Science.gov

Sample records for cpp-603a basin facility

  1. The Removal Action Work Plan for CPP-603A Basin Facility

    SciTech Connect

    B. T. Richards

    2006-06-05

    This revised Removal Action Work Plan describes the actions to be taken under the non-time-critical removal action recommended in the Action Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center, as evaluated in the Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center. The regulatory framework outlined in this Removal Action Work Plan has been modified from the description provided in the Engineering Evaluation/Cost Analysis (DOE/NE-ID-11140, Rev. 1, August 2004). The modification affects regulation of sludge removal, treatment, and disposal, but the end state and technical approaches have not changed. Revision of this document had been delayed until the basin sludge was successfully managed. This revision (Rev. 1) has been prepared to provide information that was not previously identified in Rev. 0 to describe the removal, treatment, and disposal of the basin water at the Idaho National Laboratory (INL) CERCLA Disposal Facility evaporation ponds and fill the basins with grout/controlled low strength material (CLSM) was developed. The Engineering Evaluation/Cost Analysis for the CPP-603A Basin Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center - conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act - evaluated risks associated with deactivation of the basins and alternatives for addressing those risks. The decision to remove and dispose of the basin water debris not containing uranium grouted in place after the sludge has been removed and managed under the Hazardous Waste Management Act/Resource Conservation and Recovery Act has been documented in the Act Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center.

  2. Final Removal Action Report of the CPP-603A Basin Facility

    SciTech Connect

    D. V. Croson

    2007-01-04

    This Final Removal Action Report describes the actions that were taken under the non-time-critical removal action recommended in the Action Memorandum for the Non-Time Critical Removal Action at the CPP-603A Basins, Idaho Nuclear Technology and Engineering Center, as evaluated in the Engineering Evaluation/Cost Analysis for the CPP-603A Bason Non-Time Critical Removal Action, Idaho Nuclear Technology and Engineering Center. The Removal Action implemented consolidation and recording the location of debris objects containing radioactive cobalt (cobalt-60), removal and management of a small high-activity debris object (SHADO 1), the removal, treatment, and disposal of the basin water at the Idaho CERCLA Disposal Facility (ICDF) evaporation ponds, and filling the basins with grout/controlled low strength material.

  3. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    SciTech Connect

    Croson, D.V.; Davis, R.H.; Cooper, W.B.

    2007-07-01

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM

  4. LIQUID EFFLUENT RETENTION FACILITY (LERF) BASIN 42 STUDIES

    SciTech Connect

    DUNCAN JB

    2004-10-29

    This report documents laboratory results obtained under test plan RPP-21533 for samples submitted by the Effluent Treatment Facility (ETF) from the Liquid Effluent Retention Facility (LERF) Basin 42 (Reference 1). The LERF Basin 42 contains process condensate (PC) from the 242-A Evaporator and landfill leachate. The ETF processes one PC campaign approximately every 12 to 18 months. A typical PC campaign volume can range from 1.5 to 2.5 million gallons. During the September 2003 ETF Basin 42 processing campaign, a recurring problem with 'gelatinous buildup' on the outlet filters from 60A-TK-I (surge tank) was observed (Figure 1). This buildup appeared on the filters after the contents of the surge tank were adjusted to a pH of between 5 and 6 using sulfuric acid. Biological activity in the PC feed was suspected to be the cause of the gelatinous material. Due to this buildup, the filters (10 {micro}m CUNO) required daily change out to maintain process throughput.

  5. FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY LAYOUT OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS, FUEL ELEMENT CUTTING FACILITY, AND DRY GRAPHITE STORAGE FACILITY. INL DRAWING NUMBER 200-0603-00-030-056329. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. ENERGY FACILITY SITING PROCEDURES, CRITERIA, AND PUBLIC PARTICIPATION IN THE OHIO RIVER BASIN ENERGY STUDY REGION

    EPA Science Inventory

    The report was prepared in support of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program. Findings are presented on the adequacy of current review procedures, criteria, and public participation in energy facility siting (EFS) for nuclear and co...

  7. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  8. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  9. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  10. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    SciTech Connect

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  11. Distribution Coefficients (Kd Values) for Waste Resins Generated from the K and L Disassembly Basin Facilities

    SciTech Connect

    Kaplan, D.I.

    2002-12-02

    The objective of this study was to measure 14C, 129I, and 99Tc Kd values of spent resin generated from the K and L Disassembly Basin Facilities. The scope of the work was to conduct Kd measurements of resins combined in the ratio that they are disposed, 42:58 cation:anion. Because it was not known how these spent resins would be buried, it was necessary to measure the Kd values in such a manner as to simulate both trench and vault disposal. This was accomplished by using an acid-rain simulant (a standard U.S. Environmental Protection Agency protocol) and a cement leachate simulant .

  12. Velocity Measurements at Six Fish Screening Facilities in the Yakima River Basin, Washington, Summer 1988 : Annual Report.

    SciTech Connect

    Abernethy, C. Scott; Neitzel, Duane A.; Lusty, E. William

    1989-11-01

    The Bonneville Power Administration (BPA), the United States Bureau of Reclamation (USSR), and the Washington State Department of Ecology (WDOE) are funding the construction and evaluation of fish passage facilities and fish protection facilities at irrigation and hydroelectric diversions in the Yakima River Basin, Washington State. The program provides offsite enhancement to compensate for fish and wildlife losses caused by hydroelectric development throughout the Columbia River Basin, and addresses natural propagation of salmon to help mitigate the impact of irrigation in the Yakima River Basin. This report evaluates the flow characteristics of the screening facilities. Studies consisted of velocity measurements taken in front of the rotary drum screens and within the fish bypass systems during peak flows. Measurements of approach velocity and sweep velocity were emphasized in these studies; however, vertical velocity was also measured. 5 refs., 18 figs., 15 tabs.

  13. Volatile Organic Compound Emissions from Natural Gas Facilities in the Denver-Julesburg Basin, the Uintah Basin and the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Li, X.; Omara, M.; Sullivan, M.; Subramanian, R.; Robinson, A. L.; Presto, A. A.

    2015-12-01

    Natural gas has been widely considered as a "bridge" fuel in the future. Because of the rapid advancement of horizontal drilling and hydraulic fracturing techniques, the production of crude oil and natural gas in US increased dramatically in recent years; and currently natural gas contributes to about 25% of total US energy consumption. Recent studies suggest that shale gas extraction facilities may emit Volatile Organic Compounds (VOCs), which could contribute to the formation of ozone and affect regional air quality, public health and climate change. In this study we visited 37 natural gas facilities in Denver-Julesburg and Uintah Basins from March to May, 2015. VOCs and methane concentrations were measured downwind of individual facilities with our mobile lab. In total 13 VOCs, including benzene and toluene, were measured by a SRI 8610C Gas Chromatograph. Similar measurements will be conducted in the Marcellus Shale in late August 2015. Preliminary results show that VOC emissions from individual shale gas facilities are variable, which suggests that a single VOC profile may not characterize all natural gas production facilities, though there may be some common characteristics. Measured VOC concentrations will be normalized to concurrently-measured methane emissions, and coupled with methane emission rates measured at these facilities, used to obtain VOC emission factors from natural gas production. This presentation will also compare VOC emission rates from the Marcellus shale with that from the Denver-Julesburg and Uintah basins.

  14. Savannah River Site RCRA Facility Investigation plan: Road A Chemical Basin

    SciTech Connect

    Not Available

    1989-06-01

    The nature of wastes disposed of at the Road A Chemical Basin (RACB) is such that some degree of soil contamination is probable. Lead has also been detected in site monitoring wells at concentrations above SRS background levels. A RCRA Facility Investigation (RFI) is proposed for the RACB and will include a ground penetrating radar (GPR) survey, collection and chemical and radiological analyses of soil cores, installation of groundwater monitoring wells, collection and chemical and radiological analyses of groundwater samples, and collection of chemical and radiological analyses of surface water and sediment samples. Upon completion of the proposed RFI field work and chemical and radiological analyses, and RFI report should be prepared to present conclusions on the nature and extent of contamination at the site, and to make recommendations for site remediation. If contamination is detected at concentrations above SRS background levels, a receptor analysis should be done to evaluate potential impacts of site contamination on nearby populations.

  15. Velocity Measurements at Three Fish Screening Facilities in the Yakima Basin, Washington : Summer 1989 Annual Report.

    SciTech Connect

    Abernethy, C. Scott; Neitzel, Duane A.; Lusty, E. William

    1990-09-01

    The Pacific Northwest Laboratory (PNL) measured the velocity conditions at three fish screening facilities in the Yakima River Basin: Wapato, Chandler, and Easton Screens. The measurement objectives were different at the three screens. At Wapato, approach and sweep velocities were measured to evaluate the effect of rearing pens in the screen forebay. A complete survey was performed at the Chandler Screens. At Easton, velocity was measured behind the screens to provide information for the installation of porosity boards to balance flow through the screens. Salmon-rearing pens used at the Wapato Canal had a minimal effect on the magnitude of approach and sweep velocities at the face of the drum screens, although the pens caused increased turbulence and variability in water velocities. The net pens did not appear to affect flows through the three fish bypasses. 8 refs., 17 figs., 5 tabs.

  16. Umatilla Basin Fish Facilities Operation & Maintenance : Annual Report Fiscal Year 2008.

    SciTech Connect

    Wick, Mike

    2008-12-30

    Westland Irrigation District, as contractor to Bonneville Power Administration, and West Extension Irrigation District, as subcontractor to Westland, provide labor, equipment, and material necessary for the operation, care, and maintenance of fish facilities on the Umatilla River. Westland Irrigation District is the contractor of record. Job sites that are covered: Three Mile Right, Three Mile Left, Three Mile Adult Spawning, WEID Sampling Facility, Maxwell Screen Site, Westland Screen Site/Ladder/Juvenile Sampling Facility, Feed Canal Ladder/Screen Site, Stanfield Ladder/Screen Site, Minthorn Holding Facility, Thornhollow Acclimation Site, Imeques Acclimation Site, Pendleton Acclimation Site, and South Fork Walla Walla Spawning Facility. O & M personnel coordinate with the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) personnel in performing tasks under this contract including scheduling of trap and haul, sampling, acclimation site maintenance, and other related activities as needed. The input from ODFW biologists Bill Duke and Ken Loffink, and CTUIR biologist Preston Bronson is indispensable to the success of the project, and is gratefully acknowledged. All tasks associated with the project were successfully completed during the fiscal year 2008 work period of October, 2007 through September, 2008. The project provides operations and maintenance throughout the year on five fish screen sites with a total of thirty-four rotating drum-screens, and four fish ladders in the Umatilla River Basin; additionally, periodic operations and maintenance is performed at holding, acclimation, and spawning sites in the Basin. Three people are employed full-time to perform these tasks. The FY08 budget for this project was $492,405 and actual expenditures were $490,267.01. Selected work activities and concerns: (1) Feed Dam Passage Improvement Project - A project to improve fish passage over the short term at the

  17. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    SciTech Connect

    Evans, S. K.

    2007-11-07

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

  18. 105-K Basin material design basis feed description for spent nuclear fuel project facilities. Volume 2: Sludge

    SciTech Connect

    Pearce, K.L.

    1998-08-30

    Volume 2 provides the design feed compositions for the baseline K East and K West Basin sludge process streams expected to be generated during Spent Nuclear Fuel (SNF) Project activities. Four types of feeds are required to support evaluation of specific facility and process considerations during the development of new facilities and processes. These four design feeds provide nominal and bounding conditions for design evaluations. Volume 2 includes definition of inventories for: (1) KE and KW Basins sludge locations (pit sludges, floor sludge, canister.sludge, and wash sludge components), (2) nominal feed for each of five process feed streams, (3) shielding design feed, (4) safety/regulatory assessment feed, and (5) criticality assessment feed.

  19. Design criteria document, Maintenance Shop/Support Facility, K-Basin Essential Systems Recovery, Project W-405

    SciTech Connect

    Strehlow, M.W.B.

    1994-12-14

    During the next 10 years a substantial amount of work is scheduled in the K-Basin Area related to the storage and eventual removal of irradiated N-Reactor fuel. Currently, maintenance support activities are housed in existing structures that were constructed in the early 1950`s. These forty-year-old facilities and their supporting services are substandard, leading to inefficiencies. Because of numerous identified deficiencies and the planned increase in the numbers of K-Basin maintenance personnel, adequate maintenance support facilities that allow efficient operations are needed. The objective of this sub-project of Project W-405 is to provide a maintenance and storage facility which meets the K-Basin Maintenance Organization requirements as defined in Attachment 1. In Reference A, existing guidelines and requirements were used to allocate space for the maintenance activities and to provide a layout concept (See Attachment 2). The design solution includes modifying the existing 190 K-E building to provide space for shops, storage, and administration support functions. The primary reason for the modification is to simplify siting/permitting and make use of existing infrastructure. In addition, benefits relative to design loads will be realized by having the structure inside 190K-E. The new facility will meet the Maintenance Organization approved requirements in Attachment 1 relating to maintenance activities, storage areas, and personnel support services. This sub-project will also resolve outstanding findings and/or deficiencies relating to building fire protection, HVAC requirements, lighting replacement/upgrades, and personnel facilities. Compliance with building codes, local labor agreements and safety standards will result.

  20. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, US Fish and Wildlife Hatcheries, Final Report.

    SciTech Connect

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs., 25 tabs.

  1. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Washington Department of Wildlife Hatcheries, Final Report.

    SciTech Connect

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs., 25 tabs.

  2. Comparison of facility-level methane emission rates from natural gas production well pads in the Marcellus, Denver-Julesburg, and Uintah Basins

    NASA Astrophysics Data System (ADS)

    Omara, M.; Li, X.; Sullivan, M.; Subramanian, R.; Robinson, A. L.; Presto, A. A.

    2015-12-01

    The boom in shale natural gas (NG) production, brought about by advances in horizontal drilling and hydraulic fracturing, has yielded both economic benefits and concerns about environmental and climate impacts. In particular, leakages of methane from the NG supply chain could substantially increase the carbon footprint of NG, diminishing its potential role as a transition fuel between carbon intensive fossil fuels and renewable energy systems. Recent research has demonstrated significant variability in measured methane emission rates from NG production facilities within a given shale gas basin. This variability often reflect facility-specific differences in NG production capacity, facility age, utilization of emissions capture and control, and/or the level of facility inspection and maintenance. Across NG production basins, these differences in facility-level methane emission rates are likely amplified, especially if significant variability in NG composition and state emissions regulations are present. In this study, we measured methane emission rates from the NG production sector in the Marcellus Shale Basin (Pennsylvania and West Virginia), currently the largest NG production basin in the U.S., and contrast these results with those of the Denver-Julesburg (Colorado) and Uintah (Utah) shale basins. Facility-level methane emission rates were measured at 106 NG production facilities using the dual tracer flux (nitrous oxide and acetylene), Gaussian dispersion simulations, and the OTM 33A techniques. The distribution of facility-level average methane emission rate for each NG basin will be discussed, with emphasis on how variability in NG composition (i.e., ethane-to-methane ratios) and state emissions regulations impact measured methane leak rates. While the focus of this presentation will be on the comparison of methane leak rates among NG basins, the use of three complimentary top-down methane measurement techniques provides a unique opportunity to explore the

  3. THE OHIO RIVER BASIN ENERGY FACILITY SITING MODEL. VOLUME II: SITES AND ON-LINE DATES

    EPA Science Inventory

    The report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program. The siting model developed for ORBES is specifically designed for regional policy analysis. The region includes 423 counties in an area that consists of all ...

