Sample records for cox-2 selective inhibitor

  1. Select Dietary Phytochemicals Function as Inhibitors of COX-1 but Not COX-2

    PubMed Central

    Li, Haitao; Zhu, Feng; Sun, Yanwen; Li, Bing; Oi, Naomi; Chen, Hanyong; Lubet, Ronald A.; Bode, Ann M.; Dong, Zigang

    2013-01-01

    Recent clinical trials raised concerns regarding the cardiovascular toxicity of selective cyclooxygenase-2 (COX-2) inhibitors. Many active dietary factors are reported to suppress carcinogenesis by targeting COX-2. A major question was accordingly raised: why has the lifelong use of phytochemicals that likely inhibit COX-2 presumably not been associated with adverse cardiovascular side effects. To answer this question, we selected a library of dietary-derived phytochemicals and evaluated their potential cardiovascular toxicity in human umbilical vein endothelial cells. Our data indicated that the possibility of cardiovascular toxicity of these dietary phytochemicals was low. Further mechanistic studies revealed that the actions of these phytochemicals were similar to aspirin in that they mainly inhibited COX-1 rather than COX-2, especially at low doses. PMID:24098505

  2. Overexpression of COX-2 in Rat Oral Cancers and Prevention of Oral Carcinogenesis in Rats by Selective and Non-Selective COX Inhibitors

    PubMed Central

    McCormick, David L.; Phillips, Jonathan M.; Horn, Thomas L.; Johnson, William D.; Steele, Vernon E.; Lubet, Ronald A.

    2009-01-01

    Oral squamous cell carcinomas induced in rats by 4-nitroquinoline-1-oxide (NQO) demonstrate substantial overexpression of cyclooxygenase-2 (COX-2) when compared to adjacent phenotypically normal oral tissues. By contrast, neither 5-lipoxygenase (5-LOX) nor 12-lipoxygenase (12-LOX) is overexpressed in rat oral cancers. Two chemoprevention studies were performed to test the resulting hypothesis that COX-2 is a useful target for oral cancer chemoprevention in the rat. In both studies, male F344 rats received drinking water exposure to NQO (20 ppm) for 10 weeks, followed by administration of chemopreventive agents from week 10 until study termination at week 26. In the first study, groups of rats were fed basal diet (control), or basal diet supplemented with the selective COX-2 inhibitor, celecoxib (500 or 1500 mg/kg diet); the non-selective COX inhibitor, piroxicam (50 or 150 mg/kg diet); or the 5-LOX inhibitor, zileuton (2000 mg/kg diet). In the second study, rats were fed basal diet (control) or basal diet supplemented with NO-Naproxen (180 or 90 mg/kg diet), a non-selective COX inhibitor that demonstrates reduced gastrointestinal toxicity. When compared to dietary controls, celecoxib decreased oral cancer incidence, cancer invasion score, and cancer-related mortality. Piroxicam decreased cancer-related mortality and cancer invasion score, while NO-naproxen decreased oral cancer incidence and cancer invasion score. By contrast, zileuton demonstrated no chemopreventive activity by any parameter assessed. These data demonstrate that both selective and non-selective inhibitors of COX-2 can prevent NQO-induced oral carcinogenesis in rats. The chemopreventive activity of COX inhibitors may be linked to overexpression of their enzymatic target in incipient oral neoplasms. PMID:20051374

  3. Binding Energy Calculation of Patchouli Alcohol Isomer Cyclooxygenase Complexes Suggested as COX-1/COX-2 Selective Inhibitor

    PubMed Central

    Mahdi, Chanif; Nurdiana, Nurdiana; Kikuchi, Takheshi; Fatchiyah, Fatchiyah

    2014-01-01

    To understand the structural features that dictate the selectivity of the two isoforms of the prostaglandin H2 synthase (PGHS/COX), the three-dimensional (3D) structure of COX-1/COX-2 was assessed by means of binding energy calculation of virtual molecular dynamic with using ligand alpha-Patchouli alcohol isomers. Molecular interaction studies with COX-1 and COX-2 were done using the molecular docking tools by Hex 8.0. Interactions were further visualized by using Discovery Studio Client 3.5 software tool. The binding energy of molecular interaction was calculated by AMBER12 and Virtual Molecular Dynamic 1.9.1 software. The analysis of the alpha-Patchouli alcohol isomer compounds showed that all alpha-Patchouli alcohol isomers were suggested as inhibitor of COX-1 and COX-2. Collectively, the scoring binding energy calculation (with PBSA Model Solvent) of alpha-Patchouli alcohol isomer compounds (CID442384, CID6432585, CID3080622, CID10955174, and CID56928117) was suggested as candidate for a selective COX-1 inhibitor and CID521903 as nonselective COX-1/COX-2. PMID:25484897

  4. Design, Synthesis and Biological Evaluation of Novel Peptide-Like Analogues as Selective COX-2 Inhibitors

    PubMed Central

    Ahmaditaba, Mohammad Ali; Houshdar Tehrani, Mohammad Hassan; Zarghi, Afshin; Shahosseini, Sorayya; Daraei, Bahram

    2018-01-01

    A new series of peptide-like derivatives containing different aromatic amino acids and possessing pharmacophores of COX-2 inhibitors as SO2Me or N3 attached to the para position of an end phenyl ring was synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. The synthetic reactions were based on the solid phase peptide synthesis method using Wang resin. One of the analogues, i.e., compound 2d, as the representative of these series was recognized as the most effective and the highest selective COX-2 inhibitor with IC50 value of 0.08 μM and COX-2 selectivity index of 351.2, among the other synthesized compounds. Molecular docking study was operated to determine possible binding models of compound 2d to COX-2 enzyme. The study showed that the p-azido-phenyl fragment of 2d occupied inside the secondary COX-2 binding site (Arg513, and His90). The structure-activity relationships acquired disclosed that compound 2d with 4-(azido phenyl) group as pharmacophore and histidine as amino acid gives the essential geometry to provide inhibition of the COX-2 enzyme with high selectivity. Compound 2d can be a good candidate for the development of new hits of COX-2 inhibitors.

  5. Differential effects of selective cyclooxygenase (COX)-1 and COX-2 inhibitors on anorexic response and prostaglandin generation in various tissues induced by zymosan.

    PubMed

    Naoi, Kazuhisa; Kogure, Suguru; Saito, Masataka; Hamazaki, Tomohito; Watanabe, Shiro

    2006-07-01

    We have shown that anorexic response is induced by intraperitoneal injection of zymosan in mice, although the role of prostaglandins in this response is relatively unknown as compared with lipopolysaccharide (LPS)-induced anorexic response. Indomethacin (0.5 and 2.0 mg/kg), a non-selective cyclooxygenase (COX) inhibitor, as well as meloxicam (0.5 mg/kg), a selective COX-2 inhibitor, but not FR122047 (2.0 mg/kg), a selective COX-1 inhibitor, attenuated zymosan-induced anorexia. Zymosan injection elevated COX-2 expression in brain and liver but not in small intestine and colon. Meloxicam (0.5 mg/kg) and FR122047 treatment (2.0 mg/kg) similarly suppressed the generation of brain prostaglandin E(2) (PGE(2)) and peritoneal prostacyclin (PGI(2)) upon zymosan injection. PGE(2) generation in liver upon zymosan injection was suppressed by meloxicam (0.5 mg/kg) but not by FR122047 treatment (2.0 mg/kg). Our observations suggest that COX-2 plays an important role in zymosan-induced anorexia, which is a similar feature in LPS-induced anorexic response. However, non-selective inhibition by selective COX-1 and COX-2 inhibitors of brain PGE(2) generation upon zymosan injection does not support the role of COX-2 expressed in brain in zymosan-induced anorexic response. PGE(2) generation in liver may account for peripheral role of COX-2 in zymosan-induced anorexic response.

  6. Low-dose aspirin, non-steroidal anti-inflammatory drugs, selective COX-2 inhibitors and breast cancer recurrence

    PubMed Central

    Cronin-Fenton, Deirdre P; Heide-Jørgensen, Uffe; Ahern, Thomas P; Lash, Timothy L; Christiansen, Peer; Ejlertsen, Bent; Sørensen, Henrik T

    2017-01-01

    Background Aspirin, non-steroidal anti-inflammatory drugs (NSAIDs), and selective COX-2 inhibitors may improve outcomes in breast cancer patients. We investigated the association of aspirin, NSAIDs, and use of selective COX-2 inhibitors with breast cancer recurrence. Methods We identified incident stage I–III Danish breast cancer patients in the Danish Breast Cancer Cooperative Group registry, who were diagnosed during 1996–2008. Prescriptions for aspirin (>99% low-dose aspirin), NSAIDs, and selective COX-2 inhibitors were ascertained from the National Prescription Registry (NPR). Follow-up began on the date of breast cancer primary surgery and continued until the first of recurrence, death, emigration, or 01/01/2013. We used Cox regression models to compute hazard ratios (HR) and corresponding 95% confidence intervals (95%CI) associating prescriptions with recurrence, adjusting for confounders. Results We identified 34,188 breast cancer patients with 233,130 person-years of follow-up. Median follow-up was 7.1 years; 5,325 patients developed recurrent disease. Use of aspirin, NSAIDs, or selective COX-2 inhibitors was not associated with the rate of recurrence (HRadjusted aspirin=1.0, 95% CI=0.90, 1.1; NSAIDs=0.99, 95% CI=0.92, 1.1; selective COX-2 inhibitors=1.1, 95% CI=0.98, 1.2), relative to non-use. Pre-diagnostic use of the exposure drugs was associated with reduced recurrence rates (HRaspirin=0.92, 95%CI=0.82, 1.0; HRNSAIDs=0.86, 95%CI=0.81, 0.91; HRsCOX-2inhibitors=0.88, 95%CI=0.83, 0.95). Conclusions This prospective cohort study suggests that post-diagnostic prescriptions for aspirin, NSAIDs, and selective COX-2 inhibitors have little or no association with the rate of breast cancer recurrence. Pre-diagnostic use of the drugs was, however, associated with a reduced rate of breast cancer recurrence. PMID:27007644

  7. Gastrointestinal toxicity among patients taking selective COX-2 inhibitors or conventional NSAIDs, alone or combined with proton pump inhibitors: a case-control study.

    PubMed

    Bakhriansyah, Mohammad; Souverein, Patrick C; de Boer, Anthonius; Klungel, Olaf H

    2017-10-01

    To assess the risk of gastrointestinal perforation, ulcers, or bleeding (PUB) associated with the use of conventional nonsteroidal anti-inflammatory drugs (NSAIDs) with proton pump inhibitors (PPIs) and selective COX-2 inhibitors, with or without PPIs compared with conventional NSAIDs. A case-control study was performed within conventional NSAIDs and/or selective COX-2 inhibitors users identified from the Dutch PHARMO Record Linkage System in the period 1998-2012. Cases were patients aged ≥18 years with a first hospital admission for PUB. For each case, up to four controls were matched for age and sex at the date a case was hospitalized (index date). Logistic regression analysis was used to calculate odds ratios (ORs). At the index date, 2634 cases and 5074 controls were current users of conventional NSAIDs or selective COX-2 inhibitors. Compared with conventional NSAIDs, selective COX-2 inhibitors with PPIs had the lowest risk of PUB (adjusted OR 0.51, 95% confidence interval [CI]: 0.35-0.73) followed by selective COX-2 inhibitors (adjusted OR 0.66, 95%CI: 0.48-0.89) and conventional NSAIDs with PPIs (adjusted OR 0.79, 95%CI: 0.68-0.92). Compared with conventional NSAIDs, the risk of PUB was lower for those aged ≥75 years taking conventional NSAIDs with PPIs compared with younger patients (adjusted interaction OR 0.79, 95%CI: 0.64-0.99). However, those aged ≥75 years taking selective COX-2 inhibitors, the risk was higher compared with younger patients (adjusted interaction OR 1.22, 95%CI: 1.01-1.47). Selective COX-2 inhibitors with PPIs, selective COX-2 inhibitors, and conventional NSAIDs with PPIs were associated with lower risks of PUB compared with conventional NSAIDs. These effects were modified by age. © 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd. © 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.

  8. New Ferrocene Compounds as Selective Cyclooxygenase (COX-2) Inhibitors: Design, Synthesis, Cytotoxicity and Enzyme-inhibitory Activity.

    PubMed

    Farzaneh, Shabnam; Zeinalzadeh, Elnaz; Daraei, Bahram; Shahhosseini, Soraya; Zarghi, Afshin

    2018-01-01

    Due to the astonishing properties of ferrocene and its derivatives, it has a broad application in diverse areas. Numerous ferrocene derivatives demonstrated anti-proliferative activity. Also COX-2, as a key isoenzyme for production of prostaglandins, is frequently overexpressed in various cancers. It is now recognized that COX-2 over expression promotes tumorigenic functions which can be suppressed by COX-2 inhibitors, a phenomenon useful for the preventing of tumor progression. The combination of COX-2 inhibitors with other anti-cancer or cancer prevention drugs may reduce their side effects in future cancer prevention and treatment. Owing to high anticancer potential of ferrocene derivatives and considerable COX-2 inhibitory and cytotoxicity effects of our previously synthesized chalcones, we decided to incorporate the ferrocenyl moiety into appropriate COX-2 inhibitor chalcone based scaffold, to evaluate COX-2 inhibitory activity as well as anticancer activities. Chalcones were synthesized via clasien-schmidt condensation of methylsulfonyl aldehyde and acetyl ferrocene. Further different amines with solvent free and ultra sound condition were reacted with chalcones to have different 1-ferrocenyl-3-amino carbonyl compounds. Docking study was carried out with Auto Dock vina software. All the newly-synthesized compounds were evaluated for their cyclooxygenase-2 (COX-2) inhibitory activity using chemiluminescent enzyme assays as well as cytotoxicity activity against MCF-7 and T47D and fibroblast cell lines by MTT assay. In vitro COX-1/COX-2 inhibition studies demonstrated that all compounds were selective inhibitors of the COX-2 isozyme with IC50 values in the highly potent 0.05-0.12 µM range, and COX-2 selectivity indexes (SI) in the 148.3-313.7 range. These results indicated that either potency or selectivity of COX-2 inhibitory activity was affected by the nature and size of the substituents on C-3 of propane-1-one. Also anti-proliferative and toxicity

  9. [Specific inhibitors of cyclooxygenase-2 (COX-2): current knowledge and perspectives].

    PubMed

    Rioda, W T; Nervetti, A

    2001-01-01

    The Authors summarize the current knowledge on a new class of nonsteroidal anti-inflammatory drugs (NSAIDs), the coxib (celecoxib and rofecoxib), in the treatment of rheumatic diseases. Celecoxib and rofecoxib are selective cyclooxygenase-2 (COX-2) inhibitors which possess the same anti-inflammatory and analgesic activities, but a better gastric tolerability compared to the non-selective COX-1 and COX-2 inhibitors. The Authors also report other possible therapeutic effects of these NSADIs as evidenced by the more recent data of the literature. Celecoxib seems to reduce the incidence of new polyps in patients with familial adenomatous polyposis. It has been suggested the use of celecoxib as a protective drug against the development of colorectal cancer. Other (neoplastic) or pre-neoplastic conditions, such as bladder dysplasia, Barret esophagus, attinic keratosis and Alzheimer's disease seem to have benefit from this class of drugs.

  10. COX-1 Inhibitors: Beyond Structure Toward Therapy.

    PubMed

    Vitale, Paola; Panella, Andrea; Scilimati, Antonio; Perrone, Maria Grazia

    2016-07-01

    Biosynthesis of prostaglandins from arachidonic acid (AA) is catalyzed by cyclooxygenase (COX), which exists as COX-1 and COX-2. AA is in turn released from the cell membrane upon neopathological stimuli. COX inhibitors interfere in this catalytic and disease onset process. The recent prominent discovery involvements of COX-1 are mainly in cancer and inflammation. Five classes of COX-1 inhibitors are known up to now and this classification is based on chemical features of both synthetic compounds and substances from natural sources. Physicochemical interactions identification between such molecules and COX-1 active site was achieved through X-ray, mutagenesis experiments, specific assays and docking investigations, as well as through a pharmacometric predictive model building. All these insights allowed the design of new highly selective COX-1 inhibitors to be tested into those disease models in which COX-1 is involved. Particularly, COX-1 is expressed at high levels in the early to advanced stages of human epithelial ovarian cancer, and it also seems to play a pivotal role in cancer progression. The refinement of COX-1 selective inhibitor structure has progressed to the stage that some of the inhibitors described in this review could be considered as promising active principle ingredients of drugs and hence part of specific therapeutic protocols. This review aims to outline achievements, in the last 5 years, dealing with the identification of highly selective synthetic and from plant extracts COX-1 inhibitors and their theranostic use in neuroinflammation and ovarian cancer. Their gastrotoxic effect is also discussed. © 2016 Wiley Periodicals, Inc.

  11. Design, Synthesis, and Evaluation of New Tripeptides as COX-2 Inhibitors.

    PubMed

    Vernieri, Ermelinda; Gomez-Monterrey, Isabel; Milite, Ciro; Grieco, Paolo; Musella, Simona; Bertamino, Alessia; Scognamiglio, Ilaria; Alcaro, Stefano; Artese, Anna; Ortuso, Francesco; Novellino, Ettore; Sala, Marina; Campiglia, Pietro

    2013-01-01

    Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation. It exists mainly in two isoforms COX-1 and COX-2. The conventional nonsteroidal anti-inflammatory drugs (NSAIDs) have gastrointestinal side effects because they inhibit both isoforms. Recent data demonstrate that the overexpression of these enzymes, and in particular of cyclooxygenases-2, promotes multiple events involved in tumorigenesis; in addition, numerous studies show that the inhibition of cyclooxygenases-2 can delay or prevent certain forms of cancer. Agents that inhibit COX-2 while sparing COX-1 represent a new attractive therapeutic development and offer a new perspective for a further use of COX-2 inhibitors. The present study extends the evaluation of the COX activity to all 20(3) possible natural tripeptide sequences following a rational approach consisting in molecular modeling, synthesis, and biological tests. Based on data obtained from virtual screening, only those peptides with better profile of affinity have been selected and classified into two groups called S and E. Our results suggest that these novel compounds may have potential as structural templates for the design and subsequent development of the new selective COX-2 inhibitors drugs.

  12. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less

  13. Efficacy and tolerability of lumiracoxib, a highly selective cyclo-oxygenase-2 (COX2) inhibitor, in the management of pain and osteoarthritis

    PubMed Central

    Geusens, Piet; Lems, Willem

    2008-01-01

    Lumiracoxib is a COX2 inhibitor that is highly selective, is more effective than placebo on pain in osteoarthritis (OA), with similar analgesic and anti-inflammatory effects as non-selective NSAIDs and the selective COX2 inhibitor celecoxib, has a lower incidence of upper gastrointestinal (GI) side effects in patients not taking aspirin, and a similar incidence of cardiovascular (CV) side effects compared to naproxen or ibuprofen. In the context of earlier guidelines and taking into account the GI and CV safety results of the TARGET study, lumiracoxib had secured European Medicines Agency (EMEA) approval with as indication symptomatic treatment of OA as well as short-term management of acute pain associated with primary dysmenorrhea and following orthopedic or dental surgery. In the complex clinical context of efficiency and safety of selective and non-selective COX inhibitors, its prescription and use should be based on the risk and safety profile of the patient. In addition, there is further need for long-term GI and CV safety studies and general post-marketing safety on its use in daily practice. Meanwhile, at the time of submission of this manuscript, the EMEA has withdrawn lumiracoxib throughout Europe because of the risk of serious side effects affecting the liver. PMID:18728796

  14. Kinetics and docking studies of a COX-2 inhibitor isolated from Terminalia bellerica fruits.

    PubMed

    Reddy, Tamatam Chandramohan; Aparoy, Polamarasetty; Babu, Neela Kishore; Kumar, Kotha Anil; Kalangi, Suresh Kumar; Reddanna, Pallu

    2010-10-01

    Triphala is an Ayurvedic herbal formulation consisting of equal parts of three myrobalans: Terminalia chebula, Terminalia bellerica and Emblica officinalis. We recently reported that chebulagic acid (CA) isolated from Terminalia chebula is a potent COX-2/5-LOX dual inhibitor. In this study, compounds isolated from Terminalia bellerica were tested for inhibition against COX and 5-LOX. One of the fractionated compounds showed potent inhibition against COX enzymes with no inhibition against 5-LOX. It was identified as gallic acid (GA) by LC-MS, NMR and IR analyses. We report here the inhibitory effects of GA, with an IC(50) value of 74 nM against COX-2 and 1500 nM for COX-1, showing ≈20 fold preference towards COX-2. Further docking studies revealed that GA binds in the active site of COX-2 at the non-steroidal anti-inflammatory drug (NSAID) binding site. The carboxylate moiety of GA interacts with Arg120 and Glu524. Based on substrate dependent kinetics, GA was found to be a competitive inhibitor of both COX-1 and COX-2, with more affinity towards COX-2. Taken together, our studies indicate that GA is a selective inhibitor of COX-2. Being a small natural product with selective and reversible inhibition of COX-2, GA would form a lead molecule for developing potent anti-inflammatory drug candidates.

  15. Design, Synthesis and Biological Evaluation of4-(Imidazolylmethyl)-2-(4-methylsulfonyl phenyl)-Quinoline Derivatives as Selective COX-2 Inhibitors and In-vitro Anti-breast Cancer Agents

    PubMed Central

    Ghodsi, Razieh; Azizi, Ebrahim; Zarghi, Afshin

    2016-01-01

    A new group of 4-(Imidazolylmethyl)quinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para position of the C-2 phenyl ring were designed and synthesized as selective COX-2 inhibitors and in-vitroanti breast cancer agents. In-vitro COX-1 and COX-2 inhibition studies showed that all the compounds were potent and selective inhibitors of the COX-2 isozyme with IC50 values in the potent range 0.063-0.090 µM, and COX-2 selectivity indexes in the 179.9 to 547.6 range. Molecular modeling studies indicated that the methylsulfonyl substituent can be inserted into the secondary pocket of COX-2 active site for interactions with Arg513. Cytotoxicity of quinolines 9a-e against human breast cancer MCF-7 and T47D cell lines were also evaluated. All the compounds 9a-e were more cytotoxic against MCF-7 cells in comparison with those of T47D which express aromatase mRNA less than MCF-7 cells.The data showed that the increase of lipophilic properties of substituents on the C-7 and C-8 quinoline ring increased their cytotoxicity on MCF-7cells andCOX-2 inhibitory activity. Among the quinolines 9a-e, 4-((1H-Imidazol-1-yl)methyl) 7,8,9,10-tetrahydro-2-(4-methylsulfonylphenyl)-benzo[h]quinoline (9d)was identified as the most potent andselective COX-2inhibitor as well as the most cytotoxic agent against MCF-7 cells. PMID:27610157

  16. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity.

    PubMed

    Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay

    2009-11-04

    Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer.

  17. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity

    PubMed Central

    Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay

    2009-01-01

    Aims Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. Main Methods We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Key Findings Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. Significance These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer. PMID:19788894

  18. Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition

    PubMed Central

    Limongelli, Vittorio; Bonomi, Massimiliano; Marinelli, Luciana; Gervasio, Francesco Luigi; Cavalli, Andrea; Novellino, Ettore; Parrinello, Michele

    2010-01-01

    The widely used nonsteroidal anti-inflammatory drugs block the cyclooxygenase enzymes (COXs) and are clinically used for the treatment of inflammation, pain, and cancers. A selective inhibition of the different isoforms, particularly COX-2, is desirable, and consequently a deeper understanding of the molecular basis of selective inhibition is of great demand. Using an advanced computational technique we have simulated the full dissociation process of a highly potent and selective inhibitor, SC-558, in both COX-1 and COX-2. We have found a previously unreported alternative binding mode in COX-2 explaining the time-dependent inhibition exhibited by this class of inhibitors and consequently their long residence time inside this isoform. Our metadynamics-based approach allows us to illuminate the highly dynamical character of the ligand/protein recognition process, thus explaining a wealth of experimental data and paving the way to an innovative strategy for designing new COX inhibitors with tuned selectivity. PMID:20215464

  19. COX-2 and Prostate Cancer Angiogenesis

    DTIC Science & Technology

    2001-03-01

    the optimal dosing and timing of a COX-2 inhibitor (NS398) in an animal model of human prostate cancer, (2)and (3) the mechanisms underlying the...cancer tissues (14) and that a COX-2 inhibitor selectively induces apoptosis in a prostate cancer cell line (15). We also demonstrated that treatment of...human prostate tumor-bearing mice with a selective COX-2 inhibitor (NS-398) significantly reduces tumor size, microvessel density and levels of a

  20. Houttuynia cordata, a novel and selective COX-2 inhibitor with anti-inflammatory activity.

    PubMed

    Li, Weifeng; Zhou, Ping; Zhang, Yanmin; He, Langchong

    2011-01-27

    Houttuynia cordata Thunb. (Saururaceae; HC) has been long used in traditional oriental medicine for the treatment of inflammation diseases. Modern research has implicated inducible cyclooxygenase-2 (COX-2) as a key regulator of the inflammatory process. In the present study, we aimed to investigate the effect of HC on COX-2. We examined the effects of HC on lipopolysaccharide (LPS)-induced prostaglandin (PG) E(2) production, an indirect indicator of COX-2 activity, and COX-2 gene and protein expression in mouse peritoneal macrophages. LPS-induced mouse peritoneal macrophages were employed as an in vitro model system. LPS-induced PGE(2) production was assessed by enzyme-linked immunosorbant assay and COX-2 protein expression was assessed by Western blot assay. The results showed that HC was able to inhibit the release of LPS-induced PGE(2) from mouse peritoneal macrophages (IC50 value: 44.8 μg/mL). Moreover, the inhibitory activity of HC essential oil elicited a dose-dependent inhibition of COX-2 enzyme activity (IC50 value: 30.9 μg/mL). HC was also found to cause reduction in LPS-induced COX-2 mRNA and protein expression, but did not affect COX-1 expression. The non-steroidal anti-inflammatory drug (NSAID) and specific COX-2 inhibitor NS398 functioned similarly in LPS-induced mouse peritoneal macrophages. Taken together, our data suggest HC mediates inhibition of COX-2 enzyme activity and can affect related gene and protein expression. HC works by a mechanism of action similar to that of NSAIDs. These results add a novel aspect to the biological profile of HC. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Potential use of COX-2–aromatase inhibitor combinations in breast cancer

    PubMed Central

    Bundred, N J; Barnes, N L P

    2005-01-01

    Cyclooxygenase-2 (COX-2) is overexpressed in several epithelial tumours, including breast cancer. Cyclooxygenase-2-positive tumours tend to be larger, higher grade, node-positive and HER-2/neu-positive. High COX-2 expression is associated with poor prognosis. Cyclooxygenase-2 inhibition reduces the incidence of tumours in animal models, inhibits the development of invasive cancer in colorectal cancer and reduces the frequency of polyps in familial adenomatous polyposis (FAP). These effects may be as a result of increased apoptosis, reduced angiogenesis and/or proliferation. Studies of COX-2 inhibitors in breast cancer are underway both alone and in combination with other agents. There is evidence to suggest that combining COX-2 inhibitors with aromatase inhibitors, growth factor receptor blockers, or chemo- or radiotherapy may be particularly effective. Preliminary results from combination therapy with celecoxib and exemestane in postmenopausal women with advanced breast cancer showed that the combination increased the time to recurrence. Up to 80% of ductal carcinomas in situ (DCISs) express COX-2, therefore COX-2 inhibition may be of particular use in this situation. Cyclooxygenase-2 expression correlates strongly with expression of HER-2/neu. As aromatase inhibitors appear particularly effective in patients with HER-2/neu-positive tumours, the combination of aromatase inhibitors and COX-2 inhibitors may be particularly useful in both DCIS and invasive cancer. PMID:16100520

  2. Fatal hyperkalemia related to combined therapy with a COX-2 inhibitor, ACE inhibitor and potassium rich diet.

    PubMed

    Hay, Emile; Derazon, Hashmonai; Bukish, Natalia; Katz, Leonid; Kruglyakov, Igor; Armoni, Michael

    2002-05-01

    We describe the case of a 77-year old mildly hypertensive woman with no underlying renal disease who was admitted to the Emergency Department (ED) in a comatose state with fever. The patient had been on low dose enalapril and a potassium rich diet. Five days before admission, rofecoxib, a new selective COX-2 inhibitor nonsteroidal anti-inflammatory drug (NSAID), was added for leg pain. She was found to have severe hyperkalemia and died 90 min after her arrival. We cannot absolutely determine whether the COX-2 inhibitor was the dominant contributor to the development of hyperkalemia or the combination itself, with an intercurrent infection and some degree of dehydration. Physicians should be aware of this possible complication and only prescribe NSAIDs, including the new COX-2 drugs, to the elderly under close monitoring of kidney function and electrolyte tests.

  3. Safety risks for patients with aspirin-exacerbated respiratory disease after acute exposure to selective nonsteroidal anti-inflammatory drugs and COX-2 inhibitors: Meta-analysis of controlled clinical trials.

    PubMed

    Morales, Daniel R; Lipworth, Brian J; Guthrie, Bruce; Jackson, Cathy; Donnan, Peter T; Santiago, Virginia H

    2014-07-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) cause bronchospasm in susceptible patients with asthma, often termed aspirin-exacerbated respiratory disease (AERD), with the risk being greatest after acute exposure. Selective NSAIDs that preferentially inhibit COX-2 might be safer. We sought to systematically evaluate changes in symptoms and pulmonary function after acute selective NSAID or COX-2 inhibitor exposure in patients with the AERD phenotype. A systematic review of databases was performed to identify all blinded, placebo-controlled clinical trials evaluating acute selective NSAID or COX-2 inhibitor exposure in patients with AERD. Effect estimates for changes in respiratory function and symptoms were pooled by using fixed-effects meta-analysis, with heterogeneity investigated. No significant difference in respiratory symptoms (risk difference, -0.01; 95% CI, -0.03 to 0.01; P = .57), decrease in FEV1 of 20% or greater (RD, 0.00; 95% CI, -0.02 to 0.02; P = .77), or nasal symptoms (RD, -0.01; 95% CI, -0.04 to 0.02; P = .42) occurred with COX-2 inhibitors (eg, celecoxib). Selective NSAID exposure caused respiratory symptoms in approximately 1 in 13 patients with AERD (RD, 0.08; 95% CI, 0.02 to 0.14; P = .01). No significant differences were found according to leukotriene antagonist exposure or whether NSAIDs were randomly allocated. According to clinical trial evidence in patients with stable mild-to-moderate asthma with AERD, acute exposure to COX-2 inhibitors is safe, and selective NSAIDs exhibit a small risk. Thus COX-2 inhibitors could be used in patients with AERD or in patients with general asthma unwilling to risk nonselective NSAID exposure when oral challenge tests are unavailable. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. COX-2 chronology

    PubMed Central

    Hawkey, C J

    2005-01-01

    The role of selective cyclooxygenase (COX)-2 inhibitors in medical practice has become controversial since evidence emerged that their use is associated with an increased risk of myocardial infarction. Selective COX-2 inhibitors were seen as successor to non-selective non-steroidal anti-inflammatory drugs, in turn successors to aspirin. The importance of pain relief means that such drugs have always attracted attention. The fact that they work through inhibition of cyclooxygenase, are widespread, and have multiple effects also means that adverse effects that were unanticipated (even though predictable) have always emerged. In this paper I therefore present an historical perspective so that the lessons of the past may be applied to the present. PMID:16227351

  5. Analgesic effects of the COX-2 inhibitor parecoxib on surgical pain through suppression of spinal ERK signaling.

    PubMed

    Guo, Ya-Jing; Shi, Xu-Dan; Fu, DI; Yang, Yong; Wang, Ya-Ping; Dai, Ru-Ping

    2013-07-01

    Cyclooxygenase (COX)-2 inhibitors are widely used for postoperative pain control in clinical practice. However, it is unknown whether spinal sensitization is involved in the analgesic effects of COX-2 inhibitors on surgical pain. Extracellular signal-regulated kinase (ERK) in the spinal cord is implicated in various types of pain, including surgical pain. The present study investigated the role of spinal ERK signaling in the analgesic effect of the COX-2 inhibitor parecoxib on surgical pain. Surgical pain was produced in rats by surgical incision of the hind paw. Phosphorylated (p)-ERK1/2 expression was determined by immunohistochemistry. Pain hypersensitivity was evaluated by measuring the paw withdrawal threshold using the von Frey test. The selective COX-2 inhibitor parecoxib was delivered 20 min before or 20 min after the incision by intraperitoneal injection. Pretreatment with parecoxib markedly attenuated the pain hypersensitivity induced by incision. However, post-treatment with parecoxib produced minimal analgesic effects. Parecoxib inhibited the increase in spinal p-ERK expression following surgical incision. The present study thus suggests that the COX-2 inhibitor parecoxib exerts its analgesic effect on surgical pain through the inhibition of neuronal ERK activation in the spinal cord. COX-2 inhibitor delivery prior to surgery has more potent analgesic effects, suggesting the advantage of preventive analgesia for post-operative pain control.

  6. Synthesis, biological evaluation and docking analysis of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones as potential cyclooxygenase-2 (COX-2) inhibitors.

    PubMed

    Grover, Jagdeep; Kumar, Vivek; Sobhia, M Elizabeth; Jachak, Sanjay M

    2014-10-01

    As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3a-d, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50's in 1.79-4.35μM range; COX-2 selectivity index (SI)=6.8-16.7 range). Compound 3b emerged as most potent (COX-2 IC50=1.79μM; COX-1 IC50 >30μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5h) in comparison to celecoxib (51.44% inhibition of edema at 5h) in carrageenan-induced rat paw edema assay. Structure-activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. COX-2 inhibitor and non-selective NSAID use in those at increased risk of NSAID-related adverse events: a retrospective database study.

    PubMed

    Gadzhanova, Svetla; Ilomäki, Jenni; Roughead, Elizabeth E

    2013-01-01

    Adverse events related to analgesic use represent a challenge for optimizing treatment of pain in older people. The aim of this study was to determine whether non-selective non-steroidal anti-inflammatory drug (NS-NSAID) and cyclo-oxygenase (COX)-2 inhibitor use is appropriately targeted in those with a prior history of gastrointestinal (GI) events, myocardial infarction (MI) or stroke. A retrospective study of pharmacy claims data from the Australian Government Department of Veterans' Affairs was conducted, involving 288,912 veterans aged 55 years and over. Analgesic utilization from 2007 to 2009 was assessed. Three risk cohorts (veterans with prior hospitalization for GI bleed, MI or stroke) and a low-risk cohort were identified. Poisson regression was applied to test for a linear trend over the study period. The prevalence of analgesics dispensed in the overall study population was approximately 34 % between 2007 and 2009. COX-2 inhibitors were more widely dispensed than NS-NSAIDs in all those at risk of NSAID-related adverse events. At the end of 2009, the ratio was 5.1 % to 2.5 % in the GI cohort, 3.6 % to 3.2 % in the MI cohort and 3.6 % to 2.6 % in the stroke cohort. Although COX-2 inhibitors appeared to be preferred over NS-NSAIDs in those with a prior history of GI events, 2.5 % of patients were still using an NS-NSAID at the end of the study period. Consistent with treatment guidelines, in most of these cases, these drugs were co-dispensed with proton pump inhibitors. COX-2 inhibitors were used at slightly higher rates than NS-NSAIDs in those with a prior history of MI or stroke, which is not consistent with guidelines recommending NS-NSAID use.

  8. Antitumor effect of the selective COX-2 inhibitor celecoxib on endometrial adenocarcinoma in vitro and in vivo

    PubMed Central

    XIAO, YITAO; TENG, YINCHENG; ZHANG, RUI; LUO, LAIMIN

    2012-01-01

    The aim of this study was to investigate the antitumor effect of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib on endometrial adenocarcinoma in mice. Various amounts of celecoxib were added to HEC-1B cells in vitro for different durations. Cell cycle and apoptosis were analyzed using flow cytometry. HEC-1B cytostasis, invasiveness and COX-2 expression were examined by MTT, transwell cabin and western blot assays, respectively. An in vivo human endometrial adenocarcinoma model was established in BALB/c nude mice using HEC-1B cells. For two weeks, the celecoxib groups were treated with celecoxib 2 or 4 mg/day via oral administration and the control group was treated with saline. Tumor volume, growth curves and the inhibition rate (IR) were recorded. COX-2 expression levels and microvessel density (MVD) were investigated using an immunohistochemical technique. In the celecoxib groups, cell proliferation was significantly inhibited in a concentration- and time-dependent manner. The proportion of cells in the G0/G1 phase increased within 24 h after the addition of celecoxib whereas those in the S and G2/M phases decreased with an increasing apoptosis peak (sub-G1) and apoptosis rate. The microporous Matrigel-coated polycarbonate membrane of the Transwell cabin was traversable for the HEC-1B cells. The invasiveness was attenuated when the celecoxib concentration was increased. The tumor growth was also greatly inhibited when the celecoxib concentration was increased. The tumor IRs were 32.4 and 48.6% following treatment with 2 and 4 mg/day celecoxib, respectively. COX-2 was mainly expressed in the cytoplasm of the tumor cells. In the celecoxib groups, the COX-2 expression levels were concentration-dependent. The COX-2 expression level and MVD decreased when the celecoxib concentration was increased. The results of dependability analysis revealed that the COX-2 expression level was positively correlated with MVD (r=0.921; P<0.01). The antitumor effect of

  9. The role of chemoprevention by selective cyclooxygenase-2 inhibitors in colorectal cancer patients - a population-based study

    PubMed Central

    2012-01-01

    Background There are limited population-based studies focusing on the chemopreventive effects of selective cyclooxygenase-2 (COX-2) inhibitors against colorectal cancer. The purpose of this study is to assess the trends and dose–response effects of various medication possession ratios (MPR) of selective COX-2 inhibitor used for chemoprevention of colorectal cancer. Methods A population-based case–control study was conducted using the Taiwan Health Insurance Research Database (NHIRD). The study comprised 21,460 colorectal cancer patients and 79,331 controls. The conditional logistic regression was applied to estimate the odds ratios (ORs) for COX-2 inhibitors used for several durations (5 years, 3 years, 1 year, 6 months and 3 months) prior to the index date. Results In patients receiving selective COX-2 inhibitors, the OR was 0.51 (95% CI=0.29~0.90, p=0.021) for an estimated 5-year period in developing colorectal cancer. ORs showing significant protection effects were found in 10% of MPRs for 5-year, 3-year, and 1-year usage. Risk reduction against colorectal cancer by selective COX-2 inhibitors was observed as early as 6 months after usage. Conclusion Our results indicate that selective COX-2 inhibitors may reduce the development of colorectal cancer by at least 10% based on the MPRs evaluated. Given the limited number of clinical reports from general populations, our results add to the knowledge of chemopreventive effects of selective COX-2 inhibitors against cancer in individuals at no increased risk of colorectal cancer. PMID:23217168

  10. Synthesis, in vitro and in silico evaluation of novel trans-stilbene analogues as potential COX-2 inhibitors.

    PubMed

    Regulski, Miłosz; Piotrowska-Kempisty, Hanna; Prukała, Wiesław; Dutkiewicz, Zbigniew; Regulska, Katarzyna; Stanisz, Beata; Murias, Marek

    2018-01-01

    25 new trans-stilbene and trans-stilbazole derivatives were investigated using in vitro and in silico techniques. The selectivity and potency of the compounds were assessed using commercial ELISA test. The obtained results were incorporated into 2D QSAR assay. The most promising compound 4-nitro-3',4',5'-trihydroxy-trans-stilbene (N1) was synthetized and its potency and selectivity were confirmed. N1 was classified as preferential COX-2 inhibitor. Its ability to inhibit COX-2 in MCF-7 cell line was established and its cytotoxicity by MTT test was assessed. The compound was more cytotoxic than celecoxib within studied concentration range. Finally, the investigated trans-stilbene was docked into COX-1 and COX-2 active sites using "CDOCKER" protocol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Flurbiprofen : A non-selective cyclooxygenase (COX) inhibitor for treatment of non-infectious, non-necrotising anterior scleritis

    PubMed Central

    Agrawal, Rupesh; Lee, Cecilia; Gonzalez-Lopez, Julio J.; Khan, Sharmina; Rodrigues, Valeria; Pavesio, Carlos

    2016-01-01

    Objective To analyse the safety and efficacy of a non-selective cyclo-oxygenase (COX) inhibitor in the management of non-infectious, non-necrotising anterior scleritis. Methods Retrospective chart review of 126 patients with non-necrotising anterior scleritis treated with oral flurbiprofen (Froben®(Abbott Healthcare)) with ( group B, n=61) or without topical steroids (group A, n=65) was performed and time to remission was plotted. Results The observed incidence rate was 1.07 (95% CI: 0.57–1.99) per 1000 person-years with failure rate of 0.68 (95% CI: 0.22–2.12) per 1000 person-years in group A and 1.41 (95% CI: 0.67–2.96) per 1000 person-years in group B. The failure rate was 3.97(1.89–9.34) per 1000 person-years with hazard ratio of 10.01 ( 95% CI: 2.52–39.65; p<0.001) for patients with associated systemic disease. Conclusion To our best knowledge, this is the first and largest case series on the safety and efficacy of a non-selective COX inhibitor in the management of anterior scleritis. PMID:26308394

  12. Persistency of use of COX-2-specific inhibitors and non-specific non-steroidal anti-inflammatory drugs (NSAIDs) in Quebec.

    PubMed

    Moride, Y; Ducruet, T; Rochon, S; Lavoie, F

    2003-11-01

    The effectiveness of pharmacological therapies is dependent in part on patient persistency with the prescribed therapeutic regimen. In the case of non-specific non-steroidal anti-inflammatory drugs (NSAIDs), effectiveness is often compromised by undesirable side-effects, poor compliance or discontinuation of therapy. While patterns of utilization of non-specific NSAIDs have been investigated, few data are available on the patterns of persistency for cyclooxygenase (COX)-2-specific inhibitors. This study used a provincial health-care system database in Quebec, Canada, to determine the duration of treatment in new users of COX-2-specific inhibitors and non-specific NSAIDs over the first 3 months of treatment, and to characterize the factors associated with treatment persistency. Results demonstrate that the median duration of treatment was longer among patients initially prescribed COX-2-specific inhibitors (30 days and 23 days for celecoxib and rofecoxib respectively) than in those prescribed non-selective NSAIDs (10 days). Although the percentage of patients remaining on COX-2-specific drugs declined over the course of treatment, few patients on either celecoxib or rofecoxib switched drugs, either to the other COX-2-specific inhibitor or to non-specific NSAIDs. Factors associated with persistent drug use were: COX-2-specific inhibitors, age, and the use of gastroprotective agents either at treatment initiation or during follow-up. Dosage, chronic disease score and prescriber's specialty were only marginally associated with persistency. Prior use of gastroprotective agents was associated with lower persistency. Although the limitations of this study, which included lack of information on the indication for the prescription and the reason for switch or discontinuation, preclude definite conclusions regarding patterns of use of these drugs, the data suggest that the use of COX-2-specific inhibitors may result in increased persistency with treatment.

  13. Synthesis, biological evaluation and molecular docking studies of stellatin derivatives as cyclooxygenase (COX-1, COX-2) inhibitors and anti-inflammatory agents.

    PubMed

    Gautam, Raju; Jachak, Sanjay M; Kumar, Vivek; Mohan, C Gopi

    2011-03-15

    Stellatin (4), isolated from Dysophylla stellata is a cyclooxygenase (COX) inhibitor. The present study reports the synthesis and biological evaluation of new stellatin derivatives for COX-1, COX-2 inhibitory and anti-inflammatory activities. Eight derivatives showed more pronounced COX-2 inhibition than stellatin and, 17 and 21 exhibited the highest COX-2 inhibition. They also exhibited the significant anti-inflammatory activity in TPA-induced mouse ear edema assay and their anti-inflammatory effects were more than that of stellatin and indomethacin at 0.5mg/ear. The derivatives were further evaluated for antioxidant activity wherein 16 and 17 showed potent free radical scavenging activity against DPPH and ABTS radicals. Molecular docking study revealed the binding orientations of stellatin and its derivatives into the active sites of COX-1 and COX-2 and thereby helps to design the potent inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. In Silico Analysis of the Potential of the Active Compounds Fucoidan and Alginate Derived from Sargassum Sp. as Inhibitors of COX-1 and COX-2.

    PubMed

    Dewi, Lestari

    2016-06-01

    The enzyme cyclooxygenase (COX) is an enzyme that catalyzes the formation of one of the mediators of inflammation, the prostaglandins. Inhibition of COX allegedly can improve inflammation-induced pathological conditions. The purpose of the present study was to evaluate the potential of Sargassum sp. components, Fucoidan and alginate, as COX inhibitors. The study was conducted by means of a computational (in silico) method. It was performed in two main stages, the docking between COX-1 and COX-2 with Fucoidan, alginate and aspirin (for comparison) and the analysis of the amount of interactions formed and the residues directly involved in the process of interaction. Our results showed that both Fucoidan and alginate had an excellent potential as inhibitors of COX-1 and COX-2. Fucoidan had a better potential as an inhibitor of COX than alginate. COX inhibition was expected to provide a more favorable effect on inflammation-related pathological conditions. The active compounds Fucoidan and alginate derived from Sargassum sp. were suspected to possess a good potential as inhibitors of COX-1 and COX-2.

  15. Identification of COX inhibitors in the hexane extract of Japanese horse chestnut (Aesculus turbinata) seeds.

    PubMed

    Sato, Itaru; Kofujita, Hisayoshi; Tsuda, Shuji

    2007-07-01

    Japanese horse chestnut (Aesculus turbinata) seed extract inhibits the activity of cyclooxygenase (COX), but its active constituents have not been identified. In the present study, COX inhibitors were isolated from the hexane extract of this seed by means of 4 steps of liquid chromatography and were identified by gas chromatography/mass spectrometry and nuclear magnetic resonance. The COX inhibitors in the extract of Japanese horse chestnut seeds were identified as linoleic acid, linolenic acid, and oleic acid. Their efficacies were in the following order: linolenic acid = linoleic acid > oleic acid. These active constituents are C18 unsaturated fatty acids; stearic acid, a C18 saturated fatty acid, had no activity. Linolenic acid and linoleic acid had high selectivity toward COX-2 (selectivity index = 10), whereas oleic acid had no selectivity. Considering the efficacy and yield of each fatty acid, linoleic acid may be the principal COX inhibitor in this seed.

  16. NS-398, a selective COX-2 inhibitor, inhibits proliferation of IL-1{beta}-stimulated vascular smooth muscle cells by induction of {eta}{omicron}-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyoung Chul; Kim, Hee Sun; Lee, Kwang Youn

    2008-11-28

    We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1{beta}-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE{sub 2} without modulation of expression of COX-2 in IL-1{beta}-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1{beta}-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE{sub 2} production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE{sub 2} and proliferation of IL-1{beta}-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1{beta}-stimulatedmore » VSMC. NS-398 inhibited proliferation of IL-1{beta}-stimulated VSMC in a HbO{sub 2}-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1{beta}-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.« less

  17. The COX-2 inhibitor meloxicam prevents pregnancy when administered as an emergency contraceptive to nonhuman primates.

    PubMed

    McCann, Nicole C; Lynch, Terrie J; Kim, Soon Ok; Duffy, Diane M

    2013-12-01

    Cyclooxygenase-2 (COX-2) inhibitors reduce prostaglandin synthesis and disrupt essential reproductive processes. Ultrasound studies in women demonstrated that oral COX-2 inhibitors can delay or prevent follicle collapse associated with ovulation. The goal of this study was to determine if oral administration of a COX-2 inhibitor can inhibit reproductive function with sufficient efficacy to prevent pregnancy in primates. The COX-2 inhibitor meloxicam (or vehicle) was administered orally to proven fertile female cynomolgus macaques using one emergency contraceptive model and three monthly contraceptive models. In the emergency contraceptive model, females were bred with a proven fertile male once 2±1 days before ovulation, returned to the females' home cage, and then received 5 days of meloxicam treatment. In the monthly contraceptive models, females were co-caged for breeding with a proven fertile male for a total of 5 days beginning 2±1 days before ovulation. Animals received meloxicam treatment (1) cycle days 5-22, or (2) every day, or (3) each day of the 5-day breeding period. Female were then assessed for pregnancy. The pregnancy rate with meloxicam administration using the emergency contraception model was 6.5%, significantly lower than the pregnancy rate of 33.3% when vehicle without meloxicam was administered. Pregnancy rates with the three monthly contraceptive models (75%-100%) were not consistent with preventing pregnancy. Oral COX-2 inhibitor administration can prevent pregnancy after a single instance of breeding in primates. While meloxicam may be ineffective for regular contraception, pharmacological inhibition of COX-2 may be an effective method of emergency contraception for women. COX-2 inhibitors can interfere with ovulation, but the contraceptive efficacy of drugs of this class has not been directly tested. This study, conducted in nonhuman primates, is the first to suggest that a COX-2 inhibitor may be effective as an emergency contraceptive.

  18. Exploring selectivity requirements for COX-2 versus COX-1 binding of 2-(5-phenyl-pyrazol-1-yl)-5-methanesulfonylpyridines using topological and physico-chemical parameters.

    PubMed

    Chakraborty, Santanu; Sengupta, Chandana; Roy, Kunal

    2005-04-01

    Considering the current need for development of selective cyclooxygenase-2 (COX-2) inhibitors, an attempt has been made to explore physico-chemical requirements of 2-(5-phenyl-pyrazol-1-yl)-5-methanesulfonylpyridines for binding with COX-1 and COX-2 enzyme subtypes and also to explore the selectivity requirements. In this study, E-states of different common atoms of the molecules (calculated according to Kier & Hall), first order valence connectivity and physicochemical parameters (hydrophobicity pi, Hammett sigma and molar refractivity MR of different ring substituents) were used as independent variables along with suitable dummy parameters in the stepwise regression method. The best equation describing COX-1 binding affinity [n = 25, Q2 = 0.606, R(a)2 = 0.702, R2 = 0.752, R = 0.867, s = 0.447, F = 15.2 (df 4, 20)] suggests that the COX-1 binding affinity increases in the presence of a halogen substituent at R1 position and a p-alkoxy or p-methylthio substituent at R2 position. Furthermore, a difluoromethyl group is preferred over a trifluoromethyl group at R position for the COX-1 binding. The best equation describing COX-2 binding affinity [n = 32, Q2 = 0.622, R(a)2= 0.692, R2 = 0.732, R = 0.856, s = 0.265, F = 18.4 (df 4, 27)] shows that the COX-2 binding affinity increases with the presence of a halogen substituent at R1 position and increase of size of R2 substituents. However, it decreases in case of simultaneous presence of 3-chloro and 4-methoxy groups on the phenyl nucleus and in the presence of highly lipophilic R2 substituents. The best selectivity relation [n = 25, Q2 = 0.455, R(a)2 = 0.605, R2 = 0.670, R = 0.819, s = 0.423, F = 10.2 (df 4, 20)] suggests that the COX-2 selectivity decreases in the presence of p-alkoxy group and electron-withdrawing para substituents at R2 position. Again, a trifluoro group is conductive for the selectivity instead of a difluoromethyl group at R position. Furthermore, branching may also play significant role in

  19. In Silico Analysis of the Potential of the Active Compounds Fucoidan and Alginate Derived from Sargassum Sp. as Inhibitors of COX-1 and COX-2

    PubMed Central

    Dewi, Lestari

    2016-01-01

    Introduction: The enzyme cyclooxygenase (COX) is an enzyme that catalyzes the formation of one of the mediators of inflammation, the prostaglandins. Inhibition of COX allegedly can improve inflammation-induced pathological conditions. Aim: The purpose of the present study was to evaluate the potential of Sargassum sp. components, Fucoidan and alginate, as COX inhibitors. Material and methods: The study was conducted by means of a computational (in silico) method. It was performed in two main stages, the docking between COX-1 and COX-2 with Fucoidan, alginate and aspirin (for comparison) and the analysis of the amount of interactions formed and the residues directly involved in the process of interaction. Results: Our results showed that both Fucoidan and alginate had an excellent potential as inhibitors of COX-1 and COX-2. Fucoidan had a better potential as an inhibitor of COX than alginate. COX inhibition was expected to provide a more favorable effect on inflammation-related pathological conditions. Conclusion: The active compounds Fucoidan and alginate derived from Sargassum sp. were suspected to possess a good potential as inhibitors of COX-1 and COX-2. PMID:27594740

  20. O-desmethylquinine as a cyclooxygenase-2 (COX-2) inhibitors using AutoDock Vina

    NASA Astrophysics Data System (ADS)

    Damayanti, Sophi; Mahardhika, Andhika Bintang; Ibrahim, Slamet; Chong, Wei Lim; Lee, Vannajan Sanghiran; Tjahjono, Daryono Hadi

    2014-10-01

    Computational approach was employed to evaluate the biological activity of novel cyclooxygenase-2 COX-2 inhibitor, O-desmethylquinine, in comparison to quinine as common inhibitor which can also be used an agent of antipyretic, antimalaria, analgesic and antiinflamation. The molecular models of the compound were constructed and optimized with the density function theory with at the B3LYP/6-31G (d,p) level using Gaussian 09 program. Molecular docking studies of the compounds were done to obtain the COX-2 complex structures and their binding energies were analyzed using the AutoDock Vina. The results of docking of the two ligands were comparable and cannot be differentiated from the energy scoring function with AutoDock Vina.

  1. Focused library design and synthesis of 2-mercapto benzothiazole linked 1,2,4-oxadiazoles as COX-2/5-LOX inhibitors

    NASA Astrophysics Data System (ADS)

    Yatam, Satayanarayana; Gundla, Rambabu; Jadav, Surender Singh; Pedavenkatagari, Narayana reddy; Chimakurthy, Jithendra; Rani B, Namratha; Kedam, Thyagaraju

    2018-05-01

    Mercapto benzothiazole linked 1,2,4-oxadiazole derivatives were designed (4a-u) as new anti-inflammatory agents using bioisosteric approach and docking studies. The docking results clearly indicated that the compounds 4a-u shown good docking interaction towards COX-2 enzyme. In silico drug-like properties were also calculated for compounds (4a-u) and exhibited significant H-bond acceptor ratio. All compounds were synthesized and biologically evaluated using in vitro COX-1, COX-2 and 5-LOX assays. Compound 4k and 4q (IC50 = 6.8 μM and IC50 = 5.0 μM) found to be potent, selective COX-2 inhibitors and display better anti-inflammatory activity than standard Ibuprofen. Compound 4l and 4e found to be potent inhibitors against 5-LOX (IC50 = 5.1 μM and IC50 = 5.5 μM). The in vivo anti-inflammatory activity studies shown that the compounds 4q and 4k effectively reducing the paw edema volume at 3h and 5h than standard drug Ibuprofen. The DPPH radical scavenging activity provided anti-oxidant activity of compound 4e (IC50 = 25.6 μM) than reference standard Ascorbic acid.

  2. The pathophysiological roles of COX-1 and COX-2 in the intestinal smooth muscle contractility under the anaphylactic condition.

    PubMed

    Kadowaki, Hiroko; Yamamoto, Takeshi; Kageyama-Yahara, Natsuko; Kurokawa, Nobuo; Kadowaki, Makoto

    2008-04-01

    Various inflammatory mediators released from antigen-activated mast cells are considered to play a key role in the pathogenesis of food allergy. The aim of the present study was to determine the mechanisms underlying the antigen-induced anaphylactic responses in the rat colons. Wistar rats were sensitized by intraperitoneal injection of ovalbumin (OVA). The contractilities of isolated proximal colons of the sensitized rats were studied in the organ bath. OVA challenges of sensitized tissues induced prolonged contractile responses. The antigen-induced contractions were greatly reduced by mast cell stabilizer doxantrazole (10 microM). However, the contractions were resistant to histamine H1 receptor antagonist and prostaglandin D2 receptor antagonist. In contrast, non-selective cyclooxygenase (COX) inhibitor indomethacin (1 microM) significantly reduced the contractions by 61.0%. Furthermore, selective COX-1 inhibitor FR122047 (10 microM) as well as selective COX-2 inhibitor NS-398 (10 microM) significantly inhibited the contractions by 50.1% and 50.3%, respectively. Nevertheless, the transcript levels of COX-2 as well as COX-1 were not upregulated by OVA in the proximal colons of the sensitized rats. The present results indicate that de novo arachidonic acid metabolites synthesis by constitutive COX-1 as well as constitutive COX-2 within mast cells contribute to the altered smooth muscle contractilities in the colons under the anaphylactic condition.

  3. Comparison of nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 (COX-2) inhibitors use in Australia and Nova Scotia (Canada)

    PubMed Central

    Barozzi, Nadia; Sketris, Ingrid; Cooke, Charmaine; Tett, Susan

    2009-01-01

    AIMS Cyclooxygenase-2 (COX-2) inhibitors were marketed aggressively and their rapid uptake caused safety concerns and budgetary challenges in Canada and Australia. The objectives of this study were to compare and contrast COX-2 inhibitors and nonselective nonsteroidal anti-inflammatory drug (ns-NSAID) use in Nova Scotia (Canada) and Australia and to identify lessons learned from the two jurisdictions. METHODS Ns-NSAID and COX-2 inhibitor Australian prescription data (concession beneficiaries) were downloaded from the Medicare Australia website (2001–2006). Similar Pharmacare data were obtained for Nova Scotia (seniors and those receiving Community services). Defined daily doses per 1000 beneficiaries day−1 were calculated. COX-2 inhibitors/all NSAIDs ratios were calculated for Australia and Nova Scotia. Ns-NSAIDs were divided into low, moderate and high risk for gastrointestinal side-effects and the proportions of use in each group were determined. Which drugs accounted for 90% of use was also calculated. RESULTS Overall NSAID use was different in Australia and Nova Scotia. However, ns-NSAID use was similar. COX-2 inhibitor dispensing was higher in Australia. The percentage of COX-2 inhibitor prescriptions over the total NSAID use was different in the two countries. High-risk NSAID use was much higher in Australia. Low-risk NSAID prescribing increased in Nova Scotia over time. The low-risk/high-risk ratio was constant throughout over the period in Australia and increased in Nova Scotia. CONCLUSIONS There are significant differences in Australia and Nova Scotia in use of NSAIDs, mainly due to COX-2 prescribing. Nova Scotia has a higher proportion of low-risk NSAID use. Interventions to provide physicians with information on relative benefits and risks of prescribing specific NSAIDs are needed, including determining their impact. PMID:19660008

  4. Pharmacology of a selective cyclooxygenase-2 inhibitor, HN-56249: a novel compound exhibiting a marked preference for the human enzyme in intact cells.

    PubMed

    Berg, J; Fellier, H; Christoph, T; Kremminger, P; Hartmann, M; Blaschke, H; Rovensky, F; Towart, R; Stimmeder, D

    2000-04-01

    HN-56249 (3-(2,4-dichlorothiophenoxy)-4-methylsulfonylamino-benzenesu lfonamide), a highly selective cyclooxygenase (COX)-2 inhibitor, is the prototype of a novel series of COX inhibitors comprising bicyclic arylethersulfonamides; of this series HN-56249 is the most potent and selective human COX-2 inhibitor. HN-56249 inhibited platelet aggregation as a measure of COX-1 activity only moderately (IC50 26.5+/-1.7 microM). In LPS-stimulated monocytic cells the release of prostaglandin (PG) F1alpha as a measure of COX-2 was markedly inhibited (IC50 0.027+/-0.001 microM). Thus, HN-56249 showed an approximately 1000-fold selectivity for COX-2 in intact cells. In whole blood assays HN-56249 showed a potent inhibitory activity for COX-2 (IC50 0.78+/-0.37 microM) only. COX-1 was only weakly inhibited (IC50 867+/-181 microM). Hence, HN-56249 exhibited a greater than 1000-fold selectivity for whole blood COX-2. HN-56249 surpassed the COX-2 selectivities of the COX-2 selective inhibitors 3-cyclohexyloxy-4-methylsulfonylamino-nitrobenzene (NS-398) and 6-(2,4-difluorophenoxy)-5-methyl-sulfonylamino-1-indanone (flosulide) in the intact cell assays by eight- and threefold, respectively, and in the whole blood assays by approximately 40-fold. Following i.v. administration HN-56249 inhibited carrageenan-induced rat paw oedema only moderately (ID50 26.2+/-5.7 mg/kg, mean +/- SEM), approximately tenfold less potent than indomethacin (ID50 2.1+/-0.2 mg/kg, mean +/- SEM). After oral administration HN-56249 reversed thermal hyperalgesia in the carrageenan-induced rat paw oedema test, however, some 30-fold less potently than diclofenac. Comparing the inhibitory potency of HN-56249 against human COX-2 with that against murine COX-2 in intact cells revealed a 300-fold selectivity for the human enzyme. Similar effects were observed with other COX-2-selective arylethersulfonamides. In contrast, non-COX-2-selective arylethersulfonamides, including a highly selective COX-1 inhibitor, inhibited

  5. Nimesulide, a COX-2 inhibitor, does not reduce lesion size or number in a nude mouse model of endometriosis.

    PubMed

    Hull, M L; Prentice, A; Wang, D Y; Butt, R P; Phillips, S C; Smith, S K; Charnock-Jones, D S

    2005-02-01

    Women with endometriosis have elevated levels of cyclooxygenase-2 (COX-2) in peritoneal macrophages and endometriotic tissue. Inhibition of COX-2 has been shown to reduce inflammation, angiogenesis and cellular proliferation. It may also downregulate aromatase activity in ectopic endometrial lesions. Ectopic endometrial establishment and growth are therefore likely to be suppressed in the presence of COX-2 inhibitors. We hypothesized that COX-2 inhibition would reduce the size and number of ectopic human endometrial lesions in a nude mouse model of endometriosis. The selective COX-2 inhibitor, nimesulide, was administered to estrogen-supplemented nude mice implanted with human endometrial tissue. Ten days after implantation, the number and size of ectopic endometrial lesions were evaluated and compared with lesions from a control group. Immunohistochemical assessment of vascular development and macrophage and myofibroblast infiltration in control and treated lesions was performed. There was no difference in the number or size of ectopic endometrial lesions in control and nimesulide-treated nude mice. Nimesulide did not induce a visually identifiable difference in blood vessel development or macrophage or myofibroblast infiltration in nude mouse explants. The hypothesized biological properties of COX-2 inhibition did not influence lesion number or size in the nude mouse model of endometriosis.

  6. Development of Antioxidant COX-2 Inhibitors as Radioprotective Agents for Radiation Therapy—A Hypothesis-Driven Review

    PubMed Central

    Laube, Markus; Kniess, Torsten; Pietzsch, Jens

    2016-01-01

    Radiation therapy (RT) evolved to be a primary treatment modality for cancer patients. Unfortunately, the cure or relief of symptoms is still accompanied by radiation-induced side effects with severe acute and late pathophysiological consequences. Inhibitors of cyclooxygenase-2 (COX-2) are potentially useful in this regard because radioprotection of normal tissue and/or radiosensitizing effects on tumor tissue have been described for several compounds of this structurally diverse class. This review aims to substantiate the hypothesis that antioxidant COX-2 inhibitors are promising radioprotectants because of intercepting radiation-induced oxidative stress and inflammation in normal tissue, especially the vascular system. For this, literature reporting on COX inhibitors exerting radioprotective and/or radiosensitizing action as well as on antioxidant COX inhibitors will be reviewed comprehensively with the aim to find cross-points of both and, by that, stimulate further research in the field of radioprotective agents. PMID:27104573

  7. Applying a research ethics committee approach to a medical practice controversy: the case of the selective COX-2 inhibitor rofecoxib

    PubMed Central

    James, M; Cleland, L

    2004-01-01

    The new class of anti-inflammatory drugs, the COX-2 inhibitors, have been commercially successful to the point of market dominance within a short time of their launch. They attract a price premium on the basis that they are associated with fewer adverse gastric events than traditional anti-inflammatory drugs. This marketing continues even though a pivotal safety study with one of the COX-2 inhibitors, rofecoxib, showed a significant increase in myocardial infarction with rofecoxib use compared with a traditional anti-inflammatory drug. This finding has led to a series of publications containing pooled analyses of existing data that both support and refute the possibility of increased cardiovascular risk with COX-2 inhibitors. These medical journal publications have served to obfuscate rather than provide guidance for medical practitioners. Consideration of a research ethics committee approach to this issue suggests that it would deal with the controversy in a straightforward manner—namely, it would simply inform research participants of the trial results with rofecoxib. The certainty of this research ethics committee approach raises the issue of whether it should be applied in normal medical practice outside of the research environment. A consideration of the legal tests for disclosure of information suggests that therapeutic medical practice should mirror that within the research environment, in this case. PMID:15082814

  8. New Coumarin Derivatives as Potent Selective COX-2 Inhibitors: Synthesis, Anti-Inflammatory, QSAR, and Molecular Modeling Studies.

    PubMed

    Dawood, Dina H; Batran, Rasha Z; Farghaly, Thoraya A; Khedr, Mohammed A; Abdulla, Mohamed M

    2015-12-01

    Two new series of coumarin derivatives incorporating thiazoline and thiazolidinone moieties were designed, synthesized, and investigated in vivo for their anti-inflammatory activities using the carrageenan-induced rat paw edema model and in vitro for their inhibitory activities against the human cyclooxygenase (COX)-1 and COX-2 isoforms. Most of the synthesized compounds demonstrated exceptionally high in vivo anti-inflammatory activity and displayed superior GI safety profiles (0-7% ulceration) as compared to indomethacin. All the bioactive compounds showed in vitro high affinity and selectivity toward the COX-2 isoenzyme, compared to the reference celecoxib with IC50 values ranging from 0.31 to 0.78 μM. The ethyl thiosemicarbazone 2b, thiazoline derivatives 3a, 3b, 5b, 6a, and 7f, and the thiazolidinone compounds 8b and 9a showed the highest in vivo and in vitro anti-inflammatory activities with remarkable COX-2 selectivity. Quantitative structure-activity relationship study (QSAR) was done and resulted in a highly predictive power R(2) (0.908). A molecular docking study revealed a relationship between the docking affinity and the biological results. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Current approaches to prevent NSAID-induced gastropathy – COX selectivity and beyond

    PubMed Central

    Becker, Jan C; Domschke, Wolfram; Pohle, Thorsten

    2004-01-01

    Gastrointestinal (GI) toxicity associated with nonsteroidal anti-inflammatory drugs (NSAIDs) is still an important medical and socio-economic problem – despite recent pharmaceutical advances. To prevent NSAID-induced gastropathy, three strategies are followed in clinical routine: (i) coprescription of a gastroprotective drug, (ii) use of selective COX-2 inhibitors, and (iii) eradication of Helicobacter pylori. Proton pump inhibitors are the comedication of choice as they effectively reduce gastrointestinal adverse events of NSAIDs and are safe even in long-term use. Co-medication with vitamin C has only been little studied in the prevention of NSAID-induced gastropathy. Apart from scavenging free radicals it is able to induce haeme-oxgenase 1 in gastric cells, a protective enzyme with antioxidant and vasodilative properties. Final results of the celecoxib outcome study (CLASS study) attenuated the initial enthusiasm about the GI safety of selective COX-2 inhibitors, especially in patients concomitantly taking aspirin for cardiovascular prophylaxis. Helicobacter pylori increases the risk for ulcers particularly in NSAID-naive patients and therefore eradication is recommended prior to long-term NSAID therapy at least in patients at high risk. New classes of COX-inhibitors are currently evaluated in clinical studies with very promising results: NSAIDs combined with a nitric oxide releasing moiety (NO-NSAID) and dual inhibitors of COX and 5-LOX. These drugs offer extended anti-inflammatory potency while sparing gastric mucosa. PMID:15563357

  10. Docking studies on NSAID/COX-2 isozyme complexes using Contact Statistics analysis

    NASA Astrophysics Data System (ADS)

    Ermondi, Giuseppe; Caron, Giulia; Lawrence, Raelene; Longo, Dario

    2004-11-01

    The selective inhibition of COX-2 isozymes should lead to a new generation of NSAIDs with significantly reduced side effects; e.g. celecoxib (Celebrex®) and rofecoxib (Vioxx®). To obtain inhibitors with higher selectivity it has become essential to gain additional insight into the details of the interactions between COX isozymes and NSAIDs. Although X-ray structures of COX-2 complexed with a small number of ligands are available, experimental data are missing for two well-known selective COX-2 inhibitors (rofecoxib and nimesulide) and docking results reported are controversial. We use a combination of a traditional docking procedure with a new computational tool (Contact Statistics analysis) that identifies the best orientation among a number of solutions to shed some light on this topic.

  11. QSAR analyses of conformationally restricted 1,5-diaryl pyrazoles as selective COX-2 inhibitors: application of connection table representation of ligands.

    PubMed

    Prasanna, S; Manivannan, E; Chaturvedi, S C

    2005-04-15

    As a part of our continuing efforts in discerning the structural and physicochemical requirements for selective COX-2 over COX-1 inhibition among the fused pyrazole ring systems, herein we report the QSAR analyses of the title compounds. The conformational flexibility of the title compounds was examined using a simple connection table representation. The conformational investigation was aided by calculating a connection table parameter called fraction of rotable bonds, b_rotR encompassing the number of rotable bonds and b_count, the number of bonds including implicit hydrogens of each ligand. The hydrophobic and steric correlation of the title compounds towards selective COX-2 inhibition was reported previously in one of our recent publications. In this communication, we attempt to calculate Wang-Ford charges of the non-hydrogen common atoms of AM1 optimized geometries of the title compounds. Owing to the partial conformational flexibility of title compounds, conformationally restricted and unrestricted descriptors were calculated from MOE. Correlation analysis of these 2D, 3D and Wang-Ford charges was accomplished by linear regression analysis. 2D molecular descriptor b_single, 3D molecular descriptors glob, std_dim3 showed significant contribution towards COX-2 inhibitory activity. Balaban J, a connectivity topological index showed a negative and positive contribution towards COX-1 and selective COX-2 over COX-1 inhibition, respectively. Wang-Ford charges calculated on C(7) showed a significant contribution towards COX-1 inhibitory activity whereas charges calculated on C(8) were crucial in governing the selectivity of COX-2 over COX-1 inhibition among these congeners.

  12. Clinical pharmacology of lumiracoxib: a selective cyclo-oxygenase-2 inhibitor.

    PubMed

    Rordorf, Christiane M; Choi, Les; Marshall, Paul; Mangold, James B

    2005-01-01

    Lumiracoxib (Prexige) is a selective cyclo-oxygenase (COX)-2 inhibitor developed for the treatment of osteoarthritis, rheumatoid arthritis and acute pain. Lumiracoxib possesses a carboxylic acid group that makes it weakly acidic (acid dissociation constant [pKa] 4.7), distinguishing it from other selective COX-2 inhibitors. Lumiracoxib has good oral bioavailability (74%). It is rapidly absorbed, reaching maximum plasma concentrations 2 hours after dosing, and is highly plasma protein bound. Lumiracoxib has a short elimination half-life from plasma (mean 4 hours) and demonstrates dose-proportional plasma pharmacokinetics with no accumulation during multiple dosing. In patients with rheumatoid arthritis, peak lumiracoxib synovial fluid concentrations occur 3-4 hours later than in plasma and exceed plasma concentrations from 5 hours after dosing to the end of the 24-hour dosing interval. These data suggest that lumiracoxib may be associated with reduced systemic exposure, while still reaching sites where COX-2 inhibition is required for pain relief. Lumiracoxib is metabolised extensively prior to excretion, with only a small amount excreted unchanged in urine or faeces. Lumiracoxib and its metabolites are excreted via renal and faecal routes in approximately equal amounts. The major metabolic pathways identified involve oxidation of the 5-methyl group of lumiracoxib and/or hydroxylation of its dihaloaromatic ring. Major metabolites of lumiracoxib in plasma are the 5-carboxy, 4'-hydroxy and 4'-hydroxy-5-carboxy derivatives, of which only the 4'-hydroxy derivative is active and COX-2 selective. In vitro, the major oxidative pathways are catalysed primarily by cytochrome P450 (CYP) 2C9 with very minor contribution from CYP1A2 and CYP2C19. However, in patients genotyped as poor CYP2C9 metabolisers, exposure to lumiracoxib (area under the plasma concentration-time curve) is not significantly increased compared with control subjects, indicating no requirement for adjustment

  13. Prescriptions for selective cyclooxygenase-2 inhibitors, non-selective non-steroidal anti-inflammatory drugs, and risk of breast cancer in a population-based case-control study.

    PubMed

    Cronin-Fenton, Deirdre P; Pedersen, Lars; Lash, Timothy L; Friis, Søren; Baron, John A; Sørensen, Henrik T

    2010-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) prevent the growth of mammary tumours in animal models. Two population-based case-control studies suggest a reduced risk of breast cancer associated with selective cyclooxygenase-2 (sCox-2) inhibitor use, but data regarding the association between breast cancer occurrence and use of non-selective NSAIDs are conflicting. We conducted a population-based case-control study using Danish healthcare databases to examine if use of NSAIDs, including sCox-2 inhibitors, was associated with a reduced risk of breast cancer. We included 8,195 incident breast cancer cases diagnosed in 1991 through 2006 and 81,950 population controls. Overall, we found no reduced breast cancer risk in ever users (>2 prescriptions) of sCox-2 inhibitors (odds ratio (OR) = 1.08, 95% confidence interval (95% CI) = 0.99, 1.18), aspirin (OR = 0.98, 95% CI = 0.90-1.07), or non-selective NSAIDs OR = 1.04, (95% CI = 0.98, 1.10)). Recent use (>2 prescriptions within two years of index date) of sCox-2 inhibitors, aspirin, or non-selective NSAIDs was likewise not associated with breast cancer risk (Ors = 1.06 (95% CI = 0.96, 1.18), 0.96 (95% CI = 0.87, 1.06) and 0.99 (95% CI = 0.85, 1.16), respectively). Risk estimates by duration (<10, 10 to 15, 15+ years) or intensity (low/medium/high) of NSAID use were also close to unity. Regardless of intensity, shorter or long-term NSAID use was not significantly associated with breast cancer risk. Overall, we found no compelling evidence of a reduced risk of breast cancer associated with use of sCox-2 inhibitors, aspirin, or non-selective NSAIDs.

  14. Cox-2 inhibitory effects of naturally occurring and modified fatty acids.

    PubMed

    Ringbom, T; Huss, U; Stenholm , A; Flock, S; Skattebøl, L; Perera, P; Bohlin, L

    2001-06-01

    In the search for new cyclooxygenase-2 (COX-2) selective inhibitors, the inhibitory effects of naturally occurring fatty acids and some of their structural derivatives on COX-2-catalyzed prostaglandin biosynthesis were investigated. Among these fatty acids, linoleic acid (LA), alpha-linolenic acid (alpha-LNA), myristic acid, and palmitic acid were isolated from a CH(2)Cl(2) extract of the plant Plantago major by bioassay-guided fractionation. Inhibitory effects of other natural, structurally related fatty acids were also investigated: stearic acid, oleic acid, pentadecanoic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Further, the inhibitory effects of these compounds on COX-2- and COX-1-catalyzed prostaglandin biosynthesis was compared with the inhibition of some synthesized analogues of EPA and DHA with ether or thioether functions. The most potent COX-2-catalyzed prostaglandin biosynthesis inhibitor was all-(Z)-5-thia-8,11,14,17-eicosatetraenoic acid (2), followed by EPA, DHA, alpha-LNA, LA, (7E,11Z,14Z,17Z)-5-thiaeicosa-7,11,14,17-tetraenoic acid, all-(Z)-3-thia-6,9,12,15-octadecatetraenoic acid, and (5E,9Z,12Z,15Z,18Z)-3-oxaheneicosa-5,9,12,15,18-pentaenoic acid, with IC(50) values ranging from 3.9 to180 microM. The modified compound 2 and alpha-LNA were most selective toward COX-2, with COX-2/COX-1 ratios of 0.2 and 0.1, respectively. This study shows that several of the natural fatty acids as well as all of the semisynthetic thioether-containing fatty acids inhibited COX-2-catalyzed prostaglandin biosynthesis, where alpha-LNA and compound 2 showed selectivity toward COX-2.

  15. Direct-to-consumer advertising of COX-2 inhibitors: effect on appropriateness of prescribing.

    PubMed

    Spence, Michele M; Teleki, Stephanie S; Cheetham, T Craig; Schweitzer, Stuart O; Millares, Mirta

    2005-10-01

    Spending on direct-to-consumer advertising (DTCA) of prescription drugs has increased dramatically in the past several years. An unresolved question is whether such advertising leads to inappropriate prescribing. In this study, the authors use survey and administrative data to determine the association of DTCA with the appropriate prescribing of cyclooxygenase-2 (COX-2) inhibitors for 1,382 patients. Treatment with either a COX-2 or a traditional nonsteroidal anti-inflammatory drug (NSAID) was defined as appropriate or not according to three different definitions of gastrointestinal risk. Patients who saw or heard a COX-2 advertisement and asked their physician about the advertised drug were significantly more likely to be prescribed a COX-2 (versus a NSAID, as recommended by evidence-based guidelines) than all other patients. Findings also suggest that some patients may benefit from DTCA. The authors discuss the need for balanced drug information for consumers, increased physician vigilance in prescribing appropriately, and further study of DTCA.

  16. Molecular docking analysis of known flavonoids as duel COX-2 inhibitors in the context of cancer

    PubMed Central

    Dash, Raju; Uddin, Mir Muhammad Nasir; Hosen, S.M. Zahid; Rahim, Zahed Bin; Dinar, Abu Mansur; Kabir, Mohammad Shah Hafez; Sultan, Ramiz Ahmed; Islam, Ashekul; Hossain, Md Kamrul

    2015-01-01

    Cyclooxygenase-2 (COX-2) catalyzed synthesis of prostaglandin E2 and it associates with tumor growth, infiltration, and metastasis in preclinical experiments. Known inhibitors against COX-2 exhibit toxicity. Therefore, it is of interest to screen natural compounds like flavanoids against COX-2. Molecular docking using 12 known flavanoids against COX-2 by FlexX and of ArgusLab were performed. All compounds showed a favourable binding energy of >-10 KJ/mol in FlexX and > -8 kcal/mol in ArgusLab. However, this data requires in vitro and in vivo verification for further consideration. PMID:26770028

  17. COX-1 vs. COX-2 as a determinant of basal tone in the internal anal sphincter.

    PubMed

    de Godoy, Márcio A F; Rattan, Neeru; Rattan, Satish

    2009-02-01

    Prostanoids, produced endogenously via cyclooxygenases (COXs), have been implicated in the sustained contraction of different smooth muscles. The two major types of COXs are COX-1 and COX-2. The COX subtype involved in the basal state of the internal anal sphincter (IAS) smooth muscle tone is not known. To identify the COX subtype, we examined the effect of COX-1- and COX-2-selective inhibitors, SC-560 and rofecoxib, respectively, on basal tone in the rat IAS. We also determined the effect of selective deletion of COX-1 and COX-2 genes (COX-1(-/-) and COX-2(-/-) mice) on basal tone in murine IAS. Our data show that SC-560 causes significantly more efficacious and potent concentration-dependent decreases in IAS tone than rofecoxib. In support of these data, significantly higher levels of COX-1 than COX-2 mRNA were found in the IAS. In addition, higher levels of COX-1 mRNA and protein were expressed in rat IAS than rectal smooth muscle. In wild-type mice, IAS tone was decreased 41.4 +/- 3.4% (mean +/- SE) by SC-560 (1 x 10(-5) M) and 5.4 +/- 2.2% by rofecoxib (P < 0.05, n = 5). Basal tone was 0.172 +/- 0.021 mN//mg in the IAS from wild-type mice and significantly less (0.080 +/- 0.015 mN/mg) in the IAS from COX-1(-/-) mice (P < 0.05, n = 5). However, basal tone in COX-2(-/-) mice was not significantly different from that in wild-type mice. We conclude that COX-1-related products contribute significantly to IAS tone.

  18. Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner

    PubMed Central

    Lee, Mi Eun; Kim, So Ra; Lee, Seungkoo; Jung, Yu-Jin; Choi, Sun Shim; Kim, Woo Jin

    2012-01-01

    It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1. PMID:22771771

  19. Indomethacin but not a selective cyclooxygenase-2 inhibitor inhibits esophageal adenocarcinogenesis in rats

    PubMed Central

    Esquivias, Paula; Morandeira, Antonio; Escartín, Alfredo; Cebrián, Carmelo; Santander, Sonia; Esteva, Francisco; García-González, María Asunción; Ortego, Javier; Lanas, Angel; Piazuelo, Elena

    2012-01-01

    AIM: To evaluate the effects of indomethacin [dual cyclooxygenase (COX)-1/COX-2 inhibitor] and 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl) phenyl)-2-(5H)-furanone (MF-tricyclic) (COX-2 selective inhibitor) in a rat experimental model of Barrett’s esophagus and esophageal adenocarcinoma. METHODS: A total of 112 surviving post-surgery rats were randomly divided into three groups: the control group (n = 48), which did not receive any treatment; the indomethacin group (n = 32), which were given 2 mg/kg per day of the COX-1/COX-2 inhibitor; and the MF-tricyclic group (n = 32), which received 10 mg/kg per day of the selective COX-2 inhibitor. Randomly selected rats were killed either 8 wk or 16 wk after surgery. The timing of the deaths was in accordance with a previous study performed in our group. Only rats that were killed at the times designated by the protocol were included in the study. We then assessed the histology and prostaglandin E2 (PGE2) expression levels in the rat esophagi. An additional group of eight animals that did not undergo esophagojejunostomy were included in order to obtain normal esophageal tissue as a control. RESULTS: Compared to a control group with no treatment (vehicle-treated rats), indomethacin treatment was associated with decreases in ulcerated esophageal mucosa (16% vs 35% and 14% vs 17%, 2 mo and 4 mo after surgery, respectively; P = 0.021), length of intestinal metaplasia in continuity with anastomosis (2 ± 1.17 mm vs 2.29 ± 0.75 mm and 1.25 ± 0.42 mm vs 3.5 ± 1.54 mm, 2 mo and 4 mo after surgery, respectively; P = 0.007), presence of intestinal metaplasia beyond anastomosis (20% vs 71.4% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P = 0.009), severity of dysplasia (0% vs 71.4% and 20% vs 85.7% high-grade dysplasia, 2 mo and 4 mo after surgery, respectively; P = 0.002), and adenocarcinoma incidence (0% vs 57.1% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P < 0.0001). Treatment with the selective COX

  20. New carboxamide derivatives bearing benzenesulphonamide as a selective COX-II inhibitor: Design, synthesis and structure-activity relationship

    PubMed Central

    Okoro, Uchechukwu Chris; Ahmad, Hilal

    2017-01-01

    Sixteen new carboxamide derivatives bearing substituted benzenesulphonamide moiety (7a-p) were synthesized by boric acid mediated amidation of appropriate benzenesulphonamide with 2-amino-4-picoline and tested for anti-inflammatory activity. One compound 7c showed more potent anti-inflammatory activity than celecoxib at 3 h in carrageenan-induced rat paw edema bioassay. Compounds 7g and 7k also showed good anti-inflammatory activity comparable to celecoxib. Compound 7c appeared selectivity index (COX-2/COX-1) better than celecoxib. Compound 7k appeared selectivity index (COX-2/COX-1) a little higher than the half of celecoxib while compound 7g is non-selective for COX-2. The LD50 of compounds 7c, 7g and 7k were comparable to celecoxib. PMID:28922386

  1. COX-1 vs. COX-2 as a determinant of basal tone in the internal anal sphincter

    PubMed Central

    de Godoy, Márcio A. F.; Rattan, Neeru; Rattan, Satish

    2009-01-01

    Prostanoids, produced endogenously via cyclooxygenases (COXs), have been implicated in the sustained contraction of different smooth muscles. The two major types of COXs are COX-1 and COX-2. The COX subtype involved in the basal state of the internal anal sphincter (IAS) smooth muscle tone is not known. To identify the COX subtype, we examined the effect of COX-1- and COX-2-selective inhibitors, SC-560 and rofecoxib, respectively, on basal tone in the rat IAS. We also determined the effect of selective deletion of COX-1 and COX-2 genes (COX-1−/− and COX-2−/− mice) on basal tone in murine IAS. Our data show that SC-560 causes significantly more efficacious and potent concentration-dependent decreases in IAS tone than rofecoxib. In support of these data, significantly higher levels of COX-1 than COX-2 mRNA were found in the IAS. In addition, higher levels of COX-1 mRNA and protein were expressed in rat IAS than rectal smooth muscle. In wild-type mice, IAS tone was decreased 41.4 ± 3.4% (mean ± SE) by SC-560 (1 × 10−5 M) and 5.4 ± 2.2% by rofecoxib (P < 0.05, n = 5). Basal tone was 0.172 ± 0.021 mN//mg in the IAS from wild-type mice and significantly less (0.080 ± 0.015 mN/mg) in the IAS from COX-1−/− mice (P < 0.05, n = 5). However, basal tone in COX-2−/− mice was not significantly different from that in wild-type mice. We conclude that COX-1-related products contribute significantly to IAS tone. PMID:19056763

  2. Acute effects of aceclofenac, COX-2 inhibitor, on penicillin-induced epileptiform activity.

    PubMed

    Taşkıran, Mehmet; Taşdemir, Abdulkadir; Ayyıldız, Nusret

    2017-04-01

    The effects of COX-2 inhibitors on seizure activity are controversial. The aim of the current study was to determine the post-treatment effect of aceclofenac on penicillin-induced experimental epilepsy. Male Wistar rats were used in all experiments (n=18). The seizure activity was triggered by penicillin (i.c.). Aceclofenac was injected intraperitoneally at doses of 10mg/kg and 20mg/kg. Intraperitoneal administration of 10 and 20mg/kg aceclofenac doses, exhibited proconvulsant properties on seizure activity on rats. The mean spike frequency and amplitude of aceclofenac 10mg/kg were 41.89±2.12 spike/min and 0.619±0.094mV, respectively. The mean spike frequency and amplitude of aceclofenac 20mg/kg were 35.26±2.72 spike/min and 0.843±0.089mV, respectively. The results indicated that not all of the COX-2 inhibitors may have anticonvulsant or proconvulsant features on patients with epilepsy susceptibility and must be used with great care. It was also suggested that not only cyclooxygenase metabolic pathway but also lipoxygenase pathway should be considered together in further detailed studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Structure Based Library Design (SBLD) for new 1,4-dihydropyrimidine scaffold as simultaneous COX-1/COX-2 and 5-LOX inhibitors.

    PubMed

    Lokwani, Deepak; Azad, Rajaram; Sarkate, Aniket; Reddanna, Pallu; Shinde, Devanand

    2015-08-01

    The various scaffolds containing 1,4-dihydropyrimidine ring were designed by considering the environment of the active site of COX-1/COX-2 and 5-LOX enzymes. The structure-based library design approach, including the focused library design (Virtual Combinatorial Library Design) and virtual screening was used to select the 1,4-dihydropyrimidine scaffold for simultaneous inhibition of both enzyme pathways (COX-1/COX-2 and 5-LOX). The virtual library on each 1,4-dihydropyrimidine scaffold was enumerated in two alternative ways. In first way, the chemical reagents at R groups were filtered by docking of scaffold with single position substitution, that is, only at R1, or R2, or R3, … Rn on COX-2 enzyme using Glide XP docking mode. The structures that do not dock well were removed and the library was enumerated with filtered chemical reagents. In second alternative way, the single position docking stage was bypassed, and the entire library was enumerated using all chemical reagents by docking on the COX-2 enzyme. The entire library of approximately 15,629 compounds obtained from both ways after screening for drug like properties, were further screened for their binding affinity against COX-1 and 5-LOX enzymes using Virtual Screening Workflow. Finally, 142 hits were obtained and divided into two groups based on their binding affinity for COX-1/COX-2 and for both enzyme pathways (COX-1/COX-2 and 5-LOX). The ten molecules were selected, synthesized and evaluated for their COX-1, COX-2 and 5-LOX inhibiting activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Molecular docking, molecular modeling, and molecular dynamics studies of azaisoflavone as dual COX-2 inhibitors and TP receptor antagonists.

    PubMed

    Hadianawala, Murtuza; Mahapatra, Amarjyoti Das; Yadav, Jitender K; Datta, Bhaskar

    2018-02-26

    Designed multi-target ligand (DML) is an emerging strategy for the development of new drugs and involves the engagement of multiple targets with the same moiety. In the context of NSAIDs it has been suggested that targeting the thromboxane prostanoid (TP) receptor along with cyclooxygenase-2 (COX-2) may help to overcome cardiovascular (CVS) complications associated with COXIBs. In the present work, azaisoflavones were studied for their COX-2 and TP receptor binding activities using structure based drug design (SBDD) techniques. Flavonoids were selected as a starting point based on their known COX-2 inhibitory and TP receptor antagonist activity. Iterative design and docking studies resulted in the evolution of a new class scaffold replacing the benzopyran-4-one ring of flavonoids with quinolin-4-one. The docking and binding parameters of these new compounds are found to be promising in comparison to those of selective COX-2 inhibitors, such as SC-558 and celecoxib. Owing to the lack of structural information, a model for the TP receptor was generated using a threading base alignment method with loop optimization performed using an ab initio method. The model generated was validated against known antagonists for TP receptor using docking/MMGBSA. Finally, the molecules that were designed for selective COX-2 inhibition were docked into the active site of the TP receptor. Iterative structural modifications and docking on these molecules generated a series which displays optimum docking scores and binding interaction for both targets. Molecular dynamics studies on a known TP receptor antagonist and a designed molecule show that both molecules remain in contact with protein throughout the simulation and interact in similar binding modes. Graphical abstract ᅟ.

  5. Efficacy and safety of the first parenteral selective COX-2 inhibitor, parecoxib sodium, in adult patients with postoperative pain.

