokinetic parameters were determined from plasma drug concentrations. No clinically significant drug interactions were observed (≤32% change in exposure) between the 3D regimen and that of emtricitabine plus tenofovir DF. Raltegravir exposure was increased up to 134% when the drug was coadministered with the 3D regimen. Although coadministration with rilpivirine was well tolerated in healthy volunteers, observed elevations in rilpivirine exposures may increase the potential for adverse drug reactions. Concomitant use of the 2-DAA regimen and efavirenz/emtricitabine/tenofovir DF was discontinued owing to poor tolerability and adverse events. No dose adjustment is required during coadministration of raltegravir, tenofovir DF, or emtricitabine with the 3D regimen. Rilpivirine is not recommended and efavirenz is contraindicated for coadministration with the 3D regimen. PMID:26953200

  2. Swine Influenza Virus: Emerging Understandings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: In March-April 2009, a novel pandemic H1N1 emerged in the human population in North America [1]. The gene constellation of the emerging virus was demonstrated to be a combination of genes from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before...

  3. Incidence of Wheat streak mosaic virus, Triticum mosaic virus, and Wheat mosaic virus in wheat curl mites recovered from maturing winter wheat spikes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat curl mites (WCM; Aceria tosichella) transmit Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus (WMoV) to wheat (Triticum aestivum L.) in the Great Plains region of the United States. These viruses can be detected in single, double, or triple combinations i...

  4. Studies of inactivation, retardation and accumulation of viruses in porous media by a combination of dye labeled and native bacteriophage probes.

    PubMed

    Gitis, Vitaly; Dlugy, Christina; Gun, Jenny; Lev, Ovadia

    2011-06-01

    Penetration of viruses through soils is governed by the processes of transport, reversible adsorption, accumulation and inactivation. Until now, it was difficult to decouple the latter two processes and accurately predict viral fate. The present work describes a novel method-tracer studies with a mixture of native and fluorescent-dyed bacteriophages-that facilitates parallel quantification of the two processes. When the native phages are experiencing both accumulation and inactivation, the labeled ones are inactivated already and therefore can only be accumulated. Thus the effect of inactivation is applicable to native bacteriophages only and depletion of phage concentration due to inactivation can be elucidated from a total phage balance. The novel approach is exemplified by batch and column studies of the effects of temperature, pH, and saturation, on inactivation of MS2 bacteriophage. A three-parameter model accounting for inactivation, reversible adsorption (i.e., retardation), and accumulation is implemented. PMID:21429617

  5. A versatile in vitro ELISA test for quantification and quality testing of infectious, inactivated and formulated rabies virus used in veterinary monovalent or combination vaccine.

    PubMed

    Sigoillot-Claude, Cécile; Battaglio, Myriam; Fiorucci, Marc; Gillet, Delphine; Vimort, Anne-Sophie; Giraud, Yves; Laurent, Sonia; Vaganay, Alain; Poulet, Hervé

    2015-07-31

    Regulatory potency test for rabies vaccines requires mice vaccination followed by challenge with a live virus via intracerebral route. An alternative in vitro test, consistent with the "3R's" (Reduce, Replace, Refine) was designed to quantify active glycoprotein G using seroneutralizing monoclonal antibodies. This versatile ELISA targets well conformed neutralizing epitopes. Therefore, it quantifies only the trimeric pre-fusion form of glycoprotein G known to elicits the production of viral neutralizing antibodies. The ELISA makes it possible to quantify the rabies antigen during all steps of the product cycle (i.e. viral cultivation, downstream process, formulation and product stability in the presence of aluminum gel or other vaccine valence). Moreover, the batch-to-batch consistency of our active ingredients and formulated products could be demonstrated. PMID:26144898

  6. Zika Virus

    MedlinePlus

    ... Search The CDC Cancel Submit Search The CDC Zika Virus Note: Javascript is disabled or is not supported ... Areas with Zika Countries and territories with active Zika virus transmission... Mosquito Control Prevent mosquito bites, integrated mosquito ...

  7. Zika Virus

    MedlinePlus

    Zika is a virus that is spread by mosquitoes. A pregnant mother can pass it to her ... through blood transfusions. There have been outbreaks of Zika virus in Africa, Southeast Asia, the Pacific Islands, ...

  8. Zika Virus

    MedlinePlus

    Zika is a virus that is spread mostly by mosquitoes. A pregnant mother can pass it to ... through blood transfusions. There have been outbreaks of Zika virus in the United States, Africa, Southeast Asia, ...

  9. Chikungunya Virus

    MedlinePlus

    ... traveling to countries with chikungunya virus, use insect repellent, wear long sleeves and pants, and stay in ... Chikungunya Prevention is key! Prevent Infection. Use mosquito repellent. Chikungunya Virus Distribution Chikungunya in the U.S. What's ...

  10. Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses and cells (bacteria). Ib. Gel antibodies against proteins (hemoglobins).

    PubMed

    Takátsy, Anikó; Végvári, Akos; Hjertén, Stellan; Kilár, Ferenc

    2007-07-01

    Using the molecular imprinting approach, we have shown that polyacrylamide-based artificial antibodies against human and bovine hemoglobin have a very high selectivity, as revealed by the free-zone electrophoresis in a revolving capillary. By the same technique we have previously synthesized gel antibodies not only against proteins but also against viruses and bacteria. The synthesis is thus universal, i.e., it has the great advantage of not requiring a modification - or only a slight one - for each particular antigen. The combination synthesis of artificial gel antibodies and electrophoretic analysis reveals small discrepancies in shape and chemical composition not only of proteins, as shown here and in paper Ia, but also of viruses and bacteria, to be illustrated in papers II and III in this series. Upon rehydration, the freeze-dried gel antibodies, selective for human hemoglobin, regain their selectivity. The gel antibodies can repeatedly be used following the removal of the antigen (protein in this study) from the complex gel antibody/antigen by an SDS washing or an enzymatic degradation. PMID:17476715

  11. Genetic characterization and phylogenetic analysis of host-range genes of Camelpox virus isolates from India.

    PubMed

    Bera, B C; Barua, S; Shanmugasundaram, K; Anand, T; Riyesh, T; Vaid, R K; Virmani, N; Kundu, S; Yadav, N K; Malik, P; Singh, R K

    2015-09-01

    Camelpox virus (CMLV), a close variant of variola virus (VARV) infects camels worldwide. The zoonotic infections reported from India signify the need to study the host-range genes-responsible for host tropism. We report sequence and phylogenetic analysis of five host-range genes: cytokine response modifier B (crmB), chemokine binding protein (ckbp), viral schlafen-like (v-slfn), myxomavirus T4-like (M-T4-like) and b5r of CMLVs isolated from outbreaks in India. Comparative analysis revealed that these genes are conserved among CMLVs and shared 94.5-100 % identity at both nucleotide (nt) and amino acid (aa) levels. All genes showed identity (59.3-98.4 %) with cowpox virus (CPXV) while three genes-crmB, ckbp and b5r showed similarity (92-96.5 %) with VARVs at both nt and aa levels. Interestingly, three consecutive serine residue insertions were observed in CKBP protein of CMLV-Delhi09 isolate which was similar to CPXV-BR and VACVs, besides five point mutations (K53Q, N67I, F84S, A127T and E182G) were also similar to zoonotic OPXVs. Further, few inconsistent point mutation(s) were also observed in other gene(s) among Indian CMLVs. These indicate that different strains of CMLVs are circulating in India and these mutations could play an important role in adaptation of CMLVs in humans. The phylogeny revealed clustering of all CMLVs together except CMLV-Delhi09 which grouped separately due to the presence of specific point mutations. However, the topology of the concatenated phylogeny showed close evolutionary relationship of CMLV with VARV and TATV followed by CPXV-RatGer09/1 from Germany. The availability of this genetic information will be useful in unveiling new strategies to control emerging zoonotic poxvirus infections. PMID:26396982

  12. Hepadna viruses

    SciTech Connect

    Robinson, W.; Koike, K.; Will, H.

    1987-01-01

    This book examines the molecular biology, disease pathogenesis, epidemiology, and clinical features of hepadna and other viruses with hepatic tropism and outlines future directions and approaches for their management. The volume's six sections provide a review of the various features, mechanisms, and functions of these viruses, ranging from hepadna virus replication and regulation of gene expression to the structure and function of hepadna-virus gene products.

  13. ECHO virus

    MedlinePlus

    Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to gastrointestinal infection and skin rashes. ... Echovirus is one of several families of viruses that affect the ... are common. In the United States, they are most common in ...

  14. In vitro antiviral activity of the novel, tyrosyl-based human immunodeficiency virus (HIV) type 1 protease inhibitor brecanavir (GW640385) in combination with other antiretrovirals and against a panel of protease inhibitor-resistant HIV.

    PubMed

    Hazen, Richard; Harvey, Robert; Ferris, Robert; Craig, Charles; Yates, Phillip; Griffin, Philip; Miller, John; Kaldor, Istvan; Ray, John; Samano, Vincente; Furfine, Eric; Spaltenstein, Andrew; Hale, Michael; Tung, Roger; St Clair, Marty; Hanlon, Mary; Boone, Lawrence

    2007-09-01

    Brecanavir, a novel tyrosyl-based arylsulfonamide, high-affinity, human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), has been evaluated for anti-HIV activity in several in vitro assays. Preclinical assessment of brecanavir indicated that this compound potently inhibited HIV-1 in cell culture assays with 50% effective concentrations (EC(50)s) of 0.2 to 0.53 nM and was equally active against HIV strains utilizing either the CXCR4 or CCR5 coreceptor, as was found with other PIs. The presence of up to 40% human serum decreased the anti-HIV-1 activity of brecanavir by 5.2-fold, but under these conditions the compound retained single-digit nanomolar EC(50)s. When brecanavir was tested in combination with nucleoside reverse transcriptase inhibitors, the antiviral activity of brecanavir was synergistic with the effects of stavudine and additive to the effects of zidovudine, tenofovir, dideoxycytidine, didanosine, adefovir, abacavir, lamivudine, and emtricitabine. Brecanavir was synergistic with the nonnucleoside reverse transcriptase inhibitor nevirapine or delavirdine and was additive to the effects of efavirenz. In combination with other PIs, brecanavir was additive to the activities of indinavir, lopinavir, nelfinavir, ritonavir, amprenavir, saquinavir, and atazanavir. Clinical HIV isolates from PI-experienced patients were evaluated for sensitivity to brecanavir and other PIs in a recombinant virus assay. Brecanavir had a <5-fold increase in EC(50)s against 80% of patient isolates tested and had a greater mean in vitro potency than amprenavir, indinavir, lopinavir, atazanavir, tipranavir, and darunavir. Brecanavir is by a substantial margin the most potent and broadly active antiviral agent among the PIs tested in vitro. PMID:17620375

  15. Combined Cytolytic Effects of a Vaccinia Virus Encoding a Single Chain Trimer of MHC-I with a Tax-Epitope and Tax-Specific CTLs on HTLV-I-Infected Cells in a Rat Model

    PubMed Central

    Nakamura, Takafumi; Kidokoro, Minoru; Zhang, Xianfeng; Shida, Hisatoshi

    2014-01-01

    Adult T cell leukemia (ATL) is a malignant lymphoproliferative disease caused by human T cell leukemia virus type I (HTLV-I). To develop an effective therapy against the disease, we have examined the oncolytic ability of an attenuated vaccinia virus (VV), LC16m8Δ (m8Δ), and an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL) line, 4O1/C8, against an HTLV-I-infected rat T cell line, FPM1. Our results demonstrated that m8Δ was able to replicate in and lyse tumorigenic FPM1 cells but was incompetent to injure 4O1/C8 cells, suggesting the preferential cytolytic activity toward tumor cells. To further enhance the cytolysis of HTLV-I-infected cells, we modified m8Δ and obtained m8Δ/RT1AlSCTax180L, which can express a single chain trimer (SCT) of rat major histocompatibility complex class I with a Tax-epitope. Combined treatment with m8Δ/RT1AlSCTax180L and 4O1/C8 increased the cytolysis of FPM1V.EFGFP/8R cells, a CTL-resistant subclone of FPM1, compared with that using 4O1/C8 and m8Δ presenting an unrelated peptide, suggesting that the activation of 4O1/C8 by m8Δ/RT1AlSCTax180L further enhanced the killing of the tumorigenic HTLV-I-infected cells. Our results indicate that combined therapy of oncolytic VVs with SCTs and HTLV-I-specific CTLs may be effective for eradication of HTLV-I-infected cells, which evade from CTL lysis and potentially develop ATL. PMID:24791004

  16. The combination of IκB kinase β inhibitor and everolimus modulates expression of interleukin‐10 in human T‐cell lymphotropic virus type‐1‐infected T cells

    PubMed Central

    Nishioka, Chie; Ikezoe, Takayuki; Yang, Jing; Udaka, Keiko; Yokoyama, Akihito

    2013-01-01

    Summary Adult T‐cell leukaemia‐lymphoma (ATLL) is an aggressive malignancy of CD4+ CD25+ T lymphocytes, characterized by a severely compromised immunosystem, in which the human T‐cell lymphotropic virus type 1 (HTLV‐1) has been recognized as the aetiological agent. This study found that an IκB kinase β (IKKβ) inhibitor Bay11‐7082 inactivated mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 and transcription factor nuclear factor‐κB in HTLV‐1‐infected T cells; this was significantly enhanced in the presence of the mTOR inhibitor everolimus. In addition, Bay11‐7082 decreased production of the immunosuppressive cytokine interleukin‐10 (IL‐10), which was further down‐regulated when Bay11‐7082 was combined with evelolimus in HTLV‐1‐infected T and ATLL cells isolated from patients. Interleukin‐10 is known to inhibit maturation and the antigen‐presenting function of dendritic cells (DCs). The culture media of HTLV‐1‐infected MT‐1 cells, which contained a large amout of IL‐10, hampered tumour necrosis factor‐α‐induced maturation of DCs isolated from healthy volunteers. Culture supernatant of MT‐1 cells treated with a combination of Bay11‐7082 and everolimus augmented maturation of DCs in association with a decrease in production of IL‐10 and enhanced the allostimulatory function of DCs. Similarly, when DCs isolated from patients with ATLL were treated with the combination of Bay11‐7082 and everolimus, they were fully matured and their capability to stimulate proliferation of lymphocytes was augmented. Taken together, the combination of Bay11‐7082 and everolimus might exhibit immunostimulatory properties in HTLV‐1‐infected T and ATLL cells isolated from patients, and this combination may be potentially therapeutic to regain the compromised immunosystem in ATLL patients. PMID:23278479

  17. Synthesis of DNA containing the simian virus 40 origin of replication by the combined action of DNA polymerases alpha and delta.

    PubMed Central

    Lee, S H; Eki, T; Hurwitz, J

    1989-01-01

    Proliferating-cell nuclear antigen (PCNA) mediates the replication of simian virus 40 (SV40) DNA by reversing the effects of a protein that inhibits the elongation reaction. Two other protein fractions, activator I and activator II, were also shown to play important roles in this process. We report that activator II isolated from HeLa cell extracts is a PCNA-dependent DNA polymerase delta that is required for efficient replication of DNA containing the SV40 origin of replication. PCNA-dependent DNA polymerase delta on a DNA singly primed phi X174 single-stranded circular DNA template required PCNA, a complex of the elongation inhibitor and activator I, and the single-stranded DNA-binding protein essential for SV40 DNA replication. DNA polymerase delta, in contrast to DNA polymerase alpha, hardly used RNA-primed DNA templates. These results indicate that both DNA polymerase alpha and delta are involved in SV40 DNA replication in vitro and their activity depends on PCNA, the elongation inhibitor, and activator I. Images PMID:2571990

  18. Rapid and combined detection of Mycoplasma pneumoniae, Epstein-Barr virus and human cytomegalovirus using AllGlo quadruplex quantitative PCR.

    PubMed

    Chen, Yi; He, Hui; Pan, Ping; He, Songzhe; Dong, Xueyan; Chen, Yueming; Wang, Shuying; Yu, Daojun

    2016-07-01

    Acute respiratory infections (ARIs) cause substantial morbidity and mortality worldwide. The causes of ARI are dynamic, and co-infections of Mycoplasma pneumoniae, Epstein-Barr virus and human cytomegalovirus are recently developed causes of ARI. Here, we established a quadruplex quantitative PCR (qPCR) method to rapidly identify and simultaneously detect a single infection or co-infection of these three pathogens and an internal control in a single tube using AllGlo probes. The analysis demonstrated a wide linear range of detection from 101 to 108 copies per test and a low coefficient of variation of less than 5 %. The amplification efficiencies were all close to 1, and the correlation coefficients (r2) were all greater than 0.99. We found no significant difference in a comparative reagent test (P >0.05). Moreover, the results of tests on clinical samples using AllGlo quadruplex qPCR and TaqMan uniplex qPCR were in near-perfect agreement (κ =0.97). Clinically, the availability of this method will enable better differential diagnosis, disease surveillance and controlled outcomes. PMID:27093597

  19. Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious Penaeus stylirostris densovirus and virus-related sequences in shrimp genome.

    PubMed

    Jaroenram, Wansadaj; Owens, Leigh

    2014-11-01

    Penaeus stylirostris densovirus (PstDV) is an important shrimp pathogen that causes mortality in P. stylirostris and runt deformity syndrome (RDS) in Penaeus vannamei and Penaeus monodon. Recently, PstDV-related sequences were found in the genome of P. monodon and P. vannamei. This led to false positive results by PCR-based detection system. Here, a more efficient detection platform based on recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) was developed for detecting PstDV. Under the optimal conditions, 30 min at 37°C for RPA followed by 5 min at room temperature for LFD, the protocol was 10 times more sensitive than the Saksmerphrome et al's interim 3-tube nested PCR and showed no cross-reaction with other shrimp viruses. It also reduced false positive results arising from viral inserts to ∼5% compared to 76-78% by the IQ2000™ nested PCR kit and the 309F/R PCR protocol currently recommended by World Organization for Animal Health (OIE) for PstDV detection. Together with simplicity and portability, the protocol serves as an alternative tool to PCR for primarily screening PstDV, which is suitable for both laboratory and field application. PMID:25152528

  20. Control of cucurbit viruses.

    PubMed

    Lecoq, Hervé; Katis, Nikolaos

    2014-01-01

    More than 70 well-characterized virus species transmitted by a diversity of vectors may infect cucurbit crops worldwide. Twenty of those cause severe epidemics in major production areas, occasionally leading to complete crop failures. Cucurbit viruses' control is based on three major axes: (i) planting healthy seeds or seedlings in a clean environment, (ii) interfering with vectors activity, and (iii) using resistant cultivars. Seed disinfection and seed or seedling quality controls guarantee growers on the sanitary status of their planting material. Removal of virus or vector sources in the crop environment can significantly delay the onset of viral epidemics. Insecticide or oil application may reduce virus spread in some situations. Diverse cultural practices interfere with or prevent vector reaching the crop. Resistance can be obtained by grafting for soil-borne viruses, by cross-protection, or generally by conventional breeding or genetic engineering. The diversity of the actions that may be taken to limit virus spread in cucurbit crops and their limits will be discussed. The ultimate goal is to provide farmers with technical packages that combine these methods within an integrated disease management program and are adapted to different countries and cropping systems. PMID:25410104

  1. Discovery of Novel Hepatitis C Virus NS5B Polymerase Inhibitors by Combining Random Forest, Multiple e-Pharmacophore Modeling and Docking

    PubMed Central

    Wei, Yu; Li, Jinlong; Qing, Jie; Huang, Mingjie; Wu, Ming; Gao, Fenghua; Li, Dongmei; Hong, Zhangyong; Kong, Lingbao; Huang, Weiqiang; Lin, Jianping

    2016-01-01

    The NS5B polymerase is one of the most attractive targets for developing new drugs to block Hepatitis C virus (HCV) infection. We describe the discovery of novel potent HCV NS5B polymerase inhibitors by employing a virtual screening (VS) approach, which is based on random forest (RB-VS), e-pharmacophore (PB-VS), and docking (DB-VS) methods. In the RB-VS stage, after feature selection, a model with 16 descriptors was used. In the PB-VS stage, six energy-based pharmacophore (e-pharmacophore) models from different crystal structures of the NS5B polymerase with ligands binding at the palm I, thumb I and thumb II regions were used. In the DB-VS stage, the Glide SP and XP docking protocols with default parameters were employed. In the virtual screening approach, the RB-VS, PB-VS and DB-VS methods were applied in increasing order of complexity to screen the InterBioScreen database. From the final hits, we selected 5 compounds for further anti-HCV activity and cellular cytotoxicity assay. All 5 compounds were found to inhibit NS5B polymerase with IC50 values of 2.01–23.84 μM and displayed anti-HCV activities with EC50 values ranging from 1.61 to 21.88 μM, and all compounds displayed no cellular cytotoxicity (CC50 > 100 μM) except compound N2, which displayed weak cytotoxicity with a CC50 value of 51.3 μM. The hit compound N2 had the best antiviral activity against HCV, with a selective index of 32.1. The 5 hit compounds with new scaffolds could potentially serve as NS5B polymerase inhibitors through further optimization and development. PMID:26845440

  2. Immune modulation of T regulatory cells and IgE responses in horses vaccinated with West Nile virus vaccine combined with a CpG ODN.

    PubMed

    Behrens, Nicole E; Gershwin, Laurel J

    2015-10-26

    Hypersensitivity reactions, such as hives or fatal anaphylactic shock, in response to vaccination constitute a health hazard for horses that develop allergies to vaccine components. In such horses vaccination with viral vaccines stimulates an IgE response to non-target antigens. Viral vaccines share contaminating non-target proteins, such as bovine serum albumin (BSA); these antigens can stimulate IgE production with each exposure. We hypothesized that the addition of a CpG oligodeoxynucleotide (ODN) administered in conjunction with a West Nile virus vaccine would decrease the IgE response; through up-regulation of T regulatory cells and T helper 1 cells thus decreasing the potential to induce a type 1 hypersensitivity response. Thirty adult horses were injected with either CpG ODN or control GpC ODN with a killed WNV vaccine. T regulatory cell numbers and BSA specific IgE concentrations were determined pre and post vaccination. Multicolor flow cytometry was used to evaluate expression of CD4, CD25, and intracellular Foxp3 on PBMCs. Serum concentrations of BSA specific IgE were determined by ELISA. Cell culture supernatants from BSA re-stimulated lymphocytes were evaluated for concentrations of IL-2, IL-4, IL-10, and IFN-γ. The inclusion of the CpG ODN significantly increased the differentiation of T regulatory cells in response to antigen in vitro and in vivo. A significant inverse correlation was found between T regulatory cell numbers and serum BSA specific IgE concentrations. These results suggest that we can provide a safer alternate vaccination strategy, particularly for horses that have demonstrated a pro-allergic phenotype. PMID:26424604

  3. IFN-γ Production Depends on IL-12 and IL-18 Combined Action and Mediates Host Resistance to Dengue Virus Infection in a Nitric Oxide-Dependent Manner

    PubMed Central

    Cisalpino, Daniel; Amaral, Flávio A.; Souza, Patrícia R. S.; Souza, Rafael S.; Ryffel, Bernhard; Vieira, Leda Q.; Silva, Tarcília A.; Atrasheuskaya, Alena; Ignatyev, George; Sousa, Lirlândia P.; Souza, Danielle G.; Teixeira, Mauro M.

    2011-01-01

    Dengue is a mosquito-borne disease caused by one of four serotypes of Dengue virus (DENV-1–4). Severe dengue infection in humans is characterized by thrombocytopenia, increased vascular permeability, hemorrhage and shock. However, there is little information about host response to DENV infection. Here, mechanisms accounting for IFN-γ production and effector function during dengue disease were investigated in a murine model of DENV-2 infection. IFN-γ expression was greatly increased after infection of mice and its production was preceded by increase in IL-12 and IL-18 levels. In IFN-γ−/− mice, DENV-2-associated lethality, viral loads, thrombocytopenia, hemoconcentration, and liver injury were enhanced, when compared with wild type-infected mice. IL-12p40−/− and IL-18−/− infected-mice showed decreased IFN-γ production, which was accompanied by increased disease severity, higher viral loads and enhanced lethality. Blockade of IL-18 in infected IL-12p40−/− mice resulted in complete inhibition of IFN-γ production, greater DENV-2 replication, and enhanced disease manifestation, resembling the response seen in DENV-2-infected IFN-γ−/− mice. Reduced IFN-γ production was associated with diminished Nitric Oxide-synthase 2 (NOS2) expression and NOS2−/− mice had elevated lethality, more severe disease evolution and increased viral load after DENV-2 infection. Therefore, IL-12/IL-18-induced IFN-γ production and consequent NOS2 induction are of major importance to host resistance against DENV infection. PMID:22206036

  4. Structure of viruses: a short history.

    PubMed

    Rossmann, Michael G

    2013-05-01

    . Starting in the 1990s, these enveloped viruses were studied by combining cryo-electron microscopy of the whole virus with X-ray crystallography of their protein components. These structures gave information on virus assembly, virus neutralization by antibodies, and virus fusion with and entry into the host cell. The same techniques were also employed in the study of complex bacteriophages that were too large to crystallize. Nevertheless, there still remained many pleomorphic, highly pathogenic viruses that lacked the icosahedral symmetry and homogeneity that had made the earlier structural investigations possible. Currently some of these viruses are starting to be studied by combining X-ray crystallography with cryo-electron tomography. PMID:23889891

  5. Yellow fever vector live-virus vaccines: West Nile virus vaccine development.

    PubMed

    Arroyo, J; Miller, C A; Catalan, J; Monath, T P

    2001-08-01

    By combining molecular-biological techniques with our increased understanding of the effect of gene sequence modification on viral function, yellow fever 17D, a positive-strand RNA virus vaccine, has been manipulated to induce a protective immune response against viruses of the same family (e.g. Japanese encephalitis and dengue viruses). Triggered by the emergence of West Nile virus infections in the New World afflicting humans, horses and birds, the success of this recombinant technology has prompted the rapid development of a live-virus attenuated candidate vaccine against West Nile virus. PMID:11516995

  6. Baseline Prediction of Combination Therapy Outcome in Hepatitis C Virus 1b Infected Patients by Discriminant Analysis Using Viral and Host Factors

    PubMed Central

    Saludes, Verónica; Bracho, Maria Alma; Valero, Oliver; Ardèvol, Mercè; Planas, Ramón; González-Candelas, Fernando; Ausina, Vicente; Martró, Elisa

    2010-01-01

    Background Current treatment of chronic hepatitis C virus (HCV) infection has limited efficacy −especially among genotype 1 infected patients−, is costly, and involves severe side effects. Thus, predicting non-response is of major interest for both patient wellbeing and health care expense. At present, treatment cannot be individualized on the basis of any baseline predictor of response. We aimed to identify pre-treatment clinical and virological parameters associated with treatment failure, as well as to assess whether therapy outcome could be predicted at baseline. Methodology Forty-three HCV subtype 1b (HCV-1b) chronically infected patients treated with pegylated-interferon alpha plus ribavirin were retrospectively studied (21 responders and 22 non-responders). Host (gender, age, weight, transaminase levels, fibrosis stage, and source of infection) and viral-related factors (viral load, and genetic variability in the E1–E2 and Core regions) were assessed. Logistic regression and discriminant analyses were used to develop predictive models. A “leave-one-out” cross-validation method was used to assess the reliability of the discriminant models. Principal Findings Lower alanine transaminase levels (ALT, p = 0.009), a higher number of quasispecies variants in the E1–E2 region (number of haplotypes, nHap_E1–E2) (p = 0.003), and the absence of both amino acid arginine at position 70 and leucine at position 91 in the Core region (p = 0.039) were significantly associated with treatment failure. Therapy outcome was most accurately predicted by discriminant analysis (90.5% sensitivity and 95.5% specificity, 85.7% sensitivity and 81.8% specificity after cross-validation); the most significant variables included in the predictive model were the Core amino acid pattern, the nHap_E1–E2, and gamma-glutamyl transferase and ALT levels. Conclusions and Significance Discriminant analysis has been shown as a useful tool to predict treatment outcome using

  7. [Persistence of bacteria and viruses in Ixodes].