  4. THE OHIO RIVER BASIN ENERGY FACILITY SITING MODEL. VOLUME I: METHODOLOGY

    EPA Science Inventory

    This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. The siting model developed for ORBES is specifically designed for regional policy analysis. The region incl...

  5. PBO Facility Construction: Basin and Range and Rocky Mountain Regions Status

    NASA Astrophysics Data System (ADS)

    Friesen, B.; Jenkins, F.; Kasmer, D.; Feaux, K.

    2006-12-01

    The Plate Boundary Observatory (PBO), part of the larger NSF-funded EarthScope project, will study the three- dimensional strain field resulting from active plate boundary deformation across the Western United States. PBO is a large construction project involving the reconnaissance, permitting, installation, documentation, and maintenance of 852 permanent GPS stations in five years. 163 of these stations lie within the Basin and Range and Rocky Mountain Regions consisting of the states of Montana, Idaho, Nevada, Utah, Wyoming, Colorado, New Mexico, and Arizona. During the third year of the project, the Basin and Range and Rocky Mountain regions of PBO accelerated production goals in reconnaissance, permitting, and installation activities. The summer of 2006 saw the completion of nearly all of the reconnaissance field work for the regions, with permits submitted to landholders for 88% of the total number of stations. A major milestone in the permitting phase of the construction project was the approval of 33 GPS stations located on Bureau of Land Management controlled public lands in Nevada. This transect is located along Highway 50 and will profile the extension of the Basin and Range province. Construction of these stations will be conducted throughout the fall of 2006. The focus for construction efforts in year 3 was in the state of Montana, where many of the backbone and Yellowstone cluster stations were completed. To date, construction is complete for 80 of 163 GPS stations.

  6. PBO Facility Construction: Basin and Range and Rocky Mountain Regions Status

    NASA Astrophysics Data System (ADS)

    Friesen, B.; Jenkins, F.; Kasmer, D.; Feaux, K.

    2007-12-01

    The Plate Boundary Observatory (PBO), part of the larger NSF-funded EarthScope project, will study the three- dimensional strain field resulting from active plate boundary deformation across the western United States. PBO is a large construction project involving the reconnaissance, permitting, installation, documentation, and maintenance of 875 permanent GPS stations in five years. 163 of these stations lie within the Basin and Range and Rocky Mountain Regions consisting of the states of Montana, Idaho, Nevada, Utah, Wyoming, Colorado, New Mexico, and Arizona. During the fourth year of the project, the Basin and Range and Rocky Mountain regions of PBO completed reconnaissance and nearly all permitting activities, and maintained a fast pace of station installations. The fall of 2006 and spring of 2007 were devoted to the construction of a large push of 50 stations, most located on Bureau of Land Management controlled public lands in Nevada. This transect is located along Highway 50 and will profile the extension of the Basin and Range province. The Yellowstone area, including surrounding National Parks and Forests was the target of summer 2007, during which time 10 remote stations with difficult logistics were installed. To date, construction is complete for 135 of 163 GPS stations.

  7. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    SciTech Connect

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  8. 105-K Basin material design basis feed description for spent nuclear fuel project facilities

    SciTech Connect

    Praga, A.N.

    1998-01-08

    Revisions 0 and 0A of this document provided estimated chemical and radionuclide inventories of spent nuclear fuel and sludge currently stored within the Hanford Site`s 105-K Basins. This Revision (Rev. 1) incorporates the following changes into Revision 0A: (1) updates the tables to reflect: improved cross section data, a decision to use accountability data as the basis for total Pu, a corrected methodology for selection of the heat generation basis fee, and a revised decay date; (2) adds section 3.3.3.1 to expand the description of the approach used to calculate the inventory values and explain why that approach yields conservative results; (3) changes the pre-irradiation braze beryllium value.

  9. Wildlife and Wildlife Habitat Loss Assessment Summary at Federal Hydroelectric Facilities; Willamette River Basin, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1986-02-01

    Habitat based assessments were conducted of the US Army Corps of Engineers' hydroelectric projects in the Willamette River Basin, Oregon, to determine losses or gains to wildlife and/or wildlife habitat resulting from the development and operation of the hydroelectric-related components of the facilities. Preconstruction, postconstruction, and recent vegetation cover types at the project sites were mapped based on aerial photographs. Vegetation cover types were identified within the affected areas and acreages of each type at each period were determined. Wildlife target species were selected to represent a cross-section of species groups affected by the projects. An interagency team evaluated the suitability of the habitat to support the target species at each project for each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the projects. The Willamette projects extensively altered or affected 33,407 acres of land and river in the McKenzie, Middle Fork Willamette, and Santiam river drainages. Impacts to wildlife centered around the loss of 5184 acres of old-growth conifer forest, and 2850 acres of riparian hardwood and shrub cover types. Impacts resulting from the Willamette projects included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, furbearers, spotted owls, pileated woodpeckers, and many other wildlife species. Bald eagles and ospreys were benefited by an increase in foraging habitat. The potential of the affected areas to support wildlife was greatly altered as a result of the Willamette projects. Losses or gains in the potential of the habitat to support wildlife will exist over the lives of the projects. Cumulative or system-wide impacts of the Willamette projects were not quantitatively assessed.

  10. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Idaho Department of Fish and Game Hatcheries, Final Report.

    SciTech Connect

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighting 4,853,306 pounds. 2 refs., 25 figs.

  11. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Oregon Department of Fish and Wildlife Hatcheries, Final Report.

    SciTech Connect

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs, 25 figs.

  12. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 2 Sludge

    SciTech Connect

    PEARCE, K.L.

    2000-04-05

    Volume 2 provides estimated chemical and radionuclide inventories of sludge currently stored within the Hanford Site's 105-K Basin This volume also provides estimated chemical and radionuclide inventories for the sludge streams expected to be generated during Spent Nuclear Fuel (SNF) Project activities.

  13. Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume II of V; 1992 Annual Report.

    SciTech Connect

    Hutchison, Bill

    1993-05-01

    Clearwater Hatchery is located on the north bank of the North Fork of the Clearwater River, downstream from Dworshak Dam. It is approximately 72 miles from Lower Granite Dam, and 504 miles from the mouth of the Columbia River. Site elevation is approximately 994 feet above sea level. The hatchery is staffed with 7 FTE's. Clearwater Hatchery has two pipelines from Dworshak Reservoir. One is attached to a floating platform and is capable of providing various temperatures at varying depths. The other is a stationary intake about 245 feet below the top of the dam. All water is gravity fed to the hatchery. An l8 inch intake pipe provides an estimated 10 cfs with temperature remaining constant at approximately 40 F. The primary 42-inch intake pipe can draw water from 5 to 45 feet in depth with temperatures ranging from 55 to 60 F and 70 cfs of flow. The hatchery facility consists of 11 chinook raceways, 24 steelhead raceways, 2 adult holding ponds, a covered spawning area with 2 live wells and 60 concrete rearing vats. There are 40 double stacks of Heath-type incubators and each vat also has an incubation jar. All facility units are in excellent condition. Clearwater Hatchery also supports satellite facilities at Red River, Crooked River and Powell. The Red River satellite facility is located approximately 15 miles east of Elk City, Idaho. It is approximately 186 miles upstream from Lower Granite Dam and 618 miles from the mouth of the Columbia River. It was first built in 1974 by the Columbia River Project and then remodeled by the U.S. Army Corps of Engineers in 1986. Red River is supplied by gravity flow from an intake located at the bottom of the South Fork of Red River, 225 yards upstream from the facility. Water rights allow for 10 cfs and during low flows in the summer about 5 cfs is available. Temperatures range from 40 F in the spring to 71 F in early August. The facility consists of two adult holding ponds, a removable tripod and panel weir, and a rearing pond

  14. A Wildlife Habitat Protection, Mitigation and Enhancement Plan for Eight Federal Hydroelectric Facilities in the Willamette River Basin: Final Report.

    SciTech Connect

    Preston, S.K.

    1987-05-01

    The development and operation of eight federal hydroelectric projects in the Willamette River Basin impacted 30,776 acres of prime wildlife habitat. This study proposes mitigative measures for the losses to wildlife and wildlife habitat resulting from these projects, under the direction of the Columbia River Basin (CRB) Fish and Wildlife Program. The CRB Fish and Wildlife Program was adopted in 1982 by the Northwest Power Planning Council, pursuant to the Northwest Power Planning Act of 1980. The proposed mitigation plan is based on the findings of loss assessments completed in 1985, that used a modified Habitat Evaluation Procedure (HEP) to assess the extent of impact to wildlife and wildlife habitat, with 24 evaluation species. The vegetative structure of the impacted habitat was broken down into three components: big game winter range, riparian habitat and old-growth forest. The mitigation plan proposes implementation of the following, over a period of 20 years: (1) purchase of cut-over timber lands to mitigate, in the long-term, for big game winter range, and portions of the riparian habitat and old-growth forest (approx. 20,000 acres); (2) purchase approximately 4,400 acres of riparian habitat along the Willamette River Greenway; and (3) three options to mitigate for the outstanding old-growth forest losses. Monitoring would be required in the early stages of the 100-year plan. The timber lands would be actively managed for elk and timber revenue could provide O and M costs over the long-term.

  15. Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995 : Volume II, Oregon.

    SciTech Connect

    Oregon Department of Fish and Wildlife; US Fish and Wildlife Service

    1996-06-01

    Big Creek Hatchery is located 16 miles east of Astoria, Oregon and is approximately 3 miles upstream from Big Creek`s confluence with the Columbia River. The site elevation is approximately 75 feet above sea level. The facility includes 2 adult holding ponds, 30 raceways, 1 rearing pond, 64 troughs and 8 stacks of egg incubators. The adult collection and holding ponds are in poor condition and are inadequate to meet current program objectives. There are four water sources for the hatchery: Big Creek, Mill Creek and two springs. Current water rights total 36,158 gpm plus an additional 4.2 cfs reservoir water right. All water supplies are delivered by gravity but can be pumped for reuse if required. The facility is staffed with 9.25 FTE`s. Current practices at the hatchery are described.

  16. Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995 : Volume III - Washington.

    SciTech Connect

    Colville Confederated Tribes; US Fish and Wildlife Service; Washington Department of Fish and Wildlife; Yakama Indian Nation

    1996-06-01

    Beaver Creek Hatchery is located on the Elochoman River about 10 miles upstream from the river mouth. The Elochoman River is a north bank tributary of the lower Columbia River, just downstream of Cathlamet, Washington. The facility consists of 10 intermediate raceways, 20 raceways, (1) earthen rearing pond, (2) adult holding ponds, and a hatchery building with 60 troughs. It is staffed with 4 FTE`s. Water rights total 16,013 gpm from three sources: Elochoman River, Beaver Creek and a well. Beaver Creek water is gravity flow while the other two sources are pumped. The Elochoman River is used in summer and fall while Beaver Creek water is used from mid-November through mid-May. Filtered well water (1 cfs) is used to incubate eggs and for early rearing of fry. Water use in summer is about 5,800 gpm. Gobar Pond, a 0.93-acre earthen rearing pond located on Gobar Creek (Kalama River tributary), is operated as a satellite facility.

  17. Hydrologic analysis of the U.S. Bureau of Mines' underground oil-shale research-facility site, Piceance Creek Basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Dale, R.H.; Weeks, John B.

    1978-01-01

    The U.S. Bureau of Mines plans to develop an underground oil-shale research facility near the center of Piceance Creek basin in Colorado. The oil-shale zone, which is to be penetrated by a shaft, is overlain by 1,400 feet of sedimentary rocks, primarily sandstone and marlstone, consisting of two aquifers separated by a confining layer. Three test holes were drilled by the U.S. Bureau of Mines to obtain samples of the oil shale, and to test the hydraulic properties of the two aquifers. The data collected during construction of the test holes were used to update an existing ground-water-flow computer model. The model was used to estimate the maximum amount of water that would have to be pumped to dewater the shaft during its construction. It is estimated that it would be necessary to pump as much as 3,080 gallons per minute to keep the shaft dry. Disposal of waste water and rock are the principal hydrologic problems associated with constructing the shaft. (Woodard-USGS)

  18. Modeling the Vakhsh Cascade in the Amu Darya River Basin - Implementing Future Storage Facilities in a Hydrological Model for Impact Assessment

    NASA Astrophysics Data System (ADS)

    Steiner, J. F.; Siegfried, T.; Yakovlev, A.

    2014-12-01

    In the Amu Darya River Basin in Central Asia, the Vakhsh catchment in Tajikistan is a major source of hydropower energy for the country. With a number of large dams already constructed, upstream Tajikistan is interested in the construction of one more large dam and a number of smaller storage facilities with the prospect of supplying its neighboring states with hydropower through a newly planned power grid. The impact of new storage facilities along the river is difficult to estimate and causes considerable concern and consternation among the downstream users. Today, it is one of the vexing poster child studies in international water conflict that awaits resolution. With a lack of meteorological data and a complex topography that makes application of remote sensed data difficult it is a challenge to model runoff correctly. Large parts of the catchment is glacierized and ranges from just 500 m asl to peaks above 7000 m asl. Based on in-situ time series for temperature and precipitation we find local correction factors for remote sensed products. Using this data we employ a model based on the Budyko framework with an extension for snow and ice in the higher altitude bands. The model furthermore accounts for groundwater and soil storage. Runoff data from a number of stations are used for the calibration of the model parameters. With an accurate representation of the existing and planned reservoirs in the Vakhsh cascade we study the potential impacts from the construction of the new large reservoir in the river. Impacts are measured in terms of a) the timing and availability of new hydropower energy, also in light of its potential for export to South Asia, b) shifting challenges with regard to river sediment loads and siltation of reservoirs and c) impacts on downstream runoff and the timely availability of irrigation water there. With our coupled hydro-climatological approach, the challenges of optimal cascade management can be addressed so as to minimize detrimental

  19. K Basins Hazard Analysis

    SciTech Connect

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  20. K Basin Hazard Analysis

    SciTech Connect

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  1. K Basin safety analysis

    SciTech Connect

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  2. REMOVAL OF TECHNETIUM 99 FROM THE EFFLUENT TREATMENT FACILITY (ETF) BASIN 44 USING PUROLITE A-530E & REILLEX HPQ & SYBRON IONAC SR-7 ION EXCHANGE RESINS

    SciTech Connect

    DUNCAN JB

    2004-10-29

    This report documents the laboratory testing and analyses as directed under the test plan, RPP-20407. The overall goal of this task was to evaluate and compare candidate anion exchange resins for their capacity to remove Technetium-99 from Basin 44 Reverse Osmosis reject stream. The candidate resins evaluated were Purolite A-530E, Reillex HPQ, and Sybron IONAC SR-7.