    PubMed

    Samra, S S; Shah, Ravindra R; Jagtap, S A; Bajaj, Parina; Vyas, Dipak; Ram, S; Kale, Satish; Vijayakrishnan, Mala; Neelakandan, R S; Lall, A D; Jain, M M; Naikawadi, Akram A; Kadam, G S; Dongre, Neelesh; Ballary, Chetna; Desai, Anish

    2003-07-01

    Parecoxib, a prodrug of valdecoxib, a selective COX-2 inhibitor, has been recently introduced for the treatment of moderate to severe postoperative pain. This prospective, open, multicentric study enrolled 260 patients undergoing orthopaedic, gynaecological, dental and general surgery. Postoperatively, patients were treated with parecoxib, 40 mg IM/IV. There was a statistically significant decrease in the mean pain intensity score (p<0.05). At the end of 24 hours, 89.6% of total cases had a very good to total relief of pain. The mean duration of analgesia was 19.26 hours and mean time of onset of analgesia was 16.25 minutes ranging from 11-20 minutes. The laboratory values were within normal limits. The drug was well tolerated. There was no report of any hypersensitivity reaction. This study suggests that parecoxib, in a dose of 40 mg IM/IV, is an effective and safe option for the management of postoperative pain.

  6. Anti-inflammatory, cyclooxygenase (COX)-2, COX-1 inhibitory, and free radical scavenging effects of Rumex nepalensis.

    PubMed

    Gautam, Raju; Karkhile, Kailas V; Bhutani, Kamlesh K; Jachak, Sanjay M

    2010-10-01

    Evaluation of the topical anti-inflammatory activity of chloroform and ethyl acetate extracts of RUMEX NEPALENSIS roots in a TPA-induced acute inflammation mouse model demonstrated a significant reduction in ear edema. The extracts were further tested on purified enzymes for COX-1 and COX-2 inhibition to elucidate their mechanism of action, and a strong inhibition was observed. Six anthraquinones and two naphthalene derivatives were isolated from the ethyl acetate extract. Among the isolated compounds, emodin was found to be a potent inhibitor with slight selectivity towards COX-2, and nepodin exhibited selectivity towards COX-1. Emodin, endocrocin, and nepodin also exhibited significant topical anti-inflammatory activity in mice. Interestingly, nepodin showed better radical scavenging activity than trolox and ascorbic acid against DPPH and ABTS radicals. The strong radical scavenging activity of chloroform and ethyl acetate extracts could be explained by the presence of nepodin as well as by the high phenolic content of the ethyl acetate extract. Thus, the anti-inflammatory effect of R. NEPALENSIS roots was assumed to be mediated through COX inhibition by anthraquinones and naphthalene derivatives and through the radical scavenging activities of naphthalene derivatives. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis.

    PubMed

    Benish, Marganit; Bartal, Inbal; Goldfarb, Yael; Levi, Ben; Avraham, Roi; Raz, Amiram; Ben-Eliyahu, Shamgar

    2008-07-01

    COX inhibitors and beta-blockers were recently suggested to reduce cancer progression through inhibition of tumor proliferation and growth factor secretion, induction of tumor apoptosis, and prevention of cellular immune suppression during the critical perioperative period. Here we evaluated the perioperative impact of clinically applicable drugs from these categories in the context of surgery, studying natural killer (NK) cell activity and resistance to experimental metastases. F344 rats were treated with COX-1 inhibitors (SC560), COX-2 inhibitors (indomethacin, etodolac, or celecoxib), a beta-blocker (propranolol), or a combination of a COX-2 inhibitor and a beta-blocker (etodolac and propranolol). Rats underwent laparotomy, and were inoculated intravenously with syngeneic MADB106 tumor cells for the assessment of lung tumor retention (LTR). Additionally, the impact of these drug regimens on postoperative levels of NK cytotoxicity was studied in peripheral blood and marginating-pulmonary leukocytes. Surgery increased MADB106 LTR. COX-2 inhibition, but not COX-1 inhibition, reduced postoperative LTR. Etodolac and propranolol both attenuated the deleterious impact of surgery, and their combined use abolished it. Surgery decreased NK cytotoxicity per NK cell in both immune compartments, and only the combination of etodolac and propranolol significantly attenuated these effects. Lastly, the initiation of drug treatment three days prior to surgery yielded the same beneficial effects as a single pre-operative administration, but, as discussed, prolonged treatment may be more advantageous clinically. Excess prostaglandin and catecholamine release contributes to postoperative immune-suppression. Treatment combining perioperative COX-2 inhibition and beta-blockade is practical in operated cancer patients, and our study suggests potential immunological and clinical benefits.

  8. IL-1β Stimulates COX-2 Dependent PGE2 Synthesis and CGRP Release in Rat Trigeminal Ganglia Cells

    PubMed Central

    Neeb, Lars; Hellen, Peter; Boehnke, Carsten; Hoffmann, Jan; Schuh-Hofer, Sigrid; Dirnagl, Ulrich; Reuter, Uwe

    2011-01-01

    Objective Pro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified. Methods and Results 1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE2) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE2 and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect. Conclusion We identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE2 (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The

  9. Inhibition of untransformed prostaglandin H(2) production and stretch-induced contraction of rabbit pulmonary arteries by indoxam, a selective secretory phospholipase A(2) inhibitor.

    PubMed

    Tanabe, Yoshiyuki; Saito, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Hirose, Masamichi; Nakayama, Koichi

    2011-01-01

    Involvement of secretory phospholipase A(2) (sPLA(2)) in the stretch-induced production of untransformed prostaglandin H(2) (PGH(2)) in the endothelium of rabbit pulmonary arteries was investigated. The stretch-induced contraction was significantly inhibited by indoxam, a selective inhibitor for sPLA(2), and NS-398, a selective inhibitor for cyclooxygenase-2 (COX-2). Indoxam inhibited the RGD-sensitive-integrin-independent production of untransformed PGH(2), but did not affect the RGD-sensitive-integrin-dependent production of thromboxane A(2) (TXA(2)). These results suggest that the stretch-induced contraction and untransformed PGH(2) production was mediated by sPLA(2)-COX-2 pathway, making it a new possible target for pharmacological intervention of pulmonary artery contractility.

  10. Prescription channeling of COX-2 inhibitors and traditional nonselective nonsteroidal anti-inflammatory drugs: a population-based case-control study.

    PubMed

    Moride, Yola; Ducruet, Thierry; Boivin, Jean-François; Moore, Nicholas; Perreault, Sylvie; Zhao, Sean

    2005-01-01

    This pharmacoepidemiologic study was conducted to determine whether risk factors for upper gastrointestinal bleeding influenced the prescription of cyclo-oxygenase (COX)-2 inhibitors and traditional nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) at the time when COX-2 inhibitors were first included in the formulary of reimbursed medications. A population-based case-control study was conducted in which the prevalence of risk factors and the medical histories of patients prescribed COX-2 inhibitors and traditional nonselective NSAIDs were compared. The study population consisted of a random sample of members of the Quebec drug plan (age 18 years or older) who received at least one dispensation of celecoxib (n = 42,422; cases), rofecoxib (n = 25,674; cases), or traditional nonselective NSAIDs (n = 12,418; controls) during the year 2000. All study data were obtained from the Quebec health care databases. Adjusting for income level, Chronic Disease Score, prior use of low-dose acetylsalicylic acid, acetaminophen, antidepressants, benzodiazepines, prescriber specialty, and time period, the following factors were significantly associated with the prescription of COX-2 inhibitors: age 75 years or older (odds ratio [OR] 4.22, 95% confidence interval [CI] 3.95-4.51), age 55-74 years (OR 3.23, 95% CI 3.06-3.40), female sex (OR 1.52, 95% CI 1.45-1.58), prior diagnosis of gastropathy (OR 1.21, 95% CI 1.08-1.36) and prior dispensation of gastroprotective agents (OR 1.57, 95% CI 1.47-1.67). Patients who received a traditional nonselective NSAID recently were more likely to switch to a coxib, especially first-time users (OR 2.17, 95% CI 1.93-2.43). Associations were significantly greater for celecoxib than rofecoxib for age, chronic NSAID use, and last NSAID use between 1 and 3 months before the index date. At the time of introduction of COX-2 inhibitors into the formulary, prescription channeling could confound risk comparisons across products.

  11. Effect of selective versus non-selective cyclooxygenase inhibitors on ischemia-reperfusion-induced hepatic injury in rats.

    PubMed

    Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M

    2015-08-01

    Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Identification of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidinyl] amines and ethers as potent and selective cyclooxygenase-2 inhibitors.

    PubMed

    Swarbrick, Martin E; Beswick, Paul J; Gleave, Robert J; Green, Richard H; Bingham, Sharon; Bountra, Chas; Carter, Malcolm C; Chambers, Laura J; Chessell, Iain P; Clayton, Nick M; Collins, Sue D; Corfield, John A; Hartley, C David; Kleanthous, Savvas; Lambeth, Paul F; Lucas, Fiona S; Mathews, Neil; Naylor, Alan; Page, Lee W; Payne, Jeremy J; Pegg, Neil A; Price, Helen S; Skidmore, John; Stevens, Alexander J; Stocker, Richard; Stratton, Sharon C; Stuart, Alastair J; Wiseman, Joanne O

    2009-08-01

    A novel series of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidine-based cyclooxygenase-2 (COX-2) inhibitors, which have a different arrangement of substituents compared to the more common 1,2-diarylheterocycle based molecules, have been discovered. For example, 2-(butyloxy)-4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)pyrimidine (47), a member of the 2-pyrimidinyl ether series, has been shown to be a potent and selective inhibitor with a favourable pharmacokinetic profile, high brain penetration and good efficacy in rat models of hypersensitivity.

  13. Celecoxib: a potent cyclooxygenase-2 inhibitor in cancer prevention.

    PubMed

    Kismet, Kemal; Akay, M Turan; Abbasoglu, Osman; Ercan, Aygün

    2004-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used therapeutic agents in the treatment of pain, inflammation and fever. They may also have a role in the management of cancer prevention, Alzheimer's disease and prophylaxis against cardiovascular disease. These drugs act primarily by inhibiting cyclooxygenase enzyme, which has two isoforms, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Selective COX-2 inhibitors provide potent anti-inflammatory and analgesic effects without the side effects of gastric and renal toxicity and inhibition of platelet function. Celecoxib is a potent COX-2 inhibitor being developed for the treatment of rheumatoid arthritis and osteoarthritis. Chemoprevention is the use of pharmacological or natural agents to prevent, suppress, interrupt or reverse the process of carcinogenesis. For this purpose, celecoxib is being used for different cancer types. The effects of NSAIDs on tumor growth remain unclear, but are most likely to be multifocal. In this article, we reviewed COX-2 selectivity, the pharmacological properties of celecoxib, the use of celecoxib for cancer prevention and the mechanisms of chemoprevention.

  14. Risk Factors for Upper Gastrointestinal Bleeding in Patients Taking Selective COX-2 Inhibitors: A Nationwide Population-Based Cohort Study.

    PubMed

    Lin, Xi-Hsuan; Young, Shih-Hao; Luo, Jiing-Chyuan; Peng, Yen-Ling; Chen, Ping-Hsien; Lin, Chung-Chi; Chen, Wei-Ming; Hou, Ming-Chih; Lee, Fa-Yauh

    2018-02-01

    Cyclooxygenase-2 inhibitors (coxibs) are associated with less upper gastrointestinal bleeding (UGIB) than traditional nonsteroidal anti-inflammatory drugs (tNSAIDs). However, they also increase the risk of UGIB in high-risk patients. We aimed to identify the risk factors of UGIB in coxibs users. Retrospective cohort study. 2000-2010 National Health Insurance Research Database of Taiwan. Patients taking coxibs as the study group and patients not taking any coxibs as controls. After age, gender, and comorbidity matching by propensity score, 12,145 coxibs users and 12,145 matched controls were extracted for analysis. The primary end point was the occurrence of UGIB. Cox multivariate proportional hazard regression models were used to determine the risk factors for UGIB among all the enrollees and coxibs users. During a mean follow-up of three years, coxibs users had significantly higher incidence of UGIB than matched controls (P < 0.001, log-rank test). Cox regression analysis showed that coxibs increased risk of UGIB in all participants (hazard ratio = 1.37, 95% confidence interval = 1.19-1.55, P < 0.001). Independent risk factors for UGIB among coxibs users were age, male gender, diabetes, chronic renal disease, cirrhosis, history of peptic ulcer disease, PU bleeding (PUB), Helicobacter pylori (H. pylori) infection, and concomitant use of tNSAIDs, acetylsalicylic acid, or thienopyridines. Among coxibs users, H. pylori infection and history of PUB were especially important risk factors for UGIB. Further studies are needed to determine whether proton pump inhibitors might play a protective role in these at-risk patients. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  15. Cyclooxygenase-2 inhibitors: promise or peril?

    PubMed Central

    Mengle-Gaw, Laurel J; Schwartz, Benjamin D

    2002-01-01

    The discovery of two isoforms of the cyclooxygenase enzyme, COX-1 and COX-2, and the development of COX-2-specific inhibitors as anti-inflammatories and analgesics have offered great promise that the therapeutic benefits of NSAIDs could be optimized through inhibition of COX-2, while minimizing their adverse side effect profile associated with inhibition of COX-1. While COX-2 specific inhibitors have proven to be efficacious in a variety of inflammatory conditions, exposure of large numbers of patients to these drugs in postmarketing studies have uncovered potential safety concerns that raise questions about the benefit/risk ratio of COX-2-specific NSAIDs compared to conventional NSAIDs. This article reviews the efficacy and safety profiles of COX-2-specific inhibitors, comparing them with conventional NSDAIDs. PMID:12467519

  16. A selective cyclooxygenase-2 inhibitor (Etodolac) prevents spontaneous biliary tumorigenesis in a hamster bilioenterostomy model.

    PubMed

    Kitasato, Amane; Kuroki, Tamotsu; Adachi, Tomohiko; Ono, Shinichiro; Tanaka, Takayuki; Tsuneoka, Noritsugu; Hirabaru, Masataka; Takatsuki, Mitsuhisa; Eguchi, Susumu

    2014-01-01

    Secondary biliary carcinomas are associated with persistent reflux cholangitis after bilioenterostomy. Cyclooxygenase-2 (COX-2) has been a target for cancer prevention. The aim of this study was to evaluate the chemopreventive efficacy of long-term treatment with a selective COX-2 inhibitor medication during the natural course after bilioenterostomy without chemical induction. Syrian golden hamsters which underwent choledochojejunostomy were randomly divided into two groups: the control group (n = 31), which was fed a normal diet, and the etodolac group (n = 33), which was fed 0.01% etodolac (a selective COX-2 inhibitor) mixed in the meal. The hamsters were killed at the postoperative weeks 20-39, 40-59, 60-79, or 80-100. Biliary neoplasms, cholangitis, proliferating cell nuclear antigen labeling index (PCNA-LI) of the biliary epithelium, and prostaglandin E2 (PGE2) production were evaluated. The occurrence rates of biliary neoplasm were 43.8 and 15.2% in the control and etodolac groups, respectively (p < 0.05). The incidence of biliary neoplasm increased as time progressed in the control group, whereas it remained at a low level throughout the experimental period in the etodolac group. PGE2 products tended to be lower in the etodolac group, and PCNA-LI was significantly lower in the etodolac group (p < 0.01). These results suggest that the medication etodolac suppresses cell proliferation of the biliary epithelium, thereby preventing biliary carcinogenesis. Etodolac is expected to prevent secondary biliary carcinogenesis caused by persistent reflux cholangitis after bilioenterostomy. © 2014 S. Karger AG, Basel.

  17. "Selective" switching from non-selective to selective non-steroidal anti-inflammatory drugs.

    PubMed

    Bennett, Kathleen; Teeling, Mary; Feely, John

    2003-11-01

    Non-steroidal anti inflammatory drugs (NSAIDs) are thought to account for almost 25% of all reported adverse drug reactions, primarily gastrointestinal (GI) toxicity. Selective cyclo-oxygenase-2 (COX-2) inhibitors have been shown to preferentially inhibit activity of the COX-2 enzyme, which maintains anti-inflammatory activity but reduces GI toxicity. To determine the degree of switching from non-selective NSAIDs to COX-2 inhibitors and to examine the factors that were associated with switching. The General Medical Services prescription database (1.2 million people) was examined for NSAID prescriptions from December 1999 through November 2001. All those receiving non-selective NSAIDs and those switching to selective COX-2 inhibitors after at least 1 month on a non-selective NSAID were identified (non-switchers and switchers, respectively). Age, sex, dose of non-selective NSAID and co-prescribing of anti-peptic ulcer (anti-PU) drugs were considered between switchers and non-switchers, and odds ratios (OR) calculated using logistic regression. The effect of chronic use (> or =3 months prescription of a non-selective NSAID during the study period) on switching was also evaluated. A total of 81,538 of 480,573 patients (17%) initially prescribed non-selective NSAIDs were switched to COX-2 inhibitors during the study. The elderly (65 years or older) were more likely to be switched to a COX-2 inhibitor [OR=1.81, 95% confidence interval (CI) 1.79, 1.84]. Women were also more likely to be switched to COX-2 inhibitor therapy (OR=1.25, 95% CI 1.23, 1.27). Previous but not subsequent prescribing of anti-PU drugs was also associated with switching. Chronic users showed similar switching patterns. Prescribers are more likely to switch older female patients and those with a past history of peptic ulcers from non-selective NSAIDs to COX-2 inhibitors. This suggests that doctors take risk factors into consideration when prescribing NSAIDs. The relatively low rate of switching may

  18. Drug repurposing of novel quinoline acetohydrazide derivatives as potent COX-2 inhibitors and anti-cancer agents

    NASA Astrophysics Data System (ADS)

    Manohar, Chelli Sai; Manikandan, A.; Sridhar, P.; Sivakumar, A.; Siva Kumar, B.; Reddy, Sabbasani Rajasekhara

    2018-02-01

    Novel QuinolineAcetohydrazide (QAh) derivatives (9a-n) were firstly evaluated in silico to determine their anti-inflammatory and anti-cancer efficacy via the mechanisms of COX1 and COX2 inhibition, and NF-ĸB, HDAC and Human Topoisomerase I pathways respectively. In the studied set, the trifluoro substituted QAh derivatives: (E)-N'-(4-(trifluoro methyl) benzylidene)-2-(7-fluoro-2-methoxy quinolin-8-yl) acetohydrazid and (E)-N'-(3-(trifluoro methyl) benzylidene)-2-(7-fluoro-2-methoxy quinolin-8-yl) acetohydrazide are determined to be potential leads, indicated from their best docked scores, relative ligand efficiency, and significant structural attributes evaluated by ab initio simulations. The only setback being their partition co-efficient that retrieved a red flag in the evaluation of their Lipinski parameters. The experimental in vitro studies confirmed the significant enhancement as COX-2 inhibitors and appreciable enhancement in MTT assay of breast and skin cancer cell lines. Significantly, trifluoro substituent in the quinoline scaffold can be reasoned to note the excellent binding affinity to all the evaluated drug targets.

  19. Selective cyclooxygenase-2 inhibitor suppresses renal thromboxane production but not proliferative lesions in the MRL/lpr murine model of lupus nephritis.

    PubMed

    Oates, Jim C; Halushka, Perry V; Hutchison, Florence N; Ruiz, Philip; Gilkeson, Gary S

    2011-02-01

    Proliferative lupus nephritis (LN) is marked by increased renal thromboxane (TX) A₂ production. Targeting the TXA₂ receptor or TXA₂ synthase effectively improves renal function in humans with LN and improves glomerular pathology in murine LN. This study was designed to address the following hypotheses: (1) TXA₂ production in the MRL/MpJ-Tnfrsf6(lpr)/J (MRL/lpr) model of proliferative LN is cyclooxygenase (COX)-2 dependent and (2) COX2 inhibitor therapy improves glomerular filtration rate (GFR), proteinuria, markers of innate immune response and glomerular pathology. Twenty female MRL/lpr and 20 BALB/cJ mice were divided into 2 equal treatment groups: (1) SC-236, a moderately selective COX2 inhibitor or (2) vehicle. After treatment from the age of 10 to 20 weeks, the effectiveness of inhibition of TXA₂ was determined by measuring urine TXB₂. Response endpoints measured at the age of 20 weeks were renal function (GFR), proteinuria, urine nitrate + nitrite (NO(x)) and glomerular histopathology. SC-236 therapy reduced surrogate markers of renal TXA₂ production during early, active glomerulonephritis. When this pharmacodynamic endpoint was reached, therapy improved GFR. Parallel reductions in markers of the innate immune response (urine NO(x)) during therapy were observed. However, the beneficial effect of SC-236 therapy on GFR was only transient, and renal histopathology was not improved in late disease. These data demonstrate that renal TXA2 production is COX2 dependent in murine LN and suggest that NO production is directly or indirectly COX2 dependent. However, COX2 inhibitor therapy in this model failed to improve renal pathology, making COX2 inhibition a less attractive approach for treating LN.

  20. Physicochemical, Stress Degradation Evaluation and Pharmacokinetic Study of AZGH102, a New Synthesized COX2 Inhibitors after I.V. and Oral Administration in Male and Female Rats.

    PubMed

    Bahmanof, Hoda; Dadashzadeh, Simin; Zarghi, Afshin; Shafaati, Alireza; Foroutan, Seyed Mohsen

    2017-01-01

    Coxibs such as celecoxib, rofecoxib, and valdecoxib are introduced as selective COX-2 inhibitors to the market. It has been reported that inhibition of COX-2 beside traditional effects of NSAIDs, reduces the risk of colorectal, breast and lung cancers and also slow the progress of Alzheimer's disease. Zarghi et al. reported 8-benzoyl-2-(4-(methylsulfonyl)phenyl)quinoline-4-carboxylic acid (AZGH 102) as a novel compound with similar IC50 to celecoxib besides improved selectivity index (COX-1/COX-2 inhibitory potency) in comparison with celecoxib. In this study, the physicochemical properties of AZGH 102 such as solubility, log P, and stability were evaluated and the pharmacokinetic characteristics of this compound following intravenous (10 mg/Kg), and oral administration (20 mg/Kg), to male and female Wistar rats were investigated. As the data demonstrated, the AZGH 102 classified as lipophil compound and had suitable stability. This derivative absorbs and distributes faster in female than in male. The AUC 0-∞, absolute bioavailability, Cl and Vd were different in both sexes. According to the obtained data, the AZGH 102 has a sex dependent pharmacokinetic in Wistar rats.

  1. Regression of experimentally induced endometriosis with a new selective cyclooxygenase-2 enzyme inhibitor.

    PubMed

    Kilico, Ismail; Kokcu, Arif; Kefeli, Mehmet; Kandemir, Bedri

    2014-01-01

    Cyclooxygenase-2 (COX-2) levels increase in women with endometriosis. COX-2, via increasing prostaglandin E2, contributes to an increase in vascular endothelial growth factor. In this way, COX-2 may contribute to the progression and continuity of endometriosis. We investigated the effect of dexketoprofen trometamol, a new selective COX-2 enzyme inhibitor, on experimentally induced endometriotic cysts. Experimental endometriotic cysts were created in 60 adult female Wistar albino rats. The rats were randomized to 2 equal groups, a control (group Con) and a dexketoprofen (group Dex) group. Six weeks later, cyst volumes were measured as in vivo (volume 1). Following volume 1 measurement, for 4 weeks group Con received 0.1 ml distilled water; group Dex received 0.375 mg dexketoprofen trometamol/0.1 ml distilled water, intramuscularly, twice a day. At the end of administration, the cyst volumes were remeasured (volume 2), and the cysts totally excised and weighed. Glandular (GT) and stromal tissues (ST) and natural killer (NK) cell contents in the cyst wall were scored. NK cell content and volume 1 were not different between the 2 groups. Volume 2, cyst weight, and GT and ST contents in group Dex were significantly lower than those in group Con. Dexketoprofen trometamol significantly reduced the development of experimentally induced endometriotic cysts both macroscopically and microscopically.

  2. Staurosporine synergistically potentiates the deoxycholate-mediated induction of COX-2 expression.

    PubMed

    Saeki, Tohru; Inui, Haruka; Fujioka, Saya; Fukuda, Suguru; Nomura, Ayumi; Nakamura, Yasushi; Park, Eun Young; Sato, Kenji; Kanamoto, Ryuhei

    2014-08-01

    Colorectal cancer is a major cause of cancer-related death in western countries, and thus there is an urgent need to elucidate the mechanism of colorectal tumorigenesis. A diet that is rich in fat increases the risk of colorectal tumorigenesis. Bile acids, which are secreted in response to the ingestion of fat, have been shown to increase the risk of colorectal tumors. The expression of cyclooxygenase (COX)-2, an inducible isozyme of cyclooxygenase, is induced by bile acids and correlates with the incidence and progression of cancers. In this study, we investigated the signal transduction pathways involved in the bile-acid-mediated induction of COX-2 expression. We found that staurosporine (sts), a potent protein kinase C (PKC) inhibitor, synergistically potentiated the deoxycholate-mediated induction of COX-2 expression. Sts did not increase the stabilization of COX-2 mRNA. The sts- and deoxycholate-mediated synergistic induction of COX-2 expression was suppressed by a membrane-permeable Ca(2+) chelator, a phosphoinositide 3-kinase inhibitor, a nuclear factor-κB pathway inhibitor, and inhibitors of canonical and stress-inducible mitogen-activated protein kinase pathways. Inhibition was also observed using PKC inhibitors, suggesting the involvement of certain PKC isozymes (η, θ, ι, ζ, or μ). Our results indicate that sts exerts its potentiating effects via the phosphorylation of p38. However, the effects of anisomycin did not mimic those of sts, indicating that although p38 activation is required, it does not enhance deoxycholate-induced COX-2 expression. We conclude that staurosporine synergistically enhances deoxycholate-induced COX-2 expression in RCM-1 colon cancer cells. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  3. All-cause mortality of elderly Australian veterans using COX-2 selective or non-selective NSAIDs: a longitudinal study

    PubMed Central

    Kerr, Stephen J; Rowett, Debra S; Sayer, Geoffrey P; Whicker, Susan D; Saltman, Deborah C; Mant, Andrea

    2011-01-01

    AIM To determine hazard ratios for all-cause mortality in elderly Australian veterans taking COX-2 selective and non-selective NSAIDs. METHODS Patient cohorts were constructed from claims databases (1997 to 2007) for veterans and dependants with full treatment entitlement irrespective of military service. Patients were grouped by initial exposure: celecoxib, rofecoxib, meloxicam, diclofenac, non-selective NSAID. A reference group was constructed of patients receiving glaucoma/hypothyroid medications and none of the study medications. Univariate and multivariate analyses were performed using Cox proportional hazards regression models. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated for each exposure group against each of the reference group. The final model was adjusted for age, gender and co-prescription as a surrogate for cardiovascular risk. Patients were censored if the gap in supply of study prescription exceeded 30 days or if another study medication was initiated. The outcome measure in all analyses was death. RESULTS Hazard ratios and 95% CIs, adjusted for age, gender and cardiovascular risk, for each group relative to the reference group were: celecoxib 1.39 (1.25, 1.55), diclofenac 1.44 (1.28, 1.62), meloxicam 1.49 (1.25, 1.78), rofecoxib 1.58 (1.39, 1.79), non-selective NSAIDs 1.76 (1.59, 1.94). CONCLUSIONS In this large cohort of Australian veterans exposed to COX-2 selective and non-selective NSAIDs, there was a significant increased mortality risk for those exposed to either COX-2-selective or non-selective NSAIDs relative to those exposed to unrelated (glaucoma/hypothyroid) medications. PMID:21276041

  4. Endoplasmic reticulum stress (ER-stress) by 2-deoxy-D-glucose (2DG) reduces cyclooxygenase-2 (COX-2) expression and N-glycosylation and induces a loss of COX-2 activity via a Src kinase-dependent pathway in rabbit articular chondrocytes.

    PubMed

    Yu, Seon-Mi; Kim, Song-Ja

    2010-11-30

    Endoplasmic reticulum (ER) stress regulates a wide range of cellular responses including apoptosis, proliferation, inflammation, and differentiation in mammalian cells. In this study, we observed the role of 2-deoxy-D-glucose (2DG) on inflammation of chondrocytes. 2DG is well known as an inducer of ER stress, via inhibition of glycolysis and glycosylation. Treatment of 2DG in chondrocytes considerably induced ER stress in a dose- and time-dependent manner, which was demonstrated by a reduction of glucose regulated protein of 94 kDa (grp94), an ER stress-inducible protein, as determined by a Western blot analysis. In addition, induction of ER stress by 2DG led to the expression of COX-2 protein with an apparent molecular mass of 66-70kDa as compared with the normally expressed 72-74 kDa protein. The suppression of ER stress with salubrinal (Salub), a selective inhibitor of eif2-alpha dephosphorylation, successfully prevented grp94 induction and efficiently recovered 2DG- modified COX-2 molecular mass and COX-2 activity might be associated with COX-2 N-glycosylation. Also, treatment of 2DG increased phosphorylation of Src in chondrocytes. The inhibition of the Src signaling pathway with PP2 (Src tyrosine kinase inhibitor) suppressed grp94 expression and restored COX-2 expression, N-glycosylation, and PGE2 production, as determined by a Western blot analysis and PGE2 assay. Taken together, our results indicate that the ER stress induced by 2DG results in a decrease of the transcription level, the molecular mass, and the activity of COX-2 in rabbit articular chondrocytes via a Src kinase-dependent pathway.

  5. Contribution of vasoactive eicosanoids and nitric oxide production to the effect of selective cyclooxygenase-2 inhibitor, NS-398, on endotoxin-induced hypotension in rats.

    PubMed

    Tunctan, Bahar; Korkmaz, Belma; Cuez, Tuba; Kemal Buharalioglu, C; Sahan-Firat, Seyhan; Falck, John; Malik, Kafait U

    2010-11-01

    Our previous studies with the use of non-selective cyclooxygenase (COX) inhibitor, indomethacin, demonstrated that prostanoids produced during endotoxaemia increase inducible nitric oxide synthase (iNOS) protein expression and nitric oxide synthesis, and decrease cyctochrome P450 (CYP) 4A1 protein expression and CYP 4A activity. The results suggest that dual inhibition of iNOS and COX by indomethacin restores blood pressure presumably due to increased production of 20-hydroxyeicosatetraenoic acid (20-HETE) derived from CYP 4A in endotoxaemic rats. The present study examined whether increased levels of vasoconstrictor eicosanoids, 20-HETE, prostaglandin F(2α) (PGF(2α) )and thromboxane A(2) (TxA(2) ), would contribute to the effect of selective COX-2 inhibition to prevent endotoxin (ET)-induced fall in blood pressure associated with an increase in the production of vasodilator prostanoids, prostaglandin I(2) (PGI(2) ) and prostaglandin E(2) (PGE(2) ) and nitric oxide synthesis. Mean arterial blood pressure fell by 31 mmHg and heart rate (HR) rose by 90 beats/min. in male Wistar rats treated with ET (10 mg/kg, i.p.). The fall in mean arterial pressure and increase in HR were associated with increased levels of 6-keto-prostaglandin F(1α) (6-keto-PGF(1α) ), PGE(2) , TxB(2) , and nitrite in the serum, kidney, heart, thoracic aorta and/or superior mesenteric artery. Systemic and renal 20-HETE and PGF(2α) levels were also decreased in endotoxaemic rats. These effects of ET were prevented by a selective COX-2 inhibitor, N-(2-cyclohexyloxy-4-nitrophenyl)methansulphonamide (10 mg/kg, i.p.), given 1 hr after injection of ET. These data suggest that an increase in 20-HETE and PGF(2α) levels associated with decreased production of PGI(2) , PGE(2) , and TxA(2) , and nitric oxide synthesis contributes to the effect of selective COX-2 inhibitor to prevent the hypotension during rat endotoxaemia. © 2010 The Authors. Basic & Clinical Pharmacology & Toxicology © 2010 Nordic

  6. A regional audit of the use of COX-2 selective non-steroidal anti-inflammatory drugs (NSAIDs) in rheumatology clinics in the West Midlands, in relation to NICE guidelines.

    PubMed

    Price-Forbes, A N; Callaghan, R; Allen, M E; Rowe, I F

    2005-07-01

    Whilst all non-steroidal anti-inflammatory drugs (NSAIDs) can cause adverse gastrointestinal events, COX-2-selective inhibitors (COX-2) may have improved gastrointestinal safety compared with non-selective NSAIDs (NSNSAIDs). In 2001, the National Institute for Clinical Excellence (NICE) published guidance on the use of the COX-2 agents celecoxib, rofecoxib, meloxicam and etodolac for rheumatoid arthritis (RA) and osteoarthritis (OA). This study aimed to audit the appropriateness of NSAID use in relation to NICE guidance in rheumatology out-patients. Questionnaires were completed for all patients attending clinics in 18 rheumatology units in the West Midlands over a 2-week period. Data collected included patient demographics, NSAID type, indications, duration of use (> or =3 months was considered prolonged), and concomitant prescription of corticosteroids, warfarin and gastroprotective agents. Data were collected on 2846 patients; 1164 (41%) were taking NSAIDs (791 NSNSAIDs, 373 COX-2). Of the 1164 NSAID users, 753 (65%) had a diagnosis of RA or OA (483 NSNSAIDs, 270 COX-2). Overall, 37% of NSAID prescriptions were appropriate. Of the NSNSAID users, 92% had at least one risk factor for adverse gastrointestinal events and were therefore inappropriately treated. Prolonged use (in 89%) and age > or =65 yr (in 23%) were the most frequent risk factors identified. Of the COX-2 users, 97% had one or more risk factors and were appropriately treated. Analysis of the RA/OA subgroup revealed similar findings. Thirty-six per cent were taking NSAIDs appropriately; 97% of NSNSAID use was inappropriate and 97% of COX-2 use was appropriate treatment. In the whole cohort, gastroprotective agents were used in 26% of NSNSAID users, 56% of gastroprotective agents being proton pump inhibitors. Ninety-two per cent of patients attending rheumatology clinics who were taking NSNSAIDs should have been prescribed a COX-2-selective agent in relation to NICE guidance. Duration of use and age

  7. Structure-based design, synthesis, molecular docking study and biological evaluation of 1,2,4-triazine derivatives acting as COX/15-LOX inhibitors with anti-oxidant activities.

    PubMed

    Khoshneviszadeh, Mehdi; Shahraki, Omolbanin; Khoshneviszadeh, Mahsima; Foroumadi, Alireza; Firuzi, Omidreza; Edraki, Najmeh; Nadri, Hamid; Moradi, Alireza; Shafiee, Abbas; Miri, Ramin

    2016-12-01

    A set of 1,2,4-triazine derivatives were designed as cyclooxygenase-2 (COX-2) inhibitors. These compounds were synthesized and screened for inhibition of cyclooxygenases (COX-1 and COX-2) based on a cellular assay using human whole blood (HWB) and lipoxygenase (LOX-15) that are key enzymes in inflammation. The results showed that 3-(2-(benzo[d][1,3]dioxol-5-ylmethylene)hydrazinyl)-5,6-bis(4-methoxyphenyl)-1,2,4-triazine (G11) was identified as the most potent COX-2 inhibitor (78%) relative to COX-1 (50%). Ferric reducing anti-oxidant power (FRAP) assay revealed that compound G10 possesses the highest anti-oxidant activity. The compound G3 with IC50 value of 124 μM was the most potent compound in LOX inhibitory assay. Molecular docking was performed and a good agreement was observed between computational and experimental results.

  8. Identification of 2,3-diaryl-pyrazolo[1,5-b]pyridazines as potent and selective cyclooxygenase-2 inhibitors.

    PubMed

    Beswick, Paul; Bingham, Sharon; Bountra, Chas; Brown, Terry; Browning, Kerry; Campbell, Ian; Chessell, Iain; Clayton, Nick; Collins, Sue; Corfield, John; Guntrip, Stephen; Haslam, Claudine; Lambeth, Paul; Lucas, Fiona; Mathews, Neil; Murkit, Graham; Naylor, Alan; Pegg, Neil; Pickup, Elizabeth; Player, Hazel; Price, Helen; Stevens, Alexander; Stratton, Sharon; Wiseman, Joanne

    2004-11-01

    GW406381 (8), currently undergoing clinical evaluation for the treatment of inflammatory pain is a member of a novel series of 2,3-diaryl-pyrazolo[1,5-b]pyridazine based cyclooxygenase-2 (COX-2) inhibitors, which have been shown to be highly potent and selective. Several examples of the series, in addition to possessing favourable pharmacokinetic profiles and analgesic activity in vivo, have also demonstrated relatively high brain penetration in the rat compared with the clinically available compounds, which may ultimately prove beneficial in the treatment of pain.

  9. The effect of a single dose of preemptive pregabalin administered with COX-2 inhibitor: a trial in total knee arthroplasty.

    PubMed

    Lee, Jin Kyu; Chung, Kyu-Sung; Choi, Choong Hyeok

    2015-01-01

    We sought to compare a group (Group L) (n=21) of patients that underwent total knee arthroplasty and received a single preoperative dose of pregabalin combined with a COX-2 inhibitor with a control group (Group C) (n=20) that only received a COX-2 inhibitor in terms of (1) acute postoperative pain intensity, (2) analgesic consumption, and (3) functional recovery. Mean cumulative fentanyl consumption during the first 48 hours was lower in Group L than in Group C (P<0.05). The pain scores at rest were lower in Group L at 6 and 12 hours after surgery (P<0.05). No significant intergroup difference was noted in functional recovery. The addition of pregabalin led to an additive reduction in early postoperative pain and analgesic consumption. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: The second clinical candidate having a shorter and favorable human half-life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jane L.; Limburg, David; Graneto, Matthew J.

    2012-05-29

    In this Letter, we provide the structure-activity relationships, optimization of design, testing criteria, and human half-life data for a series of selective COX-2 inhibitors. During the course of our structure-based drug design efforts, we discovered two distinct binding modes within the COX-2 active site for differently substituted members of this class. The challenge of a undesirably long human half-life for the first clinical candidate 1t{sub 1/2} = 360 h was addressed by multiple strategies, leading to the discovery of 29b-(S) (SC-75416) with t{sub 1/2} = 34 h.

  11. Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis.

    PubMed

    Takeda, Shuso; Misawa, Koichiro; Yamamoto, Ikuo; Watanabe, Kazuhito

    2008-09-01

    In the present study it was revealed that cannabidiolic acid (CBDA) selectively inhibited cyclooxygenase (COX)-2 activity with an IC(50) value (50% inhibition concentration) around 2 microM, having 9-fold higher selectivity than COX-1 inhibition. In contrast, Delta(9)-tetrahydrocannabinolic acid (Delta(9)-THCA) was a much less potent inhibitor of COX-2 (IC(50) > 100 microM). Nonsteroidal anti-inflammatory drugs containing a carboxyl group in their chemical structures such as salicylic acid are known to inhibit nonselectively both COX-1 and COX-2. CBDA and Delta(9)-THCA have a salicylic acid moiety in their structures. Thus, the structural requirements for the CBDA-mediated COX-2 inhibition were next studied. There is a structural difference between CBDA and Delta(9)-THCA; phenolic hydroxyl groups of CBDA are freed from the ring formation with the terpene moiety, although Delta(9)-THCA has dibenzopyran ring structure. It was assumed that the whole structure of CBDA is important for COX-2 selective inhibition because beta-resorcylic acid itself did not inhibit COX-2 activity. Methylation of the carboxylic acid moiety of CBDA led to disappearance of COX-2 selectivity. Thus, it was suggested that the carboxylic acid moiety in CBDA is a key determinant for the inhibition. Furthermore, the crude extract of cannabis containing mainly CBDA was shown to have a selective inhibitory effect on COX-2. Taken together, these lines of evidence in this study suggest that naturally occurring CBDA in cannabis is a selective inhibitor for COX-2.

  12. Increased Dietary Sodium Induces COX2 Expression by activating NFκB in Renal Medullary Interstitial Cells

    PubMed Central

    Zhao, Min; Davis, Linda S.; Blackwell, Timothy S.; Yull, Fiona; Breyer, Matthew D.; Hao, Chuan-Ming

    2013-01-01

    High salt diet induces renal medullary COX2 expression. Selective blockade of renal medullary COX2 activity in rats causes salt sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8% NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6J mice. Co-immunofluorescence using a COX2 antibody and antibodies against AQP2, ClC-K, AQP1 and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a 7 fold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of EGFP expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet fed C57Bl/6J mice with selective IκB kinase inhibitor IMD-0354 (8mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary PGE2. These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium. PMID:23900806

  13. Surface plasmon resonance studies and biochemical evaluation of a potent peptide inhibitor against cyclooxygenase-2 as an anti-inflammatory agent.

    PubMed

    Somvanshi, Rishi K; Kumar, Ashwini; Kant, Shashi; Gupta, Deepti; Singh, S Bhaskar; Das, Utpal; Srinivasan, Alagiri; Singh, Tej P; Dey, Sharmistha

    2007-09-14

    Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation [D.L. Dewitt, W.L. Smith, Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence, Proc. Natl. Acad. Sci. USA 85 (1988) 1412-1416, 1]. It exists mainly in two isoforms COX-1 and COX-2 [A. Raz, A. Wyche, N. Siegel, P. Needleman, Regulation of fibroblast cyclooxygenase synthesis by interleukin-1, J. Biol. Chem. 263 (1988) 3022-3028, 2]. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) have adverse gastrointestinal side-effects, because they inhibit both isoforms [T.D. Warner, F. Guiliano, I. Vojnovic, A. Bukasa, J.A. Mitchell, J.P. Vane, Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis, Proc. Natl. Acad. Sci. USA 96 (1999) 7563-7568, 3; L.J. Marnett, A.S. Kalgutkar, Cyclooxygenase 2 inhibitors: discovery, selectivity and the future, Trends Pharmacol. Sci. 20 (1999) 465-469, 4; J.R. Vane, NSAIDs, Cox-2 inhibitors, and the gut, Lancet 346 (1995) 1105-1106, 5]. Therefore drugs which selectively inhibit COX-2, known as coxibs were developed. Recent reports on the harmful cardiovascular and renovascular side-effects of the anti-inflammatory drugs have led to the quest for a novel class of COX-2 selective inhibitors. Keeping this in mind, we have used the X-ray crystal structures of the complexes of the COX-1 and COX-2 with the known inhibitors for a rational, structure based approach to design a small peptide, which is potent inhibitor for COX-2. The peptides have been checked experimentally by in-vitro kinetic studies using surface plasmon resonance (SPR) and other biochemical methods. We have identified a tripeptide inhibitor which is a potential lead for a new class of COX-2 inhibitor. The dissociation constant (K(D)) determined for COX-2

  14. The Selective Cyclooxygenase-2 Inhibitor, the Compound 11b Improves Haloperidol Induced Catatonia by Enhancing the Striatum Dopaminergic Neurotransmission

    PubMed Central

    Fathi-Moghaddam, Hadi; Shafiee Ardestani, Mehdi; Saffari, Mostafa; Jabbari Arabzadeh, Ali; Elmi, Mitra

    2010-01-01

    A substantial amount of evidence has proposed an important role for Cyclooxygenase-2 (COX-2) enzyme in brain diseases and affiliate disorders. The purpose of this research was studying the effects of COX-2 selective inhibition on haloperidol-induced catatonia in an animal model of drug overdose and Parkinson’s disease (PD). In this study, the effect of acute and Sub-chronic oral administration of a new selective COX-2 inhibitor, i.e. the compound 11b or 1-(Phenyl)-5-(4-methylsulfonylphenyl)-2-ethylthioimidazole, in a dosage of 2, 4 and 8 mg/kg on haloperidol-induced catatonia was evaluated and compared to the standard drug scopolamine (1 mg/kg) by microanalysis of Striatum dopaminergic neurotransmission. The results showed a very high potency for 11b in improving the catalepsy by enhancing the dopaminergic neurotranmission (p < 0.05). In addition, statistical analysis showed the dose- and time-dependent behavior of the observed protective effect of 11b against the haloperidol-induced catatonia and enhancement of the dopaminergic neurotransmission. These findings are additional pharmacological data that suggest the effectiveness of COX-2 inhibition in treatment of schizophreny-associated rigidity. PMID:24381603

  15. The COX-2 Selective Blocker Etodolac Inhibits TNFα-Induced Apoptosis in Isolated Rabbit Articular Chondrocytes

    PubMed Central

    Kumagai, Kousuke; Kubo, Mitsuhiko; Imai, Shinji; Toyoda, Futoshi; Maeda, Tsutomu; Okumura, Noriaki; Matsuura, Hiroshi; Matsusue, Yoshitaka

    2013-01-01

    Chondrocyte apoptosis contributes to the disruption of cartilage integrity in osteoarthritis (OA). Recently, we reported that activation of volume-sensitive Cl− current (ICl,vol) mediates cell shrinkage, triggering apoptosis in rabbit articular chondrocytes. A cyclooxygenase (COX) blocker is frequently used for the treatment of OA. In the present study, we examined in vitro effects of selective blockers of COX on the TNFα-induced activation of ICl,vol in rabbit chondrocytes using the patch-clamp technique. Exposure of isolated chondrocytes to TNFα resulted in an obvious increase in membrane Cl− conductance. The TNFα-evoked Cl− current exhibited electrophysiological and pharmacological properties similar to those of ICl,vol. Pretreatment of cells with selective COX-2 blocker etodolac markedly inhibited ICl,vol activation by TNFα as well as subsequent apoptotic events such as apoptotic cell volume decrease (AVD) and elevation of caspase-3/7 activity. In contrast, a COX-1 blocker had no effect on the decrease in cell volume or the increase in caspase-3/7 activity induced by TNFα. Thus, the COX-2-selective blocker had an inhibitory effect on TNFα-induced apoptotic events, which suggests that this drug would have efficacy for the treatment of OA. PMID:24084720

  16. Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance?

    PubMed

    Choy, Hak; Milas, Luka

    2003-10-01

    Results of preclinical studies suggesting that the efficacy of molecular therapies is enhanced when they are combined with radiation have generated a surge of clinical trials combining these modalities. We reviewed the literature to identify the rationale and experimental foundation supporting the use of cyclooxygenase-2 (COX-2) inhibitors with standard radiotherapy regimens in current clinical trials. Radiation affects the ability of cells to divide and proliferate and induces the expression of genes involved in signaling pathways that promote cell survival or trigger cell death. Future advances in radiotherapy will hinge on understanding mechanisms by which radiation-induced transcription of genes governs cell death and survival, the selective control of this process, and the optimal approaches to combining this knowledge with existing therapeutic modalities. COX-2 is expressed in all stages of cancer, and in several cancers its overexpression is associated with poor prognosis. Evidence from clinical and preclinical studies indicates that COX-2-derived prostaglandins participate in carcinogenesis, inflammation, immune response suppression, apoptosis inhibition, angiogenesis, and tumor cell invasion and metastasis. Clinical trial results have demonstrated that selective inhibition of COX-2 can alter the development and the progression of cancer. In animal models, selective inhibition of COX-2 activity is associated with the enhanced radiation sensitivity of tumors without appreciably increasing the effects of radiation on normal tissue, and preclinical evidence suggests that the principal mechanism of radiation potentiation through selective COX-2 inhibition is the direct increase in cellular radiation sensitivity and the direct inhibition of tumor neovascularization. Results of current early-phase studies of non-small-cell lung, esophageal, cervical, and brain cancers will determine whether therapies that combine COX-2 inhibitors and radiation will enter

  17. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells.

    PubMed

    He, Wenjuan; Zhang, Min; Zhao, Min; Davis, Linda S; Blackwell, Timothy S; Yull, Fiona; Breyer, Matthew D; Hao, Chuan-Ming

    2014-02-01

    High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.

  18. Carbonic anhydrase inhibition: insight into non-COX-2 pharmacological effect of some coxibs.

    PubMed

    Dogné, Jean-Michel; Thiry, Anne; Supuran, Claudiu T

    2008-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) represent the most commonly used medications for the treatment of pain and inflammation, but numerous well-described adverse drug reactions (ADRs) limit their use. These drugs act via the inhibition of cyclooxygenase (COX) enzyme of which at least two isoforms were described: COX-1 which plays important roles in homeostatic processes such as thrombogenesis and homeostasis of the gastrointestinal tract and kidneys and COX-2 expressed in pathological conditions such as inflammation or cancer proliferation. Selective COX-2 inhibitors or "coxibs" were initially developed as a therapeutic strategy to avoid not only the gastrointestinal but also the renal and cardiovascular side effects of non specific NSAIDs. However, this class of drug did not fulfill all their promises. Indeed, numerous unexpected side effects have limited their use and some of them have been withdrawn or suspended from the market for different safety reasons including cardiovascular, hepatic and skin adverse reactions. For instance, cardiovascular warnings have been applied to the whole class of coxibs and more recently for all classical NSAIDs as well. However, differences in the chemical structures should be taken into consideration in order to discriminate between coxibs and the development of some ADRs of which renal events and hypertension. The aim of this paper is to focus on the differences in chemical structures of all marketed COX-2 inhibitors and their unexpected effects on carbonic anhydrase in order to provide non-COX-2 mechanistic insights into some of the differences observed between coxibs.

  19. COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice

    PubMed Central

    Vardeh, Daniel; Wang, Dairong; Costigan, Michael; Lazarus, Michael; Saper, Clifford B.; Woolf, Clifford J.; FitzGerald, Garret A.; Samad, Tarek A.

    2009-01-01

    A cardinal feature of peripheral inflammation is pain. The most common way of managing inflammatory pain is to use nonsteroidal antiinflammatory agents (NSAIDs) that reduce prostanoid production, for example, selective inhibitors of COX2. Prostaglandins produced after induction of COX2 in immune cells in inflamed tissue contribute both to the inflammation itself and to pain hypersensitivity, acting on peripheral terminals of nociceptors. COX2 is also induced after peripheral inflammation in neurons in the CNS, where it aids in developing a central component of inflammatory pain hypersensitivity by increasing neuronal excitation and reducing inhibition. We engineered mice with conditional deletion of Cox2 in neurons and glial cells to determine the relative contribution of peripheral and central COX2 to inflammatory pain hypersensitivity. In these mice, basal nociceptive pain was unchanged, as was the extent of peripheral inflammation, inflammatory thermal pain hypersensitivity, and fever induced by lipopolysaccharide. By contrast, peripheral inflammation–induced COX2 expression in the spinal cord was reduced, and mechanical hypersensitivity after both peripheral soft tissue and periarticular inflammation was abolished. Mechanical pain is a major symptom of most inflammatory conditions, such as postoperative pain and arthritis, and induction of COX2 in neural cells in the CNS seems to contribute to this. PMID:19127021

  20. COX inhibitors directly alter gene expression: role in cancer prevention?

    PubMed Central

    Wang, Xingya; Baek, Seung Joon; Eling, Thomas

    2016-01-01

    Inflammation is an important contributor to the development and progression of human cancers. Inflammatory lipid metabolites, prostaglandins, formed from arachidonic acid by prostaglandin H synthases commonly called cyclooxygenases (COXs) bind to specific receptors that activate signaling pathways driving the development and progression of tumors. Inhibitors of prostaglandin formation, COX inhibitors, or nonsteroidal anti-inflammatory drugs (NSAIDs) are well documented as agents that inhibit tumor growth and with long-term use prevent tumor development. NSAIDs also alter gene expression independent of COX inhibition and these changes in gene expression also appear to contribute to the anti-tumorigenic activity of these drugs. Many NSAIDs, as illustrated by sulindac sulfide, alter gene expressions by altering the expression or phosphorylation status of the transcription factors specificity protein 1 and early growth response-1 with the balance between these two events resulting in increases or decreases in specific target genes. In this review, we have summarized and discussed the various genes altered by this mechanism after NSAID treatment and how these changes in expression relate to the anti-tumorigenic activity. A major focus of the review is on NSAID-activated gene (NAG-1) or growth differentiation factor 15. This unique member of the TGF-β superfamily is highly induced by NSAIDs and numerous drugs and chemicals with anti-tumorigenic activities. Investigations with a transgenic mouse expressing the human NAG-1 suggest it acts to suppress tumor development in several mouse models of cancer. The biochemistry and biology of NAG-1 were discussed as potential contributor to cancer prevention by COX inhibitors. PMID:22020924

  1. Influence of LOX/COX inhibitors on cell differentiation induced by all-trans retinoic acid in neuroblastoma cell lines.

    PubMed

    Redova, Martina; Chlapek, Petr; Loja, Tomas; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-02-01

    We investigated the possible modulation by LOX/ COX inhibitors of all-trans retinoic acid (ATRA)-induced cell differentiation in two established neuroblastoma cell lines, SH-SY5Y and SK-N-BE(2). Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor of cyclooxygenase-2, were chosen for this study. The effects of the combined treatment with ATRA and LOX/COX inhibitors on neuroblastoma cells were studied using cell morphology assessment, detection of differentiation markers by immunoblotting, measurement of proliferation activity, and cell cycle analysis and apoptosis detection by flow cytometry. The results clearly demonstrated the potential of caffeic acid to enhance ATRA-induced cell differentiation, especially in the SK-N-BE(2) cell line, whereas application of celecoxib alone or with ATRA led predominantly to cytotoxic effects in both cell lines. Moreover, the higher sensitivity of the SK-N-BE(2) cell line to combined treatment with ATRA and LOX/COX inhibitors suggests that cancer stem cells are a main target for this therapeutic approach. Nevertheless, further detailed study of the phenomenon of enhanced cell differentiation by expression profiling is needed.

  2. [COX-2 inhibitors and other non-steroidal anti-inflammatory agents--what is their future?].

    PubMed

    Gøtzsche, Peter C

    2006-05-15

    The story of the development, approval, marketing and use of COX-2 inhibitors is one of failures at all levels. Publications in top medical journals essential for marketing were seriously flawed; many cases of thromboses in trials with rofecoxib were not revealed; trials were not representative for the population of patients; the U.S. FDA did not require the relevant trials; and the marketing was extremely aggressive and misleading. These drugs have likely caused the deaths of thousands of patients. The use of all NSAIDs should be restricted as much as possible. Drug trials should be a public enterprise.

  3. Evidence for a Pro-Proliferative Feedback Loop in Prostate Cancer: The Role of Epac1 and COX-2-Dependent Pathways

    PubMed Central

    Misra, Uma Kant; Pizzo, Salvatore Vincent

    2013-01-01

    Objective In human prostate cancer cells, a selective Epac agonist, 8-CPT-2Me-cAMP, upregulates cell proliferation and survival via activation of Ras-MAPK and PI- 3-kinase-Akt-mTOR signaling cascades. Here we examine the role of inflammatory mediators in Epac1-induced cellular proliferation by determining the expression of the pro-inflammatory markers p-cPLA2, COX-2, and PGE2 in prostate cancer cells treated with 8-CPT-2Me-cAMP. Methods We employed inhibitors of COX-2, mTORC1, and mTORC2 to probe cyclic AMP-dependent pathways in human prostate cancer cells. RNAi targeting Epac1, Raptor, and Rictor was also employed in these studies. Results 8-CPT-2Me-cAMP treatment caused a 22.5-fold increase of p-cPLA2S505, COX-2, and PGE2 levels in human prostate cancer cell lines. Pretreatment of cells with the COX-2 inhibitor SC-58125 or the EP4 antagonist AH-23848, or with an inhibitor of mTORC1 and mTORC2, Torin1, significantly reduced the Epac1-dependent increase of p-cPLA2 and COX-2, p-S6-kinaseT389, and p-AKTS473. In addition, Epac1-induced protein and DNA synthesis were greatly reduced upon pretreatment of cells with either COX-2, EP4, or mTOR inhibitors. Transfection of prostate cancer cells with Epac1 dsRNA, Raptor dsRNA, or Rictor dsRNA profoundly reduced Epac1-dependent increases in p-cPLA2 and COX-2. Conclusion We show that Epac1, a downstream effector of cAMP, functions as a pro-inflammatory modulator in prostate cancer cells and promotes cell proliferation and survival by upregulating Ras-MAPK, and PI 3-kinase-Akt-mTOR signaling. PMID:23646189

  4. Characterization of prostaglandin E2 generation through the cyclooxygenase (COX)-2 pathway in human neutrophils

    PubMed Central

    St-Onge, Mireille; Flamand, Nicolas; Biarc, Jordane; Picard, Serge; Bouchard, Line; Dussault, Andrée-Anne; Laflamme, Cynthia; James, Michael J.; Caughey, Gillian E.; Cleland, Leslie G.; Borgeat, Pierre; Pouliot, Marc

    2010-01-01

    In the present study, we characterized the generation of prostaglandin (PG)E2 in human neutrophils. We found that the Ca2+-dependent type IV cytosolic phospholipase A2 (cPLA2) was pivotally involved in the COX-2-mediated generation of PGE2 in response to a calcium ionophore, as determined by the use of selected PLA2 inhibitors. PGE2 biosynthesis elicited by bacterial-derived peptides or by phagocytic stimuli acting on cell surface receptors also showed to be dependent on cPLA2 activity. We then assessed metabolism of unesterified arachidonic acid (AA), and observed that PGE2 production becomes favored over that of LTB4 with higher AA concentrations. Withdrawal of calcium prevented the generation of PGE2 in response to a calcium ionophore but did not affect the up-regulation of COX-2 or its capacity to convert AA, thus limiting its implication at the level of cPLA2 activation. Of the main eicosanoids produced by neutrophils, only LTB4 was able to up-regulate COX-2 expression. Finally, the only PGE synthase isoform found in neutrophils is microsomal PGE synthase-1; it co-localized with COX-2 and its expression appeared mainly constitutive. These results highlight key differences in regulatory processes of the 5-LO and COX pathways, and enhance our knowledge at several levels in the PGE2 biosynthesis in neutrophils. PMID:17643350

  5. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ

    PubMed Central

    Tsujimoto, Shunsuke; Kishina, Manabu; Koda, Masahiko; Yamamoto, Yasutaka; Tanaka, Kohei; Harada, Yusuke; Yoshida, Akio; Hisatome, Ichiro

    2016-01-01

    Cyclooxygenase (COX)-2 selective inhibitors suppress non-alcoholic fatty liver disease (NAFLD); however, the precise mechanism of action remains unknown. The aim of this study was to examine how the COX-2 selective inhibitor nimesulide suppresses NAFLD in a murine model of high-fat diet (HFD)-induced obesity. Mice were fed either a normal chow diet (NC), an HFD, or HFD plus nimesulide (HFD-nime) for 12 weeks. Body weight, hepatic COX-2 mRNA expression and triglyceride accumulation were significantly increased in the HFD group. Triglyceride accumulation was suppressed in the HFD-nime group. The mRNA expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ) and the natural PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) were significantly increased in the HFD group and significantly suppressed in the HFD-nime group. Glucose metabolism was impaired in the HFD group compared with the NC group, and it was significantly improved in the HFD-nime group. In addition, the plasma insulin levels in the HFD group were increased compared with those in the NC group, and were decreased in the HFD-nime group. These results indicate that HFD-induced NAFLD is mediated by the increased hepatic expression of COX-2. We suggest that the production of 15d-PGJ2, which is mediated by COX-2, induces NAFLD and hepatic insulin resistance by activating PPARγ. Furthermore, the mRNA expression of tissue inhibitor of metalloproteinases-1 (TIMP-1), procollagen-1 and monocyte chemoattractant protein-1 (MCP-1), as well as the number of F4/80-positive hepatic (Kupffer) cells, were significantly increased in the HFD group compared with the NC group, and they were reduced by nimesulide. In conclusion, COX-2 may emerge as a molecular target for preventing the development of NAFLD and insulin resistance in diet-related obesity. PMID:27431935

  6. COX-2 and Prostate Cancer Angiogenesis

    DTIC Science & Technology

    2002-03-01

    papilloma virus -18 ing cell nuclear antigen staining), but induced ap- immortalization of PIN cell areas of radical-pros- optosis (TdT-mediated dUTP...the COX-2 surrounding basal cells (75%).3cA human PIN cell inhibitor had no effect on proliferation (proliferat- line was established by human

  7. Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity.

    PubMed

    Li, Ching-Ju; Chang, Je-Ken; Wang, Gwo-Jaw; Ho, Mei-Ling

    2011-02-01

    Cyclooxygenase-2 (COX-2) is thought to be an inducible enzyme, but increasing reports indicate that COX-2 is constitutively expressed in several organs. The status of COX-2 expression in bone and its physiological role remains undefined. Non-selective non-steroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors, which commonly suppress COX-2 activity, were reported to suppress osteoblast proliferation via Akt/FOXO3a/p27(Kip1) signaling, suggesting that COX-2 may be the key factor of the suppressive effects of NSAIDs on proliferation. Although Akt activation correlates with PTEN deficiency and cell viability, the role of COX-2 on PTEN/Akt regulation remains unclear. In this study, we hypothesized that COX-2 may be constitutively expressed in osteoblasts and regulate PTEN/Akt-related proliferation. We examined the localization and co-expression of COX-2 and p-Akt in normal mouse femurs and in cultured mouse (mOBs) and human osteoblasts (hOBs). Our results showed that osteoblasts adjacent to the trabeculae, periosteum and endosteum in mouse femurs constitutively expressed COX-2, while COX-2 co-expressed with p-Akt in osteoblasts sitting adjacent to trabeculae in vivo, and in mOBs and hOBs in vitro. We further used COX-2 siRNA to test the role of COX-2 in Akt signaling in hOBs; COX-2 silencing significantly inhibited PTEN phosphorylation, enhanced PTEN activity, and suppressed p-Akt level and proliferation. However, replenishment of the COX-2 enzymatic product, PGE2, failed to reverse COX-2-dependent Akt phosphorylation. Furthermore, transfection with recombinant human COX-2 (rhCOX-2) significantly reversed COX-2 siRNA-suppressed PTEN phosphorylation, but this effect was reduced when the enzymatic activity of rhCOX-2 was blocked. This finding indicated that the effect of COX-2 on PTEN/Akt signaling is not related to PGE2 but still dependent on COX-2 enzymatic activity. Conversely, COX-1 silencing did not affect PTEN/Akt signaling. Our findings provide

  8. Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic.

    PubMed Central

    Masferrer, J L; Zweifel, B S; Manning, P T; Hauser, S D; Leahy, K M; Smith, W G; Isakson, P C; Seibert, K

    1994-01-01

    We have examined the role of cyclooxygenase 2 (COX-2) in a model of inflammation in vivo. Carrageenan administration to the subcutaneous rat air pouch induces a rapid inflammatory response characterized by high levels of prostaglandins (PGs) and leukotrienes in the fluid exudate. The time course of the induction of COX-2 mRNA and protein coincided with the production of PGs in the pouch tissue and cellular infiltrate. Carrageenan-induced COX-2 immunoreactivity was localized to macrophages obtained from the fluid exudate as well as to the inner surface layer of cells within the pouch lining. Dexamethasone inhibited both COX-2 expression and PG synthesis in the fluid exudate but failed to inhibit PG synthesis in the stomach. Furthermore, NS-398, a selective COX-2 inhibitor, and indomethacin, a nonselective COX-1/COX-2 inhibitor, blocked proinflammatory PG synthesis in the air pouch. In contrast, only indomethacin blocked gastric PG and, additionally, produced gastric lesions. These results suggest that inhibitors of COX-2 are potent antiinflammatory agents which do not produce the typical side effects (e.g., gastric ulcers) associated with the nonselective, COX-1-directed antiinflammatory drugs. Images PMID:8159730

  9. Isolates of Alpinia officinarum Hance as COX-2 inhibitors: Evidence from anti-inflammatory, antioxidant and molecular docking studies.

    PubMed

    Honmore, Varsha S; Kandhare, Amit D; Kadam, Parag P; Khedkar, Vijay M; Sarkar, Dhiman; Bodhankar, Subhash L; Zanwar, Anand A; Rojatkar, Supada R; Natu, Arun D

    2016-04-01

    compounds have affinity towards COX-2 active site which can further be explored as selective COX-2 inhibitors. The results obtained in this work justify the use of A. officinarum in the treatment of inflammatory disorders like rheumatoid arthritis and inflammatory bowel diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition.

    PubMed

    Binion, D G; Otterson, M F; Rafiee, P

    2008-11-01

    Angiogenesis, the growth of new blood vessels, is a critical homeostatic mechanism which regulates vascular populations in response to physiological requirements and pathophysiological demand, including chronic inflammation and cancer. The importance of angiogenesis in gastrointestinal chronic inflammation and cancer has been defined, as antiangiogenic therapy has demonstrated benefit in models of inflammatory bowel disease and colon cancer treatment. Curcumin is a natural product undergoing evaluation for the treatment of chronic inflammation, including inflammatory bowel disease (IBD). The effect of curcumin on human intestinal angiogenesis is not defined. The antiangiogenic effect of curcumin on in vitro angiogenesis was examined using primary cultures of human intestinal microvascular endothelial cells (HIMECs), stimulated with vascular endothelial growth factor (VEGF). Curcumin inhibited proliferation, cell migration and tube formation in HIMECs induced by VEGF. Activation of HIMECs by VEGF resulted in enhanced expression of cyclo-oxygenase-2 (COX-2) mRNA, protein and prostaglandin E(2) (PGE(2)) production. Pretreatment of HIMECs with 10 microM curcumin as well as 1 microM NS398, a selective inhibitor of COX-2, resulted in inhibition of COX-2 at the mRNA and protein level and PGE(2) production. Similarly COX-2 expression in HIMECs was significantly inhibited by Jun N-terminal kinase (JNK; SP600125) and p38 mitogen-activated protein kinase (MAPK; SB203580) inhibitors and was reduced by p44/42 MAPK inhibitor (PD098059). Taken together, these data demonstrate an important role for COX-2 in the regulation of angiogenesis in HIMECs via MAPKs. Moreover, curcumin inhibits microvascular endothelial cell angiogenesis through inhibition of COX-2 expression and PGE(2) production, suggesting that this natural product possesses antiangiogenic properties, which warrants further investigation as adjuvant treatment of IBD and cancer.

  11. COX-2/PGE2: molecular ambassadors of Kaposi's sarcoma-associated herpes virus oncoprotein-v-FLIP

    PubMed Central

    Sharma-Walia, N; Patel, K; Chandran, K; Marginean, A; Bottero, V; Kerur, N; Paul, A G

    2012-01-01

    Kaposi's sarcoma herpesvirus (KSHV) latent oncoprotein viral FLICE (FADD-like interferon converting enzyme)-like inhibitory protein (v-FLIP) or K13, a potent activator of NF-κB, has well-established roles in KSHV latency and oncogenesis. KSHV-induced COX-2 represents a novel strategy employed by KSHV to promote latency and inflammation/angiogenesis/invasion. Here, we demonstrate that v-FLIP/K13 promotes tumorigenic effects via the induction of host protein COX-2 and its inflammatory metabolite PGE2 in an NF-κB-dependent manner. In addition to our previous studies demonstrating COX-2/PGE2's role in transcriptional regulation of KSHV latency promoter and latent gene expression, the current study adds to the complexity that though LANA-1 (latency associated nuclear antigen) is utilizing COX-2/PGE2 as critical factors for its transcriptional regulation, it is the v-FLIP/K13 gene in the KSHV latency cluster that maintains continuous COX-2/PGE2 levels in the infected cells. We demonstrate that COX-2 inhibition, via its chemical inhibitors (NS-398 or celecoxib), reduced v-FLIP/K13-mediated NF-κB induction, and extracellular matrix (ECM) interaction-mediated signaling, mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) levels, and subsequently downregulated detachment-induced apoptosis (anoikis) resistance. vFLIP expression mediated the secretion of cytokines, and spindle cell differentiation activated the phosphorylation of p38, RSK, FAK, Src, Akt and Rac1-GTPase. The COX-2 inhibition in v-FLIP/K13-HMVECs reduced inflammation and invasion/metastasis-related genes, along with reduced anchorage-independent colony formation via modulating ‘extrinsic' as well as ‘intrinsic' cell death pathways. COX-2 blockade in v-FLIP/K13-HMVEC cells drastically augmented cell death induced by removal of essential growth/survival factors secreted in the microenvironment. Transformed cells obtained from anchorage-independent colonies of COX-2 inhibitor-treated v

  12. COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin

    DOE PAGES

    Wang, Fuli; Zhang, Hongyong; Ma, Ai-Hong; ...

    2017-12-28

    Cisplatin-based therapy is highly toxic, but moderately effective in most cancers. Concurrent inhibition of cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) results in antitumor activity and has organ-protective effects. The goal of this paper was to determine the antitumor activity of PTUPB, an orally bioavailable COX-2/sEH dual inhibitor, in combination with cisplatin and gemcitabine (GC) therapy. NSG mice bearing bladder cancer patient-derived xenografts were treated with vehicle, PTUPB, cisplatin, GC, or combinations thereof. Mouse experiments were performed with two different PDX models. PTUPB potentiated cisplatin and GC therapy, resulting in significantly reduced tumor growth and prolonged survival. PTUPB plus cisplatinmore » was no more toxic than cisplatin single-agent treatment as assessed by body weight, histochemical staining of major organs, blood counts, and chemistry. The combination of PTUPB and cisplatin increased apoptosis and decreased phosphorylation in the MAPK/ERK and PI3K/AKT/mTOR pathways compared with controls. PTUPB treatment did not alter platinum–DNA adduct levels, which is the most critical step in platinum-induced cell death. The in vitro study using the combination index method showed modest synergy between PTUPB and platinum agents only in 5637 cell line among several cell lines examined. However, PTUPB is very active in vivo by inhibiting angiogenesis. Finally, PTUPB potentiated the antitumor activity of cisplatin-based treatment without increasing toxicity in vivo and has potential for further development as a combination chemotherapy partner.« less

  13. COX-2/sEH Dual Inhibitor PTUPB Potentiates the Antitumor Efficacy of Cisplatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Fuli; Zhang, Hongyong; Ma, Ai-Hong

    Cisplatin-based therapy is highly toxic, but moderately effective in most cancers. Concurrent inhibition of cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) results in antitumor activity and has organ-protective effects. The goal of this paper was to determine the antitumor activity of PTUPB, an orally bioavailable COX-2/sEH dual inhibitor, in combination with cisplatin and gemcitabine (GC) therapy. NSG mice bearing bladder cancer patient-derived xenografts were treated with vehicle, PTUPB, cisplatin, GC, or combinations thereof. Mouse experiments were performed with two different PDX models. PTUPB potentiated cisplatin and GC therapy, resulting in significantly reduced tumor growth and prolonged survival. PTUPB plus cisplatinmore » was no more toxic than cisplatin single-agent treatment as assessed by body weight, histochemical staining of major organs, blood counts, and chemistry. The combination of PTUPB and cisplatin increased apoptosis and decreased phosphorylation in the MAPK/ERK and PI3K/AKT/mTOR pathways compared with controls. PTUPB treatment did not alter platinum–DNA adduct levels, which is the most critical step in platinum-induced cell death. The in vitro study using the combination index method showed modest synergy between PTUPB and platinum agents only in 5637 cell line among several cell lines examined. However, PTUPB is very active in vivo by inhibiting angiogenesis. Finally, PTUPB potentiated the antitumor activity of cisplatin-based treatment without increasing toxicity in vivo and has potential for further development as a combination chemotherapy partner.« less

  14. Inhibitory effect of etodolac, a selective cyclooxygenase-2 inhibitor, on stomach carcinogenesis in Helicobacter pylori-infected Mongolian gerbils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magari, Hirohito; Shimizu, Yasuhito; Inada, Ken-ichi

    2005-08-26

    The effect of the selective COX-2 inhibitor, etodolac, on Helicobacter pylori (Hp)-associated stomach carcinogenesis was investigated in Mongolian gerbils (MGs). Hp-infected MGs were fed for 23 weeks with drinking water containing 10 ppm N-methyl-N-nitrosourea. They were then switched to distilled water and placed on a diet containing 5-30 mg/kg/day etodolac for 30 weeks. We found that etodolac dose-dependently inhibited the development of gastric cancer, and no cancer was detected at a dose of 30 mg/kg/day. Etodolac did not affect the extent of inflammatory cell infiltration or oxidative DNA damage, but it significantly inhibited mucosal cell proliferation and dose-dependently repressed themore » development of intestinal metaplasia in the stomachs of Hp-infected MGs. These results suggest that COX-2 is a key molecule in inflammation-mediated stomach carcinogenesis and that chemoprevention of stomach cancer should be possible by controlling COX-2 expression or activity.« less

  15. Non-steroidal anti-inflammatory drugs, Cyclooxygenase-2 inhibitors and paracetamol use in Queensland and in the whole of Australia.

    PubMed

    Barozzi, Nadia; Tett, Susan E

    2008-09-24

    Cross national drug utilization studies can provide information about different influences on physician prescribing. This is important for medicines with issues around safety and quality of use, like non selective non-steroidal anti-inflammatory drugs (ns-NSAIDs) and cyclo-oxygenase-2 (COX-2) inhibitors. To enable comparison of prescription medicine use across different jurisdictions with a range of population sizes, data first need to be compared within Australia to understand whether use in a smaller sub-population may be considered as representative of the total use within Australia. The aim of this study was to compare the utilization of non selective NSAID, COX-2 inhibitors and paracetamol between Queensland and Australia. Dispensing data were obtained for concession beneficiaries for Australia for ns-NSAIDs, COX-2 inhibitors and paracetamol subsidized by the PBS over the period 1997-2003. The same data were purchased for Queensland. Data were converted to Defined Daily Dose (DDD)/1000 beneficiaries/day (World Health Organization anatomical therapeutic chemical classification, 2005). Total NSAID and paracetamol consumption were similar in Australia and Queensland. Ns-NSAID use decreased sharply with the introduction of COX-2 inhibitors (from approximately 80 to 40 DDD/1000 beneficiaries/day). Paracetamol was constant (approximately 45 DDD/1000 beneficiaries/day). COX-2 inhibitors consumption was initially higher in Queensland than in the whole of Australia. Despite initial divergence in celecoxib use between Queensland and Australia, the use of ns-NSAIDs, COX-2 inhibitors and paracetamol overall, in concession beneficiaries, was comparable in Australia and Queensland.

  16. COX-2 expression and function in the hyperalgesic response to paw inflammation in mice

    PubMed Central

    Jain, Naveen K.; Ishikawa, Tomo-o; Spigelman, Igor; Herschman, Harvey R.

    2009-01-01

    Peripheral inflammation and edema are often accompanied by primary and secondary hyperalgesia which are mediated by both peripheral and central mechanisms. The role of cyclooxygenase-2 (COX-2)-mediated prostanoid production in hyperalgesia is a topic of substantial current interest. We have established a murine foot-pad inflammation model in which both pharmacologic and genetic tools can be used to characterize the role of COX-2 in hyperalgesia. Zymosan, an extract from yeast, injected into the plantar surface of the hind paw induces an edema response and an increase in COX-2 expression in the hindpaw, spinal cord and brain. Zymosan-induced primary hyperalgesia, measured as a decrease in hindpaw withdrawal latency in response to a thermal stimulus, is long-lasting and is not inhibited by pre-treatment with the systemic COX-2 selective inhibitor, parecoxib (20 mg/kg). In contrast, the central component of hyperalgesia, measured as a reduction in tail flick latency in response to heat, is reduced by parecoxib. Zymosan-induced primary hyperalgesia in Cox-2−/− mice is similar to that of their Cox-2+/+ littermate controls. However, the central component of hyperalgesia is substantially reduced in Cox-2−/− versus Cox-2+/+ mice, and returns to baseline values much more rapidly. Thus pharmacological data suggest, and genetic experiments confirm, (i) that primary hyperalgesia in response to zymosan inflammation in the mouse paw is not mediated by COX-2 function and (ii) that COX-2 function plays a major role in the central component of hyperalgesia in this model of inflammation. PMID:18829279

  17. Thrombosis Is Reduced by Inhibition of COX-1, but Unaffected by Inhibition of COX-2, in an Acute Model of Platelet Activation in the Mouse

    PubMed Central

    Armstrong, Paul C.; Kirkby, Nicholas S.; Zain, Zetty N.; Emerson, Michael; Mitchell, Jane A.; Warner, Timothy D.

    2011-01-01

    Background Clinical use of selective inhibitors of cyclooxygenase (COX)-2 appears associated with increased risk of thrombotic events. This is often hypothesised to reflect reduction in anti-thrombotic prostanoids, notably PGI2, formed by COX-2 present within endothelial cells. However, whether COX-2 is actually expressed to any significant extent within endothelial cells is controversial. Here we have tested the effects of acute inhibition of COX on platelet reactivity using a functional in vivo approach in mice. Methodology/Principal Findings A non-lethal model of platelet-driven thromboembolism in the mouse was used to assess the effects of aspirin (7 days orally as control) diclofenac (1 mg.kg−1, i.v.) and parecoxib (0.5 mg.kg−1, i.v.) on thrombus formation induced by collagen or the thromboxane (TX) A2-mimetic, U46619. The COX inhibitory profiles of the drugs were confirmed in mouse tissues ex vivo. Collagen and U46619 caused in vivo thrombus formation with the former, but not latter, sensitive to oral dosing with aspirin. Diclofenac inhibited COX-1 and COX-2 ex vivo and reduced thrombus formation in response to collagen, but not U46619. Parecoxib inhibited only COX-2 and had no effect upon thrombus formation caused by either agonist. Conclusions/Significance Inhibition of COX-1 by diclofenac or aspirin reduced thrombus formation induced by collagen, which is partly dependent upon platelet-derived TXA2, but not that induced by U46619, which is independent of platelet TXA2. These results are consistent with the model demonstrating the effects of COX-1 inhibition in platelets, but provide no support for the hypothesis that acute inhibition of COX-2 in the circulation increases thrombosis. PMID:21629780

  18. Vitual screening and binding mode elucidation of curcumin analogues on Cyclooxygenase-2 using AYO_COX2_V1.1 protocol

    NASA Astrophysics Data System (ADS)

    Mulatsari, E.; Mumpuni, E.; Herfian, A.

    2017-05-01

    Curcumin is yellow colored phenolic compounds contained in Curcuma longa. Curcumin is known to have biological activities as anti-inflammatory, antiviral, antioxidant, and anti-infective agent [1]. Synthesis of curcumin analogue compounds has been done and some of them had biological activity like curcumin. In this research, the virtual screening of curcumin analogue compounds has been conducted. The purpose of this research was to determine the activity of these compounds as selective Cyclooxygenase-2inhibitors in in-silico. Binding mode elucidation was made by active and inactive representative compounds to see the interaction of the amino acids in the binding site of the compounds. This research used AYO_COX2_V.1.1, a structure-based virtual screening protocol (SBVS) that has been validated by Mumpuni E et al, 2014 [2]. AYO_COX2_V.1.1 protocol using a variety of integrated applications such as SPORES, PLANTS, BKchem, OpenBabel and PyMOL. The results of virtual screening conducted on 49 curcumin analogue compounds obtained 8 compounds with 4 active amino acid residues (GLY340, ILE503, PHE343, and PHE367) that were considered active as COX-2 inhibitor.

  19. Comparative study of bacterial translocation control with nitric oxide donors and COX2 inhibitor.

    PubMed

    García-Cenador, María Begoña; Lorenzo-Gómez, María Fernanda; García-Moro, María; García-García, María Inmaculada; Sánchez-Conde, María Pilar; García-Criado, Francisco Javier; García-Sánchez, Enrique; Lozano-Sánchez, Francisco; García-Sánchez, José Elías

    2016-10-01

    To evaluate the beneficial effects of exogenous NO and an inhibitor of the COX2, and their action levels in a model of SIRS/bacterial translocation (BT) induced by Zymosan A(®). Ninety Wistar rats were submitted to different treatments, and after 12h and 24h they were anaesthetized in order to collect blood, mesenteric lymph nodes, and kidney for subsequent biochemical analyses and microbiological examinations. A nitric oxide donor, Molsidomine(®), was compared with a COX2 inhibitor, Celecoxib(®). Zymosan A(®) was administered to Wistar rats. The animals were divided into 6 groups: one group for survival study, Group (1) No manipulation (BASAL); Group (2) vehicle of Zymosan A(®) given intraperitoneally (SHAM); Group I (control), with Zymosan A(®) (0.6g/kg) intraperitoneally; Group II (Molsidomine), with Molsidomine(®) (4mg/kg) through the penis dorsal vein, 30min prior to administration of the Zy(®) (0.6g/kg); Group III (Celecoxib), with Celecoxib(®) (400mg/kg) orally through a stomach tube, 6h prior to administration of the Zy (0.6g/kg). The parameters survival, bacterial translocation, renal function, neutrophil accumulation, oxygen free radicals (OFR), detoxifying enzymes, and cytokines were measured at different times after Zymosan administration. The model established induced a mortality rate of 100% and generated BT and systemic inflammatory response syndrome (SIRS) in all samples. It also significantly increased all variables, with p<.001 for MPO and all pro-inflammatory cytokines, and p<.01 for all OFR. Treatment with Molsidomine reduced mortality to 0%, decreased BT, MPO, pro-inflammatory cytokines and OFR (p<.001) significantly and increased IL-10 and IL-6 production. Moreover, the Celecoxib(®) showed a lower capacity for SIRS regulation. The exogenous administration of NO prevented BT and controlled SIRS. Therefore these results suggest that Molsidomine could be used as a therapeutic strategy to protect against BT. Copyright © 2016 Elsevier

  20. Autocrine prostaglandin E2 signaling promotes promonocytic leukemia cell survival via COX-2 expression and MAPK pathway

    PubMed Central

    Lee, Jaetae; Lee, Young Sup

    2015-01-01

    The COX-2/PGE2 pathway has been implicated in the occurrence and progression of cancer. The underlying mechanisms facilitating the production of COX-2 and its mediator, PGE2, in cancer survival remain unknown. Herein, we investigated PGE2-induced COX-2 expression and signaling in HL-60 cells following menadione treatment. Treatment with PGE2 activated anti-apoptotic proteins such as Bcl-2 and Bcl-xL while reducing pro-apoptotic proteins, thereby enhancing cell survival. PGE2 not only induced COX-2 expression, but also prevented casapse-3, PARP, and lamin B cleavage. Silencing and inhibition of COX-2 with siRNA transfection or treatment with indomethacin led to a pronounced reduction of the extracellular levels of PGE2, and restored the menadione-induced cell death. In addition, pretreatment of cells with the MEK inhibitor PD98059 and the PKA inhibitor H89 abrogated the PGE2-induced expression of COX-2, suggesting involvement of the MAPK and PKA pathways. These results demonstrate that PGE2 signaling acts in an autocrine manner, and specific inhibition of PGE2 will provide a novel approach for the treatment of leukemia. [BMB Reports 2015; 48(2): 109-114] PMID:24965577

  1. From COX-2 inhibitor nimesulide to potent anti-cancer agent: synthesis, in vitro, in vivo and pharmacokinetic evaluation

    PubMed Central

    Chennamaneni, Snigdha; Yi, Xin; Liu, lili; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin

    2014-01-01

    Cyclooxygenase-2 (COX-2) inhibitor nimesulide inhibits the proliferation of various types of cancer cells mainly via COX-2 independent mechanisms, which makes it a good lead compound for anti-cancer drug development. In the presented study, a series of new nimesulide analogs were synthesized based on the structure–function analysis generated previously. Some of them displayed very potent anti-cancer activity with IC50s around 100nM to 200nM to inhibit SKBR-3 breast cancer cell growth. CSUOH0901 (NSC751382) from the compound library also inhibits the growth of the 60 cancer cell lines used at National Cancer Institute Developmental therapeutics Program (NCIDTP) with IC50s around 100nM to 500nM. Intraperitoneal injection with a dosage of 5mg/kg/d of CSUOH0901 to nude mice suppresses HT29 colorectal xenograft growth. Pharmacokinetic studies demonstrate the good bioavailability of the compound. PMID:22119125

  2. Compensatory Hypertrophy Induced by Ventricular Cardiomyocyte Specific COX-2 Expression in Mice

    PubMed Central

    Streicher, John M.; Kamei, Kenichiro; Ishikawa, Tomo-o; Herschman, Harvey; Wang, Yibin

    2010-01-01

    Cyclooxygenase-2 (COX-2) is an important mediator of inflammation in stress and disease states. Recent attention has focused on the role of COX-2 in human heart failure and diseases, due to the finding that highly specific COX-2 inhibitors (i.e. Vioxx) increased the risk of myocardial infarction and stroke in chronic users. However, the specific impact of COX-2 expression in the intact heart remains to be determined. We report here the development of a transgenic mouse model, using a loxP-Cre approach, that displays robust COX-2 overexpression and subsequent prostaglandin synthesis specifically in ventricular myocytes. Histological, functional and molecular analyses showed that ventricular myocyte specific COX-2 overexpression led to cardiac hypertrophy and fetal gene marker activation, but with preserved cardiac function. Therefore, specific induction of COX-2 and prostaglandin in vivo is sufficient to induce compensated hypertrophy and molecular remodeling. PMID:20170663

  3. Relationship of clinical factors to the use of Cox-2 selective NSAIDs within an arthritis population in a large HMO.

    PubMed

    Bull, Scott A; Conell, Carol; Campen, David H

    2002-01-01

    To investigate the degree to which physicians use clinical factors to focus use of Cox-2 selective NSAIDs within an arthritis population. Diagnostic codes in the medical records of a large group-model HMO in northern California with approximately 3 million members were examined to identify patients with either rheumatoid arthritis (RA) or non-RA (osteoarthritis or degenerative joint disease). RA and non-RA patients were stratified in deciles of relative risk for gastrointestinal (GI) complications according to patient characteristics identified on the Standardized Calculator of Risk for Events (SCORE) that were associated with use of Cox-2 selective NSAIDs. (The SCORE tool stratifies patients by risk of serious GI complications using patient characteristics that are assigned points during an office visit, including age, health status, diagnosis of rheumatoid arthritis, corticosteroid use, and history of GI ulcer or bleed.) The second stage of analysis examined the percentage of arthritis patients in each SCORE-risk decile who received a Cox-2 selective NSAID, lower-risk NSAID, or traditional NSAID during calendar year 1999. The study population consisted of 144,360 members with an arthritis diagnosis, approximately 4.8% of members in this HMO. The mean age was 62.8 years (SD = 14.1), 61% were female, 10,449 (7%) had rheumatoid arthritis (RA), and 133,911 (93%) had non-rheumatoid arthritis. A diagnosis of RA was the most significant predictor of Cox-2 NSAID use (OR=2.4; 95% CI=1.6-3.5), followed by a history of GI problems (OR=1.5; 95% CI=1.4- 1.6). Female gender, chronic steroid use, and age each increased the odds of receiving a Cox-2 selective NSAID by about 35% (P<0.001 for all). Approximately 8.3% of patients in the highest decile of risk and 1.5% of patients in the lowest decile of risk received a Cox-2 selective NSAID. Clinical characteristics of patients identified on the SCORE (GI-risk) tool were strongly associated with use of Cox-2-selective NSAIDs in

  4. COX-2 Promotes Migration and Invasion by the Side Population of Cancer Stem Cell-Like Hepatocellular Carcinoma Cells

    PubMed Central

    Guo, Zhe; Jiang, Jing-Hang; Zhang, Jun; Yang, Hao-Jie; Yang, Fu-Quan; Qi, Ya-Peng; Zhong, Yan-Ping; Su, Jie; Yang, Ri-Rong; Li, Le-Qun; Xiang, Bang-De

    2015-01-01

    Abstract Cancer stem cells (CSCs) are thought to be responsible for tumor relapse and metastasis due to their abilities to self-renew, differentiate, and give rise to new tumors. Cyclooxygenase-2 (COX-2) is highly expressed in several kinds of CSCs, and it helps promote stem cell renewal, proliferation, and radioresistance. Whether and how COX-2 contributes to CSC migration and invasion is unclear. In this study, COX-2 was overexpressed in the CSC-like side population (SP) of the human hepatocellular carcinoma (HCC) cell line HCCLM3. COX-2 overexpression significantly enhanced migration and invasion of SP cells, while reducing expression of metastasis-related proteins PDCD4 and PTEN. Treating SP cells with the selective COX-2 inhibitor celecoxib down-regulated COX-2 and caused a dose-dependent reduction in cell migration and invasion, which was associated with up-regulation of PDCD4 and PTEN. These results suggest that COX-2 exerts pro-metastatic effects on SP cells, and that these effects are mediated at least partly through regulation of PDCD4 and PTEN expression. These results further suggest that celecoxib may be a promising anti-metastatic agent to reduce migration and invasion by hepatic CSCs. PMID:26554780

  5. Identification and characterization of carprofen as a multi-target FAAH/COX inhibitor

    PubMed Central

    Favia, Angelo D.; Habrant, Damien; Scarpelli, Rita; Migliore, Marco; Albani, Clara; Bertozzi, Sine Mandrup; Dionisi, Mauro; Tarozzo, Glauco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco

    2013-01-01

    Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the non-steroid anti-inflammatory drug, carprofen, as a multi-target-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2 and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several racemic derivatives of carprofen, sharing this multi-target activity. This may result in improved analgesic efficacy and reduced side effects (Naidu, et al (2009) J Pharmacol Exp Ther 329, 48-56; Fowler, C.J. et al. (2012) J Enzym Inhib Med Chem Jan 6; Sasso, et al (2012) Pharmacol Res 65, 553). The new compounds are among the most potent multi-target FAAH/COXs inhibitors reported so far in the literature, and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs. PMID:23043222

  6. Potential interaction of natural dietary bioactive compounds with COX-2.

    PubMed

    Maldonado-Rojas, Wilson; Olivero-Verbel, Jesus

    2011-09-01

    Bioactive natural products present in the diet play an important role in several biological processes, and many have been involved in the alleviation and control of inflammation-related diseases. These actions have been linked to both gene expression modulation of pro-inflammatory enzymes, such as cyclooxygenase 2 (COX-2), and to an action involving a direct inhibitory binding on this protein. In this study, several food-related compounds with known gene regulatory action on inflammation have been examined in silico as COX-2 ligands, utilizing AutoDock Vina, GOLD and Surflex-Dock (SYBYL) as docking protocols. Curcumin and all-trans retinoic acid presented the maximum absolute AutoDock Vina-derived binding affinities (9.3 kcal/mol), but genistein, apigenin, cyanidin, kaempferol, and docosahexaenoic acid, were close to this value. AutoDock Vina affinities and GOLD scores for several known COX-2 inhibitors significatively correlated with reported median inhibitory concentrations (R² = 0.462, P < 0.001 and R² = 0.238, P = 0.029, respectively), supporting the computational reliability of the predictions made by our docking simulations. Moreover, docking analysis insinuate the synergistic action of curcumin on celecoxib-induced inhibition of COX-2 may occur allosterically, as this natural compound docks to a place different from the inhibitor binding site. These results suggest that the anti-inflammatory properties of some food-derived molecules could be the result of their direct binding capabilities to COX-2, and this process can be modeled using protein-ligand docking methodologies. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Evaluation of loxoprofen and its alcohol metabolites for potency and selectivity of inhibition of cyclooxygenase-2.