    PubMed

    Podboronov, V M; Smirnova, I P

    2014-01-01

    Behaviour of viruses and salmonellas in ticks after their single or combined contamination was thoroughly studied on laboratory animals with bacteriemia or virusemia. When Ixodes ricinus was contaminated simultaneously with forest-spring encephalitis virus and salmonellas there were observed a decrease in the virus titer by the 30th-40th days and its death in 60 days. In case of the I. ricinus nymphs contamination, the virus titer after the combined contamination was by a factor of 10(2) lower in 60 days vs. the contamination with the virus alone and did not reach the contamination dose. The simultaneous contamination of the ticks with two pathogens (forest-spring encephalitis virus and salmonellas) resulted in inhibition of the growth and development of both the virus and the salmonellas. PMID:25975109

  8. Zika virus.

    PubMed

    2016-02-10

    Essential facts Zika virus disease is caused by a virus that is transmitted by the Aedes mosquito. While it generally causes a mild illness, there is increasing concern that it is harmful in pregnancy and can cause congenital abnormalities in infants born to women infected with the virus. There is no antiviral treatment or vaccine currently available. The best form of prevention is protection against mosquito bites. PMID:26860150

  9. Control of virus diseases of berry crops.

    PubMed

    Martin, Robert R; Tzanetakis, Ioannis E

    2015-01-01

    Virus control in berry crops starts with the development of plants free of targeted pathogens, usually viruses, viroids, phytoplasmas, and systemic bacteria, through a combination of testing and therapy. These then become the top-tier plants in certification programs and are the source from which all certified plants are produced, usually after multiple cycles of propagation. In certification schemes, efforts are made to produce plants free of the targeted pathogens to provide plants of high health status to berry growers. This is achieved using a systems approach to manage virus vectors. Once planted in fruit production fields, virus control shifts to disease control where efforts are focused on controlling viruses or virus complexes that result in disease. In fruiting fields, infection with a virus that does not cause disease is of little concern to growers. Virus control is based on the use of resistance and tolerance, vector management, and isolation. PMID:25591882

  10. Development of a recombinant epsilon toxoid vaccine against enterotoxemia and its use as a combination vaccine with live attenuated sheep pox virus against enterotoxemia and sheep pox.

    PubMed

    Chandran, Dev; Naidu, Sureddi Satyam; Sugumar, Parthasarathy; Rani, Gudavalli Sudha; Vijayan, Shahana Pallichera; Mathur, Deepika; Garg, Lalit C; Srinivasan, Villuppanoor Alwar

    2010-06-01

    Sheep pox and enterotoxemia are important diseases of sheep, and these diseases cause severe economic losses to sheep farmers. The present study was undertaken to evaluate the potential of formaldehyde-inactivated recombinant epsilon toxin as a vaccine candidate. The potency of the recombinant epsilon toxoid with aluminum hydroxide as an adjuvant in sheep was determined. Vaccinated sheep were protected against enterotoxemia, with potency values of >5 IU being protective. Further, the use of this construct in a combination vaccine against sheep pox resulted in the sheep being protected against both sheep pox and enterotoxemia. PMID:20427629

  11. Development of a Recombinant Epsilon Toxoid Vaccine against Enterotoxemia and Its Use as a Combination Vaccine with Live Attenuated Sheep Pox Virus against Enterotoxemia and Sheep Pox▿

    PubMed Central

    Chandran, Dev; Naidu, Sureddi Satyam; Sugumar, Parthasarathy; Rani, Gudavalli Sudha; Vijayan, Shahana Pallichera; Mathur, Deepika; Garg, Lalit C.; Srinivasan, Villuppanoor Alwar

    2010-01-01

    Sheep pox and enterotoxemia are important diseases of sheep, and these diseases cause severe economic losses to sheep farmers. The present study was undertaken to evaluate the potential of formaldehyde-inactivated recombinant epsilon toxin as a vaccine candidate. The potency of the recombinant epsilon toxoid with aluminum hydroxide as an adjuvant in sheep was determined. Vaccinated sheep were protected against enterotoxemia, with potency values of >5 IU being protective. Further, the use of this construct in a combination vaccine against sheep pox resulted in the sheep being protected against both sheep pox and enterotoxemia. PMID:20427629

  12. CHLORELLA VIRUSES

    PubMed Central

    Yamada, Takashi; Onimatsu, Hideki; Van Etten, James L.

    2007-01-01

    Chlorella viruses or chloroviruses are large, icosahedral, plaque‐forming, double‐stranded‐DNA—containing viruses that replicate in certain strains of the unicellular green alga Chlorella. DNA sequence analysis of the 330‐kbp genome of Paramecium bursaria chlorella virus 1 (PBCV‐1), the prototype of this virus family (Phycodnaviridae), predict ∼366 protein‐encoding genes and 11 tRNA genes. The predicted gene products of ∼50% of these genes resemble proteins of known function, including many that are completely unexpected for a virus. In addition, the chlorella viruses have several features and encode many gene products that distinguish them from most viruses. These products include: (1) multiple DNA methyltransferases and DNA site‐specific endonucleases, (2) the enzymes required to glycosylate their proteins and synthesize polysaccharides such as hyaluronan and chitin, (3) a virus‐encoded K+ channel (called Kcv) located in the internal membrane of the virions, (4) a SET domain containing protein (referred to as vSET) that dimethylates Lys27 in histone 3, and (5) PBCV‐1 has three types of introns; a self‐splicing intron, a spliceosomal processed intron, and a small tRNA intron. Accumulating evidence indicates that the chlorella viruses have a very long evolutionary history. This review mainly deals with research on the virion structure, genome rearrangements, gene expression, cell wall degradation, polysaccharide synthesis, and evolution of PBCV‐1 as well as other related viruses. PMID:16877063

  13. Live Virus Smallpox Vaccine

    MedlinePlus

    ... Index SMALLPOX FACT SHEET The Live Virus Smallpox Vaccine The vaccinia virus is the "live virus" used ... cannot cause smallpox. What is a "live virus" vaccine? A "live virus" vaccine is a vaccine that ...

  14. Adverse skin reactions due to pegylated interferon alpha 2b plus ribavirin combination therapy in a patient with chronic hepatitis C virus.

    PubMed

    Hashimoto, Yuki; Kanto, Hiromi; Itoh, Masatoshi

    2007-08-01

    Pegylated interferon (IFN)-alpha-2b with ribavirin has recently replaced "standard" IFN-alpha for the treatment of chronic hepatitis C. The most common side-effect of pegylated IFN-alpha-2b plus ribavirin combination therapy is localized inflammatory skin lesions at the site of injection. A 66-year-old female treated with once-weekly pegylated IFN-alpha-2b plus ribavirin for active chronic hepatitis C developed inflammatory skin lesions 2 months after starting antiviral treatment. The type of skin reactions observed were vesicle erythematous eruptions at the injection sites, and pruritic papular erythematous eruptions located on the face, neck, distal limbs, dorsa of the hands, trunk and buttocks away from the injection sites. Histological examination was performed on the pruritic papular erythematous eruption located on the left forearm, away from the injection sites. It showed epidermal spongiosis, a spongiotic microvesicle, and perivascular infiltration of the upper dermis with lymphocytes. The treatment was interrupted subsequently and the patient was rechallenged with pegylated IFN-alpha-2b plus ribavirin combination therapy, oral prednisolone with olopatadine hydrochloride and topical 0.1% diflucortolone valerate, which led to a significant improvement of skin lesions. Erythema with infiltration can occur at the injection sites of pegylated IFN-alpha-2b. However, the occurrence of vesicle erythematous eruptions away from the injection sites and autosensitization dermatitis apart from injection sites have not yet been frequently reported. PMID:17683392

  15. Influenza viruses in birds: rapid identification by counterimmunoelectrophoresis.

    PubMed Central

    Lecomte, J; Berthiaume, L; Boudreault, A

    1979-01-01

    Counterimmunoelectrophoresis with an antiserum raised in rabbits against the M protein of the avian N virus proved to be particularly useful for large-scale identification of influenza A virus isolates. Of a total of 231 hemagglutinating agents isolated from 1,656 rectal swabs collected from shore and open-country birds, 158 could be identified as influenza A viruses by counterimmunoelectrophoresis, and 75 were serologically related to Newcastle disease virus by hemagglutination inhibition with an antiserum to Newcastle disease virus. Two isolates contained a mixture of influenza A virus and Newcastle disease virus; although the Newcastle disease virus virus particles outnumbered the influenza A virus particles in a ratio of 1,000:1, as seen by electron microscopy, the latter could be readily detected by counterimmunoelectrophoresis. This type of assay appears to be of potential use for epidemiological surveillance of influenza virus isolated from humans and animals. It combines specificity, sensitivity, and simplicity. Images PMID:85632

  16. Combining plasma Epstein-Barr virus DNA and nodal maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography improved prognostic stratification to predict distant metastasis for locoregionally advanced nasopharyngeal carcinoma

    PubMed Central

    Chen, Qiu-Yan; Guo, Shan-Shan; Liu, Li-Ting; Fan, Wei; Zhang, Xu; Guo, Ling; Zhao, Chong; Cao, Ka-Jia; Qian, Chao-Nan; Guo, Xiang; Xie, Dan; Zeng, Mu-Sheng; Mai, Hai-Qiang

    2015-01-01

    Background This study aimed to evaluate the value of combining the nodal maximal standard uptake values (SUVmax) of 18 F-fluoro-2-deoxy-D-glucose positron emission tomography with Epstein-Barr virus DNA(EBV DNA) levels to predict distant metastasis for nasopharyngeal carcinoma (NPC) patients Patients and Methods Eight hundred seventy-four patients with stage III-IVa-b NPC were evaluated for the effects of combining SUVmax and EBV DNA levels on distant metastasis-free survival (DMFS), disease-free survival (DFS) and overall survival (OS). Results The optimal cutoff value was 6,220 copies/mL for EBV DNA and 7.5 for SUVmax-N. Patients with lower EBV DNA levels or SUVmax-N had a significantly better 3-year DMFS, DFS, and OS. Patients were divided into four groups based on EBV DNA and SUVmax-N, as follows: low EBV DNA and low SUVmax-N (LL), low EBV DNA and high SUVmax-N (LH), high EBV DNA and low SUVmax-N (HL), and high EBV DNA and high SUVmax-N (HH). There were significant differences between the four mentioned groups in 3-year DMFS: 95.7%, 92.2%, 92.3%, and 80.1%, respectively (Ptrend < 0.001). When looking at the disease stage, the 3-year DMFS in group LL, LH, HL, HH were 94.2%, 92.9%, 95.0%, and 81.1%, respectively, in stage III patients (Ptrend < 0.001) and 92.7%, 87.2%, 86.3%, and 77.0% in stage IVa–b patients (Ptrend = 0.026). Conclusion Pretreatment EBV DNA and SUVmax of neck lymph nodes were independent prognostic factors for distant metastasis in NPC patients. Combining EBV DNA and SUVmax-N led to an improved risk stratification for distant metastasis in advanced-stage disease. PMID:26512922

  17. [Consensus document of Gesida and Spanish Secretariat for the National Plan on AIDS (SPNS) regarding combined antiretroviral treatment in adults infected by the human immunodeficiency virus (January 2012)].

    PubMed

    2012-06-01

    This consensus document has been prepared by a panel consisting of members of the AIDS Study Group (Gesida) and the Spanish Secretariat for the National Plan on AIDS (SPNS) after reviewing the efficacy and safety results of clinical trials, cohort and pharmacokinetic studies published in medical journals, or presented in medical scientific meetings. Gesida has prepared an objective and structured method to prioritise combined antiretroviral treatment (cART) in naïve patients. Recommendations strength (A, B, C) and the evidence which supports them (I, II, III) are based on a modification of the Infectious Diseases Society of America criteria. The current antiretroviral treatment (ART) of choice for chronic HIV infection is the combination of three drugs. ART is recommended in patients with symptomatic HIV infection, in pregnancy, in serodiscordant couples with high transmission risk, hepatitis B fulfilling treatment criteria, and HIV nephropathy. Guidelines on ART treatment in patients with concurrent diagnosis of HIV infection and an opportunistic type C infection are included. In asymptomatic patients ART is recommended on the basis of CD4 lymphocyte counts, plasma viral load and patient co-morbidities, as follows: 1) therapy should be started in patients with CD4 counts <350 cells/μL; 2) when CD4 counts are between 350 and 500 cells/μL, therapy will be recommended and only delayed if patient is reluctant to take it, the CD4 are stabilised, and the plasma viral load is low; 3) therapy could be deferred when CD4 counts are above 500 cells/μL, but should be considered in cases of cirrhosis, chronic hepatitis C, high cardiovascular risk, plasma viral load >10(5) copies/mL, proportion of CD4 cells <14%, and in people aged >55 years. ART should include 2 reverse transcriptase inhibitors nucleoside analogues and a third drug (non-analogue reverse transcriptase inhibitor, ritonavir boosted protease inhibitor or integrase inhibitor). The panel has consensually

  18. Combining Molecular Docking and Molecular Dynamics to Predict the Binding Modes of Flavonoid Derivatives with the Neuraminidase of the 2009 H1N1 Influenza A Virus

    PubMed Central

    Lu, Shih-Jen; Chong, Fok-Ching

    2012-01-01

    Control of flavonoid derivatives inhibitors release through the inhibition of neuraminidase has been identified as a potential target for the treatment of H1N1 influenza disease. We have employed molecular dynamics simulation techniques to optimize the 2009 H1N1 influenza neuraminidase X-ray crystal structure. Molecular docking of the compounds revealed the possible binding mode. Our molecular dynamics simulations combined with the solvated interaction energies technique was applied to predict the docking models of the inhibitors in the binding pocket of the H1N1 influenza neuraminidase. In the simulations, the correlation of the predicted and experimental binding free energies of all 20 flavonoid derivatives inhibitors is satisfactory, as indicated by R2 = 0.75. PMID:22605992

  19. An Automatic Unpacking Method for Computer Virus Effective in the Virus Filter Based on Paul Graham's Bayesian Theorem

    NASA Astrophysics Data System (ADS)

    Zhang, Dengfeng; Nakaya, Naoshi; Koui, Yuuji; Yoshida, Hitoaki

    Recently, the appearance frequency of computer virus variants has increased. Updates to virus information using the normal pattern matching method are increasingly unable to keep up with the speed at which viruses occur, since it takes time to extract the characteristic patterns for each virus. Therefore, a rapid, automatic virus detection algorithm using static code analysis is necessary. However, recent computer viruses are almost always compressed and obfuscated. It is difficult to determine the characteristics of the binary code from the obfuscated computer viruses. Therefore, this paper proposes a method that unpacks compressed computer viruses automatically independent of the compression format. The proposed method unpacks the common compression formats accurately 80% of the time, while unknown compression formats can also be unpacked. The proposed method is effective against unknown viruses by combining it with the existing known virus detection system like Paul Graham's Bayesian Virus Filter etc.

  20. Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles

    PubMed Central

    Cao, Haiyan; Zhang, Guo-rong; Wang, Xiaodan; Kong, Lingxin; Geller, Alfred I

    2008-01-01

    Background Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, neuronal type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. One approach is to target gene transfer to a specific type of neuron. We developed modified Herpes Simplex Virus (HSV-1) particles that contain chimeric glycoprotein C (gC) – glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) proteins. HSV-1 vector particles containing either gC – GDNF or gC – BDNF target gene transfer to nigrostriatal neurons, which contain specific receptors for GDNF or BDNF. A second approach to achieve neuronal type-specific expression is to use a cell type-specific promoter, and we have used the tyrosine hydroxylase (TH) promoter to restrict expression to catecholaminergic neurons or a modified neurofilament heavy gene promoter to restrict expression to neurons, and both of these promoters support long-term expression from HSV-1 vectors. To both improve nigrostriatal-neuron specific expression, and to establish that targeted gene transfer can be followed by long-term expression, we performed targeted gene transfer with vectors that support long-term, neuronal-specific expression. Results Helper virus-free HSV-1 vector packaging was performed using either gC – GDNF or gC – BDNF and vectors that contain either the TH promoter or the modified neurofilament heavy gene promoter. Vector stocks were injected into the midbrain proximal to the substantia nigra, and the rats were sacrificed at either 4 days or 1 month after gene transfer. Immunofluorescent costaining was performed to detect both recombinant gene products and nigrostriatal neurons. The combination of targeted gene transfer with neuronal-specific promoters improved nigrostriatal

  1. Persistent virus and addiction modules: an engine of symbiosis.

    PubMed

    Villarreal, Luis P

    2016-06-01

    The giant DNA viruses are highly prevalent and have a particular affinity for the lytic infection of unicellular eukaryotic host. The giant viruses can also be infected by inhibitory virophage which can provide lysis protection to their host. The combined protective and destructive action of such viruses can define a general model (PD) of virus-mediated host survival. Here, I present a general model for role such viruses play in the evolution of host symbiosis. By considering how virus mixtures can participate in addiction modules, I provide a functional explanation for persistence of virus derived genetic 'junk' in their host genomic habitats. PMID:27039268

  2. Herpes simplex virus type 2 (HSV-2) genital shedding in HSV-2-/HIV-1-co-infected women receiving effective combination antiretroviral therapy.

    PubMed

    Péré, Héléne; Rascanu, Aida; LeGoff, Jérome; Matta, Mathieu; Bois, Frédéric; Lortholary, Olivier; Leroy, Valériane; Launay, Odile; Bélec, Laurent

    2016-03-01

    The dynamics of genital shedding of HSV-2 DNA was assessed in HIV-1-infected women taking combination antiretroviral therapy (cART). HIV-1 RNA, HIV-1 DNA and HSV DNA loads were measured during 12-18 months using frozen plasma, PBMC and cervicovaginal lavage samples from 22 HIV-1-infected women, including 17 women naive for antiretroviral therapy initiating cART and 5 women with virological failure switching to a new regimen. Nineteen (86%) women were HSV-2-seropositive. Among HSV-2-/HIV-1-co-infected women, HIV-1 RNA loads showed a rapid fall from baseline after one month of cART, in parallel in paired plasma and cervicovaginal secretions. In contrast, HIV-1 DNA loads did not show significant variations from baseline up to 18 months of treatment in both systemic and genital compartments. HSV DNA was detected at least once in 12 (63%) of 19 women during follow up: HSV-2 shedding in the genital compartment was observed in 11% of cervicovaginal samples at baseline and in 16% after initiating or switching cART. Cervicovaginal HIV-1 RNA loads were strongly associated with plasma HIV-1 RNA loads over time, but not with cervicovaginal HSV DNA loads. Reactivation of genital HSV-2 replication frequently occurred despite effective cART in HSV-2-/HIV-1-co-infected women. Genital HSV-2 replication under cART does not influence cervicovaginal HIV-1 RNA or DNA shedding. PMID:25769886

  3. Status of tobacco viruses in Serbia and molecular characterization of tomato spotted wilt virus isolates.

    PubMed

    Stanković, I; Bulajić, A; Vučurović, A; Ristić, D; Milojević, K; Berenji, J; Krstić, B

    2011-01-01

    In a four-year survey to determine the presence and distribution of viruses in tobacco crops at 17 localities of the Vojvodina Province and Central Serbia, 380 samples were collected and analyzed by DAS-ELISA. Out of the seven viruses tested, tomato spotted wilt virus (TSWV), potato virus Y (PVY), tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), and alfalfa mosaic virus (AMV) were detected in 37.9, 33.4, 28.7, 23.9, and 15.5% of the total tested samples, respectively. TSWV was the most frequently found virus at the localities of Central Serbia, while PVY and CMV were the most frequent viruses in the Vojvodina Province. Single infections were prevalent in years 2005-2007 and the most frequent were those of PVY. A triple combination of those viruses was most frequent mixed infection type in 2008. The presence of all five detected viruses was confirmed in selected ELISA-positive samples by RT-PCR and sequencing. The comparisons of obtained virus isolate sequences with those available in NCBI, confirmed the authenticity of serologically detected viruses. Phylogenetic analysis based on partial nucleocapsid gene sequences revealed a joint clustering of Serbian, Bulgarian and Montenegrin TSWV isolates into one geographic subpopulation, which was distinct from the other subpopulation of TSWV isolates from the rest of the European countries. The high incidence of viruses in Serbian tobacco crops highlights the importance of enhancing farmers knowledge towards better implementation of control strategies for preventing serious losses. PMID:22149499

  4. Diseases Caused by Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The symptoms, causal agents, epidemiology and management of important virus diseases in chickpea and lentil crops were reviewed in depth. The virus diseases include.Alflafa mosaic virus, Cucumber mosaiv virus, Faba bean necrotic yellows virus, Pea enation mosaic virus, Pea seed-borne mosaci virus,...

  5. Combination of SAHA and bortezomib up-regulates CDKN2A and CDKN1A and induces apoptosis of Epstein-Barr virus-positive Wp-restricted Burkitt lymphoma and lymphoblastoid cell lines.

    PubMed

    Hui, Kwai Fung; Leung, Yvonne Y; Yeung, Po L; Middeldorp, Jaap M; Chiang, Alan K S

    2014-12-01

    Epstein-Barr virus (EBV) latent proteins exert anti-apoptotic effects on EBV-transformed lymphoid cells by down-regulating BCL2L11 (BIM), CDKN2A (p16(INK4A) ) and CDKN1A (p21(WAF1) ). However, the potential therapeutic effects of targeting these anti-apoptotic mechanisms remain unexplored. Here, we tested both in vitro and in vivo effects of the combination of histone deacetylase (HDAC) and proteasome inhibitors on the apoptosis of six endemic Burkitt lymphoma (BL) lines of different latency patterns (types I and III and Wp-restricted) and three lymphoblastoid cell lines (LCLs). We found that the combination of HDAC and proteasome inhibitors (e.g. SAHA/bortezomib) synergistically induced the killing of Wp-restricted and latency III BL and LCLs but not latency I BL cells. The synergistic killing was due to apoptosis, as evidenced by the high percentage of annexin V positivity and strong cleavage of PARP1 (PARP) and CASP3 (caspase-3). Concomitantly, SAHA/bortezomib up-regulated the expression of CDKN2A and CDKN1A but did not affect the level of BCL2L11 or BHRF1 (viral homologue of BCL2). The apoptotic effects were dependent on reactive oxygen species generation. Furthermore, SAHA/bortezomib suppressed the growth of Wp-restricted BL xenografts in nude mice. This study provides the rationale to test the novel application of SAHA/bortezomib on the treatment of EBV-associated Wp-restricted BL and post-transplant lymphoproliferative disorder. PMID:25155625

  6. Risk of hepatitis B virus (HBV) reactivation in hepatitis B surface antigen negative/hepatitis B core antibody positive patients receiving rituximab-containing combination chemotherapy without routine antiviral prophylaxis.

    PubMed

    Koo, Yu Xuan; Tay, Matthew; Teh, Yii Ean; Teng, David; Tan, Daniel S W; Tan, Iain B H; Tai, David W M; Quek, Richard; Tao, Miriam; Lim, Soon Thye

    2011-10-01

    The use of rituximab has been associated with increased risk of hepatitis B virus (HBV) reactivation in patients who are hepatitis B surface antigen (HBsAg) negative and antihepatitis B core antibody (anti-HBc) positive. We aim to determine the rate of HBV reactivation in this group of patients who received rituximab-containing combination chemotherapy without concomitant antiviral prophylaxis and to identify potential risk factors for reactivation. Sixty-two HBsAg negative/anti-HBc positive patients with B-cell lymphoma treated with rituximab-based immunochemotherapy from 2006 to 2009 were included. None of the patients received concomitant antiviral prophylaxis. In this cohort, 48 (77%) patients received rituximab with cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP), eight (13%) received rituximab with cyclophosphamide, vincristine and prednisolone, and six (10%) received other chemotherapy regimens. Two patients suffered HBV reactivation; both were above 70 years of age, received R-CHOP chemotherapy and were negative for antihepatitis B surface antibody (anti-HBs) at baseline. One of the two patients reactivated shortly after completion of R-CHOP chemotherapy while the other reactivated during rituximab maintenance treatment. Thus, the overall reactivation rate in this cohort of patients is 3% (2/62), 4% (2/48), and 25% (1/4) in patients who received R-CHOP chemotherapy and who received rituximab maintenance, respectively. The rate of HBV reactivation is low in patients who are HBsAg negative/anti-HBc positive receiving rituximab-based combination chemotherapy without concomitant antiviral prophylaxis. However, elderly patients, particularly those without anti-HBs, seemed particularly at risk. PMID:21520001

  7. Computer viruses

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    The worm, Trojan horse, bacterium, and virus are destructive programs that attack information stored in a computer's memory. Virus programs, which propagate by incorporating copies of themselves into other programs, are a growing menace in the late-1980s world of unprotected, networked workstations and personal computers. Limited immunity is offered by memory protection hardware, digitally authenticated object programs,and antibody programs that kill specific viruses. Additional immunity can be gained from the practice of digital hygiene, primarily the refusal to use software from untrusted sources. Full immunity requires attention in a social dimension, the accountability of programmers.

  8. Hendra virus.

    PubMed

    Middleton, Deborah

    2014-12-01

    Hendra virus infection of horses occurred sporadically between 1994 and 2010 as a result of spill-over from the viral reservoir in Australian mainland flying-foxes, and occasional onward transmission to people also followed from exposure to affected horses. An unprecedented number of outbreaks were recorded in 2011 leading to heightened community concern. Release of an inactivated subunit vaccine for horses against Hendra virus represents the first commercially available product that is focused on mitigating the impact of a Biosafety Level 4 pathogen. Through preventing the development of acute Hendra virus disease in horses, vaccine use is also expected to reduce the risk of transmission of infection to people. PMID:25281398

  9. Impact of anti-virus software on computer virus dynamical behavior

    NASA Astrophysics Data System (ADS)

    Sun, Mei; Li, Dandan; Han, Dun; Jia, Changsheng

    2014-11-01

    The impact of anti-virus software on the spreading of computer virus is investigated via developing a mathematical model in this paper. Considering the anti-virus software may not be effective, as it may be an outdated version, and then the computers may be infected with a reduced incidence rate. According to the method of next generation matrix, the basic reproduction number is derived. By introducing appropriate Lyapunov function and the Routh stability criterion, acquiring the stability conditions of the virus-free equilibrium and virus equilibrium. The effect of anti-virus software and disconnecting rate on the spreading of virus are also analyzed. When combined with the numerical results, a set of suggestions are put forward for eradicating virus effectively.