  3. Integrated Hatchery Operations Team: Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume IV of IV; Washington: Rocky Reach Hatchery Addendum, 1992 Annual Report.

    SciTech Connect

    Peck, Larry

    1993-08-01

    Rocky Reach Hatchery is located along the Columbia Paver, just downstream from Rocky Reach Dam. Site elevation is 800 feet above sea level. The Turtle Rock Island facility, located 2 miles upstream, is operated as a satellite facility (shared with the Washington Department of Wildlife). The facility is staffed with 2.75 FTE`S. The hatchery was originally designed as a mile-long spawning channel at Turtle Rock Island. Rearing units consist of eight vinyl raceways at Rocky Reach and four rearing ponds at Turtle Rock. Water rights are held by Chelan County PUD and total 3,613 gpm from the Columbia River. Water available for use in the Turtle Rock rearing ponds averages 12,000 gpm from the Columbia River. Rocky Reach Hatchery and the Turtle Rock satellite facility are owned by Chelan County PUD. They are operated as mitigation facilities for the fishery impacts caused by the construction and operation of Rocky Reach Dam. Rocky Reach Hatchery is used for incubation and early rearing of upriver bright (URB) fall chinook. Fingerlings are later transferred to the Turtle Rock facility for final rearing and release.

  4. 2. CATCH BASIN, INFLOW PIPES AT CENTER, COLD FLOW LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CATCH BASIN, INFLOW PIPES AT CENTER, COLD FLOW LABORATORY AT LEFT, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Catch Basin, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  5. Site Characterization for CO{sub 2} Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    SciTech Connect

    Clark, Peter; Pashin, Jack; Carlson, Eric; Goodliffe, Andrew; McIntyre-Redden, Marcella; Mann, Steven; Thompson, Mason

    2012-08-31

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the west of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. iv While this part of the basin was found to be unsuitable

  6. Integrated Hatchery Operations Team: Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume V of V; 1992 Annual Report.

    SciTech Connect

    Weld, Enair

    1993-04-01

    Virtually all fishery resources of the Columbia River Basin are affected by water resource development initiatives. Mitigation is an action taken to lessen or reduce impacts of projects on fishery resources. The Washington Department of Wildlife`s (WDW) mitigation goal has been one that replaces in-kind or substitutes fishery resources of equal value for those impacted. WDW mitigation efforts have focused on providing hatchery-reared fish of the proper strains needed to compensate for loss of naturally produced stocks. Stewardship of these resources is based on existing WDW policies. WDW policies are written statements designed to resolve a recurring management need or problem. They do not include program goals or organization statements. The existing policies which affect fish hatchery operations are described herein.

  7. Seroepidemiology of Selected Arboviruses in Febrile Patients Visiting Selected Health Facilities in the Lake/River Basin Areas of Lake Baringo, Lake Naivasha, and Tana River, Kenya

    PubMed Central

    Lwande, Olivia; Orindi, Benedict; Irura, Zephania; Ongus, Juliette; Sang, Rosemary

    2015-01-01

    Abstract Introduction: Arboviruses cause emerging and re-emerging infections affecting humans and animals. They are spread primarily by blood-sucking insects such as mosquitoes, ticks, midges, and sandflies. Changes in climate, ecology, demographic, land-use patterns, and increasing global travel have been linked to an upsurge in arboviral disease. Outbreaks occur periodically followed by persistent low-level circulation. Aim: This study was undertaken to determine the seroepidemiology of selected arboviruses among febrile patients in selected lake/river basins of Kenya. Methods: Using a hospital-based cross-sectional descriptive survey, febrile patients were recruited and their serum samples tested for exposure to immunoglobulin M (IgM) and IgG antibodies against Crimean–Congo hemorrhagic fever virus (CCHFV), Rift Valley fever virus (RVFV), West Nile virus (WNV), and chikungunya virus (CHIKV). Samples positive for CHIKV and WNV were further confirmed by the plaque reduction neutralization test (PRNT). Results: Of the 379 samples examined, 176 were IgG positive for at least one of these arboviruses (46.4%, 95% confidence interval [CI] 41.4–51.5%). Virus-specific prevalence for CCHF, RVF, WN, and CHIK was 25.6%, 19.5%, 12.4%, and 2.6%, respectively. These prevalences varied significantly with geographical site (p<0.001), with Tana recording the highest overall arboviral seropositivity. PRNT results for Alphaviruses confirmed that the actual viruses circulating in Baringo were Semliki Forest virus (SFV) and CHIKV, o'nyong nyong virus (ONNV) in Naivasha, and SFV and Sindbis virus (SINDV) in Tana delta. Among the flaviviruses tested, WNV was circulating in all the three sites. Conclusion: There is a high burden of febrile illness in humans due to CCHFV, RVFV, WNV, and CHIKV infection in the river/lake basin regions of Kenya. PMID:25700043

  8. Development of water facilities in the Santa Ana River Basin, California, 1810-1968: a compilation of historical notes derived from many sources describing ditch and canal companies, diversions, and water rights

    USGS Publications Warehouse

    Scott, M.B.

    1977-01-01

    its tributaries for irrigation. The Santa Ana River had been a perennial stream, except in years of extreme drought, from its source in the mountains nearly to the Pacific Ocean. With the great increase in population and the accompanying use of water for irrigation, the river was no longer a perennial stream, and it was necessary to supplement the surface-water supply with ground water. Many wells were dug or drilled in the artesian areas of the upper basin; of those wells many originally flowed, but as ground-water pressures and levels declined, an increasing amount of pumping was required. Conservation measures were taken to store some of the surplus winter runoff for use during low runoff years and during summer periods of heavy demand. Conservation facilities included surface-storage reservoirs and water-spreading grounds or percolation basins for utilization of underground storage. The competition for water in the Santa Ana River basin has been accompanied by frequent litigation over water tights, and over the years these water rights have generally been established by court decree. Although the demand for water still increases, the water demand for agricultural use has declined since the mid-1940's in response to the rapid urbanization of agricultural areas. Since that date the continued expansion of communities has encroached significantly into the agricultural areas causing a decrease in water use for agriculture, a more than compensating increase in water use for municipal purposes, and a rapid change in the ownership of water rights. The urbanization of flood plains made floods potentially more damaging than they previously had been when the flood plains were used for agriculture. In recognition of this increased hazard, flood-control facilities such as reservoirs, debris basins, flood-conveyance channels, and levees have been constructed to reduce potential damage. Most of the construction has occurred since the devastating flood of March 1938. By the mid

  9. K-Basins S/RIDS

    SciTech Connect

    Watson, D.J.

    1997-08-01

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  10. K-Basins S/RIDS

    SciTech Connect

    Watson, D.J.

    1995-09-22

    The Standards/Requirements Identification Document(S/RID) is a list of the Environmental, Safety, and Health (ES&H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

  11. Occurrence of Selected Pharmaceutical and Organic Wastewater Compounds in Effluent and Water Samples from Municipal Wastewater and Drinking-Water Treatment Facilities in the Tar and Cape Fear River Basins, North Carolina, 2003-2005

    USGS Publications Warehouse

    Ferrell, G.M.

    2009-01-01

    Samples of treated effluent and treated and untreated water were collected at 20 municipal wastewater and drinkingwater treatment facilities in the Tar and Cape Fear River basins of North Carolina during 2003 and 2005. The samples were analyzed for a variety of prescription and nonprescription pharmaceutical compounds and a suite of organic compounds considered indicative of wastewater. Concentrations of these compounds generally were less than or near the detection limits of the analytical methods used during this investigation. None of these compounds were detected at concentrations that exceeded drinking-water standards established by the U.S. Environmental Protection Agency. Bromoform, a disinfection byproduct, was the only compound detected at a concentration that exceeded regulatory guidelines. The concentration of bromoform in one finished drinking-water sample, 26 micrograms per liter, exceeded North Carolina water-quality criteria. Drinking-water treatment practices were effective at removing many of the compounds detected in untreated water. Disinfection processes used in wastewater treatment - chlorination or irradiation with ultraviolet light - did not seem to substantially degrade the organic compounds evaluated during this study.

  12. Geohydrology of the High Energy Laser System Test Facility site, White Sands Missile Range, Tularosa Basin, south-central New Mexico

    USGS Publications Warehouse

    Basabilvazo, G.T.; Nickerson, E.L.; Myers, R.G.

    1994-01-01

    The Yesum-HoHoman and Gypsum land (hummocky) soils at the High Energy Laser System Test Facility (HELSTF) represent wind deposits from recently desiccated lacustrine deposits and deposits from the ancestral Lake Otero. The upper 15-20 feet of the subsurface consists of varved gypsiferous clay and silt. Below these surfidai deposits the lithology consists of interbedded clay units, silty-clay units, and fine- to medium-grained quartz arenite units in continuous and discontinuous horizons. Clay horizons can cause perched water above the water table. Analyses of selected clay samples indicate that clay units are composed chiefly of kaolinire and mixed-layer illite/ smectite. The main aquifer is representative of a leaky-confined aquifer. Estimated aquifer properties are: transmissivity (T) = 780 feet squared per day, storage coefficient (S) = 3.1 x 10-3, and hydraulic conductivity (K) = 6.0 feet per day. Ground water flows south and southwest; the estimated hydraulic gradient is 5.3 feet per mile. Analyses of water samples indicate that ground water at the HELSTF site is brackish to slightly saline at the top of the main aquifer. Dissolved-solids concentration near the top of the main aquifer ranges from 5,940 to 11,800 milligrams per liter. Predominant ions are sodium and sulfate. At 815 feet below land surface, the largest dissolved-solids concentration measured is 111,000 milligrams per liter, which indicates increasing salinity with depth. Predominant ions are sodium and chloride.

  13. K-Basins design guidelines

    SciTech Connect

    Roe, N.R.; Mills, W.C.

    1995-06-01

    The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines.

  14. Parana basin

    SciTech Connect

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  15. 9 CFR 3.125 - Facilities, general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facility must be constructed of such material and of such strength as appropriate for the animals involved..., basins, showers, or sinks, shall be provided to maintain cleanliness among animal caretakers....

  16. 75 FR 39926 - Deer Creek Station Energy Facility Project (DOE/EIS-0415)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ...The Western Area Power Administration (Western) received a request from Basin Electric Power Cooperative (Basin Electric) to interconnect its proposed Deer Creek Station Energy Facility Project (Project) to Western's transmission system. Basin Electric's Project includes the construction of a new 300-megawatt (MW) natural gas-fired combined-cycle generation facility in Brookings County, South......

  17. Chemical Status Of Selenium In Evaporation Basins For Disposal Of Agricultural Drainage.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaporation basins (or ponds) are the most commonly used facilities to dispose selenium (Se)-laden agricultural drainage in the closed hydrologic basin portion of the San Joaquin Valley in California. However, there is a continuous concern on potential risk of Se in evaporation basin waters to water...

  18. Microbiology of spent nuclear fuel storage basins.

    PubMed

    Santo Domingo, J W; Berry, C J; Summer, M; Fliermans, C B

    1998-12-01

    Microbiological studies of spent nuclear fuel storage basins at Savannah River Site (SRS) were performed as a preliminary step to elucidate the potential for microbial-influenced corrosion (MIC) in these facilities. Total direct counts and culturable counts performed during a 2-year period indicated microbial densities of 10(4) to 10(7) cells/ml in water samples and on submerged metal coupons collected from these basins. Bacterial communities present in the basin transformed between 15% and 89% of the compounds present in Biologtrade mark plates. Additionally, the presence of several biocorrosion-relevant microbial groups (i.e., sulfate-reducing bacteria and acid-producing bacteria) was detected with commercially available test kits. Scanning electron microscopy and X-ray spectra analysis of osmium tetroxide-stained coupons demonstrated the development of microbial biofilm communities on some metal coupons submerged for 3 weeks in storage basins. After 12 months, coupons were fully covered by biofilms, with some deterioration of the coupon surface evident at the microscopical level. These results suggest that, despite the oligotrophic and radiological environment of the SRS storage basins and the active water deionization treatments commonly applied to prevent electrochemical corrosion in these facilities, these conditions do not prevent microbial colonization and survival. Such microbial densities and wide diversity of carbon source utilization reflect the ability of the microbial populations to adapt to these environments. The presumptive presence of sulfate-reducing bacteria and acid-producing bacteria and the development of biofilms on submerged coupons indicated that an environment for MIC of metal components in the storage basins may occur. However, to date, there has been no indication or evidence of MIC in the basins. Basin chemistry control and corrosion surveillance programs instituted several years ago have substantially abated all corrosion mechanisms

  19. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    SciTech Connect

    WESTRA, A.G.

    1999-06-24

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility.

  20. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  1. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  2. 29. CROSSCUT FACILITY PROPERTY AND POWER LINE LOCATION, SHOWING INDIAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. CROSSCUT FACILITY PROPERTY AND POWER LINE LOCATION, SHOWING INDIAN BEND POND LABELLED 'SETTLING BASIN,' STEAM/DIESEL PLANT AND OTHER FEATURES. 1951 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  3. Reserves in western basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1992-06-01

    This project requires generation of producible tight gas sand reserve estimates for three western basins. The requirement is to perform such reserve estimates using industry accepted practices so that results will have high credibility and acceptance by the oil and gas industry. The ultimate goal of the project is to encourage development of the tight gas formation by industry through reduction of the technical and economic risks of locating, drilling and completing commercial gas wells. The three geological basins selected for study are the Greater Green River Basin, Uinta Basin and Piceance Basin, located in the Colorado, Utah and Wyoming Rocky Mountain region.

  4. Reserves in western basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1992-01-01

    This project requires generation of producible tight gas sand reserve estimates for three western basins. The requirement is to perform such reserve estimates using industry accepted practices so that results will have high credibility and acceptance by the oil and gas industry. The ultimate goal of the project is to encourage development of the tight gas formation by industry through reduction of the technical and economic risks of locating, drilling and completing commercial gas wells. The three geological basins selected for study are the Greater Green River Basin, Uinta Basin and Piceance Basin, located in the Colorado, Utah and Wyoming Rocky Mountain region.

  5. Divergent/passive margin basins

    SciTech Connect

    Edwards, J.D. ); Santogrossi, P.A. )

    1989-01-01

    This book discusses the detailed geology of the four divergent margin basins and establishes a set of analog scenarios which can be used for future petroleum exploration. The divergent margin basins are the Campos basin of Brazil, the Gabon basin, the Niger delta, and the basins of the northwest shelf of Australia. These four petroleum basins present a wide range of stratigraphic sequences and structural styles that represent the diverse evolution of this large and important class of world petroleum basins.

  6. RCRA FACILITIES

    EPA Science Inventory

    Points represent facilities that are regulated by the EPA under the Resource Conservation and Recovery Act (RCRA). Facilities regulated under RCRA generate, dispose of, treate or transport hazardous waste. RCRA is a law enacted by Congress in 1976 and amended in 1984 to include ...

  7. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  8. Test Plan for K Basin floor sludge consolidated sampling equipment

    SciTech Connect

    OLIVER, J.W.