    PubMed

    Riendeau, Denis; Salem, Myriam; Styhler, Angela; Ouellet, Marc; Mancini, Joseph A; Li, Chun Sing

    2004-03-08

    Loxoprofen, its trans-alcohol and cis-alcohol metabolites were evaluated for selectivity of inhibition of COX-2 over COX-1. The (2S,1'R,2'S)-trans-alcohol derivative was found to be the most active metabolite and to be a potent and nonselective inhibitor of COX-2 and COX-1 in both enzyme and human whole blood assays.

  8. Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells.

    PubMed

    Kim, Hyung Gyun; Jin, Sun Woo; Kim, Yong An; Khanal, Tilak; Lee, Gi Ho; Kim, Se Jong; Rhee, Sang Dal; Chung, Young Chul; Hwang, Young Jung; Jeong, Tae Cheon; Jeong, Hye Gwang

    2017-08-01

    Leptin plays a key role in the control of adipocyte formation, as well as in the associated regulation of energy intake and expenditure. The goal of this study was to determine if leptin-induced aromatase enhances estrogen production and induces tumor cell growth stimulation. To this end, breast cancer cells were incubated with leptin in the absence or presence of inhibitor pretreatment, and changes in aromatase and cyclooxygenase-2 (COX-2) expression were evaluated at the mRNA and protein levels. Transient transfection assays were performed to examine the aromatase and COX-2 gene promoter activities and immunoblot analysis was used to examine protein expression. Leptin induced aromatase expression, estradiol production, and promoter activity in breast cancer cells. Protein levels of phospho-STAT3, PKA, Akt, ERK, and JNK were increased by leptin. Leptin also significantly increased cAMP levels, cAMP response element (CRE) activation, and CREB phosphorylation. In addition, leptin induced COX-2 expression, promoter activity, and increased the production of prostaglandin E 2 . Finally, a COX-2 inhibitor and aromatase inhibitor suppressed leptin-induced cell proliferation in MCF-7 breast cancer cells. Together, our data show that leptin increased aromatase expression in breast cancer cells, which was correlated with COX-2 upregulation, mediated through CRE activation and cooperation among multiple signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nimesulide, a cyclooxygenase-2 selective inhibitor, suppresses obesity-related non-alcoholic fatty liver disease and hepatic insulin resistance through the regulation of peroxisome proliferator-activated receptor γ.

    PubMed

    Tsujimoto, Shunsuke; Kishina, Manabu; Koda, Masahiko; Yamamoto, Yasutaka; Tanaka, Kohei; Harada, Yusuke; Yoshida, Akio; Hisatome, Ichiro

    2016-09-01

    Cyclooxygenase (COX)-2 selective inhibitors suppress non-alcoholic fatty liver disease (NAFLD); however, the precise mechanism of action remains unknown. The aim of this study was to examine how the COX-2 selective inhibitor nimesulide suppresses NAFLD in a murine model of high-fat diet (HFD)‑induced obesity. Mice were fed either a normal chow diet (NC), an HFD, or HFD plus nimesulide (HFD-nime) for 12 weeks. Body weight, hepatic COX-2 mRNA expression and triglyceride accumulation were significantly increased in the HFD group. Triglyceride accumulation was suppressed in the HFD-nime group. The mRNA expression of hepatic peroxisome proliferator-activated receptor γ (PPARγ) and the natural PPARγ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d‑PGJ2) were significantly increased in the HFD group and significantly suppressed in the HFD-nime group. Glucose metabolism was impaired in the HFD group compared with the NC group, and it was significantly improved in the HFD-nime group. In addition, the plasma insulin levels in the HFD group were increased compared with those in the NC group, and were decreased in the HFD-nime group. These results indicate that HFD-induced NAFLD is mediated by the increased hepatic expression of COX-2. We suggest that the production of 15d-PGJ2, which is mediated by COX-2, induces NAFLD and hepatic insulin resistance by activating PPARγ. Furthermore, the mRNA expression of tissue inhibitor of metalloproteinases-1 (TIMP‑1), procollagen-1 and monocyte chemoattractant protein-1 (MCP-1), as well as the number of F4/80-positive hepatic (Kupffer) cells, were significantly increased in the HFD group compared with the NC group, and they were reduced by nimesulide. In conclusion, COX-2 may emerge as a molecular target for preventing the development of NAFLD and insulin resistance in diet-related obesity.

  10. ASP6537, a novel highly selective cyclooxygenase-1 inhibitor, exerts potent antithrombotic effect without "aspirin dilemma".

    PubMed

    Sakata, Chinatsu; Kawasaki, Tomihisa; Kato, Yasuko; Abe, Masaki; Suzuki, Ken-ichi; Ohmiya, Makoto; Funatsu, Toshiyuki; Morita, Yoshiaki; Okada, Masamichi

    2013-07-01

    Aspirin inhibits both the cyclooxygenase (COX)-1-dependent production of thromboxane A2 (TXA2) in platelets and COX-2-dependent production of anti-aggregatory prostaglandin I2 (PGI2) in vessel walls, resulting in "aspirin dilemma." Our objective is to investigate whether ASP6537 can overcome aspirin dilemma and exert a potent antithrombotic effect without a concurrent ulcerogenic effect. We evaluated the inhibitory effects of ASP6537 on recombinant human COX-1 (rhCOX-1) and rhCOX-2 activities using a COX-1/2 selectivity test. To determine whether ASP6537 induces aspirin dilemma, we examined the effects of ASP6537 on in vitro TXA2 and PGI2 metabolite production from platelets and isolated aorta of guinea pigs, and on plasma concentrations of TXA2 and PGI2 metabolites in aged rats. Finally, we evaluated the antithrombotic effects and ulcerogenic activity of ASP6537 using an electrically induced carotid arterial thrombosis model and a gastric ulcer model in guinea pigs. The IC50 ratios of rhCOX-2 to rhCOX-1 for ASP6537 and aspirin were >142,000 and 1.63 fold, respectively. ASP6537 inhibited TXA2 production more selectively than aspirin in in vitro and in vivo TXA2/PGI2 production studies. ASP6537 exerted a significant antithrombotic effect at ≥3 mg/kg, while aspirin tended to inhibit thrombosis at 300 mg/kg but it was not statistically significant. Further, ASP6537 did not induce ulcer formation at 100 mg/kg, whereas aspirin exhibited an ulcerogenic effect at doses of ≥100 mg/kg. ASP6537 functions as a highly selective COX-1 inhibitor with a superior ability to aspirin for normalizing TXA2/PGI2 balance, and exerts antithrombotic effect without ulcerogenic effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Use of cyclo-oxygenase 2 inhibitors (COX-2) and prescription non-steroidal anti-inflammatory drugs (NSAIDS) in UK and USA populations. Implications for COX-2 cardiovascular profile.

    PubMed

    Arellano, Félix M; Yood, Marianne Ulcickas; Wentworth, Charles E; Oliveria, Susan A; Rivero, Elena; Verma, Anila; Rothman, Kenneth J

    2006-12-01

    COX-2 and NSAIDS differ in their gastrointestinal (GI) and cardiovascular (CV) toxicity from pharmacological, clinical and epidemiologic point of views. Describe the patterns of use of NSAIDS and COX-2 in The Health Improvement Network (THIN) database in UK and the PharMetrics database in USA. We examined the experience of 10 distinct cohorts of new users of diclofenac, naproxen, ibuprofen, piroxicam, other NSAIDS, meloxicam, celecoxib, etoricoxib, rofecoxib and valdecoxib. The study period was 1 January 1995 through 2004 (31 March in UK and 28 February in USA). We collected information on covariates including history of upper GI disease, CV disease, hepatic disease, dosage, concomitant medication, and visits to a rheumatologist. We identified 486 076 unique patient-drug pairs in UK and 1 533 239 in USA. In UK population 78 201 (16%) were COX-2 users and in PharMetrics 324 206 (21%) were COX-2 users. Diclofenac and ibuprofen (NSAIDS), and celecoxib and rofecoxib (COX-2) were the agents prescribed most frequently. The duration of therapy was longer among celecoxib and rofecoxib users than among other users. More COX-2 users than NSAIDS users received concomitant gastroprotective agents (GPA), corticosteroids and anti-platelet therapy, and had a history of thromboembolic events and hypertension. PharMetrics patients were prescribed higher doses of NSAIDS and COX-2. The use of any single agent for more than 90 days was uncommon, but more frequent in PharMetrics. Switching was uncommon and was generally to a NSAID. Our results confirm some previous findings from other authors such as the presence of both GI and CV channelling to COX-2 agents but refute others, such as the frequency of drug switching between these agents. The typical use of COX-2 agents in practice is for shorter duration, and at lower doses, than was employed in randomized clinical trials. This difference may help clarify the apparent discrepancy with respect to CV toxicity between the results from

  12. DPPC regulates COX-2 expression in monocytes via phosphorylation of CREB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, R.H.K.; Tonks, A.J.; Jones, K.P.

    2008-05-23

    The major phospholipid in pulmonary surfactant dipalmitoyl phosphatidylcholine (DPPC) has been shown to modulate inflammatory responses. Using human monocytes, this study demonstrates that DPPC significantly increased PGE{sub 2} (P < 0.05) production by 2.5-fold when compared to untreated monocyte controls. Mechanistically, this effect was concomitant with an increase in COX-2 expression which was abrogated in the presence of a COX-2 inhibitor. The regulation of COX-2 expression was independent of NF-{kappa}B activity. Further, DPPC increased the phosphorylation of the cyclic AMP response element binding protein (CREB; an important nuclear transcription factor important in regulating COX-2 expression). In addition, we also showmore » that changing the fatty acid groups of PC (e.g. using L-{alpha}-phosphatidylcholine {beta}-arachidonoyl-{gamma}-palmitoyl (PAPC)) has a profound effect on the regulation of COX-2 expression and CREB activation. This study provides new evidence for the anti-inflammatory activity of DPPC and that this activity is at least in part mediated via CREB activation of COX-2.« less

  13. Effects of flavocoxid, a dual inhibitor of COX and 5-lipoxygenase enzymes, on benign prostatic hyperplasia.

    PubMed

    Altavilla, D; Minutoli, L; Polito, F; Irrera, N; Arena, S; Magno, C; Rinaldi, M; Burnett, B P; Squadrito, F; Bitto, A

    2012-09-01

    Inflammation plays a key role in the development of benign prostatic hyperplasia (BPH). Eicosanoids derived from the COX and 5-lipoxygenase (5-LOX) pathways are elevated in the enlarging prostate. Flavocoxid is a novel flavonoid-based 'dual inhibitor' of the COX and 5-LOX enzymes. This study evaluated the effects of flavocoxid in experimental BPH. Rats were treated daily with testosterone propionate (3 mg·kg(-1)  s.c.) or its vehicle for 14 days to induce BPH. Animals receiving testosterone were randomized to receive vehicle (1 mL·kg(-1) , i.p.) or flavocoxid (20 mg·kg(-1) , i.p.) for 14 days. Histological changes, eicosanoid content and mRNA and protein levels for apoptosis-related proteins and growth factors were assayed in prostate tissue. The effects of flavocoxid were also tested on human prostate carcinoma PC3 cells. Flavocoxid reduced prostate weight and hyperplasia, blunted inducible expression of COX-2 and 5-LOX as well as the increased production of PGE(2) and leukotriene B(4) (LTB(4) ), enhanced pro-apoptotic Bax and caspase-9 and decreased the anti-apoptotic Bcl-2 mRNA. Flavocoxid also reduced EGF and VEGF expression. In PC3 cells, flavocoxid stimulated apoptosis and inhibited growth factor expression. Flavocoxid-mediated induction of apoptosis was inhibited by the pan-caspase inhibitor, Z-VAD-FMK, in PC3 cells, suggesting an essential role of caspases in flavocoxid-mediated apoptosis during prostatic growth. Our results show that a 'dual inhibitor' of the COX and 5-LOX enzymes, such as flavocoxid, might represent a rational approach to reduce BPH through modulation of eicosanoid production and a caspase-induced apoptotic mechanism. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  14. Discovery of new class of methoxy carrying isoxazole derivatives as COX-II inhibitors: Investigation of a detailed molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Joy, Monu; Elrashedy, Ahmed A.; Mathew, Bijo; Pillay, Ashona Singh; Mathews, Annie; Dev, Sanal; Soliman, Mahmoud E. S.; Sudarsanakumar, C.

    2018-04-01

    Two novel isoxazole derivatives were synthesized and characterized by NMR and single crystal X-ray crystallography techniques. The methoxy and dimethoxy functionalized variants of isoxazole were screened for its anti-inflammatory profile using cyclooxygenase fluorescent inhibitor screening assay methods along with standard drugs, Celecoxib and Diclofenac. The potent and selective nature of the two isoxazole derivatives on COX-II isoenzyme with a greater magnitude of inhibitory concentration, as compared to the standard drugs and further exploited through molecular dynamics (MD) simulation. Classical, accelerated and multiple MD simulations were performed to investigate the actual binding mode of the two non-steroidal anti-inflammatory drug candidates and addressed their functional selectivity towards COX-II enzyme inhibitory nature.

  15. Losartan reverses COX-2-dependent vascular dysfunction in offspring of hyperglycaemic rats.

    PubMed

    de Queiroz, Diego Barbosa; Ramos-Alves, Fernanda Elizabethe; Santos-Rocha, Juliana; Duarte, Gloria Pinto; Xavier, Fabiano Elias

    2017-09-01

    This study examined whether chronic treatment with losartan, an angiotensin II type 1 receptor (AT 1 R) antagonist, might reverse COX-2-mediated vascular dysfunction in mesenteric resistance arteries (MRA) from offspring of hyperglycaemic rats. Male 12-month-old offspring of hyperglycaemic (O-DR) and normoglycaemic (O-CR) rats were treated with losartan (15mg·kg·day -1 ) during 2months. Third order MRA of untreated and losartan-treated O-DR and O-CR were mounted in wire myograph for isometric tension measurements. COX-2 expression was analyzed by Western blot; TxA 2 , PGE 2 and PGF 2α release was measured using commercial kits. O-DR showed increased blood pressure, impaired acetylcholine-induced vasodilation and increased noradrenaline-induced vasoconstriction than O-CR. All these parameters were normalized by losartan in O-DR. Pre-incubation of MRA with indomethacin (COX-1/2 inhibitor), NS-398 (COX-2 inhibitor) or tempol (superoxide dismutase mimetic) increased relaxation to acetylcholine and reduced contraction to noradrenaline only in O-DR. COX-2 expression, TxA 2 , PGE 2 and PGF 2α release were increased in O-DR. In losartan-treated O-DR, NS-398, indomethacin or tempol failed to produce any effect on acetylcholine or noradrenaline responses. Losartan treatment reduced COX-2 expression, TxA 2 , PGE 2 and PGF 2α release in O-DR. The present results reveal that chronic losartan administration in O-DR normalizes endothelial function in MRA by correcting the existing COX-2 overexpression and the imbalance between endothelium-derived relaxing and contracting factors. These findings not only support the beneficial effects of AT 1 receptor antagonist in O-DR, but also suggest the implication of angiotensin II as a putative mediator of hyperglycemia-programmed vascular dysfunction in rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

    PubMed

    Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-05-11

    We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  17. TNF-α stimulates colonic myofibroblast migration via COX-2 and Hsp27.

    PubMed

    Saini, Shyla; Liu, Tiegang; Yoo, James

    2016-07-01

    Crohn's disease (CD) is a chronic inflammatory enteropathy characterized by fibrotic strictures. Myofibroblasts (MFBs) are stromal cells of the gastrointestinal tract found in increased numbers in patients with CD and represent the key effector cells involved in pathologic fibrosis. MFB is a known target of tumor necrosis factor alpha (TNF-α), a proinflammatory cytokine strongly implicated in the pathophysiology of CD. However, the precise mechanisms through which TNF-α contributes to fibrosis remain incompletely understood. Here, we demonstrate for the first time that TNF-α increases MFB migration through the cyclooxygenase 2 (COX-2) and heat-shock protein 27 (Hsp27) pathways. The human colonic MFB cell line 18Co was grown to confluence on 35 × 10 mm cell culture dishes and used from passages 8-14. An in vitro scratch assay assessed the effect of TNF-α (10 ng/mL) on MFB migration over 24 h in the presence or absence of several inhibitors (NS398, SB203580, Hsp27 siRNA). TNF-α significantly increased MFB migration over 24 h. TNF-α also led to the increased expression of COX-2 and stimulated rapid phosphorylation of Hsp27 at serine 82. TNF-α-induced COX-2 expression, Hsp27 phosphorylation, and MFB migration were all significantly inhibited by the P38 MAPK inhibitor SB203580 (P < 0.05). TNF-α-induced MFB migration was also significantly inhibited by NS398 (P < 0.05), a direct inhibitor of COX-2, and by siRNA targeting Hsp27 (P < 0.05). TNF-α stimulates colonic MFB migration through P38 MAPK-mediated activation of COX-2 and Hsp27. Further elucidating these inflammatory signaling pathways may lead to novel therapeutic targets for the treatment of CD-related fibrosis and strictures. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Benzothiophene inhibitors of MK2. Part 2: Improvements in kinase selectivity and cell potency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, David R.; Meyers, Marvin J.; Kurumbail, Ravi G.

    2010-10-01

    Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.

  19. Production of a COX-2 inhibitor, 2,4,5-trimethoxybenzaldehyde, with submerged cultured Antrodia camphorata.

    PubMed

    Chen, C-C; Chyau, C-C; Hseu, T-H

    2007-04-01

    To investigate the active ingredient in fruiting bodies and to produce it with cultured mycelium in Antrodia camphorata (BCRC 35398). The volatile components from the fruiting bodies, the liquid cultured broth of A. camphorata and Cinnamomum kanehirae wood were separately isolated by steam distillation-solvent extraction and identified by gas chromatography-mass spectrometry. In the fruiting bodies, a COX-2 inhibitor 2,4,5-trimethoxybenzaldehyde (TMBA) was found to be the most abundant constituent, but was totally absent in its cultured broth and its natural host, C. kanehirae wood. On feeding with the acid-digested sawdust of C. kanehirae wood or vanillin to the broth for culture, TMBA was produced in both cultured broths. The TMBA identified in fruiting bodies was an active ingredient whose functions consisted with the reported experiences of this mushroom. Feeding vanillin to culture broth could produce TMBA containing mycelium product like its fruiting bodies did. This study found an active ingredient in fruiting bodies of A. camphorata and elucidated this compound derived from digested sawdust of C. kanehirae wood. A feasible method was also developed to produce TMBA containing mycelium by feeding vanillin.

  20. Density functional theory analysis and molecular docking evaluation of 1-(2, 5-dichloro-4-sulfophenyl)-3-methyl-5-pyrazolone as COX2 inhibitor against inflammatory diseases

    NASA Astrophysics Data System (ADS)

    Kavitha, T.; Velraj, G.

    2017-08-01

    The molecular structure of 1-(2, 5-Dichloro-4-Sulfophenyl)-3-Methyl-5-Pyrazolone (DSMP) was optimized using DFT/B3LYP/6-31++G(d,p) level and its corresponding experimental as well as theoretical FT-IR, FT-Raman vibrational frequencies and UV-Vis spectral analysis were carried out. The vibrational assignments and total energy distributions of each vibration were presented with the aid of Veda 4xx software. The molecular electrostatic potential, HOMO-LUMO energies, global and local reactivity descriptors and natural bond orbitals were analyzed in order to find the most possible reactive sites of the molecule and it was found that DSMP molecule possess enhanced nucleophilic activity. One of the common known COX2 inhibitor, celecoxib (CXB) was also found to exhibit similar reactivity properties and hence DSMP was also expected to inhibit COX enzymes. In order to detect the COX inhibition nature of DSMP, molecular docking analysis was carried out with the help of Autodock software. For that, the optimized structure was in turn used for docking DSMP with COX enzymes. The binding energy scores and inhibitory constant values reveal that the DSMP molecule possess good binding affinity and low inhibition constant towards COX2 enzyme and hence it can be used as an anti-inflammatory drug after carrying out necessary biological tests.

  1. Fragment-based discovery of novel and selective mPGES-1 inhibitors Part 1: identification of sulfonamido-1,2,3-triazole-4,5-dicarboxylic acid.

    PubMed

    Lee, Kijae; Pham, Van Chung; Choi, Min Ji; Kim, Kyung Ju; Lee, Kyung-Tae; Han, Seong-Gu; Yu, Yeon Gyu; Lee, Jae Yeol

    2013-01-01

    Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase that catalyzes the conversion of prostaglandin PGH(2) to PGE(2) and represents a novel target for therapeutic treatment of inflammatory disorders. It is essential to identify mPGES-1 inhibitor with novel scaffold as new hit or lead compound for the purpose of the next-generation anti-inflammatory drugs. Herein we report the discovery of sulfonamido-1,2,3-triazole-4,5-dicarboxylic derivatives as a novel class of mPGES-1 inhibitors identified through fragment-based virtual screening and in vitro assays on the inhibitory activity of the actual compounds. 1-[2-(N-Phenylbenzenesulfonamido)ethyl]-1H-1,2,3-triazole-4,5-dicarboxylic acid (6f) inhibits human mPGES-1 (IC(50) of 1.1 μM) with high selectivity (ca.1000-fold) over both COX-1 and COX-2 in a cell-free assay. In addition, the activity of compound 6f was again tested at 10 μM concentration in presence of 0.1% Triton X-100 and found to be reduced to 1/4 of its original activity without this detergent. Compared to the complete loss of activity of nuisance inhibitor with the detergent, therefore, compound 6f would be regarded as a partial nuisance inhibitor of mPGES-1 with a novel scaffold for the optimal design of more potent mPGES-1 inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice.

    PubMed

    Praticò, D; Tillmann, C; Zhang, Z B; Li, H; FitzGerald, G A

    2001-03-13

    The cyclooxygenase (COX) product, prostacyclin (PGI(2)), inhibits platelet activation and vascular smooth-muscle cell migration and proliferation. Biochemically selective inhibition of COX-2 reduces PGI(2) biosynthesis substantially in humans. Because deletion of the PGI(2) receptor accelerates atherogenesis in the fat-fed low density lipoprotein receptor knockout mouse, we wished to determine whether selective inhibition of COX-2 would accelerate atherogenesis in this model. To address this hypothesis, we used dosing with nimesulide, which inhibited COX-2 ex vivo, depressed urinary 2,3 dinor 6-keto PGF(1alpha) by approximately 60% but had no effect on thromboxane formation by platelets, which only express COX-1. By contrast, the isoform nonspecific inhibitor, indomethacin, suppressed platelet function and thromboxane formation ex vivo and in vivo, coincident with effects on PGI(2) biosynthesis indistinguishable from nimesulide. Indomethacin reduced the extent of atherosclerosis by 55 +/- 4%, whereas nimesulide failed to increase the rate of atherogenesis. Despite their divergent effects on atherogenesis, both drugs depressed two indices of systemic inflammation, soluble intracellular adhesion molecule-1, and monocyte chemoattractant protein-1 to a similar but incomplete degree. Neither drug altered serum lipids and the marked increase in vascular expression of COX-2 during atherogenesis. Accelerated progression of atherosclerosis is unlikely during chronic intake of specific COX-2 inhibitors. Furthermore, evidence that COX-1-derived prostanoids contribute to atherogenesis suggests that controlled evaluation of the effects of nonsteroidal anti-inflammatory drugs and/or aspirin on plaque progression in humans is timely.

  3. Injured nerve-derived COX2/PGE2 contributes to the maintenance of neuropathic pain in aged rats.

    PubMed

    Ma, Weiya; Chabot, Jean-Guy; Vercauteren, Freya; Quirion, Remi

    2010-07-01

    Neuropathic pain (NeP) is a debilitating disease afflicting mostly the aged population. Inflammatory responses in injured nerves play a pivotal role in the pathogenesis of NeP. Injured nerve derived cyclooxygenase 2/prostaglandin E2 (COX2/PGE2) contributes to the genesis of NeP at the early stage in young rats. Here we show that COX2/PGE2 is involved in the maintenance of NeP at a chronic stage in aged rats. Eighteen months after partial sciatic nerve ligation (PSNL), NeP remained prominent in aged rats. COX2 expressing macrophages and PGE2 levels were increased in injured nerves. PGE2 receptors (EP1 and EP4) and pain-related ion channel transient receptor potential vanilloid-1 (TRPV1) were increased in the ipsilateral dorsal root ganglion (DRG) neurons of aged PSNL rats. Perineural injection of a selective COX2 inhibitor NS-398 relieved NeP, reversed PSNL increased expression of EP1, EP4 and TRPV1 and suppressed the levels of pain-related peptide substance P and calcitonin gene-related peptide in DRG neurons. These data suggest that injured nerve-derived PGE2 contributes to the maintenance of NeP at the chronic stage in aged rats. Chronically facilitating the synthesis of pain-related molecules in nociceptive DRG neurons is a novel mechanism underpinning the contribution of PGE2. Copyright 2008 Elsevier Inc. All rights reserved.

  4. Attenuation of Proinflammatory Responses by S-[6]-Gingerol via Inhibition of ROS/NF-Kappa B/COX2 Activation in HuH7 Cells.

    PubMed

    Li, Xiao-Hong; McGrath, Kristine C Y; Tran, Van H; Li, Yi-Ming; Duke, Colin C; Roufogalis, Basil D; Heather, Alison K

    2013-01-01

    Introduction. Hepatic inflammation underlies the pathogenesis of chronic diseases such as insulin resistance and type 2 diabetes mellitus. S-[6]-Gingerol has been shown to have anti-inflammatory properties. Important inflammatory mediators of interleukins include nuclear factor κ B (NF κ B) and cyclooxygenase 2 (COX2). We now explore the mechanism of anti-inflammatory effects of S-[6]-gingerol in liver cells. Methods. HuH7 cells were stimulated with IL1β to establish an in vitro hepatic inflammatory model. Results. S-[6]-Gingerol attenuated IL1β-induced inflammation and oxidative stress in HuH7 cells, as evidenced by decreasing mRNA levels of inflammatory factor IL6, IL8, and SAA1, suppression of ROS generation, and increasing mRNA levels of DHCR24. In addition, S-[6]-gingerol reduced IL1β-induced COX2 upregulation as well as NF κ B activity. Similar to the protective effects of S-[6]-gingerol, both NS-398 (a selective COX2 inhibitor) and PDTC (a selective NF κ B inhibitor) suppressed mRNA levels of IL6, IL8, and SAA1. Importantly, PDTC attenuated IL1β-induced overexpression of COX2. Of particular note, the protective effect of S-[6]-gingerol against the IL1β-induced inflammatory response was similar to that of BHT, an ROS scavenger. Conclusions. The findings of this study demonstrate that S-[6]-gingerol protects HuH7 cells against IL1β-induced inflammatory insults through inhibition of the ROS/NF κ B/COX2 pathway.

  5. Toward the understanding of the molecular basis for the inhibition of COX-1 and COX-2 by phenolic compounds present in Uruguayan propolis and grape pomace.

    PubMed

    Paulino, Margot; Alvareda, Elena; Iribarne, Federico; Miranda, Pablo; Espinosa, Victoria; Aguilera, Sara; Pardo, Helena

    2016-12-01

    Propolis and grape pomace have significant amounts of phenols which can take part in anti-inflammatory mechanisms. As the cyclooxygenases 1 and 2 (COX-1 and COX-2) are involved in said mechanisms, the possibility for a selective inhibition of COX-2 was analyzed in vitro and in silico. Propolis and grape pomace from Uruguayan species were collected, extracted in hydroalcoholic mixture and analyzed. Based on phenols previously identified, and taking as reference the crystallographic structures of COX-1 and COX-2 in complex with the commercial drug Celecoxib, a molecular docking procedure was devised to adjust 123 phenolic molecular models at the enzyme-binding sites. The most important results of this work are that the extracts have an overall inhibition activity very similar in COX-1 and COX-2, i.e. they do not possess selective inhibition activity for COX-2. Nevertheless, 10 compounds of the phenolic database turned out to be more selective and 94 phenols resulted with similar selectivity than Celecoxib, an outcome that accounts for the overall experimental inhibition measures. Binding site environment observations showed increased polarity in COX-2 as compared with COX-1, suggesting that polarity is the key for selectivity. Accordingly, the screening of molecular contacts pointed to the residues: Arg106, Gln178, Leu338, Ser339, Tyr341, Tyr371, Arg499, Ala502, Val509, and Ser516, which would explain, at the atomic level, the anti-inflammatory effect of the phenolic compounds. Among them, Gln178 and Arg499 appear to be essential for the selective inhibition of COX-2.

  6. Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor.

    PubMed

    Davies, N M; McLachlan, A J; Day, R O; Williams, K M

    2000-03-01

    Celecoxib, a nonsteroidal anti-inflammatory drug (NSAID), is the first specific inhibitor of cyclo-oxygenase-2 (COX-2) approved to treat patients with rheumatism and osteoarthritis. Preliminary data suggest that celecoxib also has analgesic and anticancer properties. The selective inhibition of COX-2 is thought to lead to a reduction in the unwanted effects of NSAIDs. Upper gastrointestinal complication rates in clinical trials are significantly lower for celecoxib than for traditional nonselective NSAIDs (e.g. naproxen, ibuprofen and diclofenac). The rate of absorption of celexocib is moderate when given orally (peak plasma drug concentration occurs after 2 to 4 hours), although the extent of absorption is not known. Celexocib is extensively protein bound, primarily to plasma albumin, and has an apparent volume of distribution of 455+/-166L in humans. The area under the plasma concentration-time curve (AUC) of celecoxib increases in proportion to increasing oral doses between 100 and 800mg. Celecoxib is eliminated following biotransformation to carboxylic acid and glucuronide metabolites that are excreted in urine and faeces, with little drug (2%) being eliminated unchanged in the urine. Celecoxib is metabolised primarily by the cytochrome P450 (CYP) 2C9 isoenzyme and has an elimination half-life of about 11 hours in healthy individuals. Racial differences in drug disposition and pharmacokinetic changes in the elderly have been reported for celecoxib. Plasma concentrations (AUC) of celecoxib appear to be 43% lower in patients with chronic renal insufficiency [glomerular filtration rate 2.1 to 3.6 L/h (35 to 60 ml/min)] compared with individuals with healthy renal function, with a 47% increase in apparent clearance. Compared with healthy controls, it has been reported that the steady-state AUC is increased by approximately 40% and 180% in patients with mild and moderate hepatic impairment, respectively. Celecoxib does not appear to interact with warfarin

  7. Resveratrol Directly Targets COX-2 to Inhibit Carcinogenesis

    PubMed Central

    Zykova, Tatyana A.; Zhu, Feng; Zhai, Xiuhong; Ma, Wei-ya; Ermakova, Svetlana P.; Lee, Ki Won; Bode, Ann M.; Dong, Zigang

    2008-01-01

    Targeted molecular cancer therapies can potentially deliver treatment directly to a specific protein or gene to optimize efficacy and reduce adverse side effects often associated with traditional chemotherapy. Key oncoprotein and oncogene targets are rapidly being identified based on their expression, pathogenesis and clinical outcome. One such protein target is cyclooxygenase-2 (COX-2), which is highly expressed in various cancers. Research findings suggest that resveratrol (3,5,4'-trihydroxy-trans-stilbene) demonstrates non-selective COX-2 inhibition. We report herein that resveratrol (RSVL) directly binds with COX-2 and this binding is absolutely required for RSVL's inhibition of the ability of human colon adenocarcinoma HT-29 cells to form colonies in soft agar. Binding of COX-2 with RSVL was compared with two RSVL analogues, 3,3’,4’,5’5’-pentahydroxy-trans-stilbene (RSVL-2) or 3,4’,5-trimethoxy-trans-stilbene (RSVL-3). The results indicated that COX-2 binds with RSVL-2 more strongly than with RSVL, but does not bind with RSVL-3. RSVL or RSVL-2, but not RSVL-3, inhibited COX-2-mediated PGE2 production in vitro and ex vivo. HT-29 human colon adenocarcinoma cells express high levels of COX-2 and either RSVL or RSVL-2, but not RSVL-3, suppressed anchorage independent growth of these cells in soft agar. RSVL or RSVL-2 (not RSVL-3) suppressed growth of COX-2+/+ cells by 60 or 80%, respectively. Notably, cells deficient in COX-2 were unresponsive to RSVL or RSVL-2. These data suggest that the anticancer effects of RSVL or RSLV-2 might be mediated directly through COX-2. PMID:18381589

  8. Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis

    PubMed Central

    2012-01-01

    Introduction Cecal ligation and puncture (CLP) is an inflammatory condition that leads to multisystemic organ failure. Flavocoxid, a dual inhibitor of cyclooxygenase (COX-2) and 5-lipoxygenase (5-LOX), has been shown in vitro to possess antiinflammatory activity in lipopolysaccharide (LPS)-stimulated rat macrophages by reducing nuclear factor (NF)-κB activity and COX-2, 5-LOX and inducible nitric oxide synthase (iNOS) expression. The aim of this study was to evaluate the effects of flavocoxid in a murine model of CLP-induced polymicrobial sepsis. Methods C57BL/6J mice were subjected to CLP or sham operation. In a first set of experiments, an intraperitoneal injection of flavocoxid (20 mg/kg) or vehicle was administered 1 hour after surgery and repeated every 12 hours. Survival rate was monitored every 24 hours throughout 120 hours. Furthermore, additional groups of sham and CLP mice were killed 18 hours after surgical procedures for blood-sample collection and the lung and liver were collected for biomolecular, biochemical and histopathologic studies. Results COX-2, 5-LOX, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-10, extracellular-regulated-kinase 1/2 (ERK), JunN-terminal kinase (JNK), NF-κB, and β-arrestin 2 protein expression were evaluated in lung and liver with Western blot analysis. In addition, leukotriene B4 (LTB4), prostaglandin E2 (PGE2), cytokines, and lipoxin A4 serum content were measured with an enzyme-linked immunosorbent assay (ELISA). Flavocoxid administration improved survival, reduced the expression of NF-κB, COX-2, 5-LOX, TNF-α and IL-6 and increased IL-10 production. Moreover, flavocoxid inhibited the mitogen-activated protein kinases (MAPKs) pathway, preserved β-arrestin 2 expression, reduced blood LTB4, PGE2, TNF-α and IL-6, and increased IL-10 and lipoxin A4 serum levels. The treatment with flavocoxid also protected against the histologic damage induced by CLP and reduced the myeloperoxidase (MPO) activity in the lung

  9. Flavocoxid, a dual inhibitor of COX-2 and 5-LOX of natural origin, attenuates the inflammatory response and protects mice from sepsis.

    PubMed

    Bitto, Alessandra; Minutoli, Letteria; David, Antonio; Irrera, Natasha; Rinaldi, Mariagrazia; Venuti, Francesco S; Squadrito, Francesco; Altavilla, Domenica

    2012-02-22

    Cecal ligation and puncture (CLP) is an inflammatory condition that leads to multisystemic organ failure. Flavocoxid, a dual inhibitor of cyclooxygenase (COX-2) and 5-lipoxygenase (5-LOX), has been shown in vitro to possess antiinflammatory activity in lipopolysaccharide (LPS)-stimulated rat macrophages by reducing nuclear factor (NF)-κB activity and COX-2, 5-LOX and inducible nitric oxide synthase (iNOS) expression. The aim of this study was to evaluate the effects of flavocoxid in a murine model of CLP-induced polymicrobial sepsis. C57BL/6J mice were subjected to CLP or sham operation. In a first set of experiments, an intraperitoneal injection of flavocoxid (20 mg/kg) or vehicle was administered 1 hour after surgery and repeated every 12 hours. Survival rate was monitored every 24 hours throughout 120 hours. Furthermore, additional groups of sham and CLP mice were killed 18 hours after surgical procedures for blood-sample collection and the lung and liver were collected for biomolecular, biochemical and histopathologic studies. COX-2, 5-LOX, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-10, extracellular-regulated-kinase 1/2 (ERK), JunN-terminal kinase (JNK), NF-κB, and β-arrestin 2 protein expression were evaluated in lung and liver with Western blot analysis. In addition, leukotriene B4 (LTB4), prostaglandin E2 (PGE2), cytokines, and lipoxin A4 serum content were measured with an enzyme-linked immunosorbent assay (ELISA). Flavocoxid administration improved survival, reduced the expression of NF-κB, COX-2, 5-LOX, TNF-α and IL-6 and increased IL-10 production. Moreover, flavocoxid inhibited the mitogen-activated protein kinases (MAPKs) pathway, preserved β-arrestin 2 expression, reduced blood LTB4, PGE2, TNF-α and IL-6, and increased IL-10 and lipoxin A4 serum levels. The treatment with flavocoxid also protected against the histologic damage induced by CLP and reduced the myeloperoxidase (MPO) activity in the lung and liver. Flavocoxid

  10. COX-2 contributes to LPS-induced Stat3 activation and IL-6 production in microglial cells

    PubMed Central

    Zhu, Jie; Li, Shuzhen; Zhang, Yue; Ding, Guixia; Zhu, Chunhua; Huang, Songming; Zhang, Aihua; Jia, Zhanjun; Li, Mei

    2018-01-01

    Many stimuli including lipopolysaccharide (LPS) could activate microglial cells to subsequently cause inflammatory nerve injury. However, the mechanism of LPS-induced neuroinflammation in microglial cells is still elusive. Thus, the present study was undertaken to examine the role of COX-2 in mediating the activation of Stat3 and the production of IL-6 in BV2 cells challenged with LPS. After 24 h treatment, LPS dose-dependently enhanced COX-2 expression at both mRNA and protein levels. Meanwhile, IL-6 with other inflammatory cytokines including IL-1β, TNF-α, and MCP-1 were similarly enhanced by LPS. Then a specific COX-2 inhibitor (NS-398) was administered to BV2 before LPS treatment. Significantly, COX-2 inhibition suppressed the upregulation of IL-6 at both mRNA and protein levels in line with the trend blockade on IL-1β, TNF-α, and MCP-1. Stat3 drives proinflammatory signaling pathways and contributes to IL-6 production via a transcriptional mechanism in many diseases. Here we found that inhibition of COX-2 entirely blocked LPS-induced Stat3 phosphorylation, which might contribute to the blockade of IL-6 production to some extent. Meanwhile, COX-2 siRNA approach largely reproduced the phenotypes shown by specific COX-2 inhibitor in LPS-treated BV2 cells. Together, these findings suggested that COX-2 might contribute to LPS-induced IL-6 production possibly through activating Stat3 signaling pathway in microglial cells. PMID:29636886

  11. MicroRNA-144 is regulated by CP2 and decreases COX-2 expression and PGE2 production in mouse ovarian granulosa cells

    PubMed Central

    Zhou, Jiawei; Lei, Bin; Li, Huanan; Zhu, Lihua; Wang, Lei; Tao, Hu; Mei, Shuqi; Li, Fenge

    2017-01-01

    Mammalian folliculogenesis is a complex process in which primordial follicles develop into pre-ovulatory follicles, followed by ovulation to release mature oocytes. In this study, we explored the role of miR-144 in ovulation. miR-144 was one of the differentially expressed microRNAs, which showed 5.59-fold changes, in pre-ovulatory ovarian follicles between Large White and Chinese Taihu sows detected by Solexa deep sequencing. We demonstrated that overexpression of miR-144 significantly decreased the luciferase reporter activity under the control of the cyclooxygenase-2 (COX-2) or mothers against decapentaplegic homologue 4 (Smad4) 3'-untranslated region (3'-UTR) and suppressed COX-2 and Smad4 expression. In contrast, a miR-144 inhibitor increased COX-2 and Smad4 expression in mouse granulosa cells (mGCs). Meanwhile, Smad4 upregulated COX-2 expression, but this effect was abolished when the mGCs were treated with the transforming growth factor beta signalling pathway inhibitor SB431542. Moreover, luciferase reporter, chromatin immunoprecipitation and electrophoretic mobility shift assay results showed that the transcription factor CP2 upregulated miR-144 expression, which partially contributed to the suppression of COX-2 in mGCs. Both CP2 and miR-144 alter prostaglandin E2 (PGE2) production by regulating COX-2 expression. In addition, miR-144 regulated mGC apoptosis and affected follicular atresia, but these activities did not appear to be through COX-2 and Smad4. Taken together, we revealed an important CP2/miR-144/COX-2/PGE2/ovulation pathway in mGCs. PMID:28182010

  12. Prospective performance evaluation of selected common virtual screening tools. Case study: Cyclooxygenase (COX) 1 and 2.

    PubMed

    Kaserer, Teresa; Temml, Veronika; Kutil, Zsofia; Vanek, Tomas; Landa, Premysl; Schuster, Daniela

    2015-01-01

    Computational methods can be applied in drug development for the identification of novel lead candidates, but also for the prediction of pharmacokinetic properties and potential adverse effects, thereby aiding to prioritize and identify the most promising compounds. In principle, several techniques are available for this purpose, however, which one is the most suitable for a specific research objective still requires further investigation. Within this study, the performance of several programs, representing common virtual screening methods, was compared in a prospective manner. First, we selected top-ranked virtual screening hits from the three methods pharmacophore modeling, shape-based modeling, and docking. For comparison, these hits were then additionally predicted by external pharmacophore- and 2D similarity-based bioactivity profiling tools. Subsequently, the biological activities of the selected hits were assessed in vitro, which allowed for evaluating and comparing the prospective performance of the applied tools. Although all methods performed well, considerable differences were observed concerning hit rates, true positive and true negative hits, and hitlist composition. Our results suggest that a rational selection of the applied method represents a powerful strategy to maximize the success of a research project, tightly linked to its aims. We employed cyclooxygenase as application example, however, the focus of this study lied on highlighting the differences in the virtual screening tool performances and not in the identification of novel COX-inhibitors. Copyright © 2015 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  13. IL1{beta}-mediated Stromal COX-2 signaling mediates proliferation and invasiveness of colonic epithelial cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc, Miami, FL 33173; Zhu, Min

    2012-11-15

    COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1{beta} in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts withmore » or without stimulation of IL-1{beta}, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1{beta}. Further analysis indicated that the major COX-2 product, prostaglandin E{sub 2}, directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1{beta}. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1{beta} in the fibroblasts.« less

  14. MAPK/ERK signal pathway involved expression of COX-2 and VEGF by IL-1β induced in human endometriosis stromal cells in vitro

    PubMed Central

    Huang, Fengying; Cao, Jing; Liu, Qiuhong; Zou, Ying; Li, Hongyun; Yin, Tuanfang

    2013-01-01

    Objective: Now there are more and more evidences that Cyclooxygenase-2 (COX-2) plays an important role in angiogenesis of endometriosis (EMs). Vascular endothelial growth factor (VEGF) has a potent angiogenic activity. However, it is worth studying about the regulating mechanism of COX-2/COX-1 and VEGF in the development of human endometriosis in vitro. The current study was designed to investigate the effect of 4 cytokines on COX-2/COX-1 expression and the effect of IL-1β on VEGF release in human endometriosis stromal cells (ESC), and to explore the related signaling pathways involved in vitro. Methods: Isolation, culture and identification of ESC. Cells were treated with 4 cytokines, and the inhibitor mitogen-activated protein-Erk (MEK) and the inhibitor p38 mitogen-activated protein kinase (MAPK) prior to adding cytokine IL-1β. COX-2 protein expression was measured by western blot and VEGF secretion was determined by ELISA. Results: Among four kinds of cytokines, IL-1β treatment increased COX-2 protein expression and VEGF release in three ESC, and TNF-α had the same effect on COX-2 protein level as IL-1β only in ectopic and eutopic ESC, and MCSF had only slight effect on ectopic ESC. In contrast, cytokines had no effect on COX-1 expression. We also demonstrated that MAPK reduced the synthesis of COX-2 by IL-1β induced. COX-2 inhibitor reduced VEGF release by IL-1β induced. Conclusions: i) In human ESC in vitro, IL-1β up-regulated the COX-2 expression through the activation of p38 MAPK pathway, and not to COX-1. ii) Up-regulation of VEGF level by IL-1β treatment was found in human endometriosis stromal cell and COX-2 inhibitor was involved in this process. PMID:24133591

  15. Ku80 cooperates with CBP to promote COX-2 expression and tumor growth

    PubMed Central

    Qin, Yu; Xuan, Yang; Jia, Yunlu; Hu, Wenxian; Yu, Wendan; Dai, Meng; Li, Zhenglin; Yi, Canhui; Zhao, Shilei; Li, Mei; Du, Sha; Cheng, Wei; Xiao, Xiangsheng; Chen, Yiming; Wu, Taihua; Meng, Songshu; Yuan, Yuhui; Liu, Quentin; Huang, Wenlin; Guo, Wei; Wang, Shusen; Deng, Wuguo

    2015-01-01

    Cyclooxygenase-2 (COX-2) plays an important role in lung cancer development and progression. Using streptavidin-agarose pulldown and proteomics assay, we identified and validated Ku80, a dimer of Ku participating in the repair of broken DNA double strands, as a new binding protein of the COX-2 gene promoter. Overexpression of Ku80 up-regulated COX-2 promoter activation and COX-2 expression in lung cancer cells. Silencing of Ku80 by siRNA down-regulated COX-2 expression and inhibited tumor cell growth in vitro and in a xenograft mouse model. Ku80 knockdown suppressed phosphorylation of ERK, resulting in an inactivation of the MAPK pathway. Moreover, CBP, a transcription co-activator, interacted with and acetylated Ku80 to co-regulate the activation of COX-2 promoter. Overexpression of CBP increased Ku80 acetylation, thereby promoting COX-2 expression and cell growth. Suppression of CBP by a CBP-specific inhibitor or siRNA inhibited COX-2 expression as well as tumor cell growth. Tissue microarray immunohistochemical analysis of lung adenocarcinomas revealed a strong positive correlation between levels of Ku80 and COX-2 and clinicopathologic variables. Overexpression of Ku80 was associated with poor prognosis in patients with lung cancers. We conclude that Ku80 promotes COX-2 expression and tumor growth and is a potential therapeutic target in lung cancer. PMID:25797267

  16. Novel 1-[4-(Aminosulfonyl)phenyl]-1H-1,2,4-triazole derivatives with remarkable selective COX-2 inhibition: design, synthesis, molecular docking, anti-inflammatory and ulcerogenicity studies.

    PubMed

    Abuo-Rahma, Gamal El-Din A A; Abdel-Aziz, Mohamed; Farag, Nahla A; Kaoud, Tamer S

    2014-08-18

    A novel series of 1,2,4-triazole derivatives were synthesized and confirmed with different spectroscopic techniques. The prepared compounds exhibited remarkable anti-inflammatory activity comparable to that of indomethacin and celecoxib after 3 h. The tested compounds exhibited very low incidence of gastric ulceration compared to indomethacin. Most of the newly developed compounds showed excellent selectivity towards human COX-2 with selectivity indices (COX-1 IC50/COX-2 IC50) ranged from 62.5 to 2127. Docking studies results revealed that the highly selective tested compounds 6h and 6j showed lower CDOCKER energies, which means that they require less energy for proper interaction with the enzyme. The additional H-bonds with the oxygen of the amide and/or H of NH of the amide with the amino acid residues may be responsible for the higher binding affinity of this group of compounds towards COX-2. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. MicroRNA-128 inhibits proliferation and invasion of glioma cells by targeting COX-2.

    PubMed

    Lin, Yihai; Wu, Zhangyi

    2018-06-05

    MicroRNAs (miRNA), a class of small noncoding RNAs, regulates message RNA (mRNA) by targeting the 3'-untranslated region (3'-UTR) resulting in suppression of gene expression. In this study, we identified the expression and function of miR-128, which was found to be downregulated in glioma tissues and glioma cells by real time PCR. Overexpression of miR-128 mimics into LN229 and U251 cells could inhibit proliferation and invasion of glioma cells. However, the inhibitory effects of miR-128 mimics on the invasion and proliferation of glioma cells were reversed by overexpression of cyclooxygenase-2 (COX-2). Our data showed that COX-2 was a candidate target of miR-128. Luciferase activity of 3'-UTR of COX-2 was reduced in the presence of miR-128. Additionally, miR-128 obviously decreased COX-2 mRNA stability determined by real time PCR. Contrarily, we found that miR-128 inhibitor significantly increased the COX-2 mRNA expression, and elevated the protein expression of MMP9 and ki67, and promoted the proliferation of glioma cells. Furthermore, luciferase activity of the 3'-UTR was upregulated by miR-128 inhibitor. All of these results supported that miR-128 was a direct regulator of COX-2. Further studies proved that COX-2 was elevated in glioma tissues and its expression was negatively correlated with the levels of miR-128. These findings may establish miR-128 as a new potential target for the treatment of patients with gliomas. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Anti-tumor effect and mechanism of cyclooxygenase-2 inhibitor through matrix metalloproteinase 14 pathway in PANC-1 cells.

    PubMed

    Li, Siyuan; Gu, Zhuoyu; Xiao, Zhiwei; Zhou, Ting; Li, Jun; Sun, Kan

    2015-01-01

    To investigate whether celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can attenuate proliferation, migration, invasion and MMP-14 expression in pancreatic cancer cells PANC-1 and the possible anti-tumor mechanism of celecoxib. Human pancreatic cancer cell line PANC-1 cells were treated with diverse concentrations of celecoxib (20, 60, 100 μmol/L). Cell proliferation, invasion and migration capabilities were measured by MTT colorimetry, transwell invasion assay, and scratch assay separately. At the same time, the protein expression of COX-2 and MMP-14 was assessed by ELISA. The capabilities of proliferation, invasion and migration in PANC-1 cells were attenuated in a concentration-dependent manner after treated with celecoxib, followed by the down-regulation of the protein expression of COX-2 and MMP-14. In addition, MMP-14 expression was significantly positively correlated with COX-2 expression. COX-2 inhibitor celecoxib can inhibit the proliferation, invasion and migration of PANC-1 cells via down-regulating the expression of MMP-14 in a concentration-dependent manner, thus contributing to its anti-tumor effect in pancreatic cancer.

  19. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observedmore » radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.« less

  20. RanBP2 modulates Cox11 and hexokinase I activities and haploinsufficiency of RanBP2 causes deficits in glucose metabolism.

    PubMed

    Aslanukov, Azamat; Bhowmick, Reshma; Guruju, Mallikarjuna; Oswald, John; Raz, Dorit; Bush, Ronald A; Sieving, Paul A; Lu, Xinrong; Bock, Cheryl B; Ferreira, Paulo A

    2006-10-01

    The Ran-binding protein 2 (RanBP2) is a large multimodular and pleiotropic protein. Several molecular partners with distinct functions interacting specifically with selective modules of RanBP2 have been identified. Yet, the significance of these interactions with RanBP2 and the genetic and physiological role(s) of RanBP2 in a whole-animal model remain elusive. Here, we report the identification of two novel partners of RanBP2 and a novel physiological role of RanBP2 in a mouse model. RanBP2 associates in vitro and in vivo and colocalizes with the mitochondrial metallochaperone, Cox11, and the pacemaker of glycolysis, hexokinase type I (HKI) via its leucine-rich domain. The leucine-rich domain of RanBP2 also exhibits strong chaperone activity toward intermediate and mature folding species of Cox11 supporting a chaperone role of RanBP2 in the cytosol during Cox11 biogenesis. Cox11 partially colocalizes with HKI, thus supporting additional and distinct roles in cell function. Cox11 is a strong inhibitor of HKI, and RanBP2 suppresses the inhibitory activity of Cox11 over HKI. To probe the physiological role of RanBP2 and its role in HKI function, a mouse model harboring a genetically disrupted RanBP2 locus was generated. RanBP2(-/-) are embryonically lethal, and haploinsufficiency of RanBP2 in an inbred strain causes a pronounced decrease of HKI and ATP levels selectively in the central nervous system. Inbred RanBP2(+/-) mice also exhibit deficits in growth rates and glucose catabolism without impairment of glucose uptake and gluconeogenesis. These phenotypes are accompanied by a decrease in the electrophysiological responses of photosensory and postreceptoral neurons. Hence, RanBP2 and its partners emerge as critical modulators of neuronal HKI, glucose catabolism, energy homeostasis, and targets for metabolic, aging disorders and allied neuropathies.

  1. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis

    PubMed Central

    Aich, Abhishek; Wang, Cong; Chowdhury, Arpita; Ronsör, Christin; Pacheu-Grau, David; Richter-Dennerlein, Ricarda; Dennerlein, Sven

    2018-01-01

    Cytochrome c oxidase of the mitochondrial oxidative phosphorylation system reduces molecular oxygen with redox equivalent-derived electrons. The conserved mitochondrial-encoded COX1- and COX2-subunits are the heme- and copper-center containing core subunits that catalyze water formation. COX1 and COX2 initially follow independent biogenesis pathways creating assembly modules with subunit-specific, chaperone-like assembly factors that assist in redox centers formation. Here, we find that COX16, a protein required for cytochrome c oxidase assembly, interacts specifically with newly synthesized COX2 and its copper center-forming metallochaperones SCO1, SCO2, and COA6. The recruitment of SCO1 to the COX2-module is COX16- dependent and patient-mimicking mutations in SCO1 affect interaction with COX16. These findings implicate COX16 in CuA-site formation. Surprisingly, COX16 is also found in COX1-containing assembly intermediates and COX2 recruitment to COX1. We conclude that COX16 participates in merging the COX1 and COX2 assembly lines. PMID:29381136

  2. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    PubMed

    Zhuang, Mingzhu; Zhao, Mouming; Qiu, Huijuan; Shi, Dingbo; Wang, Jingshu; Tian, Yun; Lin, Lianzhu; Deng, Wuguo

    2014-01-01

    Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC) cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate) had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides) abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  3. COX-derived prostanoid pathways in gastrointestinal cancer development and progression: novel targets for prevention and intervention.

    PubMed

    Cathcart, Mary-Clare; O'Byrne, Kenneth J; Reynolds, John V; O'Sullivan, Jacintha; Pidgeon, Graham P

    2012-01-01

    Arachidonic acid metabolism through cyclooxygenase (COX) pathways leads to the generation of biologically active eicosanoids. Eicosanoid expression levels vary during development and progression of gastrointestinal (GI) malignancies. COX-2 is the major COX-isoform responsible for G.I. cancer development/progression. COX-2 expression increases during progression from a normal to cancerous state. Evidence from observational studies has demonstrated that chronic NSAID use reduces the risk of cancer development, while both incidence and risk of death due to G.I. cancers were significantly reduced by daily aspirin intake. A number of randomized controlled trials (APC trial, Prevention of Sporadic Adenomatous Polyps trial, APPROVe trial) have also shown a significant protective effect in patients receiving selective COX-2 inhibitors. However, chronic use of selective COX-2 inhibitors at high doses was associated with increased cardiovascular risk, while NSAIDs have also been associated with increased risk. More recently, downstream effectors of COX-signaling have been investigated in cancer development/progression. PGE(2), which binds to both EP and PPAR receptors, is the major prostanoid implicated in the carcinogenesis of G.I. cancers. The role of TXA(2) in G.I. cancers has also been examined, although further studies are required to uncover its role in carcinogenesis. Other prostanoids investigated include PGD(2) and its metabolite 15d-PGJ2, PGF(1α) and PGI(2). Targeting these prostanoids in G.I. cancers has the promise of avoiding cardiovascular toxicity associated with chronic selective COX-2 inhibition, while maintaining anti-tumor reactivity. A progressive sequence from normal to pre-malignant to a malignant state has been identified in G.I. cancers. In this review, we will discuss the role of the COX-derived prostanoids in G.I. cancer development and progression. Targeting these downstream prostanoids for chemoprevention and/or treatment of G.I. cancers will

  4. Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling.

    PubMed

    Al-Rashed, Fahad; Calay, Damien; Lang, Marie; Thornton, Clare C; Bauer, Andrea; Kiprianos, Allan; Haskard, Dorian O; Seneviratne, Anusha; Boyle, Joseph J; Schönthal, Alex H; Wheeler-Jones, Caroline P; Mason, Justin C

    2018-04-19

    Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα (Thr172) and CREB-1 (Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65 (Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs.

  5. A comparison of cost effectiveness using data from randomized trials or actual clinical practice: selective cox-2 inhibitors as an example.

    PubMed

    van Staa, Tjeerd-Pieter; Leufkens, Hubert G; Zhang, Bill; Smeeth, Liam

    2009-12-01

    Data on absolute risks of outcomes and patterns of drug use in cost-effectiveness analyses are often based on randomised clinical trials (RCTs). The objective of this study was to evaluate the external validity of published cost-effectiveness studies by comparing the data used in these studies (typically based on RCTs) to observational data from actual clinical practice. Selective Cox-2 inhibitors (coxibs) were used as an example. The UK General Practice Research Database (GPRD) was used to estimate the exposure characteristics and individual probabilities of upper gastrointestinal (GI) events during current exposure to nonsteroidal anti-inflammatory drugs (NSAIDs) or coxibs. A basic cost-effectiveness model was developed evaluating two alternative strategies: prescription of a conventional NSAID or coxib. Outcomes included upper GI events as recorded in GPRD and hospitalisation for upper GI events recorded in the national registry of hospitalisations (Hospital Episode Statistics) linked to GPRD. Prescription costs were based on the prescribed number of tables as recorded in GPRD and the 2006 cost data from the British National Formulary. The study population included over 1 million patients prescribed conventional NSAIDs or coxibs. Only a minority of patients used the drugs long-term and daily (34.5% of conventional NSAIDs and 44.2% of coxibs), whereas coxib RCTs required daily use for at least 6-9 months. The mean cost of preventing one upper GI event as recorded in GPRD was US$104k (ranging from US$64k with long-term daily use to US$182k with intermittent use) and US$298k for hospitalizations. The mean costs (for GPRD events) over calendar time were US$58k during 1990-1993 and US$174k during 2002-2005. Using RCT data rather than GPRD data for event probabilities, the mean cost was US$16k with the VIGOR RCT and US$20k with the CLASS RCT. The published cost-effectiveness analyses of coxibs lacked external validity, did not represent patients in actual clinical

  6. Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury.

    PubMed

    Shiow, Lawrence R; Favrais, Geraldine; Schirmer, Lucas; Schang, Anne-Laure; Cipriani, Sara; Andres, Christian; Wright, Jaclyn N; Nobuta, Hiroko; Fleiss, Bobbi; Gressens, Pierre; Rowitch, David H

    2017-12-01

    Inflammation is a major risk factor for neonatal white matter injury (NWMI), which is associated with later development of cerebral palsy. Although recent studies have demonstrated maturation arrest of oligodendrocyte progenitor cells (OPCs) in NWMI, the identity of inflammatory mediators with direct effects on OPCs has been unclear. Here, we investigated downstream effects of pro-inflammatory IL-1β to induce cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) production in white matter. First, we assessed COX2 expression in human fetal brain and term neonatal brain affected by hypoxic-ischemic encephalopathy (HIE). In the developing human brain, COX2 was expressed in radial glia, microglia, and endothelial cells. In human term neonatal HIE cases with subcortical WMI, COX2 was strongly induced in reactive astrocytes with "A2" reactivity. Next, we show that OPCs express the EP1 receptor for PGE2, and PGE2 acts directly on OPCs to block maturation in vitro. Pharmacologic blockade with EP1-specific inhibitors (ONO-8711, SC-51089), or genetic deficiency of EP1 attenuated effects of PGE2. In an IL-1β-induced model of NWMI, astrocytes also exhibit "A2" reactivity and induce COX2. Furthermore, in vivo inhibition of COX2 with Nimesulide rescues hypomyelination and behavioral impairment. These findings suggest that neonatal white matter astrocytes can develop "A2" reactivity that contributes to OPC maturation arrest in NWMI through induction of COX2-PGE2 signaling, a pathway that can be targeted for neonatal neuroprotection. © 2017 Wiley Periodicals, Inc.

  7. Ubiquitin-proteasomal degradation of COX-2 in TGF-β stimulated human endometrial cells is mediated through endoplasmic reticulum mannosidase I.

    PubMed

    Singh, Mohan; Chaudhry, Parvesh; Parent, Sophie; Asselin, Eric

    2012-01-01

    Cyclooxygenase (COX)-2 is a key regulatory enzyme in the production of prostaglandins (PG) during various physiological processes. Mechanisms of COX-2 regulation in human endometrial stromal cells (human endometrial stromal cells) are not fully understood. In this study, we investigate the role of TGF-β in the regulation of COX-2 in human uterine stromal cells. Each TGF-β isoform decreases COX-2 protein level in human uterine stromal cells in Smad2/3-dependent manner. The decrease in COX-2 is accompanied by a decrease in PG synthesis. Knockdown of Smad4 using specific small interfering RNA prevents the decrease in COX-2 protein, confirming that Smad pathway is implicated in the regulation of COX-2 expression in human endometrial stromal cells. Pretreatment with 26S proteasome inhibitor, MG132, significantly restores COX-2 protein and PG synthesis, indicating that COX-2 undergoes proteasomal degradation in the presence of TGF-β. In addition, each TGF-β isoform up-regulates endoplasmic reticulum (ER)-mannosidase I (ERManI) implying that COX-2 degradation is mediated through ER-associated degradation pathway in these cells. Furthermore, inhibition of ERManI activity using the mannosidase inhibitor (kifunensine), or small interfering RNA-mediated knockdown of ERManI, prevents TGF-β-induced COX-2 degradation. Taken together, these studies suggest that TGF-β promotes COX-2 degradation in a Smad-dependent manner by up-regulating the expression of ERManI and thereby enhancing ER-associated degradation and proteasomal degradation pathways.

  8. ERK1/2/COX-2/PGE2 signaling pathway mediates GPR91-dependent VEGF release in streptozotocin-induced diabetes

    PubMed Central

    Li, Tingting; Hu, Jianyan; Du, Shanshan; Chen, Yongdong; Wang, Shuai

    2014-01-01

    Purpose Retinal vascular dysfunction caused by vascular endothelial growth factor (VEGF) is the major pathological change that occurs in diabetic retinopathy (DR). It has recently been demonstrated that G protein-coupled receptor 91 (GPR91) plays a major role in both vasculature development and retinal angiogenesis. In this study, we examined the signaling pathways involved in GPR91-dependent VEGF release during the early stages of retinal vascular change in streptozotocin-induced diabetes. Methods Diabetic rats were assigned randomly to receive intravitreal injections of shRNA lentiviral particles targeting GPR91 (LV.shGPR91) or control particles (LV.shScrambled). Accumulation of succinate was assessed by gas chromatography-mass spectrometry (GC-MS). At 14 weeks, the ultrastructure and function of the retinal vessels of diabetic retinas with or without shRNA treatment were assessed using hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and Evans blue dye permeability. The expression of GPR91, extracellular signal-regulated kinases 1 and 2 (ERK1/2) and cyclooxygenase-2 (COX-2) were measured using immunofluorescence and western blotting. COX-2 and VEGF mRNA were determined by quantitative RT–PCR. Prostaglandin E2 (PGE2) and VEGF secretion were detected using an enzyme-linked immunosorbent assay. Results Succinate exhibited abundant accumulation in diabetic rat retinas. The retinal telangiectatic vessels, basement membrane thickness, and Evans blue dye permeability were attenuated by treatment with GPR91 shRNA. In diabetic rats, knockdown of GPR91 inhibited the activities of ERK1/2 and COX-2 as well as the expression of PGE2 and VEGF. Meanwhile, COX-2, PGE2, and VEGF expression was inhibited by ERK1/2 inhibitor U0126 and COX-2 inhibitor NS-398. Conclusions Our data suggest that hyperglycemia causes succinate accumulation and GPR91 activity in retinal ganglion cells, which mediate VEGF-induced retinal vascular change via the ERK1/2/COX-2

  9. Luteinized unruptured follicle syndrome increased by inactive disease and selective cyclooxygenase 2 inhibitors in women with inflammatory arthropathies.

    PubMed

    Micu, Mihaela C; Micu, Romeo; Ostensen, Monika

    2011-09-01

    Administration of nonsteroidal antiinflammatory drugs (NSAIDs) may impair fertility. The occurrence of the luteinized unruptured follicle (LUF) syndrome was assessed in women with inflammatory arthropathies exposed to NSAIDs and compared to that in nonexposed women. Fourteen patients with inflammatory rheumatic disease, 29 women with noninflammatory musculoskeletal conditions, and 449 women not exposed to NSAIDs were studied by intravaginal ultrasound monitoring for follicular development and ovulation in 1 or more menstrual cycles. Disease activity was assessed in inflammatory rheumatic disease. In 59 monitored cycles of patients with continuous NSAID exposure, 35.6% of LUF syndromes occurred compared to 3.4% of LUF syndromes in untreated women (P < 0.001). Etoricoxib was responsible for 75% of LUF syndromes in patients exposed continuously, whereas diclofenac generated 15% of LUF syndromes. An ibuprofen dosage of 1,600 mg/day did not induce LUF syndrome either at continuous periovulatory or discontinuous exposure. Interestingly, the frequency of LUF syndrome was 46.2% in patients with inactive inflammatory disease compared to 15% in patients with active disease (P = 0.023). Etoricoxib generated LUF syndrome in 94.2% of the cases with inactive disease versus 28.6% in patients with active disease (P = 0.003). NSAIDs increased the risk of the LUF syndrome, particularly in patients with inactive disease. The selective cyclooxygenase 2 (COX-2) inhibitor etoricoxib was a more potent inductor of LUF syndrome than nonselective COX inhibitors. Continuous periovulatory exposure to NSAIDs should be avoided when planning a pregnancy in patients with rheumatic diseases. Copyright © 2011 by the American College of Rheumatology.

  10. The Medicinal Timber Canarium patentinervium Miq. (Burseraceae Kunth.) Is an Anti-Inflammatory Bioresource of Dual Inhibitors of Cyclooxygenase (COX) and 5-Lipoxygenase (5-LOX).

    PubMed

    Mogana, R; Teng-Jin, K; Wiart, C

    2013-01-01

    The barks and leaves extracts of Canarium patentinervium Miq. (Burseraceae Kunth.) were investigated for cyclooxygenase (COX) and 5-lipoxygenase (LOX) inhibition via in vitro models. The corresponding antioxidative power of the plant extract was also tested via nonenzyme and enzyme in vitro assays. The ethanolic extract of leaves inhibited the enzymatic activity of 5-LOX, COX-1, and COX-2 with IC50 equal to 49.66 ± 0.02 μg/mL, 0.60 ± 0.01 μg/mL, and 1.07 ± 0.01 μg/mL, respectively, with selective COX-2 activity noted in ethanolic extract of barks with COX-1/COX-2 ratio of 1.22. The ethanol extract of barks confronted oxidation in the ABTS, DPPH, and FRAP assay with EC50 values equal to 0.93 ± 0.01 μg/mL, 2.33 ± 0.02 μg/mL, and 67.00 ± 0.32 μg/mL, respectively, while the ethanol extract of leaves confronted oxidation in β-carotene bleaching assay and superoxide dismutase (SOD) assay with EC50 value of 6.04 ± 0.02 μg/mL and IC50 value of 3.05 ± 0.01 μg/mL. The ethanol extract acts as a dual inhibitor of LOX and COX enzymes with potent antioxidant capacity. The clinical significance of these data is quite clear that they support a role for Canarium patentinervium Miq. (Burseraceae Kunth.) as a source of lead compounds in the management of inflammatory diseases.

  11. Inhibition of 5-LOX, COX-1, and COX-2 increases tendon healing and reduces muscle fibrosis and lipid accumulation after rotator cuff repair.

    PubMed

    Oak, Nikhil R; Gumucio, Jonathan P; Flood, Michael D; Saripalli, Anjali L; Davis, Max E; Harning, Julie A; Lynch, Evan B; Roche, Stuart M; Bedi, Asheesh; Mendias, Christopher L

    2014-12-01

    The repair and restoration of function after chronic rotator cuff tears are often complicated by muscle atrophy, fibrosis, and fatty degeneration of the diseased muscle. The inflammatory response has been implicated in the development of fatty degeneration after cuff injuries. Licofelone is a novel anti-inflammatory drug that inhibits 5-lipoxygenase (5-LOX), as well as cyclooxygenase (COX)-1 and COX-2 enzymes, which play important roles in inducing inflammation after injuries. While previous studies have demonstrated that nonsteroidal anti-inflammatory drugs and selective inhibitors of COX-2 (coxibs) may prevent the proper healing of muscles and tendons, studies about bone and cartilage have demonstrated that drugs that inhibit 5-LOX concurrently with COX-1 and COX-2 may enhance tissue regeneration. After the repair of a chronic rotator cuff tear in rats, licofelone would increase the load to failure of repaired tendons and increase the force production of muscle fibers. Controlled laboratory study. Rats underwent supraspinatus release followed by repair 28 days later. After repair, rats began a treatment regimen of either licofelone or a vehicle for 14 days, at which time animals were euthanized. Supraspinatus muscles and tendons were then subjected to contractile, mechanical, histological, and biochemical analyses. Compared with controls, licofelone-treated rats had a grossly apparent decrease in inflammation and increased fibrocartilage formation at the enthesis, along with a 62% increase in the maximum load to failure and a 51% increase in peak stress to failure. Licofelone resulted in a marked reduction in fibrosis and lipid content in supraspinatus muscles as well as reduced expression of several genes involved in fatty infiltration. Despite the decline in fibrosis and fat accumulation, muscle fiber specific force production was reduced by 23%. The postoperative treatment of cuff repair with licofelone may reduce fatty degeneration and enhance the development

  12. The COX-2 inhibitor nimesulide suppresses superoxide and 8-hydroxy-deoxyguanosine formation, and stimulates apoptosis in mucosa during early colonic inflammation in rats.

    PubMed

    Tardieu, D; Jaeg, J P; Deloly, A; Corpet, D E; Cadet, J; Petit, C R

    2000-05-01

    As we have shown previously [Tardieu,D., Jaeg,J.P., Cadet,J., Embvani,E., Corpet,D.E. and Petit,C. (1998) Cancer Lett, 134, 1-5], a 48-h treatment of 6% dextran sodium sulphate (DSS) in drinking water led to a reproducible 2-fold increase of the mutagenic oxidative lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in colonic mucosa DNA of rats in vivo. The aim of this study was to test the effect of nimesulide, a preferential COX-2 inhibitor, on the DSS-induced 8-oxodGuo increase. We show that nimesulide when administered orally, simultaneously with DSS at 5 mg/kg/day, not only totally prevents 8-oxodGuo formation but also suppresses the 5-fold increase of superoxide induced by DSS in the colonic mucosa. This was measured by in vivo formazan blue precipitation (P < 0.01 in the Wilcoxon test). Moreover, nimesulide enhances apoptosis by approximately 30% as compared with the already high level induced by DSS treatment (P < 0.01). It is suggested that the significant increase in mutagenic oxidative DNA damage, produced by mild acute colonic inflammation, could be important in the initiation of colon cancer in both animals and man. These effects may explain at least partly the well-documented protective action towards colon cancer by preferential COX-2 inhibitors, either xenobiotics such as nimesulide or natural nutrients.

  13. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis.more » Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.« less

  14. COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells.

    PubMed

    Ramer, Robert; Heinemann, Katharina; Merkord, Jutta; Rohde, Helga; Salamon, Achim; Linnebacher, Michael; Hinz, Burkhard

    2013-01-01

    The antitumorigenic mechanism of cannabidiol is still controversial. This study investigates the role of COX-2 and PPAR-γ in cannabidiol's proapoptotic and tumor-regressive action. In lung cancer cell lines (A549, H460) and primary cells from a patient with lung cancer, cannabidiol elicited decreased viability associated with apoptosis. Apoptotic cell death by cannabidiol was suppressed by NS-398 (COX-2 inhibitor), GW9662 (PPAR-γ antagonist), and siRNA targeting COX-2 and PPAR-γ. Cannabidiol-induced apoptosis was paralleled by upregulation of COX-2 and PPAR-γ mRNA and protein expression with a maximum induction of COX-2 mRNA after 8 hours and continuous increases of PPAR-γ mRNA when compared with vehicle. In response to cannabidiol, tumor cell lines exhibited increased levels of COX-2-dependent prostaglandins (PG) among which PGD(2) and 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) caused a translocation of PPAR-γ to the nucleus and induced a PPAR-γ-dependent apoptotic cell death. Moreover, in A549-xenografted nude mice, cannabidiol caused upregulation of COX-2 and PPAR-γ in tumor tissue and tumor regression that was reversible by GW9662. Together, our data show a novel proapoptotic mechanism of cannabidiol involving initial upregulation of COX-2 and PPAR-γ and a subsequent nuclear translocation of PPAR-γ by COX-2-dependent PGs.

  15. Inhibition of microsomal prostaglandin E-synthase-1 (mPGES-1) selectively suppresses PGE2 in an in vitro equine inflammation model.

    PubMed

    Martin, Emily M; Jones, Samuel L

    2017-10-01

    Inhibition of prostaglandin E 2 (PGE 2 ) production effectively limits inflammation in horses, however nonspecific prostaglandin blockade via cyclooxygenase (COX) inhibition elicits deleterious gastrointestinal side effects in equine patients. Thus, more selective PGE 2 targeting therapeutics are needed to treat inflammatory disease in horses. One potential target is microsomal prostaglandin E-synthase-1 (mPGES-1), which is the terminal enzyme downstream of COX-2 in the inducible PGE 2 synthesis cascade. This enzyme has yet to be studied in equine leukocytes, which play a pivotal role in equine inflammatory disease. The objective of this study was to determine if mPGES-1 is a PGE 2 -selective anti-inflammatory target in equine leukocytes. To evaluate this objective, leukocyte-rich plasma (LRP) was isolated from equine whole blood collected via jugular venipuncture of six healthy adult horses of mixed breeds and genders. LRP was primed with granulocyte-monocyte colony-stimulating factor (GM-CSF) and stimulated with lipopolysaccharide (LPS) in the presence or absence of an mPGES-1 inhibitor (MF63), a COX-2 inhibitor (NS-398), or a nonselective COX inhibitor (indomethacin). Following treatment, mPGES-1 and COX-2 mRNA and protein levels were measured via qPCR and western blot, respectively, and PGE 2 , thromboxane (TXA 2 ) and prostacyclin (PGI 2 ) levels were measured in cellular supernatants via ELISA. This study revealed that LPS significantly increased mPGES-1 mRNA, but not protein levels in equine LRP as measured by qPCR and western blot, respectively. In contrast, COX-2 mRNA and protein were coordinately induced by LPS. Importantly, treatment of LPS-stimulated leukocytes with indomethacin and NS-398 significantly reduced extracellular concentrations of multiple prostanoids (PGE 2 , TXA 2 and PGI 2 ), while the mPGES-1 inhibitor MF63 selectively inhibited PGE 2 production only. mPGES-1 inhibition also preserved higher basal levels of PGE 2 production when compared

  16. Decidual Cox2 inhibition improves fetal and maternal outcomes in a preeclampsia-like mouse model

    PubMed Central

    Sones, Jenny L.; Cha, Jeeyeon; Woods, Ashley K.; Bartos, Amanda; Heyward, Christa Y.; Lob, Heinrich E.; Isroff, Catherine E.; Butler, Scott D.; Shapiro, Stephanie E.; Dey, Sudhansu K.; Davisson, Robin L.

    2016-01-01

    Preeclampsia (PE) is a disorder of pregnancy that manifests as late gestational maternal hypertension and proteinuria and can be life-threatening to both the mother and baby. It is believed that abnormal placentation is responsible for the cascade of events leading to the maternal syndrome. Embryo implantation is critical to establishing a healthy pregnancy. Defective implantation can cause adverse “ripple effects,” leading to abnormal decidualization and placentation, retarded fetal development, and poor pregnancy outcomes, such as PE and fetal growth restriction. The precise mechanism(s) of implantation defects that lead to PE remain elusive. BPH/5 mice, which spontaneously develop the cardinal features of PE, show peri-implantation defects including upregulation of Cox2 and IL-15 at the maternal-fetal interface. This was associated with decreased decidual natural killer (dNK) cells, which have important roles in establishing placental perfusion. Interestingly, a single administration of a Cox2 inhibitor (celecoxib) during decidualization restrained Cox2 and IL-15 expression, restored dNK cell numbers, improved fetal growth, and attenuated late gestational hypertension in BPH/5 female mice. This study provides evidence that decidual overexpression of Cox2 and IL-15 may trigger the adverse pregnancy outcomes reflected in the preeclamptic syndrome, underscoring the idea that Cox2 inhibitor treatment is an effective strategy for the prevention of PE-associated fetal and maternal morbidity and mortality. PMID:27159542

  17. Contribution of reactive oxygen species to migration/invasion of human glioblastoma cells U87 via ERK-dependent COX-2/PGE(2) activation.

    PubMed

    Chiu, Wen-Ta; Shen, Shing-Chuan; Chow, Jyh-Ming; Lin, Cheng-Wei; Shia, Ling-Tin; Chen, Yen-Chou

    2010-01-01

    In the presence of 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulation, an increase in the migration/invasion of U87 glioblastoma cells was detected by a wound healing assay, transwell analysis, and spheroid formation assay by inducing matrix metalloproteinase-9 (MMP-9) enzyme activity via a gelatin zymographic analysis. A dose- and time-dependent increase in cyclooxygenase-2 (COX-2) gene expression with elevated prostaglandin E(2) (PGE(2)) production was identified in TPA- but not in 4alpha-TPA (a respective inactive compound)-treated U87 cells TPA-induced migration/invasion was significantly blocked by adding the COX-2-specific inhibitor, NS398, through a reduction in PGE(2) production. Data from the pharmacological studies using specific chemical inhibitors showed that activation of protein kinase C (PKC) and extracellular signal-regulated kinases (ERKs) was involved in TPA-induced migration/invasion, COX-2 protein expression, and MMP-9 activation. Stimulation of intracellular peroxide production by TPA was detected by a DCHF-DA assay, and the addition of superoxide dismutase (SOD) or tempol significantly inhibited TPA-induced migration/invasion and COX-2 protein expression accompanied by a decrease in peroxide production. An increase in NADPH oxidase activity by TPA was examined, and TPA-induced migration/invasion was blocked by adding DPI, an NADPH oxidase inhibitor. Additionally, the natural flavonoids quercetin (QE), baicalein (BE), and myricetin (ME) effectively blocked TPA-induced migration/invasion while simultaneously inhibiting COX-2/PGE(2) production, MMP-9 enzyme activity, and peroxide production in U87 cells. The contribution of ROS production to the migration/invasion of U87 glioblastoma cells via ERK-activated COX-2/PGE(2) and MMP-9 induction was first investigated here, and agents such as QE, BE, and ME with the ability to block these events possess the potential to be developed for use against migration/invasion by glioblastomas.

  18. Betulinic acid exerts anti-hepatitis C virus activity via the suppression of NF-κB- and MAPK-ERK1/2-mediated COX-2 expression.

    PubMed

    Lin, Chun-Kuang; Tseng, Chin-Kai; Chen, Kai-Hsun; Wu, Shih-Hsiung; Liaw, Chih-Chuang; Lee, Jin-Ching

    2015-06-23

    This study was designed to evaluate the effect of betulinic acid (BA), extracted from Avicennia marina, on the replication of hepatitis C virus (HCV) and to investigate the mechanism of this BA-mediated anti-HCV activity. HCV replicon and infectious systems were used to evaluate the anti-HCV activity of BA. Exogenous COX-2 or knock-down of COX-2 expression was used to investigate the role of COX-2 in the anti-HCV activity of BA. The effects of BA on the phosphorylation of NF-κB and on kinases in the MAPK signalling pathway were determined. The anti-HCV activity of BA in combination with other HCV inhibitors was also determined to assess its use as an anti-HCV supplement. BA inhibited HCV replication in both Ava5 replicon cells and in a cell culture-derived infectious HCV particle system. Treatment with a combination of BA and IFN-α, the protease inhibitor telaprevir or the NS5B polymerase inhibitor sofosbuvir resulted in the synergistic suppression of HCV RNA replication. Exogenous overexpression of COX-2 gradually attenuated the inhibitory effect of BA on HCV replication, suggesting that BA reduces HCV replication by suppressing the expression of COX-2. In particular, BA down-regulated HCV-induced COX-2 expression by reducing the phosphorylation of NF-κB and ERK1/2 of the MAPK signalling pathway. BA inhibits HCV replication by suppressing the NF-κB- and ERK1/2-mediated COX-2 pathway and may serve as a promising compound for drug development or as a potential supplement for use in the treatment of HCV-infected patients. © 2015 The British Pharmacological Society.

  19. Modulation of IgE-dependent COX-2 gene expression by reactive oxygen species in human neutrophils.

    PubMed

    Vega, Antonio; Chacón, Pedro; Alba, Gonzalo; El Bekay, Rajaa; Martín-Nieto, José; Sobrino, Francisco

    2006-07-01

    Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of its COX-2 isoform is responsible for the increased PG release, taking place under inflammatory conditions, and also, is thought to be involved in allergic and inflammatory diseases. In the present work, we demonstrate that COX-2 expression becomes highly induced by anti-immunoglobulin E (IgE) antibodies and by antigens in human neutrophils from allergic patients. This induction was detected at mRNA and protein levels and was accompanied by a concomitant PGE(2) and thromboxane A(2) release. We also show evidence that inhibitors of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, such as 4-(2-aminoethyl)benzenesulphonyl fluoride and 4-hydroxy-3-methoxyaceto-phenone, completely cancelled anti-IgE-induced COX-2 protein up-regulation, suggesting that this process is mediated by reactive oxygen species (ROS) derived from NADPH oxidase activity. Moreover, the mitogen-activated protein kinases (MAPKs), p38 and extracellular signal-regulated kinase, and also, the transcription factor, nuclear factor (NF)-kappaB, are involved in the up-regulation of COX-2 expression, as specific chemical inhibitors of these two kinases, such as SB203580 and PD098059, and of the NF-kappaB pathway, such as N(alpha)-benzyloxycarbonyl-l-leucyl-l-leucyl-l-leucinal, abolished IgE-dependent COX-2 induction. Evidence is also presented, using Fe(2)(+)/Cu(2)(+) ions, that hydroxyl radicals generated from hydrogen peroxide through Fenton reactions could constitute candidate modulators able to directly trigger anti-IgE-elicited COX-2 expression through MAPK and NF-kappaB pathways. Present results underscore a new role for ROS as second messengers in the modulation of COX-2 expression by human neutrophils in allergic conditions.

  20. Albumin-induced podocyte injury and protection are associated with regulation of COX-2.

    PubMed Central

    Agrawal, Shipra; Guess, Adam J.; Chanley, Melinda A.; Smoyer, and William E.

    2014-01-01

    Albuminuria is both a hallmark and a risk factor for progressive glomerular disease, and results in increased exposure of podocytes to serum albumin with its associated factors. Here in vivo and in vitro models of serum albumin overload were used to test the hypothesis that albumin-induced proteinuria and podocyte injury directly correlate with COX-2 induction. Albumin induced COX-2, MCP-1, CXCL1 and the stress protein HSP25 in both rat glomeruli and cultured podocytes, while B7-1 and HSP70i were also induced in podocytes. Podocyte exposure to albumin induced both mRNA and protein and enhanced the mRNA stability of COX-2, a key regulator of renal hemodynamics and inflammation, which renders podocytes susceptible to injury. Podocyte exposure to albumin also stimulated several kinases (p38 MAPK, MK2, JNK/SAPK and ERK1/2), inhibitors of which (except JNK/SAPK) down-regulated albumin-induced COX-2. Inhibition of AMPK, PKC and NFκB also down-regulated albumin-induced COX-2. Critically, albumin-induced COX-2 was also inhibited by glucocorticoids and thiazolidinediones, both of which directly protect podocytes against injury. Furthermore, specific albumin-associated fatty acids were identified as important contributors to COX-2 induction, podocyte injury and proteinuria. Thus, COX-2 is associated with podocyte injury during albuminuria, as well as with the known podocyte protection imparted by glucocorticoids and thiazolidinediones. Moreover, COX-2 induction, podocyte damage and albuminuria appear mediated largely by serum albumin-associated fatty acids. PMID:24918154

  1. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complexmore » in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.« less

  2. Comparative Proteomic Study of Fatty Acid-treated Myoblasts Reveals Role of Cox-2 in Palmitate-induced Insulin Resistance

    PubMed Central

    Chen, Xiulan; Xu, Shimeng; Wei, Shasha; Deng, Yaqin; Li, Yiran; Yang, Fuquan; Liu, Pingsheng

    2016-01-01

    Accumulated studies demonstrate that saturated fatty acids (FAs) such as palmitic acid (PA) inhibit insulin signaling in skeletal muscle cells and monounsaturated fatty acids such as oleic acid (OA) reverse the effect of PA on insulin signaling. The detailed molecular mechanism of these opposite effects remains elusive. Here we provide a comparative proteomic study of skeletal myoblast cell line C2C12 that were untreated or treated with PA, and PA plus OA. A total of 3437 proteins were quantified using SILAC in this study and 29 proteins fall into the pattern that OA reverses PA effect. Expression of some these proteins were verified using qRT-PCR and Western blot. The most significant change was cyclooxygenase-2 (Cox-2). In addition to whole cell comparative proteomic study, we also compared lipid droplet (LD)-associated proteins and identified that Cox-2 was one of three major altered proteins under the FA treatment. This finding was then confirmed using immunofluorescence. Finally, Cox-2 selective inhibitor, celecoxib protected cells from PA-reduced insulin signaling Akt phosphorylation. Together, these results not only provide a dataset of protein expression change in FA treatment but also suggest that Cox-2 and lipid droplets (LDs) are potential players in PA- and OA-mediated cellular processes. PMID:26899878

  3. Lasiodin inhibits proliferation of human nasopharyngeal carcinoma cells by simultaneous modulation of the Apaf-1/caspase, AKT/MAPK and COX-2/NF-κB signaling pathways.

    PubMed

    Lin, Lianzhu; Deng, Wuguo; Tian, Yun; Chen, Wangbing; Wang, Jingshu; Fu, Lingyi; Shi, Dingbo; Zhao, Mouming; Luo, Wei

    2014-01-01

    Rabdosia serra has been widely used for the treatment of the various human diseases. However, the antiproliferative effects and underlying mechanisms of the compounds in this herb remain largely unknown. In this study, an antiproliferative compound against human nasopharyngeal carcinoma (NPC) cells from Rabdosia serra was purified and identified as lasiodin (a diterpenoid). The treatment with lasiodin inhibited cell viability and migration. Lasiodin also mediated the cell morphology change and induced apoptosis in NPC cells. The treatment with lasiodin induced the Apaf-1 expression, triggered the cytochrome-C release, and stimulated the PARP, caspase-3 and caspase-9 cleavages, thereby activating the apoptotic pathways. The treatment with lasiodin also significantly inhibited the phosphorylations of the AKT, ERK1/2, p38 and JNK proteins. The pretreatment with the AKT or MAPK-selective inhibitors considerably blocked the lasiodin-mediated inhibition of cell proliferation. Moreover, the treatment with lasiodin inhibited the COX-2 expression, abrogated NF-κB binding to the COX-2 promoter, and promoted the NF-κB translocation from cell nuclei to cytosol. The pretreatment with a COX-2-selective inhibitor abrogated the lasiodin-induced inhibition of cell proliferation. These results indicated that lasiodin simultaneously activated the Apaf-1/caspase-dependent apoptotic pathways and suppressed the AKT/MAPK and COX-2/NF-κB signaling pathways. This study also suggested that lasiodin could be a promising natural compound for the prevention and treatment of NPC.

  4. Cyclooxygenase-2 inhibitors for non-small-cell lung cancer: A phase II trial and literature review.

    PubMed

    Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Oizumi, Satoshi; Shinagawa, Naofumi; Sukoh, Noriaki; Harada, Masao; Ogura, Shigeaki; Munakata, Mitsuru; Dosaka-Akita, Hirotoshi; Isobe, Hiroshi; Nishimura, Masaharu

    2014-09-01

    Several preclinical and clinical studies have demonstrated that cyclooxygenase-2 (COX-2) inhibitors are efficient for the treatment of non-small-cell lung cancer (NSCLC). However, two recent phase III clinical trials using COX-2 inhibitors in combination with platinum-based chemotherapy failed to demonstrate a survival benefit. Thus, validation and discussion regarding the usefulness of COX-2 inhibitors for patients with NSCLC are required. We conducted a prospective trial using COX-2 inhibitors for the treatment of 50 NSCLC patients accrued between April, 2005 and July, 2006. Patients with untreated advanced NSCLC received oral meloxicam (150 mg daily), carboplatin (area under the curve = 5 mg/ml × min on day 1) and docetaxel (60 mg/m 2 on day 1) every 3 weeks. The primary endpoint was response rate. The response and disease control rates were 36.0 and 76.0%, respectively. The time-to-progression (TTP) and overall survival (OS) were 5.7 months [95% confidence interval (CI): 4.6-6.7] and 13.7 months (95% CI: 11.4-15.9), respectively. The 1-year survival ratio was 56.0%. Grade 3 neuropathy was observed in only 1 patient. We performed tumor immunohistochemistry for COX-2 and p27 and investigated the correlation between their expression and clinical outcome. COX-2 expression in the tumor tended to correlate with a higher response rate (50.0% in the high- and 18.2% in the low-COX-2 group; P=0.092). Based on our results and previous reports, various trial designs, such as the prospective use of COX-2 inhibitors only for patients with COX-2-positive NSCLC, including the exploratory analysis of biomarkers associated with the COX-2 pathway, may be worth further consideration.

  5. Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.

    PubMed

    Sárosi, Menyhárt-Botond

    2018-06-05

    Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.

  6. Discovery of novel quinazoline-2,4(1H,3H)-dione derivatives as potent PARP-2 selective inhibitors.

    PubMed

    Zhao, Hailong; Ji, Ming; Cui, Guonan; Zhou, Jie; Lai, Fangfang; Chen, Xiaoguang; Xu, Bailing

    2017-08-01

    The PARP-2 selective inhibitor is important for clarifying specific roles of PARP-2 in the pathophysiological process and developing desired drugs with reduced off-target side effects. In this work, a series of novel quinazoline-2,4(1H,3H)-dione derivatives was designed and synthesized to explore isoform selective PARP inhibitors. As a result, compound 11a (PARP-1 IC 50 =467nM, PARP-2 IC 50 =11.5nM, selectivity PARP-1/PARP-2=40.6) was disclosed as the most selective PARP-2 inhibitor with high potency to date. The binding features of compound 11a within PARP-1 and PARP-2 were investigated respectively to provide useful insights for the further construction of new isoform selective inhibitors of PARP-1 and PARP-2 by using CDOCKER program. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Opposing Effects of Cyclooxygenase-2 (COX-2) on Estrogen Receptor β (ERβ) Response to 5α-Reductase Inhibition in Prostate Epithelial Cells*

    PubMed Central

    Liu, Teresa T.; Grubisha, Melanie J.; Frahm, Krystle A.; Wendell, Stacy G.; Liu, Jiayan; Ricke, William A.; Auchus, Richard J.; DeFranco, Donald B.