  10. Correlation between mutations in the core and NS5A genes of hepatitis C virus genotypes 1a, 1b, 3a, 3b, 6f and the response to pegylated interferon and ribavirin combination therapy.

    PubMed

    Kumthip, K; Pantip, C; Chusri, P; Thongsawat, S; O'Brien, A; Nelson, K E; Maneekarn, N

    2011-04-01

    Several studies have reported correlation between mutations in core and NS5A proteins of hepatitis C virus (HCV) and response to interferon (IFN) therapy. In particular, mutations in NS5A protein have been shown to correlate with responsiveness to IFN treatment of HCV-1b in Japanese patients. This study investigated whether amino acid (aa) mutations in the core and NS5A proteins of HCV-1a, 1b, 3a, 3b and 6f correlated with the response to pegylated interferon (Peg-IFN) plus ribavirin (RBV) therapy in Thai patients. The entire sequences of core and NS5A of HCV from 76 HCV-infected patients were analysed in comparison with corresponding reference sequences. The data revealed that the number of aa mutations in full-length NS5A, its C-terminus, IFN sensitivity-determining region, variable region 3 (V3) and V3 plus flanking region of HCV-1b NS5A protein were significantly higher in responders than in the treatment failure group (P = 0.010, 0.031, 0.046, 0.020 and 0.006, respectively). Similar results were found in a putative protein kinase R binding domain region in HCV-6f NS5A protein (P = 0.022). Moreover, specific aa substitutions in NS5A that appeared to be associated with responders or the treatment failure group were observed at positions 78 and 305 for HCV-1b (P = 0.028), 64 and 52 for HCV-1a (P = 0.033) and 6f (P = 0.045). Nevertheless, analysis of aa sequences of core protein revealed highly conserved sequences among HCV genotypes and no significant differences between the viruses from responders and the treatment failure group. Our findings indicate that mutations in aa residues of NS5A of HCV-1a, 1b and 6f correlated well with responsiveness to Peg-IFN and RBV combination therapy. PMID:20955493

  11. Hot crenarchaeal viruses reveal deep evolutionary connections.

    PubMed

    Ortmann, Alice C; Wiedenheft, Blake; Douglas, Trevor; Young, Mark

    2006-07-01

    The discovery of archaeal viruses provides insights into the fundamental biochemistry and evolution of the Archaea. Recent studies have identified a wide diversity of archaeal viruses within the hot springs of Yellowstone National Park and other high-temperature environments worldwide. These viruses are often morphologically unique and code for genes with little similarity to other known genes in the biosphere, a characteristic that has complicated efforts to trace their evolutionary history. Comparative genomics combined with structural analysis indicate that spindle-shaped virus lineages might be unique to the Archaea, whereas other icosahedral viruses might share a common lineage with viruses of Bacteria and Eukarya. These studies provide insights into the evolutionary history of viruses in all three domains of life. PMID:16755285

  12. Zika Virus

    MedlinePlus

    ... be at risk for developing fetal complications. Blood, organ and tissue donor screening tests are also needed to assure the safety of transfusion and transplantation in areas of active mosquito-borne virus transmission. ...

  13. Zika Virus.

    PubMed

    Phillips, Jennan A; Neyland, Anavernyel

    2016-08-01

    Zika virus (ZIKV) infections are the latest global public health emergency. Occupational health nurses can protect society by educating workers, women of childbearing age, and others traveling in ZIKV-infected areas about prevention strategies. PMID:27411846

  14. The Association of Substitutions in the Hepatitis C Virus Subtype 1b Core Gene and IL28B Polymorphisms With the Response to Peg-IFNα-2a/RBV Combination Therapy in Azerbaijani Patients

    PubMed Central

    Bokharaei-Salim, Farah; Salehi-Vaziri, Mostafa; Sadeghi, Farzin; Esghaei, Maryam; Monavari, Seyed Hamidreza; Alavian, Seyed Moayed; Fakhim, Shahin; Keyvani, Hossein

    2016-01-01

    Background The hepatitis C virus (HCV) infection has been identified as a leading cause of progressive liver diseases worldwide. Despite new treatment strategies, pegylated interferon alfa-2a (Peg-IFNα-2a), in combination with ribavirin (RBV), still represents the gold standard of therapy for hepatitis C in developing countries. Objectives The aim of this study was to investigate the association of substitutions in the HCV subtype 1b (HCV-1b) core protein and the rs12979860 polymorphism in the interleukin 28B gene (IL28B) with the response to Peg-IFNα-2a/RBV combination therapy in Azerbaijani patients. Patients and Methods A total of fifty-one chronically HCV-1b-infected Azerbaijani patients were enrolled in this cross-sectional study from March 2010 to June 2015. After RNA extraction from pre-treatment plasma, the core region of the HCV genome was amplified using the nested reverse transcription (RT) polymerase chain reaction (PCR) method, followed by standard sequencing. In addition, genomic DNA was extracted from peripheral blood mononuclear cell (PBMC) specimens, and the rs12979860 single nucleotide polymorphism (SNP) was identified using a PCR-restriction fragment length polymorphism (PCR-RFLP) assay. Results In this study, a significant association was observed between the non-responders and relapsers to antiviral therapy and substitutions in the HCV-1b core region at positions 43 (R43K, P = 0.047), 70 (R70Q, P < 0.001), 91 (M91L, P = 0.037), and 106 (S106N, P = 0.018). Concerning the IL28B polymorphism, the results showed that sustained virological response was significantly associated with homozygous CC patients (P = 0.009) as compared with other genotypes, while homozygous TT subjects were associated with HCV relapse after therapy (P = 0.006). Conclusions The data of the present study suggest that amino acid substitutions at position 43, 70, 91, and 106 in the HCV-1b core protein are correlated with the response to the Peg-IFNα-2a/RBV treatment in

  15. Sunshine virus in Australian pythons.

    PubMed

    Hyndman, Timothy H; Shilton, Cathy M; Doneley, Robert J T; Nicholls, Philip K

    2012-12-28

    Sunshine virus is a recently discovered novel paramyxovirus that is associated with illness in snakes. It does not phylogenetically cluster within either of the two currently accepted paramyxoviral subfamilies. It is therefore only distantly related to the only other known genus of reptilian paramyxoviruses, Ferlavirus, which clusters within the Paramyxovirinae subfamily. Clinical and diagnostic aspects associated with Sunshine virus are as yet undescribed. The objective of this paper was to report the clinical presentation, virus isolation, PCR testing and pathology associated with Sunshine virus infection. Clinical records and samples from naturally occurring cases were obtained from two captive snake collections and the archives of a veterinary diagnostic laboratory. The clinical signs that are associated with Sunshine virus infection are localised to the neurorespiratory systems or are non-specific (e.g. lethargy, inappetence). Out of 15 snakes that were infected with Sunshine virus (detected in any organ by either virus isolation or PCR), the virus was isolated from four out of ten (4/10) sampled brains, 3/10 sampled lungs and 2/7 pooled samples of kidney and liver. In these same 15 snakes, PCR was able to successfully detect Sunshine virus in fresh-frozen brain (11/11), kidney (7/8), lung (8/11) and liver (5/8); and various formalin-fixed paraffin-embedded tissues (7/8). During a natural outbreak of Sunshine virus in a collection of 32 snakes, the virus could be detected in five out of 39 combined oral-cloacal swabs that were collected from 23 of these snakes over a 105 day period. All snakes that were infected with Sunshine virus were negative for reovirus and ferlavirus by PCR. Snakes infected with Sunshine virus reliably exhibited hindbrain white matter spongiosis and gliosis with extension to the surrounding grey matter and neuronal necrosis evident in severe cases. Five out of eight infected snakes also exhibited mild bronchointerstitial pneumonia

  16. Failure of low-dose recombinant human IL-2 to support the survival of virus-specific CTL clones infused into severe combined immunodeficient foals: lack of correlation between in vitro activity and in vivo efficacy.

    PubMed

    Mealey, Robert H; Littke, Matt H; Leib, Steven R; Davis, William C; McGuire, Travis C

    2008-01-15

    Although CTL are important for control of lentiviruses, including equine infectious anemia virus (EIAV), it is not known if CTL can limit lentiviral replication in the absence of CD4 help and neutralizing antibody. Adoptive transfer of EIAV-specific CTL clones into severe combined immunodeficient (SCID) foals could resolve this issue, but it is not known whether exogenous IL-2 administration is sufficient to support the engraftment and proliferation of CTL clones infused into immunodeficient horses. To address this question we adoptively transferred EIAV Rev-specific CTL clones into four EIAV-challenged SCID foals, concurrent with low-dose aldesleukin (180,000U/m2), a modified recombinant human IL-2 (rhuIL-2) product. The dose was calculated based on the specific activity on equine PBMC in vitro, and resulted in plasma concentrations considered sufficient to saturate high affinity IL-2 receptors in humans. Despite specific activity on equine PBMC that was equivalent to recombinant equine IL-2 and another form of rhuIL-2, aldesleukin did not support the engraftment and expansion of infused CTL clones, and control of viral load and clinical disease did not occur. It was concluded that survival of Rev-specific CTL clones infused into EIAV-challenged SCID foals was not enhanced by aldesleukin at the doses used in this study, and that in vitro specific activity did not correlate with in vivo efficacy. Successful adoptive immunotherapy with CTL clones in immunodeficient horses will likely require higher doses of rhuIL-2, co-infusion of CD4+ T lymphocytes, or administration of equine IL-2. PMID:17727961

  17. Combination of reverse transcription real-time polymerase chain reaction and antigen capture enzyme-linked immunosorbent assay for the detection of animals persistently infected with Bovine viral diarrhea virus.

    PubMed

    Yan, Lifang; Zhang, Shuping; Pace, Lanny; Wilson, Floyd; Wan, Henry; Zhang, Michael

    2011-01-01

    Bovine viral diarrhea virus (BVDV) is an economically important pathogen of cattle. A successful control program requires early detection and removal of persistently infected (PI) animals. The objective of the current study was to develop, validate, and apply a cost-effective testing scheme for the detection of BVDV PI animals in exposed herds. Pooled samples were screened by using a real-time reverse transcription polymerase chain reaction (real-time RT-PCR), and individual positives were identified with an antigen capture enzyme-linked immunosorbent assay (ACE). The detection limits of the optimized real-time RT-PCR were 10 and 100 RNA copies per reaction for BVDV-1 and BVDV-2, respectively. The semiquantitative results of real-time RT-PCR and ACE or real-time RT-PCR and immunohistochemistry were moderately correlated. The threshold cycle of real-time RT-PCR performed on pooled samples was significantly correlated with the pool size (R(2)  =  0.993). The least-cost pool sizes were 50 at a prevalence of 0.25-0.5% and 25 at a prevalence of 0.75-2.0%. By using the combined real-time RT-PCR and ACE procedure, 111 of 27,932 samples (0.4%) tested positive for BVDV. At this prevalence, cost reduction associated with the application of real-time RT-PCR and ACE ranged from 61% to 94%, compared with testing individual samples by ACE, immunohistochemistry, or real-time RT-PCR. Real-time RT-PCR screening also indicated that 92.94% of PI animals were infected with BVDV-1, 3.53% with BVDV-2, and 3.53% with both BVDV-1 and BVDV-2. Analysis of the 5'-untranslated region of 22 isolates revealed the predominance of BVDV-1b followed by BVDV-2a. PMID:21217023

  18. Control of virus diseases of berry crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus control in berry crops starts with the development of plants free of targeted pathogens, usually viruses, viroids, phytoplasmas and systemic bacteria, through a combination of testing and therapy. These then become the top tier plants in certification programs and are the source from which all...

  19. Computer Viruses. Technology Update.

    ERIC Educational Resources Information Center

    Ponder, Tim, Comp.; Ropog, Marty, Comp.; Keating, Joseph, Comp.

    This document provides general information on computer viruses, how to help protect a computer network from them, measures to take if a computer becomes infected. Highlights include the origins of computer viruses; virus contraction; a description of some common virus types (File Virus, Boot Sector/Partition Table Viruses, Trojan Horses, and…

  20. Parainfluenza Viruses

    PubMed Central

    Henrickson, Kelly J.

    2003-01-01

    Human parainfluenza viruses (HPIV) were first discovered in the late 1950s. Over the last decade, considerable knowledge about their molecular structure and function has been accumulated. This has led to significant changes in both the nomenclature and taxonomic relationships of these viruses. HPIV is genetically and antigenically divided into types 1 to 4. Further major subtypes of HPIV-4 (A and B) and subgroups/genotypes of HPIV-1 and HPIV-3 have been described. HPIV-1 to HPIV-3 are major causes of lower respiratory infections in infants, young children, the immunocompromised, the chronically ill, and the elderly. Each subtype can cause somewhat unique clinical diseases in different hosts. HPIV are enveloped and of medium size (150 to 250 nm), and their RNA genome is in the negative sense. These viruses belong to the Paramyxoviridae family, one of the largest and most rapidly growing groups of viruses causing significant human and veterinary disease. HPIV are closely related to recently discovered megamyxoviruses (Hendra and Nipah viruses) and metapneumovirus. PMID:12692097

  1. Multiscale modeling of virus replication and spread.

    PubMed

    Kumberger, Peter; Frey, Felix; Schwarz, Ulrich S; Graw, Frederik

    2016-07-01

    Replication and spread of human viruses is based on the simultaneous exploitation of many different host functions, bridging multiple scales in space and time. Mathematical modeling is essential to obtain a systems-level understanding of how human viruses manage to proceed through their life cycles. Here, we review corresponding advances for viral systems of large medical relevance, such as human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV). We will outline how the combination of mathematical models and experimental data has advanced our quantitative knowledge about various processes of these pathogens, and how novel quantitative approaches promise to fill remaining gaps. PMID:26878104

  2. Hendra virus

    PubMed Central

    Middleton, Deborah

    2014-01-01

    Synopsis Hendra virus infection of horses occurred sporadically between 1994 and 2010 as a result of spill-over from the viral reservoir in Australian mainland flying-foxes, and occasional onward transmission to people also followed from exposure to affected horses. For reasons that are not well understood an unprecedented number of outbreaks were recorded in 2011, including the first recorded field infection of a dog, leading to heightened community concern. Increasingly, pressure mounted to instigate measures for control of flying-fox numbers, and equine health care workers started to leave the industry on account of risk and liability concerns. Release of an inactivated subunit vaccine for horses against Hendra virus represents the first commercially available product that is focused on mitigating the impact of a Biosafety Level 4 pathogen. Through preventing the development of acute Hendra virus disease in horses, vaccine use is also expected to reduce the risk of transmission of infection to people. This approach to emerging infectious disease management focuses on the role of horses as the proximal cause of human Hendra virus disease, and may assist in redirecting community concerns away from the flying-fox reservoirs, keystone species for the ongoing health of Australia’s native forests. PMID:25281398

  3. [Influenza virus].

    PubMed

    Juozapaitis, Mindaugas; Antoniukas, Linas

    2007-01-01

    Every year, especially during the cold season, many people catch an acute respiratory disease, namely flu. It is easy to catch this disease; therefore, it spreads very rapidly and often becomes an epidemic or a global pandemic. Airway inflammation and other body ailments, which form in a very short period, torment the patient several weeks. After that, the symptoms of the disease usually disappear as quickly as they emerged. The great epidemics of flu have rather unique characteristics; therefore, it is possible to identify descriptions of such epidemics in historic sources. Already in the 4th century bc, Hippocrates himself wrote about one of them. It is known now that flu epidemics emerge rather frequently, but there are no regular intervals between those events. The epidemics can differ in their consequences, but usually they cause an increased mortality of elderly people. The great flu epidemics of the last century took millions of human lives. In 1918-19, during "The Spanish" pandemic of flu, there were around 40-50 millions of deaths all over the world; "Pandemic of Asia" in 1957 took up to one million lives, etc. Influenza virus can cause various disorders of the respiratory system: from mild inflammations of upper airways to acute pneumonia that finally results in the patient's death. Scientist Richard E. Shope, who investigated swine flu in 1920, had a suspicion that the cause of this disease might be a virus. Already in 1933, scientists from the National Institute for Medical Research in London - Wilson Smith, Sir Christopher Andrewes, and Sir Patrick Laidlaw - for the first time isolated the virus, which caused human flu. Then scientific community started the exhaustive research of influenza virus, and the great interest in this virus and its unique features is still active even today. PMID:18182834

  4. Isolation of influenza viruses in MDCK 33016PF cells and clearance of contaminating respiratory viruses.

    PubMed

    Roth, Bernhard; Mohr, Hannah; Enders, Martin; Garten, Wolfgang; Gregersen, Jens-Peter

    2012-01-11

    This paper summarizes results obtained by multiplex PCR screening of human clinical samples for respiratory viruses and corresponding data obtained after passaging of virus-positive samples in MDCK 33016PF cells. Using the ResPlexII v2.0 (Qiagen) multiplex PCR, 393 positive results were obtained in 468 clinical samples collected during an influenza season in Germany. The overall distribution of positive results was influenza A 42.0%, influenza B 38.7%, adenovirus 1.5%, bocavirus 0.5%, coronavirus 3.3%, enterovirus 5.6%, metapneumovirus 1.0%, parainfluenza virus 0.8%, rhinovirus 4.1%, and respiratory syncytial virus (RSV) 2.5%. Double infections of influenza virus together with another virus were found for adenovirus B and E, bocavirus, coronavirus, enterovirus and for rhinovirus. These other viruses were rapidly lost upon passages in MDCK 33016PF cells and under conditions as applied to influenza virus passaging. Clinical samples, in which no influenza virus but other viruses were found, were also subject to passages in MDCK 33016PF cells. Using lower inoculum dilutions than those normally applied for preparations containing influenza virus (total dilution of the original sample of ∼10(4)), the positive results for the different viruses turned negative already after 2 or 3 passages in MDCK 33016PF cells. These results demonstrate that, under practical conditions as applied to grow influenza viruses, contaminating viruses can be effectively removed by passages in MDCK cells. In combination with their superior isolation efficiency, MDCK cells appear highly suitable to be used as an alternative to embryonated eggs to isolate and propagate influenza vaccine candidate viruses. PMID:22119922

  5. Live viruses to treat cancer

    PubMed Central

    Donnelly, Oliver; Harrington, Kevin; Melcher, Alan; Pandha, Hardev

    2013-01-01

    Viruses that selectively replicate in cancer cells, leading to the death of the cell, are being studied for their potential as cancer therapies. Some of these viruses are naturally occurring but cause little if any illness in humans; others have been engineered to make them specifically able to kill cancer cells while sparing normal cells. These oncolytic viruses may be selective for cancer cells because viral receptors are over-expressed on the surface of cancer cells or because antiviral pathways are distorted in cancer cells. Additionally, when oncolytic viruses kill cancer cells, it can stimulate an antitumour immune response from the host that can enhance efficacy. Numerous early phase trials of at least six oncolytic viruses have been reported with no evidence of concerning toxicity either as single agents or in combination with chemotherapies and radiotherapy. Three oncolytic viruses have reached randomized testing in cancer patients; reolysin in head and neck cancer and JX594 in hepatocellular cancers, while results from the first-phase III trial of T-vec in metastatic melanoma are expected shortly. PMID:23824333

  6. Orthopoxvirus DNA in Eurasian Lynx, Sweden

    PubMed Central

    Okeke, Malachy Ifeanyi; af Segerstad, Carl Hård; Mörner, Torsten; Traavik, Terje; Ryser-Degiorgis, Marie-Pierre

    2011-01-01

    Cowpox virus, which has been used to protect humans against smallpox but may cause severe disease in immunocompromised persons, has reemerged in humans, domestic cats, and other animal species in Europe. Orthopoxvirus (OPV) DNA was detected in tissues (lung, kidney, spleen) in 24 (9%) of 263 free-ranging Eurasian lynx (Lynx lynx) from Sweden. Thymidine kinase gene amplicon sequences (339 bp) from 21 lynx were all identical to those from cowpox virus isolated from a person in Norway and phylogenetically closer to monkeypox virus than to vaccinia virus and isolates from 2 persons with cowpox virus in Sweden. Prevalence was higher among animals from regions with dense, rather than rural, human populations. Lynx are probably exposed to OPV through predation on small mammal reservoir species. We conclude that OPV is widely distributed in Sweden and may represent a threat to humans. Further studies are needed to verify whether this lynx OPV is cowpox virus. PMID:21470451

  7. The Geometry of Viruses.

    ERIC Educational Resources Information Center

    Case, Christine L.

    1991-01-01

    Presented is an activity in which students make models of viruses, which allows them to visualize the shape of these microorganisms. Included are some background on viruses, the biology and geometry of viruses, directions for building viruses, a comparison of cells and viruses, and questions for students. (KR)

  8. Plant Virus Metagenomics: Advances in Virus Discovery.

    PubMed

    Roossinck, Marilyn J; Martin, Darren P; Roumagnac, Philippe

    2015-06-01

    In recent years plant viruses have been detected from many environments, including domestic and wild plants and interfaces between these systems-aquatic sources, feces of various animals, and insects. A variety of methods have been employed to study plant virus biodiversity, including enrichment for virus-like particles or virus-specific RNA or DNA, or the extraction of total nucleic acids, followed by next-generation deep sequencing and bioinformatic analyses. All of the methods have some shortcomings, but taken together these studies reveal our surprising lack of knowledge about plant viruses and point to the need for more comprehensive studies. In addition, many new viruses have been discovered, with most virus infections in wild plants appearing asymptomatic, suggesting that virus disease may be a byproduct of domestication. For plant pathologists these studies are providing useful tools to detect viruses, and perhaps to predict future problems that could threaten cultivated plants. PMID:26056847

  9. Measles virus

    PubMed Central

    Naim, Hussein Y

    2014-01-01

    Measles was an inevitable infection during the human development with substantial degree of morbidity and mortality. The severity of measles virus (MV) infection was largely contained by the development of a live attenuated vaccine that was introduced into the vaccination programs. However, all efforts to eradicate the disease failed and continued to annually result in significant deaths. The development of molecular biology techniques allowed the rescue of MV from cDNA that enabled important insights into a variety of aspects of the biology of the virus and its pathogenesis. Subsequently these technologies facilitated the development of novel vaccine candidates that induce immunity against measles and other pathogens. Based on the promising prospective, the use of MV as a recombinant vaccine and a therapeutic vector is addressed. PMID:25483511

  10. Zika Virus.

    PubMed

    Musso, Didier; Gubler, Duane J

    2016-07-01

    Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) in the genus Flavivirus and the family Flaviviridae. ZIKV was first isolated from a nonhuman primate in 1947 and from mosquitoes in 1948 in Africa, and ZIKV infections in humans were sporadic for half a century before emerging in the Pacific and the Americas. ZIKV is usually transmitted by the bite of infected mosquitoes. The clinical presentation of Zika fever is nonspecific and can be misdiagnosed as other infectious diseases, especially those due to arboviruses such as dengue and chikungunya. ZIKV infection was associated with only mild illness prior to the large French Polynesian outbreak in 2013 and 2014, when severe neurological complications were reported, and the emergence in Brazil of a dramatic increase in severe congenital malformations (microcephaly) suspected to be associated with ZIKV. Laboratory diagnosis of Zika fever relies on virus isolation or detection of ZIKV-specific RNA. Serological diagnosis is complicated by cross-reactivity among members of the Flavivirus genus. The adaptation of ZIKV to an urban cycle involving humans and domestic mosquito vectors in tropical areas where dengue is endemic suggests that the incidence of ZIKV infections may be underestimated. There is a high potential for ZIKV emergence in urban centers in the tropics that are infested with competent mosquito vectors such as Aedes aegypti and Aedes albopictus. PMID:27029595

  11. SAMPLING VIRUSES FROM SOIL

    EPA Science Inventory

    This chapter describes in detail methods for detecting viruses of bacteria and humans in soil. Methods also are presented for the assay of these viruses. Reference sources are provided for information on viruses of plants.

  12. Computer Viruses: An Overview.

    ERIC Educational Resources Information Center

    Marmion, Dan

    1990-01-01

    Discusses the early history and current proliferation of computer viruses that occur on Macintosh and DOS personal computers, mentions virus detection programs, and offers suggestions for how libraries can protect themselves and their users from damage by computer viruses. (LRW)

  13. Hanta virus (image)

    MedlinePlus

    Hanta virus is a distant cousin of Ebola virus, but is found worldwide. The virus is spread by human contact with rodent waste. Dangerous respiratory illness develops. Effective treatment is not yet ...

  14. Ebola Virus Disease

    MedlinePlus

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Ebola virus disease Fact sheet Updated January 2016 Key ... for survivors of Ebola virus disease Symptoms of Ebola virus disease The incubation period, that is, the ...

  15. Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    2012-11-01

    Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.

  16. Virus Movement Maintains Local Virus Population Diversity

    SciTech Connect

    J. Snyder; B. Wiedenheft; M. Lavin; F. Roberto; J. Spuhler; A. Ortmann; T. Douglas; M. Young

    2007-11-01

    Viruses are the largest reservoir of genetic material on the planet, yet little is known about the population dynamics of any virus within its natural environment. Over a 2-year period, we monitored the diversity of two archaeal viruses found in hot springs within Yellowstone National Park (YNP). Both temporal phylogeny and neutral biodiversity models reveal that virus diversity in these local environments is not being maintained by mutation but rather by high rates of immigration from a globally distributed metacommunity. These results indicate that geographically isolated hot springs are readily able to exchange viruses. The importance of virus movement is supported by the detection of virus particles in air samples collected over YNP hot springs and by their detection in metacommunity sequencing projects conducted in the Sargasso Sea. Rapid rates of virus movement are not expected to be unique to these archaeal viruses but rather a common feature among virus metacommunities. The finding that virus immigration rather than mutation can dominate community structure has significant implications for understanding virus circulation and the role that viruses play in ecology and evolution by providing a reservoir of mobile genetic material.