    1998-10-30

    The purpose of this document is to provide the test procedure for the function and acceptance testing of the K Basin Floor Sludge Consolidated Sampling Equipment. This equipment will be used to transfer K Basin floor sludge to a sludge sampling container for subsequent shipment to an analysis or testing facility. This equipment will provide sampling consistent with data quality objectives and sampling plans currently being developed.

  9. 183-H Basin Mixed Waste Analysis and Testing Report

    SciTech Connect

    1995-04-01

    The purpose of this sampling and analysis report is to provide data necessary to support treatment and disposal options for the low-level mixed waste from the 183-H solar evaporation ponds. In 1973, four of the 16 flocculation and sedimentation basins were designated for use as solar evaporation basins to provide waste reduction by natural evaporation of liquid chemical wastes from the 300 Area fuel fabrication facilities. The primary purpose of this effort is to gather chemical and bulk property data for the waste in the drums/boxes of sediment removed from the basin at Central Waste Complex.

  10. Cold vacuum drying facility 90% design review

    SciTech Connect

    O`Neill, C.T.

    1997-05-02

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  11. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  12. Facility Planning.

    ERIC Educational Resources Information Center

    Graves, Ben E.

    1984-01-01

    This article reviews recommendations on policies for leasing surplus school space made during the Council of Educational Facility Planners/International conference. A case study presentation of a Seattle district's use of lease agreements is summarized. (MJL)

  13. Production facilities

    SciTech Connect

    Not Available

    1989-01-01

    This book presents a cross section of different solutions to the many unique production problems operators face. Sections address benefit vs. cost options for production facility designs, oil and gas separation processes and equipment, oil treating and desalting systems, and water treating methods and equipment. Papers were selected to give an overall view of factors involved in optimizing the design of cost-effective production facilities.

  14. Origin of cratonic basins

    NASA Astrophysics Data System (ADS)

    Dev. Klein, George; Hsui, Albert T.

    1987-12-01

    Tectonic subsidence curves show that the Illinois, Michigan, and Williston basins formed by initial fault-controlled mechanical subsidence during rifting and by subsequent thermal subsidence. Thermal subsidence began around 525 Ma in the Illinois Basin, 520 460 Ma in the Michigan Basin, and 530 500 Ma in the Williston Basin. In the Illinois Basin, a second subsidence episode (middle Mississippian through Early Permian) was caused by flexural foreland subsidence in response to the Alleghanian-Hercynian orogeny. Resurgent Permian rifting in the Illinois Basin is inferred because of intrusion of well-dated Permian alnoites; such intrusive rocks are normally associated with rifting processes. The process of formation of these cratonic basins remains controversial. Past workers have suggested mantle phase changes at the base of the crust, mechanical subsidence in response to isostatically uncompensated excess mass following igneous intrusions, intrusion of mantle plumes into the crust, or regional thermal metamorphic events as causes of basin initiation. Cratonic basins of North America, Europe, Africa, and South America share common ages of formation (around 550 to 500 Ma), histories of sediment accumulation, temporal volume changes of sediment fills, and common dates of interregional unconformities. Their common date of formation suggests initiation of cratonic basins in response to breakup of a late Precambrian super-continent. This supercontinent acted as a heat lens that caused partial melting of the lower crust and upper mantle followed by emplacement of anorogenic granites during extensional tectonics in response to supercontinent breakup. Intrusion of anorogenic granites and other partially melted intrusive rocks weakened continental lithosphere, thus providing a zone of localized regional stretching and permitting formation of cratonic basins almost simultaneously over sites of intrusion of these anorogenic granites and other partially melted intrusive rocks.

  15. The Oquirrh basin revisited

    SciTech Connect

    Erskine, M.C.

    1997-04-01

    The upper Paleozoic succession in the Oquirrh basin in unusually thick, up to 9300 m, and consists mainly of a Pennsylvanian-middle Permian miogeocline of northwestern Utah. Previous workers have suggested a tectonic origin for the Oquirrh basin that is incompatible with the basin location in both time and space. There is no evidence for Pennsylvanian and Lower Permian tectonism in the middle of the miogeocline. Thermal evidence from the Mississippian Mission Canyon shale does no support the implied deep burial of the crustal sag models of basin formation. Stratigraphic and facies evidence indicates a growth fault origin for the basin. Regional isopach maps and facies maps are powerful tools in interpreting depositional environments and in reconstructing fold-and-thrust belts. However, the location of measured sections relative to the location of the growth fault basin. The Charleston-Nebo thrust may have essentially reversed the movement on a growth fault. Thick Oquirrh basin sedimentary rocks may not be required to balance structural sections across this thrust fault. A thin-skinned, extensional growth fault origin for the Oquirrh basin implies that the Cordilleran miogeocline did not participate in the Pennsylvanian north-vergent uplifts of the Ancestral Rocky Mountains.

  16. Utilizing Divers in Support of Spent Fuel Basin Closure Subproject

    SciTech Connect

    Allen Nellesen

    2005-01-01

    A number of nuclear facilities in the world are aging and with this comes the fact that we have to either keep repairing them or decommission them. At the Department of Energy Idaho Site (DOEID) there are a number of facilities that are being decommissioned, but the facilities that pose the highest risk to the large aquifer that flows under the site are given highest priorities. Aging spent nuclear fuel pools at DOE-ID are among the facilities that pose the highest risk, therefore four pools were targeted for decommissioning in Fiscal Year 2004. To accomplish this task the Idaho Completion Project (ICP) of Bechtel BWXT Idaho, LLC, put together an integrated Basin Closure Subproject team. The team was assigned a goal to look beyond traditional practices at the Idaho National Engineering and Environmental Laboratory (INEEL) to find ways to get the basin closure work done safer and more efficiently. The Idaho Completion Project (ICP) was faced with a major challenge – cleaning and preparing aging spent nuclear fuel basins for closure by removing sludge and debris, as necessary, and removing water to eliminate a potential risk to the Snake River Plain Aquifer. The project included cleaning and removing water from four basins. Two of the main challenges to a project like this is the risk of contamination from the basin walls and floors becoming airborne as the water is removed and keeping personnel exposures ALARA. ICP’s baseline plan had workers standing at the edges of the basins and on rafts or bridge cranes and then using long-handled tools to manually scrub the walls of basin surfaces. This plan had significant risk of skin contamination events, workers falling into the water, or workers sustaining injuries from the awkward working position. Analysis of the safety and radiation dose risks presented by this approach drove the team to look for smarter ways to get the work done.

  17. Design criteria document, electrical system, K-Basin essential systems recovery, Project W-405

    SciTech Connect

    Hoyle, J.R.

    1994-12-12

    This Design Criteria Document provides the criteria for design and construction of electrical system modifications for 100K Area that are essential to protect the safe operation and storage of spent nuclear fuel in the K-Basin facilities.

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: STORMWATER SOURCE AREA TREATMENT DEVICE - STORMWATER MANAGEMENT INC., CATCH BASIN STORMFILTER®

    EPA Science Inventory

    Verification testing of the Stormwater Management CatchBasin StormFilter® (CBSF) was conducted on a 0.16 acre drainage basin at the City of St. Clair Shores, Michigan Department of Public Works facility. The four-cartridge CBSF consists of a storm grate and filter chamber inlet b...

  19. Reserves in western basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  20. Planning Facilities.

    ERIC Educational Resources Information Center

    Flynn, Richard B., Ed.; And Others

    1983-01-01

    Nine articles give information to help make professionals in health, physical education, recreation, dance, and athletics more knowledgeable about planning facilities. Design of natatoriums, physical fitness laboratories, fitness trails, gymnasium lighting, homemade play equipment, indoor soccer arenas, and dance floors is considered. A…

  1. Facilities Management.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents responses from Matt McGovern, "School Planning and Management's" Maintenance and Operations columnist, on the issue of school facility maintenance. McGovern does not believe schools will ever likely meet acceptable levels of maintenance, nor use infrared thermography for assessing roofs, outsource all maintenance work, nor find a pressing…

  2. Cold vacuum drying facility site evaluation report

    SciTech Connect

    Diebel, J.A.

    1996-03-11

    In order to transport Multi-Canister Overpacks to the Canister Storage Building they must first undergo the Cold Vacuum Drying process. This puts the design, construction and start-up of the Cold Vacuum Drying facility on the critical path of the K Basin fuel removal schedule. This schedule is driven by a Tri-Party Agreement (TPA) milestone requiring all of the spent nuclear fuel to be removed from the K Basins by December, 1999. This site evaluation is an integral part of the Cold Vacuum Drying design process and must be completed expeditiously in order to stay on track for meeting the milestone.

  3. Laboratory Evaluation of Underwater Grouting of CPP-603 Basins

    SciTech Connect

    Johnson, Virgil James; Pao, Jenn Hai; Demmer, Ricky Lynn; Tripp, Julia Lynn

    2002-02-01

    A project is underway to deactivate a Fuel Storage Basin. The project specifies the requirements and identifies the tasks that will be performed for deactivation of the CPP- 603 building at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The Fuel Receiving and Storage Building (CPP- 603) was originally used to receive and store spent nuclear fuel from various facilities. The area to undergo deactivation includes the three spent nuclear fuel storage basins and a transfer canal (1.5 million gallons of water storage). Deactivation operations at the task site include management of the hot storage boxes and generic fuel objects, removal of the fuel storage racks, basin sludge, water evaporation and basin grouting, and interior equipment, tanks, and associated components. This includes a study to develop a grout formulation and placement process for this deactivation project. Water will be allowed to passively evaporate to reduce the spread of contamination from the walls of the basin. The basins will be filled with grout, underwater, as the water evaporates to maintain the basin water at a safe level. The objective of the deactivation project is to eliminate potential exposure to hazardous and radioactive materials and eliminate potential safety hazards associated with the CPP-603 building.

  4. Laboratory Evaluation of Underwater Grouting of CPP-603 Basins

    SciTech Connect

    Johnson, V.J.; Pao, J.H.; Demmer, R.L.; Tripp, J.L.

    2002-01-17

    A project is underway to deactivate a Fuel Storage Basin. The project specifies the requirements and identifies the tasks that will be performed for deactivation of the CPP- 603 building at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The Fuel Receiving and Storage Building (CPP- 603) was originally used to receive and store spent nuclear fuel from various facilities. The area to undergo deactivation includes the three spent nuclear fuel storage basins and a transfer canal (1.5 million gallons of water storage). Deactivation operations at the task site include management of the hot storage boxes and generic fuel objects, removal of the fuel storage racks, basin sludge, water evaporation and basin grouting, and interior equipment, tanks, and associated components. This includes a study to develop a grout formulation and placement process for this deactivation project. Water will be allowed to passively evaporate to r educe the spread of contamination from the walls of the basin. The basins will be filled with grout, underwater, as the water evaporates to maintain the basin water at a safe level. The objective of the deactivation project is to eliminate potential exposure to hazardous and radioactive materials and eliminate potential safety hazards associated with the CPP-603 building.

  5. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    SciTech Connect

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  6. A characterization study of the new TNX seepage basin at the United States Department of Energy's Savannah River Plant

    SciTech Connect

    Not Available

    1986-01-01

    Two seepage basins have been used to treat waste water generated by the TNX facilities. The old seepage basin was constructed in 1958 for the treatment and disposal of both low-level radioactive wastes and non-radioactive hazardous waste chemicals. The old basin was closed out in 1980 and waste flows were diverted to a new seepage basin. This report describes soil sample acquisition, field laboratory procedures, water sample acquisition, quality assurance and control procedures, and safety and health protection procedures in the pollution monitoring of the new seepage basin. Four appendices contain laboratory data. To date, no significant groundwater contamination has been detected.

  7. Nam Con Son Basin

    SciTech Connect

    Tin, N.T.; Ty, N.D.; Hung, L.T.

    1994-07-01

    The Nam Con Son basin is the largest oil and gas bearing basin in Vietnam, and has a number of producing fields. The history of studies in the basin can be divided into four periods: Pre-1975, 1976-1980, 1981-1989, and 1990-present. A number of oil companies have carried out geological and geophysical studies and conducted drilling activities in the basin. These include ONGC, Enterprise Oil, BP, Shell, Petro-Canada, IPL, Lasmo, etc. Pre-Tertiary formations comprise quartz diorites, granodiorites, and metamorphic rocks of Mesozoic age. Cenozoic rocks include those of the Cau Formation (Oligocene and older), Dua Formation (lower Miocene), Thong-Mang Cau Formation (middle Miocene), Nam Con Son Formation (upper Miocene) and Bien Dong Formation (Pliocene-Quaternary). The basement is composed of pre-Cenozoic formations. Three fault systems are evident in the basin: north-south fault system, northeast-southwest fault system, and east-west fault system. Four tectonic zones can also be distinguished: western differentiated zone, northern differentiated zone, Dua-Natuna high zone, and eastern trough zone.

  8. SURVEY OF CROSS-BASIN BOAT TRAFFIC, ATCHAFALAYA BASIN, LOUISIANA

    EPA Science Inventory

    For flood control and for the preservation and enhancement of environmental quality of overflow swamp habitats, introduction of sediment from the Atchafalaya Basin Main Channel into backwater areas of the Atchafalaya Basin Floodway should be minimized. This introduction occurs ma...

  9. River basin management

    SciTech Connect

    Newsome, D.H.; Edwards, A.M.C.

    1984-01-01

    The quality of water is of paramount importance in the management of water resources - including marine waters. A quantitative knowledge of water quality and the factors governing it is required to formulate and implement strategies requiring an inter-disciplinary approach. The overall purpose of this conference was to bring together the latest work on water quality aspects of river basin management. These proceedings are structured on the basis of five themes: problems in international river basins; the contribution of river systems to estuarial and marine pollution; the setting of standards; monitoring; and practical water quality management including use of mathematical models. They are followed by papers from the workshop on advances in the application of mathematical modelling to water quality management, which represent some of the current thinking on the problems and concepts of river basin management.

  10. Geology, exploration status of Uruguay's sedimentary basins

    SciTech Connect

    Goso, C.; Santa Ana, H. de )

    1994-02-07

    This article attempts to present the geological characteristics and tectonic and sedimentary evolution of Uruguayan basins and the extent to which they have been explored. Uruguay is on the Atlantic coast of South America. The country covers about 318,000 sq km, including offshore and onshore territories corresponding to more than 65% of the various sedimentary basins. Four basins underlie the country: the Norte basin, the Santa Lucia basin, the offshore Punta del Este basin, and the offshore-onshore Pelotas-Merin basin. The Norte basin is a Paleozoic basin while the others are Mesozoic basins. Each basin has been explored to a different extent, as this paper explains.

  11. Trinity river basin, Texas

    USGS Publications Warehouse

    Ulery, Randy L.; Van Metre, Peter C.; Crossfield, Allison S.

    1993-01-01

    In 1991 the Trinity River Basin National Water-Quality Assessment (NAWQA) will include assessments of surface-water and ground-water quality. Initial efforts have focused on identifying water-quality issues in the basin and on the environmental factors underlying those issues. Physical characteristics described include climate, geology, soils, vegetation, physiography, and hydrology. Cultural characteristics discussed include population distribution, land use and land cover, agricultural practices, water use, an reservoir operations. Major water-quality categories are identified and some of the implications of the environmental factors for water quality are presented.