    2016-01-01

    Current pharmacotherapies for symptomatic benign prostatic hyperplasia (BPH), an androgen receptor-driven, inflammatory disorder affecting elderly men, include 5α-reductase (5AR) inhibitors (i.e. dutasteride and finasteride) to block the conversion of testosterone to the more potent androgen receptor ligand dihydrotestosterone. Because dihydrotestosterone is the precursor for estrogen receptor β (ERβ) ligands, 5AR inhibitors could potentially limit ERβ activation, which maintains prostate tissue homeostasis. We have uncovered signaling pathways in BPH-derived prostate epithelial cells (BPH-1) that are impacted by 5AR inhibition. The induction of apoptosis and repression of the cell adhesion protein E-cadherin by the 5AR inhibitor dutasteride requires both ERβ and TGFβ. Dutasteride also induces cyclooxygenase type 2 (COX-2), which functions in a negative feedback loop in TGFβ and ERβ signaling pathways as evidenced by the potentiation of apoptosis induced by dutasteride or finasteride upon pharmacological inhibition or shRNA-mediated ablation of COX-2. Concurrently, COX-2 positively impacts ERβ action through its effect on the expression of a number of steroidogenic enzymes in the ERβ ligand metabolic pathway. Therefore, effective combination pharmacotherapies, which have included non-steroidal anti-inflammatory drugs, must take into account biochemical pathways affected by 5AR inhibition and opposing effects of COX-2 on the tissue-protective action of ERβ. PMID:27226548

  8. Cyclooxygenase-2 inhibitors. Synthesis and pharmacological activities of 5-methanesulfonamido-1-indanone derivatives.

    PubMed

    Li, C S; Black, W C; Chan, C C; Ford-Hutchinson, A W; Gauthier, J Y; Gordon, R; Guay, D; Kargman, S; Lau, C K; Mancini, J

    1995-12-08

    The recent discovery of an alternative form cyclooxygenase (cyclooxygenase-2, COX-2), which has been proposed to play a significant role in inflammatory conditions, may provide an opportunity to develop anti-inflammatory drugs with fewer side effects than existing non-steroidal anti-inflammatory drugs (NSAIDs). We have now identified 6-[(2,4-difluorophenyl)-thio]-5-methanesulfonamido-1-indanone++ + (20) (L-745,337) as a potent, selective, and orally active COX-2 inhibitor. The structure-activity relationships in this series have been extensively studied. Ortho- and para-substituted 6-phenyl substitutents are optimal for in vitro potency. Replacement of this phenyl ring by a variety of heterocycles gave compounds that were less active. The methanesulfonamido group seems to be the optimal group at the 5-position of the indanone system. Compound 20 has an efficacy profile that is superior or comparable to that of the nonselective COX inhibitor indomethacin in animal models of inflammation, pain, and fever and appears to be nonulcerogenic within the dosage ranges required for functional efficacy. Although 20 and its oxygen linkage analog 2 (flosulide) are equipotent in the in vitro assays, compound 20 is more potent in the rat paw edema assay, has a longer t1/2 in squirrel monkeys, and seems less ulcergenic than 2 in rats.

  9. Detection of platelet sensitivity to inhibitors of COX-1, P2Y1, and P2Y12 using a whole blood microfluidic flow assay

    PubMed Central

    Li, Ruizhi; Diamond, Scott L.

    2014-01-01

    BACKGROUND Microfluidic devices recreate the hemodynamic conditions of thrombosis. METHODS Whole blood inhibited with PPACK was treated ex vivo with inhibitors and perfused over collagen for 300 s (wall shear rate = 200 s−1) using a microfluidic flow assay. Platelet accumulation was measured in the presence of COX-1 inhibitor (aspirin, ASA), P2Y1 inhibitor (MRS 2179), P2Y12 inhibitor (2MeSAMP) or combined P2Y1 and P2Y12 inhibitors. RESULTS High dose ASA (500 μM), 2MeSAMP (100 μM), MRS 2179 (10 μM),or combined 2MeSAMP and MRS 2179 decreased total platelet accumulation by 27.5%, 75.6%, 77.7%, and 87.9% (p < 0.01), respectively. ASA reduced secondary aggregation rate between 150 and 300 s without effect on primary deposition rate on collagen from 60 to 150 s. In contrast, 2MeSAMP and MRS 2179 acted earlier and reduced primary deposition to collagen between 60 and 105 s and secondary aggregation between 105 and 300 s. RCOX and RP2Y (defined as a ratio of secondary aggregation rate to primary deposition rate) demonstrated 9 of 10 subjects had RCOX < 1 or RP2Y < 1 following ASA or 2MeSAMP addition, while 6 of 10 subjects had RP2Y < 1 following MRS 2179 addition. Combined MRS 2179 and 2MeSAMP inhibited primary platelet deposition rate and platelet secondary aggregation beyond that of each individual inhibitor. Receiver-Operator Characteristic area under the curve (AUC) indicated the robustness of RCOX and RP2Y to detect inhibition of secondary platelet aggregation by ASA, 2MeSAMP, and MRS 2179 (AUC of 0.874 0.966, and 0.889, respectively). CONCLUSIONS Microfluidic devices can detect platelet sensitivity to antiplatelet agents. The R-value can serve as a self-normalized metric of platelet function for a single blood sample. PMID:24365044

  10. Involvement of PLA2, COX and LOX in Rhinella arenarum oocyte maturation.

    PubMed

    Ortiz, Maria Eugenia; Bühler, Marta Inés; Zelarayán, Liliana Isabel

    2014-11-01

    In Rhinella arenarum, progesterone is the physiological nuclear maturation inducer that interacts with the oocyte surface and starts a cascade of events that leads to germinal vesicle breakdown (GVBD). Polyunsaturated fatty acids and their metabolites produced through cyclooxygenase (COX) and lipoxygenase (LOX) pathways play an important role in reproductive processes. In amphibians, to date, the role of arachidonic acid (AA) metabolites in progesterone (P4)-induced oocyte maturation has not been clarified. In this work we studied the participation of three enzymes involved in AA metabolism - phospholipase A2 (PLA2), COX and LOX in Rhinella arenarum oocyte maturation. PLA2 activation induced maturation in Rhinella arenarum oocytes in a dose-dependent manner. Oocytes when treated with 0.08 μM melittin showed the highest response (78 ± 6% GVBD). In follicles, PLA2 activation did not significantly induce maturation at the assayed doses (12 ± 3% GVBD). PLA2 inhibition with quinacrine prevented melittin-induced GVBD in a dose-dependent manner, however PLA2 inactivation did not affect P4-induced maturation. This finding suggests that PLA2 is not the only phospholipase involved in P4-induced maturation in this species. P4-induced oocyte maturation was inhibited by the COX inhibitors indomethacin and rofecoxib (65 ± 3% and 63 ± 3% GVBD, respectively), although COX activity was never blocked by their addition. Follicles showed a similar response following the addition of these inhibitors. Participation of LOX metabolites in maturation seems to be correlated with seasonal variation in ovarian response to P4. During the February to June period (low P4 response), LOX inhibition by nordihydroguaiaretic acid or lysine clonixinate increased maturation by up to 70%. In contrast, during the July to January period (high P4 response), LOX inhibition had no effect on hormone-induced maturation.

  11. Genetic deletion of COX-2 diminishes VEGF production in mouse retinal Müller cells.

    PubMed

    Yanni, Susan E; McCollum, Gary W; Penn, John S

    2010-07-01

    Non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit COX activity, reduce the production of retinal VEGF and neovascularization in relevant models of ocular disease. We hypothesized that COX-2 mediates VEGF production in retinal Müller cells, one of its primary sources in retinal neovascular disease. The purpose of this study was to determine the role of COX-2 and its products in VEGF expression and secretion. These studies have more clearly defined the role of COX-2 and COX-2-derived prostanoids in retinal angiogenesis. Müller cells derived from wild-type and COX-2 null mice were exposed to hypoxia for 0-24 h. COX-2 protein and activity were assessed by western blot analysis and GC-MS, respectively. VEGF production was assessed by ELISA. Wild-type mouse Müller cells were treated with vehicle (0.1% DMSO), 10 microM PGE(2), or PGE(2) + 5 microM H-89 (a PKA inhibitor), for 12 h. VEGF production was assessed by ELISA. Hypoxia significantly increased COX-2 protein (p < 0.05) and activity (p < 0.05), and VEGF production (p < 0.0003). COX-2 null Müller cells produced significantly less VEGF in response to hypoxia (p < 0.05). Of the prostanoids, PGE(2) was significantly increased by hypoxia (p < 0.02). Exogenous PGE(2) significantly increased VEGF production by Müller cells (p < 0.0039), and this effect was inhibited by H-89 (p < 0.055). These data demonstrate that hypoxia induces COX-2, prostanoid production, and VEGF synthesis in Müller cells, and that VEGF production is at least partially COX-2-dependent. Our study suggests that PGE(2), signaling through the EP(2) and/or EP(4) receptor and PKA, mediates the VEGF response of Müller cells. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Use of a Cyclooxygenase-2 Inhibitor Does Not Inhibit Platelet Activation or Growth Factor Release From Platelet-Rich Plasma.

    PubMed

    Ludwig, Hilary C; Birdwhistell, Kate E; Brainard, Benjamin M; Franklin, Samuel P

    2017-12-01

    It remains unestablished whether use of cyclooxygenase (COX)-2 inhibitors impairs platelet activation and anabolic growth factor release from platelets in platelet-rich plasma (PRP). The purpose of this study was to assess the effects of a COX-2 inhibitor on platelet activation and anabolic growth factor release from canine PRP when using a clinically applicable PRP activator and to determine whether a 3-day washout would be sufficient to abrogate any COX-2 inhibitor-related impairment on platelet function. Controlled laboratory study. Ten healthy dogs underwent blood collection and PRP preparation. Dogs were then administered a COX-2 inhibitor for 7 days, after which PRP preparation was repeated. The COX-2 inhibitor was continued for 4 more days and PRP preparation performed a third time, 3 days after discontinuation of the COX-2 inhibitor. Immediately after PRP preparation, the PRP was divided into 4 aliquots: 2 unactivated and 2 activated using human γ-thrombin (HGT). One activated and 1 unactivated sample were assessed using flow cytometry for platelet expression of CD62P and platelet-bound fibrinogen using the canine activated platelet-1 (CAP1) antibody. The 2 remaining samples were centrifuged and the supernatant assayed for transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB (PDGF-BB), and thromboxane B2 (TXB2) concentrations. Differences in platelet activation and TGF-β1, PDGF-BB, and TXB2 concentrations over the 3 study weeks were evaluated using a 1-way repeated-measures ANOVA, and comparisons between activated and unactivated samples within a study week were assessed with paired t tests. There were no statistically significant ( P > .05) effects of the COX-2 inhibitor on percentage of platelets positive for CD62P or CAP1 or on concentrations of TGF-β1, PDGF-BB, or TXB2. All unactivated samples had low levels of activation or growth factor concentrations and significantly ( P < .05) greater activation and growth factor

  13. Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach.

    PubMed

    Cui, Huaqing; Kamal, Zeeshan; Ai, Teng; Xu, Yanli; More, Swati S; Wilson, Daniel J; Chen, Liqiang

    2014-10-23

    Sirtuin 2 (SIRT2) is one of the sirtuins, a family of NAD(+)-dependent deacetylases that act on a variety of histone and non-histone substrates. Accumulating biological functions and potential therapeutic applications have drawn interest in the discovery and development of SIRT2 inhibitors. Herein we report our discovery of novel SIRT2 inhibitors using a fragment-based approach. Inspired by the purported close binding proximity of suramin and nicotinamide, we prepared two sets of fragments, namely, the naphthylamide sulfonic acids and the naphthalene-benzamides and -nicotinamides. Biochemical evaluation of these two series provided structure-activity relationship (SAR) information, which led to the design of (5-benzamidonaphthalen-1/2-yloxy)nicotinamide derivatives. Among these inhibitors, one compound exhibited high anti-SIRT2 activity (48 nM) and excellent selectivity for SIRT2 over SIRT1 and SIRT3. In vitro, it also increased the acetylation level of α-tubulin, a well-established SIRT2 substrate, in both concentration- and time-dependent manners. Further kinetic studies revealed that this compound behaves as a competitive inhibitor against the peptide substrate and most likely as a noncompetitive inhibitor against NAD(+). Taken together, these results indicate that we have discovered a potent and selective SIRT2 inhibitor whose novel structure merits further exploration.

  14. COX-2 verexpression in pretreatment biopsies predicts response of rectal cancers to neoadjuvant radiochemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Fraser M.; Reynolds, John V.; Kay, Elaine W.

    2006-02-01

    Purpose: To determine the utility of COX-2 expression as a response predictor for patients with rectal cancer who are undergoing neoadjuvant radiochemotherapy (RCT). Methods and Materials: Pretreatment biopsies (PTB) from 49 patients who underwent RCT were included. COX-2 and proliferation in PTB were assessed by immunohistochemistry (IHC) and apoptosis was detected by TUNEL stain. Response to treatment was assessed by a 5-point tumor-regression grade (TRG) based on the ratio of residual tumor to fibrosis. Results: Good response (TRG 1 + 2), moderate response (TRG 3), and poor response (TRG 4 + 5) were seen in 21 patients (42%), 11 patientsmore » (22%), and 17 patients (34%), respectively. Patients with COX-2 overexpression in PTB were more likely to demonstrate moderate or poor response (TRG 3 + 4) to treatment than were those with normal COX-2 expression (p = 0.026, chi-square test). Similarly, poor response was more likely if patients had low levels of spontaneous apoptosis in PTBs (p = 0.0007, chi-square test). Conclusions: COX-2 overexpression and reduced apoptosis in PTB can predict poor response of rectal cancer to RCT. As COX-2 inhibitors are commercially available, their administration to patients who overexpress COX-2 warrants assessment in clinical trials in an attempt to increase overall response rates.« less

  15. Prevention of upper aerodigestive tract cancer in zinc-deficient rodents: Inefficacy of genetic or pharmacological disruption of COX-2

    PubMed Central

    Fong, Louise Y.Y.; Jiang, Yubao; Riley, Maurisa; Liu, Xianglan; Smalley, Karl J.; Guttridge, Denis C.; Farber, John L.

    2009-01-01

    Zinc deficiency in humans is associated with an increased risk of upper aerodigestive tract (UADT) cancer. In rodents, zinc deficiency predisposes to carcinogenesis by causing proliferation and alterations in gene expression. We examined whether in zinc-deficient rodents, targeted disruption of the cyclooxygenase (COX)-2 pathway by the COX-2 selective inhibitor celecoxib or by genetic deletion prevent UADT carcinogenesis. Tongue cancer prevention studies were conducted in zinc-deficient rats previously exposed to a tongue carcinogen by celecoxib treatment with or without zinc replenishment, or by zinc replenishment alone. The ability of genetic COX-2 deletion to protect against chemically-induced for-estomach tumorigenesis was examined in mice on zinc-deficient versus zinc-sufficient diet. The expression of 3 predictive bio-markers COX-2, nuclear factor (NF)-κ B p65 and leukotriene A4 hydrolase (LTA4H) was examined by immunohistochemistry. In zinc-deficient rats, celecoxib without zinc replenishment reduced lingual tumor multiplicity but not progression to malignancy. Celecoxib with zinc replenishment or zinc replenishment alone significantly lowered lingual squamous cell carcinoma incidence, as well as tumor multiplicity. Celecoxib alone reduced overexpression of the 3 biomarkers in tumors slightly, compared with intervention with zinc replenishment. Instead of being protected, zinc-deficient COX-2 null mice developed significantly greater tumor multiplicity and forestomach carcinoma incidence than wild-type controls. Additionally, zinc-deficient COX-2−/− forestomachs displayed strong LTA4H immunostaining, indicating activation of an alter-native pathway under zinc deficiency when the COX-2 pathway is blocked. Thus, targeting only the COX-2 pathway in zinc-deficient animals did not prevent UADT carcinogenesis. Our data suggest zinc supplementation should be more thoroughly explored in human prevention clinical trials for UADT cancer. PMID:17985342

  16. The cyclooxygenase-2 inhibitor parecoxib inhibits surgery-induced proinflammatory cytokine expression in the hippocampus in aged rats.

    PubMed

    Peng, Mian; Wang, Yan-Lin; Wang, Fei-Fei; Chen, Chang; Wang, Cheng-Yao

    2012-11-01

    Neuroinflammatory response triggered by surgery has been increasingly reported to be associated with postoperative cognitive dysfunction. Proinflammatory cytokines, such as interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), play a pivotal role in mediating surgery-induced neuroinflammation. The role of cyclooxygenase-2 (COX-2), a critical regulator in inflammatory response, in surgery-induced neuroinflammation is still unknown. The aim of the study was to investigate the changes of COX-2 expression and prostaglandin E2 (PGE2) production in the hippocampus in aged rats following partial hepatectomy. The effects of selective COX-2 inhibitor (parecoxib) on hippocampal proinflammatory cytokine expression were also evaluated. Aged rats were randomly divided into three groups: control (n = 10), surgery (n = 30), and parecoxib (n = 30). Control animals received sterile saline to control for the effects of injection stress. Rats in the surgery group received partial hepatectomy under isoflurane anesthesia and sterile saline injection. Rats in the parecoxib group received surgery and anesthesia similar to surgery group rats, and parecoxib treatment. On postanesthetic days 1, 3, and 7, animals were euthanized to assess levels of hippocampal COX-2 expression, PGE2 production, and cytokines IL-1β and TNF-α expression. The effects of parecoxib on proinflammatory cytokine expression were also assessed. Partial hepatectomy significantly increased COX-2 expression, PGE2 production, and proinflammatory cytokine expression in the hippocampus in aged rats on postoperative days 1 and 3. Parecoxib inhibited hippocampal IL-1β and TNF-α expression through downregulation of the COX-2/PGE2 pathway. COX-2 may play a critical role in surgery-induced neuroinflammation. The COX-2 inhibitor may be a promising candidate for treatment of neuroinflammation caused by surgical trauma. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Sulforaphane suppresses lipopolysaccharide-induced cyclooxygenase-2 (COX-2) expression through the modulation of multiple targets in COX-2 gene promoter.

    PubMed

    Woo, Kyung Jin; Kwon, Taeg Kyu

    2007-12-15

    Sulforaphane is a natural, biologically active compound extracted from cruciferous vegetables such as broccoli and cabbage. It possesses potent anti-inflammation and anti-cancer properties. The mechanism by which sulforaphane suppresses COX-2 expression remains poorly understood. In the present report, we investigated the effect of sulforaphane on the expression of COX-2 in lipopolysaccharide (LPS)-activated Raw 264.7 cells. Sulforaphane significantly suppressed the LPS-induced COX-2 protein and mRNA expression in a dose-dependent manner. The ability of sulforaphane to suppress the expression of the COX-2 was investigated using luciferase reporters controlled by various cis-elements in COX-2 promoter region. Electrophoretic mobility shift assay (EMSA) verified that NF-kappaB, C/EBP, CREB and AP-1 were identified as responsible for the sulforaphane-mediated COX-2 down-regulation. In addition, we demonstrated the signal transduction pathway of mitogen-activated protein kinase (MAP kinase) in LPS-induced COX-2 expression. Taken together, these results demonstrate that sulforaphane effectively suppressed the LPS-induced COX-2 protein via modulation of multiple core promoter elements (NF-kappaB, C/EBP, CREB and AP-1) in the COX-2 transcriptional regulation. These results will provide new insights into the anti-inflammatory and anti-carcinogenic properties of sulforaphane.

  18. Flavocoxid Inhibits Phospholipase A2, Peroxidase Moieties of the Cyclooxygenases (COX), and 5-Lipoxygenase, Modifies COX-2 Gene Expression, and Acts as an Antioxidant

    PubMed Central

    Burnett, Bruce P.; Bitto, Alessandra; Altavilla, Domenica; Squadrito, Francesco; Levy, Robert M.; Pillai, Lakshmi

    2011-01-01

    The multiple mechanisms of action for flavocoxid relating to arachidonic acid (AA) formation and metabolism were studied in vitro. Flavocoxid titrated into rat peritoneal macrophage cultures inhibited cellular phospholipase A2 (PLA2) (IC50 = 60 μg/mL). In in vitro enzyme assays, flavocoxid showed little anti-cyclooxygenase (CO) activity on COX-1/-2 enzymes, but inhibited the COX-1 (IC50 = 12.3) and COX-2 (IC50 = 11.3 μg/mL) peroxidase (PO) moieties as well as 5-lipoxygenase (5-LOX) (IC50 = 110 μg/mL). No detectable 5-LOX inhibition was found for multiple traditional and COX-2 selective NSAIDs. Flavocoxid also exhibited strong and varied antioxidant capacities in vitro and decreased nitrite levels (IC50 = 38 μg/mL) in rat peritoneal macrophages. Finally, in contrast to celecoxib and ibuprofen, which upregulated the cox-2 gene, flavocoxid strongly decreased expression. This work suggests that clinically favourable effects of flavocoxid for management of osteoarthritis (OA) are achieved by simultaneous modification of multiple molecular pathways relating to AA metabolism, oxidative induction of inflammation, and neutralization of reactive oxygen species (ROS). PMID:21765617

  19. Flavocoxid inhibits phospholipase A2, peroxidase moieties of the cyclooxygenases (COX), and 5-lipoxygenase, modifies COX-2 gene expression, and acts as an antioxidant.

    PubMed

    Burnett, Bruce P; Bitto, Alessandra; Altavilla, Domenica; Squadrito, Francesco; Levy, Robert M; Pillai, Lakshmi

    2011-01-01

    The multiple mechanisms of action for flavocoxid relating to arachidonic acid (AA) formation and metabolism were studied in vitro. Flavocoxid titrated into rat peritoneal macrophage cultures inhibited cellular phospholipase A2 (PLA(2)) (IC(50) = 60 μg/mL). In in vitro enzyme assays, flavocoxid showed little anti-cyclooxygenase (CO) activity on COX-1/-2 enzymes, but inhibited the COX-1 (IC(50) = 12.3) and COX-2 (IC(50) = 11.3 μg/mL) peroxidase (PO) moieties as well as 5-lipoxygenase (5-LOX) (IC(50) = 110 μg/mL). No detectable 5-LOX inhibition was found for multiple traditional and COX-2 selective NSAIDs. Flavocoxid also exhibited strong and varied antioxidant capacities in vitro and decreased nitrite levels (IC(50) = 38 μg/mL) in rat peritoneal macrophages. Finally, in contrast to celecoxib and ibuprofen, which upregulated the cox-2 gene, flavocoxid strongly decreased expression. This work suggests that clinically favourable effects of flavocoxid for management of osteoarthritis (OA) are achieved by simultaneous modification of multiple molecular pathways relating to AA metabolism, oxidative induction of inflammation, and neutralization of reactive oxygen species (ROS).

  20. Cyclooxygenase inhibitors: From pharmacology to clinical read-outs.

    PubMed

    Patrignani, Paola; Patrono, Carlo

    2015-04-01

    Acetylsalicylic acid (aspirin) is a prototypic cyclooxygenase (COX) inhibitor. It was synthesized serendipitously from a natural compound, i.e., salicylic acid, with known analgesic activity. This chemical modification, obtained for the first time in an industrial environment in 1897, endowed aspirin with the unique capacity of acetylating and inactivating permanently COX-isozymes. Traditional nonsteroidal anti-inflammatory drugs (tNSAIDs) were developed to mimic the pharmacological effects of aspirin, using aspirin-sensitive experimental models of pain and inflammation as the template for screening new chemical entities. Among the tNSAIDs, some were endowed with moderate COX- selectivity (e.g., diclofenac), but no studies of sufficient size and duration were performed to show any clinically relevant difference between different members of the class. Similarly, no serious attempts were made to unravel the mechanisms involved in the shared therapeutic and toxic effects of tNSAIDs until the discovery of COX-2. This led to characterizing their main therapeutic effects as being COX-2-dependent and their gastrointestinal (GI) toxicity as being COX-1-dependent, and provided a rationale for developing a new class of selective COX-2 inhibitors, the coxibs. This review will discuss the clinical pharmacology of tNSAIDs and coxibs, and the clinical read-outs of COX-isozyme inhibition. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance." Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The Bitter Barricading of Prostaglandin Biosynthesis Pathway: Understanding the Molecular Mechanism of Selective Cyclooxygenase-2 Inhibition by Amarogentin, a Secoiridoid Glycoside from Swertia chirayita

    PubMed Central

    Sundar, Durai; Thorat, Sunil S.

    2014-01-01

    Swertia chirayita, a medicinal herb inhabiting the challenging terrains and high altitudes of the Himalayas, is a rich source of essential phytochemical isolates. Amarogentin, a bitter secoiridoid glycoside from S. chirayita, shows varied activity in several patho-physiological conditions, predominantly in leishmaniasis and carcinogenesis. Experimental analysis has revealed that amarogentin downregulates the cyclooxygenase-2 (COX-2) activity and helps to curtail skin carcinogenesis in mouse models; however, there exists no account on selective inhibition of the inducible cyclooxygenase (COX) isoform by amarogentin. Hence the computer-aided drug discovery methods were used to unravel the COX-2 inhibitory mechanism of amarogentin and to check its selectivity for the inducible isoform over the constitutive one. The generated theoretical models of both isoforms were subjected to molecular docking analysis with amarogentin and twenty-one other Food and Drug Authority (FDA) approved lead molecules. The post-docking binding energy profile of amarogentin was comparable to the binding energy profiles of the FDA approved selective COX-2 inhibitors. Subsequent molecular dynamics simulation analysis delineated the difference in the stability of both complexes, with amarogentin-COX-2 complex being more stable after 40ns simulation. The total binding free energy calculated by MMGBSA for the amarogentin-COX-2 complex was −52.35 KCal/mol against a binding free energy of −8.57 KCal/mol for amarogentin-COX-1 complex, suggesting a possible selective inhibition of the COX-2 protein by the natural inhibitor. Amarogentin achieves this potential selectivity by small, yet significant, structural differences inherent to the binding cavities of the two isoforms. Hypothetically, it might block the entry of the natural substrates in the hydrophobic binding channel of the COX-2, inhibiting the cyclooxygenation step. To sum up briefly, this work highlights the mechanism of the possible

  2. The bitter barricading of prostaglandin biosynthesis pathway: understanding the molecular mechanism of selective cyclooxygenase-2 inhibition by amarogentin, a secoiridoid glycoside from Swertia chirayita.

    PubMed

    Shukla, Shantanu; Bafna, Khushboo; Sundar, Durai; Thorat, Sunil S

    2014-01-01

    Swertia chirayita, a medicinal herb inhabiting the challenging terrains and high altitudes of the Himalayas, is a rich source of essential phytochemical isolates. Amarogentin, a bitter secoiridoid glycoside from S. chirayita, shows varied activity in several patho-physiological conditions, predominantly in leishmaniasis and carcinogenesis. Experimental analysis has revealed that amarogentin downregulates the cyclooxygenase-2 (COX-2) activity and helps to curtail skin carcinogenesis in mouse models; however, there exists no account on selective inhibition of the inducible cyclooxygenase (COX) isoform by amarogentin. Hence the computer-aided drug discovery methods were used to unravel the COX-2 inhibitory mechanism of amarogentin and to check its selectivity for the inducible isoform over the constitutive one. The generated theoretical models of both isoforms were subjected to molecular docking analysis with amarogentin and twenty-one other Food and Drug Authority (FDA) approved lead molecules. The post-docking binding energy profile of amarogentin was comparable to the binding energy profiles of the FDA approved selective COX-2 inhibitors. Subsequent molecular dynamics simulation analysis delineated the difference in the stability of both complexes, with amarogentin-COX-2 complex being more stable after 40ns simulation. The total binding free energy calculated by MMGBSA for the amarogentin-COX-2 complex was -52.35 KCal/mol against a binding free energy of -8.57 KCal/mol for amarogentin-COX-1 complex, suggesting a possible selective inhibition of the COX-2 protein by the natural inhibitor. Amarogentin achieves this potential selectivity by small, yet significant, structural differences inherent to the binding cavities of the two isoforms. Hypothetically, it might block the entry of the natural substrates in the hydrophobic binding channel of the COX-2, inhibiting the cyclooxygenation step. To sum up briefly, this work highlights the mechanism of the possible

  3. Virtual Dual inhibition of COX-2 / 5-LOX enzymes based on binding properties of alpha-amyrins, the anti-inflammatory compound as a promising anti-cancer drug.

    PubMed

    Ranjbar, Mohammad Mehdi; Assadolahi, Vahideh; Yazdani, Mohsen; Nikaein, Donya; Rashidieh, Behnam

    2016-01-01

    Hydro-alcoholic fruit extract of Cordia myxa was considerably effective on curing acute inflammation in mouse model. Previous studies suggested significant anti-inflammatory activities as well as potential anticancer agent of α-amyrins in seeds. Inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipooxygenase (5-LOX) is significant in cancer prevention and therapeutics although this inhibition with chemo-drugs has its own side-effects. It is shown that these enzymes pathways are related to several cancers including colon, breast and lung cancer. This study was conducted based on Cordia species' α-amyrins as a safer natural anti-cancer compound for inhibition of COX-2 and 5-LOX enzymes by molecular docking. The X-ray crystal structure of COX2 / 5-LOX enzymes and α-amyrins was retrieved and energetically minimized respectively. The binding site and surface of enzymes were detected. Docking studies were performed by AutoDock 4.2 using Lamarckian genetic algorithm (LGA). Finally drug likeness, molecular pharmacokinetic properties and toxicity of α-amyrins was calculated. Molecular Docking revealed hydrogen and hydrophobic interactions between α-amyrins with both active sites of COX-2 and 5-LOX enzymes. Interestingly, it covalently bonded to Fe cofactor of 5-LOX enzyme and chelated this molecule. Base on binding energies (∆G) α-amyrin has more inhibitory effects on 5-LOX (-10.45 Kcal/mol) than COX-2 (-8.02 Kcal/mol). Analysis of molecular pharmacokinetic parameters suggested that α-amyrins complied with most sets of Lipinski's rules, and so it could be a suitable ligand for docking studies. Eventually, bioactivity score showed α-amyrins possess considerable biological activities as nuclear receptor, enzyme inhibitor, GPCR and protease inhibitor ligand. These results clearly demonstrate that α-amyrins could act as potential highly selective COX-/5-LOX inhibitor. Also, it is a safe compound in comparison with classical non-steroidal anti-inflammatory drugs (NSAIDs

  4. Virtual Dual inhibition of COX-2 / 5-LOX enzymes based on binding properties of alpha-amyrins, the anti-inflammatory compound as a promising anti-cancer drug

    PubMed Central

    Ranjbar, Mohammad Mehdi; Assadolahi, Vahideh; Yazdani, Mohsen; Nikaein, Donya; Rashidieh, Behnam

    2016-01-01

    Hydro-alcoholic fruit extract of Cordia myxa was considerably effective on curing acute inflammation in mouse model. Previous studies suggested significant anti-inflammatory activities as well as potential anticancer agent of α-amyrins in seeds. Inhibition of Cyclooxygenase-2 (COX-2) and 5-Lipooxygenase (5-LOX) is significant in cancer prevention and therapeutics although this inhibition with chemo-drugs has its own side-effects. It is shown that these enzymes pathways are related to several cancers including colon, breast and lung cancer. This study was conducted based on Cordia species' α-amyrins as a safer natural anti-cancer compound for inhibition of COX-2 and 5-LOX enzymes by molecular docking. The X-ray crystal structure of COX2 / 5-LOX enzymes and α-amyrins was retrieved and energetically minimized respectively. The binding site and surface of enzymes were detected. Docking studies were performed by AutoDock 4.2 using Lamarckian genetic algorithm (LGA). Finally drug likeness, molecular pharmacokinetic properties and toxicity of α-amyrins was calculated. Molecular Docking revealed hydrogen and hydrophobic interactions between α-amyrins with both active sites of COX-2 and 5-LOX enzymes. Interestingly, it covalently bonded to Fe cofactor of 5-LOX enzyme and chelated this molecule. Base on binding energies (∆G) α-amyrin has more inhibitory effects on 5-LOX (-10.45 Kcal/mol) than COX-2 (-8.02 Kcal/mol). Analysis of molecular pharmacokinetic parameters suggested that α-amyrins complied with most sets of Lipinski's rules, and so it could be a suitable ligand for docking studies. Eventually, bioactivity score showed α-amyrins possess considerable biological activities as nuclear receptor, enzyme inhibitor, GPCR and protease inhibitor ligand. These results clearly demonstrate that α-amyrins could act as potential highly selective COX-/5-LOX inhibitor. Also, it is a safe compound in comparison with classical non-steroidal anti-inflammatory drugs (NSAIDs

  5. Soman increases neuronal COX-2 levels: possible link between seizures and protracted neuronal damage.

    PubMed

    Angoa-Pérez, Mariana; Kreipke, Christian W; Thomas, David M; Van Shura, Kerry E; Lyman, Megan; McDonough, John H; Kuhn, Donald M

    2010-12-01

    Nerve agent-induced seizures cause neuronal damage in brain limbic and cortical circuits leading to persistent behavioral and cognitive deficits. Without aggressive anticholinergic and benzodiazepine therapy, seizures can be prolonged and neuronal damage progresses for extended periods of time. The objective of this study was to determine the effects of the nerve agent soman on expression of cyclooxygenase-2 (COX-2), the initial enzyme in the biosynthetic pathway of the proinflammatory prostaglandins and a factor that has been implicated in seizure initiation and propagation. Rats were exposed to a toxic dose of soman and scored behaviorally for seizure intensity. Expression of COX-2 was determined throughout brain from 4h to 7 days after exposure by immunohistochemistry and immunoblotting. Microglial activation and astrogliosis were assessed microscopically over the same time-course. Soman increased COX-2 expression in brain regions known to be damaged by nerve agents (e.g., hippocampus, amygdala, piriform cortex and thalamus). COX-2 expression was induced in neurons, and not in microglia or astrocytes, and remained elevated through 7 days. The magnitude of COX-2 induction was correlated with seizure intensity. COX-1 expression was not changed by soman. Increased expression of neuronal COX-2 by soman is a late-developing response relative to other signs of acute physiological distress caused by nerve agents. COX-2-mediated production of prostaglandins is a consequence of the seizure-induced neuronal damage, even after survival of the initial cholinergic crisis is assured. COX-2 inhibitors should be considered as adjunct therapy in nerve agent poisoning to minimize nerve agent-induced seizure activity. Published by Elsevier B.V.

  6. COX-2 Elevates Oncogenic miR-526b in Breast Cancer by EP4 Activation.

    PubMed

    Majumder, Mousumi; Landman, Erin; Liu, Ling; Hess, David; Lala, Peeyush K

    2015-06-01

    MicroRNAs (miRs) are small regulatory molecules emerging as potential biomarkers in cancer. Previously, it was shown that COX-2 expression promotes breast cancer progression via multiple mechanisms, including induction of stem-like cells (SLC), owing to activation of the prostaglandin E2 receptor EP4 (PTGER4). COX-2 overexpression also upregulated microRNA-526b (miR-526b), in association with aggressive phenotype. Here, the functional roles of miR-526b in breast cancer and the mechanistic role of EP4 signaling in miR-526b upregulation were examined. A positive correlation was noted between miR-526b and COX-2 mRNA expression in COX-2 disparate breast cancer cell lines. Stable overexpression of miR-526b in poorly metastatic MCF7 and SKBR3 cell lines resulted in increased cellular migration, invasion, EMT phenotype and enhanced tumorsphere formation in vitro, and lung colony formation in vivo in immunodeficient mice. Conversely, knockdown of miR-526b in aggressive MCF7-COX-2 and SKBR3-COX-2 cells reduced oncogenic functions and reversed the EMT phenotype, in vitro. Furthermore, it was determined that miR-526b expression is dependent on EP4 receptor activity and downstream PI3K-AKT and cyclic AMP (cAMP) signaling pathways. PI3K-AKT inhibitors blocked EP4 agonist-mediated miR-526b upregulation and tumorsphere formation in MCF7 and SKBR3 cells. NF-κB inhibitor abrogates EP agonist-stimulated miRNA expression in MCF7 and T47D cells, indicating that the NF-κB pathway is also involved in miR-526b regulation. In addition, inhibition of COX-2, EP4, PI3K, and PKA in COX-2-overexpressing cells downregulated miR-526b and its functions in vitro. Finally, miR-526b expression was significantly higher in cancerous than in noncancerous breast tissues and associated with reduced patient survival. In conclusion, miR-526b promotes breast cancer progression, SLC-phenotype through EP4-mediated signaling, and correlates with breast cancer patient survival. This study presents novel

  7. Celecoxib, a specific COX-2 inhibitor, has no significant effect on methotrexate pharmacokinetics in patients with rheumatoid arthritis.

    PubMed

    Karim, A; Tolbert, D S; Hunt, T L; Hubbard, R C; Harper, K M; Geis, G S

    1999-12-01

    To determine the effects of celecoxib, a specific inhibitor of cyclooxygenase 2 (COX-2) on the renal clearance and plasma pharmacokinetic profile of stable methotrexate (MTX) doses in patients with rheumatoid arthritis (RA). Fourteen adult female patients with RA taking a stable weekly dose of MTX (5 to 15 mg/wk) for a minimum of 3 months were randomized to receive concomitantly either celecoxib (200 mg BID) or placebo for a period of 7 days in a single blind, 2 period crossover study of MTX pharmacokinetics and renal clearance. The plasma pharmacokinetic profile of MTX did not change significantly when celecoxib or a placebo was coadministered. The mean renal clearance of MTX alone, 7.98+/-2.18 l/h, was virtually unchanged by coadministration of celecoxib (7.94+/-1.61 l/h) or placebo (7.97+/-1.19 l/h). Celecoxib has no significant effect on the pharmacokinetics or renal clearance of MTX in patients with RA, although these results should be confirmed in prospective studies of elderly and renally impaired patients.

  8. Inhibitory Effects of Culinary Herbs and Spices on the Growth of HCA-7 Colorectal Cancer Cells and Their COX-2 Expression.

    PubMed

    Jaksevicius, Andrius; Carew, Mark; Mistry, Calli; Modjtahedi, Helmout; Opara, Elizabeth I

    2017-09-21

    It is unclear if the anti-inflammatory properties of culinary herbs and spices (CHS) are linked to their ability to inhibit Colorectal cancer cell (CRC) growth. Furthermore, their therapeutic potential with regards to CRC is unknown. The aim of this study was to establish if the inhibition of HCA-7 CRC cell growth by a selection of culinary herbs and spices (CHS) is linked to the inhibition of the cells' cyclooxygenase-2 (COX-2 )expression, and to investigate their therapeutic potential. CHS inhibited the growth of Human colon adenocarcinoma-7 (HCA-7) cells; the order of potency was turmeric, bay leaf, ginger, sage, and rosemary; their combinations had a synergistic or additive effect on cell growth inhibition. CHS also inhibited COX-2 expression and activity; this action was comparable to that of the specific COX-2 inhibitor Celecoxib. Coincident with COX-2 inhibition was the accumulation of cells in the sub G1 phase of the HCA-7's cell cycle and, using bay leaf and turmeric, the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP). This latter effect showed that the effect of these CHS on growth arrest was irreversible, and was comparable to that of the caspase activator Etoposide. This study provides evidence of a link between the inhibition of HCA-7 growth, and its COX-2 expression, by CHS, and their therapeutic potential.

  9. Inhibitory Effects of Culinary Herbs and Spices on the Growth of HCA-7 Colorectal Cancer Cells and Their COX-2 Expression

    PubMed Central

    Jaksevicius, Andrius; Carew, Mark; Mistry, Calli

    2017-01-01

    It is unclear if the anti-inflammatory properties of culinary herbs and spices (CHS) are linked to their ability to inhibit Colorectal cancer cell (CRC) growth. Furthermore, their therapeutic potential with regards to CRC is unknown. The aim of this study was to establish if the inhibition of HCA-7 CRC cell growth by a selection of culinary herbs and spices (CHS) is linked to the inhibition of the cells’ cyclooxygenase-2 (COX-2 )expression, and to investigate their therapeutic potential. CHS inhibited the growth of Human colon adenocarcinoma-7 (HCA-7) cells; the order of potency was turmeric, bay leaf, ginger, sage, and rosemary; their combinations had a synergistic or additive effect on cell growth inhibition. CHS also inhibited COX-2 expression and activity; this action was comparable to that of the specific COX-2 inhibitor Celecoxib. Coincident with COX-2 inhibition was the accumulation of cells in the sub G1 phase of the HCA-7’s cell cycle and, using bay leaf and turmeric, the cleavage of caspase 3 and poly (ADP-ribose) polymerase (PARP). This latter effect showed that the effect of these CHS on growth arrest was irreversible, and was comparable to that of the caspase activator Etoposide. This study provides evidence of a link between the inhibition of HCA-7 growth, and its COX-2 expression, by CHS, and their therapeutic potential. PMID:28934138

  10. COX-2 expression in canine anal sac adenocarcinomas and in non-neoplastic canine anal sacs.

    PubMed

    Knudsen, C S; Williams, A; Brearley, M J; Demetriou, J L

    2013-09-01

    Anal sac adenocarcinoma (ASAC) is a clinically significant canine neoplasm characterized by early lymphatic invasion. Up-regulation of cyclooxygenase isoform 2 (COX-2) has been confirmed in several animal and human neoplastic tissues. The aim of the current study was primarily to evaluate COX-2 expression in canine ASAC and compare it to COX-2 expression in non-neoplastic canine anal sac tissue using immunohistochemistry with scoring for percentage positivity and intensity. Twenty-five ASAC samples and 22 normal anal sacs were available for evaluation. All canine ASAC samples and the normal anal sac tissues stained positively for COX-2. However, while normal anal sac tissue showed strong staining of the ductal epithelial cells, ASAC samples showed staining of the neoplastic glandular epithelial cells, with varying percentage positivity and intensity between ASAC samples. COX-2 immunoreactivity of ASAC samples was of low intensity in 52% and high in 12% of the cases; the remaining samples were of intermediate intensity. Seventy-six per cent of the ASAC had over 50% of the neoplastic glandular cells staining positive. These results confirm that COX-2 is expressed in the neoplastic glandular epithelial cells in canine ASAC and suggest a potential role for COX-2 inhibitors in the management of ASAC. Furthermore, the results indicate that COX-2 is expressed in ductal epithelial cells of the normal anal sac. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Niacin and biosynthesis of PGD2 by platelet COX-1 in mice and humans

    PubMed Central

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela; Alamuddin, Naji; Ibrahim, Salam; Crichton, Irene; Prempeh, Maxwell; Lawson, John A.; Wilensky, Robert L.; Rasmussen, Lars Melholt; Puré, Ellen; FitzGerald, Garret A.

    2012-01-01

    The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1–dependent formation of PGD2 and PGE2 followed by COX-2–dependent production of PGE2. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD2 receptor DP1. NSAID-mediated suppression of COX-2–derived PGI2 has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD2. Here, we show that PGD2 biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1–derived PGD2 biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD2 was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD2, like PGI2, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy. PMID:22406532

  12. Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions

    NASA Astrophysics Data System (ADS)

    Lala, R. R.; Awari, N. G.

    2014-02-01

    In the present study, we have investigated the potential of a nanoemulsion (thermodynamically stable transparent dispersions of oil and water having a droplet size <200 nm) formulation for the topical delivery of COX-2 inhibitors using etoricoxib as a model drug. Various oil-in-water nanoemulsions were prepared by the spontaneous emulsification method. The nanoemulsion area was identified by constructing pseudo-ternary phase diagrams. The prepared nanoemulsions were subjected to thermodynamic stability testing. Those that passed these tests were characterized for viscosity, droplet size and differential scanning calorimetry. Topical permeation of etoricoxib through porcine abdominal skin was estimated using the Franz diffusion cell. The ex vivo skin permeation profile of optimized formulations was compared with that of etoricoxib conventional gel. A significant increase in permeability was observed in optimized nanoemulsion formulations consisting of 2 % w/w of etoricoxib, 20 % w/w of Triacetin, 38 % w/w of a surfactant mixture (Cremophor RH 40:Transcutol P), and 42 % w/w of water. The anti-inflammatory effects of this formulation on carrageenan-induced paw edema in rats showed a significant increase in the percent inhibition value (84.61 % with the nanoemulsion gel and 92.30 % with the nanoemulsion) as compared with the conventional gel (69.23 %) after 6 h when compared with etoricoxib conventional gel. These results suggest that nanoemulsions can serve as potential vehicles for improved transdermal delivery of anti-inflammatory agents such as etoricoxib.

  13. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.

    PubMed

    Liu, Cong; Wang, Xujun; Genchev, Georgi Z; Lu, Hui

    2017-07-15

    New developments in high-throughput genomic technologies have enabled the measurement of diverse types of omics biomarkers in a cost-efficient and clinically-feasible manner. Developing computational methods and tools for analysis and translation of such genomic data into clinically-relevant information is an ongoing and active area of investigation. For example, several studies have utilized an unsupervised learning framework to cluster patients by integrating omics data. Despite such recent advances, predicting cancer prognosis using integrated omics biomarkers remains a challenge. There is also a shortage of computational tools for predicting cancer prognosis by using supervised learning methods. The current standard approach is to fit a Cox regression model by concatenating the different types of omics data in a linear manner, while penalty could be added for feature selection. A more powerful approach, however, would be to incorporate data by considering relationships among omics datatypes. Here we developed two methods: a SKI-Cox method and a wLASSO-Cox method to incorporate the association among different types of omics data. Both methods fit the Cox proportional hazards model and predict a risk score based on mRNA expression profiles. SKI-Cox borrows the information generated by these additional types of omics data to guide variable selection, while wLASSO-Cox incorporates this information as a penalty factor during model fitting. We show that SKI-Cox and wLASSO-Cox models select more true variables than a LASSO-Cox model in simulation studies. We assess the performance of SKI-Cox and wLASSO-Cox using TCGA glioblastoma multiforme and lung adenocarcinoma data. In each case, mRNA expression, methylation, and copy number variation data are integrated to predict the overall survival time of cancer patients. Our methods achieve better performance in predicting patients' survival in glioblastoma and lung adenocarcinoma. Copyright © 2017. Published by Elsevier

  14. STIM1 Overexpression Promotes Colorectal Cancer Progression, Cell Motility and COX-2 Expression

    PubMed Central

    Wang, Jaw-Yuan; Sun, Jianwei; Huang, Ming-Yii; Wang, Yu-Shiuan; Hou, Ming-Feng; Sun, Yan; He, Huifang; Krishna, Niveditha; Chiu, Siou-Jin; Lin, Shengchen; Yang, Shengyu; Chang, Wei-Chiao

    2014-01-01

    Tumor metastasis is the major cause of death among cancer patients, with more than 90% of cancer-related death attributable to the spreading of metastatic cells to secondary organs. Store-operated Ca2+ entry (SOCE) is the predominant Ca2+ entry mechanism in most cancer cells, and STIM1 is the endoplasmic reticulum (ER) Ca2+ sensor for store-operated channels (SOC). Here we reported that the STIM1 was overexpressed in colorectal cancer (CRC) patients. STIM1 overexpression in CRC was significantly associated with tumor size, depth of invasion, lymphnode metastasis status and serum levels of carcinoembryonic antigen. Furthermore, ectopic expression of STIM1 promoted CRC cell motility, while depletion of STIM1 with shRNA inhibited CRC cell migration. Our data further suggested that STIM1 promoted CRC cell migration through increasing the expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E2 (PGE2). Importantly, ectopically expressed COX-2 or exogenous PGE2 were able to rescue migration defect in STIM1 knockdown CRC cells, and inhibition of COX-2 with ibuprofen and indomethacin abrogated STIM1-mediated CRC cell motility. In short, our data provided clinicopathological significance for STIM1 and store-operated Ca2+ entry in CRC progression, and implicated a role for COX-2 in STIM1-mediated CRC metastasis. Our studies also suggested a new approach to inhibit STIM1-mediated metastasis with COX-2 inhibitors. PMID:25381814

  15. The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: Implications for a role of COX-1

    PubMed Central

    Teeling, J.L.; Cunningham, C.; Newman, T.A.; Perry, V.H.

    2010-01-01

    Systemic inflammation gives rise to metabolic and behavioural changes, largely mediated by pro-inflammatory cytokines and prostaglandin production (PGE2) at the blood–brain barrier. Despite numerous studies, the exact biological pathways that give rise to these changes remains elusive. This study investigated the mechanisms underlying immune-to-brain communication following systemic inflammation using various anti-inflammatory agents. Mice were pre-treated with selective cyclo-oxygenase (COX) inhibitors, thromboxane synthase inhibitors or dexamethasone, followed by intra-peritoneal injection of lipopolysaccharide (LPS). Changes in body temperature, open-field activity, and burrowing were assessed and mRNA and/or protein levels of inflammatory mediators measured in serum and brain. LPS-induced systemic inflammation resulted in behavioural changes and increased production of IL-6, IL-1β and TNF-α, as well as PGE2 in serum and brain. Indomethacin and ibuprofen reversed the effect of LPS on behaviour without changing peripheral or central IL-6, IL-1β and TNF-α mRNA levels. In contrast, dexamethasone did not alter LPS-induced behavioural changes, despite complete inhibition of cytokine production. A selective COX-1 inhibitor, piroxicam, but not the selective COX-2 inhibitor, nimesulide, reversed the LPS-induced behavioural changes without affecting IL-6, IL-1β and TNF-α protein expression levels in the periphery or mRNA levels in the hippocampus. Our results suggest that the acute LPS-induced changes in burrowing and open-field activity depend on COX-1. We further show that COX-1 is not responsible for the induction of brain IL-6, IL-1β and TNF-α synthesis or LPS-induced hypothermia. Our results may have implications for novel therapeutic strategies to treat or prevent neurological diseases with an inflammatory component. PMID:19931610

  16. The SK-N-AS human neuroblastoma cell line develops osteolytic bone metastases with increased angiogenesis and COX-2 expression

    PubMed Central

    Tsutsumimoto, Takahiro; Williams, Paul; Yoneda, Toshiyuki

    2014-01-01

    Neuroblastoma (NB), which arises from embryonic neural crest cells, is the most common extra-cranial solid tumor of childhood. Approximately half of NB patients manifest bone metastasis accompanied with bone pain, fractures and bone marrow failure, leading to disturbed quality of life and poor survival. To study the mechanism of bone metastasis of NB, we established an animal model in which intracardiac inoculation of the SK-N-AS human NB cells in nude mice developed osteolytic bone metastases with increased osteoclastogenesis. SK-N-AS cells induced the expression of receptor activator of NF-κB ligand and osteoclastogenesis in mouse bone marrow cells in the co-culture. SK-N-AS cells expressed COX-2 mRNA and produced substantial amounts of prostaglandin E2 (PGE2). In contrast, the SK-N-DZ and SK-N-FI human NB cells failed to develop bone metastases, induce osteoclastogenesis, express COX-2 mRNA and produce PGE2. Immunohistochemical examination of SK-N-AS bone metastasis and subcutaneous tumor showed strong expression of COX-2. The selective COX-2 inhibitor NS-398 inhibited PGE2 production and suppressed bone metastases with reduced osteoclastogenesis. NS-398 also inhibited subcutaneous SK-N-AS tumor development with decreased angiogenesis and vascular endothelial growth factor-A expression. Of interest, metastasis to the adrenal gland, a preferential site for NB development, was also diminished by NS-398. Our results suggest that COX2/PGE2 axis plays a critical role in the pathophysiology of osteolytic bone metastases and tumor development of the SK-NS-AS human NB. Inhibition of angiogenesis by suppressing COX-2/PGE2 may be an effective therapeutic approach for children with NB. PMID:26909300

  17. COX-2/mPGES-1/PGE2 cascade activation mediates uric acid-induced mesangial cell proliferation.

    PubMed

    Li, Shuzhen; Sun, Zhenzhen; Zhang, Yue; Ruan, Yuan; Chen, Qiuxia; Gong, Wei; Yu, Jing; Xia, Weiwei; He, John Ci-Jiang; Huang, Songming; Zhang, Aihua; Ding, Guixia; Jia, Zhanjun

    2017-02-07

    Hyperuricemia is not only the main feature of gout but also a cause of gout-related organ injuries including glomerular hypertrophy and sclerosis. Uric acid (UA) has been proven to directly cause mesangial cell (MC) proliferation with elusive mechanisms. The present study was undertaken to examined the role of inflammatory cascade of COX-2/mPGES-1/PGE2 in UA-induced MC proliferation. In the dose- and time-dependent experiments, UA increased cell proliferation shown by the increased total cell number, DNA synthesis rate, and the number of cells in S and G2 phases in parallel with the upregulation of cyclin A2 and cyclin D1. Interestingly, UA-induced cell proliferation was accompanied with the upregulation of COX-2 and mPGES-1 at both mRNA and protein levels. Strikingly, inhibition of COX-2 via a specific COX-2 inhibitor NS-398 markedly blocked UA-induced MC proliferation. Meanwhile, UA-induced PGE2 production was almost entirely abolished. Furthermore, inhibiting mPGES-1 by a siRNA approach in MCs also ameliorated UA-induced MC proliferation in line with a significant blockade of PGE2 secretion. More importantly, in gout patients, we observed a significant elevation of urinary PGE2 excretion compared with healthy controls, indicating a translational potential of this study to the clinic. In conclusion, our findings indicated that COX-2/mPGES-1/PGE2 cascade activation mediated UA-induced MC proliferation. This study offered new insights into the understanding and the intervention of UA-related glomerular injury.

  18. Effect of cyclooxygenase inhibitors on gentamicin-induced nephrotoxicity in rats.

    PubMed

    Hosaka, E M; Santos, O F P; Seguro, A C; Vattimo, M F F

    2004-07-01

    The frequent use of nonsteroidal anti-inflammatory drugs (NSAID) in combination with gentamicin poses the additional risk of nephrotoxic renal failure. Cyclooxygenase-1 (COX-1) is the main enzyme responsible for the synthesis of renal vasodilator prostaglandins, while COX-2 participates predominantly in the inflammatory process. Both are inhibited by non-selective NSAID such as indomethacin. Selective COX-2 inhibitors such as rofecoxib seem to have fewer renal side effects than non-selective inhibitors. The objective of the present study was to determine whether the combined use of rofecoxib and gentamicin can prevent the increased renal injury caused by gentamicin and indomethacin. Male Wistar rats (250-300 g) were treated with gentamicin (100 mg/kg body weight, ip, N = 7), indomethacin (5 mg/kg, orally, N = 7), rofecoxib (1.4 mg/kg, orally, N = 7), gentamicin + rofecoxib (100 and 1.4 mg/kg, respectively) or gentamicin + indomethacin (100 and 5 mg/kg, respectively, N = 8) for 5 days. Creatinine clearance and alpha-glutathione-S-transferase concentrations were used as markers of renal injury. Animals were anesthetized with ether and sacrificed for blood collection. The use of gentamicin plus indomethacin led to worsened renal function (0.199 +/- 0.019 ml/min), as opposed to the absence of a nephrotoxic effect of rofecoxib when gentamicin plus rofexicob was used (0.242 +/- 0.011 ml/min). These results indicate that COX-2-selective inhibitors can be used as an alternative treatment to conventional NSAID, especially in situations in which risk factors for nephrotoxicity are present.

  19. Kaposi's Sarcoma Associated Herpes Virus (KSHV) Induced COX-2: A Key Factor in Latency, Inflammation, Angiogenesis, Cell Survival and Invasion

    PubMed Central

    Sharma-Walia, Neelam; Sadagopan, Sathish; Veettil, Mohanan Valiya; Kerur, Nagaraj; Chandran, Bala

    2010-01-01

    Kaposi's sarcoma (KS), an enigmatic endothelial cell vascular neoplasm, is characterized by the proliferation of spindle shaped endothelial cells, inflammatory cytokines (ICs), growth factors (GFs) and angiogenic factors. KSHV is etiologically linked to KS and expresses its latent genes in KS lesion endothelial cells. Primary infection of human micro vascular endothelial cells (HMVEC-d) results in the establishment of latent infection and reprogramming of host genes, and cyclooxygenase-2 (COX-2) is one of the highly up-regulated genes. Our previous study suggested a role for COX-2 in the establishment and maintenance of KSHV latency. Here, we examined the role of COX-2 in the induction of ICs, GFs, angiogenesis and invasive events occurring during KSHV de novo infection of endothelial cells. A significant amount of COX-2 was detected in KS tissue sections. Telomerase-immortalized human umbilical vein endothelial cells supporting KSHV stable latency (TIVE-LTC) expressed elevated levels of functional COX-2 and microsomal PGE2 synthase (m-PGES), and secreted the predominant eicosanoid inflammatory metabolite PGE2. Infected HMVEC-d and TIVE-LTC cells secreted a variety of ICs, GFs, angiogenic factors and matrix metalloproteinases (MMPs), which were significantly abrogated by COX-2 inhibition either by chemical inhibitors or by siRNA. The ability of these factors to induce tube formation of uninfected endothelial cells was also inhibited. PGE2, secreted early during KSHV infection, profoundly increased the adhesion of uninfected endothelial cells to fibronectin by activating the small G protein Rac1. COX-2 inhibition considerably reduced KSHV latent ORF73 gene expression and survival of TIVE-LTC cells. Collectively, these studies underscore the pivotal role of KSHV induced COX-2/PGE2 in creating KS lesion like microenvironment during de novo infection. Since COX-2 plays multiple roles in KSHV latent gene expression, which themselves are powerful mediators of cytokine

  20. Histamine, carbachol, and serotonin induce hyperresponsiveness to ATP in guinea pig tracheas: involvement of COX-2 pathway.

    PubMed

    Montaño, Luis M; Carbajal, Verónica; Vargas, Mario H; García-Hernández, Luz M; Díaz-Hernández, Verónica; Checa, Marco; Barajas-López, Carlos

    2013-08-01

    Extracellular ATP promotes an indirect contraction of airway smooth muscle via the secondary release of thromboxane A2 (TXA2) from airway epithelium. Our aim was to evaluate if common contractile agonists modify this response to ATP. Tracheas from sensitized guinea pigs were used to evaluate ATP-induced contractions before and after a transient contraction produced by histamine, carbachol, or serotonin. Epithelial mRNA for COX-1 and COX-2 was measured by RT-PCR and their expression assessed by immunohistochemistry. Compared with the initial response, ATP-induced contraction was potentiated by pretreatment with histamine, carbachol, or serotonin. Either suramin (antagonist of P2X and P2Y receptors) plus RB2 (antagonist of P2Y receptors) or indomethacin (inhibitor of COX-1 and COX-2) annulled the ATP-induced contraction, suggesting that it was mediated by P2Y receptor stimulation and TXA2 production. When COX-2 was inhibited by SC-58125 or thromboxane receptors were antagonized by SQ-29548, just the potentiation was abolished, leaving the basal response intact. Airway epithelial cells showed increased COX-2 mRNA after stimulation with histamine or carbachol, but not serotonin, while COX-1 mRNA was unaffected. Immunochemistry corroborated this upregulation of COX-2. In conclusion, we showed for the first time that histamine and carbachol cause hyperresponsiveness to ATP by upregulating COX-2 in airway epithelium, which likely increases TXA2 production. Serotonin-mediated hyperresponsiveness seems to be independent of COX-2 upregulation, but nonetheless is TXA2 dependent. Because acetylcholine, histamine, and serotonin can be present during asthmatic exacerbations, their potential interactions with ATP might be relevant in its pathophysiology.

  1. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression

    PubMed Central

    Liu, Fei; Mih, Justin D.; Shea, Barry S.; Kho, Alvin T.; Sharif, Asma S.; Tager, Andrew M.

    2010-01-01

    Tissue stiffening is a hallmark of fibrotic disorders but has traditionally been regarded as an outcome of fibrosis, not a contributing factor to pathogenesis. In this study, we show that fibrosis induced by bleomycin injury in the murine lung locally increases median tissue stiffness sixfold relative to normal lung parenchyma. Across this pathophysiological stiffness range, cultured lung fibroblasts transition from a surprisingly quiescent state to progressive increases in proliferation and matrix synthesis, accompanied by coordinated decreases in matrix proteolytic gene expression. Increasing matrix stiffness strongly suppresses fibroblast expression of COX-2 (cyclooxygenase-2) and synthesis of prostaglandin E2 (PGE2), an autocrine inhibitor of fibrogenesis. Exogenous PGE2 or an agonist of the prostanoid EP2 receptor completely counteracts the proliferative and matrix synthetic effects caused by increased stiffness. Together, these results demonstrate a dominant role for normal tissue compliance, acting in part through autocrine PGE2, in maintaining fibroblast quiescence and reveal a feedback relationship between matrix stiffening, COX-2 suppression, and fibroblast activation that promotes and amplifies progressive fibrosis. PMID:20733059

  2. Study of osteoarthritis treatment with anti-inflammatory drugs: cyclooxygenase-2 inhibitor and steroids.

    PubMed

    Cho, Hongsik; Walker, Andrew; Williams, Jeb; Hasty, Karen A

    2015-01-01

    Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA) mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.

  3. Preferential Cyclooxygenase 2 Inhibitors as a Nonhormonal Method of Emergency Contraception: A Look at the Evidence.

    PubMed

    Weiss, Erich A; Gandhi, Mona

    2016-04-01

    To review the literature surrounding the use of preferential cyclooxygenase 2 (COX-2) inhibitors as an alternative form of emergency contraception. MEDLINE (1950 to February 2014) was searched using the key words cyclooxygenase or COX-2 combined with contraception, emergency contraception, or ovulation. Results were limited to randomized control trials, controlled clinical trials, and clinical trials. Human trials that measured the effects of COX inhibition on female reproductive potential were included for review. The effects of the COX-2 inhibitors rofecoxib, celecoxib, and meloxicam were evaluated in 6 trials. Each of which was small in scope, enrolled women of variable fertility status, used different dosing regimens, included multiple end points, and had variable results. Insufficient evidence exists to fully support the use of preferential COX-2 inhibitors as a form of emergency contraception. Although all trials resulted in a decrease in ovulatory cycles, outcomes varied between dosing strategies and agents used. A lack of homogeneity in these studies makes comparisons difficult. However, success of meloxicam in multiple trials warrants further study. Larger human trials are necessary before the clinical utility of this method of emergency contraception can be fully appreciated. © The Author(s) 2014.

  4. Effects of flavocoxid, a dual inhibitor of COX and 5-lipoxygenase enzymes, on benign prostatic hyperplasia

    PubMed Central

    Altavilla, D; Minutoli, L; Polito, F; Irrera, N; Arena, S; Magno, C; Rinaldi, M; Burnett, BP; Squadrito, F; Bitto, A

    2012-01-01

    BACKGROUND AND PURPOSE Inflammation plays a key role in the development of benign prostatic hyperplasia (BPH). Eicosanoids derived from the COX and 5-lipoxygenase (5-LOX) pathways are elevated in the enlarging prostate. Flavocoxid is a novel flavonoid–based ‘dual inhibitor’ of the COX and 5-LOX enzymes. This study evaluated the effects of flavocoxid in experimental BPH. EXPERIMENTAL APPROACH Rats were treated daily with testosterone propionate (3 mg·kg−1 s.c.) or its vehicle for 14 days to induce BPH. Animals receiving testosterone were randomized to receive vehicle (1 mL·kg−1, i.p.) or flavocoxid (20 mg·kg−1, i.p.) for 14 days. Histological changes, eicosanoid content and mRNA and protein levels for apoptosis-related proteins and growth factors were assayed in prostate tissue. The effects of flavocoxid were also tested on human prostate carcinoma PC3 cells. KEY RESULTS Flavocoxid reduced prostate weight and hyperplasia, blunted inducible expression of COX-2 and 5-LOX as well as the increased production of PGE2 and leukotriene B4 (LTB4), enhanced pro-apoptotic Bax and caspase-9 and decreased the anti-apoptotic Bcl-2 mRNA. Flavocoxid also reduced EGF and VEGF expression. In PC3 cells, flavocoxid stimulated apoptosis and inhibited growth factor expression. Flavocoxid-mediated induction of apoptosis was inhibited by the pan-caspase inhibitor, Z-VAD-FMK, in PC3 cells, suggesting an essential role of caspases in flavocoxid-mediated apoptosis during prostatic growth. CONCLUSION AND IMPLICATIONS Our results show that a ‘dual inhibitor’ of the COX and 5-LOX enzymes, such as flavocoxid, might represent a rational approach to reduce BPH through modulation of eicosanoid production and a caspase-induced apoptotic mechanism. PMID:22471974

  5. Effect of Her-2/neu Signaling on Sensitivity to TRAIL in Prostate Cancer

    DTIC Science & Technology

    2005-06-01

    cytokines (18), and matrix metalloprotease inhibitors (19) are able to render TRAIL-resistant tumor cells sensitive to TRAIL apoptosis. In recent...TRAIL-induced cytotoxicity. As DU-145 cells were treated with acetyl salicylic acid (ASA: aspirin), an inhibitor of IKK , we observed that TRAIL...sulfide (IC50 = 1.02 M for COX-1 and IC50 = 10.43 M for COX-2), NS-398 (a selective COX-2 inhibitor ; IC50 = 4.81 M for COX-1 and IC50 = 0.47 M for COX-2

  6. miR-143 decreases COX-2 mRNA stability and expression in pancreatic cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Hung; Department of Medicine, Veterans Affair Greater Los Angeles Healthcare System, Los Angeles, CA 90073; Ekaterina Rodriguez, C.

    2013-09-13

    Highlights: •Pancreatic cancer cells express low miR-143 levels and elevated p-MEK, p-MAPK and RREB1. •MEK inhibitors U0126 and PD98059 increase miR-143 expression. •miR-143 decreases COX-2 mRNA stability and expression and PGE{sub 2}. •miR-143 decreases p-p38MAPK, p-MEK, p-MAPK and RREB1 expression. -- Abstract: Small non-coding RNAs, microRNAs (miRNA), inhibit the translation or accelerate the degradation of message RNA (mRNA) by targeting the 3′-untranslated region (3′-UTR) in regulating growth and survival through gene suppression. Deregulated miRNA expression contributes to disease progression in several cancers types, including pancreatic cancers (PaCa). PaCa tissues and cells exhibit decreased miRNA, elevated cyclooxygenase (COX)-2 and increased prostaglandinmore » E{sub 2} (PGE{sub 2}) resulting in increased cancer growth and metastases. Human PaCa cell lines were used to demonstrate that restoration of miRNA-143 (miR-143) regulates COX-2 and inhibits cell proliferation. miR-143 were detected at fold levels of 0.41 ± 0.06 in AsPC-1, 0.20 ± 0.05 in Capan-2 and 0.10 ± 0.02 in MIA PaCa-2. miR-143 was not detected in BxPC-3, HPAF-II and Panc-1 which correlated with elevated mitogen-activated kinase (MAPK) and MAPK kinase (MEK) activation. Treatment with 10 μM of MEK inhibitor U0126 or PD98059 increased miR-143, respectively, by 187 ± 18 and 152 ± 26-fold in BxPC-3 and 182 ± 7 and 136 ± 9-fold in HPAF-II. miR-143 transfection diminished COX-2 mRNA stability at 60 min by 2.6 ± 0.3-fold in BxPC-3 and 2.5 ± 0.2-fold in HPAF-II. COX-2 expression and cellular proliferation in BxPC-3 and HPAF-II inversely correlated with increasing miR-143. PGE{sub 2} levels decreased by 39.3 ± 5.0% in BxPC-3 and 48.0 ± 3.0% in HPAF-II transfected with miR-143. Restoration of miR-143 in PaCa cells suppressed of COX-2, PGE{sub 2}, cellular proliferation and MEK/MAPK activation, implicating this pathway in regulating miR-143 expression.« less

  7. Suppression of IL-1beta-induced COX-2 expression by trichostatin A (TSA) in human endometrial stromal cells.

    PubMed

    Wu, Yan; Guo, Sun-Wei

    2007-11-01

    Over-production of cyclooxygenase-2 (COX-2) plays an important role in the positive feedback loop that leads to proliferation and inflammation in endometriosis. Following our observation that histone deacetylase inhibitors (HDACIs) trichostatin A (TSA) and valproic acid (VPA) can suppress proliferation of endometrial stromal cells, we sought to determine whether TSA suppresses IL-1beta-induced COX-2 expression in endometrial stromal cells. In vitro study using a recently established immortalized endometrial stromal cell line. The stromal cells were pretreated with TSA before stimulation with IL-1beta, and COX-2 gene and protein expression was measured by real-time quantitative RT-PCR and Western blot analysis, respectively. IL-1beta stimulated COX-2 expression in a concentration-dependent manner in endometrial stromal cells. The induced COX-2 gene and protein expression were suppressed by TSA pretreatment. TSA suppresses IL-1beta-induced COX-2 gene and protein expression in endometrial stromal cells. This finding, coupled with the findings that TSA and another HDACI, valproic acid, suppress proliferation and induce cell cycle arrest, suggests that HDACIs are a promising class of compound that has therapeutic potential for endometriosis.

  8. Effects of long-term use of the preferential COX-2 inhibitor meloxicam on growing pigs.

    PubMed

    Gorissen, Ben M C; Uilenreef, Joost J; Bergmann, Wilhelmina; Meijer, Ellen; van Rietbergen, Bert; van der Staay, Franz Josef; Weeren, P René van; Wolschrijn, Claudia F

    2017-11-25

    Meloxicam, a preferential COX-2 inhibitor, is a commonly used NSAID in pigs. Besides having potential side effects on the gastrointestinal tract, this type of drug might potentially affect osteogenesis and chondrogenesis, processes relevant to growing pigs. Therefore, the effects of long-term meloxicam treatment on growing pigs were studied. Twelve piglets (n=6 receiving daily meloxicam 0.4 mg/kg orally from 48 until 110 days of age; n=6 receiving only applesauce (vehicle control)) were subjected to visual and objective gait analysis by pressure plate measurements at several time points. Following euthanasia a complete postmortem examination was performed and samples of the talus and distal tibia, including the distal physis, were collected. Trabecular bone microarchitecture was analysed by microCT scanning, bone stiffness by compression testing and growth plate morphology using light microscopy. Animals were not lame and gait patterns did not differ between the groups. Pathological examination revealed no lesions compatible with known side effects of NSAIDs. Trabecular bone microarchitecture and growth plate morphology did not differ between the two groups. The findings of this in vivo study reduce concerns regarding the long-term use of meloxicam in young, growing piglets. © British Veterinary Association (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. 2,3,5-Substituted tetrahydrofurans: COX-2 inhibitory activities of 5-hydroxymethyl-/carboxyl-2,3-diaryl-tetrahydro-furan-3-ols.

    PubMed

    Singh, Palwinder; Mittal, Anu; Kaur, Satwinderjeet; Kumar, Subodh

    2008-12-01

    5-Hydroxymethyl-/carboxyl-2,3-diaryl-tetrahydro-furan-3-ols have been investigated for their COX-1 and COX-2 inhibitory activities. Compounds 17, 18 and 20 have been identified as showing appreciable COX-2 inhibition and selectivity. The group present at C-5 of tetrahydrofuran and the substituents at the two phenyl rings, through their interactions with active site amino acid residues, significantly affect the activities of these molecules. The quantitative structure-activity relationship studies indicate the role of logP, TPSA, molecular connectivity and valence connectivity towards the activities of these molecules.

  10. Exogenous hydrogen sulfide promotes hepatocellular carcinoma cell growth by activating the STAT3-COX-2 signaling pathway

    PubMed Central

    Zhen, Yulan; Wu, Qiaomei; Ding, Yiqian; Zhang, Wei; Zhai, Yuansheng; Lin, Xiaoxiong; Weng, Yunxia; Guo, Ruixian; Zhang, Ying; Feng, Jianqiang; Lei, Yiyan; Chen, Jingfu

    2018-01-01

    The effects of hydrogen sulfide (H2S) on cancer are controversial. Our group previously demonstrated that exogenous H2S promotes the development of cancer via amplifying the activation of the nuclear factor-κB signaling pathway in hepatocellular carcinoma (HCC) cells (PLC/PRF/5). The present study aimed to further investigate the hypothesis that exogenous H2S promotes PLC/PRF/5 cell proliferation and migration, and inhibits apoptosis by activating the signal transducer and activator of transcription 3 (STAT3)-cyclooxygenase-2 (COX-2) signaling pathway. PLC/PRF/5 cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated (p)-STAT3, STAT3, cleaved caspase-3 and COX-2 were measured by western blot assay. Cell viability was detected by Cell Counting kit-8 assay. Apoptotic cells were observed by Hoechst 33258 staining. The expression of STAT3 and COX-2 messenger RNA (mRNA) was detected by semiquantitative reverse transcription-polymerase chain reaction. The production of vascular endothelial growth factor (VEGF) was evaluated by ELISA. The results indicated that treatment of PLC/PRF/5 cells with 500 µmol/l NaHS for 24 h markedly increased the expression levels of p-STAT3 and STAT3 mRNA, leading to COX-2 and COX-2 mRNA overexpression, VEGF induction, decreased cleaved caspase-3 production, increased cell viability and migration, and decreased number of apoptotic cells. However, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 30 µmol/l AG490 (an inhibitor of STAT3) or 20 µmol/l NS-398 (an inhibitor of COX-2) for 24 h significantly reverted the effects induced by NaHS. Furthermore, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 30 µmol/l AG490 markedly decreased the NaHS-induced increase in the expression level of COX-2. By contrast, co-treatment of PLC/PRF/5 cells with 500 µmol/l NaHS and 20 µmol/l NS-398 inhibited the NaHS-induced increase in the expression level of p-STAT3. In conclusion, the

  11. The effect of low-dose aspirin on the decreased risk of development of dyspepsia and gastrointestinal ulcers associated to cyclooxygenase-2 selective inhibitors.

    PubMed

    Benito-Garcia, Elizabeth; Michaud, Kaleb; Wolfe, Frederick

    2007-08-01

    To evaluate the risk of gastrointestinal (GI) symptoms and ulcers associated to the use of low-dose aspirin (ASA) among patients with rheumatoid arthritis (RA) and osteoarthritis (OA) treated with cyclooxygenase-2 (COX-2) drugs, to clarify the controversy in the literature. Using a longitudinal databank, a prospective study using Cox proportional hazards models was performed in patients receiving COX-2 therapy for RA or OA to examine the effect of ASA on GI events. In 4 separate analyses patients reported dyspeptic symptoms and GI ulcers at semiannual intervals for up to 3 years. Ulcers were validated by review of medical records. Among 4240 patients taking COX-2-specific inhibitors, with no ulcer at study start, the age- and sex-adjusted hazard ratios for the effect of ASA on the development of epigastric pain, heartburn, nausea, and ulcers, without these previous events, were 1.11 (95% CI 0.97-1.29), 1.00 (95% CI 0.88-1.15), 1.32 (95% CI 1.13-1.54), and 1.27 (95% CI 0.78-2.05). The use of a propensity score to account for the risk of ASA prescription showed an even lower effect of ASA among all GI variables. This risk occurs within the setting of no prior GI symptoms or GI events, and independently of the use of proton pump inhibitors, other GI drugs, other nonsteroidal antiinflammatory drugs, prednisone, or methotrexate. In actual practice, the use of low-dose ASA has a small effect on the risk of developing dyspeptic symptoms in a group of patients with rheumatic disease.

  12. Additive antithrombotic effect of ASP6537, a selective cyclooxygenase (COX)-1 inhibitor, in combination with clopidogrel in guinea pigs.

    PubMed

    Sakata, Chinatsu; Suzuki, Ken-Ichi; Morita, Yoshiaki; Kawasaki, Tomihisa

    2017-03-05

    Clopidogrel (Plavix ® , Sanofi-Aventis), the adenosine diphosphate P2Y 12 receptor antagonist, is reported to be effective in the prevention of cardiovascular events and is often used in combination with aspirin, particularly in high-risk patients. ASP6537 is a reversible cyclooxygenase (COX)-1 inhibitor that is under investigation as an anti-platelet agent. First, we investigated the reversibility of the antiplatelet effect of ASP6537 and its interaction with ibuprofen to compare the usability of ASP6537 with that of aspirin. We then evaluated the antithrombotic effect of ASP6537 in combination with clopidogrel using a FeCl 3 -induced thrombosis model in guinea pigs. ASP6537 exerted reversible antiplatelet activity, and no pharmacodynamic interaction with ibuprofen was noted. When administered as monotherapy, ASP6537 exerted a significant antithrombotic effect at ≥3mg/kg, while aspirin inhibited thrombosis at 100mg/kg. ASP6537 exerted significant additive effects in combination with clopidogrel, and the minimum antithrombotic dose was reduced by concomitant administration of clopidogrel. Our study showed that ASP6537 did not interact with ibuprofen and has clear additive effects in combination with clopidogrel. ASP6537 may therefore represent a promising antiplatelet agent for use in clinical settings in combination with clopidogrel. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Structural basis for selective inhibition of Cyclooxygenase-1 (COX-1) by diarylisoxazoles mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6).

    PubMed

    Cingolani, Gino; Panella, Andrea; Perrone, Maria Grazia; Vitale, Paola; Di Mauro, Giuseppe; Fortuna, Cosimo G; Armen, Roger S; Ferorelli, Savina; Smith, William L; Scilimati, Antonio

    2017-09-29

    The diarylisoxazole molecular scaffold is found in several NSAIDs, especially those with high selectivity for COX-1. Here, we have determined the structural basis for COX-1 binding to two diarylisoxazoles: mofezolac, which is polar and ionizable, and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6) that has very low polarity. X-ray analysis of the crystal structures of COX-1 bound to mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole allowed the identification of specific binding determinants within the enzyme active site, relevant to generate structure/activity relationships for diarylisoxazole NSAIDs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Prescriptions for cyclooxygenase-2 inhibitors and other nonsteroidal anti-inflammatory agents in a medicaid managed care population: African Americans versus Caucasians.

    PubMed

    Shaya, Fadia T; Blume, Steven

    2005-01-01

    To determine whether race is a predictor of a patient's likelihood of being prescribed selective cyclooxygenase-2 inhibitors (COX-2s) versus other nonsteroidal anti-inflammatory agents (NSAIDs) in Medicaid managed care plans (MCO). All medical and prescription claims for Medicaid MCO enrollees receiving at least one prescription for a COX-2 or NSAID between January 2000 and June 2002 were retrieved. Selected for study were adults claiming at least one COX-2 prescription or NSAID prescription with a minimum 30 days of supply after June 2000; having 60 total days of supply or more over the study period was also required for study inclusion. The probability of being prescribed a COX-2 was estimated as a logistic function of patient age, gender, race, city/suburban/rural residence, and history of rheumatoid arthritis, osteoarthritis, chronic back pain, acute pains, gastrointestinal problems, use of anticoagulants or corticosteroids, and comorbidities. Of the 16,868 enrollees meeting the selection criteria, 4,005 (24%) were prescribed a COX-2 and 12,863 another NSAID. Half of those studied were African American, three-quarters were female, and a third were 50-64 years old. After adjusting for confounders, odds of a COX-2 prescription were a third less for African Americans and other races compared to Caucasians (OR, 0.67; 95% confidence intervals, 0.62-0.73). Patient race is a significant predictor of COX-2 prescriptions in the Medicaid population, even after adjusting for other demographic and clinical variables. Cost to the patient was not a factor, as the patient copayment was 1 US dollar for any prescription.

  15. COX-2 plays a role in angiogenic DBA(+) uNK cell subsets activation and pregnancy protection in LPS-exposed mice.

    PubMed

    Zavan, Bruno; De Almeida, Eliana Martins; Salles, Évila da Silva Lopes; do Amarante-Paffaro, Andréa Mollica; Paffaro, Valdemar Antonio

    2016-08-01

    Although uterine Natural Killer (uNK) cells have cytoplasmic granules rich in perforin and granzymes, these cells do not degranulate in normal pregnancy. DBA lectin(+) uNK cells produce angiogenic factors which stimulate remodeling of uterine arterioles to increase blood flow within the growing feto-placental unit. We sought to investigate the importance of COX-2 on mouse pregnancy inoculated with Gram-negative bacteria Lipopolysaccharide (LPS) by treating with a selective COX-2 inhibitor (nimesulide). We have combined histochemical, immunohistochemical, stereological, morphometric, behavioral, and litter analyses to investigate mouse pregnancy inoculated with LPS with or without pre-treatment with nimesulide 30 min before LPS injections, focusing on DBA(+) uNK cell response and viability of the pregnancy. LPS caused sickness behavior, an immature DBA(+) uNK influx, decreased mature DBA(+) uNK cell numbers, and triggered a new DBA(low) uNK appearance. These effects of LPS, except the sickness behavior, were prevented by nimesulide. COX-2 inhibition also prevented the down-regulation of uNK perforin and spiral arteriole α-actin expression stimulated by LPS. While the litter size from Nimesulide + LPS-treated mothers was significantly smaller compared to those from LPS-treated group, nimesulide alone showed no effect on the offspring. Collectively, our data indicate that COX-2 changes angiogenic DBA(+) uNK cells in order to protect mouse pregnancy after LPS injection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Genomic selection for slaughter age in pigs using the Cox frailty model.

    PubMed

    Santos, V S; Martins Filho, S; Resende, M D V; Azevedo, C F; Lopes, P S; Guimarães, S E F; Glória, L S; Silva, F F

    2015-10-19

    The aim of this study was to compare genomic selection methodologies using a linear mixed model and the Cox survival model. We used data from an F2 population of pigs, in which the response variable was the time in days from birth to the culling of the animal and the covariates were 238 markers [237 single nucleotide polymorphism (SNP) plus the halothane gene]. The data were corrected for fixed effects, and the accuracy of the method was determined based on the correlation of the ranks of predicted genomic breeding values (GBVs) in both models with the corrected phenotypic values. The analysis was repeated with a subset of SNP markers with largest absolute effects. The results were in agreement with the GBV prediction and the estimation of marker effects for both models for uncensored data and for normality. However, when considering censored data, the Cox model with a normal random effect (S1) was more appropriate. Since there was no agreement between the linear mixed model and the imputed data (L2) for the prediction of genomic values and the estimation of marker effects, the model S1 was considered superior as it took into account the latent variable and the censored data. Marker selection increased correlations between the ranks of predicted GBVs by the linear and Cox frailty models and the corrected phenotypic values, and 120 markers were required to increase the predictive ability for the characteristic analyzed.

  17. RVX-297- a novel BD2 selective inhibitor of BET bromodomains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharenko, Olesya A., E-mail: olesya@zenithepigenetics.com; Gesner, Emily M.; Patel, Reena G.

    Bromodomains are epigenetic readers that specifically bind to the acetyl lysine residues of histones and transcription factors. Small molecule BET bromodomain inhibitors can disrupt this interaction which leads to potential modulation of several disease states. Here we describe the binding properties of a novel BET inhibitor RVX-297 that is structurally related to the clinical compound RVX-208, currently undergoing phase III clinical trials for the treatment of cardiovascular diseases, but is distinctly different in its biological and pharmacokinetic profiles. We report that RVX-297 preferentially binds to the BD2 domains of the BET bromodomain and Extra Terminal (BET) family of protein. Wemore » demonstrate the differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography, and describe the structural differences driving the BD2 selective binding of RVX-297. The isothermal titration calorimetry (ITC) data illustrate the related differential thermodynamics of binding of RVX-297 to single as well as dual BET bromodomains. - Highlights: • A novel inhibitor of BET bromodomains, RVX-297 is described. • The differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography are described. • RVX-297 preferentially binds to the BD2 domains of the BET bromodomains. • The structural and thermodynamic properties of the BD2 selective binding of RVX-297 are characterized.« less

  18. Celecoxib offsets the negative renal influences of cyclosporine via modulation of the TGF-β1/IL-2/COX-2/endothelin ET(B) receptor cascade.

    PubMed

    El-Gowelli, Hanan M; Helmy, Maged W; Ali, Rabab M; El-Mas, Mahmoud M

    2014-03-01

    Endothelin (ET) signaling provokes nephrotoxicity induced by the immunosuppressant drug cyclosporine A (CSA). We tested the hypotheses that (i): celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, counterbalances renal derangements caused by CSA in rats and (ii) the COX-2/endothelin ET(B) receptor signaling mediates the CSA-celecoxib interaction. Ten-day treatment with CSA (20 mg/kg/day) significantly increased biochemical indices of renal function (serum urea, creatinine), inflammation (interleukin-2, IL-2) and fibrosis (transforming growth factor-β₁, TGF-β₁). Histologically, CSA caused renal tubular atrophy along with interstitial fibrosis. These detrimental renal effects of CSA were largely reduced in rats treated concurrently with celecoxib (10 mg/kg/day). We also report that cortical glomerular and medullary tubular protein expressions of COX-2 and ET(B) receptors were reduced by CSA and restored to near-control values in rats treated simultaneously with celecoxib. The importance of ET(B) receptors in renal control and in the CSA-celecoxib interaction was further verified by the findings (i) most of the adverse biochemical, inflammatory, and histopathological profiles of CSA were replicated in rats treated with the endothelin ETB receptor antagonist BQ788 (0.1 mg/kg/day, 10 days), and (ii) the BQ788 effects, like those of CSA, were alleviated in rats treated concurrently with celecoxib. Together, the data suggest that the facilitation of the interplay between the TGF-β1/IL-2/COX-2 pathway and the endothelin ET(B) receptors constitutes the cellular mechanism by which celecoxib ameliorates the nephrotoxic manifestations of CSA in rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Myeloid Cell COX-2 deletion reduces mammary tumor growth through enhanced cytotoxic T-lymphocyte function

    PubMed Central

    Chen, Edward P.; Markosyan, Nune; Connolly, Emma; Lawson, John A.; Li, Xuanwen; Grant, Gregory R.; Grosser, Tilo; FitzGerald, Garret A.; Smyth, Emer M.

    2014-01-01

    Cyclooxygenase-2 (COX-2) expression is associated with poor prognosis across a range of human cancers, including breast cancer. The contribution of tumor cell-derived COX-2 to tumorigenesis has been examined in numerous studies; however, the role of stromal-derived COX-2 is ill-defined. Here, we examined how COX-2 in myeloid cells, an immune cell subset that includes macrophages, influences mammary tumor progression. In mice engineered to selectively lack myeloid cell COX-2 [myeloid-COX-2 knockout (KO) mice], spontaneous neu oncogene-induced tumor onset was delayed, tumor burden reduced, and tumor growth slowed compared with wild-type (WT). Similarly, growth of neu-transformed mammary tumor cells as orthotopic tumors in immune competent syngeneic myeloid-COX-2 KO host mice was reduced compared with WT. By flow cytometric analysis, orthotopic myeloid-COX-2 KO tumors had lower tumor-associated macrophage (TAM) infiltration consistent with impaired colony stimulating factor-1-dependent chemotaxis by COX-2 deficient macrophages in vitro. Further, in both spontaneous and orthotopic tumors, COX-2-deficient TAM displayed lower immunosuppressive M2 markers and this was coincident with less suppression of CD8+ cytotoxic T lymphocytes (CTLs) in myeloid-COX-2 KO tumors. These studies suggest that reduced tumor growth in myeloid-COX-2 KO mice resulted from disruption of M2-like TAM function, thereby enhancing T-cell survival and immune surveillance. Antibody-mediated depletion of CD8+, but not CD4+ cells, restored tumor growth in myeloid-COX-2 KO to WT levels, indicating that CD8+ CTLs are dominant antitumor effectors in myeloid-COX-2 KO mice. Our studies suggest that inhibition of myeloid cell COX-2 can potentiate CTL-mediated tumor cytotoxicity and may provide a novel therapeutic approach in breast cancer therapy. PMID:24590894

  20. Minimizing the cancer-promotional activity of cox-2 as a central strategy in cancer prevention.

    PubMed

    McCarty, Mark F

    2012-01-01

    A recent meta-analysis examining long-term mortality in subjects who participated in controlled studies evaluating the impact of daily aspirin on vascular risk, has concluded that aspirin confers substantial protection from cancer mortality. Remarkably, low-dose aspirin was as effective as higher-dose regimens; hence this protection may be achievable with minimal risk. There is reason to believe that this protection stems primarily from inhibition of cox-2 in pre-neoplastic lesions. Since safe aspirin regimens can only achieve a partial and transitory inhibition of cox-2, it may be feasible to complement the cancer-protective benefit of aspirin with other measures which decrease cox-2 expression or which limit the bioactivity of cox-2-derived PGE2. Oxidative stress boosts cox-2 expression by up-regulating activation of NF-kappaB and MAP kinases; NADPH oxidase activation may thus promote carcinogenesis by increasing cox-2 expression while also amplifying oxidant-mediated mutagenesis. A prospective cohort study has observed that relatively elevated serum bilirubin levels are associated with a marked reduction in subsequent cancer mortality; this may reflect bilirubin's physiological role as a potent inhibitor of NADPH oxidase. It may be feasible to mimic this protective effect by supplementing with spirulina, a rich source of a phycobilin which shares bilirubin's ability to inhibit NADPH oxidase. Ancillary antioxidant measures - phase 2 inducing phytochemicals, melatonin, N-acetylcysteine, and astaxanthin - may also aid cox-2 down-regulation. The cancer protection often associated with high-normal vitamin D status may be attributable, in part, to the ability of the activated vitamin D receptor to decrease cox-2 expression while promoting PGE2 catabolism and suppressing the expression of PGE2 receptors. Diets with a relatively low ratio of omega-6 to long-chain omega-3 fats may achieve cancer protection by antagonizing the production and bioactivity of PGE2. Growth

  1. Cyclooxygenase-2 inhibitor blocks the production of West Nile virus-induced neuroinflammatory markers in astrocytes.

    PubMed

    Verma, Saguna; Kumar, Mukesh; Nerurkar, Vivek R

    2011-03-01

    Inflammatory immune responses triggered initially to clear West Nile virus (WNV) infection later become detrimental and contribute to the pathological processes such as blood-brain barrier (BBB) disruption and neuronal death, thus complicating WNV-associated encephalitis (WNVE). It has been demonstrated previously that WNV infection in astrocytes results in induction of multiple matrix metalloproteinases (MMPs), which mediate BBB disruption. Cyclooxygenase (COX) enzymes and their product, prostaglandin E2 (PGE2), modulate neuroinflammation and regulate the production of multiple inflammatory molecules including MMPs. Therefore, this study determined and characterized the pathophysiological consequences of the expression of COX enzymes in human brain cortical astrocytes (HBCAs) following WNV infection. Whilst COX-1 mRNA expression did not change, WNV infection significantly induced RNA and protein expression of COX-2 in HBCAs. Similarly, PGE2 production was also enhanced significantly in infected HBCAs and was blocked in the presence of the COX-2-specific inhibitor NS-398, thus suggesting that COX-2, and not COX-1, was the source of the increased PGE2. Treatment of infected HBCAs with NS-398 attenuated the expression of MMP-1, -3 and -9 in a dose-dependent manner. Similarly, expression of interleukin-1β, -6 and -8, which were markedly elevated in infected HBCAs, exhibited a significant reduction in their levels in the presence of NS-398. These results provide direct evidence that WNV-induced COX-2/PGE2 is involved in modulating the expression of multiple neuroinflammatory mediators, thereby directly linking COX-2 with WNV disease pathogenesis. The ability of COX-2 inhibitors to modulate WNV-induced COX-2 and PGE2 signalling warrants further investigation in an animal model as a potential approach for clinical management of neuroinflammation associated with WNVE.