  17. Virus movement maintains local virus population diversity.

    PubMed

    Snyder, Jamie C; Wiedenheft, Blake; Lavin, Matthew; Roberto, Francisco F; Spuhler, Josh; Ortmann, Alice C; Douglas, Trevor; Young, Mark

    2007-11-27

    Viruses are the largest reservoir of genetic material on the planet, yet little is known about the population dynamics of any virus within its natural environment. Over a 2-year period, we monitored the diversity of two archaeal viruses found in hot springs within Yellowstone National Park (YNP). Both temporal phylogeny and neutral biodiversity models reveal that virus diversity in these local environments is not being maintained by mutation but rather by high rates of immigration from a globally distributed metacommunity. These results indicate that geographically isolated hot springs are readily able to exchange viruses. The importance of virus movement is supported by the detection of virus particles in air samples collected over YNP hot springs and by their detection in metacommunity sequencing projects conducted in the Sargasso Sea. Rapid rates of virus movement are not expected to be unique to these archaeal viruses but rather a common feature among virus metacommunities. The finding that virus immigration rather than mutation can dominate community structure has significant implications for understanding virus circulation and the role that viruses play in ecology and evolution by providing a reservoir of mobile genetic material. PMID:18025457

  18. Replication-Competent Viruses as Cancer Immunotherapeutics: Emerging Clinical Data

    PubMed Central

    Zamarin, Dmitriy; Pesonen, Sari

    2015-01-01

    Replication-competent (oncolytic) viruses (OV) as cancer immunotherapeutics have gained an increasing level of attention over the last few years while the clinical evidence of virus-mediated antitumor immune responses is still anecdotal. Multiple clinical studies are currently ongoing and more immunomonitoring results are expected within the next five years. All viruses can be recognized by the immune system and are therefore potential candidates for immune therapeutics. However, each virus activates innate immune system by using different combination of recognition receptors/pathways which leads to qualitatively different adaptive immune responses. This review summarizes immunological findings in cancer patients following treatment with replication-competent viruses. PMID:26176173

  19. Virus-Based Chemical and Biological Sensing

    PubMed Central

    Mao, Chuanbin; Liu, Aihua; Cao, Binrui

    2009-01-01

    Viruses have recently proven useful for the detection of target analytes such as explosives, proteins, bacteria, viruses, spores, and toxins with high selectivity and sensitivity. Bacteriophages (often shortened to phages), viruses that specifically infect bacteria, are currently the most studied viruses, mainly because target-specific nonlytic phages (and the peptides and proteins carried by them) can be identified by using the well-established phage display technique, and lytic phages can specifically break bacteria to release cell-specific marker molecules such as enzymes that can be assayed. In addition, phages have good chemical and thermal stability, and can be conjugated with nanomaterials and immobilized on a transducer surface in an analytical device. This Review focuses on progress made in the use of phages in chemical and biological sensors in combination with traditional analytical techniques. Recent progress in the use of virus—nanomaterial composites and other viruses in sensing applications is also high-lighted. PMID:19662666

  20. Immunogenicity of a modified-live virus vaccine against bovine viral diarrhea virus types 1 and 2, infectious bovine rhinotracheitis virus, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus when administered intranasally in young calves.

    PubMed

    Xue, Wenzhi; Ellis, John; Mattick, Debra; Smith, Linda; Brady, Ryan; Trigo, Emilio

    2010-05-14

    The immunogenicity of an intranasally-administered modified-live virus (MLV) vaccine in 3-8 day old calves was evaluated against bovine viral diarrhea virus (BVDV) types 1 and 2, infectious bovine rhinotracheitis (IBR) virus, parainfluenza-3 (PI-3) virus and bovine respiratory syncytial virus (BRSV). Calves were intranasally vaccinated with a single dose of a multivalent MLV vaccine and were challenged with one of the respective viruses three to four weeks post-vaccination in five separate studies. There was significant sparing of diseases in calves intranasally vaccinated with the MLV vaccine, as indicated by significantly fewer clinical signs, lower rectal temperatures, reduced viral shedding, greater white blood cell and platelet counts, and less severe pulmonary lesions than control animals. This was the first MLV combination vaccine to demonstrate efficacy against BVDV types 1 and 2, IBR, PI-3 and BRSV in calves 3-8 days of age. PMID:20381643

  1. Optical tweezers to study viruses.

    PubMed

    Arias-Gonzalez, J Ricardo

    2013-01-01

    A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids. Some aspects of the dynamic behavior of viruses and their substrates can be studied using structural and biochemical techniques. Recently, physical techniques have been applied to dynamic studies of viruses in which their intrinsic mechanical activity can be measured directly. Optical tweezers are a technology that can be used to measure the force, torque and strain produced by molecular motors, as a function of time and at the single-molecule level. Thanks to this technique, some bacteriophages are now known to be powerful nanomachines; they exert force in the piconewton range and their motors work in a highly coordinated fashion for packaging the viral nucleic acid genome. Nucleic acids, whose elasticity and condensation behavior are inherently coupled to the viral packaging mechanisms, are also amenable to examination with optical tweezers. In this chapter, we provide a comprehensive analysis of this laser-based tool, its combination with imaging methods and its application to the study of viruses and viral molecules. PMID:23737055

  2. Viruses and Virus Diseases of Rubus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rubus species are propagated vegetatively and are subject to infection by viruses during development, propagation and fruit production stages. Reports of initial detection and symptoms of more than 30 viruses, virus-like diseases and phytoplasmas affecting Rubus spp. have been reviewed more than 20 ...

  3. Virophages or satellite viruses?

    PubMed

    Krupovic, Mart; Cvirkaite-Krupovic, Virginija

    2011-11-01

    It has been argued that the smaller viruses associated with giant DNA viruses are a new biological entity. However, Mart Krupovic and Virginija Cvirkaite-Krupovic argue here that these smaller viruses should be classified with the satellite viruses. PMID:22016897

  4. The Tobacco Mosaic Virus.

    ERIC Educational Resources Information Center

    Sulzinski, Michael A.

    1992-01-01

    Explains how the tobacco mosaic virus can be used to study virology. Presents facts about the virus, procedures to handle the virus in the laboratory, and four laboratory exercises involving the viruses' survival under inactivating conditions, dilution end point, filterability, and microscopy. (MDH)

  5. Virulence determinants of pandemic influenza viruses

    PubMed Central

    Tscherne, Donna M.; García-Sastre, Adolfo

    2011-01-01

    Influenza A viruses cause recurrent, seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. The ability of influenza A viruses to adapt to various hosts and undergo reassortment events ensures constant generation of new strains with unpredictable degrees of pathogenicity, transmissibility, and pandemic potential. Currently, the combination of factors that drives the emergence of pandemic influenza is unclear, making it impossible to foresee the details of a future outbreak. Identification and characterization of influenza A virus virulence determinants may provide insight into genotypic signatures of pathogenicity as well as a more thorough understanding of the factors that give rise to pandemics. PMID:21206092

  6. Virus inactivation in aluminum and polyaluminum coagulation.

    PubMed

    Matsui, Yoshihiko; Matsushita, Taku; Sakuma, Satoru; Gojo, Takahito; Mamiya, Teppei; Suzuoki, Hiroshi; Inoue, Takanobu

    2003-11-15

    Inorganic aluminum salts, such as aluminum sulfate, are coagulants that cause small particles, such as bacteria and viruses as well as inorganic particles, to destabilize and combine into larger aggregates. In this investigation, batch coagulation treatments of water samples spiked with Qbeta, MS2, T4, and P1 viruses were conducted with four different aluminum coagulants. The total infectious virus concentration in the suspension of floc particles that eventually formed by dosing with coagulant was measured after the floc particles were dissolved by raising the pH with an alkaline beef extract solution. The virus concentrations were extremely reduced after the water samples were dosed with aluminum coagulants. Viruses mixed with and adsorbed onto preformed aluminum hydroxide floc were, however, completely recovered after the floc dissolution. These results indicated that the aluminum coagulation process inactivates viruses. Virucidal activity was most prominent with the prehydrolyzed aluminum salt coagulant, polyaluminum chloride (PACl). Virucidal activity was lower in river water than in ultrapure water--natural organic matter in the river water depressed the virucidal activity. Mechanisms and kinetics of the virus inactivation were discussed. Our results suggest that intermediate polymers formed during hydrolysis of the aluminum coagulants sorbed strongly to viruses, either rendering them inactive or preventing infectivity. PMID:14655704

  7. Genetic susceptibility to and presence of endogenous avian leukosis viruses impose no significant impact on survival days of chickens challenged with very virulent plus Marek's disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chicks of distinct genotypes at the tumor virus B locus (TVB) in combination with presence or absence of endogenous avian leukosis virus ev21 gene in their genomes were examined for survival day patterns after challenge with very virulent plus Marek’s disease virus (vv+MDV) in three consecutive tria...

  8. Genetic and antigenic characterization of Bungowannah virus, a novel pestivirus.

    PubMed

    Kirkland, P D; Frost, M J; King, K R; Finlaison, D S; Hornitzky, C L; Gu, X; Richter, M; Reimann, I; Dauber, M; Schirrmeier, H; Beer, M; Ridpath, J F

    2015-08-01

    Bungowannah virus, a possible new species within the genus Pestivirus, has been associated with a disease syndrome in pigs characterized by myocarditis with a high incidence of stillbirths. The current analysis of the whole-genome and antigenic properties of this virus confirms its unique identity, and further suggests that this virus is both genetically and antigenically remote from previously recognized pestiviruses. There was no evidence of reactivity with monoclonal antibodies (mAbs) that are generally considered to be pan-reactive with other viruses in the genus, and there was little cross reactivity with polyclonal sera. Subsequently, a set of novel mAbs has been generated which allow detection of Bungowannah virus. The combined data provide convincing evidence that Bungowannah virus is a member of the genus Pestivirus and should be officially recognized as a novel virus species. PMID:26049593

  9. Recent zoonoses caused by influenza A viruses.

    PubMed

    Alexander, D J; Brown, I H

    2000-04-01

    Influenza is a highly contagious, acute illness which has afflicted humans and animals since ancient times. Influenza viruses are part of the Orthomyxoviridae family and are grouped into types A, B and C according to antigenic characteristics of the core proteins. Influenza A viruses infect a large variety of animal species, including humans, pigs, horses, sea mammals and birds, occasionally producing devastating pandemics in humans, such as in 1918, when over twenty million deaths occurred world-wide. The two surface glycoproteins of the virus, haemagglutinin (HA) and neuraminidase (NA), are the most important antigens for inducing protective immunity in the host and therefore show the greatest variation. For influenza A viruses, fifteen antigenically distinct HA subtypes and nine NA subtypes are recognised at present; a virus possesses one HA and one NA subtype, apparently in any combination. Although viruses of relatively few subtype combinations have been isolated from mammalian species, all subtypes, in most combinations, have been isolated from birds. In the 20th Century, the sudden emergence of antigenically different strains in humans, termed antigenic shift, has occurred on four occasions, as follows, in 1918 (H1N1), 1957 (H2N2), 1968 (H3N2) and 1977 (H1N1), each resulting in a pandemic. Frequent epidemics have occurred between the pandemics as a result of gradual antigenic change in the prevalent virus, termed antigenic drift. Currently, epidemics occur throughout the world in the human population due to infection with influenza A viruses of subtypes H1N1 and H3N2 or with influenza B virus. The impact of these epidemics is most effectively measured by monitoring excess mortality due to pneumonia and influenza. Phylogenetic studies suggest that aquatic birds could be the source of all influenza A viruses in other species. Human pandemic strains are thought to have emerged through one of the following three mechanisms: genetic reassortment (occurring as a

  10. Tailoring a Combination Preerythrocytic Malaria Vaccine

    PubMed Central

    Bauza, Karolis; Malinauskas, Tomas; Blagborough, Andrew M.; Reyes-Sandoval, Arturo

    2015-01-01

    The leading malaria vaccine candidate, RTS,S, based on the Plasmodium falciparum circumsporozoite protein (CSP), will likely be the first publicly adopted malaria vaccine. However, this and other subunit vaccines, such as virus-vectored thrombospondin-related adhesive protein (TRAP), provide only intermediate to low levels of protection. In this study, the Plasmodium berghei homologues of antigens CSP and TRAP are combined. TRAP is delivered using adenovirus- and vaccinia virus-based vectors in a prime-boost regime. Initially, CSP is also delivered using these viral vectors; however, a reduction of anti-CSP antibodies is seen when combined with virus-vectored TRAP, and the combination is no more protective than either subunit vaccine alone. Using an adenovirus-CSP prime, protein-CSP boost regime, however, increases anti-CSP antibody titers by an order of magnitude, which is maintained when combined with virus-vectored TRAP. This combination regime using protein CSP provided 100% protection in C57BL/6 mice compared to no protection using virus-vectored TRAP alone and 40% protection using adenovirus-CSP prime and protein-CSP boost alone. This suggests that a combination of CSP and TRAP subunit vaccines could enhance protection against malaria. PMID:26667840

  11. Tailoring a Combination Preerythrocytic Malaria Vaccine.

    PubMed

    Bauza, Karolis; Atcheson, Erwan; Malinauskas, Tomas; Blagborough, Andrew M; Reyes-Sandoval, Arturo

    2015-01-01

    The leading malaria vaccine candidate, RTS,S, based on the Plasmodium falciparum circumsporozoite protein (CSP), will likely be the first publicly adopted malaria vaccine. However, this and other subunit vaccines, such as virus-vectored thrombospondin-related adhesive protein (TRAP), provide only intermediate to low levels of protection. In this study, the Plasmodium berghei homologues of antigens CSP and TRAP are combined. TRAP is delivered using adenovirus- and vaccinia virus-based vectors in a prime-boost regime. Initially, CSP is also delivered using these viral vectors; however, a reduction of anti-CSP antibodies is seen when combined with virus-vectored TRAP, and the combination is no more protective than either subunit vaccine alone. Using an adenovirus-CSP prime, protein-CSP boost regime, however, increases anti-CSP antibody titers by an order of magnitude, which is maintained when combined with virus-vectored TRAP. This combination regime using protein CSP provided 100% protection in C57BL/6 mice compared to no protection using virus-vectored TRAP alone and 40% protection using adenovirus-CSP prime and protein-CSP boost alone. This suggests that a combination of CSP and TRAP subunit vaccines could enhance protection against malaria. PMID:26667840

  12. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  13. Viruses Infecting Reptiles

    PubMed Central

    Marschang, Rachel E.

    2011-01-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions. PMID:22163336

  14. Development of high-yield influenza A virus vaccine viruses.

    PubMed

    Ping, Jihui; Lopes, Tiago J S; Nidom, Chairul A; Ghedin, Elodie; Macken, Catherine A; Fitch, Adam; Imai, Masaki; Maher, Eileen A; Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Vaccination is one of the most cost-effective ways to prevent infection. Influenza vaccines propagated in cultured cells are approved for use in humans, but their yields are often suboptimal. Here, we screened A/Puerto Rico/8/34 (PR8) virus mutant libraries to develop vaccine backbones (defined here as the six viral RNA segments not encoding haemagglutinin and neuraminidase) that support high yield in cell culture. We also tested mutations in the coding and regulatory regions of the virus, and chimeric haemagglutinin and neuraminidase genes. A combination of high-yield mutations from these screens led to a PR8 backbone that improved the titres of H1N1, H3N2, H5N1 and H7N9 vaccine viruses in African green monkey kidney and Madin-Darby canine kidney cells. This PR8 backbone also improves titres in embryonated chicken eggs, a common propagation system for influenza viruses. This PR8 vaccine backbone thus represents an advance in seasonal and pandemic influenza vaccine development. PMID:26334134

  15. Development of high-yield influenza A virus vaccine viruses

    PubMed Central

    Ping, Jihui; Lopes, Tiago J.S.; Nidom, Chairul A.; Ghedin, Elodie; Macken, Catherine A.; Fitch, Adam; Imai, Masaki; Maher, Eileen A.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Vaccination is one of the most cost-effective ways to prevent infection. Influenza vaccines propagated in cultured cells are approved for use in humans, but their yields are often suboptimal. Here, we screened A/Puerto Rico/8/34 (PR8) virus mutant libraries to develop vaccine backbones (defined here as the six viral RNA segments not encoding haemagglutinin and neuraminidase) that support high yield in cell culture. We also tested mutations in the coding and regulatory regions of the virus, and chimeric haemagglutinin and neuraminidase genes. A combination of high-yield mutations from these screens led to a PR8 backbone that improved the titres of H1N1, H3N2, H5N1 and H7N9 vaccine viruses in African green monkey kidney and Madin–Darby canine kidney cells. This PR8 backbone also improves titres in embryonated chicken eggs, a common propagation system for influenza viruses. This PR8 vaccine backbone thus represents an advance in seasonal and pandemic influenza vaccine development. PMID:26334134

  16. Unlocking the promise of oncolytic virotherapy in glioma: combination with chemotherapy to enhance efficacy

    PubMed Central

    Spencer, Drew A; Young, Jacob S; Kanojia, Deepak; Kim, Julius W; Polster, Sean P; Murphy, Jason P; Lesniak, Maciej S

    2015-01-01

    Malignant glioma is a relentless burden to both patients and clinicians, and calls for innovation to overcome the limitations in current management. Glioma therapy using viruses has been investigated to accentuate the nature of a virus, killing a host tumor cell during its replication. As virus mediated approaches progress with promising therapeutic advantages, combination therapy with chemotherapy and oncolytic viruses has emerged as a more synergistic and possibly efficacious therapy. Here, we will review malignant glioma as well as prior experience with oncolytic viruses, chemotherapy and combination of the two, examining how the combination can be optimized in the future. PMID:25996044

  17. Pandemic Threat Posed by Avian Influenza A Viruses

    PubMed Central

    Horimoto, Taisuke; Kawaoka, Yoshihiro

    2001-01-01

    Influenza pandemics, defined as global outbreaks of the disease due to viruses with new antigenic subtypes, have exacted high death tolls from human populations. The last two pandemics were caused by hybrid viruses, or reassortants, that harbored a combination of avian and human viral genes. Avian influenza viruses are therefore key contributors to the emergence of human influenza pandemics. In 1997, an H5N1 influenza virus was directly transmitted from birds in live poultry markets in Hong Kong to humans. Eighteen people were infected in this outbreak, six of whom died. This avian virus exhibited high virulence in both avian and mammalian species, causing systemic infection in both chickens and mice. Subsequently, another avian virus with the H9N2 subtype was directly transmitted from birds to humans in Hong Kong. Interestingly, the genes encoding the internal proteins of the H9N2 virus are genetically highly related to those of the H5N1 virus, suggesting a unique property of these gene products. The identification of avian viruses in humans underscores the potential of these and similar strains to produce devastating influenza outbreaks in major population centers. Although highly pathogenic avian influenza viruses had been identified before the 1997 outbreak in Hong Kong, their devastating effects had been confined to poultry. With the Hong Kong outbreak, it became clear that the virulence potential of these viruses extended to humans. PMID:11148006

  18. Viruses in maize and johnsongrass in southern ohio.

    PubMed

    Stewart, L R; Teplier, R; Todd, J C; Jones, M W; Cassone, B J; Wijeratne, S; Wijeratne, A; Redinbaugh, M G

    2014-12-01

    ABSTRACT The two major U.S. maize viruses, Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV), emerged in southern Ohio and surrounding regions in the 1960s and caused significant losses. Planting resistant varieties and changing cultural practices has dramatically reduced virus impact in subsequent decades. Current information on the distribution, diversity, and impact of known and potential U.S. maize disease-causing viruses is lacking. To assess the current reservoir of viruses present at the sites of past disease emergence, we used a combination of serological testing and next-generation RNA sequencing approaches. Here, we report enzyme-linked immunosorbent assay and RNA-Seq data from samples collected over 2 years to assess the presence of viruses in cultivated maize and an important weedy reservoir, Johnsongrass (Sorghum halepense). Results revealed a persistent reservoir of MDMV and two strains of MCDV in Ohio Johnsongrass. We identified sequences of several other grass-infecting viruses and confirmed the presence of Wheat mosaic virus in Ohio maize. Together, these results provide important data for managing virus disease in field corn and sweet corn maize crops, and identifying potential future virus threats. PMID:24918609

  19. Humic acid interference with virus recovery by electropositive microporous filters.

    PubMed Central

    Guttman-Bass, N; Catalano-Sherman, J

    1986-01-01

    The effects of humic acid on poliovirus type 1 recovery from water by Zeta Plus 60S filters were investigated. The humic acid interfered by preventing virus adsorption to the filters, and the interference increased as a function of the amount of humic acid filtered. Humic acid decreased virus adsorption when filtered before the virus, but did not elute virus which had adsorbed to the filters. The effects on virus recovery were not due to alterations in virus titer or neutralizability. The addition of AlCl3, which improved virus recovery by electronegative filters in the presence of humic acid, did not aid in overall virus recovery by the Zeta Plus filters in the presence or absence of humic acid. However, the salt and humic acid in combination improved virus adsorption and concurrently reduced virus elution efficiency. The addition of NaH2PO4 had no direct effect on virus recovery and did not alter the effect of humic acid. In an attempt to identify the components of humic acid responsible for the interference, humic materials were fractionated by size by using Sephadex gel chromatography and dialysis, and the fractions were tested for interfering activity. Interference was not associated with specific size fractions of the humic materials. PMID:3021058

  20. New vaccines against influenza virus

    PubMed Central

    Lee, Young-Tae; Kim, Ki-Hye; Ko, Eun-Ju; Lee, Yu-Na; Kim, Min-Chul; Kwon, Young-Man; Tang, Yinghua; Cho, Min-Kyoung; Lee, Youn-Jeong

    2014-01-01

    Vaccination is one of the most effective and cost-benefit interventions that prevent the mortality and reduce morbidity from infectious pathogens. However, the licensed influenza vaccine induces strain-specific immunity and must be updated annually based on predicted strains that will circulate in the upcoming season. Influenza virus still causes significant health problems worldwide due to the low vaccine efficacy from unexpected outbreaks of next epidemic strains or the emergence of pandemic viruses. Current influenza vaccines are based on immunity to the hemagglutinin antigen that is highly variable among different influenza viruses circulating in humans and animals. Several scientific advances have been endeavored to develop universal vaccines that will induce broad protection. Universal vaccines have been focused on regions of viral proteins that are highly conserved across different virus subtypes. The strategies of universal vaccines include the matrix 2 protein, the hemagglutinin HA2 stalk domain, and T cell-based multivalent antigens. Supplemented and/or adjuvanted vaccination in combination with universal target antigenic vaccines would have much promise. This review summarizes encouraging scientific advances in the field with a focus on novel vaccine designs. PMID:24427759

  1. A virus-based biocatalyst

    NASA Astrophysics Data System (ADS)

    Carette, Noëlle; Engelkamp, Hans; Akpa, Eric; Pierre, Sebastien J.; Cameron, Neil R.; Christianen, Peter C. M.; Maan, Jan C.; Thies, Jens C.; Weberskirch, Ralf; Rowan, Alan E.; Nolte, Roeland J. M.; Michon, Thierry; van Hest, Jan C. M.

    2007-04-01

    Virus particles are probably the most precisely defined nanometre-sized objects that can be formed by protein self-assembly. Although their natural function is the storage and transport of genetic material, they have more recently been applied as scaffolds for mineralization and as containers for the encapsulation of inorganic compounds. The reproductive power of viruses has been used to develop versatile analytical methods, such as phage display, for the selection and identification of (bio)active compounds. To date, the combined use of self-assembly and reproduction has not been used for the construction of catalytic systems. Here we describe a self-assembled system based on a plant virus that has its coat protein genetically modified to provide it with a lipase enzyme. Using single-object and bulk catalytic studies, we prove that the virus-anchored lipase molecules are catalytically active. This anchored biocatalyst, unlike man-made supported catalysts, has the capability to reproduce itself in vivo, generating many independent catalytically active copies.

  2. Morphogenesis of Bittner Virus

    PubMed Central

    Gay, Frederick W.; Clarke, John K.; Dermott, Evelyn

    1970-01-01

    The morphogenesis of Bittner virus (mouse mammary tumor virus) was studied in sectioned mammary tumor cells. Internal components of the virus (type A particles) were seen being assembled in virus factories close to the nucleus and were also seen forming at the plasma membrane. The particles in virus factories became enveloped by budding through the membrane of cytoplasmic vacuoles which were derived from dilated endoplasmic reticulum. Complete virus particles were liberated from these vacuoles by cell lysis. Particles budding at the plasma membrane were released into intercellular spaces. Maturation of enveloped virus occurred after release, but mature internal components were rarely seen in the cytoplasm before envelopment. Direct cell-to-cell transfer of virus by pinocytosis of budding particles by an adjacent cell was observed, and unusual forms of budding virus which participated in this process are illustrated and described. There was evidence that some virus particles contained cytoplasmic constituents, including ribosomes. Certain features of the structure of internal components are discussed in relation to a recently proposed model for the internal component of the mouse leukemia virus. Intracisternal virus-like particles were occasionally seen in tumor cells, but there was no evidence that these structures were developmentally related to Bittner virus. Images PMID:4193837

  3. Raspberry (Rubus spp.)-Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are several important virus diseases of raspberry and black raspberry in the Pacific Northwest. Pollen-borne viruses include Raspberry bushy dwarf virus and Strawberry necrotic shock virus (aka Tobacco streak virus –Rubus isolate or Black raspberry latent virus). Strawberry necrotic shock viru...

  4. Isolation of sochi virus from a fatal case of hantavirus disease with fulminant clinical course.

    PubMed

    Dzagurova, Tamara K; Witkowski, Peter T; Tkachenko, Evgeniy A; Klempa, Boris; Morozov, Vyacheslav G; Auste, Brita; Zavora, Dmitriy L; Iunicheva, Iulia V; Mutnih, Elena S; Kruger, Detlev H

    2012-01-01

    Sochi virus, a novel genetic variant of Dobrava-Belgrade virus, was isolated in cell culture from a fulminant lethal case of hantavirus disease presenting with shock and combined kidney and lung failure. Sochi virus is transmitted to humans from host reservoir Apodemus ponticus and must be considered a life-threatening emerging agent. PMID:22042875

  5. Multiscale perspectives of virus entry via endocytosis

    PubMed Central

    2013-01-01

    Most viruses take advantage of endocytic pathways to gain entry into host cells and initiate infections. Understanding of virus entry via endocytosis is critically important for the design of antiviral strategies. Virus entry via endocytosis is a complex process involving hundreds of cellular proteins. The entire process is dictated by events occurring at multiple time and length scales. In this review, we discuss and evaluate the available means to investigate virus endocytic entry, from both experimental and theoretical/numerical modeling fronts, and highlight the importance of multiscale features. The complexity of the process requires investigations at a systems biology level, which involves the combination of different experimental approaches, the collaboration of experimentalists and theorists across different disciplines, and the development of novel multiscale models. PMID:23734580

  6. Clinical development of oncolytic viruses in China.

    PubMed

    Liang, Min

    2012-07-01

    The oncolytic virus, being a promising new therapeutic strategy for cancer, has inspired a wave of recent clinical research and development in China. The first commercialized oncolytic virus, Oncorine, was approved by Chinese SFDA in November 2005 for nasopharyngeal carcinoma combined with chemotherapy. Since then, a number of oncolytic viruses have been moved into clinical trials. Among these are the armed oncolytic adenoviruses such as H103 (expressing the heat shock protein) currently has finished phase I trial, and KH901 (expressing GM-CSF) now launched in phase II trial In this review, we will discuss the current status of ongoing oncolytic virus projects being conducted at various clinical stages in China, including the preliminary market response for Oncorine after it was launched into the Chinese market in 2006. PMID:21740357

  7. Efficacy of Inactivated Swine Influenza Virus Vaccines Against 2009 H1N1 Influenza Virus in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. The gene constellation of the 2009 pandemic H1N1 virus is a unique combination from swine influenza A viruses (SIV) of North American and Eurasian lineages, but prior to April 2009 had never before been identified in swine or other species (1). Although its hemagglutinin gene is relat...

  8. Efficacy of Inactivated Swine Influenza Virus Vaccines Against the 2009 A/H1N1 Influenza Virus in Pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene constellation of the 2009 pandemic A/H1N1 virus is a unique combination from swine influenza A viruses (SIV) of North American and Eurasian lineages, but prior to April 2009 had never before been identified in swine or other species. Although its hemagglutinin gene is related to North Ameri...

  9. Tumorigenic DNA viruses

    SciTech Connect

    Klein, G.