  12. Hanford facilities tracer study report (315 Water Treatment Facility)

    SciTech Connect

    Ambalam, T.

    1995-04-14

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations.

  13. Power Systems Development Facility

    SciTech Connect

    Southern Company Services

    2004-04-30

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  14. Power Systems Development Facility

    SciTech Connect

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  15. K-Basin spent nuclear fuel characterization data report

    SciTech Connect

    Abrefah, J.; Gray, W.J.; Ketner, G.L.; Marschman, S.C.; Pyecha, T.D.; Thornton, T.A.

    1995-11-01

    The spent nuclear fuel (SNF) project characterization activities will be furnishing technical data on SNF stored at the K Basins in support of a pathway for placement of a ``stabilized`` form of SNF into an interim storage facility. This report summarizes the results so far of visual inspection of the fuel samples, physical characterization (e.g., weight and immersion density measurements), metallographic examinations, and controlled atmosphere furnace testing of three fuel samples shipped from the KW Basin to the Postirradiation Testing Laboratory (PTL). Data on sludge material collected by filtering the single fuel element canister (SFEC) water are also discussed in this report.

  16. 'East Basin' Panorama

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for 'East Basin' Panorama (QTVR)

    NASA's Mars Exploration Rover Spirit used its panoramic camera to obtain this view of the impact feature called 'East Basin' to the northeast of 'Husband Hill.' The images combined into this mosaic were taken during Spirit's 653rd Martian day, or sol (Nov. 3, 2005), just before Spirit descended eastward onto 'Haskin Ridge.' The view is about 150 degrees wide. It is an approximately true-color rendering generated using the camera's 750-nanometer, 530-nanometer, and 480-nanometer filters.

    Dark features on the far side of the basin, just left of center in this view, are basaltic sand deposits that were emplaced on the lee sides of hills by northwesterly winds. Haskin Ridge is visible along the right margin of the image, capped by a light-toned layer of rock. Spirit investigated the light-toned rock unit after taking this image. The basaltic plains located east of the 'Columbia Hills' can be seen in the distance beyond 'East Basin.' The rim of Thira crater is just visible on the distant horizon some 15 kilometers (9.3 miles) away.

  17. Bransfield Basin and Cordilleran Orogenesis

    NASA Astrophysics Data System (ADS)

    Dalziel, I. W.; Austin, J. A.; Barker, D. H.; Christensen, G. L.

    2003-12-01

    Tectonic uplift of the Andean Cordillera was initiated in the mid-Cretaceous with inversion of a composite marginal basin along 7500 km of the continental margin of South America, from Peru to Tierra del Fuego and the North Scotia Ridge. In the southernmost Andes, from 50-56 degrees S, the quasi-oceanic floor of this basin is preserved in the obducted ophiolitic rocks of the Rocas Verdes (Green Rocks) basin. We suggest that the basin beneath Bransfield Strait, 61-64 degrees S, separating the South Shetland Islands from the Antarctic Peninsula, constitutes a modern analog for the Rocas Verdes basin. Marine geophysical studies of Bransfield basin have been undertaken over the past 12 years by the Institute for Geophysics, University of Texas at Austin, under the auspices of the Ocean Sciences Division and United States Antarctic Program, National Science Foundation. These studies have elucidated the structure and evolution of Bransfield basin for comparison with the Rocas Verdes basin, with a view to eventual forward modeling of the evolution of a hypothetical cordilleran orogen by compression and inversion of the basin. These are the processes that can be observed in the tectonic transformation of the Rocas Verdes basin into the southernmost Andean cordillera, as South America moved rapidly westward in an Atlantic-Indian ocean hot-spot reference frame during the mid-Cretaceous. Multi-channel reflection seismic data from the Bransfield basin reveal an asymmetric structural architecture characterized by steeply-dipping normal faults flanking the South Shetlands island arc and gently dipping listric normal faults along the Antarctic Peninsula margin. Normal fault polarity reversals appear to be related to distributed loci of magmatic activity within the basin. This architecture is remarkably similar to that deduced from field structural studies of the Rocas Verdes basin. Notably, the oceanward-dipping, low angle normal faults along the Antarctic Peninsula margin

  18. Deactivation of the P, C, and R Reactor Disassembly Basins at the SRS

    SciTech Connect

    Pickett, J.B.

    2000-12-06

    The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at 105-R Disassembly Basin and will continue with the 105-P and 105-C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-active solution to close the basins in-place and prevent a release to the groundwater. In-situ ion-exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds. A NEPA Environmental Assessment (EA) is being prepared to propose the preferred closure alternative for each of the three basins. The EA will be the primary mechanism to inform the public and gain stakeholder and regulatory approval.

  19. Breadboard Facility

    NASA Technical Reports Server (NTRS)

    1977-01-01

    In the sixties, Chrysler was NASA's prime contractor for the Saturn I and IB test launch vehicles. The company installed and operated at Huntsville what was known as the Saturn I/IB Development Breadboard Facility. "Breadboard," means an array of electrical and electronic equipment for performing a variety of development and test functions. This work gave Chrysler a broad capability in computerized testing to assure quality control in development of solid-state electronic systems. Today that division is manufacturing many products not destined for NASA, most of them being associated with the company's automotive line. A major project is production and quality-control testing of the "lean-burn" engine, one that has a built-in Computer to control emission timing, and allow the engine to run on a leaner mixture of fuel and air. Other environment-related products include vehicle emission analyzers. The newest of the line is an accurate, portable solid state instrument for testing auto exhaust gases. The exhaust analyzers, now being produced for company dealers and for service

  20. Repository site definition in basalt: Pasco Basin, Washington

    SciTech Connect

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  1. Newly Discovered Martian Impact Basins

    NASA Technical Reports Server (NTRS)

    Stam, M.

    1985-01-01

    Three previously unrecognized Martian impact basins were discovered through detailed mapping of landforms, structures and terrains near Cassini and Al Qahira basins. Al Qahira A lies on the Martian dichotomy boundary and intersects the older basin, Al Qahira. It has four rings that are expressed by a variety of landforms. Southwestward Al Qahira A is out by a younger Basin, Al Qahira B. Al Qahira B is a highly degraded basin with one identifiable ring. Its ring is expressed by a few massifs, knobs and inward-facing scarps, but is recognized by the distributions of wrinkle ridges and plains units. Cassini A lies southward of the younger Cassini Basin and is intersected by it. It probably has four rings. The importance of detailed mapping of various types of landforms and terrains to the discovery of basins on Mars are demonstrated.

  2. Natural frequency of regular basins

    NASA Astrophysics Data System (ADS)

    Tjandra, Sugih S.; Pudjaprasetya, S. R.

    2014-03-01

    Similar to the vibration of a guitar string or an elastic membrane, water waves in an enclosed basin undergo standing oscillatory waves, also known as seiches. The resonant (eigen) periods of seiches are determined by water depth and geometry of the basin. For regular basins, explicit formulas are available. Resonance occurs when the dominant frequency of external force matches the eigen frequency of the basin. In this paper, we implement the conservative finite volume scheme to 2D shallow water equation to simulate resonance in closed basins. Further, we would like to use this scheme and utilizing energy spectra of the recorded signal to extract resonant periods of arbitrary basins. But here we first test the procedure for getting resonant periods of a square closed basin. The numerical resonant periods that we obtain are comparable with those from analytical formulas.

  3. Radionuclides in the Great Lakes basin.

    PubMed Central

    Ahier, B A; Tracy, B L

    1995-01-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  4. Radionuclides in the Great Lakes basin.

    PubMed

    Ahier, B A; Tracy, B L

    1995-12-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  5. K Basin sludge treatment process description

    SciTech Connect

    Westra, A.G.

    1998-08-28

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

  6. Global analysis of intraplate basins

    NASA Astrophysics Data System (ADS)

    Heine, C.; Mueller, D. R.; Dyksterhuis, S.

    2005-12-01

    Broad intraplate sedimentary basins often show a mismatch of lithospheric extension factors compared to those inferred from sediment thickness and subsidence modelling, not conforming to the current understanding of rift basin evolution. Mostly, these basins are underlain by a very heterogeneous and structurally complex basement which has been formed as a product of Phanerozoic continent-continent or terrane/arc-continent collision and is usually referred to as being accretionary. Most likely, the basin-underlying substrate is one of the key factors controlling the style of extension. In order to investigate and model the geodynamic framework and mechanics controlling formation and evolution of these long-term depositional regions, we have been analysing a global set of more than 200 basins using various remotely sensed geophysical data sets and relational geospatial databases. We have compared elevation, crustal and sediment thickness, heatflow, crustal structure, basin ages and -geometries with computed differential beta, anomalous tectonic subsidence, and differential extension factor grids for these basins. The crust/mantle interactions in the basin regions are investigated using plate tectonic reconstructions in a mantle convection framework for the last 160 Ma. Characteristic parameters and patterns derived from this global analysis are then used to generate a classification scheme, to estimate the misfit between models derived from either crustal thinning or sediment thickness, and as input for extension models using particle-in-cell finite element codes. Basins with high differential extension values include the ``classical'' intraplate-basins, like the Michigan Basin in North America, the Zaire Basin in Africa, basins of the Arabian Penisula, and the West Siberian Basin. According to our global analysis so far, these basins show, that with increasing basin age, the amount of crustal extension vs. the extension values estimated from sediment thickness

  7. Buried-euxenic-basin model sets Tarim basin potential

    SciTech Connect

    Hsu, K.J. )

    1994-11-28

    The Tarim basin is the largest of the three large sedimentary basins of Northwest China. The North and Southwest depressions of Tarim are underlain by thick sediments and very thin crust. The maximum sediment thickness is more than 15 km. Of the several oil fields of Tarim, the three major fields were discovered during the last decade, on the north flank of the North depression and on the Central Tarim Uplift. The major targets of Tarim, according to the buried-euxenic-basin model, should be upper Paleozoic and lower Mesozoic reservoirs trapping oil and gas condensates from lower Paleozoic source beds. The paper describes the basin and gives a historical perspective of exploration activities and discoveries. It then explains how this basin can be interpreted by the buried-euxenic-basin model. The buried-euxenic-basin model postulates four stages of geologic evolution: (1) Sinian and early Paleozoic platform sedimentation on relic arcs and deep-marine sedimentation in back-arc basins in Xinjiang; (2) Late Paleozoic foreland-basin sedimentation in north Tarim; (3) Mesozoic and Paleogene continental deposition, subsidence under sedimentary load; and (4) Neogene pull-apart basin, wrench faulting and extension.

  8. Canada Basin revealed

    USGS Publications Warehouse

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Chian, D; Lebedeva-Ivanova, Nina; Jackson, Ruth

    2012-01-01

    More than 15,000 line-km of new regional seismic reflection and refraction data in the western Arctic Ocean provide insights into the tectonic and sedimentologic history of Canada Basin, permitting development of new geologic understanding in one of Earth's last frontiers. These new data support a rotational opening model for southern Canada Basin. There is a central basement ridge possibly representing an extinct spreading center with oceanic crustal velocities and blocky basement morphology characteristic of spreading centre crust surrounding this ridge. Basement elevation is lower in the south, mostly due to sediment loading subsidence. The sedimentary succession is thickest in the southern Beaufort Sea region, reaching more than 15 km, and generally thins to the north and west. In the north, grabens and half-grabens are indicative of extension. Alpha-Mendeleev Ridge is a large igneous province in northern Amerasia Basin, presumably emplaced synchronously with basin formation. It overprints most of northern Canada Basin structure. The seafloor and sedimentary succession of Canada Basin is remarkably flat-lying in its central region, with little bathymetric change over most of its extent. Reflections that correlate over 100s of kms comprise most of the succession and on-lap bathymetric and basement highs. They are interpreted as representing deposits from unconfined turbidity current flows. Sediment distribution patterns reflect changing source directions during the basin’s history. Initially, probably late Cretaceous to Paleocene synrift sediments sourced from the Alaska and Mackenzie-Beaufort margins. This unit shows a progressive series of onlap unconformities with a younging trend towards Alpha and Northwind ridges, likely a response to contemporaneous subsidence. Sediment source direction appeared to shift to the Canadian Arctic Archipelago margin for the Eocene and Oligocene, likely due to uplift of Arctic islands during the Eurekan Orogeny. The final

  9. Mercury's Caloris Basin

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Mercury: Computer Photomosaic of the Caloris Basin

    The largest basin on Mercury (1300 km or 800 miles across) was named Caloris (Greek for 'hot') because it is one of the two areas on the planet that face the Sun at perihelion.

    The Image Processing Lab at NASA's Jet Propulsion Laboratory produced this photomosaic using computer software and techniques developed for use in processing planetary data. The Mariner 10 spacecraft imaged the region during its initial flyby of the planet.

    The Mariner 10 spacecraft was launched in 1974. The spacecraft took images of Venus in February 1974 on the way to three encounters with Mercury in March and September 1974 and March 1975. The spacecraft took more than 7,000 images of Mercury, Venus, the Earth and the Moon during its mission.

    The Mariner 10 Mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science in Washington, D.C.

  10. Petroleum basin studies

    SciTech Connect

    Shannon, P.M. ); Naylor, D. )

    1989-01-01

    This book reviews the tectonic setting, basin development and history of exploration of a number of selected petroleum provinces located in a variety of settings in the Middle East, North Sea, Nigeria, the Rocky Mountains, Gabon and China. This book illustrates how ideas and models developed in one area may be applied to other regions. Regional reviews and the reassessment of petroleum provinces are presented.

  11. ADVANCED CHEMISTRY BASINS MODEL

    SciTech Connect

    William Goddard III; Lawrence Cathles III; Mario Blanco; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2004-05-01

    The advanced Chemistry Basin Model project has been operative for 48 months. During this period, about half the project tasks are on projected schedule. On average the project is somewhat behind schedule (90%). Unanticipated issues are causing model integration to take longer then scheduled, delaying final debugging and manual development. It is anticipated that a short extension will be required to fulfill all contract obligations.

  12. Albuquerque Basin seismic network

    USGS Publications Warehouse

    Jaksha, Lawrence H.; Locke, Jerry; Thompson, J.B.; Garcia, Alvin

    1977-01-01

    The U.S. Geological Survey has recently completed the installation of a seismic network around the Albuquerque Basin in New Mexico. The network consists of two seismometer arrays, a thirteen-station array monitoring an area of approximately 28,000 km 2 and an eight-element array monitoring the area immediately adjacent to the Albuquerque Seismological Laboratory. This report describes the instrumentation deployed in the network.

  13. Dimension of fractal basin boundaries

    SciTech Connect

    Park, B.S.