  2. COX-2 expression positively correlates with PD-L1 expression in human melanoma cells.

    PubMed

    Botti, Gerardo; Fratangelo, Federica; Cerrone, Margherita; Liguori, Giuseppina; Cantile, Monica; Anniciello, Anna Maria; Scala, Stefania; D'Alterio, Crescenzo; Trimarco, Chiara; Ianaro, Angela; Cirino, Giuseppe; Caracò, Corrado; Colombino, Maria; Palmieri, Giuseppe; Pepe, Stefano; Ascierto, Paolo Antonio; Sabbatino, Francesco; Scognamiglio, Giosuè

    2017-02-23

    The resistance to PD-1/PD-L1 inhibitors for the treatment of melanoma have prompted investigators to implement novel clinical trials which combine immunotherapy with different treatment modalities. Moreover is also important to investigate the mechanisms which regulate the dynamic expression of PD-L1 on tumor cells and PD-1 on T cells in order to identify predictive biomarkers of response. COX-2 is currently investigated as a major player of tumor progression in several type of malignancies including melanoma. In the present study we investigated the potential relationship between COX-2 and PD-L1 expression in melanoma. Tumor samples obtained from primary melanoma lesions and not matched lymph node metastases were analyzed for both PD-L1 and COX-2 expression by IHC analysis. Status of BRAF and NRAS mutations was analyzed by sequencing and PCR. Co-localization of PD-L1 and COX-2 expression was analyzed by double fluorescence staining. Lastly the BRAF V600E A375 and NRAS Q61R SK-MEL-2 melanoma cell lines were used to evaluate the effect of COX-2 inhibition by celecoxib on expression of PD-L1 in vitro. BRAF V600E/V600K and NRAS Q61R/Q61L were detected in 57.8 and 8.9% of the metastatic lesions, and in 65.9 and 6.8% of the primary tumors, respectively. PD-L1 and COX-2 expression were heterogeneously expressed in both primary melanoma lesions and not matched lymph node metastases. A significantly lower number of PD-L1 negative lesions was found in primary tumors as compared to not matched metastatic lesions (P = 0.002). COX-2 expression significantly correlated with PD-L1 expression in both primary (P = 0.001) and not matched metastatic (P = 0.048) lesions. Furthermore, in melanoma tumors, cancer cells expressing a higher levels of COX-2 also co-expressed a higher level of PD-L1. Lastly, inhibition of COX-2 activity by celecoxib down-regulated the expression of PD-L1 in both BRAF V600E A375 and NRAS Q61R SK-MEL-2 melanoma cell lines. COX-2 expression correlates

  3. Tpl-2/Cot and COX-2 in breast cancer.

    PubMed

    Krcova, Zuzana; Ehrmann, Jiri; Krejci, Veronika; Eliopoulos, Aris; Kolar, Zdenek

    2008-06-01

    Breast cancer is the most common cancer in women worldwide and although mortality (129,000/year) stagnates, incidence (370,000/year) is increasing. In addition to histological type, grade, stage, hormonal and c-erbB2 status there is therefore a strong need for new and reliable prognostic and predictive factors. This minireview focuses on two potential prognostic and predictive candidates Tpl2/Cot and COX-2 and summarise information about them. Tumor progression locus 2 (Tpl2/Cot) is a serine/threonine protein kinase belonging to the family of MAP3 kinases. Activated Tpl2/Cot leads to induction of ERK1/2, JNK, NF-kappaB and p38MAPK pathways. The first study on Tpl2/Cot mRNA in breast cancer showed its increase in 40 % of cases of breast cancer but no available data exist on protein expression. Cyclo-oxygenase 2 (COX-2) is inducible by growth and inflammatory factors and contributes to the development of various tumours. Expression of COX-2 in breast cancer varied from 5-100 % in reviewed papers with significantly higher values in poorly differentiated tumours. Tpl2/Cot and COX-2 have their importance in different intracellular pathways and some of these are involved in cancer development. Briefly, the results from recent studies suggest that Tpl2/Cot and COX-2 could be prognostic factors in breast cancer.

  4. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Haipeng; Xu Beibei; Sheveleva, Elena

    2008-10-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression.more » LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.« less

  5. Modeling and simulation to support dose selection and clinical development of SC-75416, a selective COX-2 inhibitor for the treatment of acute and chronic pain.

    PubMed

    Kowalski, K G; Olson, S; Remmers, A E; Hutmacher, M M

    2008-06-01

    Pharmacokinetic/pharmacodynamic (PK/PD) models were developed and clinical trial simulations were conducted to recommend a study design to test the hypothesis that a dose of SC-75416, a selective cyclooxygenase-2 inhibitor, can be identified that achieves superior pain relief (PR) compared to 400 mg ibuprofen in a post-oral surgery pain model. PK/PD models were developed for SC-75416, rofecoxib, valdecoxib, and ibuprofen relating plasma concentrations to PR scores using a nonlinear logistic-normal model. Clinical trial simulations conducted using these models suggested that 360 mg SC-75416 could achieve superior PR compared to 400 mg ibuprofen. A placebo- and positive-controlled parallel-group post-oral surgery pain study was conducted evaluating placebo, 60, 180, and 360 mg SC-75416 oral solution, and 400 mg ibuprofen. The study results confirmed the hypothesis that 360 mg SC-75416 achieved superior PR relative to 400 mg ibuprofen (DeltaTOTPAR6=3.3, P<0.05) and demonstrated the predictive performance of the PK/PD models.

  6. Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation.

    PubMed

    Hsu, Hsi-Hsien; Chen, Ming-Cheng; Day, Cecilia Hsuan; Lin, Yueh-Min; Li, Shin-Yi; Tu, Chuan-Chou; Padma, Viswanadha Vijaya; Shih, Hui-Nung; Kuo, Wei-Wen; Huang, Chih-Yang

    2017-02-21

    To identify potential anti-cancer constituents in natural extracts that inhibit cancer cell growth and migration. Our experiments used high dose thymoquinone (TQ) as an inhibitor to arrest LoVo (a human colon adenocarcinoma cell line) cancer cell growth, which was detected by cell proliferation assay and immunoblotting assay. Low dose TQ did not significantly reduce LoVo cancer cell growth. Cyclooxygenase 2 (COX-2) is an enzyme that is involved in the conversion of arachidonic acid into prostaglandin E2 (PGE2) in humans. PGE2 can promote COX-2 protein expression and tumor cell proliferation and was used as a control. Our results showed that 20 μmol/L TQ significantly reduced human LoVo colon cancer cell proliferation. TQ treatment reduced the levels of p-PI3K, p-Akt, p-GSK3β, and β-catenin and thereby inhibited the downstream COX-2 expression. Results also showed that the reduction in COX-2 expression resulted in a reduction in PGE2 levels and the suppression of EP2 and EP4 activation. Further analysis showed that TG treatment inhibited the nuclear translocation of β-catenin in LoVo cancer cells. The levels of the cofactors LEF-1 and TCF-4 were also decreased in the nucleus following TQ treatment in a dose-dependent manner. Treatment with low dose TQ inhibited the COX-2 expression at the transcriptional level and the regulation of COX-2 expression efficiently reduced LoVo cell migration. The results were further verified in vivo by confirming the effects of TQ and/or PGE2 using tumor xenografts in nude mice. TQ inhibits LoVo cancer cell growth and migration, and this result highlights the therapeutic advantage of using TQ in combination therapy against colorectal cancer.

  7. Indomethacin-Induced Apoptosis in Esophageal Adenocarcinoma Cells Involves Upregulation of Bax and Translocation of Mitochondrial Cytochrome C Independent of COX-2 Expression1

    PubMed Central

    Aggarwal, Sanjeev; Taneja, Neelam; Lin, Lin; Orringer, Mark B; Rehemtulla, Alnawaz; Beer, David G

    2000-01-01

    Abstract The prolonged use of nonsteroidal anti-inflammatory drugs (NSAIDs) has been shown to exert a chemopreventive effect in esophageal and other gastrointestinal tumors. The precise mechanism by which this occurs, however, is unknown. While the inhibition of COX-2 as a potential explanation for this chemopreventive effect has gained a great deal of support, there also exists evidence supporting the presence of cyclooxygenase-independent pathways through which NSAIDs may exert their effects. In this study, immunohistochemical analysis of 29 Barrett's epithelial samples and 60 esophageal adenocarcinomas demonstrated abundant expression of the COX-2 protein in Barrett's epithelium, but marked heterogeneity of expression in esophageal adenocarcinomas. The three esophageal adenocarcinoma cell lines, Flo-1, Bic-1, and Seg-1, also demonstrated varying expression patterns for COX-1 and COX-2. Indomethacin induced apoptosis in all three cell lines, however, in both a time- and dose-dependent manner. In Flo-1 cells, which expressed almost undetectable levels of COX-1 and COX-2, and in Seg-1, which expressed significant levels of COX-1 and COX-2, indomethacin caused upregulation of the pro-apoptotic protein Bax. The upregulation of Bax was accompanied by the translocation of mitochondrial cytochrome c to the cytoplasm, and activation of caspase 9. Pre-treatment of both cell lines with the specific caspase 9 inhibitor, z-LEHD-FMK, as well as the broad-spectrum caspase inhibitor, z-VAD-FMK, blocked the effect of indomethacin-induced apoptosis. These data demonstrate that induction of apoptosis by indomethacin in esophageal adenocarcinoma cells is associated with the upregulation of Bax expression and mitochondrial cytochrome c translocation, and does not correlate with the expression of COX-2. This may have important implications for identifying new therapeutic targets in this deadly disease. PMID:11005569

  8. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    PubMed

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  9. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    PubMed

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  10. GNE-886: A Potent and Selective Inhibitor of the Cat Eye Syndrome Chromosome Region Candidate 2 Bromodomain (CECR2).

    PubMed

    Crawford, Terry D; Audia, James E; Bellon, Steve; Burdick, Daniel J; Bommi-Reddy, Archana; Côté, Alexandre; Cummings, Richard T; Duplessis, Martin; Flynn, E Megan; Hewitt, Michael; Huang, Hon-Ren; Jayaram, Hariharan; Jiang, Ying; Joshi, Shivangi; Kiefer, James R; Murray, Jeremy; Nasveschuk, Christopher G; Neiss, Arianne; Pardo, Eneida; Romero, F Anthony; Sandy, Peter; Sims, Robert J; Tang, Yong; Taylor, Alexander M; Tsui, Vickie; Wang, Jian; Wang, Shumei; Wang, Yongyun; Xu, Zhaowu; Zawadzke, Laura; Zhu, Xiaoqin; Albrecht, Brian K; Magnuson, Steven R; Cochran, Andrea G

    2017-07-13

    The biological function of bromodomains, epigenetic readers of acetylated lysine residues, remains largely unknown. Herein we report our efforts to discover a potent and selective inhibitor of the bromodomain of cat eye syndrome chromosome region candidate 2 (CECR2). Screening of our internal medicinal chemistry collection led to the identification of a pyrrolopyridone chemical lead, and subsequent structure-based drug design led to a potent and selective CECR2 bromodomain inhibitor (GNE-886) suitable for use as an in vitro tool compound.

  11. Selective serotonin reuptake inhibitors and adverse pregnancy outcomes.

    PubMed

    Wen, Shi Wu; Yang, Qiuying; Garner, Peter; Fraser, William; Olatunbosun, Olufemi; Nimrod, Carl; Walker, Mark

    2006-04-01

    The purpose of this study was to assess the safety of the use of selective serotonin reuptake inhibitors in pregnancy. We carried out a retrospective cohort study of 972 pregnant women who had been given at least 1 selective serotonin reuptake inhibitor prescription in the year before delivery and 3878 pregnant women who did not receive selective serotonin reuptake inhibitors and who were matched by the year of the infant's birth, the type of institute at birth, and the mother's postal code from 1990 to 2000 in the Canadian province of Saskatchewan. The risks of low birth weight (adjusted odds ratio, 1.58; 95% CI, 1.19, 2.11), preterm birth (adjusted odds ratio, 1.57; 95% CI, 1.28, 1.92), fetal death (adjusted odds ratio, 2.23; 95% CI, 1.01, 4.93), and seizures (adjusted odds ratio, 3.87; 95% CI, 1.00, 14.99) were increased in infants who were born to mothers who had received selective serotonin reuptake inhibitor therapy. The use of selective serotonin reuptake inhibitors in pregnancy may increase the risks of low birth weight, preterm birth, fetal death, and seizures.

  12. Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold.

    PubMed

    Jansen, Koen; Heirbaut, Leen; Cheng, Jonathan D; Joossens, Jurgen; Ryabtsova, Oxana; Cos, Paul; Maes, Louis; Lambeir, Anne-Marie; De Meester, Ingrid; Augustyns, Koen; Van der Veken, Pieter

    2013-05-09

    Fibroblast activation protein (FAP) is a serine protease that is generally accepted to play an important role in tumor growth and other diseases involving tissue remodeling. Currently there are no FAP inhibitors with reported selectivity toward both the closely related dipeptidyl peptidases (DPPs) and prolyl oligopeptidase (PREP). We present the discovery of a new class of FAP inhibitors with a N-(4-quinolinoyl)-Gly-(2-cyanopyrrolidine) scaffold. We have explored the effects of substituting the quinoline ring and varying the position of its sp(2) hybridized nitrogen atom. The most promising inhibitors combined low nanomolar FAP inhibition and high selectivity indices (>10(3)) with respect to both the DPPs and PREP. Preliminary experiments on a representative inhibitor demonstrate that plasma stability, kinetic solubility, and log D of this class of compounds can be expected to be satisfactory.

  13. Celecoxib versus a non-selective NSAID plus proton-pump inhibitor: what are the considerations?.

    PubMed

    Chen, Judy T; Pucino, Frank; Resman-Targoff, Beth H

    2006-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are extensively used worldwide. However, associated adverse gastrointestinal effects (NSAID gastropathy) such as bleeding, perforation and obstruction result in considerable morbidity, mortality, and expense. Although it is essential to employ gastroprotective strategies to minimize these complications in patients at risk, controversy remains on whether celecoxib alone or a non-selective NSAID in conjunction with a proton-pump inhibitor (PPI) is a superior choice. Recent concerns regarding potential cardiovascular toxicities associated with cox-2 selective inhibitors may favor non-selective NSAID/PPI co-therapy as the preferred choice. Concomitant use of low-dose aspirin with any NSAID increases the risk of gastrointestinal complications and diminishes the improved gastrointestinal safety profile of celecoxib; whereas use of ibuprofen plus PPI regimens may negate aspirin's antiplatelet benefits. Evidence shows that concurrent use of a non-selective NSAID (such as naproxen) plus a PPI is as effective in preventing NSAID gastropathy as celecoxib, and may be more cost-effective. Patients failing or intolerant to this therapy would be candidates for celecoxib at the lowest effective dose for the shortest duration of time. Potential benefits from using low-dose celecoxib with a PPI in patients previously experiencing bleeding ulcers while taking NSAIDs remains to be proven. An evidence-based debate is presented to assist clinicians with the difficult decision-making process of preventing NSAID gastropathy while minimizing other complications.

  14. Involvement of COX-2 in nickel elution from a wire implanted subcutaneously in mice.

    PubMed

    Sato, Taiki; Kishimoto, Yu; Asakawa, Sanki; Mizuno, Natsumi; Hiratsuka, Masahiro; Hirasawa, Noriyasu

    2016-07-01

    Many types of medical alloys include nickel (Ni), and the elution of Ni ions from these materials causes toxicities and inflammation. We have previously reported that inflammation enhances Ni elution, although the molecular mechanisms underlying this effect remain unclear. In this study, we investigated how inflammatory responses enhanced Ni elution in a wire-implantation mouse model. Subcutaneous implantation of Ni wire induced the expression of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) mRNA in the surrounding tissues. Immunostaining analysis showed that cells expressing COX-2 were mainly fibroblast-like cells 8h after implantation of a Ni wire, but were mainly infiltrated leukocytes at 24h. NiCl2 induced the expression of COX-2 mRNA in primary fibroblasts, neutrophils, RAW 264 cells, and THP-1 cells, indicating that Ni ions can induce COX-2 expression in various types of cells. The elution of Ni ions from the implanted Ni wire at 8h was reduced by dexamethasone (Dex), indomethacin (Ind), or celecoxib (Cel) treatment. Ni wire implantation induced an increase in mRNA levels for anaerobic glycolytic pathway components glucose transporter 1 (GLUT1), hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), and monocarboxylate transporter 4 (MCT4); the expression of these genes was also inhibited by Dex, Ind, and Cel. In primary fibroblasts, the expression of these mRNAs and the production of lactate were induced by NiCl2 and further potentiated by PGE2. Furthermore, Ni wire-induced infiltration of inflammatory leukocytes was significantly reduced by Dex, Ind, or Cel. Depletion of neutrophils with a specific antibody caused reduction of both leukocyte infiltration and Ni elution. These results indicate that Ni ions eluted from wire induced COX-2 expression, which further promoted elution of Ni ions by increasing lactate production and leukocyte infiltration. Since COX inhibitors and Dex reduced the elution of Ni ions, these drugs may be

  15. Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma.

    PubMed

    Pomel, Vincent; Klicic, Jasna; Covini, David; Church, Dennis D; Shaw, Jeffrey P; Roulin, Karen; Burgat-Charvillon, Fabienne; Valognes, Delphine; Camps, Montserrat; Chabert, Christian; Gillieron, Corinne; Françon, Bernard; Perrin, Dominique; Leroy, Didier; Gretener, Denise; Nichols, Anthony; Vitte, Pierre Alain; Carboni, Susanna; Rommel, Christian; Schwarz, Matthias K; Rückle, Thomas

    2006-06-29

    Class I phosphoinositide 3-kinases (PI3Ks), in particular PI3Kgamma, have become attractive drug targets for inflammatory and autoimmune diseases. Here, we disclose a novel series of furan-2-ylmethylene thiazolidinediones as selective, ATP-competitive PI3Kgamma inhibitors. Structure-based design and X-ray crystallography of complexes formed by inhibitors bound to PI3Kgamma identified key pharmacophore features for potency and selectivity. An acidic NH group on the thiazolidinedione moiety and a hydroxy group on the furan-2-yl-phenyl part of the molecule play crucial roles in binding to PI3K and contribute to class IB PI3K selectivity. Compound 26 (AS-252424), a potent and selective small-molecule PI3Kgamma inhibitor emerging from these efforts, was further profiled in three different cellular PI3K assays and shown to be selective for class IB PI3K-mediated cellular effects. Oral administration of 26 in a mouse model of acute peritonitis led to a significant reduction of leukocyte recruitment.

  16. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, G.; Li, D; Sorio de Carvalho, L

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-onemore » compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.« less

  17. Discovery of a series of dihydroquinoxalin-2(1H)-ones as selective BET inhibitors from a dual PLK1-BRD4 inhibitor.

    PubMed

    Hu, Jianping; Wang, Yingqing; Li, Yanlian; Xu, Lin; Cao, Danyan; Song, ShanShan; Damaneh, Mohammadali Soleimani; Wang, Xin; Meng, Tao; Chen, Yue-Lei; Shen, Jingkang; Miao, Zehong; Xiong, Bing

    2017-09-08

    Recent years have seen much effort to discover new chemotypes of BRD4 inhibitors. Interestingly, some kinase inhibitors have been demonstrated to be potent bromodomain inhibitors, especially the PLK1 inhibitor BI-2536 and the JAK2 inhibitor TG101209, which can bind to BRD4 with IC 50 values of 0.025 μM and 0.13 μM, respectively. Although the concept of dual inhibition is intriguing, selective BRD4 inhibitors are preferred as they may diminish off-target effects and provide more flexibility in anticancer drug combination therapy. Inspired by BI-2536, we designed and prepared a series of dihydroquinoxalin-2(1H)-one derivatives as selective bromodomain inhibitors. We found compound 54 had slightly higher activity than (+)-JQ1 in the fluorescence anisotropy assay and potent antiproliferative cellular activity in the MM.1S cell line. We have successfully solved the cocrystal structure of 52 in complex with BRD4-BD1, providing a solid structural basis for the binding mode of compounds of this series. Compound 54 exhibited high selectivity over most non-BET subfamily members and did not show bioactivity towards the PLK1 kinase at 10 or 1 μM. From in vivo studies, compound 54 demonstrated a good PK profile, and the results from in vivo pharmacological studies clearly showed the efficacy of 54 in the mouse MM.1S xenograft model. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Heterotypic contact reveals a COX-2-mediated suppression of osteoblast differentiation by endothelial cells: A negative modulatory role for prostanoids in VEGF-mediated cell: cell communication?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarkin, Claire E.; Garonna, Elena; Pitsillides, Andrew A.

    In bone, angiogenesis must be initiated appropriately, but limited once remodelling or repair is complete. Our recent findings have supported a role for prostaglandins (PG), known modulators of osteoblast (OB) and endothelial cell (EC) behaviour, in facilitating VEGF-mediated paracrine communication from OBs to 'remotely located' ECs, but the mechanism(s) regulating OB:EC crosstalk when these cells are closely opposed are undefined. In this study we have examined: (i) the effects of exogenous PGE{sub 2} on VEGF-driven events in ECs, and (ii) the role of endogenous COX-2-derived prostanoids in mediating communication between intimately opposed OBs and ECs in direct contact. Exposure ofmore » ECs to PGE{sub 2} increased ERK1/2 phosphorylation, COX-2 induction, 6-keto-PGF{sub 1{alpha}} release and EC proliferation. In contrast, PGE{sub 2} attenuated VEGF{sub 165}-induced VEGFR2/Flk1 phosphorylation, ERK1/2 activation and proliferation of ECs, suggesting that exogenous PGE{sub 2} restricts the actions of VEGF. However, the COX-2-selective inhibitor, NS398, also attenuated VEGF-induced proliferation, implying a distinct role for endogenous COX-2 activity in regulating EC behaviour. To examine the effect of OB:EC proximity and the role of COX-2 products further, we used a confrontational co-culture model. These studies showed that COX-2 blockade with NS398 enhanced EC-dependent increases in OB differentiation, that this effect was reversed by exogenous PGH{sub 2} (immediate COX-2 product), and that exogenous VEGF did not influence EC-dependent OB differentiation under these conditions. Our findings indicate that locally produced prostanoids may serve distinct roles depending on OB:EC proximity and negatively modulate VEGF-mediated changes in EC behaviour when these cells are closely opposed to control angiogenesis during bone (re)modelling.« less

  19. COX2 Inhibition Reduces Aortic Valve Calcification In Vivo

    PubMed Central

    Wirrig, Elaine E.; Gomez, M. Victoria; Hinton, Robert B.; Yutzey, Katherine E.

    2016-01-01

    Objective Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality, which affects approximately 1% of the US population and is characterized by calcific nodule formation and stenosis of the valve. Klotho-deficient mice were used to study the molecular mechanisms of CAVD as they develop robust aortic valve (AoV) calcification. Through microarray analysis of AoV tissues from klotho-deficient and wild type mice, increased expression of the gene encoding cyclooxygenase 2/COX2 (Ptgs2) was found. COX2 activity contributes to bone differentiation and homeostasis, thus the contribution of COX2 activity to AoV calcification was assessed. Approach and Results In klotho-deficient mice, COX2 expression is increased throughout regions of valve calcification and is induced in the valvular interstitial cells (VICs) prior to calcification formation. Similarly, COX2 expression is increased in human diseased AoVs. Treatment of cultured porcine aortic VICs with osteogenic media induces bone marker gene expression and calcification in vitro, which is blocked by inhibition of COX2 activity. In vivo, genetic loss of function of COX2 cyclooxygenase activity partially rescues AoV calcification in klotho-deficient mice. Moreover, pharmacologic inhibition of COX2 activity in klotho-deficient mice via celecoxib-containing diet reduces AoV calcification and blocks osteogenic gene expression. Conclusions COX2 expression is upregulated in CAVD and its activity contributes to osteogenic gene induction and valve calcification in vitro and in vivo. PMID:25722432

  20. Crystal structure of checkpoint kinase 2 in complex with NSC 109555, a potent and selective inhibitor

    PubMed Central

    Lountos, George T; Tropea, Joseph E; Zhang, Di; Jobson, Andrew G; Pommier, Yves; Shoemaker, Robert H; Waugh, David S

    2009-01-01

    Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC50 = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP-competitive inhibitor, as the electron density clearly reveals that it occupies the ATP-binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity. PMID:19177354

  1. Conservative Secondary Shell Substitution In Cyclooxygenase-2 Reduces Inhibition by Indomethacin Amides and Esters via Altered Enzyme Dynamics

    PubMed Central

    2015-01-01

    The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings. PMID:26704937

  2. Targeted Deletions of COX-2 and Atherogenesis in Mice

    PubMed Central

    Hui, Yiqun; Ricciotti, Emanuela; Crichton, Irene; Yu, Zhou; Wang, Dairong; Stubbe, Jane; Wang, Miao; Puré, Ellen; FitzGerald, Garret A.

    2010-01-01

    Background While the dominant product of vascular cyclooxygenase (COX)-2, prostacyclin (PGI2), restrains atherogenesis, inhibition and deletion of COX-2 have yielded conflicting results in mouse models of atherosclerosis. Floxed mice were used to parse distinct cellular contributions of COX-2 in macrophages (Mac) and T cells (TC) to atherogenesis. Methods and Results Deletion of Mac COX-2 (MacKO) was attained using LysMCre mice and suppressed completely lipopolysaccharide (LPS) stimulated Mac prostaglandin (PG) formation and LPS evoked systemic PG biosynthesis by ∼ 30%. LPS stimulated COX-2 expression was suppressed in polymorphonuclear leucocytes (PMN) isolated from MacKOs, but PG formation was not even detected in PMN supernatants from control mice. Atherogenesis was attenuated when MacKOs were crossed into hyperlipidemic LdlR KOs. Deletion of Mac COX-2 appeared to remove a restraint on COX-2 expression in lesional non-leukocyte (CD45 and CD11b negative) vascular cells that express vascular cell adhesion molecule and variably, α-smooth muscle actin and vimentin, portending a shift in PG profile and consequent atheroprotection. Basal expression of COX-2 was minimal in TCs, but use of CD4Cre to generate TC knockouts (TCKOs) depressed its modest upregulation by anti-CD3ε. However, biosynthesis of PGs, TC composition in lymphatic organs and atherogenesis in LDLR KOs were unaltered in TCKOs. Conclusions Mac COX-2, primarily a source of thromboxane A2 and PGE2, promotes atherogenesis and exerts a restraint on enzyme expression by lesional cells suggestive of vascular smooth muscle cells, a prominent source of atheroprotective PGI2. TC COX-2 does not influence detectably TC development or function nor atherogenesis in mice. PMID:20530000

  3. A Cross-Talk Between NFAT and NF-κB Pathways is Crucial for Nickel-Induced COX-2 Expression in Beas-2B Cells

    PubMed Central

    Cai, T.; Li, X.; Ding, J.; Luo, W.; Li, J.; Huang, C.

    2013-01-01

    Cyclooxygenase-2 (COX-2) is a critical enzyme implicated in chronic inflammation-associated cancer development. Our studies have shown that the exposure of Beas-2B cells, a human bronchial epithelial cell line, to lung carcinogenic nickel compounds results in increased COX-2 expression. However, the signaling pathways leading to nickel-induced COX-2 expression are not well understood. In the current study, we found that the exposure of Beas-2B cells to nickel compounds resulted in the activation of both nuclear factor of activated T cell (NFAT) and nuclear factor-κB (NF-κB). The expression of COX-2 induced upon nickel exposure was inhibited by either a NFAT pharmacological inhibitor or the knockdown of NFAT3 by specific siRNA. We further found that the activation of NFAT and NF-κB was dependent on each other. Since our previous studies have shown that NF-κB activation is critical for nickel-induced COX-2 expression in Beas-2B cells exposed to nickel compounds under same experimental condition, we anticipate that there might be a cross-talk between the activation of NFAT and NF-κB for the COX-2 induction due to nickel exposure in Beas-2B cells. Furthermore, we showed that the scavenging of reactive oxygen species (ROS) by introduction of mitochondrial catalase inhibited the activation of both NFAT and NF-κB, and the induction of COX-2 due to nickel exposure. Taken together, our results defining the evidence showing a key role of the cross-talk between NFAT and NF-κB pathways in regulating nickel-induced COX-2 expression, further provide insight into the understanding of the molecular mechanisms linking nickel exposure to its lung carcinogenic effects. PMID:21486220

  4. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy.

    PubMed

    Leverson, Joel D; Phillips, Darren C; Mitten, Michael J; Boghaert, Erwin R; Diaz, Dolores; Tahir, Stephen K; Belmont, Lisa D; Nimmer, Paul; Xiao, Yu; Ma, Xiaoju Max; Lowes, Kym N; Kovar, Peter; Chen, Jun; Jin, Sha; Smith, Morey; Xue, John; Zhang, Haichao; Oleksijew, Anatol; Magoc, Terrance J; Vaidya, Kedar S; Albert, Daniel H; Tarrant, Jacqueline M; La, Nghi; Wang, Le; Tao, Zhi-Fu; Wendt, Michael D; Sampath, Deepak; Rosenberg, Saul H; Tse, Chris; Huang, David C S; Fairbrother, Wayne J; Elmore, Steven W; Souers, Andrew J

    2015-03-18

    The BCL-2/BCL-XL/BCL-W inhibitor ABT-263 (navitoclax) has shown promising clinical activity in lymphoid malignancies such as chronic lymphocytic leukemia. However, its efficacy in these settings is limited by thrombocytopenia caused by BCL-XL inhibition. This prompted the generation of the BCL-2-selective inhibitor venetoclax (ABT-199/GDC-0199), which demonstrates robust activity in these cancers but spares platelets. Navitoclax has also been shown to enhance the efficacy of docetaxel in preclinical models of solid tumors, but clinical use of this combination has been limited by neutropenia. We used venetoclax and the BCL-XL-selective inhibitors A-1155463 and A-1331852 to assess the relative contributions of inhibiting BCL-2 or BCL-XL to the efficacy and toxicity of the navitoclax-docetaxel combination. Selective BCL-2 inhibition suppressed granulopoiesis in vitro and in vivo, potentially accounting for the exacerbated neutropenia observed when navitoclax was combined with docetaxel clinically. By contrast, selectively inhibiting BCL-XL did not suppress granulopoiesis but was highly efficacious in combination with docetaxel when tested against a range of solid tumors. Therefore, BCL-XL-selective inhibitors have the potential to enhance the efficacy of docetaxel in solid tumors and avoid the exacerbation of neutropenia observed with navitoclax. These studies demonstrate the translational utility of this toolkit of selective BCL-2 family inhibitors and highlight their potential as improved cancer therapeutics. Copyright © 2015, American Association for the Advancement of Science.

  5. Up-regulated neuronal COX-2 expression after cortical spreading depression is involved in non-REM sleep induction in rats.

    PubMed

    Cui, Yilong; Kataoka, Yosky; Inui, Takashi; Mochizuki, Takatoshi; Onoe, Hirotaka; Matsumura, Kiyoshi; Urade, Yoshihiro; Yamada, Hisao; Watanabe, Yasuyoshi

    2008-03-01

    Cortical spreading depression is an excitatory wave of depolarization spreading throughout cerebral cortex at a rate of 2-5 mm/min and has been implicated in various neurological disorders, such as epilepsy, migraine aura, and trauma. Although sleepiness or sleep is often induced by these neurological disorders, the cellular and molecular mechanism has remained unclear. To investigate whether and how the sleep-wake behavior is altered by such aberrant brain activity, we induced cortical spreading depression in freely moving rats, monitoring REM and non-REM (NREM) sleep and sleep-associated changes in cyclooxygenase (COX)-2 and prostaglandins (PGs). In such a model for aberrant neuronal excitation in the cerebral cortex, the amount of NREM sleep, but not of REM sleep, increased subsequently for several hours, with an up-regulated expression of COX-2 in cortical neurons and considerable production of PGs. A specific inhibitor of COX-2 completely arrested the increase in NREM sleep. These results indicate that up-regulated neuronal COX-2 would be involved in aberrant brain excitation-induced NREM sleep via production of PGs. (c) 2007 Wiley-Liss, Inc.

  6. Area-Selective Atomic Layer Deposition of SiO2 Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle

    PubMed Central

    2017-01-01

    Area-selective atomic layer deposition (ALD) is rapidly gaining interest because of its potential application in self-aligned fabrication schemes for next-generation nanoelectronics. Here, we introduce an approach for area-selective ALD that relies on the use of chemoselective inhibitor molecules in a three-step (ABC-type) ALD cycle. A process for area-selective ALD of SiO2 was developed comprising acetylacetone inhibitor (step A), bis(diethylamino)silane precursor (step B), and O2 plasma reactant (step C) pulses. Our results show that this process allows for selective deposition of SiO2 on GeO2, SiNx, SiO2, and WO3, in the presence of Al2O3, TiO2, and HfO2 surfaces. In situ Fourier transform infrared spectroscopy experiments and density functional theory calculations underline that the selectivity of the approach stems from the chemoselective adsorption of the inhibitor. The selectivity between different oxide starting surfaces and the compatibility with plasma-assisted or ozone-based ALD are distinct features of this approach. Furthermore, the approach offers the opportunity of tuning the substrate-selectivity by proper selection of inhibitor molecules. PMID:28850774

  7. Molecular structure, spectroscopic and docking analysis of 1,3-diphenylpyrazole-4-propionic acid: A good prostaglandin reductase inhibitor

    NASA Astrophysics Data System (ADS)

    Kavitha, T.; Velraj, G.

    2018-03-01

    The molecule 1,3-diphenylpyrazole-4-propionic acid (DPPA) was optimized to its minimum energy level using density functional theory (DFT) calculations. The vibrational frequencies of DPPA were calculated along with their potential energy distribution (PED) and the obtained values are validated with the help of experimental calculations. The reactivity nature of the molecule was investigated with the aid of various DFT methods such as global reactivity descriptors, local reactivity descriptors, molecular electrostatic potential (MEP), natural bond orbitals (NBOs), etc. The prediction of activity spectra for substances (PASS) result forecast that, DPPA can be more active as a prostaglandin (PG) reductase inhibitor. The PGs are biologically synthesized by the cyclooxygenase (COX) enzyme which exists in COX1 and COX2 forms. The PGs produced by COX2 enzyme induces inflammation and fungal infections and hence the inhibition of COX2 enzyme is indispensable in anti-inflammation and anti-fungal activities. The docking analysis of DPPA with COX enzymes (both COX1 and COX2) were carried out and eventually, it was found that DPPA can selectively inhibit COX2 enzyme and can serve as a PG reductase inhibitor thereby acting as a lead compound for the treatment of inflammation and fungal diseases.

  8. 2,4,5-TMBA, a natural inhibitor of cyclooxygenase-2, suppresses adipogenesis and promotes lipolysis in 3T3-L1 adipocytes.

    PubMed

    Wu, Man-Ru; Hou, Ming-Hon; Lin, Ya-Lin; Kuo, Chia-Feng

    2012-07-25

    Obesity is a global health problem. Because of the high costs and side effects of obesity-treatment drugs, the potential of natural products as alternatives for treating obesity is under exploration. 2,4,5-Trimethoxybenzaldehyde (2,4,5-TMBA) present in plant roots, seeds, and leaves was reported to be a significant inhibitor of cyclooxygenase-2 (COX-2) activity at the concentration of 100 μg/mL. Because COX-2 is associated with differentiation of preadipocytes, the murine 3T3-L1 cells were cultured with 100 μg/mL of 2,4,5-TMBA during differentiation and after the cells were fully differentiated to study the effect of 2,4,5-TMBA on adipogenesis and lipolysis. Oil Red O staining and triglyceride assay revealed that 2,4,5-TMBA inhibited the formation of lipid droplets during differentiation; moreover, 2,4,5-TMBA down-regulated the protein levels of adipogenic signaling molecules and transcription factors MAP kinase kinase (MEK), extracellular signal-regulated kinase (ERK), CCAAT/enhancer binding protein (C/EBP)α, β, and δ, peroxisome proliferator-activated receptor (PPAR)γ, adipocyte determination and differentiation-dependent factor 1 (ADD1), and the rate-limiting enzyme for lipid synthesis acetyl-CoA carboxylase (ACC). In fully differentiated adipocytes, treatment with 2,4,5-TMBA for 72 h significantly decreased lipid accumulation by increasing the hydrolysis of triglyceride through suppression of perilipin A (lipid droplet coating protein) and up-regulation of hormone-sensitive lipase (HSL). The results of this in vitro study will pioneer future in vivo studies on antiobesity effects of 2,4,5-TMBA and selective COX-2 inhibitors.

  9. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation.

    PubMed

    Jesus, Ana R; Vila-Viçosa, Diogo; Machuqueiro, Miguel; Marques, Ana P; Dore, Timothy M; Rauter, Amélia P

    2017-01-26

    Inhibiting glucose reabsorption by sodium glucose co-transporter proteins (SGLTs) in the kidneys is a relatively new strategy for treating type 2 diabetes. Selective inhibition of SGLT2 over SGLT1 is critical for minimizing adverse side effects associated with SGLT1 inhibition. A library of C-glucosyl dihydrochalcones and their dihydrochalcone and chalcone precursors was synthesized and tested as SGLT1/SGLT2 inhibitors using a cell-based fluorescence assay of glucose uptake. The most potent inhibitors of SGLT2 (IC 50 = 9-23 nM) were considerably weaker inhibitors of SGLT1 (IC 50 = 10-19 μM). They showed no effect on the sodium independent GLUT family of glucose transporters, and the most potent ones were not acutely toxic to cultured cells. The interaction of a C-glucosyl dihydrochalcone with a POPC membrane was modeled computationally, providing evidence that it is not a pan-assay interference compound. These results point toward the discovery of structures that are potent and highly selective inhibitors of SGLT2.

  10. Synthesis, cytotoxicity, cellular uptake and influence on eicosanoid metabolism of cobalt-alkyne modified fructoses in comparison to auranofin and the cytotoxic COX inhibitor Co-ASS.

    PubMed

    Ott, Ingo; Koch, Thao; Shorafa, Hashem; Bai, Zhenlin; Poeckel, Daniel; Steinhilber, Dieter; Gust, Ronald

    2005-06-21

    Propargylhexacarbonyldicobalt complexes with fructopyranose ligands were prepared and investigated for cytotoxicity in the MCF-7 human breast cancer cell line. The antiproliferative effects depended on the presence of isopropylidene protecting groups in the carbohydrate ligand and correlated with the cellular concentration of the complexes. IC(50) values of > 20 microM demonstrated that the fructose derivatives were only moderately active compared to the references auranofin and the aspirin (ASS) derivative [2-acetoxy(2-propynyl)benzoate]hexacarbonyldicobalt (Co-ASS). In continuation of our studies on the mode of action of cobalt-alkyne complexes we studied the influence of the compounds on the formation of 12-HHT (COX-1 product) and 12-HETE (12-LOX product) by human platelets as an indication of the interference in the eicosanoid metabolism, which is discussed as a target system of cytostatics. Co-ASS was an efficient COX-1 inhibitor without LOX inhibitory activity and auranofin inhibited both COX-1 and 12-LOX eicosanoid production. The missing activity of the fructopyranose complexes at the 12-LOX and the only moderate effects at COX-1 indicate that COX/LOX inhibition may be in part responsible for the pharmacological effects of auranofin and Co-ASS but not for those of the fructopyranose complexes.

  11. Sulfonamide derivatives of styrylheterocycles as a potent inhibitor of COX-2-mediated prostaglandin E2 production.

    PubMed

    Lim, Chaemin; Lee, Minhee; Park, Eun-Jung; Cho, Ran; Park, Hyen-Joo; Lee, Seong Jin; Cho, Heeyeong; Lee, Sang Kook; Kim, Sanghee

    2010-12-01

    The overproduction of prostaglandin E(2) (PGE(2)) plays an important role in a variety of pathophysiological processes including inflammation and carcinogenesis. Therefore, the modulation of PGE(2) production is a promising target in the design of chemotherapeutic agents. In the present study, the inhibitory effects of a series of styrylheterocycles having either a p-SO(2)NH(2) or p-SO(2)Me group on the production of cyclooxygenase-2-mediated PGE(2) were evaluated in lipopolysaccharide-stimulated RAW264.7 murine macrophages. Among the series of styrylheterocycle derivatives, (E)-4-(2-(thiophen-3-yl)vinyl)benzenesulfonamide exhibited a potent inhibitory activity, with an IC(50) value of 0.013 μM. The inhibitory activity against the overproduction of PGE(2) by the active compound was found to be due in part to the suppression of COX-2 mRNA expression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Rottlerin enhances IL-1β-induced COX-2 expression through sustained p38 MAPK activation in MDA-MB-231 human breast cancer cells

    PubMed Central

    Park, Eun Jung

    2011-01-01

    Cyclooxygenase-2 (COX-2) is an important enzyme in inflammation. In this study, we investigated the underlying molecular mechanism of the synergistic effect of rottlerin on interleukin1β (IL-1β)-induced COX-2 expression in MDA-MB-231 human breast cancer cell line. Treatment with rottlerin enhanced IL-1β-induced COX-2 expression at both the protein and mRNA levels. Combined treatment with rottlerin and IL-1β significantly induced COX-2 expression, at least in part, through the enhancement of COX-2 mRNA stability. In addition, rottlerin and IL-1β treatment drove sustained activation of p38 Mitogen-activated protein kinase (MAPK), which is involved in induced COX-2 expression. Also, a pharmacological inhibitor of p38 MAPK (SB 203580) and transient transfection with inactive p38 MAPK inhibited rottlerin and IL-1β-induced COX-2 upregulation. However, suppression of protein kinase C δ (PKC δ) expression by siRNA or overexpression of dominant-negative PKC δ (DN-PKC-δ) did not abrogate the rottlerin plus IL-1β-induced COX-2 expression. Furthermore, rottlerin also enhanced tumor necrosis factor-α (TNF-α), phorbol myristate acetate (PMA), and lipopolysaccharide (LPS)-induced COX-2 expression. Taken together, our results suggest that rottlerin causes IL-1β-induced COX-2 upregulation through sustained p38 MAPK activation in MDA-MB-231 human breast cancer cells. PMID:21971413

  13. Circulating cycloxygenase-2 in patients with tobacco-related intraoral squamous cell carcinoma and evaluation of its peptide inhibitors as potential antitumor agent.

    PubMed

    Kapoor, Vaishali; Singh, Abhay K; Dey, Sharmistha; Sharma, Suresh C; Das, Satya N

    2010-12-01

    The aim of this study was to quantitate circulating COX-2 levels in patients with tobacco-related intraoral cancer and to evaluate antitumor activities of COX-2 peptide inhibitors in vitro on KB cell lines. We used a novel biosensor-based surface plasmon resonance (SPR) technique for estimation of circulating COX-2 levels in 76 patients with oral cancer and 43 normal individuals. Antitumor activities of five COX-2 inhibitory peptides were evaluated using propidium iodide labeling and flow cytometry, alamar blue, MTS, and annexin-V binding assays. Patients with oral cancer showed threefold increase in serum COX-2 level when compared to normal controls (P < 0.0001). Further, late-stage tumors and lymph node metastasis were associated with significant increase in serum COX-2 levels. Patients with higher circulating COX-2 also showed higher immunoreactivity to anti-COX-2 antibody in the lesions. The peptides significantly reduced viability and inhibited growth/proliferation, induced cytotoxicity and apoptosis in tumor cells. However, no such effect was observed either on normal human leukocytes or on MCF-7 cell line that did not over express COX-2. Our results indicate that SPR may be a useful proteomic technique for quantitative assessment of COX-2 and to identify patients with high-risk oral premalignant or occult cancer, as well as in monitoring response to novel COX-2 targeting strategies. Furthermore, COX-2 peptide inhibitors appear to be a new class of potent anticancer agent for human oral carcinoma.

  14. Cell-type-specific roles for COX-2 in UVB-induced skin cancer

    PubMed Central

    Herschman, Harvey

    2014-01-01

    In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2 flox/flox mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2 flox/flox;K14Cre + mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2 flox/flox;K14Cre + papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2 flox/flox; LysMCre + myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. PMID:24469308

  15. Crystal structure of rofecoxib bound to human cyclooxygenase-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlando, Benjamin J.; Malkowski, Michael G.

    2016-10-26

    Rofecoxib (Vioxx) was one of the first selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) to be approved for use in humans. Within five years after its release to the public, Vioxx was withdrawn from the market owing to the adverse cardiovascular effects of the drug. Despite the widespread knowledge of the development and withdrawal of Vioxx, relatively little is known at the molecular level about how the inhibitor binds to COX-2. Vioxx is unique in that the inhibitor contains a methyl sulfone moiety in place of the sulfonamide moiety found in other coxibs such as celecoxib and valdecoxib. Here, new crystallization conditionsmore » were identified that allowed the structural determination of human COX-2 in complex with Vioxx and the structure was subsequently determined to 2.7- Å resolution. The crystal structure provides the first atomic level details of the binding of Vioxx to COX-2. As anticipated, Vioxx binds with its methyl sulfone moiety located in the side pocket of the cyclooxygenase channel, providing support for the isoform selectivity of this drug.« less

  16. Novel Harmonic Regularization Approach for Variable Selection in Cox's Proportional Hazards Model

    PubMed Central

    Chu, Ge-Jin; Liang, Yong; Wang, Jia-Xuan

    2014-01-01

    Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq  (1/2 < q < 1) regularizations, to select key risk factors in the Cox's proportional hazards model using microarray gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL), the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods. PMID:25506389

  17. Novel harmonic regularization approach for variable selection in Cox's proportional hazards model.

    PubMed

    Chu, Ge-Jin; Liang, Yong; Wang, Jia-Xuan

    2014-01-01

    Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate nonconvex Lq  (1/2 < q < 1) regularizations, to select key risk factors in the Cox's proportional hazards model using microarray gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real diffuse large B-cell lymphoma (DCBCL), the lung cancer, and the AML datasets, show that the harmonic regularization method can be more accurate for variable selection than existing Lasso series methods.

  18. Targeting Estrogen-Induced COX-2 Activity in Lymphangioleiomyomatosis (LAM)

    DTIC Science & Technology

    2014-12-01

    production was also increased in TSC2-deficient cells. In preclinical models, both Celecoxib and aspirin reduced tumor development. LAM patients had...increased by aspirin treatment, indicative of functional COX-2 expression in the LAM airway. In vitro, 15-epi-lipoxin-A4 reduced the proliferation of...inhibit COX-2 pharmacologically, we treated TSC2-deficient cells with aspirin or NS398, and found that both agents reduced COX-2 protein levels and

  19. Selective JAK inhibitors in development for rheumatoid arthritis.

    PubMed

    Norman, Peter

    2014-08-01

    The JAK kinases are a family of four tyrosine receptor kinases that play a pivotal role in cytokine receptor signalling pathways via their interaction with signal transducers and activators of transcription proteins. Selective inhibitors of JAK kinases are viewed as of considerable potential as disease-modifying anti-inflammatory drugs for the treatment of rheumatoid arthritis. This article provides a review of the clinical development and available clinical results for those JAK inhibitors currently under investigation. Phase II data for four JAK inhibitors (baricitinib, decernotinib, filgotinib and INCB-039110) are contrasted with that reported for the recently approved JAK inhibitor tofacitinib. The preclinical data on these, in addition to peficitinib, ABT-494, INCB-047986 and AC-410 are also discussed, as are some of the inhibitors in preclinical development. JAK inhibitors are effective in the treatment of rheumatoid arthritis as evidenced by several inhibitors enabling the majority of treated patients to achieve ACR20 responses, with baricitinib and INCB-039110 both effective when administered once daily. JAK inhibitors differ in isoform specificity profiles, with good efficacy achievable by selective inhibition of either JAK1 (filgotinib or INCB-039110) or JAK3 (decernotinib). It remains to be seen what selectivity provides the optimal side-effect profile and to what extent inhibition of JAK2 should be avoided.

  20. Sulforaphane inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of MMPs, COX-2, and PGE2.

    PubMed

    Choi, Yun Jung; Lee, Won-Seok; Lee, Eun-Gyeong; Sung, Myung-Soon; Yoo, Wan-Hee

    2014-10-01

    This study was performed to define the effects of sulforaphane on interleukin-1β (IL-1β)-induced proliferation of rheumatoid arthritis synovial fibroblasts (RASFs), the expression of matrix metalloproteinases (MMPs) and cyclooxygenase (COX), and the production of prostaglandin E2 (PGE2) by RASFs. The proliferation of RASFs was evaluated with CCK-8 reagent in the presence of IL-1β with/without sulforaphane. The expression of MMPs, tissue inhibitor of metalloproteinase-1, COXs, intracellular mitogen-activated protein kinase signalings, including p-ERK, p-p38, p-JNK, and nuclear factor-kappaB (NF-kB), and the production of PGE2 were examined by Western blotting or semi-quantitative RT-PCR and ELISA. Sulforaphane inhibits unstimulated and IL-1β-induced proliferation of RASFs; the expression of MMP-1, MMP-3, and COX-2 mRNA and protein; and the PGE2 production induced by IL-1β. Sulforaphane also inhibits the phosphorylation of ERK-1/2, p-38, and JNK and activation of NF-kB by IL-1β. These results indicate that sulforaphane inhibits the proliferation of synovial fibroblasts, the expression of MMPs and COX-2, and the production of PGE2, which are involved in synovitis and destruction of RA, and suggest that sulforaphane might be a new therapeutic agent for RA.

  1. Cyclo-oxygenase-2 contributes to constitutive prostanoid production in rat kidney and brain

    PubMed Central

    2005-01-01

    Cyclo-oxygenases (COXs) catalyse the synthesis of PGH2 (prostaglandin H2), which serves as the common substrate for the production of PGE2, PGD2, PGF2α, prostacyclin (or PGI2) and TXs (thromboxanes). While COX-1 is the major isoform responsible for prostanoid synthesis in healthy tissues, little information is available on the contribution of constitutive COX-2 to the various prostanoid synthetic pathways under non-inflammatory conditions. To evaluate further the role of COX-2 in prostanoid biosynthesis, rats were acutely treated with the selective COX-1 inhibitor SC-560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole] or the selective COX-2 inhibitors MF tricyclic [3-(3,4-difluorophenyl)-4-(4-(methylsulphonyl)phenyl)-2-(5H)-furanone] and DFU [5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2-(5H)-furanone]. Selected tissues were then processed for a complete analysis of their prostanoid content by liquid chromatography MS. Whereas the treatment with SC-560 caused a 60–70% inhibition in the total prostanoid content of most tissues examined, a significant decrease (35–50%) in total prostanoid content following selective COX-2 inhibition was solely detected for kidney and brain tissues. Analysis of the individual prostanoids reveals significant inhibition of 6-oxo-PGF1α, PGE2, PGD2, PGF2α and TXB2 in the kidney and inhibition of all these prostanoids with the exception of PGD2 in the forebrain. These results demonstrate that constitutively expressed COX-2 contributes to the production of prostanoids in kidney and brain for each of the PGE2, PGI2 and TXB2 pathways under non-inflammatory conditions. Approaches to modulate inflammation through specific inhibition of terminal synthases, such as mPGES-1 (microsomal PGE2 synthase-1), thus have the potential to differ from COX-2 inhibitors and non-selective non-steroidal anti-inflammatory drugs with regard to effects on constitutive prostanoid synthesis and on renal function. PMID

  2. Cell-type-specific roles for COX-2 in UVB-induced skin cancer.

    PubMed

    Jiao, Jing; Mikulec, Carol; Ishikawa, Tomo-o; Magyar, Clara; Dumlao, Darren S; Dennis, Edward A; Fischer, Susan M; Herschman, Harvey

    2014-06-01

    In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2(flox/flox) mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2(flox/flox);K14Cre(+) mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2(flox/flox);K14Cre(+) papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2(flox/flox); LysMCre(+) myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson's Disease.

    PubMed

    Niranjan, Rituraj; Mishra, Kaushal Prasad; Thakur, Ashwani Kumar

    2018-03-01

    Cyclooxygenase-2 or COX-2 has been known to be crucial for Parkinson's disease (PD) pathogenesis; however, its exact role is still not known. We first time report that inhibition of COX-2 promotes 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP)-induced neuronal cell death via induction of autophagic mechanisms. We found that treatment with MPTP induced cell death of neuroblastoma cells SH-SY5Y in a dose dependent manner. Treatment of MPTP has also upregulated the expressions of autophagic proteins such as LC3, beclin, ATG-5, and p62. Interestingly, nimesulide, a preferential COX-2 inhibitor, further potentiated the MPTP-induced cell death of human neuroblastoma cells. Treatment of nimesulide with MPTP further potentiated expressions of p62, ATG-5, beclin-1, LC3 autophagic proteins. Furthermore, nimesulide with MPTP increased apoptotic protein cleaved caspase-3 and also induced expression of p53 gene. Interestingly, it was observed that Akt inhibitor significantly increased MPTP-induced cell death of neuroblastoma cells. However, (-) deprenyl, a monoamine oxidase B (MAO B) inhibitor, attenuated MPTP-induced autophagic response and protected cell death. The prior treatment with prostaglandin E2 protected against nimesulide induced-death of neuronal cells. This study confirms that neuroinflammation is associated to the autophagy and may be one of the main pathological mechanisms in Parkinson's disease and other inflammation-associated disorders.

  4. Cyclooxygenase-2 inhibitor induces apoptosis in breast cancer cells in an in vivo model of spontaneous metastatic breast cancer.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Lagioia, Michelle; Gendler, Sandra J; Mukherjee, Pinku

    2004-11-01

    Cyclooxygenase-2 (COX-2) inhibitors are rapidly emerging as a new generation of therapeutic drug in combination with chemotherapy or radiation therapy for the treatment of cancer. The mechanisms underlying its antitumor effects are not fully understood and more thorough preclinical trials are needed to determine if COX-2 inhibition represents a useful approach for prevention and/or treatment of breast cancer. The purpose of this study was to evaluate the growth inhibitory mechanism of a highly selective COX-2 inhibitor, celecoxib, in an in vivo oncogenic mouse model of spontaneous breast cancer that resembles human disease. The oncogenic mice carry the polyoma middle T antigen driven by the mouse mammary tumor virus promoter and develop primary adenocarcinomas of the breast. Results show that oral administration of celecoxib caused significant reduction in mammary tumor burden associated with increased tumor cell apoptosis and decreased proliferation in vivo. In vivo apoptosis correlated with significant decrease in activation of protein kinase B/Akt, a cell survival signaling kinase, with increased expression of the proapoptotic protein Bax and decreased expression of the antiapoptotic protein Bcl-2. In addition, celecoxib treatment reduced levels of proangiogenic factor (vascular endothelial growth factor), suggesting a role of celecoxib in suppression of angiogenesis in this model. Results from these preclinical studies will form the basis for assessing the feasibility of celecoxib therapy alone or in combination with conventional therapies for treatment and/or prevention of breast cancer.

  5. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats.

    PubMed

    Muñoz, Mercedes; Sánchez, Ana; Pilar Martínez, María; Benedito, Sara; López-Oliva, Maria-Elvira; García-Sacristán, Albino; Hernández, Medardo; Prieto, Dolores

    2015-07-01

    Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Immunohistochemical expression of cyclooxygenase-2 (COX-2) in oral nevi and melanoma.

    PubMed

    de Souza do Nascimento, Juliana; Carlos, Román; Delgado-Azañero, Wilson; Mosqueda Taylor, Adalberto; de Almeida, Oslei Paes; Romañach, Mário José; de Andrade, Bruno Augusto Benevenuto

    2016-07-01

    Cyclooxygenase-2 (COX-2) catalyses the conversion of arachidonic acid to prostaglandin, and its overexpression has been demonstrated in different malignant tumors, including cutaneous melanoma. However, no data about the expression of this protein in oral melanocytic lesions are available to date. The aim of this study was to evaluate the immunohistochemical expression of COX-2 in oral nevi and melanomas, comparing the results with correspondent cutaneous lesions. COX-2 was evaluated by immunohistochemistry in 49 oral melanocytic lesions, including 36 intramucosal nevi and 13 primary oral melanomas, and in four cutaneous nevi and eight melanomas. All cases of oral and cutaneous melanomas were positive for COX-2. On the other hand, all oral and cutaneous melanocytic nevi were negative. COX-2 is highly positive in oral melanomas and negative in oral nevi and might represent a useful marker to distinguish melanocytic lesions of the oral cavity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The selective cyclooxygenase-2 inhibitor parecoxib markedly improves the ability of the duodenum to regulate luminal hypertonicity in anaesthetized rats.

    PubMed

    Sedin, J; Sjöblom, M; Nylander, O

    2012-07-01

    To examine whether the prevention of post-operative duodenal ileus by treatment with parecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, affects the ability of the duodenum to respond to luminal hypertonicity. The proximal duodenums of anaesthetized rats were perfused with hypertonic NaCl solutions with osmolalities of 400, 500, 600 or 700 mOsm kg(-1) , and the effects on mucosal permeability, motility, transepithelial net fluid flux and effluent osmolality were assessed in the absence (control) and presence of parecoxib. Parecoxib-treated, but not control animals, exhibited duodenal contractions, which were reduced by the nicotinic receptor antagonists mecamylamine and hexamethonium and by perfusion with 700 mOsm kg(-1) . All animals responded to luminal hypertonicity with induction of net fluid secretion, which peaked at an osmolality of 500 mOsm kg(-1) . The hypertonicity-induced increases in fluid secretion were twofold greater in parecoxib-treated than in control rats and attenuated by nicotinic receptor blockade. The decrease in luminal osmolality correlated with the osmolality of the perfusion solution in both control and parecoxib-treated animals but the osmolality-adjusting capability was markedly better in the latter group. Rats exposed to duodenal luminal distension responded to hypertonicity with a greater fluid secretion and a larger decrease in luminal osmolality than control rats. Perfusion with 700 mOsm kg(-1) increased mucosal permeability in parecoxib-treated animals only, an effect abolished by nicotinic receptor blockade. Parecoxib markedly improved the ability of the duodenum to sense and to decrease luminal hypertonicity by a mechanism most probably involving inhibition of COX-2 and stimulation of nicotinic acetylcholine receptors. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  8. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells.

    PubMed

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with reduced vascularization and

  9. Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells

    PubMed Central

    Basu, Gargi D; Pathangey, Latha B; Tinder, Teresa L; Gendler, Sandra J; Mukherjee, Pinku

    2005-01-01

    Introduction Inhibitors of cyclo-oxygenase (COX)-2 are being extensively studied as anticancer agents. In the present study we evaluated the mechanisms by which a highly selective COX-2 inhibitor, celecoxib, affects tumor growth of two differentially invasive human breast cancer cell lines. Methods MDA-MB-231 (highly invasive) and MDA-MB-468 (moderately invasive) cell lines were treated with varying concentrations of celecoxib in vitro, and the effects of this agent on cell growth and angiogenesis were monitored by evaluating cell proliferation, apoptosis, cell cycle arrest, and vasculogenic mimicry. The in vitro results of MDA-MB-231 cell line were further confirmed in vivo in a mouse xenograft model. Results The highly invasive MDA-MB-231 cells express higher levels of COX-2 than do the less invasive MDA-MB-468 cells. Celecoxib treatment inhibited COX-2 activity, indicated by prostaglandin E2 secretion, and caused significant growth arrest in both breast cancer cell lines. In the highly invasive MDA-MB-231 cells, the mechanism of celecoxib-induced growth arrest was by induction of apoptosis, associated with reduced activation of protein kinase B/Akt, and subsequent activation of caspases 3 and 7. In the less invasive MDA-MB-468 cells, growth arrest was a consequence of cell cycle arrest at the G0/G1 checkpoint. Celecoxib-induced growth inhibition was reversed by addition of exogenous prostaglandin E2 in MDA-MB-468 cells but not in MDA-MB-231 cells. Furthermore, MDA-MB-468 cells formed significantly fewer extracellular matrix associated microvascular channels in vitro than did the high COX-2 expressing MDA-MB-231 cells. Celecoxib treatment not only inhibited cell growth and vascular channel formation but also reduced vascular endothelial growth factor levels. The in vitro findings corroborated in vivo data from a mouse xenograft model in which daily administration of celecoxib significantly reduced tumor growth of MDA-MB-231 cells, which was associated with

  10. Global Gene Expression Analysis of Canine Osteosarcoma Stem Cells Reveals a Novel Role for COX-2 in Tumour Initiation

    PubMed Central

    Pang, Lisa Y.; Gatenby, Emma L.; Kamida, Ayako; Whitelaw, Bruce A.; Hupp, Ted R.; Argyle, David J.

    2014-01-01

    Osteosarcoma is the most common primary bone tumour of both children and dogs. It is an aggressive tumour in both species with a rapid clinical course leading ultimately to metastasis. In dogs and children distant metastasis occurs in >80% of individuals treated by surgery alone. Both canine and human osteosarcoma has been shown to contain a sub-population of cancer stem cells (CSCs), which may drive tumour growth, recurrence and metastasis, suggesting that naturally occurring canine osteosarcoma could act as a preclinical model for the human disease. Here we report the successful isolation of CSCs from primary canine osteosarcoma, as well as established cell lines. We show that these cells can form tumourspheres, and demonstrate relative resistance to chemotherapy. We demonstrate similar results for the human osteosarcma cell lines, U2OS and SAOS2. Utilizing the Affymetrix canine microarray, we are able to definitively show that there are significant differences in global gene expression profiles of isolated osteosarcoma stem cells and the daughter adherent cells. We identified 13,221 significant differences (p = 0.05), and significantly, COX-2 was expressed 141-fold more in CSC spheres than daughter adherent cells. To study the role of COX-2 expression in CSCs we utilized the COX-2 inhibitors meloxicam and mavacoxib. We found that COX-2 inhibition had no effect on CSC growth, or resistance to chemotherapy. However inhibition of COX-2 in daughter cells prevented sphere formation, indicating a potential significant role for COX-2 in tumour initiation. PMID:24416158

  11. Global gene expression analysis of canine osteosarcoma stem cells reveals a novel role for COX-2 in tumour initiation.

    PubMed

    Pang, Lisa Y; Gatenby, Emma L; Kamida, Ayako; Whitelaw, Bruce A; Hupp, Ted R; Argyle, David J

    2014-01-01

    Osteosarcoma is the most common primary bone tumour of both children and dogs. It is an aggressive tumour in both species with a rapid clinical course leading ultimately to metastasis. In dogs and children distant metastasis occurs in >80% of individuals treated by surgery alone. Both canine and human osteosarcoma has been shown to contain a sub-population of cancer stem cells (CSCs), which may drive tumour growth, recurrence and metastasis, suggesting that naturally occurring canine osteosarcoma could act as a preclinical model for the human disease. Here we report the successful isolation of CSCs from primary canine osteosarcoma, as well as established cell lines. We show that these cells can form tumourspheres, and demonstrate relative resistance to chemotherapy. We demonstrate similar results for the human osteosarcma cell lines, U2OS and SAOS2. Utilizing the Affymetrix canine microarray, we are able to definitively show that there are significant differences in global gene expression profiles of isolated osteosarcoma stem cells and the daughter adherent cells. We identified 13,221 significant differences (p = 0.05), and significantly, COX-2 was expressed 141-fold more in CSC spheres than daughter adherent cells. To study the role of COX-2 expression in CSCs we utilized the COX-2 inhibitors meloxicam and mavacoxib. We found that COX-2 inhibition had no effect on CSC growth, or resistance to chemotherapy. However inhibition of COX-2 in daughter cells prevented sphere formation, indicating a potential significant role for COX-2 in tumour initiation.

  12. The Influence of Glycosylation of Natural and Synthetic Prenylated Flavonoids on Binding to Human Serum Albumin and Inhibition of Cyclooxygenases COX-1 and COX-2.

    PubMed

    Tronina, Tomasz; Strugała, Paulina; Popłoński, Jarosław; Włoch, Aleksandra; Sordon, Sandra; Bartmańska, Agnieszka; Huszcza, Ewa

    2017-07-21

    The synthesis of different classes of prenylated aglycones (α,β-dihydroxanthohumol ( 2 ) and ( Z )-6,4'-dihydroxy-4-methoxy-7-prenylaurone ( 3 )) was performed in one step reactions from xanthohumol ( 1 )-major prenylated chalcone naturally occurring in hops. Obtained flavonoids ( 2 - 3 ) and xanthohumol ( 1 ) were used as substrates for regioselective fungal glycosylation catalyzed by two Absidia species and Beauveria bassiana . As a result six glycosides ( 4 - 9 ) were formed, of which four glycosides ( 6 - 9 ) have not been published so far. The influence of flavonoid skeleton and the presence of glucopyranose and 4- O -methylglucopyranose moiety in flavonoid molecule on binding to main protein in plasma, human serum albumin (HSA), and inhibition of cyclooxygenases COX-1 and COX-2 were investigated. Results showed that chalcone ( 1 ) had the highest binding affinity to HSA (8.624 × 10⁴ M -1 ) of all tested compounds. It has also exhibited the highest inhibition of cyclooxygenases activity, and it was a two-fold stronger inhibitor than α,β-dihydrochalcone ( 2 ) and aurone ( 3 ). The presence of sugar moiety in flavonoid molecule caused the loss of HSA binding activity as well as the decrease in inhibition of cyclooxygenases activity.

  13. Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1beta.

    PubMed

    Li, S; Ballou, L R; Morham, S G; Blatteis, C M

    2001-08-10

    Various lines of evidence have implicated cyclooxygenase (COX)-2 as a modulator of the fever induced by the exogenous pyrogen lipopolysaccharide (LPS). Thus, treatment with specific inhibitors of COX-2 suppresses the febrile response without affecting basal body (core) temperature (T(c)). Furthermore, COX-2 gene-ablated mice are unable to develop a febrile response to intraperitoneal (i.p.) LPS, whereas their COX-1-deficient counterparts produce fevers not different from their wild-type (WT) controls. To extend the apparently critical role of COX-2 for LPS-induced fevers to fevers produced by endogenous pyrogens, we studied the thermal responses of COX-1- and COX-2 congenitally deficient mice to i.p. and intracerebroventricular (i.c.v.) injections of recombinant murine (rm) interleukin (IL)-1beta. We also assessed the effects of one selective COX-1 inhibitor, SC-560, and two selective COX-2 inhibitors, nimesulide (NIM) and dimethylfuranone (DFU), on the febrile responses of WT and COX-1(-/-) mice to LPS and rmIL-1beta, i.p. Finally, we verified the integrity of the animals' responses to PGE2, i.c.v. I.p. and i.c.v. rmIL-1beta induced similar fevers in WT and COX-1 knockout mice, but provoked no rise in the T(c)s of COX-2 null mutants. The fever produced in WT mice by i.p. LPS was not affected by SC-560, but it was attenuated and abolished by NIM and DFU, respectively, while that caused by i.p. rmIL-1beta was converted into a T(c) fall by DFU. There were no differences in the responses to i.c.v. PGE2 among the WT and COX knockout mice. These results, therefore, further support the notion that the production of PGE2 in response to pyrogens is critically dependent on COX-2 expression.

  14. Alleviating CYP and hERG liabilities by structure optimization of dihydrofuran-fused tricyclic benzo[d]imidazole series - Potent, selective and orally efficacious microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors: Part-2.

    PubMed

    Muthukaman, Nagarajan; Deshmukh, Sanjay; Tambe, Macchindra; Pisal, Dnyandeo; Tondlekar, Shital; Shaikh, Mahamadhanif; Sarode, Neelam; Kattige, Vidya G; Sawant, Pooja; Pisat, Monali; Karande, Vikas; Honnegowda, Srinivasa; Kulkarni, Abhay; Behera, Dayanidhi; Jadhav, Satyawan B; Sangana, Ramchandra R; Gudi, Girish S; Khairatkar-Joshi, Neelima; Gharat, Laxmikant A

    2018-04-15

    In an effort to identify CYP and hERG clean mPGES-1 inhibitors from the dihydrofuran-fused tricyclic benzo[d]imidazole series lead 7, an extensive structure-activity relationship (SAR) studies were performed. Optimization of A, D and E-rings in 7 afforded many potent compounds with human whole blood potency in the range of 160-950 nM. Selected inhibitors 21d, 21j, 21m, 21n, 21p and 22b provided selectivity against COX-enzymes and mPGES-1 isoforms (mPGES-2 and cPGES) along with sufficient selectivity against prostanoid synthases. Most of the tested analogs demonstrated required metabolic stability in liver microsomes, low hERG and CYP liability. Oral pharmacokinetics and bioavailability of lead compounds 21j, 21m and 21p are discussed in multiple species like rat, guinea pig, dog, and cynomolgus monkey. Besides, these compounds revealed low to moderate activity against human pregnane X receptor (hPXR). The selected lead 21j further demonstrated in vivo efficacy in acute hyperalgesia (ED 50 : 39.6 mg/kg) and MIA-induced osteoarthritic pain models (ED 50 : 106 mg/kg). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Hexavalent Chromium Cr(VI) Up-Regulates COX-2 Expression through an NFκB/c-Jun/AP-1–Dependent Pathway

    PubMed Central

    Zuo, Zhenghong; Cai, Tongjian; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui

    2012-01-01

    Background: Hexavalent chromium [Cr(VI)] is recognized as a human carcinogen via inhalation. However, the molecular mechanisms by which Cr(VI) causes cancers are not well understood. Objectives: We evaluated cyclooxygenase-2 (COX-2) expression and the signaling pathway leading to this induction due to Cr(VI) exposure in cultured cells. Methods: We used the luciferase reporter assay and Western blotting to determine COX-2 induction by Cr(VI). We used dominant negative mutant, genetic knockout, gene knockdown, and chromatin immunoprecipitation approaches to elucidate the signaling pathway leading to COX-2 induction. Results: We found that Cr(VI) exposure induced COX-2 expression in both normal human bronchial epithelial cells and mouse embryonic fibroblasts in a concentration- and time-dependent manner. Deletion of IKKβ [inhibitor of transcription factor NFκB (IκB) kinase β; an upstream kinase responsible for nuclear factor κB (NFκB) activation] or overexpression of TAM67 (a dominant-negative mutant of c-Jun) dramatically inhibited the COX-2 induction due to Cr(VI), suggesting that both NFκB and c-Jun/AP-1 pathways were required for Cr(VI)-induced COX-2 expression. Our results show that p65 and c-Jun are two major components involved in NFκB and AP-1 activation, respectively. Moreover, our studies suggest crosstalk between NFκB and c-Jun/AP-1 pathways in cellular response to Cr(VI) exposure for COX-2 induction. Conclusion: We demonstrate for the first time that Cr(VI) is able to induce COX-2 expression via an NFκB/c-Jun/AP-1–dependent pathway. Our results provide novel insight into the molecular mechanisms linking Cr(VI) exposure to lung inflammation and carcinogenesis. PMID:22472290

  16. Intracellular gene transfer in action: Dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes

    PubMed Central

    Adams, Keith L.; Song, Keming; Roessler, Philip G.; Nugent, Jacqueline M.; Doyle, Jane L.; Doyle, Jeff J.; Palmer, Jeffrey D.

    1999-01-01

    The respiratory gene cox2, normally present in the mitochondrion, was previously shown to have been functionally transferred to the nucleus during flowering plant evolution, possibly during the diversification of legumes. To search for novel intermediate stages in the process of intracellular gene transfer and to assess the evolutionary timing and frequency of cox2 transfer, activation, and inactivation, we examined nuclear and mitochondrial (mt) cox2 presence and expression in over 25 legume genera and mt cox2 presence in 392 genera. Transfer and activation of cox2 appear to have occurred during recent legume evolution, more recently than previously inferred. Many intermediate stages of the gene transfer process are represented by cox2 genes in the studied legumes. Nine legumes contain intact copies of both nuclear and mt cox2, although transcripts could not be detected for some of these genes. Both cox2 genes are transcribed in seven legumes that are phylogenetically interspersed with species displaying only nuclear or mt cox2 expression. Inactivation of cox2 in each genome has taken place multiple times and in a variety of ways, including loss of detectable transcripts or transcript editing and partial to complete gene loss. Phylogenetic evidence shows about the same number (3–5) of separate inactivations of nuclear and mt cox2, suggesting that there is no selective advantage for a mt vs. nuclear location of cox2 in plants. The current distribution of cox2 presence and expression between the nucleus and mitochondrion in the studied legumes is probably the result of chance mutations silencing either cox2 gene. PMID:10570164

  17. Immunohistochemical and morphometric evaluation of COX-1 and COX-2 in the remodeled lung in idiopathic pulmonary fibrosis and systemic sclerosis* ,**

    PubMed Central

    Parra, Edwin Roger; Lin, Flavia; Martins, Vanessa; Rangel, Maristela Peres; Capelozzi, Vera Luiza

    2013-01-01

    OBJECTIVE: To study the expression of COX-1 and COX-2 in the remodeled lung in systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF) patients, correlating that expression with patient survival. METHODS: We examined open lung biopsy specimens from 24 SSc patients and 30 IPF patients, using normal lung tissue as a control. The histological patterns included fibrotic nonspecific interstitial pneumonia (NSIP) in SSc patients and usual interstitial pneumonia (UIP) in IPF patients. We used immunohistochemistry and histomorphometry to evaluate the expression of COX-1 and COX-2 in alveolar septa, vessels, and bronchioles. We then correlated that expression with pulmonary function test results and evaluated its impact on patient survival. RESULTS: The expression of COX-1 and COX-2 in alveolar septa was significantly higher in IPF-UIP and SSc-NSIP lung tissue than in the control tissue. No difference was found between IPF-UIP and SSc-NSIP tissue regarding COX-1 and COX-2 expression. Multivariate analysis based on the Cox regression model showed that the factors associated with a low risk of death were younger age, high DLCO/alveolar volume, IPF, and high COX-1 expression in alveolar septa, whereas those associated with a high risk of death were advanced age, low DLCO/alveolar volume, SSc (with NSIP), and low COX-1 expression in alveolar septa. CONCLUSIONS: Our findings suggest that strategies aimed at preventing low COX-1 synthesis will have a greater impact on SSc, whereas those aimed at preventing high COX-2 synthesis will have a greater impact on IPF. However, prospective randomized clinical trials are needed in order to confirm that. PMID:24473763

  18. Identification of azabenzimidazoles as potent JAK1 selective inhibitors.

    PubMed

    Vasbinder, Melissa M; Alimzhanov, Marat; Augustin, Martin; Bebernitz, Geraldine; Bell, Kirsten; Chuaqui, Claudio; Deegan, Tracy; Ferguson, Andrew D; Goodwin, Kelly; Huszar, Dennis; Kawatkar, Aarti; Kawatkar, Sameer; Read, Jon; Shi, Jie; Steinbacher, Stefan; Steuber, Holger; Su, Qibin; Toader, Dorin; Wang, Haixia; Woessner, Richard; Wu, Allan; Ye, Minwei; Zinda, Michael

    2016-01-01

    We have identified a class of azabenzimidazoles as potent and selective JAK1 inhibitors. Investigations into the SAR are presented along with the structural features required to achieve selectivity for JAK1 versus other JAK family members. An example from the series demonstrated highly selective inhibition of JAK1 versus JAK2 and JAK3, along with inhibition of pSTAT3 in vivo, enabling it to serve as a JAK1 selective tool compound to further probe the biology of JAK1 selective inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cyclooxygenase-2 regulated by the nuclear factor-κB pathway plays an important role in endometrial breakdown in a female mouse menstrual-like model.

    PubMed

    Xu, Xiangbo; Chen, Xihua; Li, Yunfeng; Cao, Huizi; Shi, Cuige; Guan, Shuo; Zhang, Shucheng; He, Bin; Wang, Jiedong

    2013-08-01

    The role of prostaglandins (PGs) in menstruation has long been proposed. Although evidence from studies on human and nonhuman primates supports the involvement of PGs in menstruation, whether PGs play an obligatory role in the process remains unclear. Although cyclooxygenase (COX) inhibitors have been used in the treatment of irregular uterine bleeding, the mechanism involved has not been elucidated. In this study, we used a recently established mouse menstrual-like model for investigating the role of COX in endometrial breakdown and its regulation. Administration of the nonspecific COX inhibitor indomethacin and the COX-2 selective inhibitor DuP-697 led to inhibition of the menstrual-like process. Furthermore, immunostaining analysis showed that the nuclear factor (NF)κB proteins P50, P65, and COX-2 colocalized in the outer decidual stroma at 12 to 16 hours after progesterone withdrawal. Chromatin immunoprecipitation analysis showed that NFκB binding to the Cox-2 promoter increased at 12 hours after progesterone withdrawal in vivo, and real-time PCR analysis showed that the NFκB inhibitors pyrrolidine dithiocarbamate and MG-132 inhibited Cox-2 mRNA expression in vivo and in vitro, respectively. Furthermore, COX-2 and NFκB inhibitors similarly reduced endometrial breakdown, suggesting that NFκB/COX-2-derived PGs play a critical role in this process. In addition, the CD45(+) leukocyte numbers were sharply reduced following indomethacin (COX-1 and COX-2 inhibitor), DuP-697 (COX-2 inhibitor), and pyrrolidine dithiocarbamate (NFκB inhibitor) treatment. Collectively, these data indicate that NFκB/COX-2-induced PGs regulate leukocyte influx, leading to endometrial breakdown.

  20. 3-Substituted 1,5-Diaryl-1 H-1,2,4-triazoles as Prospective PET Radioligands for Imaging Brain COX-1 in Monkey. Part 2: Selection and Evaluation of [11C]PS13 for Quantitative Imaging.

    PubMed

    Shrestha, Stal; Singh, Prachi; Cortes-Salva, Michelle Y; Jenko, Kimberly J; Ikawa, Masamichi; Kim, Min-Jeong; Kobayashi, Masato; Morse, Cheryl L; Gladding, Robert L; Liow, Jeih-San; Zoghbi, Sami S; Fujita, Masahiro; Innis, Robert B; Pike, Victor W

    2018-06-13

    In our preceding paper (Part 1), we identified three 1,5-bis-diaryl-1,2,4-triazole-based compounds that merited evaluation as potential positron emission tomography (PET) radioligands for selectively imaging cyclooxygenase-1 (COX-1) in monkey and human brain, namely, 1,5-bis(4-methoxyphenyl)-3-(alkoxy)-1 H-1,2,4-triazoles bearing a 3-methoxy (PS1), a 3-(2,2,2-trifluoroethoxy) (PS13), or a 3-fluoromethoxy substituent (PS2). PS1 and PS13 were labeled from phenol precursors by O- 11 C-methylation with [ 11 C]iodomethane and PS2 by O- 18 F-fluoroalkylation with [ 2 H 2 , 18 F]fluorobromomethane. Here, we evaluated these PET radioligands in monkey. All three radioligands gave moderately high uptake in brain, although [ 2 H 2 , 18 F]PS2 also showed undesirable radioactivity uptake in skull. [ 11 C]PS13 was selected for further evaluation, mainly based on more favorable brain kinetics than [ 11 C]PS1. Pharmacological preblock experiments showed that about 55% of the radioactivity uptake in brain was specifically bound to COX-1. An index of enzyme density, V T , was well identified from serial brain scans and from the concentrations of parent radioligand in arterial plasma. In addition, V T values were stable within 80 min, suggesting that brain uptake was not contaminated by radiometabolites. [ 11 C]PS13 successfully images and quantifies COX-1 in monkey brain, and merits further investigation for imaging COX-1 in monkey models of neuroinflammation and in healthy human subjects.

  1. A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation.

    PubMed

    Liu, Yan; Wang, Yubin; Zhu, Guoqi; Sun, Jiandong; Bi, Xiaoning; Baudry, Michel

    2016-06-01

    While calpain-1 activation is required for LTP induction by theta burst stimulation (TBS), calpain-2 activation limits its magnitude during the consolidation period. A selective calpain-2 inhibitor applied either before or shortly after TBS enhanced the degree of potentiation. In the present study, we tested whether the selective calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I), could enhance learning and memory in wild-type (WT) and calpain-1 knock-out (C1KO) mice. We first showed that C2I could reestablish TBS-LTP in hippocampal slices from C1KO mice, and this effect was blocked by PD98059, an inhibitor of ERK. TBS resulted in PTEN degradation in hippocampal slices from both WT and C1KO mice, and C2I treatment blocked this effect in both mouse genotypes. Systemic injection of C2I 30 min before training in the fear-conditioning paradigm resulted in a biphasic dose-response curve, with low doses enhancing and high doses inhibiting freezing behavior. The difference between the doses needed to enhance and inhibit learning matches the difference in concentrations producing inhibition of calpain-2 and calpain-1. A low dose of C2I also restored normal learning in a novel object recognition task in C1KO mice. Levels of SCOP, a ERK phosphatase known to be cleaved by calpain-1, were decreased in dorsal hippocampus early but not late following training in WT mice; C2I treatment did not affect the early decrease in SCOP levels but prevented its recovery at the later time-point and prolonged ERK activation. The results indicate that calpain-2 activation limits the extent of learning, an effect possibly due to temporal limitation of ERK activation, as a result of SCOP synthesis induced by calpain-2-mediated PTEN degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Involvement of hypothalamic cyclooxygenase-2, interleukin-1β and melanocortin in the development of docetaxel-induced anorexia in rats.

    PubMed

    Yamamoto, Kouichi; Asano, Keiko; Ito, Yui; Matsukawa, Naoki; Kim, Seikou; Yamatodani, Atsushi

    2012-12-16

    Docetaxel, a taxane derivative, is frequently used for the treatment of advanced breast cancer, non-small cell lung cancer, and metastatic prostate cancer. Clinical reports demonstrated that docetaxel-based chemotherapy often induces anorexia, but the etiology is not completely understood. To elucidate possible mechanisms, we investigated the involvement of central interleukin (IL)-1β, cyclooxygenase (COX)-2, and pro-opiomelanocortin (POMC) in the development of docetaxel-induced anorexia in rats. Rats received docetaxel (10mg/kg, i.p.) with or without pretreatment with selective COX-2 inhibitors, NS-398 (10 and 30 mg/kg, i.g.) or celecoxib (10 and 30 mg/kg, i.g.), and a non-selective COX inhibitor, indomethacin (10mg/kg, i.g.), then food intake was monitored for 24h after administration. We also examined expression of IL-1β, COX-2, and POMC mRNA in hypothalamus of docetaxel-treated rats and the effect of a COX-2 inhibitor on docetaxel-induced POMC mRNA expression. Food consumption in rats was significantly decreased 24h after administration of docetaxel and anorexia was partially reversed by all COX inhibitors. Administration of docetaxel increased IL-1β, COX-2, and POMC mRNA expression in the hypothalamus of rats. The time required to increase these gene expressions was comparable to the latency period of docetaxel-induced anorexia in rats. In addition, pretreatment with COX-2 inhibitors suppressed docetaxel-induced expression of POMC mRNA. These results suggest that IL-1β and COX-2 mRNA expression and subsequent activation of POMC in the hypothalamus may contribute to the development of docetaxel-induced anorexia in rats. Copyright © 2012. Published by Elsevier Ireland Ltd.

  3. Divergent effects of new cyclooxygenase inhibitors on gastric ulcer healing: Shifting the angiogenic balance

    PubMed Central

    Ma, Li; del Soldato, Piero; Wallace, John L.

    2002-01-01

    Delayed gastric ulcer healing is a well recognized problem associated with the use of cyclooxygenase (COX) inhibitors. In contrast, NO-releasing COX inhibitors do not interfere with ulcer healing. These divergent effects may in part be due to differences in their effects on platelets, which are known to influence ulcer healing. Therefore, we compared the effects of a nonselective COX inhibitor (flurbiprofen), a nitric oxide-releasing COX inhibitor (HCT-1026), and a selective COX-2 inhibitor (celecoxib) on gastric ulcer healing, angiogenesis, and platelet/serum levels of vascular endothelial growth factor (VEGF) and endostatin. Gastric ulcers were induced in rats by serosal application of acetic acid. Daily treatment with the test drugs was started 3 days later and continued for 1 week. Celecoxib and flurbiprofen impaired angiogenesis and delayed ulcer healing, as well as increasing serum endostatin levels relative to those of VEGF. HCT-1026 did not delay ulcer healing nor impair angiogenesis, and also did not change the ratio of serum endostatin to VEGF. Incubation of human umbilical vein endothelial cells with serum from celecoxib- or flurbiprofen-treated rats resulted in suppressed proliferation and increased apoptosis, effects that were reversed by an antiendostatin antibody. These results demonstrate a previously unrecognized mechanism through which nonsteroidal antiinflammatory drugs can delay ulcer healing, namely, through altering the balance of anti- and proangiogenic factors in the serum. The absence of a delaying effect of HCT-1026 on ulcer healing may be related to the maintenance of a more favorable balance in serum levels of pro- and antiangiogenic growth factors. PMID:12232050

  4. Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI-1:2) optimization.

    PubMed

    Kattar, Solomon D; Surdi, Laura M; Zabierek, Anna; Methot, Joey L; Middleton, Richard E; Hughes, Bethany; Szewczak, Alexander A; Dahlberg, William K; Kral, Astrid M; Ozerova, Nicole; Fleming, Judith C; Wang, Hongmei; Secrist, Paul; Harsch, Andreas; Hamill, Julie E; Cruz, Jonathan C; Kenific, Candia M; Chenard, Melissa; Miller, Thomas A; Berk, Scott C; Tempest, Paul

    2009-02-15

    The successful application of both solid and solution phase library synthesis, combined with tight integration into the medicinal chemistry effort, resulted in the efficient optimization of a novel structural series of selective HDAC1/HDAC2 inhibitors by the MRL-Boston Parallel Medicinal Chemistry group. An initial lead from a small parallel library was found to be potent and selective in biochemical assays. Advanced compounds were the culmination of iterative library design and possess excellent biochemical and cellular potency, as well as acceptable PK and efficacy in animal models.

  5. COX-2 overexpression in resected pancreatic head adenocarcinomas correlates with favourable prognosis

    PubMed Central

    2014-01-01

    Background Overexpression of cyclooxygenase-2 (COX-2) has been implicated in oncogenesis and progression of adenocarcinomas of the pancreatic head. The data on the prognostic importance of COX expression in these tumours is inconsistent and conflicting. We evaluated how COX-2 overexpression affected overall postoperative survival in pancreatic head adenocarcinomas. Methods The study included 230 consecutive pancreatoduodenectomies for pancreatic cancer (PC, n = 92), ampullary cancer (AC, n = 62) and distal bile duct cancer (DBC, n = 76). COX-2 expression was assessed by immunohistochemistry. Associations between COX-2 expression and histopathologic variables including degree of differentiation, histopathologic type of differentiation (pancreatobiliary vs. intestinal) and lymph node ratio (LNR) were evaluated. Unadjusted and adjusted survival analysis was performed. Results COX-2 staining was positive in 71% of PC, 77% in AC and 72% in DBC. Irrespective of tumour origin, overall patient survival was more favourable in patients with COX-2 positive tumours than COX-2 negative (p = 0.043 in PC, p = 0.011 in AC, p = 0.06 in DBC). In tumours of pancreatobiliary type of histopathological differentiation, COX-2 expression did not significantly affect overall patient survival. In AC with intestinal differentiation COX-2 expression significantly predicted favourable survival (p = 0.003). In PC, COX-2 expression was significantly associated with high degree of differentiation (p = 0.002). COX-2 and LNR independently predicted good prognosis in a multivariate model. Conclusions COX-2 is overexpressed in pancreatic cancer, ampullary cancer and distal bile duct cancer and confers a survival benefit in all three cancer types. In pancreatic cancer, COX-2 overexpression is significantly associated with the degree of differentiation and independently predicts a favourable prognosis. PMID:24950702

  6. Uncoupling protein-2 mediates DPP-4 inhibitor-induced restoration of endothelial function in hypertension through reducing oxidative stress.

    PubMed

    Liu, Limei; Liu, Jian; Tian, Xiao Yu; Wong, Wing Tak; Lau, Chi Wai; Xu, Aimin; Xu, Gang; Ng, Chi Fai; Yao, Xiaoqiang; Gao, Yuansheng; Huang, Yu

    2014-10-10

    Although uncoupling protein 2 (UCP2) negatively regulates intracellular reactive oxygen species (ROS) production and protects vascular function, its participation in vascular benefits of drugs used to treat cardiometabolic diseases is largely unknown. This study investigated whether UCP2 and associated oxidative stress reduction contribute to the improvement of endothelial function by a dipeptidyl peptidase-4 inhibitor, sitagliptin, in hypertension. Pharmacological inhibition of cyclooxygenase-2 (COX-2) but not COX-1 prevented endothelial dysfunction, and ROS scavengers reduced COX-2 mRNA and protein expression in spontaneously hypertensive rats (SHR) renal arteries. Angiotensin II (Ang II) evoked endothelium-dependent contractions (EDCs) in C57BL/6 and UCP2 knockout (UCP2KO) mouse aortae. Chronic sitagliptin administration attenuated EDCs in SHR arteries and Ang II-infused C57BL/6 mouse aortae and eliminated ROS overproduction in SHR arteries, which were reversed by glucagon-like peptide 1 receptor (GLP-1R) antagonist exendin 9-39, AMP-activated protein kinase (AMPK)α inhibitor compound C, and UCP2 inhibitor genipin. By contrast, sitagliptin unaffected EDCs in Ang II-infused UCP2KO mice. Sitagliptin increased AMPKα phosphorylation, upregulated UCP2, and downregulated COX-2 expression in arteries from SHR and Ang II-infused C57BL/6 mice. Importantly, exendin 9-39, compound C, and genipin reversed the inhibitory effect of GLP-1R agonist exendin-4 on Ang II-stimulated mitochondrial ROS rises in SHR endothelial cells. Moreover, exendin-4 improved the endothelial function of renal arteries from SHR and hypertensive patients. We elucidate for the first time that UCP2 serves as an important signal molecule in endothelial protection conferred by GLP-1-related agents. UCP2 could be a useful target in treating hypertension-related vascular events. UCP2 inhibits oxidative stress and downregulates COX-2 expression through GLP-1/GLP-1R/AMPKα cascade.