    1989-01-01

    The eighth volume of Advances in Viral Oncology focuses on the three major DNA virus groups with a postulated or proven tumorigenic potential: papillomaviruses, animal hepatitis viruses, and the Epstein-Bar virus. In the opening chapters, the contributors analyze the evidence that papillomaviruses and animal hepatitis viruses are involved in tumorigenesis and describe the mechanisms that trigger virus-host cell interactions. A detailed section on the Epstein-Barr virus (EBV) - comprising more than half the book - examines the transcription and mRNA processing patterns of the virus genome; the mechanisms by which EBV infects lymphoid and epithelial cells; the immunological aspects of the virus; the actions of EBV in hosts with Acquired Immune Deficiency Syndrome; and the involvement of EBV in the etiology of Burkitt's lymphoma.

  10. Zika Virus Fact Sheet

    MedlinePlus

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key facts ... and last for 2-7 days. Complications of Zika virus disease After a comprehensive review of evidence, there ...

  11. Viruses and Breast Cancer

    PubMed Central

    Lawson, James S.; Heng, Benjamin

    2010-01-01

    Viruses are the accepted cause of many important cancers including cancers of the cervix and anogenital area, the liver, some lymphomas, head and neck cancers and indirectly human immunodeficiency virus associated cancers. For over 50 years, there have been serious attempts to identify viruses which may have a role in breast cancer. Despite these efforts, the establishment of conclusive evidence for such a role has been elusive. However, the development of extremely sophisticated new experimental techniques has allowed the recent development of evidence that human papilloma virus, Epstein-Barr virus, mouse mammary tumor virus and bovine leukemia virus may each have a role in the causation of human breast cancers. This is potentially good news as effective vaccines are already available to prevent infections from carcinogenic strains of human papilloma virus, which causes cancer of the uterine cervix. PMID:24281093

  12. Respiratory Syncytial Virus Infections

    MedlinePlus

    Respiratory syncytial virus (RSV) causes mild, cold-like symptoms in adults and older healthy children. It can cause serious problems in ... tests can tell if your child has the virus. There is no specific treatment. You should give ...

  13. Human Parainfluenza Viruses

    MedlinePlus

    ... HPIVs Are Not the Same as Influenza (Flu) Viruses People usually get HPIV infections more often in ... hands, and touching objects or surfaces with the viruses on them then touching your mouth, nose, or ...

  14. Advances in virus research

    SciTech Connect

    Maramorosch, K. ); Murphy, F.A. ); Shatkin, A.J. )

    1988-01-01

    This book contains eight chapters. Some of the titles are: Initiation of viral DNA replication; Vaccinia: virus, vector, vaccine; The pre-S region of hepadnavirus envelope proteins; and Archaebacterial viruses.

  15. Herpes Simplex Virus (HSV)

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Herpes Simplex Virus (HSV) A parent's guide to condition and treatment ... skin or mouth sores with the herpes simplex virus (HSV) is called primary herpes. This may be ...

  16. Virus Assembly and Maturation

    NASA Astrophysics Data System (ADS)

    Johnson, John E.

    2004-03-01

    We use two techniques to look at three-dimensional virus structure: electron cryomicroscopy (cryoEM) and X-ray crystallography. Figure 1 is a gallery of virus particles whose structures Timothy Baker, one of my former colleagues at Purdue University, used cryoEM to determine. It illustrates the variety of sizes of icosahedral virus particles. The largest virus particle on this slide is the Herpes simplex virus, around 1200Å in diameter; the smallest we examined was around 250Å in diameter. Viruses bear their genomic information either as positive-sense DNA and RNA, double-strand DNA, double-strand RNA, or negative-strand RNA. Viruses utilize the various structure and function "tactics" seen throughout cell biology to replicate at high levels. Many of the biological principles that we consider general were in fact discovered in the context of viruses ...

  17. West Nile virus

    MedlinePlus

    West Nile virus is a disease spread by mosquitoes. The condition ranges from mild to severe. ... West Nile virus was first identified in 1937 in Uganda in eastern Africa. It was first discovered in the U.S. in ...

  18. Peptide inhibitors of dengue virus and West Nile virus infectivity

    PubMed Central

    Hrobowski, Yancey M; Garry, Robert F; Michael, Scott F

    2005-01-01

    Viral fusion proteins mediate cell entry by undergoing a series of conformational changes that result in virion-target cell membrane fusion. Class I viral fusion proteins, such as those encoded by influenza virus and human immunodeficiency virus (HIV), contain two prominent alpha helices. Peptides that mimic portions of these alpha helices inhibit structural rearrangements of the fusion proteins and prevent viral infection. The envelope glycoprotein (E) of flaviviruses, such as West Nile virus (WNV) and dengue virus (DENV), are class II viral fusion proteins comprised predominantly of beta sheets. We used a physio-chemical algorithm, the Wimley-White interfacial hydrophobicity scale (WWIHS) [1] in combination with known structural data to identify potential peptide inhibitors of WNV and DENV infectivity that target the viral E protein. Viral inhibition assays confirm that several of these peptides specifically interfere with target virus entry with 50% inhibitory concentration (IC50) in the 10 μM range. Inhibitory peptides similar in sequence to domains with a significant WWIHS scores, including domain II (IIb), and the stem domain, were detected. DN59, a peptide corresponding to the stem domain of DENV, inhibited infection by DENV (>99% inhibition of plaque formation at a concentrations of <25 μM) and cross-inhibition of WNV fusion/infectivity (>99% inhibition at <25 μM) was also demonstrated with DN59. However, a potent WNV inhibitory peptide, WN83, which corresponds to WNV E domain IIb, did not inhibit infectivity by DENV. Additional results suggest that these inhibitory peptides are noncytotoxic and act in a sequence specific manner. The inhibitory peptides identified here can serve as lead compounds for the development of peptide drugs for flavivirus infection. PMID:15927084

  19. Power combiner

    DOEpatents

    Arnold, Mobius; Ives, Robert Lawrence

    2006-09-05

    A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

  20. Hepatitis D Virus Replication.

    PubMed

    Taylor, John M

    2015-11-01

    This work reviews specific related aspects of hepatitis delta virus (HDV) reproduction, including virion structure, the RNA genome, the mode of genome replication, the delta antigens, and the assembly of HDV using the envelope proteins of its helper virus, hepatitis B virus (HBV). These topics are considered with perspectives ranging from a history of discovery through to still-unsolved problems. HDV evolution, virus entry, and associated pathogenic potential and treatment of infections are considered in other articles in this collection. PMID:26525452

  1. Avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is type A influenza, which is adapted to an avian host. Although avian influenza has been isolated from numerous avian species, the primary natural hosts for the virus are dabbling ducks, shorebirds, and gulls. The virus can be found world-wide in these species and in o...

  2. Computer Virus Protection

    ERIC Educational Resources Information Center

    Rajala, Judith B.

    2004-01-01

    A computer virus is a program--a piece of executable code--that has the unique ability to replicate. Like biological viruses, computer viruses can spread quickly and are often difficult to eradicate. They can attach themselves to just about any type of file, and are spread by replicating and being sent from one individual to another. Simply having…

  3. Respiratory Syncytial Virus

    MedlinePlus

    ... Palsy: Shannon's Story" 5 Things to Know About Zika & Pregnancy Respiratory Syncytial Virus KidsHealth > For Parents > Respiratory Syncytial Virus Print A ... often get it when older kids carry the virus home from school and pass it to ... often happen in epidemics that last from late fall through early spring. ...

  4. BOVINE VIRAL DIARRHEA VIRUSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine viral diarrhea virus (BVDV) is an umbrella term for two species of viruses, BVDV1 and BVDV2, within the Pestivirus genus of the Flavivirus family. BVDV viruses are further subclassified as cytopathic and noncytopathic based on their activity in cultured epithelial cells. Noncytopathic BVDV p...

  5. The taxonomy of viruses should include viruses.

    PubMed

    Calisher, Charles H

    2016-05-01

    Having lost sight of its goal, the International Committee on Taxonomy of Viruses has redoubled its efforts. That goal is to arrive at a consensus regarding virus classification, i.e., proper placement of viruses in a hierarchical taxonomic scheme; not an easy task given the wide variety of recognized viruses. Rather than suggesting a continuation of the bureaucratic machinations of the past, this opinion piece is a call for insertion of common sense in sorting out the avalanche of information already, and soon-to-be, accrued data. In this way information about viruses ideally would be taxonomically correct as well as useful to working virologists and journal editors, rather than being lost, minimized, or ignored. PMID:26914357

  6. [Effect of silver compounds on viruses in water].

    PubMed

    Mahnel, H; Schmidt, M

    1986-07-01

    Two commercial substances, Certisil and Micropur, containing microbicidal silver compounds and destinated for decontamination as well as preservation of water were examined for virus inactivating activity against ECBO-, influenza A, Newcastle Disease, pseudorabies and vaccinia viruses in drinking water. In the recommended concentration as well as higher concentrated the lability of the viruses was increased by the silver compounds. This activity which cannot be designated as a true virucidal effect was clearly evident in the case of ECBO and vaccinia viruses, moderate on influenza and pseudorabies viruses but insignificant on Newcastle disease virus. Two combined silver compounds, Certisil-Combina and Sanosil, each containing an immediate microbicidal part besides silver differed in their antiviral activity. The chlorine separating part of Certisil-Combina didn't cause an improvement or acceleration of the destabilizing effect on viruses compared to the pure silver compound, while the hydrogen peroxide part of Sanosil led to a better and continuing inactivating influence on the viruses which were merely reduced in infectivity by 99,9% within one day. Only in the case of evident or suspected contamination of water reservoirs by viruses the addition of a combined silver drug with oxygen separating part seems to be useful. PMID:3022501

  7. Blueberry (Vaccinium corymbosum)-Virus Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At least six viruses have been found in highbush blueberry plantings in the Pacific Northwest: Blueberry mosaic virus, Blueberry red ringspot virus, Blueberry scorch virus, Blueberry shock virus, Tobacco ringspot virus, and Tomato ringspot virus. Six other virus and virus-like diseases of highbush b...

  8. Viruses of asparagus.

    PubMed

    Tomassoli, Laura; Tiberini, Antonio; Vetten, Heinrich-Josef

    2012-01-01

    The current knowledge on viruses infecting asparagus (Asparagus officinalis) is reviewed. Over half a century, nine virus species belonging to the genera Ilarvirus, Cucumovirus, Nepovirus, Tobamovirus, Potexvirus, and Potyvirus have been found in this crop. The potyvirus Asparagus virus 1 (AV1) and the ilarvirus Asparagus virus 2 (AV2) are widespread and negatively affect the economic life of asparagus crops reducing yield and increasing the susceptibility to biotic and abiotic stress. The main properties and epidemiology of AV1 and AV2 as well as diagnostic techniques for their detection and identification are described. Minor viruses and control are briefly outlined. PMID:22682173

  9. [Viruses as biological weapons].

    PubMed

    Akçali, Alper

    2005-07-01

    The destruction made by nuclear, biological and chemical weapons used by governments and terrorist groups in the near history is posing anxiety and fear for human being. Rumour about the possible use of these agents leads to the development of serious negative effects on populations. Since there are no vaccine and therapy for most viral agents and cost of production as biological weapons is low, interest rate is rising for viruses. In this review, general characteristics, diagnosis, therapy and protective measures for viral agents such as variola virus, hemorrhagic fever viruses, encephalitis viruses, Hantaviruses and Nipah viruses, those can be used as biological weapon, have been summarized. PMID:16358499

  10. New World Bats Harbor Diverse Influenza A Viruses

    PubMed Central

    Tong, Suxiang; Zhu, Xueyong; Li, Yan; Shi, Mang; Zhang, Jing; Bourgeois, Melissa; Yang, Hua; Chen, Xianfeng; Recuenco, Sergio; Gomez, Jorge; Chen, Li-Mei; Johnson, Adam; Tao, Ying; Dreyfus, Cyrille; Yu, Wenli; McBride, Ryan; Carney, Paul J.; Gilbert, Amy T.; Chang, Jessie; Guo, Zhu; Davis, Charles T.; Paulson, James C.; Stevens, James; Rupprecht, Charles E.; Holmes, Edward C.; Wilson, Ian A.; Donis, Ruben O.

    2013-01-01

    Aquatic birds harbor diverse influenza A viruses and are a major viral reservoir in nature. The recent discovery of influenza viruses of a new H17N10 subtype in Central American fruit bats suggests that other New World species may similarly carry divergent influenza viruses. Using consensus degenerate RT-PCR, we identified a novel influenza A virus, designated as H18N11, in a flat-faced fruit bat (Artibeus planirostris) from Peru. Serologic studies with the recombinant H18 protein indicated that several Peruvian bat species were infected by this virus. Phylogenetic analyses demonstrate that, in some gene segments, New World bats harbor more influenza virus genetic diversity than all other mammalian and avian species combined, indicative of a long-standing host-virus association. Structural and functional analyses of the hemagglutinin and neuraminidase indicate that sialic acid is not a ligand for virus attachment nor a substrate for release, suggesting a unique mode of influenza A virus attachment and activation of membrane fusion for entry into host cells. Taken together, these findings indicate that bats constitute a potentially important and likely ancient reservoir for a diverse pool of influenza viruses. PMID:24130481

  11. Viruses in pulp and periapical inflammation: a review.

    PubMed

    Hernández Vigueras, Scarlette; Donoso Zúñiga, Manuel; Jané-Salas, Enric; Salazar Navarrete, Luis; Segura-Egea, Juan José; Velasco-Ortega, Eugenio; López-López, José

    2016-05-01

    The presence of viruses in endodontic disease has been studied in the last decade. Their presence is associated with periapical radiolucency and with clinical findings, such as pain. The aim of this review is to analyze the scientific evidence currently published about viruses in pulp and periapical inflammation, and its possible clinical implications. A literature review was carried out using the Medline/Pubmed database. The search was performed, in English and Spanish, using the following keyword combinations: virus AND endodontic; virus AND periapical; virus AND pulpitis; herpesvirus AND periapical; papillomavirus AND periapical. We subsequently selected the most relevant studies, which complied with the search criterion. A total of 21 articles were included, of which 18 detected the present of viruses in the samples. In 3 of the studies, viral presence was not found in the samples studied. The Epstein-Barr virus was found in about 41 % of cases compared to controls, in which it was present in about 2 %. The main association between viruses and endodontic pathosis is between Cytomegalovirus and Epstein-Barr virus; these are found in 114 of the 406 samples of different endodontic pathosis. Some evidence supports that the Epstein-Barr virus is present in a significant number of endodontic diseases, without exact knowledge of their action in these diseases. PMID:25796386

  12. Online identification of viruses.

    PubMed

    Kolaskar, A S; Naik, P S

    2000-06-01

    A computerized animal virus information system is developed in the Sequence Retrieval System (SRS) format. This database is available on the Word Wide Web (WWW) at the site http://bioinfo.ernet.in/www/avis/avis++ +.html. The database has been used to generate large number of identification matrices for each family. The software is developed in C. Unix shell scripts and Hypertext Marked-up Language (HTML) to assign the family to an unknown virus deterministically and to identify the virus probabilistically. It has been shown that such web based virus identification approach provides results with high confidence in those cases where identification matrix uses large number of independent characters. Protein sequence data for animal viruses have been analyzed and oligopeptides specific to each virus family and also specific to each virus species are identified for several viruses. These peptides thus could be used to identify the virus and to assign the virus family with high confidence showing the usefulness of sequence data in virus identification. PMID:10917875

  13. Serodiagnosis for Tumor Viruses

    PubMed Central

    Morrison, Brian J.; Labo, Nazzarena; Miley, Wendell J.; Whitby, Denise

    2015-01-01

    The known human tumor viruses include the DNA viruses Epstein-Barr virus, Kaposi sarcoma herpesvirus, Merkel cell polyomavirus, human papillomavirus, and hepatitis B virus. RNA tumor viruses include Human T-cell lymphotrophic virus type-1 and hepatitis C virus. The serological identification of antigens/antibodies in plasma serum is a rapidly progressing field with utility for both scientists and clinicians. Serology is useful for conducting seroepidemiology studies and to inform on the pathogenesis and host immune response to a particular viral agent. Clinically, serology is useful for diagnosing current or past infection and for aiding in clinical management decisions. Serology is useful for screening blood donations for infectious agents and for monitoring the outcome of vaccination against these viruses. Serodiagnosis of human tumor viruses has improved in recent years with increased specificity and sensitivity of the assays, as well as reductions in cost and the ability to assess multiple antibody/antigens in single assays. Serodiagnosis of tumor viruses plays an important role in our understanding of the prevalence and transmission of these viruses and ultimately in the ability to develop treatments/preventions for these globally important diseases. PMID:25843726

  14. Lipids of Archaeal Viruses

    PubMed Central

    Roine, Elina; Bamford, Dennis H.

    2012-01-01

    Archaeal viruses represent one of the least known territory of the viral universe and even less is known about their lipids. Based on the current knowledge, however, it seems that, as in other viruses, archaeal viral lipids are mostly incorporated into membranes that reside either as outer envelopes or membranes inside an icosahedral capsid. Mechanisms for the membrane acquisition seem to be similar to those of viruses infecting other host organisms. There are indications that also some proteins of archaeal viruses are lipid modified. Further studies on the characterization of lipids in archaeal viruses as well as on their role in virion assembly and infectivity require not only highly purified viral material but also, for example, constant evaluation of the adaptability of emerging technologies for their analysis. Biological membranes contain proteins and membranes of archaeal viruses are not an exception. Archaeal viruses as relatively simple systems can be used as excellent tools for studying the lipid protein interactions in archaeal membranes. PMID:23049284

  15. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded

    PubMed Central

    Cattaneo, Roberto; Miest, Tanner; Shashkova, Elena V.; Barry, Michael A.

    2014-01-01

    Virotherapy is currently undergoing a renaissance, based on our improved understanding of virus biology and genetics and our better knowledge of many different types of cancer. Viruses can be reprogrammed into oncolytic vectors by combining three types of modification: targeting, arming and shielding. Targeting introduces multiple layers of cancer specificity and improves safety and efficacy; arming occurs through the expression of prodrug convertases and cytokines; and coating with polymers and the sequential usage of different envelopes or capsids provides shielding from the host immune response. Virus-based therapeutics are beginning to find their place in cancer clinical practice, in combination with chemotherapy and radiation. PMID:18552863

  16. Combining rapid diagnostic tests and dried blood spot assays for point-of-care testing of human immunodeficiency virus, hepatitis B and hepatitis C infections in Burkina Faso, West Africa.

    PubMed

    Kania, D; Bekalé, A M; Nagot, N; Mondain, A-M; Ottomani, L; Meda, N; Traoré, M; Ouédraogo, J B; Ducos, J; Van de Perre, P; Tuaillon, E

    2013-12-01

    People screened for human immunodeficiency virus (HIV) using rapid diagnostic tests (RDTs) in Africa remain generally unaware of their status for hepatitis B (HBV) and hepatitis C (HCV) infections. We evaluated a two-step screening strategy in Burkina Faso, using both HIV RDTs and Dried Blood Spot (DBS) assays to confirm an HIV-positive test, and to test for HBV and HCV infections. HIV counselling and point-of-care testing were performed at a voluntary counselling and testing centre with HBV, HCV status and HIV confirmation using DBS specimens, being assessed at a central laboratory. Serological testing on plasma was used as the reference standard assay to control for the performance of DBS assays. Nineteen out of 218 participants included in the study were positive for HIV using RDTs. A fourth-generation HIV ELISA and immunoblot assays on DBS confirmed HIV status. Twenty-four out of 25 participants infected with HBV were found positive for hepatitis B surface antigen (HBsAg) using DBS. One sample with a low HBsAg concentration on plasma was not detected on DBS. Five participants tested positive for HCV antibodies were confirmed positive with an immunoblot assay using DBS specimens. Laboratory results were communicated within 7 days to participants with no loss to follow up of participants between the first and second post-test counselling sessions. In conclusion, DBS collection during HIV point-of-care testing enables screening and confirmation of HBV, HCV and HIV infections. Diagnosis using DBS may assist with implementation of national programmes for HBV, HCV and HIV screening and clinical care in middle- to low-income countries. PMID:23902574

  17. Mutations in the core and NS5A region of hepatitis C virus genotype 1b and correlation with response to pegylated-interferon-alpha 2b and ribavirin combination therapy.

    PubMed

    Hayashi, K; Katano, Y; Ishigami, M; Itoh, A; Hirooka, Y; Nakano, I; Urano, F; Yoshioka, K; Toyoda, H; Kumada, T; Goto, H

    2011-04-01

    Mutations in two regions of hepatitis C virus (HCV) have been implicated in influencing response to interferon (IFN) therapy. Substitutions in the NS5A region of HCV have been associated with response to IFN therapy, and this region has been known as the IFN sensitivity-determining region (ISDR). The mutations in the core region of HCV have also been reported to predict IFN response. The aim of this study was to investigate whether amino acid substitutions in the core region and ISDR among patients with HCV genotype 1b affect the response to IFN therapy. A total of 213 patients who completed IFN treatment were randomly selected. All patients received pegylated-IFN-alpha 2b once each week, plus oral ribavirin daily for 48 weeks. Of the 213 patients, 117 (54.9%) showed early virologic response (EVR), with HCV-negativity, at 12 weeks. Factors related to EVR on multivariate analysis were non-Gln70 and Leu91 in the core region, and ISDR mutant-type. One hundred and two (47.9%) showed a sustained virologic response (SVR). SVR occurred more frequently in patients without Gln70 (55.4%) than in those with Gln70 (21.3%) (P < 0.0001). SVR was achieved in 43.6% of patients with wild-type ISDR and 62.5% of patients with mutant-type (P = 0.0227). Of the 34 patients who simultaneously had non-Gln70 and mutant-type ISDR, 26 (76.5%) achieved SVR. Factors related to SVR on multivariate analysis were non-Gln70 and ISDR mutant-type. In conclusion, amino acid substitutions in the core region and ISDR were useful for predicting the response to IFN in patients with HCV genotype 1b. PMID:20367792

  18. Combined impact of hepatitis C virus genotype 1 and interleukin-6 and tumor necrosis factor-α polymorphisms on serum levels of pro-inflammatory cytokines in Brazilian HCV-infected patients.

    PubMed

    Tarragô, Andréa Monteiro; da Costa, Allyson Guimarães; Pimentel, João Paulo Diniz; Gomes, Samara Tatielle Monteiro; Freitas, Felipe Bonfim; Lalwani, Pritesh; de Araújo, Ana Ruth S; Victória, Flamir da Silva; Victória, Marilú Barbieri; Vallinoto, Antônio Carlos Rosário; Sadahiro, Aya; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Malheiro, Adriana

    2014-11-01

    We investigated the association between hepatitis C virus (HCV) genotypes and host cytokine gene polymorphisms and serum cytokine levels in patients with chronic hepatitis C. Serum IL-6, TNF-α, IL-2, IFN-γ, IL-4, IL-10, and IL-17A levels were measured in 67 HCV patients (68.2% genotype 1 [G1]) and 47 healthy controls. The HCV patients had higher IL-6, IL-2, IFN-γ, IL-10, and IL-17A levels than the controls. HCV G1 patients had higher IL-2 and IFN-γ levels than G2 patients. The -174IL6G>C, -308TNFαG>A, and -1082IL10A>G variants were similarly distributed in both groups. However, HCV patients with the -174IL6GC variant had higher IL-2 and IFN-γ levels than patients with the GG and CC variants. Additionally, HCV patients with the -308TNFαGG genotype had higher IL-17A levels than patients with the AG genotype, whereas patients with the -1082IL10GG variant had higher IL-6 levels than patients with the AA and AG variants. A significant proportion of HCV patients had high levels of both IL-2 and IFN-γ. The subgroup of HCV patients with the G1/IL6CG/TNFαGG association displayed the highest proportions of high producers of IL-2 and IFN-γ whereas the subgroup with the G1/TNFαGG profile showed high proportions of high producers of IL-6 and IL-17A. HCV patients with other HCV/cytokine genotype associations showed no particular cytokine profile. Our results suggest that HCV genotype G1 and IL-6 and TNF-α polymorphisms have a clinically relevant influence on serum pro-inflammatory cytokine profile (IL-2 and IFN-γ) in HCV patients. PMID:25193024

  19. Insights into the Hendra virus NTAIL-XD complex: Evidence for a parallel organization of the helical MoRE at the XD surface stabilized by a combination of hydrophobic and polar interactions.

    PubMed

    Erales, Jenny; Beltrandi, Matilde; Roche, Jennifer; Maté, Maria; Longhi, Sonia

    2015-08-01

    The Hendra virus is a member of the Henipavirus genus within the Paramyxoviridae family. The nucleoprotein, which consists of a structured core and of a C-terminal intrinsically disordered domain (N(TAIL)), encapsidates the viral genome within a helical nucleocapsid. N(TAIL) partly protrudes from the surface of the nucleocapsid being thus capable of interacting with the C-terminal X domain (XD) of the viral phosphoprotein. Interaction with XD implies a molecular recognition element (MoRE) that is located within N(TAIL) residues 470-490, and that undergoes α-helical folding. The MoRE has been proposed to be embedded in the hydrophobic groove delimited by helices α2 and α3 of XD, although experimental data could not discriminate between a parallel and an antiparallel orientation of the MoRE. Previous studies also showed that if the binding interface is enriched in hydrophobic residues, charged residues located close to the interface might play a role in complex formation. Here, we targeted for site directed mutagenesis two acidic and two basic residues within XD and N(TAIL). ITC studies showed that electrostatics plays a crucial role in complex formation and pointed a parallel orientation of the MoRE as more likely. Further support for a parallel orientation was afforded by SAXS studies that made use of two chimeric constructs in which XD and the MoRE were covalently linked to each other. Altogether, these studies unveiled the multiparametric nature of the interactions established within this complex and contribute to shed light onto the molecular features of protein interfaces involving intrinsically disordered regions. PMID:25960280

  20. Infection of phytoplankton by aerosolized marine viruses.

    PubMed

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J; Bidle, Kay D; Ben-Dor, Shifra; Rudich, Yinon; Koren, Ilan; Vardi, Assaf

    2015-05-26

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host-virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host-virus "arms race" during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  1. Infection of phytoplankton by aerosolized marine viruses

    PubMed Central

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J.; Bidle, Kay D.; Ben-Dor, Shifra; Rudich, Yinon; Vardi, Assaf

    2015-01-01

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host–virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host–virus “arms race” during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  2. RNA Viruses Infecting Pest Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA viruses are viruses whose genetic material is ribonucleic acid (RNA). RNA viruses may be double or single-stranded based on the type of RNA they contain. Single-stranded RNA viruses can be further grouped into negative sense or positive-sense viruses according to the polarity of their RNA. Fur...

  3. Postmortem stability of Ebola virus.

    PubMed

    Prescott, Joseph; Bushmaker, Trenton; Fischer, Robert; Miazgowicz, Kerri; Judson, Seth; Munster, Vincent J

    2015-05-01

    The ongoing Ebola virus outbreak in West Africa has highlighted questions regarding stability of the virus and detection of RNA from corpses. We used Ebola virus-infected macaques to model humans who died of Ebola virus disease. Viable virus was isolated <7 days posteuthanasia; viral RNA was detectable for 10 weeks. PMID:25897646

  4. Lifestyles of plant viruses

    PubMed Central

    Roossinck, Marilyn J.