    1988-01-01

    In many dynamical systems, multiple attractors coexist for certain parameter ranges. The set of initial conditions that asymptotically approach each attractor is its basin of attraction. These basins can be intertwined on arbitrary small scales. Basin boundary can be either smooth or fractal. Dynamical systems that have fractal basin boundary show final state sensitivity of the initial conditions. A measure of this sensitivity (uncertainty exponent {alpha}) is related to the dimension of the basin boundary d = D - {alpha}, where D is the dimension of the phase space and d is the dimension of the basin boundary. At metamorphosis values of the parameter, there might happen a conversion from smooth to fractal basin boundary (smooth-fractal metamorphosis) or a conversion from fractal to another fractal basin boundary characteristically different from the previous fractal one (fractal-fractal metamorphosis). The dimension changes continuously with the parameter except at the metamorphosis values where the dimension of the basin boundary jumps discontinuously. We chose the Henon map and the forced damped pendulum to investigate this. Scaling of the basin volumes near the metamorphosis values of the parameter is also being studied for the Henon map. Observations are explained analytically by using low dimensional model map.

  14. Advanced Chemistry Basins Model

    SciTech Connect

    William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2002-11-10

    The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

  15. Great Basin Paleontological Bibliography

    USGS Publications Warehouse

    Blodgett, Robert B.; Zhang, Ning; Hofstra, Albert H.; Morrow, Jared R.

    2007-01-01

    Introduction This work was conceived as a derivative product for 'The Metallogeny of the Great Basin' project of the Mineral Resources Program of the U.S. Geological Survey. In the course of preparing a fossil database for the Great Basin that could be accessed from the Internet, it was determined that a comprehensive paleontological bibliography must first be compiled, something that had not previously been done. This bibliography includes published papers and abstracts as well as unpublished theses and dissertations on fossils and stratigraphy in Nevada and adjoining portions of California and Utah. This bibliography is broken into first-order headings by geologic age, secondary headings by taxonomic group, followed by ancillary topics of interest to both paleontologists and stratigraphers; paleoecology, stratigraphy, sedimentary petrology, paleogeography, tectonics, and petroleum potential. References were derived from usage of Georef, consultation with numerous paleontologists and geologists working in the Great Basin, and literature currently on hand with the authors. As this is a Web-accessible bibliography, we hope to periodically update it with new citations or older references that we have missed during this compilation. Hence, the authors would be grateful to receive notice of any new or old papers that the readers think should be added. As a final note, we gratefully acknowledge the helpful reviews provided by A. Elizabeth J. Crafford (Anchorage, Alaska) and William R. Page (USGS, Denver, Colorado).

  16. Caribbean basin framework, 3: Southern Central America and Colombian basin

    SciTech Connect

    Kolarsky, R.A.; Mann, P. )

    1991-03-01

    The authors recognize three basin-forming periods in southern Central America (Panama, Costa Rica, southern Nicaragua) that they attempt to correlate with events in the Colombian basin (Bowland, 1984): (1) Early-Late Cretaceous island arc formation and growth of the Central American island arc and Late Cretaceous formation of the Colombian basin oceanic plateau. During latest Cretaceous time, pelagic carbonate sediments blanketed the Central American island arc in Panama and Costa Rica and elevated blocks on the Colombian basin oceanic plateau; (2) middle Eocene-middle Miocene island arc uplift and erosion. During this interval, influx of distal terrigenous turbidites in most areas of Panama, Costa Rica, and the Colombian basin marks the uplift and erosion of the Central American island arc. In the Colombian basin, turbidites fill in basement relief and accumulate to thicknesses up to 2 km in the deepest part of the basin. In Costa Rica, sedimentation was concentrated in fore-arc (Terraba) and back-arc (El Limon) basins; (3) late Miocene-Recent accelerated uplift and erosion of segments of the Central American arc. Influx of proximal terrigenous turbidites and alluvial fans in most areas of Panama, Costa Rica, and the Colombian basin marks collision of the Panama arc with the South American continent (late Miocene early Pliocene) and collision of the Cocos Ridge with the Costa Rican arc (late Pleistocene). The Cocos Ridge collision inverted the Terraba and El Limon basins. The Panama arc collision produced northeast-striking left-lateral strike-slip faults and fault-related basins throughout Panama as Panama moved northwest over the Colombian basin.

  17. Evaluation of Cask Drop Criticality Issues at K Basin

    SciTech Connect

    GOLDMANN, L.H.

    2000-01-24

    An analysis of ability of Multi-canister Overpack (MCO) to withstand drops at K Basin without exceeding the criticality design requirements. Report concludes the MCO will function acceptably. The spent fuel currently residing in the 105 KE and 105 KW storage basins will be placed in fuel storage baskets which will be loaded into the MCO cask assembly. During the basket loading operations the MCO cask assembly will be positioned near the bottom of the south load out pit (SLOP). The loaded MCO cask will be lifted from the SLOP transferred to the transport trailer and delivered to the Cold Vacuum Drying Facility (CVDF). In the wet condition there is a potential for criticality problems if significant changes in the designed fuel configurations occur. The purpose of this report is to address structural issues associated with criticality design features for MCO cask drop accidents in the 105 KE and 105 KW facilities.

  18. OXYGEN TRANSFER STUDIES AT THE MADISON METROPOLITAN SEWERAGE DISTRICT FACILITIES

    EPA Science Inventory

    Field studies at the Madison Metropolitan Sewerage District facilities were conducted over a 3-year period to obtain long-term data on the performance of fine pore aeration equipment in municipal wastewater. he studies were conducted on several basins in the East Plant containing...

  19. Facility 136, view of north end, "No Smoking" sign, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Facility 136, view of north end, "No Smoking" sign, view facing south-southwest - U.S. Naval Base, Pearl Harbor, Latrines, Off Avenue C, at Repair Basins B13, B15-B18 & B20, Pearl City, Honolulu County, HI

  20. OXYGEN TRANSFER STUDIES AT THE MADISON METROPOLITAN SEWERAGE DISTRICT FACILITIES

    EPA Science Inventory

    Field studies at the Madison Metropolitan Sewerage District facilities were conducted over a 3-year period to obtain long-term data on the performance of fine pore aeration equipment in municipal wastewater. The studies were conducted on several basins in the East Plant containi...

  1. An external tank is moved from a barge in the turn basin to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A newly arrived external tank is transported from the turn basin to the Vehicle Assembly Building (VAB), seen behind the tank. External tanks are built by the NASA Michoud Assembly Facility in New Orleans and transported by barge to Cape Canaveral and then up the Banana River to the turn basin in the Launch Complex 39 Area. In the VAB, the tank will await stacking for a future Shuttle mission.

  2. An external tank is moved from a barge in the turn basin to the VAB

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A newly arrived external tank heads from the turn basin toward the Vehicle Assembly Building (VAB), seen behind the tank. External tanks are built by the NASA Michoud Assembly Facility in New Orleans and transported by barge to Cape Canaveral and then up the Banana River to the turn basin in the Launch Complex 39 Area. In the VAB, the tank will await stacking for a future Shuttle mission.

  3. R2 REGULATED FACILITIES

    EPA Science Inventory

    The Facility Registry System (FRS) is a centrally managed database that identifies facilities, sites or places subject to environmental regulations or of environmental interest. FRS creates high-quality, accurate, and authoritative facility identification records through rigorous...

  4. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  5. Maintenance and Operations study for K basins sludge treatment

    SciTech Connect

    WESTRA, A.G.

    1998-11-30

    This study evaluates maintenance and operating concepts for the chemical treatment of sludge from the 100 K Basins at Hanford. The sludge treatment equipment that will require remote operation or maintenance was identified. Then various maintenance and operating concepts used in the nuclear industry were evaluated for applicability to sludge treatment. A hot cell or cells is recommended as the best maintenance and operating concept for a sludge treatment facility.

  6. Design criteria document, Fire Protection Task, K Basin Essential Systems Recovery, Project W-405

    SciTech Connect

    Johnson, B.H.

    1994-12-14

    The K Basin were constructed in the early 1950`s with a 20 year design life. The K Basins are currently in their third design life and are serving as a near term storage facility for irradiated N Reactor fuel until an interim fuel storage solution can be implemented. In April 1994, Project W-405, K Basin Essential Systems Recovery, was established to address (among other things) the immediate fire protection needs of the 100K Area. A Fire Barrier Evaluation was performed for the wall between the active and inactive areas of the 105KE and 105KW buildings. This evaluation concludes that the wall is capable of being upgraded to provide an equivalent level of fire resistance as a qualified barrier having a fire resistance rating of 2 hours. The Fire Protection Task is one of four separate Tasks included within the scope of Project W405, K Basin Essential systems Recovery. The other three Tasks are the Water Distribution System Task, the Electrical System Task, and the Maintenance Shop/Support Facility Task. The purpose of Project W-405`s Fire Protection Task is to correct Life Safety Code (NFPA 101) non-compliances and to provide fire protection features in Buildings 105KE, 105KW and 190KE that are essential for assuring the safe operation and storage of spent nuclear fuel at the 100K Area Facilities` Irradiated Fuel Storage Basins (K Basins).

  7. Cold Vacuum Drying facility effluent drains system design description (SYS 18)

    SciTech Connect

    TRAN, Y.S.

    2000-05-11

    The Cold Vacuum Drying (CVD) Facility provides required process systems, supporting equipment, and facilities needed for the Spent Nuclear Fuel (SNF) mission. This system design description (SDD) addresses the effluent drain system (EFS), which supports removal of water from the process bay floors. The discussion that follows is limited to piping, valves, components, and the process bay floor drain retention basin.

  8. Technology basis for the Liquid Effluent Retention Facility Operating Specifications. Revision 3

    SciTech Connect

    Johnson, P.G.

    1995-05-17

    The Liquid Effluent Retention Facility (LERF) consists of three retention basins, each with a nominal storage capacity of 6.5 million gallons. LERF serves as interim storage of 242-A Evaporator process condensate for treatment in the Effluent Treatment Facility. This document provides the technical basis for the LERF Operating Specifications, OSD-T-151-00029.

  9. Guide to research facilities

    SciTech Connect

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  10. Results of Groundwater Monitoring for the 183-H Solar Evaporation Basins

    SciTech Connect

    Hartman, Mary J.

    2006-10-31

    The 183-H solar evaporation basins (183-H basins) were located in the 100-H Area of the Hanford Site and have been demolished and backfilled under the Resource Conservation and Recovery Act (RCRA) in the Hanford Facility RCRA Permit (Ecology 2004). Post-closure actions remain for the 183 H basins. Groundwater is monitored in accordance with Washington Administrative Code (WAC) 173 303 645(11), ''Corrective Action Program'', and Part VI, Chapter 2 of the Hanford Facility RCRA Permit (Ecology 2004). The waste discharged to the basins originated in the 300 Area fuel fabrication facility and included solutions of chromic, hydrofluoric, nitric, and sulfuric acids that had been neutralized. The waste solutions contained various metallic and radioactive constituents (e.g., chromium, technetium-99, uranium ). Between 1985 and 1996, remaining waste was removed, the facility was demolished, and the underlying contaminated soil was removed and replaced with clean fill. This is one of a series of reports on corrective action monitoring at the 183-H basins. It fulfills a requirement of WAC 173-303-645(11)(g) to report twice each year on the effectiveness of the corrective action program. This report covers the period from January through June 2006.

  11. Great Basin paleontological database

    USGS Publications Warehouse

    Zhang, N.; Blodgett, R.B.; Hofstra, A.H.

    2008-01-01

    The U.S. Geological Survey has constructed a paleontological database for the Great Basin physiographic province that can be served over the World Wide Web for data entry, queries, displays, and retrievals. It is similar to the web-database solution that we constructed for Alaskan paleontological data (www.alaskafossil.org). The first phase of this effort was to compile a paleontological bibliography for Nevada and portions of adjacent states in the Great Basin that has recently been completed. In addition, we are also compiling paleontological reports (Known as E&R reports) of the U.S. Geological Survey, which are another extensive source of l,egacy data for this region. Initial population of the database benefited from a recently published conodont data set and is otherwise focused on Devonian and Mississippian localities because strata of this age host important sedimentary exhalative (sedex) Au, Zn, and barite resources and enormons Carlin-type An deposits. In addition, these strata are the most important petroleum source rocks in the region, and record the transition from extension to contraction associated with the Antler orogeny, the Alamo meteorite impact, and biotic crises associated with global oceanic anoxic events. The finished product will provide an invaluable tool for future geologic mapping, paleontological research, and mineral resource investigations in the Great Basin, making paleontological data acquired over nearly the past 150 yr readily available over the World Wide Web. A description of the structure of the database and the web interface developed for this effort are provided herein. This database is being used ws a model for a National Paleontological Database (which we am currently developing for the U.S. Geological Survey) as well as for other paleontological databases now being developed in other parts of the globe. ?? 2008 Geological Society of America.

  12. Apollo Basin, Moon: Estimation of Impact Conditions

    NASA Astrophysics Data System (ADS)

    Echaurren, J. C.

    2015-07-01

    The Apollo Basin is a, pre-Nectarian, multi-ring basin located within the large South Pole-Aitken Basin (SPA). Multispectral data from both Galileo and Clementine showed that the composition of materials in Apollo is distinct…

  13. Sports Facility Management.

    ERIC Educational Resources Information Center

    Walker, Marcia L., Ed.; Stotlar, David K., Ed.

    The numbers of both sports facility management college courses and sport and exercise facilities are increasing, along with the need for an understanding of the trends and management concepts of these facilities. This book focuses exclusively on managing facilities where sporting events occur and includes examples in physical education, athletics,…

  14. Future Fixed Target Facilities

    SciTech Connect

    Melnitchouk, Wolodymyr

    2009-01-01

    We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

  15. Reliable Facility Location Problem with Facility Protection.

    PubMed

    Tang, Luohao; Zhu, Cheng; Lin, Zaili; Shi, Jianmai; Zhang, Weiming

    2016-01-01

    This paper studies a reliable facility location problem with facility protection that aims to hedge against random facility disruptions by both strategically protecting some facilities and using backup facilities for the demands. An Integer Programming model is proposed for this problem, in which the failure probabilities of facilities are site-specific. A solution approach combining Lagrangian Relaxation and local search is proposed and is demonstrated to be both effective and efficient based on computational experiments on random numerical examples with 49, 88, 150 and 263 nodes in the network. A real case study for a 100-city network in Hunan province, China, is presented, based on which the properties of the model are discussed and some managerial insights are analyzed. PMID:27583542

  16. Advanced Chemistry Basins Model

    SciTech Connect

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  17. Atlantic marginal basins of Africa

    SciTech Connect

    Moore, G.T.

    1988-02-01

    The over 10,000-km long Atlantic margin of Africa is divisible into thirty basins or segments of the margin that collectively contain over 18.6 x 10/sup 6/ km/sup 3/ of syn-breakup and post-breakup sediments. Twenty of these basins contain a sufficiently thick volume of sediments to be considered prospects. These basins lie, at least partially, within the 200 m isobath. The distribution of source rocks is broad enough to give potential to each of these basins. The sedimentation patterns, tectonics, and timing of events differ from basin to basin and are related directly to the margin's complex history. Two spreading modes exist: rift and transform. Rifting dates from Late Triassic-Early Jurassic in the northwest to Early Cretaceous south of the Niger Delta. A complex transform fault system separated these two margins. Deep-water communication between the two basins became established in the middle Cretaceous. This Mesozoic-Cenozoic cycle of rifting and seafloor spreading has segmented the margin and where observable, basins tend to be bounded by these segments.