  7. Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib.

    PubMed

    Kirane, Amanda; Toombs, Jason E; Larsen, Jill E; Ostapoff, Katherine T; Meshaw, Kathryn R; Zaknoen, Sara; Brekken, Rolf A; Burrows, Francis J

    2012-09-01

    Although cyclooxygenase-2 (COX-2) inhibitors, such as the late stage development drug apricoxib, exhibit antitumor activity, their mechanisms of action have not been fully defined. In this study, we characterized the mechanisms of action of apricoxib in HT29 colorectal carcinoma. Apricoxib was weakly cytotoxic toward naive HT29 cells in vitro but inhibited tumor growth markedly in vivo. Pharmacokinetic analyses revealed that in vivo drug levels peaked at 2-4 µM and remained sufficient to completely inhibit prostaglandin E(2) production, but failed to reach concentrations cytotoxic for HT29 cells in monolayer culture. Despite this, apricoxib significantly inhibited tumor cell proliferation and induced apoptosis without affecting blood vessel density, although it did promote vascular normalization. Strikingly, apricoxib treatment induced a dose-dependent reversal of epithelial-mesenchymal transition (EMT), as shown by robust upregulation of E-cadherin and the virtual disappearance of vimentin and ZEB1 protein expression. In vitro, either anchorage-independent growth conditions or forced EMT sensitized HT29 and non-small cell lung cancer cells to apricoxib by 50-fold, suggesting that the occurrence of EMT may actually increase the dependence of colon and lung carcinoma cells on COX-2. Taken together, these data suggest that acquisition of mesenchymal characteristics sensitizes carcinoma cells to apricoxib resulting in significant single-agent antitumor activity.

  8. Outcomes studies of the gastrointestinal safety of cyclooxygenase-2 inhibitors.

    PubMed

    Scheiman, James M

    2002-01-01

    Short-term endoscopic studies of the highly selective cyclooxygenase-2 (COX-2) inhibitors (coxibs) rofecoxib and celecoxib have shown that these agents are well tolerated and have efficacy equivalent to nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) with fewer adverse effects on the upper gastrointestinal (GI) tract. These studies are limited, however, as the detection of endoscopic lesions is not well correlated with symptomatic ulcers and ulcer complications. Outcomes studies of the GI safety are, therefore, essential to understanding how coxibs are likely to perform in a clinical practice setting. Four large outcomes studies (Vioxx Gastrointestinal Outcomes Research, VIGOR; Assessment of Difference Between Vioxx and Naproxen to Ascertain Gastrointestinal Tolerability and Effectiveness trial, ADVANTAGE; Celecoxib Long-term Arthritis Safety Study, CLASS; and the Successive Celecoxib Efficacy and Safety Studies, SUCCESS) examined the GI safety of rofecoxib and celecoxib in over 39,000 patients with osteoarthritis or rheumatoid arthritis. Results of these studies showed that patients taking a supratherapeutic dose of rofecoxib or celecoxib had significantly lower rates of GI-related adverse events than those taking a nonselective NSAID (naproxen, ibuprofen, or diclofenac). Reduced risk of upper GI events was seen in patients with multiple risk factors and in patients using low-dose aspirin and corticosteroids concomitantly with a coxib. Results of large outcomes studies provide support for the COX-2 hypothesis and demonstrate the long-term safety and tolerability of coxibs.

  9. Uncovering Molecular Bases Underlying Bone Morphogenetic Protein Receptor Inhibitor Selectivity

    PubMed Central

    Alsamarah, Abdelaziz; LaCuran, Alecander E.; Oelschlaeger, Peter; Hao, Jijun; Luo, Yun

    2015-01-01

    Abnormal alteration of bone morphogenetic protein (BMP) signaling is implicated in many types of diseases including cancer and heterotopic ossifications. Hence, small molecules targeting BMP type I receptors (BMPRI) to interrupt BMP signaling are believed to be an effective approach to treat these diseases. However, lack of understanding of the molecular determinants responsible for the binding selectivity of current BMP inhibitors has been a big hindrance to the development of BMP inhibitors for clinical use. To address this issue, we carried out in silico experiments to test whether computational methods can reproduce and explain the high selectivity of a small molecule BMP inhibitor DMH1 on BMPRI kinase ALK2 vs. the closely related TGF-β type I receptor kinase ALK5 and vascular endothelial growth factor receptor type 2 (VEGFR2) tyrosine kinase. We found that, while the rigid docking method used here gave nearly identical binding affinity scores among the three kinases; free energy perturbation coupled with Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) simulations reproduced the absolute binding free energies in excellent agreement with experimental data. Furthermore, the binding poses identified by FEP/H-REMD led to a quantitative analysis of physical/chemical determinants governing DMH1 selectivity. The current work illustrates that small changes in the binding site residue type (e.g. pre-hinge region in ALK2 vs. ALK5) or side chain orientation (e.g. Tyr219 in caALK2 vs. wtALK2), as well as a subtle structural modification on the ligand (e.g. DMH1 vs. LDN193189) will cause distinct binding profiles and selectivity among BMP inhibitors. Therefore, the current computational approach represents a new way of investigating BMP inhibitors. Our results provide critical information for designing exclusively selective BMP inhibitors for the development of effective pharmacotherapy for diseases caused by aberrant BMP signaling. PMID:26133550

  10. Cox-2-derived PGE2 induces Id1-dependent radiation resistance and self-renewal in experimental glioblastoma.

    PubMed

    Cook, Peter J; Thomas, Rozario; Kingsley, Philip J; Shimizu, Fumiko; Montrose, David C; Marnett, Lawrence J; Tabar, Viviane S; Dannenberg, Andrew J; Benezra, Robert

    2016-10-01

    In glioblastoma (GBM), Id1 serves as a functional marker for self-renewing cancer stem-like cells. We investigated the mechanism by which cyclooxygenase-2 (Cox-2)-derived prostaglandin E2 (PGE2) induces Id1 and increases GBM self-renewal and radiation resistance. Mouse and human GBM cells were stimulated with dimethyl-PGE2 (dmPGE2), a stabilized form of PGE2, to test for Id1 induction. To elucidate the signal transduction pathway governing the increase in Id1, a combination of short interfering RNA knockdown and small molecule inhibitors and activators of PGE2 signaling were used. Western blotting, quantitative real-time (qRT)-PCR, and chromatin immunoprecipitation assays were employed. Sphere formation and radiation resistance were measured in cultured primary cells. Immunohistochemical analyses were carried out to evaluate the Cox-2-Id1 axis in experimental GBM. In GBM cells, dmPGE2 stimulates the EP4 receptor leading to activation of ERK1/2 MAPK. This leads, in turn, to upregulation of the early growth response1 (Egr1) transcription factor and enhanced Id1 expression. Activation of this pathway increases self-renewal capacity and resistance to radiation-induced DNA damage, which are dependent on Id1. In GBM, Cox-2-derived PGE2 induces Id1 via EP4-dependent activation of MAPK signaling and the Egr1 transcription factor. PGE2-mediated induction of Id1 is required for optimal tumor cell self-renewal and radiation resistance. Collectively, these findings identify Id1 as a key mediator of PGE2-dependent modulation of radiation response and lend insight into the mechanisms underlying radiation resistance in GBM patients. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Evidence for a central mode of action for etoricoxib (COX-2 inhibitor) in patients with painful knee osteoarthritis.

    PubMed

    Arendt-Nielsen, Lars; Egsgaard, Line Lindhardt; Petersen, Kristian Kjær

    2016-08-01

    The COX-2 inhibitor etoricoxib modulates the peripheral and central nociceptive mechanisms in animals. This interaction has not been studied in patients with pain. This randomized, double-blind, placebo-controlled, 2-way crossover, 4-week treatment study investigated the pain mechanisms modulated by etoricoxib in patients with painful knee osteoarthritis. Patients were randomized to group A (60 mg/d etoricoxib followed by placebo) or B (placebo followed by 60 mg/d etoricoxib). The quantitative, mechanistic pain biomarkers were pressure pain thresholds, temporal summation (TS), and conditioning pain modulation. Clinical readouts were Brief Pain Inventory, WOMAC, painDETECT questionnaire (PD-Q), and time and pain intensity during walking and stair climbing. Etoricoxib as compared with placebo significantly modulated the pressure pain thresholds (P = 0.012, localized sensitization) at the knee and leg (control site) (P = 0.025, spreading sensitization) and TS assessed from the knee (P = 0.038) and leg (P = 0.045). Conditioning pain modulation was not modulated. The Brief Pain Inventory (pain scores), PD-Q, WOMAC, and walking and stair climbing tests were all significantly improved by etoricoxib. Based on a minimum of 30% or 50% pain alleviation (day 0-day 28), responders and nonresponders were defined. The nonresponders showed a significant association between increased facilitation of TS and increased pain alleviation. None of the other parameters predicted the degree of pain alleviation. Generally, a responder to etoricoxib has the most facilitated TS. In conclusion, etoricoxib (1) modulated central pain modulatory mechanisms and (2) improved pain and function in painful osteoarthritis. Stronger facilitation of TS may indicate a better response to etoricoxib, supporting the central mode-of-action of the drug.

  12. Selectivity of ROCK inhibitors in the spontaneously tonic smooth muscle.

    PubMed

    Rattan, Satish; Patel, Chirag A

    2008-03-01

    The selectivity of different Rho kinase (ROCK) inhibitors in the spontaneously tonic smooth muscle has not been investigated. We examined this issue using Y-27632 [(R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarbox anecarboxamide, 2HCl], H-1152 [(S)-(+)-(2-methyl-5-isoquinolinyl) sulfonylhomopiperazine, 2HCl], HA-1077 [(5 isoquinolinesulfonyl) homopiperazine, 2HCl], and ROCK inhibitor II [N-(4-pyridyl)-N'-(2,4,6-trichlorophenyl)urea]. We compared these inhibitors in the spontaneously tonic smooth muscle of the internal anal sphincter (IAS). ROCK, protein kinase C (PKC), and myosin light chain kinase (MLCK) activities were determined in the IAS, before and after different ROCK inhibitors. Y-27632 and H-1152 were approximately 30-fold more potent in the IAS (IC(50): 4.4 x 10(-7) and 7.9 x 10(-8) M, respectively) vs. the phasic rectal smooth muscle (RSM) (IC(50): 1.3 x 10(-5) and 2.5 x 10(-6) M, respectively). HA-1077 and ROCK inhibitor II were equipotent in the IAS vs. RSM. In the IAS, H-1152 was the most potent whereas ROCK inhibitor II is the least. Y-27632 and H-1152 caused concentration-dependent decrease in the IAS tone that correlates directly with the decreases in ROCK activity, without significant effect in the PKC and MLCK activities. This specifically selective correlation between ROCK activity and decrease in the IAS tone was absent in the case of HA-1077 and ROCK inhibitor II, which also inhibited PKC and MLCK. We conclude that the IAS tone is critically dependent on ROCK activity, and H-1152 and Y-27632 are the most selective and potent ROCK inhibitors in the IAS.

  13. Regulatory effect of the AMPK-COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 colon cancer cells.

    PubMed

    Lee, Yun-Kyoung; Park, Song Yi; Kim, Young-Min; Park, Ock Jin

    2009-08-01

    AMP-activated protein kinase (AMPK), a highly conserved protein in eukaryotes, functions as a major metabolic switch to maintain energy homeostasis. It also intrinsically regulates the mammalian cell cycle. Moreover, the AMPK cascade has emerged as an important pathway implicated in cancer control. In this study we investigated the effects of curcumin on apoptosis and the regulatory effect of the AMPK-cyclooxygenase-2 (COX-2) pathway in curcumin-induced apoptosis. Curcumin has shown promise as a chemopreventive agent because of its in vivo regression of various animal-model colon cancers. This study focused on exploiting curcumin to apply antitumorigenic effects through modulation of the AMPK-COX-2 cascade. Curcumin exhibited a potent apoptotic effect on HT-29 colon cancer cells at concentrations of 50 micromol/L and above. These apoptotic effects were correlated with the decrease in pAkt and COX-2, as well as the increase in p-AMPK. Cell cycle analysis showed that curcumin induced G(1)-phase arrest. Further study with AMPK synthetic inhibitor Compound C has shown that increased concentrations of Compound C would abolish AMPK expression, accompanied by a marked increase in COX-2 as well as pAkt expression in curcumin-treated HT-29 cells. By inhibiting AMPK with Compound C, we found that curcumin-treated colon cancer cells were no longer undergoing apoptosis; rather, they were proliferative. These results indicate that AMPK is crucial in apoptosis induced by curcumin and further that the pAkt-AMPK-COX-2 cascade or AMPK-pAkt-COX-2 pathway is important in cell proliferation and apoptosis in colon cancer cells.

  14. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.

    PubMed

    Philip, Bincy; Roland, Christina L; Daniluk, Jaroslaw; Liu, Yan; Chatterjee, Deyali; Gomez, Sobeyda B; Ji, Baoan; Huang, Haojie; Wang, Huamin; Fleming, Jason B; Logsdon, Craig D; Cruz-Monserrate, Zobeida

    2013-12-01

    Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), but it is not clear how obesity contributes to pancreatic carcinogenesis. The oncogenic form of KRAS is expressed during early stages of PDAC development and is detected in almost all of these tumors. However, there is evidence that mutant KRAS requires an additional stimulus to activate its full oncogenic activity and that this stimulus involves the inflammatory response. We investigated whether the inflammation induced by a high-fat diet, and the accompanying up-regulation of cyclooxygenase-2 (COX2), increases Kras activity during pancreatic carcinogenesis in mice. We studied mice with acinar cell-specific expression of KrasG12D (LSL-Kras/Ela-CreERT mice) alone or crossed with COX2 conditional knockout mice (COXKO/LSL-Kras/Ela-CreERT). We also studied LSL-Kras/PDX1-Cre mice. All mice were fed isocaloric diets with different amounts of fat, and a COX2 inhibitor was administered to some LSL-Kras/Ela-CreERT mice. Pancreata were collected from mice and analyzed for Kras activity, levels of phosphorylated extracellular-regulated kinase, inflammation, fibrosis, pancreatic intraepithelial neoplasia (PanIN), and PDACs. Pancreatic tissues from LSL-Kras/Ela-CreERT mice fed high-fat diets (HFDs) had increased Kras activity, fibrotic stroma, and numbers of PanINs and PDACs than LSL-Kras/Ela-CreERT mice fed control diets; the mice fed the HFDs also had shorter survival times than mice fed control diets. Administration of a COX2 inhibitor to LSL-Kras/Ela-CreERT mice prevented these effects of HFDs. We also observed a significant reduction in survival times of mice fed HFDs. COXKO/LSL-Kras/Ela-CreERT mice fed HFDs had no evidence for increased numbers of PanIN lesions, inflammation, or fibrosis, as opposed to the increases observed in LSL-Kras/Ela-CreERT mice fed HFDs. In mice, an HFD can activate oncogenic Kras via COX2, leading to pancreatic inflammation and fibrosis and development of PanINs and PDAC. This

  15. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47{sup phox} pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Ming-Horng; Lin, Zih-Chan; Liang, Chan-Jung

    2014-09-01

    Eupafolin, a major active component found in the methanol extracts of Phyla nodiflora, has been used to treat inflammation of skin. We examined its effects on cyclooxygenase-2 (COX-2) expression in LPS-treated human dermal fibroblasts. Lipopolysaccharide (LPS) significantly increased prostaglandin-E2 (PGE2) production associated with increased COX-2 expression in Hs68 cells. This effect was blocked by eupafolin, TLR-4 antibody, antioxidants (APO and NAC), as well as inhibitors, including U0126 (ERK1/2), SB202190 (p38), SP600125 (JNK1/2), and Tanshinone IIA (AP-1). In gene regulation level, qPCR and promoter assays revealed that COX-2 expression was attenuated by eupafolin. In addition, eupafolin also ameliorated LPS-induced p47 phoxmore » activation and decreased reactive oxygen species (ROS) generation and NADPH oxidase (Nox) activity. Moreover, pretreatment with eupafolin and APO led to reduced LPS-induced phosphorylation of ERK1/2, JNK, and p38. Further, eupafolin attenuated LPS-induced increase in AP-1 transcription factor binding activity as well as the increase in the phosphorylation of c-Jun and c-Fos. In vivo studies have shown that in dermal fibroblasts of LPS treated mice, eupafolin exerted anti-inflammation effects by decreasing COX-2 protein levels. Our results reveal a novel mechanism for anti-inflammatory and anti-oxidative effects of eupafolin that involved inhibition of LPS-induced ROS generation, suppression of MAPK phosphorylation, diminished DNA binding activity of AP-1 and attenuated COX-2 expression leading to reduced production of prostaglandin E2 (PGE2). Our results demonstrate that eupafolin may be used to treat inflammatory responses associated with dermatologic diseases. - Highlights: • LPS activates the Nox2/p47{sup phox}/JNK/AP-1 and induces COX2 expression in Hs68 cells. • Eupafolin inhibits LPS-induced COX-2 expression via Nox2/p47{sup phox} inhibition. • Eupafolin may be used in the treatment of skin diseases involving

  16. COX-2/EGFR expression and survival among women with adenocarcinoma of the lung

    PubMed Central

    Van Dyke, Alison L.; Cote, Michele L.; Prysak, Geoffrey M.; Claeys, Gina B.; Wenzlaff, Angie S.; Murphy, Valerie C.; Lonardo, Fulvio; Schwartz, Ann G.

    2008-01-01

    Previous studies suggest that cyclooxygenase-2 (COX-2) expression may predict survival among patients with non-small cell lung cancer. COX-2 may interact with epidermal growth factor receptor (EGFR), suggesting that combined COX-2/EGFR expression may provide predictive value. The extent to which their independent or combined expression is associated with prognosis in women with adenocarcinoma of the lung is unknown. In the present study, we examined relationships between COX-2 expression (n = 238), EGFR expression (n = 158) and dual COX-2/EGFR expression (n = 157) and survival among women with adenocarcinoma of the lung. Overall survival was estimated by constructing Cox proportional hazards models adjusting for other significant variables and stratifying by stage at diagnosis and race. Clinical or demographic parameters were not associated with either COX-2 or EGFR expression. Patients with COX-2-positive tumors tended to have poorer prognosis than did patients with COX-2-negative tumors [hazard ratio (HR) 1.67, 95% confidence interval (CI) 1.01–2.78]. African-Americans with COX-2-positive tumors had a statistically non-significant higher risk of death than African-Americans with COX-2-negative tumors (HR 5.58, 95% CI 0.64–48.37). No association between COX-2 expression and survival was observed among Caucasians (HR 1.29, 95% CI 0.72–2.30). EGFR expression was associated with a 44% reduction in the risk of death (HR 0.56, 95% CI 0.32–0.98). COX-2−/EGFR+ tumor expression, but not COX-2+/EGFR+ tumor expression, was associated with survival when compared with other combined expression results. In conclusion, COX-2 and EGFR expression, but not combined COX-2+/EGFR+ expression, independently predict survival of women with adenocarcinoma of the lung. PMID:18453539

  17. Early increased density of cyclooxygenase-2 (COX-2) immunoreactive neurons in Down syndrome.

    PubMed

    Mulet, Maria; Blasco-Ibáńez, José Miguel; Crespo, Carlos; Nácher, Juan; Varea, Emilio

    2017-01-01

    Neuroinflammation is one of the hallmarks of Alzheimer's disease. One of the enzymes involved in neuroinflammation, even in early stages of the disease, is COX-2, an inducible cyclooxygenase responsible for the generation of eicosanoids and for the generation of free radicals. Individuals with Down syndrome develop Alzheimer's disease early in life. Previous studies pointed to the possible overexpression of COX-2 and correlated it to brain regions affected by the disease. We analysed the COX-2 expression levels in individuals with Down syndrome and in young, adult and old mice of the Ts65Dn mouse model for Down syndrome. We have observed an overexpression of COX-2 in both, Down syndrome individuals and mice. Importantly, mice already presented an overexpression of COX-2 at postnatal day 30, before neurodegeneration begins; which suggests that neuroinflammation may underlie the posterior neurodegeneration observed in individuals with Down syndrome and in Ts65Dn mice and could be a factor for the premature appearance of Alzheimer's disease..

  18. COX-2-derived endocannabinoid metabolites as novel inflammatory mediators.

    PubMed

    Alhouayek, Mireille; Muccioli, Giulio G

    2014-06-01

    Cyclooxygenase-2 (COX-2) is an enzyme that plays a key role in inflammatory processes. Classically, this enzyme is upregulated in inflammatory situations and is responsible for the generation of prostaglandins (PGs) from arachidonic acid (AA). One lesser-known property of COX-2 is its ability to metabolize the endocannabinoids, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Endocannabinoid metabolism by COX-2 is not merely a means to terminate their actions. On the contrary, it generates PG analogs, namely PG-glycerol esters (PG-G) for 2-AG and PG-ethanolamides (PG-EA or prostamides) for AEA. Although the formation of these COX-2-derived metabolites of the endocannabinoids has been known for a while, their biological effects remain to be fully elucidated. Recently, several studies have focused on the role of these PG-G or PG-EA in vivo. In this review we take a closer look at the literature concerning these novel bioactive lipids and their role in inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The roles of the cyclo-oxygenases types one and two in prostaglandin synthesis in human fetal membranes at term.

    PubMed

    Sawdy, R J; Slater, D M; Dennes, W J; Sullivan, M H; Bennett, P R

    2000-01-01

    The aim of this study was to determine the relative contributions of cyclo-oxygenase (COX) types 1 and 2 to prostaglandin synthesis at term. Fetal membranes were collected from 6 pregnancies after elective caesarean section at term, prior to labour. The presence of COX-1 and COX-2 protein was determined using Western analysis. The relative contributions of the two isoforms of COX to prostaglandin synthesis were determined by incubation of fetal membrane discs with either a COX-2 selective inhibitor, SC236, or a COX-1 selective inhibitor, SC560, and measurement of prostaglandin release during 24 h using enzyme-linked immuno-sorbent assay (ELISA). Both COX-1 and COX-2 protein were demonstrated in amnion and chorion-decidua. The COX-2 selective inhibitor, SC-236, significantly reduced prostaglandin synthesis, both in its COX-2 specific and higher, non-specific concentration ranges. The COX-1 selective inhibitor, SC-560, had no effect upon prostaglandin synthesis in its COX-1 specific concentration range, but did significantly reduce prostaglandin synthesis at higher, non-selective concentrations. Fetal membranes contain both COX-1 and COX-2 at term, but only COX-2 contributes towards prostaglandin synthesis. COX-2 selective NSAI drugs will be as effective as non-selective agents in inhibition of fetal membrane prostaglandin synthesis and may represent a new strategy for tocolysis. Copyright 2000 Harcourt Publishers Ltd.

  20. Selecting risk factors: a comparison of discriminant analysis, logistic regression and Cox's regression model using data from the Tromsø Heart Study.

    PubMed

    Brenn, T; Arnesen, E

    1985-01-01

    For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.

  1. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199).

    PubMed

    Phillips, D C; Xiao, Y; Lam, L T; Litvinovich, E; Roberts-Rapp, L; Souers, A J; Leverson, J D

    2015-11-13

    As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2(High)) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2(High) cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-XL-selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2(High) NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2(Low) NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-XL inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2(Low)) that could benefit from BCL-XL (navitoclax)-driven combination therapy.

  2. Role of the cyclooxygenase 2-thromboxane pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced decrease in mesencephalic vein blood flow in the zebrafish embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teraoka, Hiroki; Kubota, Akira; Dong, Wu

    2009-01-01

    Previously, we reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) evoked developmental toxicity required activation of aryl hydrocarbon receptor type 2 (AHR2), using zebrafish embryos. However, the downstream molecular targets of AHR2 activation are largely unknown and are the focus of the present investigation. TCDD induces cyclooxygenase 2 (COX2), a rate-limiting enzyme for prostaglandin synthesis in certain cells. In the present study, we investigated the role of the COX2-thromboxane pathway in causing a specific endpoint of TCDD developmental toxicity in the zebrafish embryo, namely, a decrease in regional blood flow in the dorsal midbrain. It was found that the TCDD-induced reduction in mesencephalic veinmore » blood flow was markedly inhibited by selective COX2 inhibitors, NS-398 and SC-236, and by a general COX inhibitor, indomethacin, but not by a selective COX1 inhibitor, SC-560. Gene knock-down of COX2 by two different types of morpholino antisense oligonucleotides, but not by their negative homologs, also protected the zebrafish embryos from mesencephalic vein circulation failure caused by TCDD. This inhibitory effect of TCDD on regional blood flow in the dorsal midbrain was also blocked by selective antagonists of the thromboxane receptor (TP). Treatment of control zebrafish embryos with a TP agonist also caused a reduction in mesencephalic vein blood flow and it too was blocked by a TP antagonist, without any effect on trunk circulation. Finally, gene knock-down of thromboxane A synthase 1 (TBXS) with morpholinos but not by the morpholinos' negative homologs provided significant protection against TCDD-induced mesencephalic circulation failure. Taken together, these results point to a role of the prostanoid synthesis pathway via COX2-TBXS-TP in the local circulation failure induced by TCDD in the dorsal midbrain of the zebrafish embryo.« less

  3. Acylated Gly-(2-cyano)pyrrolidines as inhibitors of fibroblast activation protein (FAP) and the issue of FAP/prolyl oligopeptidase (PREP)-selectivity.

    PubMed

    Ryabtsova, Oxana; Jansen, Koen; Van Goethem, Sebastiaan; Joossens, Jurgen; Cheng, Jonathan D; Lambeir, Anne-Marie; De Meester, Ingrid; Augustyns, Koen; Van der Veken, Pieter

    2012-05-15

    A series of N-acylated glycyl-(2-cyano)pyrrolidines were synthesized with the aim of generating structure-activity relationship (SAR) data for this class of compounds as inhibitors of fibroblast activation protein (FAP). Specifically, the influence of (1) the choice of the N-acyl group and (2) structural modification of the 2-cyanopyrrolidine residue were investigated. The inhibitors displayed inhibitory potency in the micromolar to nanomolar range and showed good to excellent selectivity with respect to the proline selective dipeptidyl peptidases (DPPs) DPP IV, DPP9 and DPP II. Additionally, selectivity for FAP with respect to prolyl oligopeptidase (PREP) is reported. Not unexpectedly, the latter data suggest significant overlap in the pharmacophoric features that define FAP or PREP-inhibitory activity and underscore the importance of systematically evaluating the FAP/PREP-selectivity index for inhibitors of either of these two enzymes. Finally, this study forwards several compounds that can serve as leads or prototypic structures for future FAP-selective-inhibitor discovery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. An in silico high-throughput screen identifies potential selective inhibitors for the non-receptor tyrosine kinase Pyk2

    PubMed Central

    Meirson, Tomer; Samson, Abraham O; Gil-Henn, Hava

    2017-01-01

    The non-receptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) is a critical mediator of signaling from cell surface growth factor and adhesion receptors to cell migration, proliferation, and survival. Emerging evidence indicates that signaling by Pyk2 regulates hematopoietic cell response, bone density, neuronal degeneration, angiogenesis, and cancer. These physiological and pathological roles of Pyk2 warrant it as a valuable therapeutic target for invasive cancers, osteoporosis, Alzheimer’s disease, and inflammatory cellular response. Despite its potential as a therapeutic target, no potent and selective inhibitor of Pyk2 is available at present. As a first step toward discovering specific potential inhibitors of Pyk2, we used an in silico high-throughput screening approach. A virtual library of six million lead-like compounds was docked against four different high-resolution Pyk2 kinase domain crystal structures and further selected for predicted potency and ligand efficiency. Ligand selectivity for Pyk2 over focal adhesion kinase (FAK) was evaluated by comparative docking of ligands and measurement of binding free energy so as to obtain 40 potential candidates. Finally, the structural flexibility of a subset of the docking complexes was evaluated by molecular dynamics simulation, followed by intermolecular interaction analysis. These compounds may be considered as promising leads for further development of highly selective Pyk2 inhibitors. PMID:28572720

  5. Synthesis and pharmacological evaluation of N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide as cyclooxygenase inhibitors.

    PubMed

    Rambabu, D; Mulakayala, Naveen; Ismail; Kumar, K Ravi; Kumar, G Pavan; Mulakayala, Chaitanya; Kumar, Chitta Suresh; Kalle, Arunasree M; Rao, M V Basaveswara; Oruganti, Srinivas; Pal, Manojit

    2012-11-01

    A series of novel N-substituted 2-(2-oxo-2H-chromen-4-yloxy)propanamide derivatives were synthesized via converting the readily available 4-hydroxy coumarin to the corresponding ethyl 2-(2-oxo-2H-chromen-4-yloxy)propanoate followed by hydrolysis and then reacting with different substituted amines. The molecular structures of two representative compounds, that is, 3 and 5l were confirmed by single crystal X-ray diffraction study. All the compounds synthesized were evaluated for their cyclooxygenase (COX) inhibiting properties in vitro. The compound 5i showed balanced selectivity towards COX-2 over COX-1 inhibition and good docking scores when docked into the COX-2 protein. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. COX-2 Expression Correlates With Survival in Patients With Osteosarcoma Lung Metastases

    PubMed Central

    Rodriguez, Nidra I.; Hoots, William Keith; Koshkina, Nadezhda V.; Morales-Arias, Jaime A.; Arndt, Carola A.; Inwards, Carrie Y.; Hawkins, Douglas S.; Munsell, Mark F.; Kleinerman, Eugenie S.

    2009-01-01

    Summary The purpose of this study was to determine whether a correlation exists between tumor cyclooxygenase (COX)-2 expression and disease-specific survival in patients with osteosarcoma lung metastases. Thirty-six patients diagnosed with osteosarcoma lung metastases between the years 1990 and 2001 were included in this retrospective study. The majority of the patients (72%) presented newly -diagnosed osteosarcoma lung metastases whereas the remaining patients (28%) presented recurrent disease. Clinicopathologic parameters were obtained from patients’ clinical records. Tissue samples were obtained at the time of resection of the lung metastases and stained for COX-2 using immunohistochemistry. Samples were graded according to the intensity of COX-2 staining (grade 0: negative, grade 1: very weak, grade 2: weak, grade 3: moderate, and grade 4: strong). COX-2 staining was correlated with disease-specific survival and clinicopathologic parameters using the Jonckheere-Terpstra and the Kruskal-Wallis tests. All patients with grade 3 or 4 COX-2 expression died of osteosarcoma lung metastases. Ten percent of patients with grade 2 COX-2 expression and 29% of patients with grade 1 expression were alive and free of disease at the last follow-up. By contrast, 60% of the patients with grade 0 COX-2 expression were alive and free of disease at the last follow-up. No association between COX-2 expression and clinicopathologic parameters was found. However, COX-2 expression correlated inversely with disease-specific survival in patients with osteosarcoma lung metastases. Our data indicate that COX-2 expression in metastatic osteosarcoma may have prognostic significance. PMID:18797196

  7. Practical approaches to minimizing gastrointestinal and cardiovascular safety concerns with COX-2 inhibitors and NSAIDs

    PubMed Central

    2005-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are highly effective in treating the pain and inflammation associated with osteoarthritis and rheumatoid arthritis, but it is well recognized that these agents are associated with substantial gastrointestinal toxicity. Treatment guidelines suggest that patients with one or more risk factors for NSAID associated ulcers should be prescribed preventive treatment. However, well over 80% of such patients may not receive an appropriate therapeutic intervention. Multiple strategies are available to reduce the risk for NSAID associated gastrointestinal complications. First, risk may be reduced by using non-NSAID analgesics. Second, use of the minimum effective dose of the NSAID may reduce risk. Third, co-therapy with a proton pump inhibitor or misoprostol may be desirable in at-risk patients. Use of cyclo-oxygenase-2 inhibitors may also reduce the risk for gastrointestinal events, although this benefit is eliminated in patients who receive aspirin, and cyclo-oxygenase-2 inhibitors may increase cardiovascular adverse events. The optimal management of NSAID related gastrointestinal complications must be based on the individual patient's risk factors for gastrointestinal and cardiovascular disease, as well as on the efficacy and tolerability of both the NSAID and accompanying gastroprotective agent. PMID:16168078

  8. Free radical scavenging and COX-2 inhibition by simple colon metabolites of polyphenols: A theoretical approach.

    PubMed

    Amić, Ana; Marković, Zoran; Marković, Jasmina M Dimitrić; Jeremić, Svetlana; Lučić, Bono; Amić, Dragan

    2016-12-01

    Free radical scavenging and inhibitory potency against cyclooxygenase-2 (COX-2) by two abundant colon metabolites of polyphenols, i.e., 3-hydroxyphenylacetic acid (3-HPAA) and 4-hydroxyphenylpropionic acid (4-HPPA) were theoretically studied. Different free radical scavenging mechanisms are investigated in water and pentyl ethanoate as a solvent. By considering electronic properties of scavenged free radicals, hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms are found to be thermodynamically probable and competitive processes in both media. The Gibbs free energy change for reaction of inactivation of free radicals indicates 3-HPAA and 4-HPPA as potent scavengers. Their reactivity toward free radicals was predicted to decrease as follows: hydroxyl>alkoxyls>phenoxyl≈peroxyls>superoxide. Shown free radical scavenging potency of 3-HPAA and 4-HPPA along with their high μM concentration produced by microbial colon degradation of polyphenols could enable at least in situ inactivation of free radicals. Docking analysis with structural forms of 3-HPAA and 4-HPPA indicates dianionic ligands as potent inhibitors of COX-2, an inducible enzyme involved in colon carcinogenesis. Obtained results suggest that suppressing levels of free radicals and COX-2 could be achieved by 3-HPAA and 4-HPPA indicating that these compounds may contribute to reduced risk of colon cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression.

    PubMed

    Kim, Hak-Su; Kim, Myung-Jin; Kim, Eun Ju; Yang, Young; Lee, Myeong-Sok; Lim, Jong-Seok

    2012-02-01

    Berberine is clinically important natural isoquinoline alkaloid that affects various biological functions, such as cell proliferation, migration and survival. The activation of AMP-activated protein kinase (AMPK) regulates tumor cell migration. However, the specific role of AMPK on the metastatic potential of cancer cells remains largely unknown. The present study investigated whether berberine induces AMPK activation and whether this induction directly affects mouse melanoma cell migration, adhesion and invasion. Berberine strongly increased AMPK phosphorylation via reactive oxygen species (ROS) production. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), a well-known AMPK activator, also inhibited tumor cell adhesion and invasion and reduced the expression of epithelial to mesenchymal transition (EMT)-related genes. Knockdown of AMPKα subunits using siRNAs significantly abated the berberine-induced inhibition of tumor cell invasion. Furthermore, berberine inhibited the metastatic potential of melanoma cells through a decrease in ERK activity and protein levels of cyclooxygenase-2 (COX-2) by a berberine-induced AMPK activation. These data were confirmed using specific MEK inhibitor, PD98059, and a COX-2 inhibitor, celecoxib. Berberine- and AICAR-treated groups demonstrated significantly decreased lung metastases in the pulmonary metastasis model in vivo. Treatment with berberine also decreased the metastatic potential of A375 human melanoma cells. Collectively, our results suggest that berberine-induced AMPK activation inhibits the metastatic potential of tumor cells through a reduction in the activity of the ERK signaling pathway and COX-2 protein levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Nucleobindin Co-Localizes and Associates with Cyclooxygenase (COX)-2 in Human Neutrophils

    PubMed Central

    Leclerc, Patrick; Biarc, Jordane; St-Onge, Mireille; Gilbert, Caroline; Dussault, Andrée-Anne; Laflamme, Cynthia; Pouliot, Marc

    2008-01-01

    The inducible cyclooxygenase isoform (COX-2) is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc), a ubiquitous Ca2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr) Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis. PMID:18493301

  11. Increased expression of cyclooxygenase-2 protein during rat hepatocarcinogenesis caused by a choline-deficient, L-amino acid-defined diet and chemopreventive efficacy of a specific inhibitor, nimesulide.

    PubMed

    Denda, Ayumi; Kitayama, Wakashi; Murata, Akiko; Kishida, Hideki; Sasaki, Yasutaka; Kusuoka, Osamu; Tsujiuchi, Toshifumi; Tsutsumi, Masahiro; Nakae, Dai; Takagi, Hidetoshi; Konishi, Yoichi

    2002-02-01

    of a selective COX-2 inhibitor against, at least, the early stages of hepatocarcinogenesis.

  12. Influence of COX-2 and OXTR polymorphisms on treatment outcome in treatment resistant depression.

    PubMed

    Mendlewicz, Julien; Crisafulli, Concetta; Calati, Raffaella; Kocabas, Neslihan Aygun; Massat, Isabelle; Linotte, Sylvie; Kasper, Siegfried; Fink, Martin; Sidoti, Antonina; Scantamburlo, Gabrielle; Ansseau, Marc; Antonijevic, Irina; Forray, Carlos; Snyder, Lenore; Bollen, Joseph; Montgomery, Stuart; Zohar, Joseph; Souery, Daniel; Serretti, Alessandro

    2012-05-10

    Inflammatory pathways play a crucial role in the pathomechanisms of antidepressant efficacy. The aim of this study was to investigate whether a set of single nucleotide polymorphisms (SNPs) within cyclooxygenase-2 (COX-2, rs5275 and rs20417) and oxytocin receptor (OXTR, rs53576 and rs2254298) genes was associated with antidepressant treatment resistance, response or remission. Three hundred seventy-two patients were recruited in the context of a multicenter resistant depression study. They were genotyped for COX-2 and OXTR SNPs. Treatment resistance (according to two different definitions), response and remission were recorded. We did not observe any association between the genotypes or alleles of the selected SNPs within COX-2 and OXTR genes and treatment resistance, response and remission in the whole sample. Our results are consistent with those of some studies but not with those of other ones. Indeed, several factors could be involved in the discrepancy observed across studies. They include sample size, environmental factors, differences in ethnicity, different study designs, and different definitions of treatment resistance. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol*

    PubMed Central

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; Fiamengo, Bryan A.; Foley, Sage E.; Frank, Kristine E.; George, Jonathan S.; Harris, Christopher M.; Hobson, Adrian D.; Ihle, David C.; Marcotte, Douglas; Merta, Philip J.; Michalak, Mark E.; Murdock, Sara E.; Tomlinson, Medha J.; Voss, Jeffrey W.

    2015-01-01

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. We have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). We found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC50 < 100 nm) inhibit Jak3 activity in cell-based assays. These results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases. PMID:25552479

  14. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol

    DOE PAGES

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.; ...

    2014-12-31

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less

  15. Tricyclic Covalent Inhibitors Selectively Target Jak3 through an Active Site Thiol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goedken, Eric R.; Argiriadi, Maria A.; Banach, David L.

    The action of Janus kinases (JAKs) is required for multiple cytokine signaling pathways, and as such, JAK inhibitors hold promise for treatment of autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, and psoriasis. However, due to high similarity in the active sites of the four members (Jak1, Jak2, Jak3, and Tyk2), developing selective inhibitors within this family is challenging. In this paper, we have designed and characterized substituted, tricyclic Jak3 inhibitors that selectively avoid inhibition of the other JAKs. This is accomplished through a covalent interaction between an inhibitor containing a terminal electrophile and an active site cysteine (Cys-909). Wemore » found that these ATP competitive compounds are irreversible inhibitors of Jak3 enzyme activity in vitro. They possess high selectivity against other kinases and can potently (IC 50 < 100 nM) inhibit Jak3 activity in cell-based assays. Finally, these results suggest irreversible inhibitors of this class may be useful selective agents, both as tools to probe Jak3 biology and potentially as therapies for autoimmune diseases.« less

  16. Induction of cyclooxygenase-2 expression by allergens in lymphocytes from allergic patients.

    PubMed

    Chacón, Pedro; Vega, Antonio; Monteseirín, Javier; El Bekay, Rajaa; Alba, Gonzalo; Pérez-Formoso, José Luis; Msartínez, Alberto; Asturias, Juan A; Pérez-Cano, Ramón; Sobrino, Francisco; Conde, José

    2005-08-01

    Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of COX-2 expression is responsible for increased PG release during inflammatory conditions and is thought to be also involved in allergic states. In this study, we demonstrate that in human T, B and natural killer lymphocytes from allergic patients, COX-2 expression became induced upon cell challenge with specific allergens and that this process is presumably IgE dependent and occurs after CD23 receptor ligation. This induction took place at both mRNA and protein levels and was accompanied by PGD2 release. IgE-dependent lymphocyte treatment elicited, in parallel, an activation of the MAPK p38 and extracellular signal-regulated kinase 1/2, an enhancement of calcineurin (CaN) activity, and an increase of the DNA-binding activity of the nuclear factor of activated T cells and of NF-kappaB, with a concomitant decrease in the levels of the cytosolic inhibitor of kappaB, IkappaB. In addition, specific chemical inhibitors of MAPK, such as PD098059 and SB203580, as well as MG-132, an inhibitor of proteasomal activity, abolished allergen-induced COX-2 up-regulation, suggesting that this process is mediated by MAPK and NF-kappaB. However, induction of COX-2 expression was not hampered by the CaN inhibitor cyclosporin A. We also examined the effect of a selective COX-2 inhibitor, NS-398, on cytokine production by human lymphocytes. Treatment with NS-398 severely diminished the IgE-dependently induced production of IL-8 and TNF-alpha. These results underscore the relevant role of lymphocyte COX-2 in allergy and suggest that COX-2 inhibitors may contribute to the improvement of allergic inflammation through the reduction of inflammatory mediator production by human lymphocytes.

  17. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199)

    PubMed Central

    Phillips, D C; Xiao, Y; Lam, L T; Litvinovich, E; Roberts-Rapp, L; Souers, A J; Leverson, J D

    2015-01-01

    As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2High) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2High cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-XL-selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2High NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2Low NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-XL inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2Low) that could benefit from BCL-XL (navitoclax)-driven combination therapy. PMID:26565405

  18. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement.

    PubMed

    Altenhöfer, Sebastian; Radermacher, Kim A; Kleikers, Pamela W M; Wingler, Kirstin; Schmidt, Harald H H W

    2015-08-10

    Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition.

  19. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells

    PubMed Central

    Brancaccio, Mariarita; Coretti, Lorena; Florio, Ermanno; Pezone, Antonio; Calabrò, Viola; Falco, Geppino; Keller, Simona; Lembo, Francesca; Avvedimento, Vittorio Enrico; Chiariotti, Lorenzo

    2016-01-01

    Bacterial lipopolysaccharide (LPS) induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3), methylation (H3K4, H3K9, H3K27) and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene. PMID:27253528

  20. Anti-leukaemic activity of the TYK2 selective inhibitor NDI-031301 in T-cell acute lymphoblastic leukaemia.

    PubMed

    Akahane, Koshi; Li, Zhaodong; Etchin, Julia; Berezovskaya, Alla; Gjini, Evisa; Masse, Craig E; Miao, Wenyan; Rocnik, Jennifer; Kapeller, Rosana; Greenwood, Jeremy R; Tiv, Hong; Sanda, Takaomi; Weinstock, David M; Look, A Thomas

    2017-04-01

    Activation of tyrosine kinase 2 (TYK2) contributes to the aberrant survival of T-cell acute lymphoblastic leukaemia (T-ALL) cells. Here we demonstrate the anti-leukaemic activity of a novel TYK2 inhibitor, NDI-031301. NDI-031301 is a potent and selective inhibitor of TYK2 that induced robust growth inhibition of human T-ALL cell lines. NDI-031301 treatment of human T-ALL cell lines resulted in induction of apoptosis that was not observed with the JAK inhibitors tofacitinib and baricitinib. Further investigation revealed that NDI-031301 treatment uniquely leads to activation of three mitogen-activated protein kinases (MAPKs), resulting in phosphorylation of ERK, SAPK/JNK and p38 MAPK coincident with PARP cleavage. Activation of p38 MAPK occurred within 1 h of NDI-031301 treatment and was responsible for NDI-031301-induced T-ALL cell death, as pharmacological inhibition of p38 MAPK partially rescued apoptosis induced by TYK2 inhibitor. Finally, daily oral administration of NDI-031301 at 100 mg/kg bid to immunodeficient mice engrafted with KOPT-K1 T-ALL cells was well tolerated, and led to decreased tumour burden and a significant survival benefit. These results support selective inhibition of TYK2 as a promising potential therapeutic strategy for T-ALL. © 2017 John Wiley & Sons Ltd.

  1. Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for esophageal squmaous cell carcinoma.

    PubMed

    Upadhyay, Rohit; Jain, Meenu; Kumar, Shaleen; Ghoshal, Uday Chand; Mittal, Balraj

    2009-04-26

    Cyclooxygenase-2 (COX-2) influences carcinogenesis through regulation of angiogenesis, apoptosis and cytokine expression. We aimed to evaluate association of COX-2 polymorphisms with predisposition to esophageal squamous cell carcinoma (ESCC), its phenotype variability and modulation of environmental risk in northern Indian population. We genotyped 174 patients with ESCC and 216 controls for COX-2 gene polymorphisms (-765G>C; -1195G>A; -1290A>G; 3'UTR 8473T>C) using PCR-RFLP. Data were statistically analyzed using chi-square test and logistic regression model. COX-2 -765C allele carriers were at increased risk for ESCC (OR=1.66; 95% CI=1.08-2.54; P=0.004). However, -1195G>A; -1290A>G; 3'UTR 8473T>C polymorphisms of COX-2 gene were not significantly associated with ESCC. We observed significantly enhanced risk for ESCC due to interaction between COX-2 -1195GAx-765GC+CC genotypes (OR=4.60; 95% CI=1.63-13.01; P=0.004). High risk to ESCC was also observed with respect to COX-2 haplotypes, A(-1290)G(-1195)C(-765)T(8473) and A(-1290)A(-1195)C(-765)T(8473) [OR=3.35; 95% CI=0.83-13.44; P=0.089; OR=4.28; 95% CI=0.43-42.40; P=0.246] however, it was not statistically significant. Stratification of subjects based on gender showed that females were at higher risk for ESCC due to COX-2 -765C carrier genotypes (OR=2.97; 95% CI=1.23-7.18; P=0.016). In association of genotypes with clinical characteristics, -765C carrier genotype conferred risk of ESCC in middle third of esophagus (OR=1.78; 95% CI=1.08-2.93; P=0.023). In case-only analysis, interaction of environmental risk factors and COX-2 genotypes did not further modulate the risk for ESCC. In summary, COX-2 -765G>C polymorphism confers ESCC susceptibility particularly in females and patients with middle third anatomical location of the tumor. Interaction of COX-2 -1195GA and -765C carrier genotypes also modulates ESCC risk.

  2. Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression

    PubMed Central

    Kang, Nam Joo; Lee, Ki Won; Shin, Bong Jik; Jung, Sung Keun; Hwang, Mun Kyung; Bode, Ann M.; Heo, Yong-Seok; Dong, Zigang

    2009-01-01

    Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in many foods, including coffee. Recent studies suggested that caffeic acid exerts anticarcinogenic effects, but little is known about the underlying molecular mechanisms and specific target proteins. In this study, we found that Fyn, one of the members of the non-receptor protein tyrosine kinase family, was required for ultraviolet (UV) B-induced cyclooxygenase-2 (COX-2) expression, and caffeic acid suppressed UVB-induced skin carcinogenesis by directly inhibiting Fyn kinase activity. Caffeic acid more effectively suppressed UVB-induced COX-2 expression and subsequent prostaglandin E2 production in JB6 P+ mouse skin epidermal (JB6 P+) cells compared with chlorogenic acid (5-O-caffeoylquinic acid), an ester of caffeic acid with quinic acid. Data also revealed that caffeic acid more effectively induced the downregulation of COX-2 expression at the transcriptional level mediated through the inhibition of activator protein-1 (AP-1) and nuclear factor-κB transcription activity compared with chlorogenic acid. Fyn kinase activity was suppressed more effectively by caffeic acid than by chlorogenic acid, and downstream mitogen-activated protein kinases (MAPKs) were subsequently blocked. Pharmacological Fyn kinase inhibitor (3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and leflunomide) data also revealed that Fyn is involved in UVB-induced COX-2 expression mediated through the phosphorylation of MAPKs in JB6 P+ cells. Pull-down assays revealed that caffeic acid directly bound with Fyn and non-competitively with adenosine triphosphate. In vivo data from mouse skin also supported the idea that caffeic acid suppressed UVB-induced COX-2 expression by blocking Fyn kinase activity. These results suggested that this compound could act as a potent chemopreventive agent against skin cancer. PMID:19073879

  3. Found in Translation: How Preclinical Research Is Guiding the Clinical Development of the BCL2-Selective Inhibitor Venetoclax.

    PubMed

    Leverson, Joel D; Sampath, Deepak; Souers, Andrew J; Rosenberg, Saul H; Fairbrother, Wayne J; Amiot, Martine; Konopleva, Marina; Letai, Anthony

    2017-12-01

    Since the discovery of apoptosis as a form of programmed cell death, targeting the apoptosis pathway to induce cancer cell death has been a high-priority goal for cancer therapy. After decades of effort, drug-discovery scientists have succeeded in generating small-molecule inhibitors of antiapoptotic BCL2 family proteins. Innovative medicinal chemistry and structure-based drug design, coupled with a strong fundamental understanding of BCL2 biology, were essential to the development of BH3 mimetics such as the BCL2-selective inhibitor venetoclax. We review a number of preclinical studies that have deepened our understanding of BCL2 biology and facilitated the clinical development of venetoclax. Significance: Basic research into the pathways governing programmed cell death have paved the way for the discovery of apoptosis-inducing agents such as venetoclax, a BCL2-selective inhibitor that was recently approved by the FDA and the European Medicines Agency. Preclinical studies aimed at identifying BCL2-dependent tumor types have translated well into the clinic thus far and will likely continue to inform the clinical development of venetoclax and other BCL2 family inhibitors. Cancer Discov; 7(12); 1376-93. ©2017 AACR. ©2017 American Association for Cancer Research.

  4. 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages.

    PubMed

    Pan, Min-Hsiung; Hsieh, Min-Chi; Hsu, Ping-Chi; Ho, Sheng-Yow; Lai, Ching-Shu; Wu, Hou; Sang, Shengmin; Ho, Chi-Tang

    2008-12-01

    Ginger, the rhizome of Zingiber officinale, is a traditional medicine with carminative effect, antinausea, anti-inflammatory, and anticarcinogenic properties. In this study, we investigated the inhibitory effects of 6-shogaol and a related compound, 6-gingerol, on the induction of nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2) in murine RAW 264.7 cells activated with LPS. Western blotting and reverse transcription-PCR analyses demonstrated that 6-shogaol significantly blocked protein and mRNA expression of inducible NOS (iNOS) and COX-2 in LPS-induced macrophages. The in vivo anti-inflammatory activity was evaluated by a topical 12-O-tetradecanoylphorbol 13-acetate (TPA) application to mouse skin. When applied topically onto the shaven backs of mice prior to TPA, 6-shogaol markedly inhibited the expression of iNOS and COX-2 proteins. Treatment with 6-shogaol resulted in the reduction of LPS-induced nuclear translocation of nuclear factor-kappaB (NF kappaB) subunit and the dependent transcriptional activity of NF kappaB by blocking phosphorylation of inhibitor kappaB (I kappaB)alpha and p65 and subsequent degradation of I kappaB alpha. Transient transfection experiments using NF kappaB reporter constructs indicated that 6-shogaol inhibits the transcriptional activity of NF kappaB in LPS-stimulated mouse macrophages. We found that 6-shogaol also inhibited LPS-induced activation of PI3K/Akt and extracellular signal-regulated kinase 1/2, but not p38 mitogen-activated protein kinase (MAPK). Taken together, these results show that 6-shogaol downregulates inflammatory iNOS and COX-2 gene expression in macrophages by inhibiting the activation of NF kappaB by interfering with the activation PI3K/Akt/I kappaB kinases IKK and MAPK.

  5. Correlated non-nuclear COX2 and low HER2 expression confers a good prognosis in colorectal cancer.

    PubMed

    Zhou, Fei-Fei; Huang, Rong; Jiang, Jun; Zeng, Xiao-Hong; Zou, Shu-Qian

    2018-06-05

    COX2 and HER2 are shown to be critical in the regulation of cancer progression. However, the prognostic value of nuclear COX2 in colorectal cancer (CRC) and its relationship with HER2 still remains unknown. In this study, the expression and biological significance of COX2 and HER2 were evaluated in CRC at mRNA and protein levels. RNA-Seq data of CRC were downloaded from TCGA, and 229 CRC and 50 non-cancerous subjects were enrolled in this study. Bioinformatics and immunohistochemistry analysis was performed based on the obtained data. Survival analysis was conducted to identify factors associated with overall survival of CRC patients. We showed that mRNA and protein levels of COX2 and HER2 were upregulated in CRC compared with the adjacent tissues. COX2 protein levels and nuclear COX2 expression were correlated with a poor prognosis of CRC patients. In addition, we also revealed that nuclear COX2 expression was positively associated with HER2 expression. Non-nuclear COX2 combined with low HER2 expression, was negatively correlated with Duke's stage and lymph node metastasis, predicting the best outcomes for CRC patients. In addition, our data indicated that non-nuclear COX2 combined with low HER2 expression is an independent prognostic factor for CRC after surgical resection. The study suggests that nuclear COX2 in combination with HER2 can serve as potential biomarkers for the clinical diagnosis and prognosis of CRC, and targeted inhibition of COX2 and HER2 might be an alternative strategy for the management of CRC.

  6. The Effect of Nizatidine, a MATE2K Selective Inhibitor, on the Pharmacokinetics and Pharmacodynamics of Metformin in Healthy Volunteers

    PubMed Central

    Morrissey, Kari M.; Stocker, Sophie L.; Chen, Eugene C.; Castro, Richard A.; Brett, Claire M.; Giacomini, Kathleen M.

    2015-01-01

    Background and Objectives In the proximal tubule, basic drugs are transported from the renal cells to the tubule lumen through the concerted action of the H+/organic cation antiporters, multidrug and toxin extrusion 1 (MATE1) and 2K (MATE2K). Dual inhibitors of the MATE transporters have been shown to have a clinically relevant effect on the pharmacokinetics of concomitantly administered basic drugs. However, the clinical impact of selective renal organic cation transport inhibition on the pharmacokinetics and pharmacodynamics of basic drugs, such as metformin, is unknown. This study sought to identify a selective MATE2K inhibitor in vitro and to determine its clinical impact on the pharmacokinetics and pharmacodynamics of metformin in healthy subjects. Methods A strategic cell-based screen of 71 U.S. Food and Drug Administration (FDA)-approved medications was conducted to identify selective inhibitors of renal organic cation transporters that are capable of inhibiting at clinically relevant concentrations. From this screen, nizatidine was identified and predicted to be a clinically potent and selective inhibitor of MATE2K-mediated transport. The effect of nizatidine on the pharmacokinetics and pharmacodynamics of metformin was evaluated in 12 healthy volunteers in an open-label, randomized, two-phase crossover drug-drug interaction (DDI) study. Results In healthy volunteers, the MATE2K-selective inhibitor, nizatidine, significantly increased the apparent volume of distribution, half-life and hypoglycemic activity of metformin. However, despite achieving unbound maximum concentrations greater than the in vitro inhibition potency (IC50) of MATE2K-mediated transport, nizatidine did not affect the renal clearance or net secretory clearance of metformin. Conclusion This study demonstrates that a selective inhibition of MATE2K by nizatidine, affected the apparent volume of distribution, tissue levels and peripheral effects of metformin. However, nizatidine did not alter

  7. Isolation of (S)-(+)-naproxene from Musa acuminata. Inhibitory effect of naproxene and its 7-methoxy isomer on constitutive COX-1 and inducible COX-2.

    PubMed

    Abad, T; McNaughton-Smith, G; Fletcher, W Q; Echeverri, F; Diaz-Peñate, R; Tabraue, C; Ruiz de Galarreta, C M; López-Blanco, F; Luis, J G

    2000-06-01

    The isolation and characterisation of (S)-(+)-6-methoxy-alpha-methyl-2-naphthaleneacetic acid, a well known synthetic non-steroidal anti-inflammatory drug (naproxene), from a natural source is described for the first time. We evaluated the ability of naproxene and its 7-methoxy isomer to abrogate constitutive COX-1 and inducible COX-2 activity in human A549 cells. Naproxene inhibited COX-1 (IC50 = 3.42 microM) and COX-2 (IC50 = 1.53 microM), whereas the 7-methoxy isomer had no appreciable effect on COX-1 (IC50 > 100 microM) but also abrogated the activity of COX-2 enzyme (IC50 = 14.42 microM).

  8. Structure–Activity Relationship Studies and in Vivo Activity of Guanidine-Based Sphingosine Kinase Inhibitors: Discovery of SphK1- and SphK2-Selective Inhibitors

    PubMed Central

    Kharel, Yugesh; Raje, Mithun R.; Gao, Ming; Tomsig, Jose L.; Lynch, Kevin R.; Santos, Webster L.

    2015-01-01

    Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that acts as a ligand for five G-protein coupled receptors (S1P1–5) whose downstream effects are implicated in a variety of important pathologies including sickle cell disease, cancer, inflammation, and fibrosis. The synthesis of S1P is catalyzed by sphingosine kinase (SphK) isoforms 1 and 2, and hence, inhibitors of this phosphorylation step are pivotal in understanding the physiological functions of SphKs. To date, SphK1 and 2 inhibitors with the potency, selectivity, and in vivo stability necessary to determine the potential of these kinases as therapeutic targets are lacking. Herein, we report the design, synthesis, and structure–activity relationship studies of guanidine-based SphK inhibitors bearing an oxadiazole ring in the scaffold. Our studies demonstrate that SLP120701, a SphK2-selective inhibitor (Ki = 1 μM), decreases S1P levels in histiocytic lymphoma (U937) cells. Surprisingly, homologation with a single methylene unit between the oxadiazole and heterocyclic ring afforded a SphK1-selective inhibitor in SLP7111228 (Ki = 48 nM), which also decreased S1P levels in cultured U937 cells. In vivo application of both compounds, however, resulted in contrasting effect in circulating levels of S1P. Administration of SLP7111228 depressed blood S1P levels while SLP120701 increased levels of S1P. Taken together, these compounds provide an in vivo chemical toolkit to interrogate the effect of increasing or decreasing S1P levels and whether such a maneuver can have implications in disease states. PMID:25643074

  9. Combination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cells

    PubMed Central

    Kosaka, Akemi; Ohkuri, Takayuki

    2014-01-01

    Malignant gliomas are heavily infiltrated by immature myeloid cells that mediate immuno-suppression. Agonistic CD40 monoclonal antibody (mAb) has been shown to activate myeloid cells and promote antitumor immunity. Our previous study has also demonstrated blockade of cyclooxygenase-2 (COX-2) reduces immunosuppressive myeloid cells, thereby suppressing glioma development in mice. We therefore hypothesized that a combinatory strategy to modulate myeloid cells via two distinct pathways, i.e., CD40/CD40L stimulation and COX-2 blockade, would enhance anti-glioma immunity. We used three different mouse glioma models to evaluate therapeutic effects and underlying mechanisms of a combination regimen with an agonist CD40 mAb and the COX-2 inhibitor celecoxib. Treatment of glioma-bearing mice with the combination therapy significantly prolonged survival compared with either anti-CD40 mAb or celecoxib alone. The combination regimen promoted maturation of CD11b+ cells in both spleen and brain, and enhanced Cxcl10 while suppressing Arg1 in CD11b+Gr-1+ cells in the brain. Anti-glioma activity of the combination regimen was T-cell dependent because depletion of CD4+ and CD8+ cells in vivo abrogated the anti-glioma effects. Furthermore, the combination therapy significantly increased the frequency of CD8+ T-cells, enhanced IFN-γ-production and reduced CD4+CD25+Foxp3+ T regulatory cells in the brain, and induced tumor-antigen-specific T-cell responses in lymph nodes. Our findings suggest that the combination therapy of anti-CD40 mAb with celecoxib enhances anti-glioma activities via promotion of type-1 immunity both in myeloid cells and T-cells. PMID:24878890

  10. Cyclooxygenase inhibitory natural products: current status.

    PubMed

    Jachak, Sanjay M

    2006-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are of huge therapeutic benefit in the treatment of rheumatoid arthritis and various types of inflammatory conditions. The target for these drugs is cyclooxygenase (COX), a rate-limiting enzyme involved in the conversion of arachidonic acid into inflammatory prostaglandins. COX-2 selective inhibitors are believed to have the same anti-inflammatory, anti-pyretic and analgesic activities as that of nonselective inhibitor NSAIDs with little or none of the gastrointestinal side effects. Thus, in the last 6-7 years several selective COX-2 inhibitors including coxibs were discovered and introduced into clinic. Recent reports evidence that selective COX-2 inhibitor such as rofecoxib, can lead to thrombotic cardiovascular events through inhibition of prostacyclin formation in the infracted heart. This has resulted in withdrawal of rofecoxib from the clinic in September 2004. Moreover, the COX-2/COX-1 selectivity ratio is vital in the design of COX-2 inhibitory drugs, as it is clear from rofecoxib, which is more than 50-fold COX-2 selective. After looking at all above mentioned facts, natural product-based compounds seem better as these compounds are generally supposed to be devoid of severe side effects. The literature indicates that natural product-based compounds are mainly COX-1 selective. Through minor semi-synthetic changes in the structures, their selectivity towards COX-2 can be increased. The present review article addresses natural product COX inhibitors of plant and marine origin, reported during last ten years and their advantages, possible leads for further development and current status. In addition we describe our experience in the characterization, design and synthesis of potential natural COX inhibitors.

  11. COX-2 expression and outcome in canine nasal carcinomas treated with hypofractionated radiotherapy.

    PubMed

    Belshaw, Z; Constantio-Casas, F; Brearley, M J; Dunning, M D; Holmes, M A; Dobson, J M

    2011-06-01

    The expression of cyclooxygenase isoform 2 (COX-2) in canine nasal carcinomas has been well documented. COX-2 expression has proven to be a prognostic factor in several human tumours. The aims of this study were to assess the correlation between immunohistochemical COX-2 expression and prognosis using rhinoscopic biopsies from 42 dogs with nasal carcinomas treated with hypofractionated radiotherapy, and to establish a replicable COX-2 scoring system. Ninety per cent of sections evaluated were COX-2 positive with a mean score of 6.6 (median 8.0; range 0-12). Neither COX-2 expression nor tumour type had a significant correlation with survival. There are likely to be many as yet unidentified variants which contribute to length of survival in dogs with nasal carcinomas. Immunohistochemical COX-2 expression appears unlikely to be of prognostic significance for canine nasal carcinoma. © 2010 Blackwell Publishing Ltd.

  12. Design and Synthesis of a Library of Lead-Like 2,4-Bisheterocyclic Substituted Thiophenes as Selective Dyrk/Clk Inhibitors

    PubMed Central

    Schmitt, Christian; Kail, Dagmar; Mariano, Marica; Empting, Martin; Weber, Nadja; Paul, Tamara; Hartmann, Rolf W.; Engel, Matthias

    2014-01-01

    The Dyrk family of protein kinases is implicated in the pathogenesis of several diseases, including cancer and neurodegeneration. Pharmacological inhibitors were mainly described for Dyrk1A so far, but in fewer cases for Dyrk1B, Dyrk2 or other isoforms. Herein, we report the development and optimization of 2,4-bisheterocyclic substituted thiophenes as a novel class of Dyrk inhibitors. The optimized hit compounds displayed favorable pharmacokinetic properties and high ligand efficiencies, and inhibited Dyrk1B in intact cells. In a larger selectivity screen, only Clk1 and Clk4 were identified as additional targets of compound 48, but no other kinases frequently reported as off-targets. Interestingly, Dyrk1A is implicated in the regulation of alternative splicing, a function shared with Clk1/Clk4; thus, some of the dual inhibitors might be useful as efficient splicing modulators. A further compound (29) inhibited Dyrk1A and 1B with an IC50 of 130 nM, showing a moderate selectivity over Dyrk2. Since penetration of the central nervous system (CNS) seems possible based on the physicochemical properties, this compound might serve as a lead for the development of potential therapeutic agents against glioblastoma. Furthermore, an inhibitor selective for Dyrk2 (24) was also identified, which might be are suitable as a pharmacological tool to dissect Dyrk2 isoform–mediated functions. PMID:24676346

  13. Delayed administration of parecoxib, a specific COX-2 inhibitor, attenuated postischemic neuronal apoptosis by phosphorylation Akt and GSK-3β.

    PubMed

    Ye, Zhi; Wang, Na; Xia, Pingping; Wang, E; Yuan, Yajing; Guo, Qulian

    2012-02-01

    Parecoxib is a recently described novel COX-2 inhibitor whose functional significance and neuroprotective mechanisms remain elusive. Therefore, in this study, we aimed to investigate whether delayed administration of parecoxib inhibited mitochondria-mediated neuronal apoptosis induced by ischemic reperfusion injury via phosphorylating Akt and its downstream target protein, glycogen synthase kinase 3β (GSK-3β). Adult male Sprague-Dawley rats were administered parecoxib (10 or 30 mg kg(-1), IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. Cerebral infarct volume, apoptotic neuron, caspase-3 immunoreactivity and the protein expression of p-Akt, p-GSK-3β and Cytochrome C in cerebral ischemic cortex were evaluated at 96 h after reperfusion. Parecoxib significantly diminished infarct volume and attenuated neuron apoptosis in a dose-independent manner, compared with MCAO group alone. Increased p-Akt and p-GSK-3β was observed in the ischemic penumbra of parecoxib group after stroke. Moreover, parecoxib also reduced the release of Cytochrome C from mitochondrial into cytosol and attenuated the caspase-3 immunoreactivity in the penumbra. Taken together, these results suggested that parecoxib ameliorated postischemic mitochondria-mediated neuronal apoptosis induced by focal cerebral ischemia in rats and this neuroprotective potential is involved in phosphorylation of Akt and GSK-3β.

  14. Synthesis and Evaluation of Novel Benzofuran Derivatives as Selective SIRT2 Inhibitors.

    PubMed

    Zhou, Yumei; Cui, Huaqing; Yu, Xiaoming; Peng, Tao; Wang, Gang; Wen, Xiaoxue; Sun, Yunbo; Liu, Shuchen; Zhang, Shouguo; Hu, Liming; Wang, Lin

    2017-08-14

    A series of benzofuran derivatives were designed and synthesized, and their inhibitory activites were measured against the SIRT1-3. The enzymatic assay showed that all the compounds showed certain anti-SIRT2 activity and selective over SIRT1 and SIRT3 with IC 50 (half maximal inhibitory concentration) values at the micromolar level. The preliminary structure-activity relationships were analyzed and the binding features of compound 7e (IC 50 3.81 µM) was predicted using the CDOCKER program. The results of this research could provide informative guidance for further optimizing benzofuran derivatives as potent SIRT2 inhibitors.

  15. Pharmacophore Based Virtual Screening Approach to Identify Selective PDE4B Inhibitors

    PubMed Central

    Gaurav, Anand; Gautam, Vertika

    2017-01-01

    Phosphodiesterase 4 (PDE4) has been established as a promising target in asthma and chronic obstructive pulmonary disease. PDE4B subtype selective inhibitors are known to reduce the dose limiting adverse effect associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. To achieve this goal, ligand based pharmacophore modeling approach is employed. Separate pharmacophore hypotheses for PDE4B and PDE4D inhibitors were generated using HypoGen algorithm and 106 PDE4 inhibitors from literature having thiopyrano [3,2-d] Pyrimidines, 2-arylpyrimidines, and triazines skeleton. Suitable training and test sets were created using the molecules as per the guidelines available for HypoGen program. Training set was used for hypothesis development while test set was used for validation purpose. Fisher validation was also used to test the significance of the developed hypothesis. The validated pharmacophore hypotheses for PDE4B and PDE4D inhibitors were used in sequential virtual screening of zinc database of drug like molecules to identify selective PDE4B inhibitors. The hits were screened for their estimated activity and fit value. The top hit was subjected to docking into the active sites of PDE4B and PDE4D to confirm its selectivity for PDE4B. The hits are proposed to be evaluated further using in-vitro assays. PMID:29201082

  16. [Effect of preoperative cyclooxygenase-2 inhibitor for postoperative pain in patients after total knee arthroplasty: a meta-analysis].

    PubMed

    Ji, Zhong-wei; Bao, Ni-rong; Zhao, Jian-ning; Ni, Jian-fa

    2015-09-01

    To systematically evaluate the efficacy and safety of preoperative administration of cyclooxygenase-2 (COX-2) inhibitor on pain occurring with total knee arthroplasty (TKA). We electronically searched PubMed, Cochrane Library, EMBASE, CNKI, CBM, Wanfang data from inception to March 15, 2014 and manual searched journal of library collection to identify randomized controlled trials (RCTs) about preoperative administration of COX-2 inhibitor on pain occurring with TKA. The methodological quality of the included RCTs was assessed and the data were extracted according to the Cochrane Handbook 5.1.0. Meta-analysis was performed by using RevMan 5.2 software. A total of 6 RCTs involving 228 patients were included. The results of meta-analyses showed that: (1) Efficacy: The visual analog scale (VAS) of post-operation at 12-hour (WMD = -0.60, 95% CI -0.83 to -0.37, P < 0.000 01) and 24-hour (WMD = -0.74, 95% CI -1.29 to - 0.19, P = 0.008) was decreased when COX-2 inhibitor was used before operation. And compared with control group, experimental group decreased the modified numerical pain rating scale (MNPRS) at 24-hour (WMD = -0.50, 95% CI -0.70 to -0.30, P < 0.000 01), 48-hour (WMD = -0.55,95% CI -0.65 to -0.45,P < 0.000 01) under quiescent conditions, and the same result at 24-hour (WMD = -0.82, 95% CI -1.26 to -0.38, P <0.000 01), 48-hour (WMD = -0.71, 95% CI -0.82 to -0.60, P < 0.000 01) under active conditions. The morphine consumption postoperatively were fewer in experimental group at the first day (WMD = - 1.35, 95% CI -1.92 to -0.79, P < 0.000 01) and the second day (WMD = -1.60, 95% CI -2.68 to -0.52, P = 0.004). (2) Safety: COX-2 inhibitor could lessen the incidence of postoperative pruritus (RR = 0.35, 95% CI 0.15 to 0.84, P = 0.02), but not statistically decrease of nausea and vomiting (RR = 0.83, 95% CI 0.54 to 1.28, P = 0.40) and exhaustion (RR = 0.63, 95% CI 0.05 to 7.67, P = 0.72). The current evidence indicated that preoperative administration of COX-2

  17. Selective Inhibition of HER2-Positive Breast Cancer Cells by the HIV Protease Inhibitor Nelfinavir

    PubMed Central

    2012-01-01

    Background Human epidermal growth factor receptor 2 (HER2)–positive breast cancer is highly aggressive and has higher risk of recurrence than HER2-negative cancer. With few treatment options available, new drug targets specific for HER2-positive breast cancer are needed. Methods We conducted a pharmacological profiling of seven genotypically distinct breast cancer cell lines using a subset of inhibitors of breast cancer cells from a screen of the Johns Hopkins Drug Library. To identify molecular targets of nelfinavir, identified in the screen as a selective inhibitor of HER2-positive cells, we conducted a genome-wide screen of a haploinsufficiency yeast mutant collection. We evaluated antitumor activity of nelfinavir with xenografts in athymic nude mouse models (n = 4–6 per group) of human breast cancer and repeated mixed-effects regression analysis. All statistical tests were two-sided. Results Pharmacological profiling showed that nelfinavir, an anti-HIV drug, selectively inhibited the growth of HER2-positive breast cancer cells in vitro. A genome-wide screening of haploinsufficiency yeast mutants revealed that nelfinavir inhibited heat shock protein 90 (HSP90) function. Further characterization using proteolytic footprinting experiments indicated that nelfinavir inhibited HSP90 in breast cancer cells through a novel mechanism. In vivo, nelfinavir selectively inhibited the growth of HER2-positive breast cancer cells (tumor volume index of HCC1954 cells on day 29, vehicle vs nelfinavir, mean = 14.42 vs 5.16, difference = 9.25, 95% confidence interval [CI] = 5.93 to 12.56, P < .001; tumor volume index of BT474 cells on day 26, vehicle vs nelfinavir, mean = 2.21 vs 0.90, difference = 1.31, 95% CI = 0.83 to 1.78, P < .001). Moreover, nelfinavir inhibited the growth of trastuzumab- and/or lapatinib-resistant, HER2-positive breast cancer cells in vitro at clinically achievable concentrations. Conclusion Nelfinavir was found to be a new class of HSP90 inhibitor and

  18. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

    PubMed

    Basu, Gargi D; Tinder, Teresa L; Bradley, Judy M; Tu, Tony; Hattrup, Christine L; Pockaj, Barbara A; Mukherjee, Pinku

    2006-08-15

    We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.

  19. O-Phenyl Carbamate and Phenyl Urea Thiiranes as Selective Matrix Metalloproteinase-2 Inhibitors that Cross the Blood-Brain Barrier

    PubMed Central

    Gooyit, Major; Song, Wei; Mahasenan, Kiran V.; Lichtenwalter, Katerina; Suckow, Mark A.; Schroeder, Valerie A.; Wolter, William R.; Mobashery, Shahriar; Chang, Mayland

    2013-01-01

    Brain metastasis occurs in 20% to 40% of cancer patients. Treatment is mostly palliative and the inability of most drugs to penetrate the brain presents one of the greatest challenges in the development of therapeutics for brain metastasis. Matrix metalloproteinase-2 (MMP-2) plays important roles in invasion and vascularization of the central nervous system and represents a potential target for treatment of brain metastasis. Carbonate, O-phenyl carbamate, urea, and N-phenyl carbamate derivatives of SB-3CT, a selective and potent gelatinase inhibitor were synthesized and evaluated. The O-phenyl carbamate and urea variants were selective and potent inhibitors of MMP-2. Carbamate 5b was metabolized to the potent gelatinase inhibitor 2, which was present at therapeutic concentrations in the brain. In contrast, phenyl urea 6b crossed the blood-brain barrier, however higher doses would result in therapeutic brain concentrations. Carbamate 5b and urea 6b show potential for intervention of MMP-2-dependent diseases, such as brain metastasis. PMID:24028490

  20. Explorative study on isoform-selective histone deacetylase inhibitors.

    PubMed

    Suzuki, Takayoshi

    2009-09-01

    Histone deacetylases (HDACs) catalyze the deacetylation of the acetylated lysine residues of histones and non-histone proteins, and are involved in various fundamental life phenomena, such as gene expression and cell cycle progression. Thus far, eighteen HDAC family members (HDAC1-11 and SIRT1-7) have been identified, but the functions of the HDAC isoforms are not yet fully understood. In addition, some of the HDAC isoforms have been suggested to be associated with various disease states, including cancer and neurodegenerative disorders. Therefore, isoform-selective HDAC inhibitors are of great interest, not only as tools for probing the biological functions of the isoforms, but also as candidate therapeutic agents with few side effects. It was against this background that we initiated research programs to identify isoform-selective HDAC inhibitors. We designed HDAC inhibitors based on the three-dimensional structure of the enzyme and on the proposed catalytic mechanism of HDACs, and found several isoform-selective HDAC inhibitors. Furthermore, we elucidated the functions of HDAC6 by chemical genetic approaches using these inhibitors. The results of this research also suggested the feasibility of using isoform-selective HDAC inhibitors as therapeutic agents.

  1. Validation of methods to control for immortal time bias in a pharmacoepidemiologic analysis of renin-angiotensin system inhibitors in type 2 diabetes.

    PubMed

    Yang, Xilin; Kong, Alice Ps; Luk, Andrea Oy; Ozaki, Risa; Ko, Gary Tc; Ma, Ronald Cw; Chan, Juliana Cn; So, Wing Yee

    2014-01-01

    Pharmacoepidemiologic analysis can confirm whether drug efficacy in a randomized controlled trial (RCT) translates to effectiveness in real settings. We examined methods used to control for immortal time bias in an analysis of renin-angiotensin system (RAS) inhibitors as the reference cardioprotective drug. We analyzed data from 3928 patients with type 2 diabetes who were recruited into the Hong Kong Diabetes Registry between 1996 and 2005 and followed up to July 30, 2005. Different Cox models were used to obtain hazard ratios (HRs) for cardiovascular disease (CVD) associated with RAS inhibitors. These HRs were then compared to the HR of 0.92 reported in a recent meta-analysis of RCTs. During a median follow-up period of 5.45 years, 7.23% (n = 284) patients developed CVD and 38.7% (n = 1519) were started on RAS inhibitors, with 39.1% of immortal time among the users. In multivariable analysis, time-dependent drug-exposure Cox models and Cox models that moved immortal time from users to nonusers both severely inflated the HR, and time-fixed models that included immortal time deflated the HR. Use of time-fixed Cox models that excluded immortal time resulted in a HR of only 0.89 (95% CI, 0.68-1.17) for CVD associated with RAS inhibitors, which is closer to the values reported in RCTs. In pharmacoepidemiologic analysis, time-dependent drug exposure models and models that move immortal time from users to nonusers may introduce substantial bias in investigations of the effects of RAS inhibitors on CVD in type 2 diabetes.

  2. Significance of Cox-2 expression in rectal cancers with or without preoperative radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachkoria, Ketevan; Zhang Hong; Adell, Gunnar

    2005-11-01

    Purpose: Radiotherapy has reduced local recurrence of rectal cancers, but the result is not satisfactory. Further biologic factors are needed to identify patients for more effective radiotherapy. Our aims were to investigate the relationship of cyclooxygenase-2 (Cox-2) expression to radiotherapy, and clinicopathologic/biologic variables in rectal cancers with or without radiotherapy. Methods and Materials: Cox-2 expression was immunohistochemically examined in distal normal mucosa (n = 28), in adjacent normal mucosa (n = 107), in primary cancer (n = 138), lymph node metastasis (n = 30), and biopsy (n = 85). The patients participated in a rectal cancer trial of preoperative radiotherapy.more » Results: Cox-2 expression was increased in primary tumor compared with normal mucosa (p < 0.0001), but there was no significant change between primary tumor and metastasis. Cox-2 positivity was or tended to be related to more p53 and Ki-67 expression, and less apoptosis (p {<=} 0.05). In Cox-2-negative cases of either biopsy (p = 0.01) or surgical samples (p = 0.02), radiotherapy was related to less frequency of local recurrence, but this was not the case in Cox-2-positive cases. Conclusion: Cox-2 expression seemed to be an early event involved in rectal cancer development. Radiotherapy might reduce a rate of local recurrence in the patients with Cox-2 weakly stained tumors, but not in those with Cox-2 strongly stained tumors.« less

  3. Virodhamine relaxes the human pulmonary artery through the endothelial cannabinoid receptor and indirectly through a COX product

    PubMed Central

    Kozłowska, H; Baranowska, M; Schlicker, E; Kozłowski, M; Laudañski, J; Malinowska, B

    2008-01-01

    Background and purpose: The endocannabinoid virodhamine is a partial agonist at the cannabinoid CB1 receptor and a full agonist at the CB2 receptor, and relaxes rat mesenteric arteries through endothelial cannabinoid receptors. Its concentration in the periphery exceeds that of the endocannabinoid anandamide. Here, we examined the influence of virodhamine on the human pulmonary artery. Experimental approach: Isolated human pulmonary arteries were obtained during resections for lung carcinoma. Vasorelaxant effects of virodhamine were examined on endothelium-intact vessels precontracted with 5-HT or KCl. Key results: Virodhamine, unlike WIN 55,212-2, relaxed 5-HT-precontracted vessels concentration dependently. The effect of virodhamine was reduced by endothelium denudation, two antagonists of the endothelial cannabinoid receptor, cannabidiol and O-1918, and a high concentration of the CB1 receptor antagonist rimonabant (5 μM), but only slightly attenuated by the NOS inhibitor L-NAME and not affected by a lower concentration of rimonabant (100 nM) or by the CB2 and vanilloid receptor antagonists SR 144528 and capsazepine, respectively. The COX inhibitor indomethacin and the fatty acid amide hydrolase inhibitor URB597 and combined administration of selective blockers of small (apamin) and intermediate and large (charybdotoxin) conductance Ca2+-activated K+ channels attenuated virodhamine-induced relaxation. The vasorelaxant potency of virodhamine was lower in KCl- than in 5-HT-precontracted preparations. Conclusions and implications: Virodhamine relaxes the human pulmonary artery through the putative endothelial cannabinoid receptor and indirectly through a COX-derived vasorelaxant prostanoid formed from the virodhamine metabolite, arachidonic acid. One or both of these mechanisms may stimulate vasorelaxant Ca2+-activated K+ channels. PMID:18806815

  4. Expression of COX-2 and bcl-2 in oral lichen planus lesions and lichenoid reactions

    PubMed Central

    Arreaza, Alven J; Rivera, Helen; Correnti, María

    2014-01-01

    Oral lichen planus and lichenoid reactions are autoimmune type inflammatory conditions of the oral mucosa with similar clinical and histological characteristics. Recent data suggest that oral lichenoid reactions (OLR) present a greater percentage of malignant transformation than oral lichen planus (OLP). Objective To compare the expression of bcl-2 and COX-2 in OLP and OLR. Methods The study population consisted of 65 cases; 34 cases diagnosed as OLR and 31 as OLP. A retrospective study was done, and bcl-2 and COX-2 expression was semiquantitatively analysed. Results Fifty-three per cent (18/34) of the ORL samples tested positive for COX-2, whereas in the OLP group, 81% of the samples (25/31) immunostained positive for COX-2. The Fisher’s exact test for the expression of COX-2 revealed that there are significant differences between the two groups, P = 0.035. With respect to the expression of the bcl-2 protein, 76% (26/34) of the samples were positive in OLR, while 97% (30/31) were positive in the group with OLP. The Fisher’s exact test for the expression of bcl-2 revealed that there are significant statistical differences between the two groups, P = 0.028. Conclusions The expression of bcl-2 and COX-2 was more commonly expressed in OLP when compared with OLR. PMID:24834112

  5. Entropy as a Driver of Selectivity for Inhibitor Binding to Histone Deacetylase 6.

    PubMed

    Porter, Nicholas J; Wagner, Florence F; Christianson, David W

    2018-05-18

    Among the metal-dependent histone deacetylases, the class IIb isozyme HDAC6 is remarkable because of its role in the regulation of microtubule dynamics in the cytosol. Selective inhibition of HDAC6 results in microtubule hyperacetylation, leading to cell cycle arrest and apoptosis, which is a validated strategy for cancer chemotherapy and the treatment of other disorders. HDAC6 inhibitors generally consist of a Zn 2+ -binding group such as a hydroxamate, a linker, and a capping group; the capping group is a critical determinant of isozyme selectivity. Surprisingly, however, even "capless" inhibitors exhibit appreciable HDAC6 selectivity. To probe the chemical basis for this selectivity, we now report high-resolution crystal structures of HDAC6 complexed with capless cycloalkyl hydroxamate inhibitors 1-4. Each inhibitor hydroxamate group coordinates to the catalytic Zn 2+ ion with canonical bidentate geometry. Additionally, the olefin moieties of compounds 2 and 4 bind in an aromatic crevice between the side chains of F583 and F643. Reasoning that similar binding could be achieved in the representative class I isozyme HDAC8, we employed isothermal titration calorimetry to study the thermodynamics of inhibitor binding. These measurements indicate that the entropy of inhibitor binding is generally positive for binding to HDAC6 and negative for binding to HDAC8, resulting in ≤313-fold selectivity for binding to HDAC6 relative to HDAC8. Thus, favorable binding entropy contributes to HDAC6 selectivity. Notably, cyclohexenyl hydroxamate 2 represents a promising lead for derivatization with capping groups that may further enhance its impressive 313-fold thermodynamic selectivity for HDAC6 inhibition.

  6. Selectivity Mechanism of ATP-Competitive Inhibitors for PKB and PKA.

    PubMed

    Wu, Ke; Pang, Jingzhi; Song, Dong; Zhu, Ying; Wu, Congwen; Shao, Tianqu; Chen, Haifeng

    2015-07-01

    Protein kinase B (PKB) acts as a central node on the PI3K kinase pathway. Constitutive activation and overexpression of PKB have been identified to involve in various cancers. However, protein kinase A (PKA) sharing high homology with PKB is essential for metabolic regulation. Therefore, specific targeting on PKB is crucial strategy in drug design and development for antitumor. Here, we had revealed the selectivity mechanism for PKB inhibitors with molecular dynamics simulation and 3D-QSAR methods. Selective inhibitors of PKB could form more hydrogen bonds and hydrophobic contacts with PKB than those with PKA. This could explain that selective inhibitor M128 is more potent to PKB than to PKA. Then, 3D-QSAR models were constructed for these selective inhibitors and evaluated by test set compounds. 3D-QSAR model comparison of PKB inhibitors and PKA inhibitors reveals possible methods to improve the selectivity of inhibitors. These models can be used to design new chemical entities and make quantitative prediction of the specific selective inhibitors before resorting to in vitro and in vivo experiment. © 2014 John Wiley & Sons A/S.

  7. Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines.

    PubMed

    Horsch, Marion; Aguilar-Pimentel, Juan Antonio; Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T; Lund, Anders H; Lee, Icksoo; Grossman, Lawrence I; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; de Angelis, Martin Hrabĕ; Beckers, Johannes

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype-envirotype interactions for other diseases.

  8. Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines

    PubMed Central

    Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T.; Lund, Anders H.; Lee, Icksoo; Grossman, Lawrence I.; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; Hrabĕ de Angelis, Martin; Beckers, Johannes

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype – envirotype interactions for other diseases. PMID:26263558

  9. Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines.

    PubMed

    Ma, X H; Wang, R; Tan, C Y; Jiang, Y Y; Lu, T; Rao, H B; Li, X Y; Go, M L; Low, B C; Chen, Y Z

    2010-10-04

    Multitarget agents have been increasingly explored for enhancing efficacy and reducing countertarget activities and toxicities. Efficient virtual screening (VS) tools for searching selective multitarget agents are desired. Combinatorial support vector machines (C-SVM) were tested as VS tools for searching dual-inhibitors of 11 combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, CDK2, GSK3). C-SVM trained on 233-1,316 non-dual-inhibitors correctly identified 26.8%-57.3% (majority >36%) of the 56-230 intra-kinase-group dual-inhibitors (equivalent to the 50-70% yields of two independent individual target VS tools), and 12.2% of the 41 inter-kinase-group dual-inhibitors. C-SVM were fairly selective in misidentifying as dual-inhibitors 3.7%-48.1% (majority <20%) of the 233-1,316 non-dual-inhibitors of the same kinase pairs and 0.98%-4.77% of the 3,971-5,180 inhibitors of other kinases. C-SVM produced low false-hit rates in misidentifying as dual-inhibitors 1,746-4,817 (0.013%-0.036%) of the 13.56 M PubChem compounds, 12-175 (0.007%-0.104%) of the 168 K MDDR compounds, and 0-84 (0.0%-2.9%) of the 19,495-38,483 MDDR compounds similar to the known dual-inhibitors. C-SVM was compared to other VS methods Surflex-Dock, DOCK Blaster, kNN and PNN against the same sets of kinase inhibitors and the full set or subset of the 1.02 M Zinc clean-leads data set. C-SVM produced comparable dual-inhibitor yields, slightly better false-hit rates for kinase inhibitors, and significantly lower false-hit rates for the Zinc clean-leads data set. Combinatorial SVM showed promising potential for searching selective multitarget agents against intra-kinase-group kinases without explicit knowledge of multitarget agents.

  10. Design, Synthesis and Biological Evaluation of Histone Deacetylase (HDAC) Inhibitors: Saha (Vorinostat) Analogs and Biaryl Indolyl Benzamide Inhibitors Display Isoform Selectivity

    NASA Astrophysics Data System (ADS)

    Negmeldin, Ahmed Thabet

    HDAC proteins have emerged as interesting targets for anti-cancer drugs due to their involvement in cancers, as well as several other diseases. Several HDAC inhibitors have been approved by the FDA as anti-cancer drugs, including SAHA (suberoylanilide hydroxamic acid, Vorinostat). Unfortunately, SAHA inhibits most HDAC isoforms, which limit its use as a pharmacological tool and may lead to side effects in the clinic. In this work we were interested in developing isoform selective HDAC inhibitors, which may decrease or eliminate the side effects associated with non-selective inhibitors treatment. In addition, isoform selective HDAC inhibitors can be used as biological tools to help understand the HDAC-related cancer biology. Our strategy was based on synthesis and screening of several derivatives of the non-selective FDA approved drug SAHA substituted at different positions of the linker region. Several SAHA analogs modified at the C4 and C5 positions of the linker were synthesized. The new C4- and C5-modified SAHA libraries, along with the previously synthesized C2-modified SAHA analogs were screened in vitro and in cellulo for HDAC isoform selectivity. Interestingly, several analogs exhibited dual HDAC6/HDAC8 selectivity. Enantioselective syntheses of the pure enantiomers of some of the interesting analogs were performed and the enantiomers were screened in vitro. Among the most interesting analogs, ( R)-C4-benzyl SAHA displayed 520- to 1300-fold selectivity for HDAC6 and HDAC8 over HDAC1, 2, and 3, with IC50 values of 48 and 27 nM with HDAC6 and 8, respectively. Docking studies were performed to provide structural rationale for the observed selectivity of the new analogs. In addition, rational design, synthesis, and screening of several other biaryl indolyl benzamide HDAC inhibitors is discussed, and some showed modest HDAC1 selectivity. The new biaryl indolyl benzamides can be useful to further develop HDAC1 selective inhibitors. The dual HDAC6/8 selective

  11. Association of COX-2 Promoter Polymorphisms -765G/C and -1195A/G with Migraine.

    PubMed

    Mozaffari, Elahe; Doosti, Abbas; Arshi, Asghar; Faghani, Mostafa

    2016-12-01

    Migraine is a common debilitating primary headache disorder with current head pain attacks, which contributes to physical activity dysfunctions in chronic pain phase. PGE2 and PGI2 are two important prostaglandins synthesised by COX-2 enzymes, involved in migraine pain signals. COX-2 modulation is essential in treatment and pathogenesis of migraine. This study aimed to investigating the association between COX-2 gene polymorphisms with the risk of migraine susceptibility in migraine patients with related and unrelated parents. This case- control study was based on 100 migraine patients and 100 non-migraine subjects in Bushehr province, Iran in 2013. Genomic DNA of blood samples was extracted and genotyping of COX-2-765G>C (rs20417) and COX-2-1195A>G (rs689466) gene variants was investigated by PCR-RFLP method. Statistical analyses were accomplished using the SPSS software package. There was a significant differences in the frequencies of the COX-2-765G>C and COX-2-1195A>G genotypes between migraine patients and controls ( P ≤0.05). COX-2-765CC , COX-2-765CG , COX-2-1195GG and COX-2-1195AG genotypes can increase the risk of migraine significantly. As the first study in Iran, we are hopeful to achieve greater results about the relevancy of COX-2 gene, migraine and pain signals pathway by repeating these experiments on more samples.