    2010-01-01

    The vast majority of well-characterized eukaryotic viruses are those that cause acute or chronic infections in humans and domestic plants and animals. However, asymptomatic persistent viruses have been described in animals, and are thought to be sources for emerging acute viruses. Although not previously described in these terms, there are also many viruses of plants that maintain a persistent lifestyle. They have been largely ignored because they do not generally cause disease. The persistent viruses in plants belong to the family Partitiviridae or the genus Endornavirus. These groups also have members that infect fungi. Phylogenetic analysis of the partitivirus RNA-dependent RNA polymerase genes suggests that these viruses have been transmitted between plants and fungi. Additional families of viruses traditionally thought to be fungal viruses are also found frequently in plants, and may represent a similar scenario of persistent lifestyles, and some acute or chronic viruses of crop plants may maintain a persistent lifestyle in wild plants. Persistent, chronic and acute lifestyles of plant viruses are contrasted from both a functional and evolutionary perspective, and the potential role of these lifestyles in host evolution is discussed. PMID:20478885

  5. Combinations Therapies.

    PubMed

    Reinmuth, Niels; Reck, Martin

    2015-01-01

    Immunotherapy of cancer encompasses different strategies that elicit or enhance the immune response against tumors. The first results from clinical studies have provided promising data for the treatment of lung cancer patients with immunomodulating monotherapies. To improve the potential benefit of cancer immunotherapy, synergistic combinations of the various immunotherapy approaches or of different elements within each of the immunotherapy approaches are being explored. The rationale typically involves different but complementary mechanisms of action, eventually impinging on more than one immune system mechanism. As a prominent example, the simultaneous blockade of PD-1 and CTLA-4 is giving rise to therapeutic synergy, while still offering room for efficacy improvement. Moreover, combinations of immunomodulating agents with chemotherapy or targeted molecules are being tested. Animal models suggest that immunotherapies in combination with these various options offer evidence for synergistic effects and are likely to radically change cancer treatment paradigms. However, data obtained so far indicate that toxic side effects are also potentiated, which may even restrict the selection of patients that are suitable for these combinational approaches. Advancing the field of combinatorial immunotherapy will require changes in the way investigational agents are clinically developed as well as novel experimental end-points for efficacy evaluation. However, this combined therapeutic manipulation of both tumor and stromal cells may lead to a dramatic change in the therapeutic options of lung cancer patients in any disease stage that can only grossly be appreciated by the current studies. PMID:26384009

  6. Virus Removal by Biogenic Cerium

    SciTech Connect

    De Gusseme, B.; Du Laing, G; Hennebel, T; Renard, P; Chidambaram, D; Fitts, J; Bruneel, E; Van Driessche, I; Verbeken, K; et. al.

    2010-01-01

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L{sup -1} bio-Ce. Given the fact that virus removal with 50 mg L{sup -1} Ce(III) as CeNO{sub 3} was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal.

  7. Virus removal by biogenic cerium.

    PubMed

    De Gusseme, Bart; Du Laing, Gijs; Hennebel, Tom; Renard, Piet; Chidambaram, Dev; Fitts, Jeffrey P; Bruneel, Els; Van Driessche, Isabel; Verbeken, Kim; Boon, Nico; Verstraete, Willy

    2010-08-15

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L(-1) bio-Ce. Given the fact that virus removal with 50 mg L(-1) Ce(III) as CeNO(3) was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal. PMID:20704235

  8. Infectious laryngotracheitis virus in chickens.

    PubMed

    Ou, Shan-Chia; Giambrone, Joseph J

    2012-10-12

    Infectious laryngotracheitis (ILT) is an important respiratory disease of chickens and annually causes significant economic losses in the poultry industry world-wide. ILT virus (ILTV) belongs to alphaherpesvirinae and the Gallid herpesvirus 1 species. The transmission of ILTV is via respiratory and ocular routes. Clinical and post-mortem signs of ILT can be separated into two forms according to its virulence. The characteristic of the severe form is bloody mucus in the trachea with high mortality. The mild form causes nasal discharge, conjunctivitis, and reduced weight gain and egg production. Conventional polymerase chain reaction (PCR), nested PCR, real-time PCR, and loop-mediated isothermal amplification were developed to detect ILTV samples from natural or experimentally infected birds. The PCR combined with restriction fragment length polymorphism (RFLP) can separate ILTVs into several genetic groups. These groups can separate vaccine from wild type field viruses. Vaccination is a common method to prevent ILT. However, field isolates and vaccine viruses can establish latent infected carriers. According to PCR-RFLP results, virulent field ILTVs can be derived from modified-live vaccines. Therefore, modified-live vaccine reversion provides a source for ILT outbreaks on chicken farms. Two recently licensed commercial recombinant ILT vaccines are also in use. Other recombinant and gene-deficient vaccine candidates are in the developmental stages. They offer additional hope for the control of this disease. However, in ILT endemic regions, improved biosecurity and management practices are critical for improved ILT control. PMID:24175219

  9. Infectious laryngotracheitis virus in chickens

    PubMed Central

    Ou, Shan-Chia; Giambrone, Joseph J

    2012-01-01

    Infectious laryngotracheitis (ILT) is an important respiratory disease of chickens and annually causes significant economic losses in the poultry industry world-wide. ILT virus (ILTV) belongs to alphaherpesvirinae and the Gallid herpesvirus 1 species. The transmission of ILTV is via respiratory and ocular routes. Clinical and post-mortem signs of ILT can be separated into two forms according to its virulence. The characteristic of the severe form is bloody mucus in the trachea with high mortality. The mild form causes nasal discharge, conjunctivitis, and reduced weight gain and egg production. Conventional polymerase chain reaction (PCR), nested PCR, real-time PCR, and loop-mediated isothermal amplification were developed to detect ILTV samples from natural or experimentally infected birds. The PCR combined with restriction fragment length polymorphism (RFLP) can separate ILTVs into several genetic groups. These groups can separate vaccine from wild type field viruses. Vaccination is a common method to prevent ILT. However, field isolates and vaccine viruses can establish latent infected carriers. According to PCR-RFLP results, virulent field ILTVs can be derived from modified-live vaccines. Therefore, modified-live vaccine reversion provides a source for ILT outbreaks on chicken farms. Two recently licensed commercial recombinant ILT vaccines are also in use. Other recombinant and gene-deficient vaccine candidates are in the developmental stages. They offer additional hope for the control of this disease. However, in ILT endemic regions, improved biosecurity and management practices are critical for improved ILT control. PMID:24175219

  10. Efficacy of low-dose intermittent interferon-alpha monotherapy in patients infected with hepatitis C virus genotype 1b who were predicted or failed to respond to pegylated interferon plus ribavirin combination therapy.

    PubMed

    Akuta, Norio; Suzuki, Fumitaka; Kawamura, Yusuke; Yatsuji, Hiromi; Sezaki, Hitomi; Suzuki, Yoshiyuki; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Arase, Yasuji; Ikeda, Kenji; Kumada, Hiromitsu

    2008-08-01

    The efficacy of interferon (IFN) monotherapy for non-responders to pegylated interferon (PEG-IFN) plus ribavirin (RBV) combination therapy is still unclear. To evaluate the impact of IFN monotherapy on biochemical response, 200 consecutive patients infected with HCV genotype 1b, who received low-dose intermittent IFN-alpha monotherapy, were investigated. A median IFN dose per day of 3 million units was administered during a median period of 74 weeks. As a whole, the ALT normalization rates were 50.5, 65.9, 58.4, and 61.7% at 4, 12, 24, and 48 weeks, respectively. In 40 patients, who had abnormal AFP levels at the start of treatment, 52.5% achieved normalization of AFP within 48 weeks. Multivariate analysis identified indocyanine green retention rate at 15 min as the parameter that influenced significantly and independently ALT normalization. ALT normalization rates of patients who were predicted to be poor responders to PEG-IFN plus RBV combination therapy (but not substitutions of amino acid 70 and/or 91 in the HCV core region, female sex, and lower levels of low-density lipoprotein cholesterol) were similar to others. Furthermore, the ALT normalization rates in non-responders to combination therapy were 29.2, 60.9, 60.0, and 40.0% at 4, 12, 24, and 48 weeks, respectively. The results suggest that low-dose intermittent IFN monotherapy is an efficacious therapeutic regimen for patients unsuitable for PEG-IFN plus RBV, including non-responders, because it can lead to ALT normalization and thus a reduced risk of hepatocarcinogenesis. PMID:18551610

  11. Viruses of lower vertebrates.

    PubMed

    Essbauer, S; Ahne, W

    2001-08-01

    Viruses of lower vertebrates recently became a field of interest to the public due to increasing epizootics and economic losses of poikilothermic animals. These were reported worldwide from both wildlife and collections of aquatic poikilothermic animals. Several RNA and DNA viruses infecting fish, amphibians and reptiles have been studied intensively during the last 20 years. Many of these viruses induce diseases resulting in important economic losses of lower vertebrates, especially in fish aquaculture. In addition, some of the DNA viruses seem to be emerging pathogens involved in the worldwide decline in wildlife. Irido-, herpes- and polyomavirus infections may be involved in the reduction in the numbers of endangered amphibian and reptile species. In this context the knowledge of several important RNA viruses such as orthomyxo-, paramyxo-, rhabdo-, retro-, corona-, calici-, toga-, picorna-, noda-, reo- and birnaviruses, and DNA viruses such as parvo-, irido-, herpes-, adeno-, polyoma- and poxviruses, is described in this review. PMID:11550762

  12. Vaccinia virus transcription.

    PubMed

    Broyles, Steven S

    2003-09-01

    Vaccinia virus replication takes place in the cytoplasm of the host cell. The nearly 200 kbp genome owes part of its complexity to encoding most of the proteins involved in genome and mRNA synthesis. The multisubunit vaccinia virus RNA polymerase requires a separate set of virus-encoded proteins for the transcription of the early, intermediate and late classes of genes. Cell fractionation studies have provided evidence for a role for host cell proteins in the initiation and termination of vaccinia virus intermediate and late gene transcription. Vaccinia virus resembles nuclear DNA viruses in the integration of viral and host proteins for viral mRNA synthesis, yet is markedly less reliant on host proteins than its nuclear counterparts. PMID:12917449

  13. Viruses in Antarctic lakes

    NASA Technical Reports Server (NTRS)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Suttle, C. A.; Wharton RA, J. r. (Principal Investigator)

    1998-01-01

    Water samples collected from four perennially ice-covered Antarctic lakes during the austral summer of 1996-1997 contained high densities of extracellular viruses. Many of these viruses were found to be morphologically similar to double-stranded DNA viruses that are known to infect algae and protozoa. These constitute the first observations of viruses in perennially ice-covered polar lakes. The abundance of planktonic viruses and data suggesting substantial production potential (relative to bacteria] secondary and photosynthetic primary production) indicate that viral lysis may be a major factor in the regulation of microbial populations in these extreme environments. Furthermore, we suggest that Antarctic lakes may be a reservoir of previously undescribed viruses that possess novel biological and biochemical characteristics.

  14. Constructing computer virus phylogenies

    SciTech Connect

    Goldberg, L.A.; Goldberg, P.W.; Phillips, C.A.; Sorkin, G.B.

    1996-03-01

    There has been much recent algorithmic work on the problem of reconstructing the evolutionary history of biological species. Computer virus specialists are interested in finding the evolutionary history of computer viruses--a virus is often written using code fragments from one or more other viruses, which are its immediate ancestors. A phylogeny for a collection of computer viruses is a directed acyclic graph whose nodes are the viruses and whose edges map ancestors to descendants and satisfy the property that each code fragment is ``invented`` only once. To provide a simple explanation for the data, we consider the problem of constructing such a phylogeny with a minimal number of edges. In general, this optimization problem cannot be solved in quasi-polynomial time unless NQP=QP; we present positive and negative results for associated approximated problems. When tree solutions exist, they can be constructed and randomly sampled in polynomial time.

  15. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J. (Inventor)

    1978-01-01

    The performance of a waste water reclamation system is monitored by introducing a non-pathogenic marker virus, bacteriophage F2, into the waste-water prior to treatment and, thereafter, testing the reclaimed water for the presence of the marker virus. A test sample is first concentrated by absorbing any marker virus onto a cellulose acetate filter in the presence of a trivalent cation at low pH and then flushing the filter with a limited quantity of a glycine buffer solution to desorb any marker virus present on the filter. Photo-optical detection of indirect passive immune agglutination by polystyrene beads indicates the performance of the water reclamation system in removing the marker virus. A closed system provides for concentrating any marker virus, initiating and monitoring the passive immune agglutination reaction, and then flushing the system to prepare for another sample.

  16. Vaccine Therapy, Oncolytic Viruses, and Gliomas.

    PubMed

    Desjardins, Annick; Vlahovic, Gordana; Friedman, Henry S

    2016-03-01

    After years of active research and refinement, vaccine therapy and oncolytic viruses are becoming part of the arsenal in the treatment of gliomas. In contrast to standard treatment with radiation therapy and chemotherapy, vaccines are more specific to the patient and the tumor. The majority of ongoing vaccine trials are investigating peptide, heat shock protein, and dendritic cell vaccines. The immunosuppression triggered by the tumor itself and by its treatment is a major obstacle to vaccine and oncolytic virus therapy. Thus, combination therapy with different agents that affect the immune system will probably be necessary. PMID:26984213

  17. The human oncogenic viruses

    SciTech Connect

    Luderer, A.A.; Weetall, H.H

    1986-01-01

    This book contains eight selections. The titles are: Cytogenetics of the Leukemias and Lymphomas; Cytogenetics of Solid Tumors: Renal Cell Carcinoma, Malignant Melanoma, Retinoblastoma, and Wilms' Tumor; Elucidation of a Normal Function for a Human Proto-Oncogene; Detection of HSV-2 Genes and Gene Products in Cervical Neoplasia; Papillomaviruses in Anogennital Neoplasms; Human Epstein-Barr Virus and Cancer; Hepatitis B Virus and Hepatocellular Carcinoma; and Kaposi's Sarcoma: Acquired Immunodeficiency Syndrome (AIDS) and Associated Viruses.

  18. The tumor virus landscape of AIDS-related lymphomas.

    PubMed

    Arvey, Aaron; Ojesina, Akinyemi I; Pedamallu, Chandra Sekhar; Ballon, Gianna; Jung, Joonil; Duke, Fujiko; Leoncini, Lorenzo; De Falco, Giulia; Bressman, Eric; Tam, Wayne; Chadburn, Amy; Meyerson, Matthew; Cesarman, Ethel

    2015-05-14

    Immunodeficiency dramatically increases susceptibility to cancer as a result of reduced immune surveillance and enhanced opportunities for virus-mediated oncogenesis. Although AIDS-related lymphomas (ARLs) are frequently associated with known oncogenic viruses, many cases contain no known transforming virus. To discover novel transforming viruses, we profiled a set of ARL samples using whole transcriptome sequencing. We determined that Epstein-Barr virus (EBV) was the only virus detected in the tumor samples of this cohort, suggesting that if unidentified pathogens exist in this disease, they are present in <10% of cases or undetectable by our methods. To evaluate the role of EBV in ARL pathogenesis, we analyzed viral gene expression and found highly heterogeneous patterns of viral transcription across samples. We also found significant heterogeneity of viral antigen expression across a large cohort, with many patient samples presenting with restricted type I viral latency, indicating that EBV latency proteins are under increased immunosurveillance in the post-combined antiretroviral therapies era. Furthermore, EBV infection of lymphoma cells in HIV-positive individuals was associated with a distinct host gene expression program. These findings provide insight into the joint host-virus regulatory network of primary ARL tumor samples and expand our understanding of virus-associated oncogenesis. Our findings may also have therapeutic implications, as treatment may be personalized to target specific viral and virus-associated host processes that are only present in a subset of patients. PMID:25827832

  19. Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements

    PubMed Central

    Dolja, Valerian V.

    2014-01-01

    SUMMARY Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus “self” that defines the identity of deep, ancient viral lineages. However, several other widespread viral “hallmark genes” encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. PMID:24847023

  20. Water system virus detection

    NASA Technical Reports Server (NTRS)

    Fraser, A. S.; Wells, A. F.; Tenoso, H. J.

    1975-01-01

    A monitoring system developed to test the capability of a water recovery system to reject the passage of viruses into the recovered water is described. A nonpathogenic marker virus, bacteriophage F2, is fed into the process stream before the recovery unit and the reclaimed water is assayed for its presence. Detection of the marker virus consists of two major components, concentration and isolation of the marker virus, and detection of the marker virus. The concentration system involves adsorption of virus to cellulose acetate filters in the presence of trivalent cations and low pH with subsequent desorption of the virus using volumes of high pH buffer. The detection of the virus is performed by a passive immune agglutination test utilizing specially prepared polystyrene particles. An engineering preliminary design was performed as a parallel effort to the laboratory development of the marker virus test system. Engineering schematics and drawings of a fully functional laboratory prototype capable of zero-G operation are presented. The instrument consists of reagent pump/metering system, reagent storage containers, a filter concentrator, an incubation/detector system, and an electronic readout and control system.

  1. Interim Report on SNP analysis and forensic microarray probe design for South American hemorrhagic fever viruses, tick-borne encephalitis virus, henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever viruses, Rift Valley fever

    SciTech Connect

    Jaing, C; Gardner, S

    2012-06-05

    The goal of this project is to develop forensic genotyping assays for select agent viruses, enhancing the current capabilities for the viral bioforensics and law enforcement community. We used a multipronged approach combining bioinformatics analysis, PCR-enriched samples, microarrays and TaqMan assays to develop high resolution and cost effective genotyping methods for strain level forensic discrimination of viruses. We have leveraged substantial experience and efficiency gained through year 1 on software development, SNP discovery, TaqMan signature design and phylogenetic signature mapping to scale up the development of forensics signatures in year 2. In this report, we have summarized the whole genome wide SNP analysis and microarray probe design for forensics characterization of South American hemorrhagic fever viruses, tick-borne encephalitis viruses and henipaviruses, Old World Arenaviruses, filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus and Japanese encephalitis virus.

  2. Residual viruses in pork products.

    PubMed

    McKercher, P D; Hess, W R; Hamdy, F

    1978-01-01

    Partly cooked canned hams and dried pepperoni and salami sausages were prepared from the carcasses of pigs infected with African swine fever virus and pigs infected with hog cholera virus. Virus was not recovered from the partly cooked canned hams; however, virus was recovered in the hams before heating in both instances. Both African swine fever virus and hog cholera virus were recovered from the dried salami and pepperoni sausages, but not after the required curing period. PMID:564162

  3. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof

    PubMed Central

    Nolden, T.; Pfaff, F.; Nemitz, S.; Freuling, C. M.; Höper, D.; Müller, T.; Finke, Stefan

    2016-01-01

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache’s reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level. PMID:27046474

  4. Reverse genetics in high throughput: rapid generation of complete negative strand RNA virus cDNA clones and recombinant viruses thereof.

    PubMed

    Nolden, T; Pfaff, F; Nemitz, S; Freuling, C M; Höper, D; Müller, T; Finke, Stefan

    2016-01-01

    Reverse genetics approaches are indispensable tools for proof of concepts in virus replication and pathogenesis. For negative strand RNA viruses (NSVs) the limited number of infectious cDNA clones represents a bottleneck as clones are often generated from cell culture adapted or attenuated viruses, with limited potential for pathogenesis research. We developed a system in which cDNA copies of complete NSV genomes were directly cloned into reverse genetics vectors by linear-to-linear RedE/T recombination. Rapid cloning of multiple rabies virus (RABV) full length genomes and identification of clones identical to field virus consensus sequence confirmed the approache's reliability. Recombinant viruses were recovered from field virus cDNA clones. Similar growth kinetics of parental and recombinant viruses, preservation of field virus characters in cell type specific replication and virulence in the mouse model were confirmed. Reduced titers after reporter gene insertion indicated that the low level of field virus replication is affected by gene insertions. The flexibility of the strategy was demonstrated by cloning multiple copies of an orthobunyavirus L genome segment. This important step in reverse genetics technology development opens novel avenues for the analysis of virus variability combined with phenotypical characterization of recombinant viruses at a clonal level. PMID:27046474

  5. Impact of aphid alarm pheromone release on virus transmission efficiency: When pest control strategy could induce higher virus dispersion.

    PubMed

    Lin, Fang-Jing; Bosquée, Emilie; Liu, Ying-Jie; Chen, Ju-Lian; Yong, Liu; Francis, Frédéric

    2016-09-01

    Aphids cause serious damages to crops not only by tacking sap but also by transmitting numerous viruses. To develop biological control, the aphid alarm pheromone, namely E-β-farnesene (EβF), has been demonstrated to be efficient to repel aphids and as attract beneficials, making it a potential tool to control aphid pests. Considering aphids also as virus vectors, changes of their behavior could also interfere with the virus acquisition and transmission process. Here, a combination of two aphid species and two potato virus models were selected to test the influence of EβF release on aphid and virus dispersion under laboratory conditions. EβF release was found to significantly decrease the population of Myzus persicae and Macrosiphum euphorbiae around the infochemical releaser but simultaneously also increasing the dispersal of Potato Virus Y (PVY). At the opposite, no significant difference for Potato Leaf Roll Virus (PLRV) transmission efficiency was observed with similar aphid alarm pheromone releases for none of the aphid species. These results provide some support to carefully consider infochemical releasers not only for push-pull strategy and pest control but also to include viral disease in a the plant protection to aphids as they are also efficient virus vectors. Impact of aphid kinds and transmission mechanisms will be discussed according to the large variation found between persistent and non persistent potato viruses and interactions with aphids and related infochemicals. PMID:27185564

  6. Oncolytic virus therapies.

    PubMed

    Buonaguro, Franco Maria; Tornesello, Maria Lina; Izzo, Francesco; Buonaguro, Luigi

    2012-11-01

    Oncolytic virus (OV) therapy currently represents one of the most promising approaches to cancer treatment for their dual anticancer mechanisms: direct lysis of cancer cells (oncolytic feature) and activation of the immunosystem (cancer vaccine aspect). The latter demonstrates the advantage of a multi-target approach against multiple tumor-associated antigens. Since the 2005 SFDA (the Chinese FDA) approval for the clinical use of Oncorine™, the first human OV-based cancer treatment, more than 200 patents have been filed worldwide and several Phase I/II studies have been conducted. This patent review analyzes patents and clinical studies of the most promising OV products to highlight the pros and cons of this innovative anticancer approach, which is currently being tested in several cancers (i.e., hepatocellular carcinoma, melanoma and glioblastoma) by systemic as well as intratumoral injection. Clinical results, although effective only for a limited period of time, are encouraging. Combined treatments with radio or chemotherapeutic protocols are also in progress. PMID:24236929

  7. Single and Combination Herpes Simplex Virus Type 2 Glycoprotein Vaccines Adjuvanted with CpG Oligodeoxynucleotides or Monophosphoryl Lipid A Exhibit Differential Immunity That Is Not Correlated to Protection in Animal Models▿

    PubMed Central

    Khodai, Tansi; Chappell, Debbie; Christy, Clare; Cockle, Paul; Eyles, Jim; Hammond, Daisy; Gore, Katrina; McCluskie, Michael J.; Evans, Dana M.; Lang, Susanne; Loudon, Peter T.; Townend, Tim; Wright, Paul; West, Kate; Bright, Helen

    2011-01-01

    Despite several attempts to develop an effective prophylactic vaccine for HSV-2, all have failed to show efficacy in the clinic. The most recent of these failures was the GlaxoSmithKline (GSK) subunit vaccine based on the glycoprotein gD with the adjuvant monophosphoryl lipid A (MPL). In a phase 3 clinical trial, this vaccine failed to protect from HSV-2 disease, even though good neutralizing antibody responses were elicited. We aimed to develop a superior, novel HSV-2 vaccine containing either gD or gB alone or in combination, together with the potent adjuvant CpG oligodeoxynucleotides (CPG). The immunogenic properties of these vaccines were compared in mice. We show that gB/CPG/alum elicited a neutralizing antibody response similar to that elicited by gD/CPG/alum vaccine but a significantly greater gamma interferon (IFN-γ) T cell response. Furthermore, the combined gB-gD/CPG/alum vaccine elicited significantly greater neutralizing antibody and T cell responses than gD/MPL/alum. The efficacies of these candidate vaccines were compared in the mouse and guinea pig disease models, including a novel male guinea pig genital disease model. These studies demonstrated that increased immune response did not correlate to improved protection. First, despite a lower IFN-γ T cell response, the gD/CPG/alum vaccine was more effective than gB/CPG/alum in mice. Furthermore, the gB-gD/CPG/alum vaccine was no more effective than gD/MPL/alum in mice or male guinea pigs. We conclude that difficulties in correlating immune responses to efficacy in animal models will act as a deterrent to researchers attempting to develop effective HSV vaccines. PMID:21852545

  8. Single and combination herpes simplex virus type 2 glycoprotein vaccines adjuvanted with CpG oligodeoxynucleotides or monophosphoryl lipid A exhibit differential immunity that is not correlated to protection in animal models.

    PubMed

    Khodai, Tansi; Chappell, Debbie; Christy, Clare; Cockle, Paul; Eyles, Jim; Hammond, Daisy; Gore, Katrina; McCluskie, Michael J; Evans, Dana M; Lang, Susanne; Loudon, Peter T; Townend, Tim; Wright, Paul; West, Kate; Bright, Helen

    2011-10-01

    Despite several attempts to develop an effective prophylactic vaccine for HSV-2, all have failed to show efficacy in the clinic. The most recent of these failures was the GlaxoSmithKline (GSK) subunit vaccine based on the glycoprotein gD with the adjuvant monophosphoryl lipid A (MPL). In a phase 3 clinical trial, this vaccine failed to protect from HSV-2 disease, even though good neutralizing antibody responses were elicited. We aimed to develop a superior, novel HSV-2 vaccine containing either gD or gB alone or in combination, together with the potent adjuvant CpG oligodeoxynucleotides (CPG). The immunogenic properties of these vaccines were compared in mice. We show that gB/CPG/alum elicited a neutralizing antibody response similar to that elicited by gD/CPG/alum vaccine but a significantly greater gamma interferon (IFN-γ) T cell response. Furthermore, the combined gB-gD/CPG/alum vaccine elicited significantly greater neutralizing antibody and T cell responses than gD/MPL/alum. The efficacies of these candidate vaccines were compared in the mouse and guinea pig disease models, including a novel male guinea pig genital disease model. These studies demonstrated that increased immune response did not correlate to improved protection. First, despite a lower IFN-γ T cell response, the gD/CPG/alum vaccine was more effective than gB/CPG/alum in mice. Furthermore, the gB-gD/CPG/alum vaccine was no more effective than gD/MPL/alum in mice or male guinea pigs. We conclude that difficulties in correlating immune responses to efficacy in animal models will act as a deterrent to researchers attempting to develop effective HSV vaccines. PMID:21852545

  9. Immunoprotective activity of a Salmonid Alphavirus Vaccine: comparison of the immune responses induced by inactivated whole virus antigen formulations based on CpG class B oligonucleotides and poly I:C alone or combined with an oil adjuvant.