  18. MASSACHUSETTS DRAINAGE SUB-BASINS

    EPA Science Inventory

    MassGIS has produced a statewide digital datalayer of the approximately 2300 sub-basins as defined and used by the USGS Water Resources Division and the Mass Water Resources Commission and as modified by Executive Office of Environmental Affairs (EOEA) agencies. These sub-basins...

  19. Estancia Basin dynamic water budget.

    SciTech Connect

    Thomas, Richard P.

    2004-09-01

    The Estancia Basin lies about 30 miles to the east of Albuquerque, NM. It is a closed basin in terms of surface water and is somewhat isolated in terms of groundwater. Historically, the primary natural outlet for both surface water and groundwater has been evaporation from the salt lakes in the southeastern portion of the basin. There are no significant watercourses that flow into this basin and groundwater recharge is minimal. During the 20th Century, agriculture grew to become the major user of groundwater in the basin. Significant declines in groundwater levels have accompanied this agricultural use. Domestic and municipal use of the basin groundwater is increasing as Albuquerque population continues to spill eastward into the basin, but this use is projected to be less than 1% of agricultural use well into the 21st Century. This Water Budget model keeps track of the water balance within the basin. The model considers the amount of water entering the basin and leaving the basin. Since there is no significant surface water component within this basin, the balance of water in the groundwater aquifer constitutes the primary component of this balance. Inflow is based on assumptions for recharge made by earlier researchers. Outflow from the basin is the summation of the depletion from all basin water uses. The model user can control future water use within the basin via slider bars that set values for population growth, water system per-capita use, agricultural acreage, and the types of agricultural diversion. The user can also adjust recharge and natural discharge within the limits of uncertainty for those parameters. The model runs for 100 years beginning in 1940 and ending in 2040. During the first 55 years model results can be compared to historical data and estimates of groundwater use. The last 45 years are predictive. The model was calibrated to match to New Mexico Office of State Engineer (NMOSE) estimates of aquifer storage during the historical period by

  20. Hanford`s progress toward dry interim storage of K basin`s spent fuel

    SciTech Connect

    Culley, G.E., Westinghouse Hanford

    1996-05-09

    This paper highlights the progress made toward removing the U.S. Department of Energy`s (DOE) approximately 2, 100 metric tons of metallic spent nuclear fuel from two outdated K Basins on the banks of the Columbia River and placing it in safe, economic interim dry storage beginning in December 1997. A new way of doing business at the Hanford Site and within DOE is being used to achieve the fast-track schedule, , cost savings, and public cooperation needed for success. In February 1994, the Spent Nuclear Fuel (SNF) Project was formed to solve serious safety and environmental problems associated with corroding metallic spent fuel stored in 1950`s vintage, leak-prone, water- filled concrete basins located within 365 meters (400 yards) of the last remaining unspoiled section of the Columbia River. Working together, the integrated project team focused on quickly getting the fuel out of the basins and into safe, dry storage. The team involved the public, government, regulators, and other stakeholders and forged a common understanding. The DOE transferred authority to the field to shorten approval times, and Site contractors reengineered processes to improve efficiency. Within nine months of creating the project, a plan was recommended to the DOE. It was approved on February 14, 1995. Further refinement, during the following six months, shortened the schedule even more and reduced costs by $350 million. The SNF Project is on a fast track. The K Basins Environmental Impact Statement was completed in only 11 months for only $1.3 million. Fuel and sludge samples were obtained from both basins and were sent to the laboratory for characterization and testing. The partially constructed Canister Storage Building (CSB), selected as the fuel storage facility, was redesigned, and construction was restarted saving over $17 million and cutting a year off the project schedule. With fuel removal beginning in December 1997, the SNF Project will have the fuel out of the K Basins and into

  1. Stratigraphic modeling of sedimentary basins

    SciTech Connect

    Aigner, T. ); Lawrence, D.T. )

    1990-11-01

    A two-dimensional stratigraphic forward model has been successfully applied and calibrated in clastic, carbonate, and mixed clastic/carbonate regimes. Primary input parameters are subsidence, sea level, volume of clastics, and carbonate growth potential. Program output includes sequence geometries, facies distribution lithology distribution, chronostratigraphic plots, burial history plots, thermal and maturity histories, and crossplots. The program may be used to predict reservoir distribution, to constrain interpretations of well and seismic data, to rapidly test exploration scenarios in frontier basins, and to evaluate the fundamental controls on observed basin stratigraphy. Applications to data sets from Main Pass (US Gulf Coast), Offshore Sarawak (Malaysia), Rub'al Khali basin (Oman), Paris basin (France), and Baltimore Canyon (US East Coast) demonstrate that the program can be used to simulate stratigraphy on a basin-wide scale as well as on the scale of individual prospects.

  2. The Transboundary Waters Assessment Programme (TWAP) River Basin Component Methods and Results

    NASA Astrophysics Data System (ADS)

    de Sherbinin, A. M.; Glennie, P.

    2014-12-01

    The Transboundary Waters Assessment Programme (TWAP) was initiated by the Global Environment Facility (GEF) to create the first baseline assessment of all of the planet's transboundary water resources. The TWAP River Basin component consists of a baseline comparative assessment of 270 transboundary river basins, including all but the smallest basins, to enable the identification of priority issues and hotspots at risk from a variety of stressors. The assessment is indicator based and it is intended to provide a relative analysis of basins based on risks to societies and ecosystems. Models and observational data have been used to create 14 indicators covering environmental, human and agricultural water stress; nutrient and wastewater pollution; extinction risk; governance and institutions; economic dependence on water resources; societal wellbeing at sub-basin scales; and societal risks from climate extremes. The methodology is not limited to transboundary basins, but can be applied to all river basins. This presentation will provide a summary of the methods and results of the TWAP River Basin component. It will also briefly discuss preliminary results of the TWAP lakes and aquifer components.

  3. The deep Ionian Basin revisited

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Chamot-Rooke, Nicolas; Arsenikos, Stavros; Frizon de Lamotte, Dominique; Blanpied, Christian

    2016-04-01

    The deep Eastern Mediterranean Basins (Ionian and Herodotus) are characterized by thick sedimentary sequences overlying an extremely thinned basement evidenced from different geophysical methods. Yet, the nature of the crust (continental or oceanic) and the timing of the extreme crustal and lithosphere thinning in the different sub-basins remain highly controversial, casting doubts on the tectonic setting related to the formation of this segment of the North Gondwana paleo-margin. We focus on the Ionian Basin located at the western termination of the Eastern Mediterranean with the aim of identifying, characterizing and mapping the deepest sedimentary sequences. We present tentative age correlations relying on calibrations and observations from the surrounding margins and basins (Malta shelf and Escarpment, Cyrenaica margin, Sirte Basin, Apulian Platform). Two-ship deep refraction seismic data (Expanding Spread Profiles from the PASIPHAE cruise) combined with reprocessed reflection data (from the ARCHIMEDE survey) enabled us to present a homogeneous seismic stratigraphy across the basin and to investigate the velocity structure of its basement. Based on our results, and on a review of geological and geophysical observations, we suggest an Upper Triassic-Early Dogger age for the formation of the deep Ionian Basin. The nature of the underlying basement remains uncertain, both highly-thinned continental and slow-spreading type oceanic crust being compatible with the available constraints. The narrow size and relatively short-lived evolution of the Ionian Basin lead us to suggest that it is more likely the remnant of an immature oceanic basin than of a stable oceanic domain. Eventually, upscaling these results at the scale of the Eastern Mediterranean Basins highlights the complex interaction observed between two propagating oceans: The Central Atlantic and Neo-Tethys.

  4. Hanford K Basins spent nuclear fuels project update

    SciTech Connect

    Hudson, F.G.

    1997-10-17

    Twenty one hundred metric tons of spent nuclear fuel are stored in two concrete pools on the Hanford Site, known as the K Basins, near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current wet pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in the K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported into the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building (CSB) in the 200 Area for staging prior to hot conditioning. The conditioning step to remove chemically bound water is performed by holding the MCO at 300 C under vacuum. This step is necessary to prevent excessive pressure buildup during interim storage that could be caused by corrosion. After conditioning, MCOs will remain in the CSB for interim storage until a national repository is completed.

  5. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to

  6. Aleutian basin oceanic crust

    USGS Publications Warehouse

    Christeson, Gail L.; Barth, Ginger A.

    2015-01-01

    We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.

  7. Research and test facilities

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).

  8. Basin development and petroleum potential of offshore Otway basin, Australia

    SciTech Connect

    Williamson, P.E.; O'Brien, G.W.; Swift, M.G.; Scherl, A.S.; Marlow, M.S.; Exon, N.F.; Falvey, D.A.; Lock, J.; Lockwood, K.

    1987-05-01

    The Bass Strait region in southeastern Australia contains three sedimentary basins, which are, from east to west, the Gippsland, Bass, and Otway basins. The offshore Gippsland basin is Australia's most prolific petroleum-producing province and supplies over 90% of the country's production. In contrast, exploration has been unsuccessful in the offshore portion of the Otway basin; 17 wells have been drilled, and although shows of oil and gas have been common, no commercial discoveries have been made. Many of these wells, drilled in the 1960s and 1970s, were sited using poor-quality seismic data and, as a consequence, were frequently off structure. Seismic data quality has, however, improved significantly in recent years. The present study by the Australian Bureau of Mineral Resources (BMR) involved the collection, in the offshore Otway basin, of 3700 km of high-quality, 48-channel seismic reflection data by the BMR research vessel R/V Rig Seismic. These data have been integrated with existing industry seismic data, well data, limited dredged material, and geohistory analyses in a framework study of basin development and hydrocarbon potential in this under-explored area. The offshore Otway basin extends 500 km along the southern coastline and is typically 50 km wide in water depths of less than 200 m. It contains up to 10 km of predominantly late Mesozoic to early Cenozoic sediments, which are overlain by a thin sequence of middle to late Tertiary shelf carbonates. It has been divided into three main structural elements: the Mussel Platform in the east, the central Voluta Trough, and the Crayfish Platform in the west. The basin was initiated at the end of the Jurassic as part of the Bassian rift. Up to 6 km of Lower Cretaceous sediments were deposited prior to breakup at the end of the Early Cretaceous and the onset of sea-floor spreading between Australia and Antarctica.

  9. Data Quality Objectives Process for Designation of K Basins Debris

    SciTech Connect

    WESTCOTT, J.L.

    2000-05-22

    The U.S. Department of Energy has developed a schedule and approach for the removal of spent fuels, sludge, and debris from the K East (KE) and K West (KW) Basins, located in the 100 Area at the Hanford Site. The project that is the subject of this data quality objective (DQO) process is focused on the removal of debris from the K Basins and onsite disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). This material previously has been dispositioned at the Hanford Low-Level Burial Grounds (LLBGs) or Central Waste Complex (CWC). The goal of this DQO process and the resulting Sampling and Analysis Plan (SAP) is to provide the strategy for characterizing and designating the K-Basin debris to determine if it meets the Environmental Restoration Disposal Facility Waste Acceptance Criteria (WAC), Revision 3 (BHI 1998). A critical part of the DQO process is to agree on regulatory and WAC interpretation, to support preparation of the DQO workbook and SAP.

  10. Subsidence characterization and modeling for engineered facilities in Arizona, USA

    NASA Astrophysics Data System (ADS)

    Rucker, M. L.; Fergason, K. C.; Panda, B. B.

    2015-11-01

    Several engineered facilities located on deep alluvial basins in southern Arizona, including flood retention structures (FRS) and a coal ash disposal facility, have been impacted by up to as much as 1.8 m of differential land subsidence and associated earth fissuring. Compressible basin alluvium depths are as deep as about 300 m, and historic groundwater level declines due to pumping range from 60 to more than 100 m at these facilities. Addressing earth fissure-inducing ground strain has required alluvium modulus characterization to support finite element modeling. The authors have developed Percolation Theory-based methodologies to use effective stress and generalized geo-material types to estimate alluvium modulus as a function of alluvium lithology, depth and groundwater level. Alluvial material modulus behavior may be characterized as high modulus gravel-dominated, low modulus sand-dominated, or very low modulus fines-dominated (silts and clays) alluvium. Applied at specific aquifer stress points, such as significant pumping wells, this parameter characterization and quantification facilitates subsidence magnitude modeling at its' sources. Modeled subsidence is then propagated over time across the basin from the source(s) using a time delay exponential decay function similar to the soil mechanics consolidation coefficient, only applied laterally. This approach has expanded subsidence modeling capabilities on scales of engineered facilities of less than 2 to more than 15 km.

  11. Facilities for US Radioastronomy.

    ERIC Educational Resources Information Center

    Thaddeus, Patrick

    1982-01-01

    Discusses major developments in radioastronomy since 1945. Topics include proposed facilities, very-long-baseline interferometric array, millimeter-wave telescope, submillimeter-wave telescope, and funding for radioastronomy facilities and projects. (JN)

  12. The Educational Facilities Charrette

    ERIC Educational Resources Information Center

    Chase, William W.

    1970-01-01

    The deputy director for the Division of Facilities Development of the U.S. Office of Education discusses a technique for studying and resolving educational facilities development problems within the context of total community planning needs." (Author/AA)

  13. HAWAII NPDES MAJOR FACILITIES

    EPA Science Inventory

    Point coverage representing locations of NPDES facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from wastewater treatment facilities that discharge into waters of the US. Wastewater treatment facilitie...

  14. SAMOA NPDES MAJOR FACILITIES

    EPA Science Inventory

    Point coverage representing locations of NPDES facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from wastewater treatment facilities that discharge into waters of the US. Wastewater treatment facilitie...

  15. GUAM NPDES MAJOR FACILITIES

    EPA Science Inventory

    Point coverage representing locations of NPDES facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from wastewater treatment facilities that discharge into waters of the US. Wastewater treatment facilitie...

  16. ARIZONA NPDES MAJOR FACILITIES

    EPA Science Inventory

    Point coverage representing locations of NPDES facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from wastewater treatment facilities that discharge into waters of the US. Wastewater treatment facilitie...

  17. NEVADA NPDES MAJOR FACILITIES

    EPA Science Inventory

    Point coverage representing locations of NPDES facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from wastewater treatment facilities that discharge into waters of the US. Wastewater treatment facilitie...

  18. CALIFORNIA NPDES MAJOR FACILITIES

    EPA Science Inventory

    Point coverage representing locations of NPDES facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from wastewater treatment facilities that discharge into waters of the US. Wastewater treatment facilitie...

  19. Facility safety study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.

  20. Martian lake basins and lacustrine plains

    NASA Astrophysics Data System (ADS)

    de Hon, R. A.