  12. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can bemore » clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.« less

  13. Smad3 mutant mice develop colon cancer with overexpression of COX-2

    PubMed Central

    Zhu, Yu-Ping; Liu, Zhuo; Fu, Zhi-Xuan; Li, De-Chuan

    2017-01-01

    Colon cancer is the second most common cause of cancer-associated mortality in human populations. The aim of the present study was to identify the role of cyclooxygenase-2 (COX-2) in Smad3 mutant mice, which are known to develop colon cancer. Homozygous Smad3 (−/−) mutant mice were generated from inbred and hybrid Smad3 mouse strains by intercrossing the appropriate heterozygotes. Immunohistochemistry with COX-2 antibody was performed throughout this experiment and the data was validated and cross-checked with reverse transcription-polymerase chain reaction (RT-PCR). Homozygous mutant Smad3 mice were generated and the overexpression pattern of COX-2 was identified by immunohistochemistry and validated with RT-PCR. The results of the present study demonstrated a link between the Smad3 mutant mice, colon cancer and COX-2. In addition, the overexpression pattern of COX-2 in Smad3 mutant mice that develop colon cancer was identified. PMID:28454287

  14. Actinic cheilitis: epithelial expression of COX-2 and its association with mast cell tryptase and PAR-2.

    PubMed

    Rojas, I Gina; Martínez, Alejandra; Brethauer, Ursula; Grez, Patricia; Yefi, Roger; Luza, Sandra; Marchesani, Francisco J

    2009-03-01

    Cyclooxygenase-2 (COX-2) is overexpressed in various types of human malignancies, including oral cancers. Recent studies have shown that mast cell-derived protease tryptase can induce COX-2 expression by the cleavage of proteinase-activated receptor-2 (PAR-2). Actinic cheilitis (AC) is a premalignant form of lip cancer characterized by an increased density of tryptase-positive mast cells. To investigate the possible contribution of tryptase to COX-2 overexpression during early lip carcinogenesis, normal lip (n=24) and AC (n=45) biopsies were processed for COX-2, PAR-2 and tryptase detection, using RT-PCR and immunohistochemistry. Expression scores were obtained for each marker and tested for statistical significance using Mann-Whitney and Spearmann's correlation tests as well as multivariate logistic regression analysis. Increased epithelial co-expression of COX-2 and PAR-2, as well as, elevated subepithelial density of tryptase-positive mast cells were found in AC as compared to normal lip (P<0.001). COX-2 overexpression was found to be a significant predictor of AC (P<0.034, forward stepwise, Wald), and to be correlated with both tryptase-positive mast cells and PAR-2 expression (P<0.01). The results suggest that epithelial COX-2 overexpression is a key event in AC, which is associated with increased tryptase-positive mast cells and PAR-2. Therefore, tryptase may contribute to COX-2 up-regulation by epithelial PAR-2 activation during early lip carcinogenesis.

  15. Potency and selectivity of carprofen enantiomers for inhibition of bovine cyclooxygenase in whole blood assays.

    PubMed

    Brentnall, Claire; Cheng, Zhangrui; McKellar, Quintin A; Lees, Peter

    2012-12-01

    Whole blood in vitro assays were used to determine the potency and selectivity of carprofen enantiomers for inhibition of the isoforms of cyclooxygenase (COX), COX-1 and COX-2, in the calf. S(+)-carprofen possessed preferential activity for COX-2 inhibition but, because the slopes of inhibition curves differed, the COX-1:COX-2 inhibition ratio decreased from 9.04:1 for inhibitory concentration (IC)10 to 1.84:1 for IC95. R(-) carprofen inhibited COX-2 preferentially only for low inhibition of the COX isoforms (IC10 COX-1:COX-2=6.63:1), whereas inhibition was preferential for COX-1 for a high level of inhibition (IC95 COX-1:COX-2=0.20:1). S(+) carprofen was the more potent inhibitor of COX isoforms; potency ratios S(+):R(-) carprofen were 11.6:1 for IC10 and 218:1 for IC90. Based on serum concentrations of carprofen enantiomers obtained after administration of a therapeutic dose of 1.4 mg/kg to calves subcutaneously, S(+)-carprofen concentrations exceeded the in vitro IC80 COX-2 value for 32 h and the IC20 for COX-1 for 33 h. The findings are discussed in relation to efficacy and safety of carprofen in calves. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Cyclooxygenase-2 is an obligatory factor in methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-05-01

    Methamphetamine causes persistent damage to dopamine nerve endings of the striatum. The mechanisms underlying its neurotoxicity are not fully understood, but considerable evidence points to oxidative stress as a probable mechanism. A recent microarray analysis of gene expression changes caused by methamphetamine revealed that cyclooxygenase-2 (COX-2) was induced along with its transcription factor CCAAT/enhancer-binding protein (Thomas DM, Francescutti-Verbeem DM, Liu X, and Kuhn DM, 2004). We report presently that methamphetamine increases striatal expression of COX-2 protein. Cyclooxygenase-1 (COX-1) expression was not changed. Mice bearing a null mutation of the gene for COX-2 were resistant to methamphetamine-induced neurotoxicity. COX-1 knockouts, like wild-type mice, showed extensive dopamine nerve terminal damage. Selective inhibitors of COX-1 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole (SC-560)], COX-2 [N-[2-(cyclohexyloxy)-4-nitrophenyl] methanesulfonamide (NS-398), rofecoxib], or COX-3 (antipyrine) or a nonselective inhibitor of the COX-1/2 isoforms (ketoprofen) did not protect mice from neurotoxicity. Finally, methamphetamine did not change striatal prostaglandin E(2) content. Taken together, these data suggest that COX-2 is an obligatory factor in methamphetamine-induced neurotoxicity. The functional aspect of COX-2 that contributes to drug-induced neurotoxicity does not appear to be its prostaglandin synthetic capacity. Instead, the peroxidase activity associated with COX-2, which can lead to the formation of reactive oxygen species and dopamine quinones, can account for its role.

  17. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization.

    PubMed

    Ye, Yibiao; Xu, Yunxiuxiu; Lai, Yu; He, Wenguang; Li, Yanshan; Wang, Ruomei; Luo, Xinxi; Chen, Rufu; Chen, Tao

    2018-03-01

    Macrophages have been shown to demonstrate a high level of plasticity, with the ability to undergo dynamic transition between M1 and M2 polarized phenotypes. We investigate long non-coding RNA (lncRNA) cox-2 in macrophage polarization and the regulatory mechanism functions in hepatocellular carcinoma (HCC). Lipopolysaccharide (LPS) was used to induce RAW264.7 macrophages into M1 type, and IL-4 was to induce RAW264.7 macrophages into M2 type. We selected mouse hepatic cell line Hepal-6 and hepatoma cell line HepG2 for co-incubation with M1 or M2 macrophages. Quantitative real-time PCR was used to detect the expressions of lncRNA cox-2 and mRNAs. ELISA was conducted for testing IL-12 and IL-10 expressions; Western blotting for epithelial mesenchymal transition related factors (E-cadherin and Vimentin). An MTT, colony formation assay, flow cytometry, transwell assay, and stretch test were conducted to test cell abilities. The M1 macrophages had higher lncRNA cox-2 expression than that in the non-polarized macrophages and M2 macrophages. The lncRNA cox-2 siRNA decreased the expression levels of IL-12, iNOS, and TNF-α in M1 macrophages, increased the expression levels of IL-10, Arg-1, and Fizz-1 in M2 macrophages (all P < 0.05). The lncRNA cox-2 siRNA reduces the ability of M1 macrophages to inhibit HCC cell proliferation, invasion, migration, EMT, angiogenesis and facilitate apoptosis while strengthening the ability of M2 macrophages to promote proliferation HCC cell growth and inhibit apoptosis. These findings indicate that lncRNA cox-2 inhibits HCC immune evasion and tumor growth by inhibiting the polarization of M2 macrophages. © 2017 Wiley Periodicals, Inc.

  18. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma.

    PubMed

    Yeh, Chun-Nan; Chang, Chi-Wei; Chung, Yi-Hsiu; Tien, Shi-Wei; Chen, Yong-Ren; Chen, Tsung-Wen; Huang, Ying-Cheng; Wang, Hsin-Ell; Chou, You-Cheng; Chen, Ming-Huang; Chiang, Kun-Chun; Huang, Wen-Sheng; Yu, Chung-Shan

    2017-09-30

    Boron neutron capture therapy (BNCT) is a binary therapy that employs neutron irradiation on the boron agents to release high-energy helium and alpha particles to kill cancer cells. An optimal response to BNCT depends critically on the time point of maximal 10 B accumulation and highest tumor to normal ratio (T/N) for performing the neutron irradiation. The aggressive cholangiocarcinoma (CCA) representing a liver cancer that overexpresses COX-2 enzyme is aimed to be targeted by COX-2 selective boron carrier, fenbufen boronopinacol (FBPin). Two main works were performed including: 1) chemical synthesis of FBPin as the boron carrier and 2) radiochemical labeling with F-18 to provide the radiofluoro congener, m-[ 18 F]fluorofenbufen ester boronopinacol (m-[ 18 F]FFBPin), to assess the binding affinity, cellular accumulation level and distribution profile in CCA rats. FBPin was prepared from bromofenbufen via 3 steps with 82% yield. The binding assay employed [ 18 F]FFBPin to compete FBPin for binding to COX-1 (IC 50 =0.91±0.68μM) and COX-2 (IC 50 =0.33±0.24μM). [ 18 F]FFBPin-derived 60-min dynamic PET scans predict the 10 B-accumulation of 0.8-1.2ppm in liver and 1.2-1.8ppm in tumor and tumor to normal ratio=1.38±0.12. BNCT was performed 40-55min post intravenous administration of FBPin (20-30mg) in the CCA rats. CCA rats treated with BNCT display more tumor reduction than that by NCT with respect of 2-[ 18 F]fluoro-2-deoxy glucose uptake in the tumor region of interest, 20.83±3.00% (n=12) vs. 12.83±3.79% (n=10), P=0.05. The visualizing agent [ 18 F]FFBPin resembles FBPin to generate the time-dependent boron concentration profile. Optimal neutron irradiation period is thus determinable for BNCT. A boron-substituted agent based on COX-2-binding features has been prepared. The moderate COX-2/COX-1 selectivity index of 2.78 allows a fair tumor selectivity index of 1.38 with a mild cardiovascular effect. The therapeutic effect from FBPin with BNCT warrants a proper

  19. TS-071 is a novel, potent and selective renal sodium-glucose cotransporter 2 (SGLT2) inhibitor with anti-hyperglycaemic activity.

    PubMed

    Yamamoto, K; Uchida, S; Kitano, K; Fukuhara, N; Okumura-Kitajima, L; Gunji, E; Kozakai, A; Tomoike, H; Kojima, N; Asami, J; Toyoda, H; Arai, M; Takahashi, T; Takahashi, K

    2011-09-01

    The renal sodium-glucose cotransporter 2 (SGLT2) plays an important role in the reuptake of filtered glucose in the proximal tubule and therefore may be an attractive target for the treatment of diabetes mellitus. This study characterizes the pharmacological profile of TS-071 ((1S)-1,5-anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol hydrate), a novel SGLT2 inhibitor in vitro and in vivo. Inhibition of glucose uptake by TS-071 was studied in CHO-K1 cells stably expressing either human SGLT1 or SGLT2. Single oral dosing studies were performed in rats, mice and dogs to assess the abilities of TS-071 to increase urinary glucose excretion and to lower plasma glucose levels. TS-071 inhibited SGLT2 activity in a concentration-dependent manner and was a potent and highly selective inhibitor of SGLT2. Orally administered TS-071 increased urinary glucose excretion in Zucker fatty rats and beagle dogs at doses of 0.3 and 0.03 mg·kg(-1) respectively. TS-071 improved glucose tolerance in Zucker fatty rats without stimulating insulin secretion and reduced hyperglycaemia in streptozotocin (STZ)-induced diabetic rats and db/db mice at a dose of 0.3 mg·kg(-1). These data indicate that TS-071 is a potent and selective SGLT2 inhibitor that improves glucose levels in rodent models of type 1 and 2 diabetes and may be useful for the treatment for diabetes mellitus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. A dual inhibitor of cyclooxygenase and 5-lipoxygenase protects against kainic acid-induced brain injury.

    PubMed

    Minutoli, Letteria; Marini, Herbert; Rinaldi, Mariagrazia; Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Calò, Margherita; Adamo, Elena Bianca; Trichilo, Vincenzo; Interdonato, Monica; Galfo, Federica; Squadrito, Francesco; Altavilla, Domenica

    2015-06-01

    Systemic administration of kainic acid causes inflammation and apoptosis in the brain, resulting in neuronal loss. Dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitors could represent a possible neuroprotective approach in preventing glutamate excitotoxicity. Consequently, we investigated the effects of a dual inhibitor of COX/5-LOX following intraperitoneal administration of kainic acid (KA, 10 mg/kg) in rats. Animals were randomized to receive either the dual inhibitor of COX/5-LOX (flavocoxid, 20 mg/kg i.p.) or its vehicle (1 ml/kg i.p.) 30 min after KA administration. Sham brain injury rats were used as controls. We evaluated protein expression of phosphorylated extracellular signal-regulated kinase (p-ERK1/2) and tumor necrosis factor alpha (TNF-α) as well as levels of malondialdehyde (MDA), prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in the hippocampus. Animals were also observed for monitoring behavioral changes according to Racine Scale. Finally, histological analysis and brain edema evaluation were carried out. Treatment with the dual inhibitor of COX/5-LOX decreased protein expression of p-ERK1/2 and TNF-α in hippocampus, markedly reduced MDA, LTB4 and PGE2 hippocampal levels, and also ameliorated brain edema. Histological analysis showed a reduction in cell damage in rats treated with the dual inhibitor of COX/5-LOX, particularly in hippocampal subregion CA3c. Moreover, flavocoxid significantly improved behavioral signs following kainic acid administration. Our results suggest that dual inhibition of COX/5-LOX by flavocoxid has neuroprotective effects during kainic acid-induced excitotoxicity.

  1. Risk of mortality with concomitant use of tamoxifen and selective serotonin reuptake inhibitors: multi-database cohort study.

    PubMed

    Donneyong, Macarius M; Bykov, Katsiaryna; Bosco-Levy, Pauline; Dong, Yaa-Hui; Levin, Raisa; Gagne, Joshua J

    2016-09-30

     To compare differences in mortality between women concomitantly treated with tamoxifen and selective serotonin reuptake inhibitors (SSRIs) that are potent inhibitors of the cytochrome-P450 2D6 enzyme (CYP2D6) versus tamoxifen and other SSRIs.  Population based cohort study.  Five US databases covering individuals enrolled in private and public health insurance programs from 1995 to 2013.  Two cohorts of women who started taking tamoxifen. In cohort 1, women started taking an SSRI during tamoxifen treatment. In cohort 2, women were already taking an SSRI when they started taking tamoxifen.  All cause mortality in each cohort in women taking SSRIs that are potent inhibitors of CYP2D6 (paroxetine, fluoxetine) versus other SSRIs. Propensity scores were used to match exposure groups in a variable ratio fashion. Results were measured separately for each cohort and combined hazard ratios calculated from Cox regression models across the two cohorts with random effects meta-analysis.  There were 6067 and 8465 new users of tamoxifen in cohorts 1 and 2, respectively. Mean age was 55. A total of 991 and 1014 deaths occurred in cohorts 1 and 2 during a median follow-up of 2.2 (interquartile range 0.9-4.5) and 2.0 (0.8-3.9) years, respectively. The pooled hazard ratio for death for potent inhibitors (rate 58.6/1000 person years) compared with other SSRIs (rate 57.9/1000 person years) across cohorts 1 and 2 was 0.96 (95% confidence interval 0.88 to 1.06). Results were consistent across sensitivity analyses.  Concomitant use of tamoxifen and potent CYP2D6 inhibiting SSRIs versus other SSRIs was not associated with an increased risk of death. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Validation of Methods to Control for Immortal Time Bias in a Pharmacoepidemiologic Analysis of Renin–Angiotensin System Inhibitors in Type 2 Diabetes

    PubMed Central

    Yang, Xilin; Kong, Alice PS; Luk, Andrea OY; Ozaki, Risa; Ko, Gary TC; Ma, Ronald CW; Chan, Juliana CN; So, Wing Yee

    2014-01-01

    Background Pharmacoepidemiologic analysis can confirm whether drug efficacy in a randomized controlled trial (RCT) translates to effectiveness in real settings. We examined methods used to control for immortal time bias in an analysis of renin–angiotensin system (RAS) inhibitors as the reference cardioprotective drug. Methods We analyzed data from 3928 patients with type 2 diabetes who were recruited into the Hong Kong Diabetes Registry between 1996 and 2005 and followed up to July 30, 2005. Different Cox models were used to obtain hazard ratios (HRs) for cardiovascular disease (CVD) associated with RAS inhibitors. These HRs were then compared to the HR of 0.92 reported in a recent meta-analysis of RCTs. Results During a median follow-up period of 5.45 years, 7.23% (n = 284) patients developed CVD and 38.7% (n = 1519) were started on RAS inhibitors, with 39.1% of immortal time among the users. In multivariable analysis, time-dependent drug-exposure Cox models and Cox models that moved immortal time from users to nonusers both severely inflated the HR, and time-fixed models that included immortal time deflated the HR. Use of time-fixed Cox models that excluded immortal time resulted in a HR of only 0.89 (95% CI, 0.68–1.17) for CVD associated with RAS inhibitors, which is closer to the values reported in RCTs. Conclusions In pharmacoepidemiologic analysis, time-dependent drug exposure models and models that move immortal time from users to nonusers may introduce substantial bias in investigations of the effects of RAS inhibitors on CVD in type 2 diabetes. PMID:24747198

  3. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.

    PubMed

    Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D

    2018-02-15

    Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Effects of specific inhibition of cyclooxygenase-2 on sodium balance, hemodynamics, and vasoactive eicosanoids.

    PubMed

    Catella-Lawson, F; McAdam, B; Morrison, B W; Kapoor, S; Kujubu, D; Antes, L; Lasseter, K C; Quan, H; Gertz, B J; FitzGerald, G A

    1999-05-01

    Conventional nonsteroidal anti-inflammatory drugs inhibit both cyclooxygenase (Cox) isoforms (Cox-1 and Cox-2) and may be associated with nephrotoxicity. The present study was undertaken to assess the renal effects of the specific Cox-2 inhibitor, MK-966. Healthy older adults (n = 36) were admitted to a clinical research unit, placed on a fixed sodium intake, and randomized under double-blind conditions to receive the specific Cox-2 inhibitor, MK-966 (50 mg every day), a nonspecific Cox-1/Cox-2 inhibitor, indomethacin (50 mg t.i.d.), or placebo for 2 weeks. All treatments were well tolerated. Both active regimens were associated with a transient but significant decline in urinary sodium excretion during the first 72 h of treatment. Blood pressure and body weight did not change significantly in any group. The glomerular filtration rate (GFR) was decreased by indomethacin but was not changed significantly by MK-966 treatment. Thromboxane biosynthesis by platelets was inhibited by indomethacin only. The urinary excretion of the prostacyclin metabolite 2,3-dinor-6-keto prostaglandin F1alpha was decreased by both MK-966 and indomethacin and was unchanged by placebo. Cox-2 may play a role in the systemic biosynthesis of prostacyclin in healthy humans. Selective inhibition of Cox-2 by MK-966 caused a clinically insignificant and transient retention of sodium, but no depression of GFR. Inhibition of both Cox isoforms by indomethacin caused transient sodium retention and a decline in GFR. Our data suggest that acute sodium retention by nonsteroidal anti-inflammatory drugs in healthy elderly subjects is mediated by the inhibition of Cox-2, whereas depression of GFR is due to inhibition of Cox-1.

  5. Towards isozyme-selective HDAC inhibitors for interrogating disease.

    PubMed

    Gupta, Praveer; Reid, Robert C; Iyer, Abishek; Sweet, Matthew J; Fairlie, David P

    2012-01-01

    Histone deacetylase (HDAC) enzymes have emerged as promising targets for the treatment of a wide range of human diseases, including cancers, inflammatory and metabolic disorders, immunological, cardiovascular, and infectious diseases. At present, such applications are limited by the lack of selective inhibitors available for each of the eighteen HDAC enzymes, with most currently available HDAC inhibitors having broad-spectrum activity against multiple HDAC enzymes. Such broad-spectrum activity maybe useful in treating some diseases like cancers, but can be detrimental due to cytotoxic side effects that accompany prolonged treatment of chronic diseased states. Here we summarize progress towards the design and discovery of HDAC inhibitors that are selective for some of the eleven zinc-containing classical HDAC enzymes, and identify opportunities to use such isozyme-selective inhibitors as chemical probes for interrogating the biological roles of individual HDAC enzymes in diseases.

  6. Structure and function based design of Plasmodium-selective proteasome inhibitors

    PubMed Central

    Li, Hao; O'Donoghue, Anthony J.; van der Linden, Wouter A.; Xie, Stanley C.; Yoo, Euna; Foe, Ian T.; Tilley, Leann; Craik, Charles S.; da Fonseca, Paula C. A.; Bogyo, Matthew

    2016-01-01

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the

  7. COX-2 in cancer: Gordian knot or Achilles heel?

    PubMed Central

    Stasinopoulos, Ioannis; Shah, Tariq; Penet, Marie-France; Krishnamachary, Balaji; Bhujwalla, Zaver M.

    2013-01-01

    The networks of blood and lymphatic vessels and of the extracellular matrix and their cellular and structural components, that are collectively termed the tumor microenvironment, are frequently co-opted and shaped by cancer cells to survive, invade, and form distant metastasis. With an enviable capacity to adapt to continually changing environments, cancer represents the epitome of functional chaos, a stark contrast to the hierarchical and organized differentiation processes that dictate the development and life of biological organisms. The consequences of changing landscapes such as hypoxia and acidic extracellular pH in and around tumors create a cascade of changes in multiple pathways and networks that become apparent only several years later as recurrence and metastasis. These molecular and phenotypic changes, several of which are mediated by COX-2, approach the complexities of a “Gordian Knot.” We review evidence from our studies and from literature suggesting that cyclooxygenase-2 (COX-2) biology presents a nodal point in cancer biology and an “Achilles heel” of COX-2-dependent tumors. PMID:23579438

  8. [Suppression of COX-2 protein to cell apoptosis in non-small cell lung cancer].

    PubMed

    Sun, Limei; Zhao, Yue; Wang, Lujian; Song, Min; Song, Jiye

    2007-06-20

    One of mechanisms of carcinogenesis is suppression of cell apoptosis which leads to accumulation of aberrant cells. The aim of this study is to investigate cell apoptosis and COX-2 protein expression in non-small cell lung cancer (NSCLC). Cell apoptosis, expression of COX-2 and microvessel density (MVD) were detcted in 111 NSCLC samples by TdT-mediated dUTP nick end labeling (TUNEL) technique and immunohistochemical staining. The positive rate of COX-2 protein expression was 67.6% (75/111), and there were 53 patients with high level cell apoptosis (47.7%). Expression of COX-2 protien was significantly related to TNM stages (P=0.025) and lymph node metastasis (P=0.018). The MVD in NSCLC tissues with positive COX-2 expression was significantly higher than that in negative expression ones (P=0.000). COX model showed that lymph node metastasis (P=0.006) and positive expression of COX-2 protein (P=0.000) were independent prognostic factors of NSCLC. The expression of COX-2 protein may suppress cell apoptosis of tumor, and it may serve as a potential marker of prognosis for NSCLC.

  9. Monofluorophosphate is a selective inhibitor of respiratory sulfate-reducing microorganisms.

    PubMed

    Carlson, Hans K; Stoeva, Magdalena K; Justice, Nicholas B; Sczesnak, Andrew; Mullan, Mark R; Mosqueda, Lorraine A; Kuehl, Jennifer V; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D

    2015-03-17

    Despite the environmental and economic cost of microbial sulfidogenesis in industrial operations, few compounds are known as selective inhibitors of respiratory sulfate reducing microorganisms (SRM), and no study has systematically and quantitatively evaluated the selectivity and potency of SRM inhibitors. Using general, high-throughput assays to quantitatively evaluate inhibitor potency and selectivity in a model sulfate-reducing microbial ecosystem as well as inhibitor specificity for the sulfate reduction pathway in a model SRM, we screened a panel of inorganic oxyanions. We identified several SRM selective inhibitors including selenate, selenite, tellurate, tellurite, nitrate, nitrite, perchlorate, chlorate, monofluorophosphate, vanadate, molydate, and tungstate. Monofluorophosphate (MFP) was not known previously as a selective SRM inhibitor, but has promising characteristics including low toxicity to eukaryotic organisms, high stability at circumneutral pH, utility as an abiotic corrosion inhibitor, and low cost. MFP remains a potent inhibitor of SRM growing by fermentation, and MFP is tolerated by nitrate and perchlorate reducing microorganisms. For SRM inhibition, MFP is synergistic with nitrite and chlorite, and could enhance the efficacy of nitrate or perchlorate treatments. Finally, MFP inhibition is multifaceted. Both inhibition of the central sulfate reduction pathway and release of cytoplasmic fluoride ion are implicated in the mechanism of MFP toxicity.

  10. Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: development and biopharmacological profiling of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate (NW-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor.

    PubMed

    Pisani, Leonardo; Muncipinto, Giovanni; Miscioscia, Teresa Fabiola; Nicolotti, Orazio; Leonetti, Francesco; Catto, Marco; Caccia, Carla; Salvati, Patricia; Soto-Otero, Ramon; Mendez-Alvarez, Estefania; Passeleu, Celine; Carotti, Angelo

    2009-11-12

    In an effort to discover novel selective monoamine oxidase (MAO) B inhibitors with favorable physicochemical and pharmacokinetic profiles, 7-[(m-halogeno)benzyloxy]coumarins bearing properly selected polar substituents at position 4 were designed, synthesized, and evaluated as MAO inhibitors. Several compounds with MAO-B inhibitory activity in the nanomolar range and excellent MAO-B selectivity (selectivity index SI > 400) were identified. Structure-affinity relationships and docking simulations provided valuable insights into the enzyme-inhibitor binding interactions at position 4, which has been poorly explored. Furthermore, computational and experimental studies led to the identification and biopharmacological characterization of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate 22b (NW-1772) as an in vitro and in vivo potent and selective MAO-B inhibitor, with rapid blood-brain barrier penetration, short-acting and reversible inhibitory activity, slight inhibition of selected cytochrome P450s, and low in vitro toxicity. On the basis of this preliminary preclinical profile, inhibitor 22b might be viewed as a promising clinical candidate for the treatment of neurodegenerative diseases.

  11. New potent and selective cytochrome P450 2B6 (CYP2B6) inhibitors based on three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis

    PubMed Central

    Korhonen, L E; Turpeinen, M; Rahnasto, M; Wittekindt, C; Poso, A; Pelkonen, O; Raunio, H; Juvonen, R O

    2007-01-01

    Background and purpose: The cytochrome P450 2B6 (CYP2B6) enzyme metabolises a number of clinically important drugs. Drug-drug interactions resulting from inhibition or induction of CYP2B6 activity may cause serious adverse effects. The aims of this study were to construct a three-dimensional structure-activity relationship (3D-QSAR) model of the CYP2B6 protein and to identify novel potent and selective inhibitors of CYP2B6 for in vitro research purposes. Experimental approach: The inhibition potencies (IC50 values) of structurally diverse chemicals were determined with recombinant human CYP2B6 enzyme. Two successive models were constructed using Comparative Molecular Field Analysis (CoMFA). Key results: Three compounds proved to be very potent and selective competitive inhibitors of CYP2B6 in vitro (IC50<1 μM): 4-(4-chlorobenzyl)pyridine (CBP), 4-(4-nitrobenzyl)pyridine (NBP), and 4-benzylpyridine (BP). A complete inhibition of CYP2B6 activity was achieved with 0.1 μM CBP, whereas other CYP-related activities were not affected. Forty-one compounds were selected for further testing and construction of the final CoMFA model. The created CoMFA model was of high quality and predicted accurately the inhibition potency of a test set (n=7) of structurally diverse compounds. Conclusions and implications: Two CoMFA models were created which revealed the key molecular characteristics of inhibitors of the CYP2B6 enzyme. The final model accurately predicted the inhibitory potencies of several structurally unrelated compounds. CBP, BP and NBP were identified as novel potent and selective inhibitors of CYP2B6 and CBP especially is a suitable inhibitor for in vitro screening studies. PMID:17325652

  12. 5-((3-Amidobenzyl)oxy)nicotinamides as Sirtuin 2 Inhibitors.

    PubMed

    Ai, Teng; Wilson, Daniel J; More, Swati S; Xie, Jiashu; Chen, Liqiang

    2016-04-14

    Derived from our previously reported human sirtuin 2 (SIRT2) inhibitors that were based on a 5-aminonaphthalen-1-yloxy nicotinamide core structure, 5-((3-amidobenzyl)oxy)nicotinamides offered excellent activity against SIRT2 and high isozyme selectivity over SIRT1 and SIRT3. Selected compounds also exhibited generally favorable in vitro absorption, distribution, metabolism, and excretion properties. Kinetic studies revealed that a representative SIRT2 inhibitor acted competitively against both NAD(+) and the peptide substrate, an inhibitory modality that was supported by our computational study. More importantly, two selected compounds exhibited significant protection against α-synuclein aggregation-induced cytotoxicity in SH-SY5Y cells. Therefore, 5-((3-amidobenzyl)oxy)nicotinamides represent a new class of SIRT2 inhibitors that are attractive candidates for further lead optimization in our continued effort to explore selective inhibition of SIRT2 as a potential therapy for Parkinson's disease.

  13. Psoralidin, a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.

    PubMed

    Yang, Hee Jung; Youn, HyeSook; Seong, Ki Moon; Yun, Young Ju; Kim, Wanyeon; Kim, Young Ha; Lee, Ji Young; Kim, Cha Soon; Jin, Young-Woo; Youn, BuHyun

    2011-09-01

    Radiotherapy is the most significant non-surgical cure for the elimination of tumor, however it is restricted by two major problems: radioresistance and normal tissue damage. Efficiency improvement on radiotherapy is demanded to achieve cancer treatment. We focused on radiation-induced normal cell damage, and are concerned about inflammation reported to act as a main limiting factor in the radiotherapy. Psoralidin, a coumestan derivative isolated from the seed of Psoralea corylifolia, has been studied for anti-cancer and anti-bacterial properties. However, little is known regarding its effects on IR-induced pulmonary inflammation. The aim of this study is to investigate mechanisms of IR-induced inflammation and to examine therapeutic mechanisms of psoralidin in human normal lung fibroblasts and mice. Here, we demonstrated that IR-induced ROS activated cyclooxygenases-2 (COX-2) and 5-lipoxygenase (5-LOX) pathway in HFL-1 and MRC-5 cells. Psoralidin inhibited the IR-induced COX-2 expression and PGE(2) production through regulation of PI3K/Akt and NF-κB pathway. Also, psoralidin blocked IR-induced LTB(4) production, and it was due to direct interaction of psoralidin and 5-lipoxygenase activating protein (FLAP) in 5-LOX pathway. IR-induced fibroblast migration was notably attenuated in the presence of psoralidin. Moreover, in vivo results from mouse lung indicate that psoralidin suppresses IR-induced expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-6 and IL-1 α/β) and ICAM-1. Taken together, our findings reveal a regulatory mechanism of IR-induced pulmonary inflammation in human normal lung fibroblast and mice, and suggest that psoralidin may be useful as a potential lead compound for development of a better radiopreventive agent against radiation-induced normal tissue injury. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms

    PubMed Central

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  15. Chemoproteomics-Aided Medicinal Chemistry for the Discovery of EPHA2 Inhibitors.

    PubMed

    Heinzlmeir, Stephanie; Lohse, Jonas; Treiber, Tobias; Kudlinzki, Denis; Linhard, Verena; Gande, Santosh Lakshmi; Sreeramulu, Sridhar; Saxena, Krishna; Liu, Xiaofeng; Wilhelm, Mathias; Schwalbe, Harald; Kuster, Bernhard; Médard, Guillaume

    2017-06-21

    The receptor tyrosine kinase EPHA2 has gained attention as a therapeutic drug target for cancer and infectious diseases. However, EPHA2 research and EPHA2-based therapies have been hampered by the lack of selective small-molecule inhibitors. Herein we report the synthesis and evaluation of dedicated EPHA2 inhibitors based on the clinical BCR-ABL/SRC inhibitor dasatinib as a lead structure. We designed hybrid structures of dasatinib and the previously known EPHA2 binders CHEMBL249097, PD-173955, and a known EPHB4 inhibitor in order to exploit both the ATP pocket entrance as well as the ribose pocket as binding epitopes in the kinase EPHA2. Medicinal chemistry and inhibitor design were guided by a chemical proteomics approach, allowing early selectivity profiling of the newly synthesized inhibitor candidates. Concomitant protein crystallography of 17 inhibitor co-crystals delivered detailed insight into the atomic interactions that underlie the structure-affinity relationship. Finally, the anti-proliferative effect of the inhibitor candidates was confirmed in the glioblastoma cell line SF-268. In this work, we thus discovered a novel EPHA2 inhibitor candidate that features an improved selectivity profile while maintaining potency against EPHA2 and anticancer activity in SF-268 cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cyclooxygenase metabolites mediate glomerular monocyte chemoattractant protein-1 formation and monocyte recruitment in experimental glomerulonephritis.

    PubMed

    Schneider, A; Harendza, S; Zahner, G; Jocks, T; Wenzel, U; Wolf, G; Thaiss, F; Helmchen, U; Stahl, R A

    1999-02-01

    Monocyte chemoattractant protein-1 (MCP-1) has been shown to play a significant role in the recruitment of monocytes/macrophages in experimental glomerulonephritis. Whereas a number of inflammatory mediators have been characterized that are involved in the expression of MCP-1 in renal disease, little is known about repressors of chemokine formation in vivo. We hypothesized that cyclooxygenase (COX) products influence the formation of MCP-1 and affect inflammatory cell recruitment in glomerulonephritis. The effect of COX inhibitors was evaluated in the antithymocyte antibody model and an anti-glomerular basement membrane model of glomerulonephritis. Rats were treated with the COX-1/COX-2 inhibitor indomethacin and the selective COX-2 inhibitors meloxicam and SC 58125. Animals were studied at 1 hour, 24 hours, and 5 days after induction of the disease. Indomethacin, to a lesser degree the selective COX-2 inhibitors, enhanced glomerular MCP-1 and RANTES mRNA levels. Indomethacin enhanced glomerular monocyte chemoattractant activity an the infiltration of monocytes/macrophages at 24 hours and 5 days. Our studies demonstrate that COX products may serve as endogenous repressors of MCP-1 formation in experimental glomerulonephritis. The data suggest that COX-1 and COX-2 products mediate these effects differently because the selective COX-2 inhibitors had less influence on chemokine expression.

  17. Overexpression of COX-2 and LMP1 are correlated with lymph node in Tunisian NPC patients.

    PubMed

    Fendri, Ali; Khabir, Abdelmajid; Hadhri-Guiga, Boutheina; Sellami-Boudawara, Tahia; Ghorbel, Abdelmoonem; Daoud, Jamel; Frikha, Mounir; Jlidi, Rachid; Gargouri, Ali; Mokdad-Gargouri, Raja

    2008-07-01

    Cyclooxygenase 2 (COX-2) an inducible form of COX is frequently up-regulated in many human tumours. The expression of COX-2 in nasopharyngeal carcinoma (NPC) and its relationship to clinicopathological features were studied in Tunisian patients. COX-2 mRNA was detected in 91% of tumour tissues. Immunohistochemical analysis showed that COX-2 protein was strongly detected in tumour cells and the staining was mainly cytoplasmic. In contrast, COX-2 mRNA and protein were very low or undetectable in normal nasopharyngeal mucosa. Our result showed a significant association of COX-2 overexpression with the lymph node involvement, however, no correlation was observed with age, tumour stage, histological type and distant metastasis. Moreover, we showed that all tumour specimens co-overexpressed COX-2 and the EBV oncoprotein LMP1 corroborating the fact that LPM1 is known to induce COX-2. Altogether, our data suggests that the COX-2 is overexpressed in NPC biopsies and that is linked to the lymph node involvement.

  18. Targeted imaging of cancer by fluorocoxib C, a near-infrared cyclooxygenase-2 probe

    NASA Astrophysics Data System (ADS)

    Uddin, Md. Jashim; Crews, Brenda C.; Ghebreselasie, Kebreab; Daniel, Cristina K.; Kingsley, Philip J.; Xu, Shu; Marnett, Lawrence J.

    2015-05-01

    Cyclooxygenase-2 (COX-2) is a promising target for the imaging of cancer in a range of diagnostic and therapeutic settings. We report a near-infrared COX-2-targeted probe, fluorocoxib C (FC), for visualization of solid tumors by optical imaging. FC exhibits selective and potent COX-2 inhibition in both purified protein and human cancer cell lines. In vivo optical imaging shows selective accumulation of FC in COX-2-overexpressing human tumor xenografts [1483 head and neck squamous cell carcinoma (HNSCC)] implanted in nude mice, while minimal uptake is detectable in COX-2-negative tumor xenografts (HCT116) or 1483 HNSCC xenografts preblocked with the COX-2-selective inhibitor celecoxib. Time course imaging studies conducted from 3 h to 7-day post-FC injection revealed a marked reduction in nonspecific fluorescent signals with retention of fluorescence in 1483 HNSCC tumors. Thus, use of FC in a delayed imaging protocol offers an approach to improve imaging signal-to-noise that should improve cancer detection in multiple preclinical and clinical settings.

  19. Synthesis and biological evaluation of N-difluoromethyl-1,2-dihydropyrid-2-one acetic acid regioisomers: dual inhibitors of cyclooxygenases and 5-lipoxygenase.

    PubMed

    Yu, Gang; Praveen Rao, P N; Chowdhury, Morshed A; Abdellatif, Khaled R A; Dong, Ying; Das, Dipankar; Velázquez, Carlos A; Suresh, Mavanur R; Knaus, Edward E

    2010-04-01

    A new group of acetic acid (7a-c, R(1) = H), and propionic acid (7d-f, R(1) = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF(2) substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO(2)NH(2)) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs. 2010 Elsevier Ltd. All rights reserved.

  20. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells

    PubMed Central

    Prima, Victor; Kaliberova, Lyudmila N.; Kaliberov, Sergey; Curiel, David T.; Kusmartsev, Sergei

    2017-01-01

    In recent years, it has been established that programmed cell death protein ligand 1 (PD-L1)–mediated inhibition of activated PD-1+ T lymphocytes plays a major role in tumor escape from immune system during cancer progression. Lately, the anti–PD-L1 and –PD-1 immune therapies have become an important tool for treatment of advanced human cancers, including bladder cancer. However, the underlying mechanisms of PD-L1 expression in cancer are not fully understood. We found that coculture of murine bone marrow cells with bladder tumor cells promoted strong expression of PD-L1 in bone marrow–derived myeloid cells. Tumor-induced expression of PD-L1 was limited to F4/80+ macrophages and Ly-6C+ myeloid-derived suppressor cells. These PD-L1–expressing cells were immunosuppressive and were capable of eliminating CD8 T cells in vitro. Tumor-infiltrating PD-L1+ cells isolated from tumor-bearing mice also exerted morphology of tumor-associated macrophages and expressed high levels of prostaglandin E2 (PGE2)-forming enzymes microsomal PGE2 synthase 1 (mPGES1) and COX2. Inhibition of PGE2 formation, using pharmacologic mPGES1 and COX2 inhibitors or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), resulted in reduced PD-L1 expression. Together, our study demonstrates that the COX2/mPGES1/PGE2 pathway involved in the regulation of PD-L1 expression in tumor-infiltrating myeloid cells and, therefore, reprogramming of PGE2 metabolism in tumor microenvironment provides an opportunity to reduce immune suppression in tumor host. PMID:28096371

  1. Cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs and the risk of myocardial infarction and cerebrovascular accident.

    PubMed

    Abraham, N S; El-Serag, H B; Hartman, C; Richardson, P; Deswal, A

    2007-04-15

    To assess degree of cyclooxygenase-2 (COX-2) selectivity of a non-steroidal anti-inflammatory drug (NSAID) and risk of myocardial infarction (MI) or cerebrovascular accident (CVA). Prescription fill data were linked to medical records of a merged VA-Medicare dataset. NSAIDs were categorized by Cox-2 selectivity. Incidence of CVA and MI within 180 days of index prescription was assessed using Cox-proportional hazards models adjusted for gender, race, cardiovascular and pharmacological risk factors and propensity for prescription of highly COX-2 selective NSAIDs. Of 384,322 patients (97.5% men and 85.4% white), 79.4% were prescribed a poorly selective, 16.4% a moderately selective and 4.2% a highly selective NSAID. There were 985 incident cases of MI and 586 cases of CVA in >145 870 person-years. Highly selective agents had the highest rate of MI (12.3 per 1000 person-years; [95% CI: 12.2-12.3]) and CVA (8.1 per 1000 person-years; [95% CI: 8.0-8.2]). Periods without NSAID exposure were associated with lowest risk. In adjusted models, highly selective COX-2 selective NSAIDs were associated with a 61% increase in CVA and a 47% increase in MI, when compared with poorly selective NSAIDs. The risk of MI and CVA increases with any NSAID. Highly COX-2 selective NSAIDs confer the greatest risk.

  2. Pirfenidone attenuates IL-1β-induced COX-2 and PGE2 production in orbital fibroblasts through suppression of NF-κB activity.

    PubMed

    Choi, Youn-Hee; Back, Keum Ok; Kim, Hee Ja; Lee, Sang Yeul; Kook, Koung Hoon

    2013-08-01

    The aim of this study was to determine the effect of pirfenidone on interleukin (IL)-1β-induced cyclooxygenase (COX)-2 and prostaglandin (PG)E2 expression in orbital fibroblasts from patients with thyroid-associated ophthalmopathy (TAO). Primary cultures of orbital fibroblasts from patients with TAO (n = 4) and non-TAO subjects (n = 4) were prepared. The level of PGE2 in orbital fibroblasts treated with IL-1β in the presence or absence of pirfenidone was measured using an enzyme-linked immunosorbent assay. The effect of pirfenidone on IL-1β-induced COX-2 expression in orbital fibroblasts from patients with TAO was evaluated by reverse transcription-polymerase chain reaction (PCR) and quantitative real-time PCR analyses, and verified by Western blot. Activation of nuclear factor-κB (NF-κB) was evaluated by immunoblotting for inhibitor of κB (IκB)α and phosphorylated IκBα, and DNA-binding activity of p50/p65 NF-κB was analyzed by electrophoretic mobility shift assay. In addition, IL-1 receptor type 1 (IL-1R1) expression was assessed by RT-PCR in IL-1β-treated cells with or without pirfenidone. Pirfenidone significantly attenuated IL-1β-induced PGE2 release in both TAO and non-TAO cells. IL-1β-induced COX-2 mRNA and protein expression decreased significantly following co-treatment with pirfenidone. IL-1β-induced IκBα phosphorylation and degradation decreased in the presence of pirfenidone and led to decreased nuclear translocation and DNA binding of the active NF-κB complex. In our system, neither IL-1β nor pirfenidone co-treatment influenced IL-1R1 expression. Our results suggest that pirfenidone attenuates the IL-1β-induced PGE2/COX-2 production in TAO orbital fibroblasts, which is related with suppression of the NF-κB activation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Assessment of MMP-9, TIMP-1, and COX-2 in normal tissue and in advanced symptomatic and asymptomatic carotid plaques

    PubMed Central

    2011-01-01

    Background Mature carotid plaques are complex structures, and their histological classification is challenging. The carotid plaques of asymptomatic and symptomatic patients could exhibit identical histological components. Objectives To investigate whether matrix metalloproteinase 9 (MMP-9), tissue inhibitor of MMP (TIMP), and cyclooxygenase-2 (COX-2) have different expression levels in advanced symptomatic carotid plaques, asymptomatic carotid plaques, and normal tissue. Methods Thirty patients admitted for carotid endarterectomy were selected. Each patient was assigned preoperatively to one of two groups: group I consisted of symptomatic patients (n = 16, 12 males, mean age 66.7 ± 6.8 years), and group II consisted of asymptomatic patients (n = 14, 8 males, mean age 67.6 ± 6.81 years). Nine normal carotid arteries were used as control. Tissue specimens were analyzed for fibromuscular, lipid and calcium contents. The expressions of MMP-9, TIMP-1 and COX-2 in each plaque were quantified. Results Fifty-eight percent of all carotid plaques were classified as Type VI according to the American Heart Association Committee on Vascular Lesions. The control carotid arteries all were classified as Type III. The median percentage of fibromuscular tissue was significantly greater in group II compared to group I (p < 0.05). The median percentage of lipid tissue had a tendency to be greater in group I than in group II (p = 0.057). The percentages of calcification were similar among the two groups. MMP-9 protein expression levels were significantly higher in group II and in the control group when compared with group I (p < 0.001). TIMP-1 expression levels were significantly higher in the control group and in group II when compared to group I, with statistical difference between control group and group I (p = 0.010). COX-2 expression levels did not differ among groups. There was no statistical correlation between MMP-9, COX-2, and TIMP-1 levels and fibrous tissue. Conclusions

  4. Small-Molecule Inhibitors of the MDM2–p53 Protein–Protein Interaction (MDM2 Inhibitors) in Clinical Trials for Cancer Treatment

    PubMed Central

    2015-01-01

    Design of small-molecule inhibitors (MDM2 inhibitors) to block the MDM2–p53 protein–protein interaction has been pursued as a new cancer therapeutic strategy. In recent years, potent, selective, and efficacious MDM2 inhibitors have been successfully obtained and seven such compounds have been advanced into early phase clinical trials for the treatment of human cancers. Here, we review the design, synthesis, properties, preclinical, and clinical studies of these clinical-stage MDM2 inhibitors. PMID:25396320

  5. SGLT2 inhibitors or GLP-1 receptor agonists as second-line therapy in type 2 diabetes: patient selection and perspectives.

    PubMed

    Gurgle, Holly E; White, Karen; McAdam-Marx, Carrie

    2016-01-01

    Controversy exists regarding the selection of second-line therapy for patients with type 2 diabetes mellitus (T2DM) who are unable to achieve glycemic control with metformin therapy alone. Newer pharmacologic treatments for T2DM include glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. Both the classes of medication are efficacious, exhibit positive effects on weight, and are associated with minimal risk of hypoglycemia. The purpose of this review is to compare the clinical trial and real-world effectiveness data of glucagon-like peptide-1 receptor agonists versus sodium-glucose cotransporter 2 inhibitors related to A1c reduction, weight loss, cost-effectiveness, cardiovascular outcomes, and safety in patients with T2DM. This review summarizes comparative evidence for providers who are determining which of the two classes may be the most appropriate for a specific patient.

  6. Structure-Based Design of N-Substituted 1-Hydroxy-4-sulfamoyl-2-naphthoates as Selective Inhibitors of the Mcl-1 Oncoprotein

    PubMed Central

    Lanning, Maryanna E.; Yu, Wenbo; Yap, Jeremy L.; Chauhan, Jay; Chen, Lijia; Whiting, Ellis; Pidugu, Lakshmi S.; Atkinson, Tyler; Bailey, Hala; Li, Willy; Roth, Braden M.; Hynicka, Lauren; Chesko, Kirsty; Toth, Eric A.; Shapiro, Paul; MacKerell, Alexander D.; Wilder, Paul T.; Fletcher, Steven

    2016-01-01

    Structure-based drug design was utilized to develop novel, 1-hydroxy-2-naphthoate-based small-molecule inhibitors of Mcl-1. Ligand design was driven by exploiting a salt bridge with R263 and interactions with the p2 and p3 pockets of the protein. Significantly, target molecules were accessed in just two synthetic steps, suggesting further optimization will require minimal synthetic effort. Molecular modeling using the Site-Identification by Ligand Competitive Saturation (SILCS) approach was used to qualitatively direct ligand design as well as develop quantitative models for inhibitor binding affinity to Mcl-1 and the Bcl-2 relative Bcl-xL as well as for the specificity of binding to the two proteins. Results indicated hydrophobic interactions with the p2 pockets dominate the affinity of the most favourable binding ligand (3bl: Ki = 31 nM). Compounds were up to 20-fold selective for Mcl-1 over Bcl-xL. Selectivity of the inhibitors was driven by interactions with the deeper p2 pocket in Mcl-1 versus Bcl-xL. The SILCS-based SAR of the present compounds represents the foundation for the development of Mcl-1 specific inhibitors with the potential to treat a wide range of solid tumours and hematological cancers, including acute myeloid leukaemia. PMID:26985630

  7. 2-Aminomethylthieno[3,2-d]pyrimidin-4(3H)-ones bearing 3-methylpyrazole hinge binding moiety: Highly potent, selective, and time-dependent inhibitors of Cdc7 kinase.

    PubMed

    Kurasawa, Osamu; Homma, Misaki; Oguro, Yuya; Miyazaki, Tohru; Mori, Kouji; Uchiyama, Noriko; Iwai, Kenichi; Ohashi, Akihiro; Hara, Hideto; Yoshida, Sei; Cho, Nobuo

    2017-07-15

    In order to increase the success rate for developing new Cdc7 inhibitors for cancer therapy, we explored a new chemotype which can comply with the previously-constructed pharmacophore model. Substitution of a pyridine ring of a serendipitously-identified Cdc7 inhibitor 2b with a 3-methylpyrazole resulted in a 4-fold increase in potency and acceptable kinase selectivity, leading to the identification of thieno[3,2-d]pyrimidin-4(3H)-one as an alternative scaffold. Structure-activity relationship (SAR) study revealed that incorporation of a substituted aminomethyl group into the 2-position improved kinase selectivity. Indeed, a pyrrolidinylmethyl derivative 10c was a potent Cdc7 inhibitor (IC 50 =0.70nM) with high selectivity (Cdk2/Cdc7≥14,000, ROCK1/Cdc7=200). It should be noted that 10c exhibited significant time-dependent Cdc7 inhibition with slow dissociation kinetics, cellular pharmacodynamic (PD) effects, and COLO205 growth inhibition. Additionally, molecular basis of high kinase selectivity of 10c is discussed by using the protein structures of Cdc7 and Cdk2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition.

    PubMed

    Palermo, Giulia; Favia, Angelo D; Convertino, Marino; De Vivo, Marco

    2016-06-20

    The design of multitarget-directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget-directed ligand named ARN2508 (2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2-arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti-inflammatory agents that simultaneously act on FAAH and COX. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Fortanet, Jorge; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealedmore » the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.« less

  10. In-vitro Wound Healing Effect of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor from Plant

    PubMed Central

    Karna, Sandeep

    2017-01-01

    Background: Prostaglandins (PGs) have short existence in vivo because they are rapidly metabolized by NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) to 15-ketoprostaglandins. Inhibition of 15-PGDH causes elevated level of PGE2 in cellular system. It will be valuable for the therapeutic management of diseases requiring elevated PGE2 levels, like wound healing. Objective: Ninety-eight plant samples were screened for the discovery of potent 15-PGDH inhibitor. Among them, top five plant extracts as potent 15-PGDH inhibitor were chosen to determine PGE2 release from HaCaT (Keratinocyte cell line) cell line. Finally, top 15-PGDH inhibitor was selected to evaluate in vitro wound healing effect on HaCaT scratch model. Method: The inhibitory activity for 15-PGDH inhibitors was evaluated using fluorescence spectrophotometer by measuring the formation of NADH at 468 nm following excitation at 340 nm. Cell viability assay and PGE2 release was evaluated in HaCaT cell line after treatment of 15-PGDH inhibitors. Scratches were made using sterile 200 μL on HaCaT cell and wound-healing effect was evaluated after treatment of 15-PGDH inhibitor. Results: 15-PGDH inhibitors elevated PGE2 levels in concentration-dependent manner. Ethanol extract of Artocarpus heterophyllus (EEAH), the most potent 15-PGDH inhibitor (IC50 = 0.62 µg/mL) with least cytotoxicity (IC50 = 670 µg/ml), elevated both intracellular and extracellular PGE2 levels. EEAH facilitated in-vitro wound healing in a HaCaT (Keratinocyte cell line) scratch model. Conclusion: EEAH might apply to treat dermal wounds by elevating PGE2 levels via COX-1 induction and 15-PGDH inhibition. SUMMARY Biological inactivation of 15-PGDH causes elevated level of PGE2 which will be useful for the management of disease that requires elevated level of PGE2. Abbreviations used: 15-PGDH: 15-hydroxyprostaglandin dehydrogenase, COX: Cyclooxygenase, DTT: Dithiothreitol, DMEM: Dulbecco's modified Eagle's media, EEAH: Ethanol

  11. In-vitro Wound Healing Effect of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor from Plant.

    PubMed

    Karna, Sandeep

    2017-01-01

    Prostaglandins (PGs) have short existence in vivo because they are rapidly metabolized by NAD + -dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) to 15-ketoprostaglandins. Inhibition of 15-PGDH causes elevated level of PGE 2 in cellular system. It will be valuable for the therapeutic management of diseases requiring elevated PGE 2 levels, like wound healing. Ninety-eight plant samples were screened for the discovery of potent 15-PGDH inhibitor. Among them, top five plant extracts as potent 15-PGDH inhibitor were chosen to determine PGE 2 release from HaCaT (Keratinocyte cell line) cell line. Finally, top 15-PGDH inhibitor was selected to evaluate in vitro wound healing effect on HaCaT scratch model. The inhibitory activity for 15-PGDH inhibitors was evaluated using fluorescence spectrophotometer by measuring the formation of NADH at 468 nm following excitation at 340 nm. Cell viability assay and PGE 2 release was evaluated in HaCaT cell line after treatment of 15-PGDH inhibitors. Scratches were made using sterile 200 μL on HaCaT cell and wound-healing effect was evaluated after treatment of 15-PGDH inhibitor. 15-PGDH inhibitors elevated PGE 2 levels in concentration-dependent manner. Ethanol extract of Artocarpus heterophyllus (EEAH), the most potent 15-PGDH inhibitor (IC 50 = 0.62 µg/mL) with least cytotoxicity (IC 50 = 670 µg/ml), elevated both intracellular and extracellular PGE 2 levels. EEAH facilitated in-vitro wound healing in a HaCaT (Keratinocyte cell line) scratch model. EEAH might apply to treat dermal wounds by elevating PGE 2 levels via COX-1 induction and 15-PGDH inhibition. Biological inactivation of 15-PGDH causes elevated level of PGE 2 which will be useful for the management of disease that requires elevated level of PGE 2 . Abbreviations used: 15-PGDH: 15-hydroxyprostaglandin dehydrogenase, COX: Cyclooxygenase, DTT: Dithiothreitol, DMEM: Dulbecco's modified Eagle's media, EEAH: Ethanol extract of Artocarpus heterophyllus, MRP4

  12. Dysregulated expression of miR-101b and miR-26b lead to age-associated increase in LPS-induced COX-2 expression in murine macrophage.

    PubMed

    Liu, Dan; Wang, Dongsheng; Xu, Zhenbiao; Gao, Jing; Liu, Min; Liu, Yanxin; Jiang, Minghong; Zheng, Dexian

    2015-10-01

    Aging is the natural process of decline in physiological structure and function of various molecules, cells, tissues, and organs. Growing evidence indicates that increased immune genetic diversity and dysfunction of immune system cause aging-related pathophysiological process with the growth of age. In the present study, we observed that LPS-induced higher activation of cyclooxygenase (COX)-2 promoter is associated with the upregulated binding activity of nuclear factor kappa B (NF-κB) in peritoneal macrophages of aged mice than young ones. Additionally, COX-2 is a direct target of miR-101b and miR-26b in the macrophages. Significant upregulation of miR-101b and miR-26b effectively prevented LPS-induced excessive expression of COX-2 in the young mice. Because these negative regulatory factors were unresponsive to LPS stimulation, the levels of COX-2 were markedly higher in the macrophages of aged mice. Further study showed that NF-κB activation contributed to the increase in the expression of miR-101b and miR-26b in the LPS-stimulated macrophages of young mice, but not aged ones. Moreover, histone deacetylase (HDAC) inhibitor trichostatin A (TSA) upregulated expression of miR-101b and miR-26b in the aged mouse macrophages only, but not the young cells. This demonstrated that HDAC suppressed the expression of miR-101b and miR-26b in the LPS-treated macrophages of aged mice and contributed to the aging process. TSA-induced increased expression of miR-101b and miR-26b could further suppress COX-2 expression. These findings provide novel evidence on the regulation of immune senescence and miR-101b and miR-26b, which might be promising targets in treating aged-related inflammatory diseases. Epigenetic regulation of the microRNAs (miRNAs) provides an important evidence for the treatment of innate inflammatory disease with HDAC inhibitors in elderly.

  13. Found in translation: how preclinical research is guiding the clinical development of the BCL-2-selective inhibitor venetoclax

    PubMed Central

    Leverson, Joel D.; Sampath, Deepak; Souers, Andrew J.; Rosenberg, Saul H.; Fairbrother, Wayne J.; Amiot, Martine; Konopleva, Marina; Letai, Anthony

    2017-01-01

    Since the discovery of apoptosis as a form of programmed cell death, targeting the apoptosis pathway to induce cancer cell death has been a high priority goal for cancer therapy. After decades of effort, drug discovery scientists have succeeded in generating small-molecule inhibitors of antiapoptotic BCL-2 family proteins. Innovative medicinal chemistry and structure-based drug design, coupled with a strong fundamental understanding of BCL-2 biology, were essential to the development of BH3 mimetics such as the BCL-2-selective inhibitor venetoclax. We review a number of preclinical studies that have deepened our understanding of BCL-2 biology and facilitated the clinical development of venetoclax. PMID:29146569

  14. Cardiovascular Toxicity of Cyclooxygenase Inhibitors and Promising Natur a l Substitutes.

    PubMed

    Bahmani, Mahmoud; Sarrafchi, Amir; Shirzad, Hedayatollah; Asgari, Sedigheh; Rafieian-Kopaei, Mahmoud

    2017-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are a group of drugs which are used for a wide variety of diseases including pain and inflammatory conditions such as osteoarthritis, rheumatoid arthritis, musculoskeletal disorders, and other comorbid complications. However, this group of drugs have undesirable effects such as peptic ulcer, bleeding and renal failure. Some of these side effects are associated with or caused by generation of oxidative stress. Following the withdrawal of a cyclo-oxygenase-2 (COX-2) inhibitor drug, rofecoxib (VIOXX®) due to cardiovascular complications, scientists suggested that natural COX-2 inhibitors might provide valuable alternatives to COX inhibitors. Although, most of medicinal plants reduce pain and inflammation in a similar manner to synthetic medications, however, they often have fewer side effects and are better tolerated. The present review other than focusing on cardiovascular and some other complications of NSAIDs, is trying to introduce the natural alternative remedies for these medications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Computer-aided identification of potential TYK2 inhibitors from drug database

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Li, Jianzong; Huang, Zhixin; Wang, Haiyang; Luo, Hao; Wang, Xin; Zhou, Nan; Wu, Chuanfang; Bao, Jinku

    2016-10-01

    TYK2 is a member of JAKs family protein tyrosine kinase activated in response to various cytokines. It plays a crucial role in transducing signals downstream of various cytokine receptors, which are involved in proinflammatory responses associated with immunological diseases. Thus, the study of selective TYK2 inhibitors is one of the most popular fields in anti-inflammation drug development. Herein, we adopted molecular docking, molecular dynamics simulation and MM-PBSA binding free energy calculation to screen potential TYK2-selective inhibitors from ZINC Drug Database. Finally, three small molecule drugs ZINC12503271 (Gemifloxacin), ZINC05844792 (Nebivolol) and ZINC00537805 (Glyburide) were selected as potential TYK2-selective inhibitors. Compared to known inhibitor 2,6-dichloro-N-{2-[(cyclopropylcarbonyl)amino]pyridin-4-yl}benzamide, these three candidates had better Grid score and Amber score from molecular docking and preferable results from binding free energy calculation as well. What's more, the ATP-binding site and A-loop motif had been identified to play key roles in TYK2-targeted inhibitor discovery. It is expected that our study will pave the way for the design of potent TYK2 inhibitors of new drugs to treat a wide variety of immunological diseases such as inflammatory diseases, multiple sclerosis, psoriasis inflammatory bowel disease (IBD) and so on.

  16. A highly selective, orally active inhibitor of Janus kinase 2, CEP-33779, ablates disease in two mouse models of rheumatoid arthritis

    PubMed Central

    2011-01-01

    Introduction Janus kinase 2 (JAK2) is involved in the downstream activation of signal transducer and activator of transcription 3 (STAT3) and STAT5 and is responsible for transducing signals for several proinflammatory cytokines involved in the pathogenesis of rheumatoid arthritis (RA), including interleukin (IL)-6, interferon γ (IFNγ) and IL-12. In this paper, we describe the efficacy profile of CEP-33779, a highly selective, orally active, small-molecule inhibitor of JAK2 evaluated in two mouse models of RA. Methods Collagen antibody-induced arthritis (CAIA) and collagen type II (CII)-induced arthritis (CIA) were established before the oral administration of a small-molecule JAK2 inhibitor, CEP-33779, twice daily at 10 mg/kg, 30 mg/kg, 55 mg/kg or 100 mg/kg over a period of 4 to 8 weeks. Results Pharmacodynamic inhibition of JAK2 reduced mean paw edema and clinical scores in both CIA and CAIA models of arthritis. Reduction in paw cytokines (IL-12, IFNγ and tumor necrosis factor α) and serum cytokines (IL-12 and IL-2) correlated with reduced spleen CII-specific T helper 1 cell frequencies as measured by ex vivo IFNγ enzyme-linked immunosorbent spot assay. Both models demonstrated histological evidence of disease amelioration upon treatment (for example, reduced matrix erosion, subchondral osteolysis, pannus formation and synovial inflammation) and reduced paw phosphorylated STAT3 levels. No changes in body weight or serum anti-CII autoantibody titers were observed in either RA model. Conclusions This study demonstrates the utility of using a potent and highly selective, orally bioavailable JAK2 inhibitor for the treatment of RA. Using a selective inhibitor of JAK2 rather than pan-JAK inhibitors avoids the potential complication of immunosuppression while targeting critical signaling pathways involved in autoimmune disease progression. PMID:21510883

  17. The Structural Basis of Cryptosporidium-Specific IMP Dehydrogenase Inhibitor Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPherson, Iain S.; Kirubakaran, Sivapriya; Gorla, Suresh Kumar

    2010-03-29

    Cryptosporidium parvum is a potential biowarfare agent, an important AIDS pathogen, and a major cause of diarrhea and malnutrition. No vaccines or effective drug treatment exist to combat Cryptosporidium infection. This parasite relies on inosine 5{prime}-monophosphate dehydrogenase (IMPDH) to obtain guanine nucleotides, and inhibition of this enzyme blocks parasite proliferation. Here, we report the first crystal structures of CpIMPDH. These structures reveal the structural basis of inhibitor selectivity and suggest a strategy for further optimization. Using this information, we have synthesized low-nanomolar inhibitors that display 10{sup 3} selectivity for the parasite enzyme over human IMPDH2.

  18. Novel Allelic Variants in the Canine Cyclooxgenase-2 (Cox-2) Promoter Are Associated with Renal Dysplasia in Dogs

    PubMed Central

    Whiteley, Mary H.; Bell, Jerold S.; Rothman, Debby A.

    2011-01-01

    Renal dysplasia (RD) in dogs is a complex disease with a highly variable phenotype and mode of inheritance that does not follow a simple Mendelian pattern. Cox-2 (Cyclooxgenase-2) deficient mice have renal abnormalities and a pathology that has striking similarities to RD in dogs suggesting to us that mutations in the Cox-2 gene could be the cause of RD in dogs. Our data supports this hypothesis. Sequencing of the canine Cox-2 gene was done from clinically affected and normal dogs. Although no changes were detected in the Cox-2 coding region, small insertions and deletions of GC boxes just upstream of the ATG translation start site were found. These sequences are putative SP1 transcription factor binding sites that may represent important cis-acting DNA regulatory elements that govern the expression of Cox-2. A pedigree study of a family of Lhasa apsos revealed an important statistical correlation of these mutant alleles with the disease. We examined an additional 22 clinical cases from various breeds. Regardless of the breed or severity of disease, all of these had one or two copies of the Cox-2 allelic variants. We suggest that the unusual inheritance pattern of RD is due to these alleles, either by changing the pattern of expression of Cox-2 or making Cox-2 levels susceptible to influences of other genes or environmental factors that play an unknown but important role in the development of RD in dogs. PMID:21346820

  19. Structure- and function-based design of Plasmodium-selective proteasome inhibitors.

    PubMed

    Li, Hao; O'Donoghue, Anthony J; van der Linden, Wouter A; Xie, Stanley C; Yoo, Euna; Foe, Ian T; Tilley, Leann; Craik, Charles S; da Fonseca, Paula C A; Bogyo, Matthew

    2016-02-11

    The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome, resulting in toxicity that precludes their use as therapeutic agents. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, here we use a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We design inhibitors based on amino-acid preferences specific to the parasite proteasome, and find that they preferentially inhibit the β2-subunit. We determine the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy and single-particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information about active-site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin family anti-malarials, we observe growth inhibition synergism with low doses of this β2-selective inhibitor in artemisinin-sensitive and -resistant parasites. Finally, we demonstrate that a parasite-selective inhibitor could be used to attenuate parasite growth in vivo without appreciable toxicity to the host. Thus, the Plasmodium proteasome is a

  20. Oxymatrine attenuated isoproterenol-induced heart failure in rats via regulation of COX-2/PGI2 pathway.

    PubMed

    Zhou, Ru; Xu, Qingbin; Xu, Yehua; Xiong, Aiqin; Wang, Yang; Ma, Ping

    2016-12-01

    Oxymatrine (OMT) is an active constituent of traditional Chinese herb Sophora japonica Ait which has been shown to exert potent anti-inflammatory,anti-oxidant and anti-fibrosis properties. Our previous studies have demonstrated that OMT has protective effects on isoproterenol-induced heart failure in rats through regulation of DDAH/ADMA metabolism pathway.In this study,we further investigated whether OMT could attenuate isoproterenol-induced heart failure through the regulation of COX-2/PGI 2 pathway. Heart failure was induced in Sprague-Dawley rats by 5mg/kg isoproterenol subcutaneous injection for 7days. The rats were maintained on normal diet and randomly divided into five groups: control, isoproterenol, isoproterenol with OMT (50, 100mg/kg), and OMT alone groups (n=12 in each group). Serum brain natruretic peptide (BNP, a heart failure biomarker), histopathological variables, expression of Cytosolic phospholipase A 2 (cPLA 2 ), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and Prostacyclin synthase (PGIS) were analysed. Administration of OMT significantly reduced the increased BNP in plasm of isoproterenol-induced rats, attenuated cardiac fibrosis,suppressed overexpression of myocardial COX-1 expression, up-regulated COX-2 and PGIS expression, but had no effects on isoproterenol-induced elevated protein cPLA 2 . And compared with control group, any indexes in sham rats treated with OMT (100mg/kg) alone were unaltered. These results demonstrated that OMT has cardioprotective effects on isoproterenol-induced heart failure in rats by regulating COX-2/PGI 2 pathway. Copyright © 2016. Published by Elsevier Masson SAS.

  1. Brain-targeted ACE2 overexpression attenuates neurogenic hypertension by inhibiting COX mediated inflammation

    PubMed Central

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2014-01-01

    Overactivity of the renin angiotensin system (RAS), oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that Angiotensin-Converting Enzyme 2 (ACE2) overexpression in the brain attenuates the development of DOCA-salt hypertension, a neurogenic hypertension model with enhanced brain RAS and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. DOCA-salt hypertension significantly increased expression of Nox-2 (+61 ±5 %), Nox-4 (+50 ±13 %) and nitrotyrosine (+89 ±32 %) and reduced activity of the antioxidant enzymes, catalase (−29 ±4 %) and SOD (−31 ±7 %), indicating increased oxidative stress in the brain of non-transgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. DOCA-salt-induced reduction of nNOS expression (−26 ±7 %) and phosphorylated eNOS/total eNOS (−30 ±3 %), and enhanced phosphorylation of Akt and ERK1/2 in the paraventricular nucleus (PVN), were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the PVN. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuro-inflammation, ultimately attenuating DOCA-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuro-inflammation, improves anti-oxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension. PMID:25489058

  2. Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties.

    PubMed

    Dyck, Brian; Branstetter, Bryan; Gharbaoui, Tawfik; Hudson, Andrew R; Breitenbucher, J Guy; Gomez, Laurent; Botrous, Iriny; Marrone, Tami; Barido, Richard; Allerston, Charles K; Cedervall, E Peder; Xu, Rui; Sridhar, Vandana; Barker, Ryan; Aertgeerts, Kathleen; Schmelzer, Kara; Neul, David; Lee, Dong; Massari, Mark Eben; Andersen, Carsten B; Sebring, Kristen; Zhou, Xianbo; Petroski, Robert; Limberis, James; Augustin, Martin; Chun, Lawrence E; Edwards, Thomas E; Peters, Marco; Tabatabaei, Ali

    2017-04-27

    A series of potent thienotriazolopyrimidinone-based PDE1 inhibitors was discovered. X-ray crystal structures of example compounds from this series in complex with the catalytic domain of PDE1B and PDE10A were determined, allowing optimization of PDE1B potency and PDE selectivity. Reduction of hERG affinity led to greater than a 3000-fold selectivity for PDE1B over hERG. 6-(4-Methoxybenzyl)-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9,10,11-tetrahydropyrido[4',3':4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one was identified as an orally bioavailable and brain penetrating PDE1B enzyme inhibitor with potent memory-enhancing effects in a rat model of object recognition memory.

  3. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling

    PubMed Central

    Yang, Hongwei; Tang, Ya-ping; Sun, Hao; Song, Yunping; Chen, Chu

    2013-01-01

    SUMMARY Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here we show that synaptic and cognitive impairments following repeated exposure to Δ9-tetrahydrocannabinol (Δ9-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids, in the brain. COX-2 induction by Δ9-THC is mediated via CB1 receptor-coupled G-protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks down-regulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ9-THC exposures. Ablation of COX-2 also eliminates Δ9-THC-impaired hippocampal long-term synaptic plasticity, spatial, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ9-THC in Alzheimer’s disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. PMID:24267894

  4. Design, synthesis and biological screening of some novel celecoxib and etoricoxib analogs with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile.

    PubMed

    Alsayed, Shahinda S R; Elshemy, Heba A H; Abdelgawad, Mohamed A; Abdel-Latif, Mahmoud S; Abdellatif, Khaled R A

    2017-02-01

    Two new series of 4,6-diaryl-3-cyanopyridine 4a-r and 1,3,5-triaryl-2-pyrazolines 6a-f and were prepared. The new compounds were evaluated for their in vitro COX-2 selectivity and in vivo anti-inflammatory activity. Compounds 4o,r and 6d,f had moderate to high selectivity index (S.I.) compared to celecoxib (selectivity indexes of 4.5, 3.14, 4.79 and 3.21, respectively) and also, showed in vivo anti-inflammatory activity approximately equal to or higher than celecoxib (edema inhibition %=60.5, 64.5, 59.3 and 59.3, after 3h, respectively) and the effective anti-inflammatory doses were (ED 50 =10.1, 7.8, 8.46 and 10.7mg/kg respectively, celecoxib ED 50 =10.8mg/kg) and ulcerogenic liability were determined for these compounds which showed promising activity by being more potent than celecoxib with nearly negligible ulcerogenic liability compared to celecoxib (reduction in ulcerogenic liability versus celecoxib=85, 82, 74 and 67%, respectively). Copyright © 2016 Elsevier Inc. All rights reserved.

  5. COX-2 and Prostaglandin EP3/EP4 Signaling Regulate the Tumor Stromal Proangiogenic Microenvironment via CXCL12-CXCR4 Chemokine Systems

    PubMed Central

    Katoh, Hiroshi; Hosono, Kanako; Ito, Yoshiya; Suzuki, Tatsunori; Ogawa, Yasufumi; Kubo, Hidefumi; Kamata, Hiroki; Mishima, Toshiaki; Tamaki, Hideaki; Sakagami, Hiroyuki; Sugimoto, Yukihiko; Narumiya, Shuh; Watanabe, Masahiko; Majima, Masataka

    2010-01-01

    Bone marrow (BM)–derived hematopoietic cells, which are major components of tumor stroma, determine the tumor microenvironment and regulate tumor phenotypes. Cyclooxygenase (COX)−2 and endogenous prostaglandins are important determinants for tumor growth and tumor-associated angiogenesis; however, their contributions to stromal formation and angiogenesis remain unclear. In this study, we observed that Lewis lung carcinoma cells implanted in wild-type mice formed a tumor mass with extensive stromal formation that was markedly suppressed by COX-2 inhibition, which reduced the recruitment of BM cells. Notably, COX-2 inhibition attenuated CXCL12/CXCR4 expression as well as expression of several other chemokines. Indeed, in a Matrigel model, prostaglandin (PG) E2 enhanced stromal formation and CXCL12/CXCR4 expression. In addition, a COX-2 inhibitor suppressed stromal formation and reduced expression of CXCL12/CXCR4 and a fibroblast marker (S100A4) in a micropore chamber model. Moreover, stromal formation after tumor implantation was suppressed in EP3−/− mice and EP4−/− mice, in which stromal expression of CXCL12/CXCR4 and S100A4 was reduced. The EP3 or EP4 knockout suppressed S100A4+ fibroblasts, CXCL12+, and/or CXCR4+ stromal cells as well. Immunofluorescent analyses revealed that CXCL12+CXCR4+S100A4+ fibroblasts mainly comprised stromal cells and most of these were recruited from the BM. Additionally, either EP3- or EP4-specific agonists stimulated CXCL12 expression by fibroblasts in vitro. The present results address the novel activities of COX-2/PGE2-EP3/EP4 signaling that modulate tumor biology and show that CXCL12/CXCR4 axis may play a crucial role in tumor stromal formation and angiogenesis under the control of prostaglandins. PMID:20110411

  6. Discovery of Allosteric and Selective Inhibitors of Inorganic Pyrophosphatase from Mycobacterium tuberculosis.

    PubMed

    Pang, Allan H; Garzan, Atefeh; Larsen, Martha J; McQuade, Thomas J; Garneau-Tsodikova, Sylvie; Tsodikov, Oleg V

    2016-11-18

    Inorganic pyrophosphatase (PPiase) is an essential enzyme that hydrolyzes inorganic pyrophosphate (PP i ), driving numerous metabolic processes. We report a discovery of an allosteric inhibitor (2,4-bis(aziridin-1-yl)-6-(1-phenylpyrrol-2-yl)-s-triazine) of bacterial PPiases. Analogues of this lead compound were synthesized to target specifically Mycobacterium tuberculosis (Mtb) PPiase (MtPPiase). The best analogue (compound 16) with a K i of 11 μM for MtPPiase is a species-specific inhibitor. Crystal structures of MtPPiase in complex with the lead compound and one of its analogues (compound 6) demonstrate that the inhibitors bind in a nonconserved interface between monomers of the hexameric MtPPiase in a yet unprecedented pairwise manner, while the remote conserved active site of the enzyme is occupied by a bound PP i substrate. Consistent with the structural studies, the kinetic analysis of the most potent inhibitor has indicated that it functions uncompetitively, by binding to the enzyme-substrate complex. The inhibitors appear to allosterically lock the active site in a closed state causing its dysfunctionalization and blocking the hydrolysis. These inhibitors are the first examples of allosteric, species-selective inhibitors of PPiases, serving as a proof-of-principle that PPiases can be selectively targeted.

  7. Co-expression of COX-2 and 5-LO in primary glioblastoma is associated with poor prognosis.

    PubMed

    Wang, Xingfu; Chen, Yupeng; Zhang, Sheng; Zhang, Lifeng; Liu, Xueyong; Zhang, Li; Li, Xiaoling; Chen, Dayang

    2015-11-01

    Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) are important factors in tumorigenesis and malignant progression; however, studies of their roles in glioblastoma have produced conflicting results. To define the frequencies of COX-2 and 5-LO expression and their correlation with clinicopathological features and prognosis, tumor tissues from 76 cases of newly diagnosed primary ordinary glioblastoma were examined for COX-2 and 5-LO expression by immunohistochemistry. The expression levels of COX-2 and 5-LO and the relationships between the co-expression of COX-2/5-LO and patient age and gender, edema index (EI), Karnofsky Performance Scale and overall survival (OS) were analyzed. COX-2 and 5-LO were expressed in 73.7 % (56/76) and 92.1 % (70/76) of the samples, respectively. Among the clinicopathological characteristics, only age (>60 years) exhibited a significant association with the high expression of COX-2. No statistically significant correlations were found in the 5-LO cohort. A significant positive correlation was revealed between the COX-2 and 5-LO scores (r = 0.374; p = 0.001). The elevated co-expression of COX-2 and 5-LO was observed primarily in the patients over the age of 60 years. Patients with a high expression of COX-2 had a significantly shorter OS (p < 0.01), whereas the immunoexpression of 5-LO was not associated with the OS of patients with glioblastoma. Survival analysis indicated that simultaneous high levels of COX-2 and 5-LO expression were significantly correlated with poor OS and, conversely, that a low/low expression pattern of these two proteins was significantly associated with better OS (p < 0.05). Moreover, the Cox multivariable proportional hazard model showed that a high expression of COX-2, high co-expression of COX-2 and 5-LO, and a high Ki-67 index were significant predictors of shorter OS in primary glioblastoma, independent of age, gender, EI, 5-LO expression and p53 status. The hazard ratios for OS were 2.347 (95 % CI 1

  8. Eupatolide inhibits lipopolysaccharide-induced COX-2 and iNOS expression in RAW264.7 cells by inducing proteasomal degradation of TRAF6.

    PubMed

    Lee, Jongkyu; Tae, Nara; Lee, Jung Joon; Kim, Taeho; Lee, Jeong-Hyung

    2010-06-25

    Inula britannica is a traditional medicinal plant used to treat bronchitis, digestive disorders, and inflammation in Eastern Asia. Here, we identified eupatolide, a sesquiterpene lactone from I. britannica, as an inhibitor of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. Eupatolide inhibited the production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) as well as iNOS and COX-2 protein expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Eupatolide dose-dependently decreased the mRNA levels and the promoter activities of COX-2 and iNOS in LPS-stimulated RAW264.7 cells. Moreover, eupatolide significantly suppressed the LPS-induced expression of nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) reporter genes. Pretreatment of eupatolide inhibited LPS-induced phosphorylation and degradation of I kappaB alpha, and phosphorylation of RelA/p65 on Ser-536 as well as the activation of mitogen-activated protein kinases (MAPKs) and Akt in LPS-stimulated RAW264.7 cells. Eupatolide induced proteasomal degradation of tumor necrosis factor receptor-associated factor-6 (TRAF6), and subsequently inhibited LPS-induced TRAF6 polyubiquitination. These results suggest that eupatolide blocks LPS-induced COX-2 and iNOS expression at the transcriptional level through inhibiting the signaling pathways such as NF-kappaB and MAPKs via proteasomal degradation of TRAF6. Taken together, eupatolide may be a novel anti-inflammatory agent that induces proteasomal degradation of TRAF6, and a valuable compound for modulating inflammatory conditions. (c) 2010 Elsevier B.V. All rights reserved.

  9. Effects of COX1-2/5-LOX blockade in Alzheimer transgenic 3xTg-AD mice.

    PubMed

    Bitto, Alessandra; Giuliani, Daniela; Pallio, Giovanni; Irrera, Natasha; Vandini, Eleonora; Canalini, Fabrizio; Zaffe, Davide; Ottani, Alessandra; Minutoli, Letteria; Rinaldi, Mariagrazia; Guarini, Salvatore; Squadrito, Francesco; Altavilla, Domenica

    2017-05-01

    Alzheimer's disease (AD) is associated with amyloid plaques (Aβ) and hyperphosphorylated tau protein tangles in the brain. We investigated the possible neuroprotective role of flavocoxid, a dual inhibitor of cyclooxygenases-1/2 (COX-1/2) and 5-Lipoxygenase (5-LOX), in triple-transgenic (3xTg-AD) mice. Mice were 3 months at the beginning of the study. Animals received once daily for 3-month saline solution or flavocoxid (20 mg/kg/ip). Morris water maze was used to assess learning and memory. Histology was performed to evidence Aβ plaques and neuronal loss, while inflammatory proteins were determined by western blot analysis. Saline-treated 3xTg-AD mice showed an impairment in spatial learning and memory (assessed at 6 months of age), and increased expression of inflammatory and apoptotic molecules. Treatment of 3xTg-AD mice with flavocoxid reduced: (1) learning and memory loss; (2) the increased eicosanoid production and the phosphorylation level of amyloid precursor protein (APP-pThr668), Aβ 1-42, p-tau (pThr181), pERK, and the activation of the NLRP3 inflammasome; (3) Aβ plaques; and (4) neuronal loss, compared to saline-treated animals. Pharmacological blockade of both COX-1/2 and 5-LOX was able to counteract the progression of AD by targeting pathophysiological mechanisms up- and downstream of Aβ and tau.

  10. Reduced COX-2 expression in aged mice is associated with impaired fracture healing.

    PubMed

    Naik, Amish A; Xie, Chao; Zuscik, Michael J; Kingsley, Paul; Schwarz, Edward M; Awad, Hani; Guldberg, Robert; Drissi, Hicham; Puzas, J Edward; Boyce, Brendan; Zhang, Xinping; O'Keefe, Regis J

    2009-02-01

    The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E(2) (PGE(2)) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7-9 or 52-56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.

  11. Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin.

    PubMed

    Chiang, Yi-Ming; Lo, Chiu-Ping; Chen, Yi-Ping; Wang, Sheng-Yang; Yang, Ning-Sun; Kuo, Yueh-Hsiung; Shyur, Lie-Fen

    2005-10-01

    Ethyl caffeate, a natural phenolic compound, was isolated from Bidens pilosa, a medicinal plant popularly used for treating certain inflammatory syndromes. The purpose of this study was to investigate the structural activity, and the anti-inflammatory functions and mechanism(s) of ethyl caffeate. Ethyl caffeate was found to markedly suppress the lipopolysaccharide (LPS)-induced nitric oxide (NO) production (IC(50) = 5.5 microg ml(-1)), mRNA and protein expressions of inducible nitric oxide synthase (iNOS), and prostaglandin E(2) (PGE(2)) production in RAW 264.7 macrophages. Transient gene expression assays using human cox-2 promoter construct revealed that ethyl caffeate exerted an inhibitory effect on cox-2 transcriptional activity in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells. Immunohistochemical studies of mouse skin demonstrated that TPA-induced COX-2 expression was significantly inhibited by ethyl caffeate with a superior effect to that of celecoxib, a nonsteroidal anti-inflammatory drug. The phosphorylation and degradation of inhibitor kappaB (IkappaB) and the translocation of nuclear transcription factor-kappaB (NF-kappaB) into the nucleus, as well as the activation of mitogen-activated protein kinases (MAPKs) induced by LPS in macrophages, were not affected by ethyl caffeate. Ethyl caffeate, however, could inhibit NF-kappaB activation by impairing the binding of NF-kappaB to its cis-acting element. These results suggest that ethyl caffeate suppresses iNOS and COX-2 expressions partly through the inhibition of the NF-kappaB.DNA complex formation. Structure-activity relationship analyses suggested that the catechol moiety and alpha,beta-unsaturated ester group in ethyl caffeate are important and essential structural features for preventing NF-kappaB.DNA complex formation. This study provides an insight into the probable mechanism(s) underlying the anti-inflammatory and therapeutic properties of ethyl caffeate.

  12. The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging.

    PubMed

    Luo, Cheng; Urgard, Egon; Vooder, Tõnu; Metspalu, Andres

    2011-08-01

    Oxidative stress and inflammation are constant features of many chronic diseases and complications, and have been linked to carcinogenesis. Cyclooxygenase 2 (COX-2), a rate-limiting enzyme for the synthesis of prostaglandins, plays important roles in physiology and pathology, but has been a source of controversy within the scientific and clinical community. However, recent work has shown that nuclear factor erythroid-2-related factor-2 (Nrf2) confers protection against oxidative stress. Furthermore, COX-2-dependent electrophile oxo-derivative (EFOX) molecules have been shown to act as anti-inflammatory mediators via activation of the Nrf2-dependent antioxidant response element (ARE). These studies have provided more insight into COX-2-mediated events. The function of all tissues, especially epithelial and endothelial tissues, declines with age, leading to the production of reactive oxygen species (ROS). COX-2 expression increases with aging in most tissues, due in part to ROS, chemical reactions, physical shearing, and dietary molecules. Here we discuss new findings related to COX-2 inflammatory and anti-inflammatory responses. Taken together, we hypothesize that COX-2 levels increase during the aging process because increasing levels of ROSs necessitate the involvement of COX-2-dependent EFOXs for anti-inflammation and Nrf2/ARE signaling for antioxidation. We also propose that COX-2 may act as an intrinsic biological aging clock due to its role in balancing inflammatory and anti-inflammatory responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Cyclooxygenase-1 and -2 Play Contrasting Roles in Listeria-Stimulated Immunity.

    PubMed

    Theisen, Erin; McDougal, Courtney E; Nakanishi, Masako; Stevenson, David M; Amador-Noguez, Daniel; Rosenberg, Daniel W; Knoll, Laura J; Sauer, John-Demian

    2018-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase (COX) activity and are commonly used for pain relief and fever reduction. NSAIDs are used following childhood vaccinations and cancer immunotherapies; however, how NSAIDs influence the development of immunity following these therapies is unknown. We hypothesized that NSAIDs would modulate the development of an immune response to Listeria monocytogenes -based immunotherapy. Treatment of mice with the nonspecific COX inhibitor indomethacin impaired the generation of cell-mediated immunity. This phenotype was due to inhibition of the inducible COX-2 enzyme, as treatment with the COX-2-selective inhibitor celecoxib similarly inhibited the development of immunity. In contrast, loss of COX-1 activity improved immunity to L. monocytogenes Impairments in immunity were independent of bacterial burden, dendritic cell costimulation, or innate immune cell infiltrate. Instead, we observed that PGE 2 production following L. monocytogenes is critical for the formation of an Ag-specific CD8 + T cell response. Use of the alternative analgesic acetaminophen did not impair immunity. Taken together, our results suggest that COX-2 is necessary for optimal CD8 + T cell responses to L. monocytogenes , whereas COX-1 is detrimental. Use of pharmacotherapies that spare COX-2 activity and the production of PGE 2 like acetaminophen will be critical for the generation of optimal antitumor responses using L. monocytogenes . Copyright © 2018 by The American Association of Immunologists, Inc.

  14. A PI3K p110α-selective inhibitor enhances the efficacy of anti-HER2/neu antibody therapy against breast cancer in mice.

    PubMed

    Choi, Jae-Hyeog; Kim, Ki Hyang; Roh, Kug-Hwan; Jung, Hana; Lee, Anbok; Lee, Ji-Young; Song, Joo Yeon; Park, Seung Jae; Kim, Ilhwan; Lee, Won-Sik; Seo, Su-Kil; Choi, Il-Whan; Fu, Yang-Xin; Yea, Sung Su; Park, SaeGwang

    2018-01-01

    Combination therapies with phosphoinositide 3-kinase (PI3K) inhibitors and trastuzumab (anti-human epidermal growth factor receptor [HER]2/neu antibody) are effective against HER2+ breast cancer. Isoform-selective PI3K inhibitors elicit anti-tumor immune responses that are distinct from those induced by inhibitors of class I PI3K isoforms (pan-PI3K inhibitors). The present study investigated the therapeutic effect and potential for stimulating anti-tumor immunity of combined therapy with an anti-HER2/neu antibody and pan-PI3K inhibitor (GDC-0941) or a PI3K p110α isoform-selective inhibitor (A66) in mouse models of breast cancer. The anti-neu antibody inhibited tumor growth and enhanced anti-tumor immunity in HER2/neu+ breast cancer TUBO models, whereas GDC-0941 or A66 alone did not. Anti-neu antibody and PI3K inhibitor synergistically promoted anti-tumor immunity by increasing functional T cell production. In the presence of the anti-neu antibody, A66 was more effective than GDC-0941 at increasing the fraction of CD4 + , CD8 + , and IFN-γ + CD8 + T cells in the tumor-infiltrating lymphocyte population. Detection of IFN-γ levels by enzyme-linked immunospot assay showed that the numbers of tumor-specific T cells against neu and non-neu tumor antigens were increased by combined PI3K inhibitor plus anti-neu antibody treatment, with A66 exhibiting more potent effects than GDC-0941. In a TUBO (neu+) and TUBO-P2J (neu-) mixed tumor model representing immunohistochemistry 2+ tumors, A66 suppressed tumor growth and prolonged survival to a greater extent than GDC-0941 when combined with anti-neu antibody. These results demonstrate that a PI3K p110α-isoform-selective inhibitor is an effective adjunct to trastuzumab in the treatment of HER2-positive breast cancer.

  15. Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling.