    PubMed

    Thim, Hanna L; Iliev, Dimitar B; Christie, Karen E; Villoing, Stéphane; McLoughlin, Marian F; Strandskog, Guro; Jørgensen, Jorunn B

    2012-07-01

    CpG oligonucleotides and polyinosinic:polycytidylic acid (poly I:C) are toll-like receptor (TLR) agonists that mimic the immunostimulatory properties of bacterial DNA and double-stranded viral RNA respectively, and which have exhibited potential to serve as vaccine adjuvants in previous experiments. Here, a combination of CpGs and poly I:C together with water- or oil-formulated Salmonid Alphavirus (SAV) antigen preparations has been used for a vaccine in Atlantic salmon and tested for protection in SAV challenge trial. The results demonstrate that vaccination with a high dose of the SAV antigen induced protection against challenge with SAV which correlated with production of neutralizing antibodies (NAbs). As the high antigen dose alone induced full protection, no beneficial effect from the addition of CpG and poly I:C could be observed. Nevertheless, these TLR ligands significantly enhanced the levels of NAbs in serum of vaccinated fish. Interestingly, gene expression analysis demonstrated that while addition of oil suppressed the CpG/poly I:C-induced expression of IFN-γ, the upregulation of IFNa1 was substantially enhanced. A low dose of the SAV antigen combined with oil did not induce any detectable levels of NAbs either with or without TLR ligands present, however the addition of CpG and poly I:C to the low SAV antigen dose formulation significantly enhanced the protection against SAV suggesting that CpG/poly I:C may have enhanced a cytotoxic response - a process which is dependent on the up-regulation of type I IFN. These results highlight the immunostimulatory properties of the tested TLR ligands and will serve as a ground for further, more detailed studies aimed to investigate their capacity to serve as adjuvants in vaccine formulations for Atlantic salmon. PMID:22634299

  10. Combination Light

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Rayovac TANDEM is an advanced technology combination work light and general purpose flashlight that incorporates several NASA technologies. The TANDEM functions as two lights in one. It features a long range spotlight and wide angle floodlight; simple one-hand electrical switching changes the beam from spot to flood. TANDEM developers made particular use of NASA's extensive research in ergonomics in the TANDEM's angled handle, convenient shape and different orientations. The shatterproof, water resistant plastic casing also draws on NASA technology, as does the shape and beam distance of the square diffused flood. TANDEM's heavy duty magnet that permits the light to be affixed to any metal object borrows from NASA research on rare earth magnets that combine strong magnetic capability with low cost. Developers used a NASA-developed ultrasonic welding technique in the light's interior.

  11. A new application of monolithic supports: the separation of viruses from one another.

    PubMed

    Ruščić, J; Gutiérrez-Aguirre, I; Žnidarič, M Tušek; Kolundžija, S; Slana, A; Barut, M; Ravnikar, M; Krajačić, M

    2015-04-01

    The emergence of next-generation "deep" sequencing has enabled the study of virus populations with much higher resolutions. This new tool increases the possibility of observing mixed infections caused by combinations of plant viruses, which are likely to occur more frequently than previously thought. The biological impact of co-infecting viruses on their host has yet to be determined and fully understood, and the first step towards reaching this goal is the separation and purification of individual species. Ion-exchange monolith chromatography has been used successfully for the purification and concentration of different viruses, and number of them have been separated from plant homogenate or bacterial and eukaryotic lysate. Thus, the question remained as to whether different virus species present in a single sample could be separated. In this study, anion-exchange chromatography using monolithic supports was optimized for fast and efficient partial purification of three model plant viruses: Turnip yellow mosaic virus, Tomato bushy stunt virus, and Tobacco mosaic virus. The virus species, as well as two virus strains, were separated from each other in a single chromatographic experiment from an artificially mixed sample. Based on A260/280 ratios, we were able to attribute specific peaks to a certain viral morphology/structure (icosahedral or rod-shaped). This first separation of individual viruses from an artificially prepared laboratory mixture should encourage new applications of monolithic chromatographic supports in the separation of plant, bacterial, or animal viruses from all kinds of mixed samples. PMID:25724100

  12. MicroRNAs and oncolytic viruses.

    PubMed

    Ruiz, Autumn J; Russell, Stephen J

    2015-08-01

    MicroRNAs regulate gene expression in mammalian cells and often exhibit tissue-specific expression patterns. Incorporation of microRNA target sequences can be used to control exogenous gene expression and viral tropism in specific tissues to enhance the therapeutic indices of oncolytic viruses expressing therapeutic transgenes. Continued development of this targeting strategy has resulted in the generation of unattenuated oncolytic viruses with enhanced potency, broad species-tropisms and reduced off-target toxicities in multiple-tissues simultaneously. Furthermore, oncolytic viruses have been used to enhance the delivery, duration and therapeutic efficacy of microRNA-based therapeutics designed to either restore or inhibit the function of dysregulated microRNAs in cancer cells. Recent efforts focused on combining oncolytic virotherapy and microRNA regulation have generated increasingly potent and safe cancer therapeutics. PMID:25863717

  13. Hepatitis C virus: Promising discoveries and new treatments

    PubMed Central

    Bastos, Juliana Cristina Santiago; Padilla, Marina Aiello; Caserta, Leonardo Cardia; Miotto, Noelle; Vigani, Aline Gonzalez; Arns, Clarice Weis

    2016-01-01

    Despite advances in therapy, hepatitis C virus (HCV) infection remains an important global health issue. It is estimated that a significant part of the world population is chronically infected with the virus, and many of those affected may develop cirrhosis or liver cancer. The virus shows considerable variability, a characteristic that directly interferes with disease treatment. The response to treatment varies according to HCV genotype and subtype. The continuous generation of variants (quasispecies) allows the virus to escape control by antivirals. Historically, the combination of ribavirin and interferon therapy has represented the only treatment option for the disease. Currently, several new treatment options are emerging and are available to a large part of the affected population. In addition, the search for new substances with antiviral activity against HCV continues, promising future improvements in treatment. Researchers should consider the mutation capacity of the virus and the other variables that affect treatment success. PMID:27605875

  14. Hepatitis C virus: Promising discoveries and new treatments.

    PubMed

    Bastos, Juliana Cristina Santiago; Padilla, Marina Aiello; Caserta, Leonardo Cardia; Miotto, Noelle; Vigani, Aline Gonzalez; Arns, Clarice Weis

    2016-07-28

    Despite advances in therapy, hepatitis C virus (HCV) infection remains an important global health issue. It is estimated that a significant part of the world population is chronically infected with the virus, and many of those affected may develop cirrhosis or liver cancer. The virus shows considerable variability, a characteristic that directly interferes with disease treatment. The response to treatment varies according to HCV genotype and subtype. The continuous generation of variants (quasispecies) allows the virus to escape control by antivirals. Historically, the combination of ribavirin and interferon therapy has represented the only treatment option for the disease. Currently, several new treatment options are emerging and are available to a large part of the affected population. In addition, the search for new substances with antiviral activity against HCV continues, promising future improvements in treatment. Researchers should consider the mutation capacity of the virus and the other variables that affect treatment success. PMID:27605875

  15. INFLUENZA VIRUS IN POULTRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) is normally found in wild birds, particularly in ducks and shorebirds, where it does not cause any perceptible clinical disease. However, poultry, including chickens and turkeys, are not normal hosts for avian influenza, but if the virus is introduced it can result in mi...

  16. Zika Virus Disease.

    PubMed

    Slenczka, Werner

    2016-06-01

    The history of Zika virus disease serves as a paradigm of a typical emerging viral infection. Zika virus disease, a mosquito-borne flavivirus, was first isolated in 1947 in the Zika forest of Uganda. The same virus was also isolated from jungle-dwelling mosquitoes (Aedes [Stegomyia] africanus). In many areas of Africa and South Asia human infections with Zika virus were detected by both serology and virus isolation. About 80% of infections are asymptomatic, and in 20% a mostly mild disease with fever, rash, arthralgia, and conjunctivitis may occur. Fetal infections with malformations were not recorded in Africa or Asia. Zika virus was imported to northern Brazil possibly during the world soccer championship that was hosted by Brazil in June through July 2014. A cluster of severe fetal malformations with microcephaly and ocular defects was noted in 2015 in the northeast of Brazil, and intrauterine infections with Zika virus were confirmed. The dramatic change in Zika virus pathogenicity upon its introduction to Brazil has remained an enigma. PMID:27337468

  17. Human Papilloma Virus Infections

    PubMed Central

    Wright, V. Cecil

    1989-01-01

    Genital warts are believed to be caused by human papilloma viruses and to be sexually transmitted. The viruses are classified by DNA types, which appear to cause different types of disease. The choice of treatment, and usually its success rate, vary according to the type of disease and its location. PMID:21248973

  18. Barley Yellow Dwarf Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley yellow dwarf (BYD) is the most widespread and economically important virus disease of cereals. The viruses causing BYD were initially grouped based on common biological properties, including persistent and often strain-specific transmission by aphids and induction of yellowing symptoms. The...

  19. Influenza A virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Influenza A viruses are important veterinary and human health pathogens around the world. Avian influenza (AI) virus in poultry is unusual in that it can cause a range of disease symptoms from a subclinical infection to being highly virulent with 100% mortality. The difference between low pathogen...

  20. Zika Virus and Pregnancy.

    PubMed

    Stagg, Denise; Hurst, Helen M

    2016-01-01

    Recent outbreaks of Zika virus and reports linking infection in pregnant women with microcephaly in newborns have caused concern worldwide. Information has been evolving rapidly. Nurses and other clinicians, especially those who work with women of childbearing age, play a pivotal role in disseminating accurate information and identifying potential cases of Zika virus infection. PMID:27287356

  1. Papaya ringspot virus (Potyviridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Papaya ringspot virus, a member of the family Potyviridae, is single stranded RNA plant virus with a monocistronic genome of about 10,326 nucleotides that is expressed via a large polyprotein subsequently cleaved into functional proteins. It causes severe damage on cucurbit crops such as squash and...

  2. Virus separation using membranes.

    PubMed

    Grein, Tanja A; Michalsky, Ronald; Czermak, Peter

    2014-01-01

    Industrial manufacturing of cell culture-derived viruses or virus-like particles for gene therapy or vaccine production are complex multistep processes. In addition to the bioreactor, such processes require a multitude of downstream unit operations for product separation, concentration, or purification. Similarly, before a biopharmaceutical product can enter the market, removal or inactivation of potential viral contamination has to be demonstrated. Given the complexity of biological solutions and the high standards on composition and purity of biopharmaceuticals, downstream processing is the bottleneck in many biotechnological production trains. Membrane-based filtration can be an economically attractive and efficient technology for virus separation. Viral clearance, for instance, of up to seven orders of magnitude has been reported for state of the art polymeric membranes under best conditions.This chapter summarizes the fundamentals of virus ultrafiltration, diafiltration, or purification with adsorptive membranes. In lieu of an impractical universally applicable protocol for virus filtration, application of these principles is demonstrated with two examples. The chapter provides detailed methods for production, concentration, purification, and removal of a rod-shaped baculovirus (Autographa californica M nucleopolyhedrovirus, about 40 × 300 nm in size, a potential vector for gene therapy, and an industrially important protein expression system) or a spherical parvovirus (minute virus of mice, 22-26 nm in size, a model virus for virus clearance validation studies). PMID:24297430

  3. Papaya Ringspot Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term papaya ringspot virus (PRSV) was coined by Jensen in 1949, to describe a papaya disease in Hawaii. Later work showed that diseases such as papaya mosaic and watermelon mosaic virus-1 were caused by PRSV. The primary host range of PRSV is papaya and cucurbits, with Chenopium amaranticolor ...

  4. Bovine viral diarrhea viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infections with bovine viral diarrhea viruses (BVDV) result in significant economic losses for beef and dairy producers worldwide. BVDV is actually an umbrella term for two species of viruses, BVDV1 and BVDV2, within the Pestivirus genus of the Flavivirus family. While denoted as a bovine pathogen...

  5. Equine Arteritis Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    03. Nidovirales : 03.004. Arteriviridae : 03.004.0. {03.004.0. unknown} : 03.004.0.01. Arterivirus : 03.004.0.01.001. Equine arteritis virus will be published online. The article details the phenotypic and genotypic makeup of equine arteritis virus (EAV), and summarizes its biological properties....

  6. Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  7. Respiratory viruses and children.

    PubMed

    Heikkinen, Terho

    2016-07-01

    Respiratory viruses place a great disease burden especially on the youngest children in terms of high rates of infection, bacterial complications and hospitalizations. In developing countries, some viral infections are even associated with substantial mortality in children. The interaction between viruses and bacteria is probably much more common and clinically significant than previously understood. Respiratory viruses frequently initiate the cascade of events that ultimately leads to bacterial infection. Effective antiviral agents can substantially shorten the duration of the viral illness and prevent the development of bacterial complications. Viral vaccines have the potential to not only prevent the viral infection but also decrease the incidence of bacterial complications. At present, antivirals and vaccines are only available against influenza viruses, but new vaccines and antivirals against other viruses, especially for RSV, are being developed. PMID:27177731

  8. Infectious Viral Quantification of Chikungunya Virus-Virus Plaque Assay.

    PubMed

    Kaur, Parveen; Lee, Regina Ching Hua; Chu, Justin Jang Hann

    2016-01-01

    The plaque assay is an essential method for quantification of infectious virus titer. Cells infected with virus particles are overlaid with a viscous substrate. A suitable incubation period results in the formation of plaques, which can be fixed and stained for visualization. Here, we describe a method for measuring Chikungunya virus (CHIKV) titers via virus plaque assays. PMID:27233264

  9. Diversity and Ecology of Viruses in Hyperarid Desert Soils

    PubMed Central

    Zablocki, Olivier; Adriaenssens, Evelien M.

    2015-01-01

    In recent years, remarkable progress has been made in the field of virus environmental ecology. In marine ecosystems, for example, viruses are now thought to play pivotal roles in the biogeochemical cycling of nutrients and to be mediators of microbial evolution through horizontal gene transfer. The diversity and ecology of viruses in soils are poorly understood, but evidence supports the view that the diversity and ecology of viruses in soils differ substantially from those in aquatic systems. Desert biomes cover ∼33% of global land masses, and yet the diversity and roles of viruses in these dominant ecosystems remain poorly understood. There is evidence that hot hyperarid desert soils are characterized by high levels of bacterial lysogens and low extracellular virus counts. In contrast, cold desert soils contain high extracellular virus titers. We suggest that the prevalence of microbial biofilms in hyperarid soils, combined with extreme thermal regimens, exerts strong selection pressures on both temperate and virulent viruses. Many desert soil virus sequences show low values of identity to virus genomes in public databases, suggesting the existence of distinct and as-yet-uncharacterized soil phylogenetic lineages (e.g., cyanophages). We strongly advocate for amplification-free metavirome analyses while encouraging the classical isolation of phages from dominant and culturable microbial isolates in order to populate sequence databases. This review provides an overview of recent advances in the study of viruses in hyperarid soils and of the factors that contribute to viral abundance and diversity in hot and cold deserts and offers technical recommendations for future studies. PMID:26590289

  10. Diversity and Ecology of Viruses in Hyperarid Desert Soils.

    PubMed

    Zablocki, Olivier; Adriaenssens, Evelien M; Cowan, Don

    2016-02-01

    In recent years, remarkable progress has been made in the field of virus environmental ecology. In marine ecosystems, for example, viruses are now thought to play pivotal roles in the biogeochemical cycling of nutrients and to be mediators of microbial evolution through horizontal gene transfer. The diversity and ecology of viruses in soils are poorly understood, but evidence supports the view that the diversity and ecology of viruses in soils differ substantially from those in aquatic systems. Desert biomes cover ∼ 33% of global land masses, and yet the diversity and roles of viruses in these dominant ecosystems remain poorly understood. There is evidence that hot hyperarid desert soils are characterized by high levels of bacterial lysogens and low extracellular virus counts. In contrast, cold desert soils contain high extracellular virus titers. We suggest that the prevalence of microbial biofilms in hyperarid soils, combined with extreme thermal regimens, exerts strong selection pressures on both temperate and virulent viruses. Many desert soil virus sequences show low values of identity to virus genomes in public databases, suggesting the existence of distinct and as-yet-uncharacterized soil phylogenetic lineages (e.g., cyanophages). We strongly advocate for amplification-free metavirome analyses while encouraging the classical isolation of phages from dominant and culturable microbial isolates in order to populate sequence databases. This review provides an overview of recent advances in the study of viruses in hyperarid soils and of the factors that contribute to viral abundance and diversity in hot and cold deserts and offers technical recommendations for future studies. PMID:26590289

  11. Genetic interactions among viruses of the Bunyamwera complex.

    PubMed Central

    Iroegbu, C U; Pringle, C R

    1981-01-01

    Seventy-seven temperature-sensitive (ts) mutants belonging to three antigenically distinct and geographically isolated members of the Bunyamwera complex--Batai virus, Bunyamwera virus, and Maguari virus--have been isolated after 5-fluorouracil treatment. High-frequency recombination was observed, and the mutants of each virus were classified into two groups, which were shown to be equivalent by heterologous recombination experiments. In most combinations heterologous recombination was less efficient than homologous recombination, but all crosses of group I and II mutants yielded viable recombinants. Recombination was an early event. Analysis by polyacrylamide gel electrophoresis of the proteins of the wild-type viruses and recombinant clones obtained from the six possible heterologous combinations of group I and II mutants indicated that recombination occurred by reassortment of genome subunits. Group I appeared to correspond to the genome subunit coding for the N protein, and group II corresponded to the G1/G2 determinant. The G1 (or G2 or both) protein was associated with neutralization specificity and plaque diameter, and the N protein was associated with plaque opacity. Complementation was observed between two nonrecombining mutants of Maguari virus belonging to group I, which may indicate that the N genome subunit codes for an additional protein. There appeared to be no genetic barrier to exchange of genetic material between Batai, Bunyamwera, and Maguari viruses in vitro, and it is concluded that the Bunyamwera complex is potentially a single gene pool if geographical and ecological constraints are discounted. Images PMID:7218427

  12. Postmortem Stability of Ebola Virus

    PubMed Central

    Prescott, Joseph; Bushmaker, Trenton; Fischer, Robert; Miazgowicz, Kerri; Judson, Seth

    2015-01-01

    The ongoing Ebola virus outbreak in West Africa has highlighted questions regarding stability of the virus and detection of RNA from corpses. We used Ebola virus–infected macaques to model humans who died of Ebola virus disease. Viable virus was isolated <7 days posteuthanasia; viral RNA was detectable for 10 weeks. PMID:25897646

  13. Tembusu Virus in Ducks, China

    PubMed Central

    Cao, Zhenzhen; Zhang, Cun; Liu, Yuehuan; Ye, Weicheng; Han, Jingwen; Ma, Guoming; Zhang, Dongdong; Xu, Feng; Gao, Xuhui; Tang, Yi; Shi, Shaohua; Wan, Chunhe; Zhang, Chen; He, Bin; Yang, Mengjie; Lu, Xinhao; Huang, Yu; Diao, Youxiang; Ma, Xuejun

    2011-01-01

    In China in 2010, a disease outbreak in egg-laying ducks was associated with a flavivirus. The virus was isolated and partially sequenced. The isolate exhibited 87%–91% identity with strains of Tembusu virus, a mosquito-borne flavivirus of the Ntaya virus group. These findings demonstrate emergence of Tembusu virus in ducks. PMID:22000358

  14. Computer Viruses: Pathology and Detection.

    ERIC Educational Resources Information Center

    Maxwell, John R.; Lamon, William E.

    1992-01-01

    Explains how computer viruses were originally created, how a computer can become infected by a virus, how viruses operate, symptoms that indicate a computer is infected, how to detect and remove viruses, and how to prevent a reinfection. A sidebar lists eight antivirus resources. (four references) (LRW)

  15. A Virus in Turbo Pascal.

    ERIC Educational Resources Information Center

    Teleky, Heidi Ann; And Others

    1993-01-01

    Addresses why the authors feel it is not inappropriate to teach about viruses in the how-to, hands-on fashion. Identifies the special features of Turbo Pascal that have to be used for the creation of an effective virus. Defines virus, derives its structure, and from this structure is derived the implemented virus. (PR)

  16. Realms of the Viruses Online

    ERIC Educational Resources Information Center

    Liu, Dennis

    2007-01-01

    Viruses have evolved strategies for infecting all taxa, but most viruses are highly specific about their cellular host. In humans, viruses cause diverse diseases, from chronic but benign warts, to acute and deadly hemorrhagic fever. Viruses have entertaining names like Zucchini Yellow Mosaic, Semliki Forest, Coxsackie, and the original terminator,…

  17. Virus diseases of peppers (Capsicum spp.) and their control.

    PubMed

    Kenyon, Lawrence; Kumar, Sanjeet; Tsai, Wen-Shi; Hughes, Jacqueline d'A

    2014-01-01

    The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the

  18. First detection of bluetongue virus serotype 14 in Poland.

    PubMed

    Orłowska, Anna; Trębas, Paweł; Smreczak, Marcin; Marzec, Anna; Żmudziński, Jan F

    2016-07-01

    Here, we present the first detected cases of bluetongue virus (BTV) in native cattle from Poland. The virus was found in animals located near the Polish-Belarusian and Polish-Lithuanian borders. The positive animals were detected through an official epidemiological surveillance program. A combination of type-specific real-time RT-PCR and phylogenetic tests revealed the presence of BTV serotype 14 (BTV-14). This serotype is highly homologous to the vaccine strain and BTV-14 present in Russia, Lithuania, and Spain (from an animal imported from Lithuania). The most probable route of virus introduction to Poland was transmission through midges. All of the cases were subclinical. PMID:27068167

  19. Saikosaponin A inhibits influenza A virus replication and lung immunopathology.

    PubMed

    Chen, Jianxin; Duan, Mubing; Zhao, Yaqin; Ling, Fangfang; Xiao, Kun; Li, Qian; Li, Bin; Lu, Chunni; Qi, Wenbao; Zeng, Zhenling; Liao, Ming; Liu, Yahong; Chen, Weisan

    2015-12-15

    Fatal influenza outcomes result from a combination of rapid virus replication and collateral lung tissue damage caused by exaggerated pro-inflammatory host immune cell responses. There are few therapeutic agents that target both biological processes for the attenuation of influenza-induced lung pathology. We show that Saikosaponin A, a bioactive triterpene saponin with previouslyestablished anti-inflammatory effects, demonstrates both in vitro and in vivo anti-viral activity against influenza A virus infections. Saikosaponin A attenuated the replication of three different influenza A virus strains, including a highly pathogenic H5N1 strain, in human alveolar epithelial A549 cells. This anti-viral activity occurred through both downregulation of NF-κB signaling and caspase 3-dependent virus ribonucleoprotein nuclear export as demonstrated by NF-κB subunit p65 and influenza virus nucleoprotein nuclear translocation studies in influenza virus infected A549 cells. Critically, Saikosaponin A also attenuated viral replication, aberrant pro-inflammatory cytokine production and lung histopathology in the widely established H1N1 PR8 model of influenza A virus lethality in C57BL/6 mice. Flow cytometry studies of mouse bronchoalveolar lavage cells revealed that SSa exerted immunomodulatory effects through a selective attenuation of lung neutrophil and monocyte recruitment during the early peak of the innate immune response to PR8 infection. Altogether, our results indicate that Saikosaponin A possesses novel therapeutic potential for the treatment of pathological influenza virus infections. PMID:26637810

  20. Virus Variation Resource--recent updates and future directions.

    PubMed

    Brister, J Rodney; Bao, Yiming; Zhdanov, Sergey A; Ostapchuck, Yuri; Chetvernin, Vyacheslav; Kiryutin, Boris; Zaslavsky, Leonid; Kimelman, Michael; Tatusova, Tatiana A

    2014-01-01

    Virus Variation (http://www.ncbi.nlm.nih.gov/genomes/VirusVariation/) is a comprehensive, web-based resource designed to support the retrieval and display of large virus sequence datasets. The resource includes a value added database, a specialized search interface and a suite of sequence data displays. Virus-specific sequence annotation and database loading pipelines produce consistent protein and gene annotation and capture sequence descriptors from sequence records then map these metadata to a controlled vocabulary. The database supports a metadata driven, web-based search interface where sequences can be selected using a variety of biological and clinical criteria. Retrieved sequences can then be downloaded in a variety of formats or analyzed using a suite of tools and displays. Over the past 2 years, the pre-existing influenza and Dengue virus resources have been combined into a single construct and West Nile virus added to the resultant resource. A number of improvements were incorporated into the sequence annotation and database loading pipelines, and the virus-specific search interfaces were updated to support more advanced functions. Several new features have also been added to the sequence download options, and a new multiple sequence alignment viewer has been incorporated into the resource tool set. Together these enhancements should support enhanced usability and the inclusion of new viruses in the future. PMID:24304891

  1. Saikosaponin A inhibits influenza A virus replication and lung immunopathology

    PubMed Central

    Zhao, Yaqin; Ling, Fangfang; Xiao, Kun; Li, Qian; Li, Bin; Lu, Chunni; Qi, Wenbao; Zeng, Zhenling; Liao, Ming; Liu, Yahong; Chen, Weisan

    2015-01-01

    Fatal influenza outcomes result from a combination of rapid virus replication and collateral lung tissue damage caused by exaggerated pro-inflammatory host immune cell responses. There are few therapeutic agents that target both biological processes for the attenuation of influenza-induced lung pathology. We show that Saikosaponin A, a bioactive triterpene saponin with previouslyestablished anti-inflammatory effects, demonstrates both in vitro and in vivo anti-viral activity against influenza A virus infections. Saikosaponin A attenuated the replication of three different influenza A virus strains, including a highly pathogenic H5N1 strain, in human alveolar epithelial A549 cells. This anti-viral activity occurred through both downregulation of NF-κB signaling and caspase 3-dependent virus ribonucleoprotein nuclear export as demonstrated by NF-κB subunit p65 and influenza virus nucleoprotein nuclear translocation studies in influenza virus infected A549 cells. Critically, Saikosaponin A also attenuated viral replication, aberrant pro-inflammatory cytokine production and lung histopathology in the widely established H1N1 PR8 model of influenza A virus lethality in C57BL/6 mice. Flow cytometry studies of mouse bronchoalveolar lavage cells revealed that SSa exerted immunomodulatory effects through a selective attenuation of lung neutrophil and monocyte recruitment during the early peak of the innate immune response to PR8 infection. Altogether, our results indicate that Saikosaponin A possesses novel therapeutic potential for the treatment of pathological influenza virus infections. PMID:26637810

  2. Allopolyploidy and the evolution of plant virus resistance

    PubMed Central

    2014-01-01

    Background The relationship between allopolyploidy and plant virus resistance is poorly understood. To determine the relationship of plant evolutionary history and basal virus resistance, a panel of Nicotiana species from diverse geographic regions and ploidy levels was assessed for resistance to non-coevolved viruses from the genus Nepovirus, family Secoviridae. The heritability of resistance was tested in a panel of synthetic allopolyploids. Leaves of different positions on each inoculated plant were tested for virus presence and a subset of plants was re-inoculated and assessed for systemic recovery. Results Depending on the host-virus combination, plants displayed immunity, susceptibility or intermediate levels of resistance. Synthetic allopolyploids showed an incompletely dominant resistance phenotype and manifested systemic recovery. Plant ploidy was weakly negatively correlated with virus resistance in Nicotiana species, but this trend did not hold when synthetic allopolyploids were taken into account. Furthermore, a relationship between resistance and geographical origin was observed. Conclusion The gradients of resistance and virulence corresponded to a modified matching allele model of resistance. Intermediate resistance responses of allopolyploids corresponded with a model of multi-allelic additive resistance. The variable virus resistance of extant allopolyploids suggested that selection-based mechanisms surpass ploidy with respect to evolution of basal resistance to viruses. PMID:24992820

  3. Gene-specific contributions to mumps virus neurovirulence and neuroattenuation.

    PubMed

    Sauder, Christian J; Zhang, Cheryl X; Ngo, Laurie; Werner, Kellie; Lemon, Ken; Duprex, W Paul; Malik, Tahir; Carbone, Kathryn; Rubin, Steven A

    2011-07-01

    Mumps virus (MuV) is highly neurotropic and was the leading cause of aseptic meningitis in the Western Hemisphere prior to widespread use of live attenuated MuV vaccines. Due to the absence of markers of virus neuroattenuation and neurovirulence, ensuring mumps vaccine safety has proven problematic, as demonstrated by the occurrence of aseptic meningitis in recipients of certain vaccine strains. Here we examined the genetic basis of MuV neuroattenuation and neurovirulence by generating a series of recombinant viruses consisting of combinations of genes derived from a cDNA clone of the neurovirulent wild-type 88-1961 strain (r88) and from a cDNA clone of the highly attenuated Jeryl Lynn vaccine strain (rJL). Testing of these viruses in rats demonstrated the ability of several individual rJL genes and gene combinations to significantly neuroattenuate r88, with the greatest effect imparted by the rJL nucleoprotein/matrix protein combination. Interestingly, no tested combination of r88 genes, including the nucleoprotein/matrix protein combination, was able to convert rJL into a highly neurovirulent virus, highlighting mechanistic differences between processes involved in neuroattenuation and neurovirulence. PMID:21543475

  4. Ocular Tropism of Respiratory Viruses

    PubMed Central

    Rota, Paul A.; Tumpey, Terrence M.