    PubMed

    Chen, Rongqing; Zhang, Jian; Fan, Ni; Teng, Zhao-Qian; Wu, Yan; Yang, Hongwei; Tang, Ya-Ping; Sun, Hao; Song, Yunping; Chen, Chu

    2013-11-21

    Marijuana has been used for thousands of years as a treatment for medical conditions. However, untoward side effects limit its medical value. Here, we show that synaptic and cognitive impairments following repeated exposure to Δ(9)-tetrahydrocannabinol (Δ(9)-THC) are associated with the induction of cyclooxygenase-2 (COX-2), an inducible enzyme that converts arachidonic acid to prostanoids in the brain. COX-2 induction by Δ(9)-THC is mediated via CB1 receptor-coupled G protein βγ subunits. Pharmacological or genetic inhibition of COX-2 blocks downregulation and internalization of glutamate receptor subunits and alterations of the dendritic spine density of hippocampal neurons induced by repeated Δ(9)-THC exposures. Ablation of COX-2 also eliminates Δ(9)-THC-impaired hippocampal long-term synaptic plasticity, working, and fear memories. Importantly, the beneficial effects of decreasing β-amyloid plaques and neurodegeneration by Δ(9)-THC in Alzheimer's disease animals are retained in the presence of COX-2 inhibition. These results suggest that the applicability of medical marijuana would be broadened by concurrent inhibition of COX-2. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Analogues of 2-aminopyridine-based selective inhibitors of neuronal nitric oxide synthase with increased bioavailability

    PubMed Central

    Lawton, Graham R.; Ranaivo, Hantamalala Ralay; Chico, Laura K.; Ji, Haitao; Xue, Fengtian; Martásek, Pavel; Roman, Linda J.; Watterson, D. Martin; Silverman, Richard B.

    2009-01-01

    Overproduction of nitric oxide by neuronal nitric oxide synthase (nNOS) has been linked to several neurodegenerative diseases. We have recently designed potent and isoform selective inhibitors of nNOS, but the lead compound contains several basic functional groups. A large number of charges and hydrogen bond donors can impede the ability of molecules to cross the blood brain barrier and thereby limit the effectiveness of potential neurological therapeutics. Replacement of secondary amines in our lead compound with neutral ether and amide groups was made to increase bioavailability and to determine if the potency and selectivity of the inhibitor would be impacted. An ether analogue has been identified that retains a similar potency and selectivity to that of the lead compound, and shows increased ability to penetrate the blood brain barrier. PMID:19268602

  17. Novel 2H-chromen-2-one derivatives of resveratrol: Design, synthesis, modeling and use as human monoamine oxidase inhibitors.

    PubMed

    Ruan, Ban-Feng; Cheng, Hui-Jie; Ren, Jing; Li, Hong-Lin; Guo, Lu-Lu; Zhang, Xing-Xing; Liao, Chenzhong

    2015-10-20

    Using a fragment-based drug design strategy, two biomedical interesting fragments, resveratrol and coumarin were linked to design a series of novel human monoamine oxidase (hMAO) inhibitors with a scaffold of 3-((E)-3-(2-((E)-styryl)phenyl)acryloyl)-2H-chromen-2-one, which demonstrated a very interesting selectivity profile against hMAO-A and hMAO-B: some compounds with this scaffold are selective hMAO-A inhibitors, whereas some are selective hMAO-B inhibitors. The small changes in the substituents of the coumarin moiety led to this interesting selectivity profile. The most potent selective hMAO-B inhibitor D7 has a selectivity ratio of 20.93, with an IC₅₀ value of 2.78 μM, similar or better than selegiline (IC₅₀ = 2.89 μM), a selective hMAO-B inhibitor currently in the market for the treatment of Parkinson's disease. Our modeling study indicates that Tyr 326 of hMAO-B (or corresponded Ile 335 of hMAO-A) may be the determinant for the specificity of these compounds. The selectivity profile of compounds reported herein suggests that we can further develop both selective hMAO-A and hMAO-B inhibitors based on this novel scaffold. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Iatrogenic effects of COX-2 inhibitors in the US population: findings from the Medical Expenditure Panel Survey.

    PubMed

    Vaithianathan, Rhema; Hockey, Peter M; Moore, Thomas J; Bates, David W

    2009-01-01

    Selective cyclo-oxygenase 2 inhibitors ('coxibs') have been demonstrated to increase cardiovascular risk, but the cumulative burden of adverse effects in the US population is uncertain. To quantify cardiovascular and gastrointestinal (GI) haemorrhage disease burden from coxibs and traditional 'non-selective' non-steroidal anti-inflammatory drugs (t-NSAIDs) in the US population. Adult respondents from the 1999-2003 Medical Expenditure Panel Survey, a representative sample of the US population which first became available in December 2006, were included. Respondents were followed for 2 years. Exposure was defined by two or more prescriptions of rofecoxib, celecoxib or a t-NSAID in the first year. Acute myocardial infarction (AMI), stroke and/or GI haemorrhage in the year following exposure. Exposure to rofecoxib was associated with an adjusted odds ratio (OR) of 3.30 for AMI (95% CI 1.41, 7.68; p=0.01) and 4.28 for GI haemorrhage (95% CI 1.33, 13.71; p=0.02). Celecoxib was not associated with a statistically significant effect on AMI (OR 1.44; 95% CI 0.57, 3.69; p=0.44), but there was an OR of 2.43 for stroke (95% CI 1.05, 5.58; p=0.04) and 4.98 for GI haemorrhage (95% CI 2.22, 11.17; p<0.001). The group of t-NSAIDs was not associated with a significant adverse effect on AMI (OR 1.47; 95% CI 0.76, 2.84; p=0.25) or stroke (OR 1.26; 95% CI 0.42, 3.81; p=0.68), and was associated with an OR of 2.38 for GI haemorrhage (CI 1.04, 5.46; p=0.04). In the 1999-2004 period rofecoxib was associated with 46 783 AMIs and 31 188 GI haemorrhages; celecoxib with 21 832 strokes and 69 654 GI haemorrhages; resulting in an estimated 26 603 deaths from both coxibs. The t-NSAID group was associated with an excess of 87 327 GI haemorrhages and 9606 deaths in the same period. Iatrogenic effects of coxibs in the US population were substantial, posing an important public health risk. Drugs that were rapidly accepted for assumed safety advantages proved instead to have caused substantial

  19. Angiotensin-Converting Enzyme Inhibitor Use and Major Cardiovascular Outcomes in Type 2 Diabetes Mellitus Treated With the Dipeptidyl Peptidase 4 Inhibitor Alogliptin.

    PubMed

    White, William B; Wilson, Craig A; Bakris, George L; Bergenstal, Richard M; Cannon, Christopher P; Cushman, William C; Heller, Simon K; Mehta, Cyrus R; Nissen, Steven E; Zannad, Faiez; Kupfer, Stuart

    2016-09-01

    Activation of the sympathetic nervous system when there is dipeptidyl peptidase 4 inhibition in the presence of high-dose angiotensin-converting enzyme (ACE) inhibition has led to concerns of potential increases in cardiovascular events when the 2 classes of drugs are coadministered. We evaluated cardiovascular outcomes from the EXAMINE (Examination of Cardiovascular Outcomes With Alogliptin versus Standard of Care) trial according to ACE inhibitor use. Patients with type 2 diabetes mellitus and a recent acute coronary syndrome were randomly assigned to receive the dipeptidyl peptidase 4 inhibitor alogliptin or placebo added to existing antihyperglycemic and cardiovascular prophylactic therapies. Risks of adjudicated cardiovascular death, nonfatal myocardial infarction and stroke, and hospitalized heart failure were analyzed using a Cox proportional hazards model in patients according to ACE inhibitor use and dose. There were 3323 (62%) EXAMINE patients treated with an ACE inhibitor (1681 on alogliptin and 1642 on placebo). The composite rates of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke were comparable for alogliptin and placebo with ACE inhibitor (11.4% versus 11.8%; hazard ratio, 0.97; 95% confidence interval, 0.79-1.19; P=0.76) and without ACE inhibitor use (11.2% versus 11.9%; hazard ratio, 0.94; 95% confidence interval, 0.73-1.21; P=0.62). Composite rates for cardiovascular death and heart failure in patients on ACE inhibitor occurred in 6.8% of patients on alogliptin versus 7.2% on placebo (hazard ratio, 0.93; 95% confidence interval, 0.72-1.2; P=0.57). There were no differences for these end points nor for blood pressure or heart rate in patients on higher doses of ACE inhibitor. Cardiovascular outcomes were similar for alogliptin and placebo in patients with type 2 diabetes mellitus and coronary disease treated with ACE inhibitors. © 2016 American Heart Association, Inc.

  20. Discovery of Potent and Selective Inhibitors for ADAMTS-4 through DNA-Encoded Library Technology (ELT).

    PubMed

    Ding, Yun; O'Keefe, Heather; DeLorey, Jennifer L; Israel, David I; Messer, Jeffrey A; Chiu, Cynthia H; Skinner, Steven R; Matico, Rosalie E; Murray-Thompson, Monique F; Li, Fan; Clark, Matthew A; Cuozzo, John W; Arico-Muendel, Christopher; Morgan, Barry A

    2015-08-13

    The aggrecan degrading metalloprotease ADAMTS-4 has been identified as a novel therapeutic target for osteoarthritis. Here, we use DNA-encoded Library Technology (ELT) to identify novel ADAMTS-4 inhibitors from a DNA-encoded triazine library by affinity selection. Structure-activity relationship studies based on the selection information led to the identification of potent and highly selective inhibitors. For example, 4-(((4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-6-(((4-methylpiperazin-1-yl)methyl)amino)-1,3,5-triazin-2-yl)amino)methyl)-N-ethyl-N-(m-tolyl)benzamide has IC50 of 10 nM against ADAMTS-4, with >1000-fold selectivity over ADAMT-5, MMP-13, TACE, and ADAMTS-13. These inhibitors have no obvious zinc ligand functionality.

  1. Discovery of Potent and Selective Inhibitors for ADAMTS-4 through DNA-Encoded Library Technology (ELT)

    PubMed Central

    2015-01-01

    The aggrecan degrading metalloprotease ADAMTS-4 has been identified as a novel therapeutic target for osteoarthritis. Here, we use DNA-encoded Library Technology (ELT) to identify novel ADAMTS-4 inhibitors from a DNA-encoded triazine library by affinity selection. Structure–activity relationship studies based on the selection information led to the identification of potent and highly selective inhibitors. For example, 4-(((4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-6-(((4-methylpiperazin-1-yl)methyl)amino)-1,3,5-triazin-2-yl)amino)methyl)-N-ethyl-N-(m-tolyl)benzamide has IC50 of 10 nM against ADAMTS-4, with >1000-fold selectivity over ADAMT-5, MMP-13, TACE, and ADAMTS-13. These inhibitors have no obvious zinc ligand functionality. PMID:26288689

  2. High-throughput screening identifies Ceefourin 1 and Ceefourin 2 as highly selective inhibitors of multidrug resistance protein 4 (MRP4).

    PubMed

    Cheung, Leanna; Flemming, Claudia L; Watt, Fujiko; Masada, Nanako; Yu, Denise M T; Huynh, Tony; Conseil, Gwenaëlle; Tivnan, Amanda; Polinsky, Alexander; Gudkov, Andrei V; Munoz, Marcia A; Vishvanath, Anasuya; Cooper, Dermot M F; Henderson, Michelle J; Cole, Susan P C; Fletcher, Jamie I; Haber, Michelle; Norris, Murray D

    2014-09-01

    Multidrug resistance protein 4 (MRP4/ABCC4), a member of the ATP-binding cassette (ABC) transporter superfamily, is an organic anion transporter capable of effluxing a wide range of physiologically important signalling molecules and drugs. MRP4 has been proposed to contribute to numerous functions in both health and disease; however, in most cases these links remain to be unequivocally established. A major limitation to understanding the physiological and pharmacological roles of MRP4 has been the absence of specific small molecule inhibitors, with the majority of established inhibitors also targeting other ABC transporter family members, or inhibiting the production, function or degradation of important MRP4 substrates. We therefore set out to identify more selective and well tolerated inhibitors of MRP4 that might be used to study the many proposed functions of this transporter. Using high-throughput screening, we identified two chemically distinct small molecules, Ceefourin 1 and Ceefourin 2, that inhibit transport of a broad range of MRP4 substrates, yet are highly selective for MRP4 over other ABC transporters, including P-glycoprotein (P-gp), ABCG2 (Breast Cancer Resistance Protein; BCRP) and MRP1 (multidrug resistance protein 1; ABCC1). Both compounds are more potent MRP4 inhibitors in cellular assays than the most widely used inhibitor, MK-571, requiring lower concentrations to effect a comparable level of inhibition. Furthermore, Ceefourin 1 and Ceefourin 2 have low cellular toxicity, and high microsomal and acid stability. These newly identified inhibitors should be of great value for efforts to better understand the biological roles of MRP4, and may represent classes of compounds with therapeutic application. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor.

    PubMed

    Wu, Jingjing; Zhang, Mingzhi; Liu, Delong

    2016-03-09

    More and more targeted agents become available for B cell malignancies with increasing precision and potency. The first-in-class Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, has been in clinical use for the treatment of chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom's macroglobulinemia. More selective BTK inhibitors (ACP-196, ONO/GS-4059, BGB-3111, CC-292) are being explored. Acalabrutinib (ACP-196) is a novel irreversible second-generation BTK inhibitor that was shown to be more potent and selective than ibrutinib. This review summarized the preclinical research and clinical data of acalabrutinib.

  4. Discovery of a Highly Selective JAK2 Inhibitor, BMS-911543, for the Treatment of Myeloproliferative Neoplasms

    PubMed Central

    2015-01-01

    JAK2 kinase inhibitors are a promising new class of agents for the treatment of myeloproliferative neoplasms and have potential for the treatment of other diseases possessing a deregulated JAK2-STAT pathway. X-ray structure and ADME guided refinement of C-4 heterocycles to address metabolic liability present in dialkylthiazole 1 led to the discovery of a clinical candidate, BMS-911543 (11), with excellent kinome selectivity, in vivo PD activity, and safety profile. PMID:26288683

  5. Correlation analysis between expression of PCNA, Ki-67 and COX-2 and X-ray features in mammography in breast cancer.

    PubMed

    Qiu, Xiaoming; Mei, Jixin; Yin, Jianjun; Wang, Hong; Wang, Jinqi; Xie, Ming

    2017-09-01

    This study investigated expression of proliferating cell nuclear antigen (PCNA), proliferation-associated nuclear antigen (Ki-67) and cyclooxygenase-2 (COX-2) in tissues of breast invasive ductal carcinoma, and analyzed the correlations between these indexes and X-ray features in mammography. A total of 90 patients who were admitted to Huangshi Central Hospital and diagnosed as breast invasive ductal carcinoma from January 2014 to January 2016 were selected. The expression of PCNA, Ki-67 and COX-2 in cancer tissues and cancer-adjacent normal tissues of patients were detected by immunohistochemical staining, and X-ray features in mammography of patients were observed. By using Spearman correlation analysis, the correlations between expression of PCNA, Ki-67 and COX-2 and X-ray features in mammography in breast cancer were investigated. As a result, the positive expression rates of PCNA, Ki-67 and COX-2 in cancer tissues of the patient groups were respectively 42.2, 45.6 and 51.1%, which were significantly higher than those in cancer-adjacent normal tissues of the control group (p<0.05). PCNA, Ki-67 and COX-2 expression in cancer tissues of the patient group was associated with clinical staging and lymphatic metastasis (p<0.05), but had no correlation with age and tumor size (p>0.05). PCNA, Ki-67 and COX-2 expression in cancer tissues of the patient group had no correlation with the existence of lumps and localized density-increased shadows (p>0.05), but were associated with manifestations of architectural distortion, calcification as well as skin and nipple depression (p<0.05). Spearman correlation analysis revealed that there was a significantly positive correlation between the expression of PCNA and COX-2 in cancer tissues of the patient group (r=0.676, p<0.05); there was a significantly positive correlation between the expression of Ki-67 and COX-2 (r=0.724, p<0.05); PCNA expression had no obvious correlation with the expression of Ki-67 (p>0.05). In conclusion

  6. 2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors.

    PubMed

    Legoabe, Lesetja J; Petzer, Anél; Petzer, Jacobus P

    2015-01-01

    Based on a previous report that substituted 2-acetylphenols may be promising leads for the design of novel monoamine oxidase (MAO) inhibitors, a series of C5-substituted 2-acetylphenol analogs (15) and related compounds (two) were synthesized and evaluated as inhibitors of human MAO-A and MAO-B. Generally, the study compounds exhibited inhibitory activities against both MAO-A and MAO-B, with selectivity for the B isoform. Among the compounds evaluated, seven compounds exhibited IC50 values <0.01 µM for MAO-B inhibition, with the most selective compound being 17,000-fold selective for MAO-B over the MAO-A isoform. Analyses of the structure-activity relationships for MAO inhibition show that substitution on the C5 position of the 2-acetylphenol moiety is a requirement for MAO-B inhibition, and the benzyloxy substituent is particularly favorable in this regard. This study concludes that C5-substituted 2-acetylphenol analogs are potent and selective MAO-B inhibitors, appropriate for the design of therapies for neurodegenerative disorders such as Parkinson's disease.

  7. Rasagiline (TVP-1012): a new selective monoamine oxidase inhibitor for Parkinson's disease.

    PubMed

    Guay, David R P

    2006-12-01

    This article reviews the chemistry, pharmacodynamics, pharmacokinetics, clinical efficacy, tolerability, drug-interaction potential, indications, dosing, and potential role of rasagiline mesylate, a new selective monoamine oxidase (MAO) type B (MAO-B) inhibitor, in the treatment of Parkinson's disease. A MEDLINE/PUBMED search (1986 through September 2006) was conducted to identify studies involving rasagiline written in English. Additional references were obtained from the bibliographies of these studies. All studies evaluating any aspect of rasagiline, including in vitro, in vivo (animal), and human studies, were reviewed. Rasagiline mesylate was developed with the goal of producing a selective MAO-B inhibitor that is not metabolized to (presumed) toxic metabolites (eg, amphetamine and methamphetamine, which are byproducts of the metabolism of selegiline, another selective MAO-B inhibitor). In vitro and in vivo data have confirmed the drug's selectivity for MAO-B. Rasagiline is almost completely eliminated by oxidative metabolism (catalyzed by cytochrome P-450 [CYP] isozyme 1A2) followed by renal excretion of conjugated parent compound and metabolites. Drug clearance is sufficiently slow to allow once-daily dosing. Several studies have documented its efficacy as monotherapy for early-stage disease and as adjunctive therapy in L-dopa recipients with motor fluctuations. As monotherapy, rasagiline is well tolerated with an adverse-effect profile similar to that of placebo. As adjunctive therapy, it exhibits the expected adverse effects of dopamine excess, which can be ameliorated by reducing the L-dopa dosage. CYP1A2 inhibitors slow the elimination of rasagiline and mandate dosage reduction. Hepatic impairment has an analogous effect. The recommended dosage regimens for monotherapy and adjunctive therapy are 1 and 0.5 mg PO QD, respectively. Despite the well-documented selectivity of rasagiline, the manufacturer recommends virtually all of the dietary (vis

  8. Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells.

    PubMed

    Oğuz, Nurgül; Kırça, Mustafa; Çetin, Arzu; Yeşilkaya, Akın

    2017-10-01

    Hyperuricemia is thought to play a role in cardiovascular diseases (CVD), including hypertension, coronary artery disease and atherosclerosis. However, exactly how uric acid contributes to these pathologies is unknown. An underlying mechanism of inflammatory diseases, such as atherosclerosis, includes enhanced production of cyclooxygenase-2 (COX-2) and superoxide anion. Here, we aimed to examine the effect of uric acid on inflammatory COX-2 and superoxide anion production and to determine the role of losartan. Primarily cultured vascular smooth muscle cells (VSMCs) were time and dose-dependently induced by uric acid and COX-2 and superoxide anion levels were measured. COX-2 levels were determined by ELISA, and superoxide anion was measured by the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c method. Uric acid elevated COX-2 levels in a time-dependent manner. Angiotensin-II receptor blocker, losartan, diminished uric-acid-induced COX-2 elevation. Uric acid also increased superoxide anion level in VSMCs. Uric acid plays an important role in CVD pathogenesis by inducing inflammatory COX-2 and ROS pathways. This is the first study demonstrating losartan's ability to reduce uric-acid-induced COX-2 elevation.

  9. Specific trans-acting proteins interact with auxiliary RNA polyadenylation elements in the COX-2 3′-UTR

    PubMed Central

    Hall-Pogar, Tyra; Liang, Songchun; Hague, Lisa K.; Lutz, Carol S.

    2007-01-01

    Two cyclooxygenase (COX) enzymes, COX-1 and COX-2, are present in human cells. While COX-1 is constitutively expressed, COX-2 is inducible and up-regulated in response to many signals. Since increased transcriptional activity accounts for only part of COX-2 up-regulation, we chose to explore other RNA processing mechanisms in the regulation of this gene. Previously, we showed that COX-2 is regulated by alternative polyadenylation, and that the COX-2 proximal polyadenylation signal contains auxiliary upstream sequence elements (USEs) that are very important in efficient polyadenylation. To explore trans-acting protein factors interacting with these cis-acting RNA elements, we performed pull-down assays with HeLa nuclear extract and biotinylated RNA oligonucleotides representing COX-2 USEs. We identified PSF, p54nrb, PTB, and U1A as proteins specifically bound to the COX-2 USEs. We further explored their participation in polyadenylation using MS2 phage coat protein-MS2 RNA binding site tethering assays, and found that tethering any of these four proteins to the COX-2 USE mutant RNA can compensate for these cis-acting elements. Finally, we suggest that these proteins (p54nrb, PTB, PSF, and U1A) may interact as a complex since immunoprecipitations of the transfected MS2 fusion proteins coprecipitate the other proteins. PMID:17507659

  10. Exploiting differences in caspase-2 and -3 S₂ subsites for selectivity: structure-based design, solid-phase synthesis and in vitro activity of novel substrate-based caspase-2 inhibitors.

    PubMed

    Maillard, Michel C; Brookfield, Frederick A; Courtney, Stephen M; Eustache, Florence M; Gemkow, Mark J; Handel, Rebecca K; Johnson, Laura C; Johnson, Peter D; Kerry, Mark A; Krieger, Florian; Meniconi, Mirco; Muñoz-Sanjuán, Ignacio; Palfrey, Jordan J; Park, Hyunsun; Schaertl, Sabine; Taylor, Malcolm G; Weddell, Derek; Dominguez, Celia

    2011-10-01

    Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and ∼200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Discovery of highly selective inhibitors of p38alpha.

    PubMed

    Popa-Burke, Ioana; Birkos, Steve; Blackwell, Leonard; Cheatham, Lynn; Clark, Jennifer; Dickson, John K; Galasinski, Scott; Janzen, William P; Mendoza, Jose; Miller, Jennifer L; Mohney, Robert P; Steed, Paul M; Hodge, C Nicholas

    2005-01-01

    The p38 MAP kinases are a family of serine/threonine protein kinases that play a key role in cellular pathways leading to pro-inflammatory responses. We have developed and implemented a method for rapidly identifying and optimizing potent and selective p38alpha inhibitors, which is amenable to other targets and target classes. A diverse library of druggable, purified and quantitated molecules was assembled and standardized enzymatic assays were performed in a microfluidic format that provided very accurate and precise inhibition data allowing for development of SAR directly from the primary HTS. All compounds were screened against a collection of more than 60 enzymes (kinases, proteases and phosphatases), allowing for removal of promiscuous and non-selective inhibitors very early in the discovery process. Follow-up enzymological studies included measurement of concentration of compound in buffer, yielding accurate determination of K(i) and IC50 values, as well as mechanism of action. In addition, active compounds were screened against less desirable properties such as inhibition of the enzyme activity by aggregation, irreversible binding, and time-dependence. Screening of an 88,634-compound library through the above-described process led to the rapid identification of multiple scaffolds (>5 active compounds per scaffold) of potential drug leads for p38alpha that are highly selective against all other enzymes tested, including the three other p38 isoforms. Potency and selectivity data allowed prioritization of the identified scaffolds for optimization. Herein we present results around our 3-thio-1,2,4-triazole lead series of p38- selective inhibitors, including identification, SAR, synthesis, selectivity profile, enzymatic and cellular data in their progression towards drug candidates.

  12. Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation.

    PubMed

    Badie, Behnam; Schartner, Jill M; Hagar, Aaron R; Prabakaran, Sakthivel; Peebles, Todd R; Bartley, Becky; Lapsiwala, Samir; Resnick, Daniel K; Vorpahl, Jessica

    2003-02-01

    Cerebral edema is responsible for significant morbidity and mortality in patients harboring malignant gliomas. To examine the role of inflammatory cells in brain edema formation, we studied the expression cyclooxygenase (COX)-2, a key enzyme in arachidonic acid metabolism, by microglia in the C6 rodent glioma model. The expression of COX-2 in primary microglia cultures obtained from intracranial rat C6 gliomas was examined using reverse transcription-PCR, Western analysis, and prostaglandin E(2) (PGE(2)) enzyme immunoassay. Blood-tumor barrier permeability was studied in the same tumor model using magnetic resonance imaging. In contrast to C6 glioma cells, microglia isolated from intracranial C6 tumors produced high levels of PGE(2) through a COX-2-dependent pathway. To test whether the observed microglia COX-2 activity played a role in brain edema formation in gliomas, tumor-bearing rats were treated with rofecoxib, a selective COX-2 inhibitor. Rofecoxib was as effective as dexamethasone in decreasing the diffusion of contrast material into the brain parenchyma (P = 0.01, rofecoxib versus control animals), suggesting a reduction in blood-tumor barrier permeability. These findings suggest that glioma-infiltrating microglia are a major source of PGE(2) production through the COX-2 pathway and support the use of COX-2 inhibitors as possible alternatives to glucocorticoids in the treatment of peritumoral edema in patients with malignant brain tumors.

  13. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale)

    PubMed Central

    van Breemen, Richard B.; Tao, Yi; Li, Wenkui

    2010-01-01

    Ginger roots have been used to treat inflammation and have been reported to inhibit cyclooxygenase (COX). Ultrafiltration liquid chromatography mass spectrometry was used to screen a chloroform partition of a methanol extract of ginger roots for COX-2 ligands, and 10-gingerol, 12-gingerol, 8-shogaol, 10-shogaol, 6-gingerdione, 8-gingerdione, 10-gingerdione, 6-dehydro-10-gingerol, 6-paradol, and 8-paradol bound to the enzyme active site. Purified 10-gingerol, 8-shogaol and 10-shogaol inhibited COX-2 with IC50 values of 32 μM, 17.5 μM and 7.5 μM, respectively. No inhibition of COX-1 was detected. Therefore, 10-gingerol, 8-shogaol and 10-shogaol inhibit COX-2 but not COX-1, which can explain, in part, anti-inflammatory properties of ginger. PMID:20837112

  14. Non-Steroidal Anti-Inflammatory Drugs and Cardiovascular Outcomes in Women: Results from the Women’s Health Initiative

    PubMed Central

    Bavry, Anthony A.; Thomas, Fridtjof; Allison, Matthew; Johnson, Karen C.; Howard, Barbara V.; Hlatky, Mark; Manson, JoAnn E.; Limacher, Marian C.

    2014-01-01

    Background Conclusive data regarding cardiovascular (CV) toxicity of non-steroidal anti-inflammatory drugs (NSAIDs) are sparse. We hypothesized that regular NSAID use is associated with increased risk for CV events in post-menopausal women, and that this association is stronger with greater cyclooxygenase (cox)-2 compared with cox-1 inhibition. Methods and Results Post-menopausal women enrolled in the Women’s Health Initiative (WHI) were classified as regular users or non-users of non-aspirin NSAIDs. Cox regression examined NSAID use as a time-varying covariate and its association with the primary outcome of total CV disease defined as CV death, nonfatal myocardial infarction, or nonfatal stroke. Secondary analyses considered the association of selective cox-2 inhibitors (e.g., celecoxib), non-selective agents with cox-2>cox-1 inhibition (e.g., naproxen), and non-selective agents with cox-1>cox-2 inhibition (e.g., ibuprofen) with the primary outcome. Overall, 160,801 participants were available for analysis (mean follow-up 11.2 years). Regular NSAID use at some point in time was reported by 53,142 participants. Regular NSAID use was associated with an increased hazard for CV events versus no NSAID use (HR=1.10[95% CI 1.06–1.15], Pitalic>0.001). Selective cox-2 inhibitors were associated with a modest increased hazard for CV events (HR=1.13[1.04–1.23], P=0.004; celecoxib only HR=1.13[1.01–1.27], P=0.031). Among aspirin users, concomitant selective cox-2 inhibitor use was no longer associated with increased hazard for CV events. There was an increased risk for agents with cox-2>cox-1 inhibition (HR=1.17[1.10–1.24], Pbold>0.001; naproxen only HR=1.22[1.12–1.34], P<0.001). This harmful association remained among concomitant aspirin users. We did not observe a risk elevation for agents with cox-1>cox-2 inhibition (HR=1.01[0.95–1.07], P=0.884; ibuprofen only HR=1.00[0.93–1.07], P=0.996). Conclusions Regular use of selective cox-2 inhibitors and non-selective

  15. Structure of the β-form of human MK2 in complex with the non-selective kinase inhibitor TEI-L03090

    PubMed Central

    Fujino, Aiko; Fukushima, Kei; Kubota, Takaharu; Matsumoto, Yoshiyuki; Takimoto-Kamimura, Midori

    2013-01-01

    Mitogen-activated protein kinase-activated protein kinase 2 (MK2 or MAPKAP-K2), a serine/threonine kinase from the p38 mitogen-activated protein kinase signalling pathway, plays an important role in the production of TNF-α and other cytokines. In a previous report, it was shown that MK2 in complex with the selective inhibitor TEI-I01800 adopts an α-helical glycine-rich loop that is induced by the stable nonplanar conformer of TEI-I01800. To understand the mechanism of the structural change, the structure of MK2 bound to TEI-L03090, which lacks the key substituent found in TEI-I01800, was determined. MK2–TEI-L03090 has a β-sheet glycine-rich loop in common with other kinases, as predicted. This result suggests that a small compound can induce a drastic conformational change in the target protein structure and can be used to design potent and selective inhibitors. PMID:24316826

  16. Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors.

    PubMed

    Choi, Jun Yong; Fuerst, Rita; Knapinska, Anna M; Taylor, Alexander B; Smith, Lyndsay; Cao, Xiaohang; Hart, P John; Fields, Gregg B; Roush, William R

    2017-07-13

    We describe the use of comparative structural analysis and structure-guided molecular design to develop potent and selective inhibitors (10d and (S)-17b) of matrix metalloproteinase 13 (MMP-13). We applied a three-step process, starting with a comparative analysis of the X-ray crystallographic structure of compound 5 in complex with MMP-13 with published structures of known MMP-13·inhibitor complexes followed by molecular design and synthesis of potent but nonselective zinc-chelating MMP inhibitors (e.g., 10a and 10b). After demonstrating that the pharmacophores of the chelating inhibitors (S)-10a, (R)-10a, and 10b were binding within the MMP-13 active site, the Zn 2+ chelating unit was replaced with nonchelating polar residues that bridged over the Zn 2+ binding site and reached into a solvent accessible area. After two rounds of structural optimization, these design approaches led to small molecule MMP-13 inhibitors 10d and (S)-17b, which bind within the substrate-binding site of MMP-13 and surround the catalytically active Zn 2+ ion without chelating to the metal. These compounds exhibit at least 500-fold selectivity versus other MMPs.

  17. Carbon Monoxide (CO) Released from Tricarbonyldichlororuthenium (II) Dimer (CORM-2) in Gastroprotection against Experimental Ethanol-Induced Gastric Damage.

    PubMed

    Magierowska, Katarzyna; Magierowski, Marcin; Hubalewska-Mazgaj, Magdalena; Adamski, Juliusz; Surmiak, Marcin; Sliwowski, Zbigniew; Kwiecien, Slawomir; Brzozowski, Tomasz

    2015-01-01

    The physiological gaseous molecule, carbon monoxide (CO) becomes a subject of extensive investigation due to its vasoactive activity throughout the body but its role in gastroprotection has been little investigated. We determined the mechanism of CO released from its donor tricarbonyldichlororuthenium (II) dimer (CORM-2) in protection of gastric mucosa against 75% ethanol-induced injury. Rats were pretreated with CORM-2 30 min prior to 75% ethanol with or without 1) non-selective (indomethacin) or selective cyclooxygenase (COX)-1 (SC-560) and COX-2 (celecoxib) inhibitors, 2) nitric oxide (NO) synthase inhibitor L-NNA, 3) ODQ, a soluble guanylyl cyclase (sGC) inhibitor, hemin, a heme oxygenase (HO)-1 inductor or zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1 activity. The CO content in gastric mucosa and carboxyhemoglobin (COHb) level in blood was analyzed by gas chromatography. The gastric mucosal mRNA expression for HO-1, COX-1, COX-2, iNOS, IL-4, IL-1β was analyzed by real-time PCR while HO-1, HO-2 and Nrf2 protein expression was determined by Western Blot. Pretreatment with CORM-2 (0.5-10 mg/kg) dose-dependently attenuated ethanol-induced lesions and raised gastric blood flow (GBF) but large dose of 100 mg/kg was ineffective. CORM-2 (5 mg/kg and 50 mg/kg i.g.) significantly increased gastric mucosal CO content and whole blood COHb level. CORM-2-induced protection was reversed by indomethacin, SC-560 and significantly attenuated by celecoxib, ODQ and L-NNA. Hemin significantly reduced ethanol damage and raised GBF while ZnPPIX which exacerbated ethanol-induced injury inhibited CORM-2- and hemin-induced gastroprotection and the accompanying rise in GBF. CORM-2 significantly increased gastric mucosal HO-1 mRNA expression and decreased mRNA expression for iNOS, IL-1β, COX-1 and COX-2 but failed to affect HO-1 and Nrf2 protein expression decreased by ethanol. We conclude that CORM-2 released CO exerts gastroprotection against ethanol-induced gastric lesions

  18. Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.

    PubMed

    Liu, Jilei; Wang, Jin; Ku, Zhiliang; Wang, Huanhuan; Chen, Shi; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang

    2016-01-26

    An electrochemical energy storage system with high energy density, stringent safety, and reliability is highly desirable for next-generation energy storage devices. Here an aqueous rechargeable alkaline CoxNi2-xS2 // TiO2 battery system is designed by integrating two reversible electrode processes associated with OH(-) insertion/extraction in the cathode part and Li ion insertion/extraction in the anode part, respectively. The prototype CoxNi2-xS2 // TiO2 battery is able to deliver high energy/power densities of 83.7 Wh/kg at 609 W/kg (based on the total mass of active materials) and good cycling stabilities (capacity retention 75.2% after 1000 charge/discharge cycles). A maximum volumetric energy density of 21 Wh/l (based on the whole packaged cell) has been achieved, which is comparable to that of a thin-film battery and better than that of typical commercial supercapacitors, benefiting from the unique battery and hierarchical electrode design. This hybrid system would enrich the existing aqueous rechargeable LIB chemistry and be a promising battery technology for large-scale energy storage.

  19. Celastrol, an inhibitor of heat shock protein 90β potently suppresses the expression of matrix metalloproteinases, inducible nitric oxide synthase and cyclooxygenase-2 in primary human osteoarthritic chondrocytes.

    PubMed

    Ding, Qian-Hai; Cheng, Ye; Chen, Wei-Ping; Zhong, Hui-Ming; Wang, Xiang-Hua

    2013-05-15

    Overexpression of matrix metalloproteinases (MMPs), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have long been suggested to play crucial roles in the progression of osteoarthritis. Studies have showed that selective MMPs, iNOS and COX-2 inhibitors possess great potential as chondroprotective agents for osteoarthritis. Therefore, there have been intensive efforts to develop novel natural compounds that target MMPs, iNOS and COX-2 activation. As interleukin-1β (IL-1β) is one of the key proinflammatory cytokines contributing to the progression in osteoarthritis, we investigated the effect of celastrol, a triterpenoid compound extracted from the Chinese herb Tript erygium wilfordii Hook F, in neutralizing the inflammatory effects of IL-1β on MMPs, iNOS and COX-2 expression as well as nitric oxide (NO) and prostaglandin E2 (PGE2) production. Protein expression was detected by Western blotting or by enzyme-linked immunosorbent assay (ELISA); messenger RNA (mRNA) expression was examined by real-time reverse transcription-polymerase chain reaction analysis and the involvement of signal pathway was assessed by transient transfection and luciferase activity assay. We found that treatment of primary human osteoarthritic chondrocytes with various concentrations of celastrol resulted in striking decrease in the expression of MMP-1, MMP-3, MMP-13, iNOS-2 and COX-2. In addition, celastrol treatment of cells also inhibited the activation of nuclear factor-kappa B (NF-kappaB). Taken together, we provide evidence that celastrol can protect human chondrocytes by downregulating the expression of MMPs, iNOS and COX-2. We suggest that celastrol could be a useful agent for prevention and treatment of osteoarthritis. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. Cancer survival analysis using semi-supervised learning method based on Cox and AFT models with L1/2 regularization.

    PubMed

    Liang, Yong; Chai, Hua; Liu, Xiao-Ying; Xu, Zong-Ben; Zhang, Hai; Leung, Kwong-Sak

    2016-03-01

    One of the most important objectives of the clinical cancer research is to diagnose cancer more accurately based on the patients' gene expression profiles. Both Cox proportional hazards model (Cox) and accelerated failure time model (AFT) have been widely adopted to the high risk and low risk classification or survival time prediction for the patients' clinical treatment. Nevertheless, two main dilemmas limit the accuracy of these prediction methods. One is that the small sample size and censored data remain a bottleneck for training robust and accurate Cox classification model. In addition to that, similar phenotype tumours and prognoses are actually completely different diseases at the genotype and molecular level. Thus, the utility of the AFT model for the survival time prediction is limited when such biological differences of the diseases have not been previously identified. To try to overcome these two main dilemmas, we proposed a novel semi-supervised learning method based on the Cox and AFT models to accurately predict the treatment risk and the survival time of the patients. Moreover, we adopted the efficient L1/2 regularization approach in the semi-supervised learning method to select the relevant genes, which are significantly associated with the disease. The results of the simulation experiments show that the semi-supervised learning model can significant improve the predictive performance of Cox and AFT models in survival analysis. The proposed procedures have been successfully applied to four real microarray gene expression and artificial evaluation datasets. The advantages of our proposed semi-supervised learning method include: 1) significantly increase the available training samples from censored data; 2) high capability for identifying the survival risk classes of patient in Cox model; 3) high predictive accuracy for patients' survival time in AFT model; 4) strong capability of the relevant biomarker selection. Consequently, our proposed semi

  1. Bcr-Abl-independent mechanism of resistance to imatinib in K562 cells: Induction of cyclooxygenase-2 (COX-2) by histone deacetylases (HDACs).

    PubMed

    Kalle, Arunasree M; Sachchidanand, Sachchidanand; Pallu, Reddanna

    2010-09-01

    Our previous studies have shown that overexpression of MDR1 and cyclooygenase-2 (COX-2) resulted in resistance development to imatinib in chronic myelogenous leukemia (CML) K562 (IR-K562) cells. In the present study, the regulatory mechanism of MDR1 induction by COX-2 was investigated. A gradual overexpression of MDR1 and COX-2 during the process of development was observed. Furthermore, down regulation of MDR1 upon COX-2 knockdown by siRNA showed a decrease in the PKC levels and activation of PKC by addition of PGE(2) to K562 cells, suggesting a role for PKC in the COX-2 mediated induction of MDR1. The present study demonstrates COX-2 induction by HDACs and MDR1 induction by COX-2 via PGE(2)-cAMP-PKC-mediated pathway. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. ROS are critical for endometrial breakdown via NF-κB-COX-2 signaling in a female mouse menstrual-like model.

    PubMed

    Wu, Bin; Chen, Xihua; He, Bin; Liu, Shuyan; Li, Yunfeng; Wang, Qianxing; Gao, Haijun; Wang, Shufang; Liu, Jianbing; Zhang, Shucheng; Xu, Xiangbo; Wang, Jiedong

    2014-09-01

    Progesterone withdrawal triggers endometrial breakdown and shedding during menstruation. Menstruation results from inflammatory responses; however, the role of reactive oxygen species (ROS) in menstruation remains unclear. In this study, we explored the role of ROS in endometrial breakdown and shedding. We found that ROS levels were significantly increased before endometrial breakdown in a mouse menstrual-like model. Vaginal smear inspection, morphology of uterine horns, and endometrial histology examination showed that a broad range of ROS scavengers significantly inhibited endometrial breakdown in this model. Furthermore, Western blot and immunohistochemical analysis showed that the intracellular translocation of p50 and p65 from the cytoplasm into the nucleus was blocked by ROS scavengers and real-time PCR showed that cyclooxygenase-2 (COX-2) mRNA expression was decreased by ROS scavengers. Similar changes also occurred in human stromal cells in vitro. Furthermore, Western blotting and real-time PCR showed that one ROS, hydrogen peroxide (H2O2), promoted translocation of p50 and p65 from the cytoplasm to the nucleus and increased COX-2 mRNA expression along with progesterone maintenance. The nuclear factor κB inhibitor MG132 reduced the occurrence of these changes in human stromal cells in vitro. Viewed as a whole, our results provide evidence that certain ROS are important for endometrial breakdown and shedding in a mouse menstrual-like model and function at least partially via nuclear factor-κB/COX-2 signaling. Similar changes observed in human stromal cells could also implicate ROS as important mediators of human menstruation.

  3. Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression.more » In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.« less

  4. Discovery of Potent and Specific Dihydroisoxazole Inhibitors of Human Transglutaminase 2

    PubMed Central

    2015-01-01

    Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme that catalyzes the posttranslational modification of glutamine residues on protein or peptide substrates. A growing body of literature has implicated aberrantly regulated activity of TG2 in the pathogenesis of various human inflammatory, fibrotic, and other diseases. Taken together with the fact that TG2 knockout mice are developmentally and reproductively normal, there is growing interest in the potential use of TG2 inhibitors in the treatment of these conditions. Targeted-covalent inhibitors based on the weakly electrophilic 3-bromo-4,5-dihydroisoxazole (DHI) scaffold have been widely used to study TG2 biology and are well tolerated in vivo, but these compounds have only modest potency, and their selectivity toward other transglutaminase homologues is largely unknown. In the present work, we first profiled the selectivity of existing inhibitors against the most pertinent TG isoforms (TG1, TG3, and FXIIIa). Significant cross-reactivity of these small molecules with TG1 was observed. Structure–activity and −selectivity analyses led to the identification of modifications that improved potency and isoform selectivity. Preliminary pharmacokinetic analysis of the most promising analogues was also undertaken. Our new data provides a clear basis for the rational selection of dihydroisoxazole inhibitors as tools for in vivo biological investigation. PMID:25333388

  5. Prognostic factors in multiple myeloma: selection using Cox's proportional hazard model.

    PubMed

    Pasqualetti, P; Collacciani, A; Maccarone, C; Casale, R

    1996-01-01

    The pretreatment characteristics of 210 patients with multiple myeloma, observed between 1980 and 1994, were evaluated as potential prognostic factors for survival. Multivariate analysis according to Cox's proportional hazard model identified in the 160 dead patients with myeloma, among 26 different single prognostic variables, the following factors in order of importance: beta 2-microglobulin; bone marrow plasma cell percentage, hemoglobinemia, degree of lytic bone lesions, serum creatinine, and serum albumin. By analysis of these variables a prognostic index (PI), that considers the regression coefficients derived by Cox's model of all significant factors, was obtained. Using this it was possible to separate the whole patient group into three stages: stage I (PI < 1.485, 67 patients), stage II (PI: 1.485-2.090, 76 patients), and stage III (PI > 2.090, 67 patients), with a median survivals of 68, 36 and 13 months (P < 0.0001), respectively. Also the responses to therapy (P < 0.0001) and the survival curves (P < 0.00001) presented significant differences among the three subgroups. Knowledge of these factors could be of value in predicting prognosis and in planning therapy in patients with multiple myeloma.

  6. SGLT2 inhibitors: molecular design and potential differences in effect.

    PubMed

    Isaji, Masayuki

    2011-03-01

    The physiological and pathological handling of glucose via sodium-glucose cotransporter-2 (SGLT2) in the kidneys has been evolving, and SGLT2 inhibitors have been focused upon as a novel drug for treating diabetes. SGLT2 inhibitors enhance renal glucose excretion by inhibiting renal glucose reabsorption. Consequently, SGLT2 inhibitors reduce plasma glucose insulin independently and improve insulin resistance in diabetes. To date, various SGLT2 inhibitors have been developed and evaluated in clinical studies. The potency and positioning of SGLT2 inhibitors as an antidiabetic drug are dependent on their characteristic profile, which induces selectivity, efficacy, pharmacokinetics, and safety. This profile decides which SGLT2 inhibitors can be expected for application of the theoretical concept of reducing renal glucose reabsorption for the treatment of diabetes. I review the structure and advancing profile of various SGLT2 inhibitors, comparing their similarities and differences, and discuss the expected SGLT2 inhibitors for an emerging category of antidiabetic drugs.

  7. Evolution of structure and superconductivity in Ba(Ni 1 -xCox)2As2

    NASA Astrophysics Data System (ADS)

    Eckberg, Chris; Wang, Limin; Hodovanets, Halyna; Kim, Hyunsoo; Campbell, Daniel J.; Zavalij, Peter; Piccoli, Philip; Paglione, Johnpierre

    2018-06-01

    The effects of Co substitution on Ba (Ni1-xCox) 2As2 (0 ≤x ≤0.251 ) single crystals grown out of Pb flux are investigated via transport, magnetic, and thermodynamic measurements. BaNi2As2 exhibits a first-order tetragonal to triclinic structural phase transition at Ts=137 K upon cooling, and enters a superconducting phase below Tc=0.7 K. The structural phase transition is sensitive to cobalt content and is suppressed completely by x ≥0.133 . The superconducting critical temperature, Tc, increases continuously with x , reaching a maximum of Tc=2.3 K at x =0.083 and then decreases monotonically until superconductivity is no longer observable well into the tetragonal phase. In contrast to similar BaNi2As2 substitutional studies, which show an abrupt change in Tc at the triclinic-tetragonal boundary that extends far into the tetragonal phase, Ba (Ni1-xCox) 2As2 exhibits a domelike phase diagram centered around the zero-temperature tetragonal-triclinic boundary. Together with an anomalously large heat capacity jump Δ Ce/γ T ˜2.2 near optimal doping, the smooth evolution of Tc in the Ba (Ni1-xCox) 2As2 system suggests a mechanism for pairing enhancement other than phonon softening.

  8. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    PubMed

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (<1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Hearts were removed, weighed, and non-myofibrillar proteins separated to analyze for levels of CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  9. A fragment-based approach leading to the discovery of a novel binding site and the selective CK2 inhibitor CAM4066.

    PubMed

    De Fusco, Claudia; Brear, Paul; Iegre, Jessica; Georgiou, Kathy Hadje; Sore, Hannah F; Hyvönen, Marko; Spring, David R

    2017-07-01

    Recently we reported the discovery of a potent and selective CK2α inhibitor CAM4066. This compound inhibits CK2 activity by exploiting a pocket located outside the ATP binding site (αD pocket). Here we describe in detail the journey that led to the discovery of CAM4066 using the challenging fragment linking strategy. Specifically, we aimed to develop inhibitors by linking a high-affinity fragment anchored in the αD site to a weakly binding warhead fragment occupying the ATP site. Moreover, we describe the remarkable impact that molecular modelling had on the development of this novel chemical tool. The work described herein shows potential for the development of a novel class of CK2 inhibitors. Copyright © 2017. Published by Elsevier Ltd.

  10. Proton-pump inhibitors are associated with a reduced risk for bleeding and perforated gastroduodenal ulcers attributable to non-steroidal anti-inflammatory drugs: a nested case-control study

    PubMed Central

    Vonkeman, Harald E; Fernandes, Robert W; van der Palen, Job; van Roon, Eric N; van de Laar, Mart AFJ

    2007-01-01

    Treatment with non-steroidal anti-inflammatory drugs (NSAIDs) is hampered by gastrointestinal ulcer complications, such as ulcer bleeding and perforation. The efficacy of proton-pump inhibitors in the primary prevention of ulcer complications arising from the use of NSAIDs remains unproven. Selective cyclooxygenase-2 (COX-2) inhibitors reduce the risk for ulcer complications, but not completely in high-risk patients. This study determines which patients are especially at risk for NSAID ulcer complications and investigates the effectiveness of different preventive strategies in daily clinical practice. With the use of a nested case-control design, a large cohort of NSAID users was followed for 26 months. Cases were patients with NSAID ulcer complications necessitating hospitalisation; matched controls were selected from the remaining cohort of NSAID users who did not have NSAID ulcer complications. During the observational period, 104 incident cases were identified from a cohort of 51,903 NSAID users with 10,402 patient years of NSAID exposure (incidence 1% per year of NSAID use, age at diagnosis 70.4 ± 16.7 years (mean ± SD), 55.8% women), and 284 matched controls. Cases were characterised by serious, especially cardiovascular, co-morbidity. In-hospital mortality associated with NSAID ulcer complications was 10.6% (incidence 21.2 per 100,000 NSAID users). Concomitant proton-pump inhibitors (but not selective COX-2 inhibitors) were associated with a reduced risk for NSAID ulcer complications (the adjusted odds ratio 0.33; 95% confidence interval 0.17 to 0.67; p = 0.002). Especially at risk for NSAID ulcer complications are elderly patients with cardiovascular co-morbidity. Proton-pump inhibitors are associated with a reduced risk for NSAID ulcer complications. PMID:17521422

  11. P21, COX-2, and E-cadherin are potential prognostic factors for esophageal squamous cell carcinoma.

    PubMed

    Lin, Yao; Shen, Lu-Yan; Fu, Hao; Dong, Bin; Yang, He-Li; Yan, Wan-Pu; Kang, Xiao-Zheng; Dai, Liang; Zhou, Hai-Tao; Yang, Yong-Bo; Liang, Zhen; Chen, Ke-Neng

    2017-02-01

    Much research effort has been devoted to identifying prognostic factors for esophageal squamous cell carcinoma (ESCC) by immunohistochemistry; however, no conclusive findings have been reached thus far. We hypothesized that certain molecules identified in previous studies might serve as useful prognostic markers for ESCC. Therefore, the aim of the current study was to validate the most relevant markers showing potential for ESCC prognosis in our prospective esophageal cancer database. A literature search was performed using the PubMed database for papers published between 1980 and 2015 using the following key words: 'esophageal cancer,' 'prognosis,' and 'immunohistochemistry.' Literature selection criteria were established to identify the most widely studied markers, and we further validated the selected markers in a cohort from our single-surgeon team, including 153 esophageal cancer patients treated from 2000 to 2010. A total of 1799 articles were identified, 82 of which met the selection criteria. Twelve markers were found to be the most widely studied, and the validation results indicated that only P21, COX-2, and E-cadherin were independent prognostic factors for ESCC patients in this series. The systemic review and cohort validation suggest that P21, COX-2, and E-cadherin are potential prognostic factors for ESCC, paving the way for more targeted prospective validation in the future. © 2016 International Society for Diseases of the Esophagus.

  12. Effect of (S)-4-(1-(5-chloro-2-(4-fluorophenyoxy)benzamido)ethyl) benzoic acid (CJ-42794), a selective antagonist of prostaglandin E receptor subtype 4, on ulcerogenic and healing responses in rat gastrointestinal mucosa.

    PubMed

    Takeuchi, Koji; Tanaka, Akiko; Kato, Shinichi; Aihara, Eitaro; Amagase, Kikuko

    2007-09-01

    Recent research showed the involvement of prostaglandin E receptor subtype 4 (EP4) in hypersensitivity to inflammatory pain and suggested that the EP4 receptor is a potential target for the pharmacological treatment of inflammatory pain. We examined the effects of (S)-4-(1-(5-chloro-2-(4-fluorophenyoxy) benzamido)ethyl) benzoic acid (CJ-42794), a selective EP4 antagonist, on gastrointestinal ulcerogenic and healing responses in rats, in comparison with those of various cyclooxygenase (COX) inhibitors. CJ-42794 alone, given p.o., did not produce any damage in the gastrointestinal mucosa, similar to 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560) (COX-1 inhibitor) or rofecoxib (COX-2 inhibitor), whereas indomethacin (nonselective COX inhibitor) caused gross lesions. Rofecoxib but not CJ-42794, however, damaged these tissues when coadministered with SC-560 and aggravated gastric lesions produced by aspirin. Indomethacin and SC-560 worsened the gastric ulcerogenic response to cold-restraint stress, yet neither CJ-42794 nor rofecoxib had any effect. Furthermore, indomethacin and SC-560 at lower doses damaged the stomach and small intestine of adjuvant arthritic rats. In arthritic rats, rofecoxib but not CJ-42794 provoked gastric ulceration, whereas CJ-42794 produced little damage in the small intestine. The repeated administration of CJ-42794 and rofecoxib as well as indomethacin impaired the healing of chronic gastric ulcers with a down-regulation of vascular endothelial growth factor expression in the ulcerated mucosa. These results suggest that CJ-42794 does not cause any damage in the normal rat gastrointestinal mucosa and in the arthritic rat stomach and does not worsen the gastric ulcerogenic response to stress or aspirin in normal rats, although this agent slightly damages the small intestine of arthritic rats and impairs the healing of gastric ulcers.

  13. Fractals and self-organized criticality in anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2014-12-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX-1 and COX-2) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective inhibitors. Extensive structural studies of the biology of prostaglandin synthesis and inhibition have explained some of the differences between COX-1 and COX-2 functionality, but others are still unexplained. Notably these include molecular differences that cause COX-1 inhibitors to produce a slight decrease, and COX-2 inhibitors to induce a significant increase, in heart attacks and strokes. These differences were unexpected because of the 60% overall COX-1 and COX-2 sequence similarity and the 1-2 conservation of catalytic sites. Hydropathic analysis shows important bicyclic differences between COX-1 and COX-2 on a large scale outside the catalytic pocket. These differences involve much stronger amphiphilic interactions in COX-2 than in COX-1, and may explain the selective antiplatelet effectiveness of COX-2. Success of the non-Euclidean structural analysis is the result of using the new Brazilian hydropathicity scale based on self-organized criticality (SOC) of universal protein modules.

  14. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc., Miami, FL 33173; Zhu, Min

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulationmore » of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.« less

  15. Comparative analysis of COX-2, vascular endothelial growth factor and microvessel density in human renal cell carcinomas.

    PubMed

    Hemmerlein, B; Galuschka, L; Putzer, N; Zischkau, S; Heuser, M

    2004-12-01

    Cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) are frequently up-regulated in malignant tumours and play a role in proliferation, apoptosis, angiogenesis and tumour invasion. In the present study, the expression of COX-2 and VEGF in renal cell carcinoma (RCC) was analysed and correlated with the microvessel density (MVD). COX-2 and VEGF were analysed by realtime reverse transcriptase-polymerase chain reaction and immunohistochemistry. The MVD was assessed by CD31 immunohistochemistry. The expression of COX-2 and VEGF was determined in the RCC cell lines A498 and Caki-1 under short-term hypoxia and in multicellular tumour cell aggregates. COX-2 was expressed in RCC by tumour epithelia, endothelia and macrophages in areas of cystic tumour regression and tumour necrosis. COX-2 protein in RCC was not altered in comparison with normal renal tissue. VEGF mRNA was up-regulated in RCC and positively correlated with MVD. RCC with high up-regulation of VEGF mRNA showed weak intracytoplasmic expression of VEGF in tumour cells. Intracytoplasmic VEGF protein expression was negatively correlated with MVD. In RCC with necrosis the MVD was reduced in comparison with RCC without necrosis. A498 RCC cells down-regulated COX-2 and up-regulated VEGF under conditions of hypoxia. In Caki-1 cells COX-2 expression remained stable, whereas VEGF was significantly up-regulated. In multicellular A498 cell aggregates COX-2 and VEGF were up-regulated centrally, whereas no gradient was found in Caki-1 cells. COX-2 and VEGF are potential therapeutic targets because COX-2 and VEGF are expressed in RCC and associated cell populations such as endothelia and monocytes/macrophages.

  16. Inflammation in gastric cancer: Interplay of the COX-2/prostaglandin E2 and Toll-like receptor/MyD88 pathways.

    PubMed

    Echizen, Kanae; Hirose, Osamu; Maeda, Yusuke; Oshima, Masanobu

    2016-04-01

    Cyclooxygenase-2 (COX-2) and its downstream product prostaglandin E2 (PGE2 ) play a key role in generation of the inflammatory microenvironment in tumor tissues. Gastric cancer is closely associated with Helicobacter pylori infection, which stimulates innate immune responses through Toll-like receptors (TLRs), inducing COX-2/PGE2 pathway through nuclear factor-κB activation. A pathway analysis of human gastric cancer shows that both the COX-2 pathway and Wnt/β-catenin signaling are significantly activated in tubular-type gastric cancer, and basal levels of these pathways are also increased in other types of gastric cancer. Expression of interleukin-11, chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2, and CXCL5, which play tumor-promoting roles through a variety of mechanisms, is induced in a COX-2/PGE2 pathway-dependent manner in both human and mouse gastric tumors. Moreover, the COX-2/PGE2 pathway plays an important role in the maintenance of stemness with expression of stem cell markers, including CD44, Prom1, and Sox9, which are induced in both gastritis and gastric tumors through a COX-2/PGE2 -dependent mechanism. In contrast, disruption of Myd88 results in suppression of the inflammatory microenvironment in gastric tumors even when the COX-2/PGE2 pathway is activated, indicating that the interplay of the COX-2/PGE2 and TLR/MyD88 pathways is needed for inflammatory response in tumor tissues. Furthermore, TLR2/MyD88 signaling plays a role in maintenance of stemness in normal stem cells as well as gastric tumor cells. Accordingly, these results suggest that targeting the COX-2/PGE2 pathway together with TLR/MyD88 signaling, which would suppress the inflammatory microenvironment and maintenance of stemness, could be an effective preventive or therapeutic strategy for gastric cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  17. Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice.

    PubMed

    Kiraly, Alex J; Soliman, Eman; Jenkins, Audrey; Van Dross, Rukiyah T

    2016-01-01

    Non-melanoma skin cancer (NMSC) is the most prevalent cancer in the United States. NMSC overexpresses cyclooxygenase-2 (COX-2). COX-2 synthesizes prostaglandins such as PGE2 which promote proliferation and tumorigenesis by engaging G-protein-coupled prostaglandin E receptors (EP). Apigenin is a bioflavonoid that blocks mouse skin tumorigenesis induced by the chemical carcinogens, 7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). However, the effect of apigenin on the COX-2 pathway has not been examined in the DMBA/TPA skin tumor model. In the present study, apigenin decreased tumor multiplicity and incidence in DMBA/TPA-treated SKH-1 mice. Analysis of the non-tumor epidermis revealed that apigenin reduced COX-2, PGE2, EP1, and EP2 synthesis and also increased terminal differentiation. In contrast, apigenin did not inhibit the COX-2 pathway or promote terminal differentiation in the tumors. Since fewer tumors developed in apigenin-treated animals which contained reduced epidermal COX-2 levels, our data suggest that apigenin may avert skin tumor development by blocking COX-2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. ZN2+ INDUCES COX-2 EXPRESSION THROUGH DOWNREGULATION OF LIPID PHOSPHATASE PTEN

    EPA Science Inventory

    Zn2+ Induces COX-2 Expression through Downregulation of Lipid Phosphatase PTEN
    Weidong Wu*, James M. Samet, Philip A. Bromberg*?, Young E. Whang?, and Lee M. Graves* ?
    *CEMALB, ?Department of Medicine, and ?Department of Pharmacology, UNC-Chapel Hill, NC27599; Human Studie...

  19. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenjun; Ercan, Dalia; Chen, Liang

    2010-01-12

    The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potentmore » against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.« less

  20. Structural Biology Insight for the Design of Sub-type Selective Aurora Kinase Inhibitors.

    PubMed

    Sarvagalla, Sailu; Coumar, Mohane Selvaraj

    2015-01-01

    Aurora kinase A, B and C, are key regulators of mitosis and are over expressed in many of the human cancers, making them an ideal drug target for cancer chemotherapy. Currently, over a dozen of Aurora kinase inhibitors are in various phases of clinical development. The majority of the inhibitors (VX-680/MK-0457, PHA-739358, CYC116, SNS-314, AMG 900, AT-9283, SCH- 1473759, ABT-348, PF-03814735, R-763/AS-703569, KW-2449 and TAK-901) are pan-selective (isoform non-selective) and few are Aurora A (MLN8054, MLN8237, VX-689/MK5108 and ENMD 2076) and Aurora B (AZD1152 and GSK1070916) sub-type selective. Despite the intensive research efforts in the past decade, no Aurora kinase inhibitor has reached the market. Recent evidence suggests that the sub-type selective Aurora kinase A inhibitor could possess advantages over pan-selective Aurora inhibitors, by avoiding Aurora B mediated neutropenia. However, sub-type selective Aurora kinase A inhibitor design is very challenging due to the similarity in the active site among the isoforms. Structural biology and computational aspects pertaining to the design of Aurora kinase inhibitors were analyzed and found that a possible means to develop sub-type selective inhibitor is by targeting Aurora A specific residues (Leu215, Thr217 and Arg220) or Aurora B specific residues (Arg159, Glu161 and Lys164), near the solvent exposed region of the protein. Particularly, a useful strategy for the design of sub-type selective Aurora A inhibitor could be by targeting Thr217 residue as in the case of MLN8054. Further preclinical and clinical studies with the sub-type selective Aurora inhibitors could help bring them to the market for the treatment of cancer.

  1. Formononetin inhibits enterovirus 71 replication by regulating COX- 2/PGE₂ expression.

    PubMed

    Wang, Huiqiang; Zhang, Dajun; Ge, Miao; Li, Zhuorong; Jiang, Jiandong; Li, Yuhuan

    2015-03-01

    The activation of ERK, p38 and JNK signal cascade in host cells has been demonstrated to up-regulate of enterovirus 71 (EV71)-induced cyclooxygenase-2 (COX-2)/ prostaglandins E2 (PGE₂) expression which is essential for viral replication. So, we want to know whether a compound can inhibit EV71 infection by suppressing COX-2/PGE₂ expression. The antiviral effect of formononetin was determined by cytopathic effect (CPE) assay and the time course assays. The influence of formononetin for EV71 replication was determined by immunofluorescence assay, western blotting assay and qRT-PCR assay. The mechanism of the antiviral activity of formononetin was determined by western blotting assay and ELISA assay. Formononetin could reduce EV71 RNA and protein synthesis in a dose-dependent manner. The time course assays showed that formononetin displayed significant antiviral activity both before (24 or 12 h) and after (0-6 h) EV71 inoculation in SK-N-SH cells. Formononetin was also able to prevent EV71-induced cytopathic effect (CPE) and suppress the activation of ERK, p38 and JNK signal pathways. Furthermore, formononetin could suppress the EV71-induced COX-2/PGE₂ expression. Also, formononetin exhibited similar antiviral activities against other members of Picornaviridae including coxsackievirus B2 (CVB2), coxsackievirus B3 (CVB3) and coxsackievirus B6 (CVB6). Formononetin could inhibit EV71-induced COX-2 expression and PGE₂ production via MAPKs pathway including ERK, p38 and JNK. Formononetin exhibited antiviral activities against some members of Picornaviridae. These findings suggest that formononetin could be a potential lead or supplement for the development of new anti-EV71 agents in the future.

  2. Prostaglandin E(2) synthase inhibition as a therapeutic target.

    PubMed

    Iyer, Jitesh P; Srivastava, Punit K; Dev, Rishabh; Dastidar, Sunanda G; Ray, Abhijit

    2009-07-01

    Most NSAIDs function by inhibiting biosynthesis of PGE(2) by inhibition of COX-1 and/or COX-2. Since COX-1 has a protective function in the gastro-intestinal tract (GIT), non-selective inhibition of both cycloxy genases leads to moderate to severe gastro-intestinal intolerance. Attempts to identify selective inhibitors of COX-2, led to the identification of celecoxib and rofecoxib. However, long-term use of these drugs has serious adverse effects of sudden myocardial infarction and thrombosis. Drug-mediated imbalance in the levels of prostaglandin I(2) (PGI(2)) and thromboxane A(2) (TXA(2)) with a bias towards TXA(2) may be the primary reason for these events. This resulted in the drugs being withdrawn from the market, leaving a need for an effective and safe anti-inflammatory drug. Recently, the focus of research has shifted to enzymes downstream of COX in the prosta glandin biosynthetic pathway such as prostaglandin E(2) synthases. Microsomal prostaglandin E(2) synthase-1 (mPGES-1) specifically isomerizes PGH(2) to PGE(2), under inflammatory conditions. In this review, we examine the biology of mPGES-1 and its role in disease. Progress in designing molecules that can selectively inhibit mPGES-1 is reviewed. mPGES-1 has the potential to be a target for anti-inflammatory therapy, devoid of adverse GIT and cardiac effects and warrants further investigation.

  3. Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study

    PubMed Central

    de Abajo, Francisco José; Rodríguez, Luis Alberto García; Montero, Dolores

    1999-01-01

    Objective To examine the association between selective serotonin reuptake inhibitors and risk of upper gastrointestinal bleeding. Design Population based case-control study. Setting General practices included in the UK general practice research database. Subjects 1651 incident cases of upper gastrointestinal bleeding and 248 cases of ulcer perforation among patients aged 40 to 79 years between April 1993 and September 1997, and 10 000 controls matched for age, sex, and year that the case was identified. Interventions Review of computer profiles for all potential cases, and an internal validation study to confirm the accuracy of the diagnosis on the basis of the computerised information. Main outcome measures Current use of selective serotonin reuptake inhibitors or other antidepressants within 30 days before the index date. Results Current exposure to selective serotonin reuptake inhibitors was identified in 3.1% (52 of 1651) of patients with upper gastrointestinal bleeding but only 1.0% (95 of 10 000) of controls, giving an adjusted rate ratio of 3.0 (95% confidence interval 2.1 to 4.4). This effect measure was not modified by sex, age, dose, or treatment duration. A crude incidence of 1 case per 8000 prescriptions was estimated. A small association was found with non-selective serotonin reuptake inhibitors (relative risk 1.4, 1.1 to 1.9) but not with antidepressants lacking this inhibitory effect. None of the groups of antidepressants was associated with ulcer perforation. The concurrent use of selective serotonin reuptake inhibitors with non-steroidal anti-inflammatory drugs increased the risk of upper gastrointestinal bleeding beyond the sum of their independent effects (15.6, 6.6 to 36.6). A smaller interaction was also found between selective serotonin reuptake inhibitors and low dose aspirin (7.2, 3.1 to 17.1). Conclusions Selective serotonin reuptake inhibitors increase the risk of upper gastrointestinal bleeding. The absolute effect is, however

  4. Inhibition of cyclooxygenase-2 (COX-2) by meloxicam decreases the incidence of ovarian hyperstimulation syndrome in a rat model.

    PubMed

    Quintana, Ramiro; Kopcow, Laura; Marconi, Guillermo; Young, Edgardo; Yovanovich, Carola; Paz, Dante A

    2008-10-01

    To investigate the effects of selective cyclooxygenase-2 (COX-2) inhibition on the ovarian hyperstimulation syndrome (OHSS) in an experimental model. Controlled laboratory study. University-affiliated fertility center. Female Wistar rats. Female Wistar rats (22 days old) were divided into four groups: group 1 (control group; n = 10) received 0.1 mL of intraperitoneal (IP) saline from days 22-26; group 2 (mild-stimulated group; n = 10) received 10 IU of pregnant mare serum gonadotropin (PMSG) on day 24 and 10 IU of hCG 48 hours later (day 26); group 3 (OHSS group; n = 10) was given 10 IU of PMSG for 4 consecutive days from day 22 and 30 IU hCG on the fifth day to induce OHSS; group 4 was treated the same as group 3, but received 2 muL (15 mg/mL) of meloxicam 2 hours before the PMSG injection for 4 consecutive days, and 2 hours before the hCG injection on the fifth day. All groups were killed on day 26. Number of antral and luteinized follicles, ovarian weight, semiquantitative vascular endothelial growth factor (VEGF) and COX-2 immunohistochemistry. There were no differences in the ovarian weight between groups 1 and 2. Group 3 showed significantly increased ovarian weight that was suppressed, in group 4, by meloxicam. There was no difference in the number of antral follicles among the four groups. In the mild-stimulated and OHSS groups, the granulosa cells (GC) of preovulatory follicles and the stromal cells showed intense VEGF immunoreactivity. The ovaries from the meloxicam-treated group showed less immunoreactivity than the OHSS group, indicating diminished VEGF expression associated with meloxicam treatment. Group 3 (OHSS group) showed increased COX-2 immunoreactivity that was diminished in the meloxicam-treated group. Meloxicam treatment did not affect the hormone-induced increase in serum E(2) levels seen in OHSS rats. Our results in a rat model suggest that meloxicam has a beneficial effect on OHSS by reducing the increases in ovarian weight and VEGF

  5. HPV16 E6 Promotes Breast Cancer Proliferation via Upregulation of COX-2 Expression

    PubMed Central

    Li, Y. Z.; Zhang, Z. Y.; Wang, J. Q.

    2017-01-01

    Background. Breast cancer remains the leading cause of cancer-related mortality worldwide. It has been indicated that human papillomaviruses 16 (HPV16) might participate in the pathogenesis and development of breast cancer. However, the detected rate of HPV16 varies with region. We will investigate HPV16 E6 expression in North China and explore the effects and mechanism of HPV16 E6 on breast cancer proliferation in this study. Methods. The expressions of HPV16 E6 and COX-2 in paraffin-embedded tissues of the invasive ductal breast cancer were detected by qPCR and IHC. The effects of HPV16 E6 on breast cancer proliferation were determined by function studies. The mechanism of HPV16 E6 in promoting breast cancer proliferation was explored by Western blot and Dual-Luciferase Reporter Assay. Results. HPV16 E6 was positive in 28% invasive ductal breast carcinoma in North China; HPV16 E6 promoted breast cancer proliferation. Inhibition of COX-2 by siCOX-2 or Celecoxib attenuated the proliferation of breast cancer cells with HPV16 E6 expression; and the upregulation of COX-2 could be suppressed by the inhibition of NF-κB activity. Conclusion. HPV16 E6 promotes breast cancer proliferation by activation of NF-κB signaling pathway and increase of COX-2 expression. COX-2 will be a potential target for HPV16 E6-associated breast cancer. PMID:29250535

  6. Synergism between COX-3 inhibitors in two animal models of pain.

    PubMed

    Muñoz, J; Navarro, C; Noriega, V; Pinardi, G; Sierralta, F; Prieto, J C; Miranda, H F

    2010-04-01

    The antinociception induced by the intraperitoneal coadministration in mice of combinations of metamizol and paracetamol was evaluated in the tail flick test and orofacial formalin test. The antinociception of each drugs alone and the interaction of the combinations was evaluated by isobolographic analysis in the tail-flick and in the formalin orofacial assay of mice. Mice pretreated with the drugs demonstrated that the antinociception of metamizol and paracetamol is dose-dependent. The potency range on the antinocifensive responses for metamizol or paracetamol was as follows: orofacial (Phase II) > orofacial (Phase I) > tail flick. In addition, the coadministration of metamizol with paracetamol induced a strong synergistic antinociception in the algesiometer assays. Both drugs showed effectiveness in inflammatory pain. These actions can be related to the differential selectivity of the drugs for inhibition of COX isoforms and also to the several additional antinociception mechanisms and pathways initiated by the analgesic drugs on pain transmission. Since the efficacy of the combination of metamizol with paracetamol has been demonstrated in the present study, this association could have a potential beneficial effect on the pharmacological treatment of clinical pain.

  7. Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation

    NASA Technical Reports Server (NTRS)

    Leong, J.; Hughes-Fulford, M.; Rakhlin, N.; Habib, A.; Maclouf, J.; Goldyne, M. E.

    1996-01-01

    Epidermal expression of the two isoforms of the prostaglandin H-generating cyclooxygenase (COX-1 and COX-2) was evaluated both by immunohistochemistry performed on human and mouse skin biopsy sections and by Western blotting of protein extracts from cultured human neonatal foreskin keratinocytes. In normal human skin, COX-1 immunostaining is observed throughout the epidermis whereas COX-2 immunostaining increases in the more differentiated, suprabasilar keratinocytes. Basal cell carcinomas express little if any COX-1 or COX-2 immunostaining whereas both isozymes are strongly expressed in squamous cell carcinomas deriving from a more differentiated layer of the epidermis. In human keratinocyte cultures, raising the extracellular calcium concentration, a recognized stimulus for keratinocyte differentiation, leads to an increased expression of both COX-2 protein and mRNA; expression of COX-1 protein, however, shows no significant alteration in response to calcium. Because of a recent report that failed to show COX-2 in normal mouse epidermis, we also looked for COX-1 and COX-2 immunostaining in sections of normal and acetone-treated mouse skin. In agreement with a previous report, some COX-1, but no COX-2, immunostaining is seen in normal murine epidermis. However, following acetone treatment, there is a marked increase in COX-1 expression as well as the appearance of significant COX-2 immunostaining in the basal layer. These data suggest that in human epidermis as well as in human keratinocyte cultures, the expression of COX-2 occurs as a part of normal keratinocyte differentiation whereas in murine epidermis, its constitutive expression is absent, but inducible as previously published.

  8. A specific pharmacophore model of sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors.

    PubMed

    Tang, Chunlei; Zhu, Xiaoyun; Huang, Dandan; Zan, Xin; Yang, Baowei; Li, Ying; Du, Xiaoyong; Qian, Hai; Huang, Wenlong

    2012-06-01

    Sodium-dependent glucose co-transporter 2 (SGLT2) plays a pivotal role in maintaining glucose equilibrium in the human body, emerging as one of the most promising targets for the treatment of diabetes mellitus type 2. Pharmacophore models of SGLT2 inhibitors have been generated with a training set of 25 SGLT2 inhibitors using Discovery Studio V2.1. The best hypothesis (Hypo1(SGLT2)) contains one hydrogen bond donor, five excluded volumes, one ring aromatic and three hydrophobic features, and has a correlation coefficient of 0.955, cost difference of 68.76, RMSD of 0.85. This model was validated by test set, Fischer randomization test and decoy set methods. The specificity of Hypo1(SGLT2) was evaluated. The pharmacophore features of Hypo1(SGLT2) were different from the best pharmacophore model (Hypo1(SGLT1)) of SGLT1 inhibitors we developed. Moreover, Hypo1(SGLT2) could effectively distinguish selective inhibitors of SGLT2 from those of SGLT1. These results indicate that a highly predictive and specific pharmacophore model of SGLT2 inhibitors has been successfully obtained. Then Hypo1(SGLT2) was used as a 3D query to screen databases including NCI and Maybridge for identifying new inhibitors of SGLT2. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five. And several compounds selected from the top ranked hits have been suggested for further experimental assay studies.

  9. Phloretin inhibits interleukin-1β-induced COX-2 and ICAM-1 expression through inhibition of MAPK, Akt, and NF-κB signaling in human lung epithelial cells.

    PubMed

    Huang, Wen-Chung; Wu, Shu-Ju; Tu, Rong-Syuan; Lai, You-Rong; Liou, Chian-Jiun

    2015-06-01

    Phloretin, a flavonoid isolated from the apple tree, is reported to have anti-inflammatory, anti-oxidant, and anti-adiposity effects. In this study, we evaluated the suppressive effects of phloretin on intercellular adhesion molecule 1 (ICAM-1) and cyclooxygenase (COX)-2 expression in IL-1β-stimulated human lung epithelial A549 cells. The cells were pretreated with various concentrations of phloretin (3-100 μM), followed by induced inflammation by IL-1β. Phloretin inhibited levels of prostaglandin E2, decreased COX-2 expression, and suppressed IL-8, monocyte chemotactic protein 1, and IL-6 production. It also decreased ICAM-1 gene and protein expression and suppressed monocyte adhesion to inflammatory A549 cells. Phloretin also significantly inhibited Akt and mitogen-activated protein kinase (MAPK) phosphorylation and decreased nuclear transcription factor kappa-B (NF-κB) subunit p65 protein translocation into the nucleus. In addition, ICAM-1 and COX-2 expression was suppressed by pretreatment with both MAPK inhibitors and phloretin in inflammatory A549 cells. However, phlorizin, a derivative of phloretin, did not suppress the inflammatory response in IL-1β-stimulated A549 cells. These results suggest that phloretin might have an anti-inflammatory effect by inhibiting proinflammatory cytokine, COX-2, and ICAM-1 expression via blocked NF-κB and MAPK signaling pathways.

  10. The design strategy of selective PTP1B inhibitors over TCPTP.

    PubMed

    Li, XiangQian; Wang, LiJun; Shi, DaYong

    2016-08-15

    Protein tyrosine phosphatase 1B (PTP1B) has already been well studied as a highly validated therapeutic target for diabetes and obesity. However, the lack of selectivity limited further studies and clinical applications of PTP1B inhibitors, especially over T-cell protein tyrosine phosphatase (TCPTP). In this review, we enumerate the published specific inhibitors of PTP1B, discuss the structure-activity relationships by analysis of their X-ray structures or docking results, and summarize the characteristic of selectivity related residues and groups. Furthermore, the design strategy of selective PTP1B inhibitors over TCPTP is also proposed. We hope our work could provide an effective way to gain specific PTP1B inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors.

    PubMed

    Liu, Tong-Chao; Peng, Xia; Ma, Yu-Chi; Ji, Yin-Chun; Chen, Dan-Qi; Zheng, Ming-Yue; Zhao, Dong-Mei; Cheng, Mao-Sheng; Geng, Mei-Yu; Shen, Jing-Kang; Ai, Jing; Xiong, Bing

    2016-05-01

    Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs.

  12. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors

    PubMed Central

    Liu, Tong-chao; Peng, Xia; Ma, Yu-chi; Ji, Yin-chun; Chen, Dan-qi; Zheng, Ming-yue; Zhao, Dong-mei; Cheng, Mao-sheng; Geng, Mei-yu; Shen, Jing-kang; Ai, Jing; Xiong, Bing

    2016-01-01

    Aim: Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Methods: Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. Results: The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. Conclusion: This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs. PMID:27041462

  13. Identification of a new selective chemical inhibitor of mutant isocitrate dehydrogenase-1.

    PubMed

    Kim, Hyo-Joon; Choi, Bu Young; Keum, Young-Sam

    2015-03-01

    Recent genome-wide sequencing studies have identified unexpected genetic alterations in cancer. In particular, missense mutations in isocitrate dehydrogenase-1 (IDH1) at arginine 132, mostly substituted into histidine (IDH1-R132H) were observed to frequently occur in glioma patients. We have purified recombinant IDH1 and IDH1-R132H proteins and monitored their catalytic activities. In parallel experiments, we have attempted to find new selective IDH1-R132H chemical inhibitor(s) from a fragment-based chemical library. We have found that IDH1, but not IDH1-R132H, can catalyze the conversion of isocitrate into α-ketoglutarate (α-KG). In addition, we have observed that IDH1-R132H was more efficient than IDH1 in converting α-KG into (R)-2-hydroxyglutarate (R-2HG). Moreover, we have identified a new hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one as a new selective IDH1-R132H inhibitor. We have observed an underlying biochemical mechanism explaining how a heterozygous IDH1 mutation contributes to the generation of R-2HG and increases cellular histone H3 trimethylation levels. We have also identified a novel selective IDH1-R132H chemical hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one, which could be used for a future lead development against IDH1-R132H.

  14. Identification of a New Selective Chemical Inhibitor of Mutant Isocitrate Dehydrogenase-1

    PubMed Central

    Kim, Hyo-Joon; Choi, Bu Young; Keum, Young-Sam

    2015-01-01

    Background: Recent genome-wide sequencing studies have identified unexpected genetic alterations in cancer. In particular, missense mutations in isocitrate dehydrogenase-1 (IDH1) at arginine 132, mostly substituted into histidine (IDH1-R132H) were observed to frequently occur in glioma patients. Methods: We have purified recombinant IDH1 and IDH1-R132H proteins and monitored their catalytic activities. In parallel experiments, we have attempted to find new selective IDH1-R132H chemical inhibitor(s) from a fragment-based chemical library. Results: We have found that IDH1, but not IDH1-R132H, can catalyze the conversion of isocitrate into α-ketoglutarate (α-KG). In addition, we have observed that IDH1-R132H was more efficient than IDH1 in converting α-KG into (R)-2-hydroxyglutarate (R-2HG). Moreover, we have identified a new hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one as a new selective IDH1-R132H inhibitor. Conclusions: We have observed an underlying biochemical mechanism explaining how a heterozygous IDH1 mutation contributes to the generation of R-2HG and increases cellular histone H3 trimethylation levels. We have also identified a novel selective IDH1-R132H chemical hit molecule, e.g., 2-(3-trifluoromethylphenyl)isothioazol-3(2H)-one, which could be used for a future lead development against IDH1-R132H. PMID:25853107

  15. Evaluation of P1'-diversified phosphinic peptides leads to the development of highly selective inhibitors of MMP-11.

    PubMed

    Matziari, Magdalini; Beau, Fabrice; Cuniasse, Philippe; Dive, Vincent; Yiotakis, Athanasios

    2004-01-15

    Phosphinic peptides were previously reported to be potent inhibitors of several matrixins (MMPs). To identify more selective inhibitors of MMP-11, a matrixin overexpressed in breast cancer, a series of phosphinic pseudopeptides bearing a variety of P(1)'-side chains has been synthesized, by parallel diversification of a phosphinic template. The potencies of these compounds were evaluated against a set of seven MMPs (MMP-2, MMP-7, MMP-8, MMP-9, MMP-11, MMP-13, and MMP-14). The chemical strategy applied led to the identification of several phosphinic inhibitors displaying high selectivity toward MMP-11. One of the most selective inhibitors of MMP-11 in this series, compound 22, exhibits a K(i) value of 0.23 microM toward MMP-11, while its potency toward the other MMPs tested is 2 orders of magnitude lower. This remarkable selectivity may rely on interactions of the P(1)'-side chain atoms of these inhibitors with residues located at the entrance of the S(1)'-cavity of MMP-11. The design of inhibitors able to interact with residues located at the entrance of MMPs' S(1)'-cavity might represent an alternative strategy to identify selective inhibitors that will fully differentiate one MMP among the others.

  16. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts.

    PubMed

    Lee, Tsung-Ming; Chang, Nen-Chung; Lin, Shinn-Zong

    2017-03-01

    During myocardial infarction, infiltrated macrophages have pivotal roles in cardiac remodeling and delayed M1 toward M2 macrophage phenotype transition is considered one of the major factors for adverse ventricular remodeling. We investigated whether dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, attenuates cardiac fibrosis via regulating macrophage phenotype by a reactive oxygen and nitrogen species (RONS)/STAT3-dependent pathway in postinfarcted rats. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline, dapagliflozin (a specific SGLT2 inhibitor), phlorizin (a nonspecific SGLT1/2 inhibitor), dapagliflozin + S3I-201 (a STAT3 inhibitor), or phlorizin + S3I-201 for 4 weeks. There were similar infarct sizes among the infarcted groups at the acute and chronic stages of infarction. At day 3 after infarction, post-infarction was associated with increased levels of superoxide and nitrotyrosine, which can be inhibited by administering either dapagliflozin or phlorizin. SGLT2 inhibitors significantly increased STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels and the percentage of M2 macrophage infiltration. At day 28 after infarction, SGLT2 inhibitors were associated with attenuated myofibroblast infiltration and cardiac fibrosis. Although phlorizin decreased myofibroblast infiltration, the effect of dapagliflozin on attenuated myofibroblast infiltration was significantly higher than phlorizin. The effects of SGLT2 inhibitors on cardiac fibrosis were nullified by adding S3I-201. Furthermore, the effects of dapagliflozin on STAT3 activity and myocardial IL-10 levels can be reversed by 3-morpholinosydnonimine, a peroxynitrite generator. Taken together, these observations provide a novel mechanism of SGLT2 inhibitors-mediated M2 polarization through a RONS-dependent STAT3-mediated pathway and selective SGLT2 inhibitors are more effective in attenuating myofibroblast infiltration during

  17. COX-2 and SCD, markers of inflammation and adipogenesis, are related to disease activity in Graves' ophthalmopathy.

    PubMed

    Vondrichova, Tereza; de Capretz, Annika; Parikh, Hemang; Frenander, Christofer; Asman, Peter; Aberg, Magnus; Groop, Leif; Hallengren, Bengt; Lantz, Mikael

    2007-06-01

    Inflammation and adipogenesis are two parallel processes with increased activity in severe Graves' ophthalmopathy. The aim of this work was to define target genes for therapeutic intervention in adipogenesis and inflammation in Graves' ophthalmopathy. Orbital tissue was obtained from patients with ophthalmopathy in acute or chronic phase undergoing orbital surgery to study gene expression followed by the study of potential intervention mechanisms in preadipocytes. Clinic of Endocrinology, University Hospital, Malmö, Sweden. Patients in acute severe or in chronic phase of ophthalmopathy. Lateral orbital decompression in acute phase and restorative surgery in chronic phase. In vitro treatment of preadipocytes with rosiglitazone and diclofenac. Gene expression in intraorbital tissue or preadipocytes and differentiation of preadipocytes. A marker of adipose tissue, stearoyl-coenzyme A desaturase (SCD), and the proinflammatory gene, cyclooxygenase-2 (COX-2), were overexpressed in patients in active phase compared to the chronic phase of ophthalmopathy. In growth-arrested preadipocytes stimulated with rosiglitazone, COX-2 expression increased temporarily within 1 hour and decreased to undetectable levels after 48 hours. In contrast, SCD and peroxisome proliferator-activated receptor-gamma (PPAR-gamma) expression increased continuously from day 2 to day 7 during adipogenesis. Diclofenac, an inhibitor of cyclooxygenases with antagonistic effects on PPAR-gamma, reduced the number of mature adipocytes by approximately 50%. We conclude that inflammation and adipogenesis decrease with a decrease in activity of ophthalmopathy and that the nonsteroidal antiinflammatory drug diclofenac inhibits adipogenesis. This may represent a putative future treatment of endocrine ophthalmopathy.

  18. The selectivity and promiscuity of brain-neuroregenerative inhibitors between ROCK1 and ROCK2 isoforms: An integration of SB-QSSR modelling, QM/MM analysis and in vitro kinase assay.

    PubMed

    Zhu, L; Yang, Y; Lu, X

    2016-01-01

    The Rho-associated kinases (ROCKs) have long been recognized as an attractive therapeutic target for various neurological diseases; selective inhibition of ROCK1 and ROCK2 isoforms would result in distinct biological effects on neurogenesis, neuroplasticity and neuroregeneration after brain surgery and traumatic brain injury. However, the discovery and design of isoform-selective inhibitors remain a great challenge due to the high conservation and similarity between the kinase domains of ROCK1 and ROCK2. Here, a structure-based quantitative structure-selectivity relationship (SB-QSSR) approach was used to correlate experimentally measured selectivity with the difference in inhibitor binding to the two kinase isoforms. The resulting regression models were examined rigorously through both internal cross-validation and external blind validation; a nonlinear predictor was found to have high fitting stability and strong generalization ability, which was then employed to perform virtual screening against a structurally diverse, drug-like compound library. Consequently, five and seven hits were identified as promising candidates of 1-o-2 and 2-o-1 selective inhibitors, respectively, from which seven purchasable compounds were tested in vitro using a standard kinase assay protocol to determine their inhibitory activity against and selectivity between ROCK1 and ROCK2. The structural basis, energetic property and biological implication underlying inhibitor selectivity and promiscuity were also investigated systematically using a hybrid quantum mechanics/molecular mechanics (QM/MM) scheme.

  19. Covalent inhibitors: an opportunity for rational target selectivity.

    PubMed

    Lagoutte, Roman; Patouret, Remi; Winssinger, Nicolas

    2017-08-01

    There is a resurging interest in compounds that engage their target through covalent interactions. Cysteine's thiol is endowed with enhanced reactivity, making it the nucleophile of choice for covalent engagement with a ligand aligning an electrophilic trap with a cysteine residue in a target of interest. The paucity of cysteine in the proteome coupled to the fact that closely related proteins do not necessarily share a given cysteine residue enable a level of unprecedented rational target selectivity. The recent demonstration that a lysine's amine can also be engaged covalently with a mild electrophile extends the potential of covalent inhibitors. The growing database of protein structures facilitates the discovery of covalent inhibitors while the advent of proteomic technologies enables a finer resolution in the selectivity of covalently engaged proteins. Here, we discuss recent examples of discovery and design of covalent inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Eckols reduce dental pulp inflammation through the ERK1/2 pathway independent of COX-2 inhibition.

    PubMed

    Paudel, U; Lee, Y H; Kwon, T H; Park, N H; Yun, B S; Hwang, P H; Yi, H K

    2014-11-01

    The aim of this study was to elucidate the role of 6-6 bieckol (EB1) and pholorofucofuroeckol-A (EB5) from brown seaweed marine algae (Eisenia bicyclis) on lipopolysaccharide (LPS)-induced inflammation in human dental pulp cells (HDPCs). The cytotoxicity of EB1 and EB5 was examined by MTT assay on LPS-induced human dental pulp cells. Their role on expression of inflammatory, odontogenic, and osteogenic molecules was determined by Western blot analysis. The dentin mineralization was checked by alkaline phosphatase activity. The five compounds from E. bicyclis have different structure with non-cytotoxic in HDPCs. EB1 and EB5 showed anti-inflammatory properties and inhibited phosphorylated-extracellular signal-regulated kinase (p-ERK1/2) and phosphorylated-c-jun N-terminal kinases (p-JNK) without any cytotoxicity. In particular, EB1 inhibited cyclooxygenase-2 (COX-2) and p-ERK1/2 signaling, and EB5 inhibited only p-ERK1/2 signaling but not COX-2. Both compounds inhibited nuclear factor kappa-B (NF-κB) translocation. Furthermore, EB1 and EB5 increased dentinogenic and osteogenic molecules, and dentin mineralized via alkaline phosphatase activity (ALP) in LPS-induced HDPCs. This study elucidates that EB1 and EB5 have different types of anti-inflammatory property and help in dentin formation. Therefore, these compounds derived from marine algae of E. bicyclis may be used as selective therapeutic strategies for pulpitis and oral diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.