    2013-01-01

    SUMMARY Respiratory viruses (including adenovirus, influenza virus, respiratory syncytial virus, coronavirus, and rhinovirus) cause a broad spectrum of disease in humans, ranging from mild influenza-like symptoms to acute respiratory failure. While species D adenoviruses and subtype H7 influenza viruses are known to possess an ocular tropism, documented human ocular disease has been reported following infection with all principal respiratory viruses. In this review, we describe the anatomical proximity and cellular receptor distribution between ocular and respiratory tissues. All major respiratory viruses and their association with human ocular disease are discussed. Research utilizing in vitro and in vivo models to study the ability of respiratory viruses to use the eye as a portal of entry as well as a primary site of virus replication is highlighted. Identification of shared receptor-binding preferences, host responses, and laboratory modeling protocols among these viruses provides a needed bridge between clinical and laboratory studies of virus tropism. PMID:23471620

  5. Viruses of Chelonia.

    PubMed

    Ahne, W

    1993-02-01

    Viruses occurring in turtles and tortoises are hetergeneous but according to ecologic characteristics and pathogenic properties they can be divided in two major groups: 1. Arboviruses (toga-, flavi-, rhabdo- and bunyaviruses) transmitted by arthropods cause severe diseases in homoiothermic vertebrates. The viruses are of great epidemiological interest in human and veterinary medicine. Chelonia and other reptiles infected by bites of vectors e.g. Aedes, Anopheles, Culex develop cyclic viremia without injury. The ectothermic animals maintain inapparent arbovirus infections during hibernation and they play role as reservoirs for these viruses. 2. Viruses of Chelonia origin (papova-, herpes-, irido- and paramyxoviruses) associated with diseases of infected turtles and tortoises have been described frequently during the last 20 years. Several viruses or virus-like particles could be demonstrated in affected reptiles mainly by electron microscopy. Especially herpesviruses seem to attack Chelonia and epizootics due to infections with these viruses were reported in several reptiles in collections. However, the etiological role of the agents detected is not well documented yet. PMID:8456570

  6. Evidence for genetic variation of Eurasian avian influenza viruses, subtype H15: The first report of an H15N7 virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An avian influenza virus (AIV) subtype H15N7 was isolated in 2010 during wild bird surveillance conducted in Ukraine (A/mallard/Novomychalivka/2-23-12/10). This particular subtype combination has not been previously reported. Until now, only seven subtype H15 viruses have been isolated worldwide, ...

  7. Molecular simultaneous detection of Cherry necrotic rusty mottle virus and Cherry green ring mottle virus by real-time RT-PCR and high resolution melting analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, real-time RT-PCR assays were combined with high resolution melting (HRM) analysis for the simultaneous detection of Cherry necrotic rusty mottle virus (CNRMV) and Cherry green ring mottle virus (CGRMV) infection in sweet cherry trees. Detection of CNRMV and CGRMV was performed using a...

  8. Experimental Inoculation of Pigs with Pandemic H1N1 2009 Virus and HI Cross-Reactivity with Contemporary Swine Influenza Virus Antisera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In March-April 2009, a novel A/H1N1 emerged in the human population in North America. The gene constellation of the virus was demonstrated to be a combination from swine influenza A viruses (SIV) of North American and Eurasian lineages that had never before been identified in swine or other species...

  9. Foamy virus vectors.

    PubMed Central

    Russell, D W; Miller, A D

    1996-01-01

    Human foamy virus (HFV) is a retrovirus of the spumavirus family. We have constructed vectors based on HFV that encode neomycin phosphotransferase and alkaline phosphatase. These vectors are able to transduce a wide variety of vertebrate cells by integration of the vector genome. Unlike vectors based on murine leukemia virus, HFV vectors are not inactivated by human serum, and they transduce stationary-phase cultures more efficiently than murine leukemia virus vectors. These properties, as well as their large packaging capacity, make HFV vectors promising gene transfer vehicles. PMID:8523528

  10. Fighting cancer with viruses

    NASA Astrophysics Data System (ADS)

    Ferreira, S. C.; Martins, M. L.; Vilela, M. J.

    2005-01-01

    One of the most promising strategies to treat cancer is attacking it with viruses. Viruses can kill tumor cells specifically or act as carriers that deliver normal genes into cancer cells. A model for virotherapy of cancer is investigated and its predictions are in agreement with results obtained from experimental tumors. Furthermore, the model reveals an oscillatory (periodic or aperiodic) response of tumor cells and virus populations which may make clinical prognosis difficult. These results suggest the need for new in vivo and in vitro experiments aiming to detect this oscillatory response.

  11. Virus templated metallic nanoparticles.

    PubMed

    Aljabali, Alaa A A; Barclay, J Elaine; Lomonossoff, George P; Evans, David J

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. ≤35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. PMID:20877898

  12. Viruses in reptiles

    PubMed Central

    2011-01-01

    The etiology of reptilian viral diseases can be attributed to a wide range of viruses occurring across different genera and families. Thirty to forty years ago, studies of viruses in reptiles focused mainly on the zoonotic potential of arboviruses in reptiles and much effort went into surveys and challenge trials of a range of reptiles with eastern and western equine encephalitis as well as Japanese encephalitis viruses. In the past decade, outbreaks of infection with West Nile virus in human populations and in farmed alligators in the USA has seen the research emphasis placed on the issue of reptiles, particularly crocodiles and alligators, being susceptible to, and reservoirs for, this serious zoonotic disease. Although there are many recognised reptilian viruses, the evidence for those being primary pathogens is relatively limited. Transmission studies establishing pathogenicity and cofactors are likewise scarce, possibly due to the relatively low commercial importance of reptiles, difficulties with the availability of animals and permits for statistically sound experiments, difficulties with housing of reptiles in an experimental setting or the inability to propagate some viruses in cell culture to sufficient titres for transmission studies. Viruses as causes of direct loss of threatened species, such as the chelonid fibropapilloma associated herpesvirus and ranaviruses in farmed and wild tortoises and turtles, have re-focused attention back to the characterisation of the viruses as well as diagnosis and pathogenesis in the host itself. 1. Introduction 2. Methods for working with reptilian viruses 3. Reptilian viruses described by virus families 3.1. Herpesviridae 3.2. Iridoviridae 3.2.1 Ranavirus 3.2.2 Erythrocytic virus 3.2.3 Iridovirus 3.3. Poxviridae 3.4. Adenoviridae 3.5. Papillomaviridae 3.6. Parvoviridae 3.7. Reoviridae 3.8. Retroviridae and inclusion body disease of Boid snakes 3.9. Arboviruses 3.9.1. Flaviviridae 3.9.2. Togaviridae 3.10. Caliciviridae

  13. Antigenic characterization of influenza viruses produced using synthetic DNA and novel backbones.

    PubMed

    Suphaphiphat, Pirada; Whittaker, Lynne; De Souza, Ivna; Daniels, Rodney S; Dormitzer, Philip R; McCauley, John W; Settembre, Ethan C

    2016-07-12

    The global system for manufacturing seasonal influenza vaccines has been developed to respond to the natural evolution of influenza viruses, but the problem of antigenic mismatch continues to be a challenge in certain years. In some years, mismatches arise naturally due to the antigenic drift of circulating viruses after vaccine strain selection has already been made. In other years, antigenic differences between the vaccine virus and circulating viruses are introduced as part of the current system, which relies on the use of egg-adapted isolates as a starting material for candidate vaccine viruses (CVVs). Improving the current process for making vaccine viruses can provide great value. We have previously established a synthetic approach for rapidly generating influenza viruses in a vaccine-approved Madin Darby canine kidney (MDCK) cell line using novel, high-growth backbones that increase virus rescue efficiency and antigen yield. This technology also has the potential to produce viruses that maintain antigenic similarity to the intended reference viruses, depending on the hemagglutinin (HA) and neuraminidase (NA) sequences used for gene synthesis. To demonstrate this utility, we generated a panel of synthetic viruses using HA and NA sequences from recent isolates and showed by hemagglutination inhibition (HI) tests that all synthetic viruses were antigenically-like their conventional egg- or cell-propagated reference strains and there was no impact of the novel backbones on antigenicity. This synthetic approach can be used for the efficient production of CVVs that may be more representative of circulating viruses and may be used for both egg- and cell-based vaccine manufacturing platforms. When combined with mammalian cell culture technology for antigen production, synthetic viruses generated using HA and NA sequences from a non-egg-adapted prototype can help to reduce the potential impact of antigenic differences between vaccine virus and circulating viruses on

  14. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    PubMed Central

    Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike; Zhang, Liqun; Yang, Lijuan; Ward, Jerrold M.; Dorward, David W.; Pickles, Raymond J.; Murphy, Brian R.; Feldmann, Heinz; Collins, Peter L.

    2009-01-01

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/ΔF-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/ΔF-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/ΔF-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV. PMID:19010509

  15. Chimeric human parainfluenza virus bearing the Ebola virus glycoprotein as the sole surface protein is immunogenic and highly protective against Ebola virus challenge

    SciTech Connect

    Bukreyev, Alexander Marzi, Andrea; Feldmann, Friederike; Zhang Liqun; Dorward, David W.; Pickles, Raymond J.; Feldmann, Heinz; Collins, Peter L.

    2009-01-20

    We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/{delta}F-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/{delta}F-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface, the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/{delta}F-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV.

  16. Animal models of disease shed light on Nipah virus pathogenesis and transmission

    PubMed Central

    de Wit, Emmie; Munster, Vincent J.

    2014-01-01

    Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans. PMID:25229234

  17. Chikungunya Virus: Current Perspectives on a Reemerging Virus.

    PubMed

    Morrison, Clayton R; Plante, Kenneth S; Heise, Mark T

    2016-06-01

    Chikungunya virus (CHIKV) is a mosquito-borne alphavirus in the family Togaviridae that causes outbreaks of debilitating acute and chronic arthralgia in humans. Although historically associated with localized outbreaks in Africa and Asia, recent epidemics in the Indian Ocean region and the Americas have led to the recognition that CHIKV is capable of moving into previously unaffected areas and causing significant levels of human suffering. The severity of CHIKV rheumatic disease, which can severely impact life quality of infected individuals for weeks, months, or even years, combined with the explosive nature of CHIKV outbreaks and its demonstrated ability to quickly spread into new regions, has led to renewed interest in developing strategies for the prevention or treatment of CHIKV-induced disease. Therefore, this chapter briefly discusses the biology of CHIKV and the factors contributing to CHIKV dissemination, while also discussing the pathogenesis of CHIKV-induced disease and summarizing the status of efforts to develop safe and effective therapies and vaccines against CHIKV and related viruses. PMID:27337473

  18. Simultaneous Visualization of Parental and Progeny Viruses by a Capsid-Specific HaloTag Labeling Strategy.

    PubMed

    Liu, An-An; Zhang, Zhenfeng; Sun, En-Ze; Zheng, Zhenhua; Zhang, Zhi-Ling; Hu, Qinxue; Wang, Hanzhong; Pang, Dai-Wen

    2016-01-26

    Real-time, long-term, single-particle tracking (SPT) provides us an opportunity to explore the fate of individual viruses toward understanding the mechanisms underlying virus infection, which in turn could lead to the development of therapeutics against viral diseases. However, the research focusing on the virus assembly and egress by SPT remains a challenge because established labeling strategies could neither specifically label progeny viruses nor make them distinguishable from the parental viruses. Herein, we have established a temporally controllable capsid-specific HaloTag labeling strategy based on reverse genetic technology. VP26, the smallest pseudorabies virus (PrV) capsid protein, was fused with HaloTag protein and labeled with the HaloTag ligand during virus replication. The labeled replication-competent recombinant PrV harvested from medium can be applied directly in SPT experiments without further modification. Thus, virus infectivity, which is critical for the visualization and analysis of viral motion, is retained to the largest extent. Moreover, progeny viruses can be distinguished from parental viruses using diverse HaloTag ligands. Consequently, the entire course of virus infection and replication can be visualized continuously, including virus attachment and capsid entry, transportation of capsids to the nucleus along microtubules, docking of capsids on the nucleus, endonuclear assembly of progeny capsids, and the egress of progeny viruses. In combination with SPT, the established strategy represents a versatile means to reveal the mechanisms and dynamic global picture of the life cycle of a virus. PMID:26720596

  19. How rigid are viruses

    NASA Astrophysics Data System (ADS)

    Hartschuh, R. D.; Wargacki, S. P.; Xiong, H.; Neiswinger, J.; Kisliuk, A.; Sihn, S.; Ward, V.; Vaia, R. A.; Sokolov, A. P.

    2008-08-01

    Viruses have traditionally been studied as pathogens, but in recent years they have been adapted for applications ranging from drug delivery and gene therapy to nanotechnology, photonics, and electronics. Although the structures of many viruses are known, most of their biophysical properties remain largely unexplored. Using Brillouin light scattering, we analyzed the mechanical rigidity, intervirion coupling, and vibrational eigenmodes of Wiseana iridovirus (WIV). We identified phonon modes propagating through the viral assemblies as well as the localized vibrational eigenmode of individual viruses. The measurements indicate a Young’s modulus of ˜7GPa for single virus particles and their assemblies, surprisingly high for “soft” materials. Mechanical modeling confirms that the DNA core dominates the WIV rigidity. The results also indicate a peculiar mechanical coupling during self-assembly of WIV particles.

  20. VIRUS instrument enclosures

    NASA Astrophysics Data System (ADS)

    Prochaska, T.; Allen, R.; Mondrik, N.; Rheault, J. P.; Sauseda, M.; Boster, E.; James, M.; Rodriguez-Patino, M.; Torres, G.; Ham, J.; Cook, E.; Baker, D.; DePoy, Darren L.; Marshall, Jennifer L.; Hill, G. J.; Perry, D.; Savage, R. D.; Good, J. M.; Vattiat, Brian L.

    2014-08-01

    The Visible Integral-Field Replicable Unit Spectrograph (VIRUS) instrument will be installed at the Hobby-Eberly Telescope† in the near future. The instrument will be housed in two enclosures that are mounted adjacent to the telescope, via the VIRUS Support Structure (VSS). We have designed the enclosures to support and protect the instrument, to enable servicing of the instrument, and to cool the instrument appropriately while not adversely affecting the dome environment. The system uses simple HVAC air handling techniques in conjunction with thermoelectric and standard glycol heat exchangers to provide efficient heat removal. The enclosures also provide power and data transfer to and from each VIRUS unit, liquid nitrogen cooling to the detectors, and environmental monitoring of the instrument and dome environments. In this paper, we describe the design and fabrication of the VIRUS enclosures and their subsystems.

  1. Virus Chapter: Iflaviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The iflaviruses comprise viruses isolated from arthropod species of agricultural importance. All members of iflaviruses have a genome arrangement similar to the picornaviruses, ootyviruses, and secoviruses. However, phylogenetic analysis using the RNA-dependent RNA polymerase region showed that th...

  2. [Zika, a neurotropic virus?].

    PubMed

    Del Carpio-Orantes, Luis

    2016-01-01

    In this paper, the neurotropism potential Zika virus is discussed, by comparison with viruses both RNA and DNA are neurotropic known, also it is said that compared with the new viruses that have affected the Americas, as the chikungunya, Zika has shown great affinity by brain tissue, manifested by a high incidence of acute neurological conditions, such as Guillain-Barré syndrome, among others, as well as the reported incidence of microcephaly that is abnormally high compared with the previous incidence, which, in a stillborn subject necropsied significant alterations demonstrated in brain tissue, identifying viral material and live virus in the fetoplacental complex, and demonstrating the impact both white matter and gray matter as well as basal ganglia, corpus callosum, ventricles and spinal cord, which could explain the microcephaly that concerns him. Although not a direct cause-effect relationship is demonstrated, however current evidence supports that relationship, hoping to be supported scientifically. PMID:27197113

  3. Sexually transmitted viruses.

    PubMed Central

    Rapp, F.

    1989-01-01

    Human viruses known to be spread by sexual contact include herpes simplex viruses (HSV), papillomaviruses (HPV), human immunodeficiency virus (HIV), hepatitis B virus, and cytomegalovirus. Infections with the first three (HSV, HPV, and HIV) have reached epidemic proportions and pose global health concerns. Most of what we know about these human pathogens has been learned only recently, owing to the advent of DNA technologies and advances in culture techniques. In fact, our awareness of one virally transmitted venereal disease, acquired immunodeficiency syndrome, dates to the early 1980s. This paper touches on various aspects of the biology, pathogenesis, clinical manifestations, and, where applicable, oncogenicity of these agents, as well as current treatments and vaccine initiatives. PMID:2549736

  4. West Nile Virus

    MedlinePlus

    ... to human beings through their bites. Credit: CDC Biology, Genetics, & Clinical Research NIAID conducts and funds basic and clinical research on WNV biology and viral structure, ways the virus causes human ...

  5. Respiratory syncytial virus (RSV)

    MedlinePlus

    ... RSV often spreads quickly in crowded households and day care centers. The virus can live for a half ... The following increase the risk for RSV: Attending day care Being near tobacco smoke Having school-aged brothers ...

  6. Hepatitis B virus (image)

    MedlinePlus

    Hepatitis B is also known as serum hepatitis and is spread through blood and sexual contact. It is ... population. This photograph is an electronmicroscopic image of hepatitis B virus particles. (Image courtesy of the Centers for ...

  7. Avoiding Computer Viruses.

    ERIC Educational Resources Information Center

    Rowe, Joyce; And Others

    1989-01-01

    The threat of computer sabotage is a real concern to business teachers and others responsible for academic computer facilities. Teachers can minimize the possibility. Eight suggestions for avoiding computer viruses are given. (JOW)

  8. What's West Nile Virus?

    MedlinePlus

    ... is caused by a bite from an infected mosquito that's already carrying the virus, but it's important ... the risk of being bitten by an infected mosquito is greatest from July to early September. But ...

  9. Ebola virus disease

    MedlinePlus

    ... urine, saliva, sweat, feces, vomit, breast milk, and semen. The virus can enter the body through a ... use condoms for 12 months or until their semen has twice tested negative. Long-term complications can ...

  10. Simian hemorrhagic fever virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter describes the taxonomic classification of Simian hemorrhagic fever virus (SHFV). Included are: host, genome, classification, morphology, physicochemical and physical properties, nucleic acid, proteins, lipids, carbohydrates, geographic range, phylogenetic properties, biological pro...

  11. The dengue viruses.

    PubMed

    Henchal, E A; Putnak, J R

    1990-10-01

    Dengue, a major public health problem throughout subtropical and tropical regions, is an acute infectious disease characterized by biphasic fever, headache, pain in various parts of the body, prostration, rash, lymphadenopathy, and leukopenia. In more severe or complicated dengue, patients present with a severe febrile illness characterized by abnormalities of hemostasis and increased vascular permeability, which in some instances results in a hypovolemic shock. Four distinct serotypes of the dengue virus (dengue-1, dengue-2, dengue-3, and dengue-4) exist, with numerous virus strains found worldwide. Molecular cloning methods have led to a greater understanding of the structure of the RNA genome and definition of virus-specific structural and nonstructural proteins. Progress towards producing safe, effective dengue virus vaccines, a goal for over 45 years, has been made. PMID:2224837

  12. West Nile Virus

    MedlinePlus

    ... appeared in the United States in 1999. Infected mosquitoes spread the virus that causes it. People who ... barrels Stay indoors between dusk and dawn, when mosquitoes are most active Use screens on windows to ...

  13. The dengue viruses.

    PubMed Central

    Henchal, E A; Putnak, J R

    1990-01-01

    Dengue, a major public health problem throughout subtropical and tropical regions, is an acute infectious disease characterized by biphasic fever, headache, pain in various parts of the body, prostration, rash, lymphadenopathy, and leukopenia. In more severe or complicated dengue, patients present with a severe febrile illness characterized by abnormalities of hemostasis and increased vascular permeability, which in some instances results in a hypovolemic shock. Four distinct serotypes of the dengue virus (dengue-1, dengue-2, dengue-3, and dengue-4) exist, with numerous virus strains found worldwide. Molecular cloning methods have led to a greater understanding of the structure of the RNA genome and definition of virus-specific structural and nonstructural proteins. Progress towards producing safe, effective dengue virus vaccines, a goal for over 45 years, has been made. Images PMID:2224837

  14. Identification of Multiple Novel Viruses, Including a Parvovirus and a Hepevirus, in Feces of Red Foxes

    PubMed Central

    van der Giessen, Joke; Haagmans, Bart L.; Osterhaus, Albert D. M. E.; Smits, Saskia L.

    2013-01-01

    Red foxes (Vulpes vulpes) are the most widespread members of the order of Carnivora. Since they often live in (peri)urban areas, they are a potential reservoir of viruses that transmit from wildlife to humans or domestic animals. Here we evaluated the fecal viral microbiome of 13 red foxes by random PCR in combination with next-generation sequencing. Various novel viruses, including a parvovirus, bocavirus, adeno-associated virus, hepevirus, astroviruses, and picobirnaviruses, were identified. PMID:23616657

  15. Virus templated metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  16. Tick-borne viruses*

    PubMed Central

    Work, Telford H.

    1963-01-01

    More than 150 arthropod-borne viruses are now recognized, and over 50 of these are known to produce human infections and disease. Among these viruses are those of the tick-borne Russian spring-summer complex, which is etiologically involved in a wide variety of human diseases of varying severity. The eight antigenically different members of this complex so far known are Russian spring-summer encephalitis, louping-ill, Central European encephalitis, Omsk haemorrhagic fever, Kyasanur Forest disease, Langat, Negishi and Powassan viruses. In his review of the problems posed by these viruses and of research on them, the author points out that, while this complex is distributed around the globe in the temperate zone of the northern hemisphere, the only serious tick-borne virus disease known in the tropics is Kyasanur Forest disease. It is probable, however, that there are other, unrecognized tick-borne viruses in the tropical areas of Asia, Africa and America of importance to human health, and that these will be brought to light as virological studies of diseases of now obscure etiology are pursued. PMID:14043753

  17. Human Influenza Virus Infections.

    PubMed

    Peteranderl, Christin; Herold, Susanne; Schmoldt, Carole

    2016-08-01

    Seasonal and pandemic influenza are the two faces of respiratory infections caused by influenza viruses in humans. As seasonal influenza occurs on an annual basis, the circulating virus strains are closely monitored and a yearly updated vaccination is provided, especially to identified risk populations. Nonetheless, influenza virus infection may result in pneumonia and acute respiratory failure, frequently complicated by bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often causes increased morbidity and spreads extremely rapidly in the immunologically naive human population, with huge clinical and economic impact. Accordingly, particular efforts are made to advance our knowledge on the disease biology and pathology and recent studies have brought new insights into IAV adaptation mechanisms to the human host, as well as into the key players in disease pathogenesis on the host side. Current antiviral strategies are only efficient at the early stages of the disease and are challenged by the genomic instability of the virus, highlighting the need for novel antiviral therapies targeting the pulmonary host response to improve viral clearance, reduce the risk of bacterial coinfection, and prevent or attenuate acute lung injury. This review article summarizes our current knowledge on the molecular basis of influenza infection and disease progression, the key players in pathogenesis driving severe disease and progression to lung failure, as well as available and envisioned prevention and treatment strategies against influenza virus infection. PMID:27486731

  18. Transmission of influenza A viruses.

    PubMed

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-05-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  19. Transmission of Influenza A Viruses

    PubMed Central

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  20. Enteric and indicator virus removal by surface flow wetlands.

    PubMed

    Rachmadi, Andri T; Kitajima, Masaaki; Pepper, Ian L; Gerba, Charles P

    2016-01-15

    We investigated the occurrence and attenuation of several human enteric viruses (i.e., norovirus, adenovirus, Aichi virus 1, polyomaviruses, and enterovirus) as well as a plant virus, pepper mild mottle virus (PMMoV), at two surface flow wetlands in Arizona. The retention time in one of the wetlands was seven days, whereas in the other wetland it could not be defined. Water samples were collected at the inlet and outlet from the wetlands over nine months, and concentration of viral genomes was determined by quantitative polymerase chain reaction (qPCR). Of the human enteric viruses tested, adenovirus and Aichi virus 1 were found in the greatest prevalence in treated wastewater (i.e., inlet of the wetlands). Reduction efficiencies of enteric viruses by the wetlands ranged from 1 to 3 log10. Polyomaviruses were generally removed to below detection limit, indicating at least 2 to 4 log10 removal. PMMoV was detected in a greater concentration in the inlet of both wetlands for all the viruses tested (10(4) to 10(7) genome copies/L), but exhibited little or no removal (1 log10 or less). To determine the factors associated with virus genome attenuation (as determined by qPCR), the persistence of PMMoV and poliovirus type 1 (an enterovirus) was studied in autoclaved and natural wetland water, and deionized water incubated under three different temperatures for 21 days. A combination of elevated water temperature and biological activities reduced poliovirus by 1 to 4 log10, while PMMoV was not significantly reduced during this time period. Overall, PMMoV showed much greater persistence than human viruses in the wetland treatment. PMID:26562344