    1992-02-01

    A classification of Martian lake basins based on the location of the basin in respect to water sources is proposed. The classes are type 1: valley-head basins; type 2: intravalley basins; type 3: valley-terminal basins; and type 4: isolated basins. Martian lakes are ephemeral features. Many craters and irregular depressions impounded water only until the basins filled and overflowed. Water escaping by spillover rapidly cut crevasses in the downstream side of basins and drained the ponds. Clastic lacustrine sediments collected in the lakes as flowing water lost velocity and turbulence. Evaporitic deposits may be significant in those basins that were not rapidly drained. Sediments deposited in lake basins form smooth, featureless plains. Lacustrine plains are potentially candidate sites for Mars landings and for the search for evidence of ancient life.

  1. Westinghouse Hanford Company recommended strategy for K Basin sludge disposition

    SciTech Connect

    Alderman, C.J.

    1995-05-01

    The objective of this document is to present the recommended strategy for removal of sludges from the K Basins. This document ties sludge removal activities to the plan for the K Basin spent nuclear fuel (SNF) described in WHC-EP-0830, Hanford Spent Nuclear Fuel Project Recommended Path Forward and is consistent with follow-on direction provided in February 1995. Solutions and processes for resolving sludge removal technical and management issues to meet accelerated K Basin deactivation objectives are described. The following outlines the major elements of the recommendation: (1) manage all sludges as SNF while in the K Basins; (2) once loose sludges are collected and removed from the facilities, manage them as radioactive or mixed waste consistent with the upcoming characterization results, the preferred sludge path forward alternative sends sludges to the Tank Waste Remediation System (TWRS) and/or the Hanford Solid Waste Disposal as appropriate; (3) continue to manage sludge within the fuel canisters at the time they are loaded into the multi-canister overpacks as SNF.

  2. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    USGS Publications Warehouse

    Lang, Joseph W.

    1972-01-01

    little or no treatment for most uses. The water is a soft, sodium bicarbonate type and therefore has a low to moderate dissolved-solids content. Mineral content increases generally downdip in an aquifer. Excessive iron, common in shallow aquifers, is objectionable for some water uses. Water from the streams, except in salty tidal reaches, is less mineralized than ground water; in 10 sites the median dissolved-solids content in streamflow was 50 milligrams per liter or less. Moderately intensive ground-water development has been made in the Bogalusa area, Louisiana; at the Mississippi Test Facility, Hancock County, Miss. ; and in the Jackson area, Mississippi. Wells with pumping rates of 500 to 1,000 gallons per minute each are common throughout the Pearl River basin, and some deep wells flow more than 3,000 gallons per minute in the coastal lowland areas. Probably 20 million gallons per day of artesian water flows uncontrolled from wells in the southern part of the basin. Ground-water levels, except in the higher altitudes, are within 60 feet of the surface, and flowing wells are common in the valleys and in the coastal Pine Meadows. Decline of water level is a problem in only a few small areas. Saline water as a resource is available for development from aquifers and streams near the coast and from aquifers at considerable depth in most of the Pearl River basin. Pollution is a problem in oil fields and in reaches of some streams below sewage and other waste-disposal points. The basin estuary contains water of variable quality but has potential for certain water-use developments that will require special planning and management.

  3. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This handbook is a guide for facilities maintenance managers. Its objective is to set minimum facilities maintenance standards. It also provides recommendations on how to meet the standards to ensure that NASA maintains its facilities in a manner that protects and preserves its investment in the facilities in a cost-effective manner while safely and efficiently performing its mission. This handbook implements NMI 8831.1, which states NASA facilities maintenance policy and assigns organizational responsibilities for the management of facilities maintenance activities on all properties under NASA jurisdiction. It is a reference for facilities maintenance managers, not a step-by-step procedural manual. Because of the differences in NASA Field Installation organizations, this handbook does not assume or recommend a typical facilities maintenance organization. Instead, it uses a systems approach to describe the functions that should be included in any facilities maintenance management system, regardless of its organizational structure. For documents referenced in the handbook, the most recent version of the documents is applicable. This handbook is divided into three parts: Part 1 specifies common definitions and facilities maintenance requirements and amplifies the policy requirements contained in NMI 8831. 1; Part 2 provides guidance on how to meet the requirements of Part 1, containing recommendations only; Part 3 contains general facilities maintenance information. One objective of this handbook is to fix commonality of facilities maintenance definitions among the Centers. This will permit the application of uniform measures of facilities conditions, of the relationship between current replacement value and maintenance resources required, and of the backlog of deferred facilities maintenance. The utilization of facilities maintenance system functions will allow the Centers to quantitatively define maintenance objectives in common terms, prepare work plans, and

  4. Yakima Basin Fish Passage Project, Phase 2

    SciTech Connect

    Not Available

    1991-08-01

    Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs.

  5. Florida Educational Facilities, 1998.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This document contains information, photographs, and floor plans of many of Florida's new elementary through high school facilities occupied in 1998. Each entry lists the facility's type, building size, student capacity, and general structural information. Also provided is information on the facility's total construction cost; the architects and…

  6. Florida Educational Facilities, 1996.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This document contains information, photographs, and floor plans of many of Florida's new elementary through high school facilities occupied in 1996. Each entry lists the facility's type, building size, student capacity, and general structural information. Also provided is information on the facility's total construction cost; the architects and…

  7. Florida Educational Facilities, 1997.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This document contains information, photographs, and floor plans of many of Florida's new elementary through high school facilities occupied in 1997. Each entry lists the facility's type, building size, student capacity, and general structural information. Also provided is information on the facility's total construction cost; the architects and…

  8. Aeronautical facilities assessment

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler)

    1985-01-01

    A survey of the free world's aeronautical facilities was undertaken and an evaluation made on where the relative strengths and weaknesses exist. Special emphasis is given to NASA's own capabilities and needs. The types of facilities surveyed are: Wind Tunnels; Airbreathing Propulsion Facilities; and Flight Simulators

  9. Facilities Engineering in NASA

    NASA Technical Reports Server (NTRS)

    Pagluiso, M. A.

    1970-01-01

    An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.

  10. Rental of School Facilities.

    ERIC Educational Resources Information Center

    San Antonio Independent School District, TX.

    Regulations governing rental of facilities owned by the San Antonio School District (Texas) are documented as found in Section Eight of the school district's rules code ("Public Use of All School District Facilities"). Eight divisions of the code are as follows: (1) administration; (2) use of school facilities by pupils, employees, and…

  11. Tectonic framework of Turkish sedimentary basins

    SciTech Connect

    Yilmaz, P.O. )

    1988-08-01

    Turkey's exploration potential primarily exists in seven onshore (Southeast Turkey platform, Tauride platform, Pontide platform, East Anatolian platform, Interior, Trace, and Adana) basins and four offshore (Black Sea, Marmara Sea, Aegean Sea, and Mediterranean Sea) regional basins formed during the Mesozoic and Tertiary. The Mesozoic basins are the onshore basins: Southeast Turkey, Tauride, Pontide, East Anatolian, and Interior basins. Due to their common tectonic heritage, the southeast Turkey and Tauride basins have similar source rocks, structural growth, trap size, and structural styles. In the north, another Mesozoic basin, the Pontide platform, has a much more complex history and very little in common with the southerly basins. The Pontide has two distinct parts; the west has Paleozoic continental basement and the east is underlain by island-arc basement of Jurassic age. The plays are in the upper Mesozoic rocks in the west Pontide. The remaining Mesozoic basins of the onshore Interior and East Anatolian basins are poorly known and very complex. Their source, reservoir, and seal are not clearly defined. The basins formed during several orogenic phases in mesozoic and Tertiary. The Cenozoic basins are the onshore Thrace and Adana basins, and all offshore regional basins formed during Miocene extension. Further complicating the onshore basins evolution is the superposition of Cenozoic basins and Mesozoic basins. The Thrace basin in the northwest and Adana basin in the south both originate from Tertiary extension over Tethyan basement and result in a similar source, reservoir, and seal. Local strike-slip movement along the North Anatolian fault modifies the Thrace basin structures, influencing its hydrocarbon potential.

  12. 77 FR 37036 - Williston Basin Interstate Pipeline Company; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... al.,\\1\\ for the acquisition and operation of natural gas facilities in Sheridan County and Campbell... Fallon County, Montana. The details of Williston Basin's proposal is more fully set forth in the... use to make up for declining deliverability from its Billy Creek Storage Reservoir on its...

  13. 75 FR 61414 - Basin Electric Power Cooperative: South Dakota PrairieWinds Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... Rural Utilities Service Basin Electric Power Cooperative: South Dakota PrairieWinds Project AGENCY...) for the Environmental Impact Statement (EIS) for the proposed South Dakota PrairieWind Project...-megawatt wind-powered generation facility. ADDRESSES: To obtain copies of the ROD, or for...

  14. PLOT PLAN OF FUEL STORAGE BUILDING (CPP603) SHOWING STORAGE BASINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLOT PLAN OF FUEL STORAGE BUILDING (CPP-603) SHOWING STORAGE BASINS AND PROPOSED LOCATION OF FUEL ELEMENT CUTTING FACILITY. INL DRAWING NUMBER 200-0603-00-706-051287. ALTERNATE ID NUMBER CPP-C-1287. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. 78 FR 15973 - Notice of Public Scoping Meetings for the Pojoaque Basin Regional Water System Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... would consist of surface water diversion and water treatment facilities within the boundaries of San... Bureau of Reclamation Notice of Public Scoping Meetings for the Pojoaque Basin Regional Water System... Water System. As part of that process, Reclamation will host five public scoping meetings to...

  16. Extended characterization of M-Area settling basin and vicinity. Technical data summary. Revision

    SciTech Connect

    Pickett, J B

    1985-10-01

    The Savannah River Plant M-Area settling basin, an unlined surface impoundment, has received process effluents from the M-Area fuel and target fabrication facilities since 1958. The waste effluents have contained metal degreasing agents (chlorinated hydrocarbons), acids, caustics, and heavy metals. Data analyses are provided.

  17. SPENT NUCLEAR FUEL STORAGE BASIN WATER CHEMISTRY: ELECTROCHEMICAL EVALUATION OF ALUMINUM CORROSION

    SciTech Connect

    Hathcock, D

    2007-10-30

    The factors affecting the optimal water chemistry of the Savannah River Site spent fuel storage basin must be determines in order to optimize facility efficiency, minimize fuel corrosion, and reduce overall environmental impact from long term spent nuclear fuel storage at the Savannah River Site. The Savannah River National Laboratory is using statistically designed experiments to study the effects of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, and Cl{sup -} concentrations on alloys commonly used not only as fuel cladding, but also as rack construction materials The results of cyclic polarization pitting and corrosion experiments on samples of Al 6061 and 1100 alloys will be used to construct a predictive model of the basin corrosion and its dependence on the species in the basin. The basin chemistry model and corrosion will be discussed in terms of optimized water chemistry envelope and minimization of cladding corrosion.

  18. Space Station Freedom - Technology R&D and test facility for the 21st century

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1990-01-01

    Development of the SSF is considered in terms of a primary stimulus for technology research and development activities in the early 21st century. The utilization and operations management organization, the ground facilities, and the associated international agreements will form the basis for all future major space projects, including lunar and Mars missions and outposts. Problems discussed include SSF technology R&D accommodations, Pacific Basin cooperative R&D opportunities, Pacific Basin cooperative R&D candidates, and space infrastructure cooperative projects.

  19. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008

    SciTech Connect

    Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

    2009-09-15

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  20. Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2007- Appendix 2

    SciTech Connect

    Perkins, Craig J.; Dorsey, Michael; Mckinney, Stephen M.; Wilde, Justin W.; Duncan, Joanne P.

    2008-10-13

    Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant (PFP), Canister Storage Building (CSB), and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

  1. Provenance and basin evolution, Zhada basin, southwestern Tibet

    NASA Astrophysics Data System (ADS)

    Saylor, J.; Decelles, P.; Gehrels, G.; Kapp, P.

    2007-12-01

    The Zhada basin is a late Miocene - Pliocene intermontane basin situated at high elevations in the Himalayan hinterland. The fluvial and lacustrine sediments of the Zhada formation are undeformed and sit in angular unconformity above the deformed Tethyan Sedimentary Sequence (TSS). The basin sits just south of the Indus suture in a structural position occupied elsewhere in the Himalayan orogen by some of the highest mountains on earth, including Everest. The occurrence of a basin at this location demands explanation. Currently, the Sutlej River flows parallel to the structural grain of the Himalaya, westward through the basin, towards the Leo Pargil (Qusum) range. Near the range front it takes a sharp southward turn, cuts across the structural grain of the Himalaya and out into the Gangetic foreland. Palaeocurrent indicators in the lower part of the Zhada formation show that the basin originated as a northwest flowing axial river. Palaeocurrent indicators are consistently northwest oriented, even to within to within 10 km of the Leo Pargil range front in the north-western end of the basin. This implies that at the onset of sedimentation in Zhada basin the Leo Pargil range was not a barrier as it is today. In the upper part of the Zhada formation, palaeocurrent indicators are generally directed towards the centre of the basin. In the central and southern portions of the basin this indicates a transition from an axial, northwest flowing river to prograding fluvial and alluvial fans. However, in the north-western part of the basin the change between lower and upper Zhada formation involves a complete drainage reversal. This change in palaeocurrent orientation is also reflected in the detrital zircon signal from basin sediments. Low in the Zhada formation the detrital zircon signal is dominated by zircons from the Kailash (Gangdese) batholith (or associated extrusives, see below). However, higher in the sections, a local source, either from the TSS or the core of the

  2. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Bureau of Reclamation Yakima River Basin Conservation Advisory Group; Yakima River Basin Water... on the structure, implementation, and oversight of the Yakima River Basin Water Conservation Program... of the Water Conservation Program, including the applicable water conservation guidelines of...

  3. Cleanup Verification Package for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils

    SciTech Connect

    L. D. Habel

    2008-03-18

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-8:4 Fuel Storage Basin West Side Adjacent and Side Slope Soils. The rectangular-shaped concrete basin on the south side of the 105-F Reactor building served as an underwater collection, storage, and transfer facility for irradiated fuel elements discharged from the reactor.

  4. Flexural analysis of two broken foreland basins; Late Cenozoic Bermejo basin and Early Cenozoic Green River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.; Reynolds, S.

    1986-05-01

    Lithospheric flexure that generates basin in a broke foreland setting (e.g., the Laramide foreland of Wyoming) is a three-dimensional system related to shortening along basin-bounding faults. The authors modeled the elastic flexure in three dimensions for two broken foreland basins: the early Cenozoic Green River basin and the analogous late Cenozoic Bermejo basin of Argentina. Each basin is located between a thrust belt and a reverse-fault-bounded basement uplift. Both basins are asymmetric toward the basement uplifts and have a central basement high: the Rock Springs uplift and the Pie de Palo uplift, respectively. The model applies loads generated by crustal thickening to an elastic lithosphere overlying a fluid mantle. Using the loading conditions of the Bermejo basin based on topography, limited drilling, and reflection and earthquake seismology, the model predicts the current Bermejo basin geometry. Similarly, flexure under the loading conditions in the Green River basin, which are constrained by stratigraphy, well logs, and seismic profiling and summed for Late Cretaceous (Lance Formation) through Eocene (Wasatch Formation), successfully models the observed geometry of the pre-Lance surface. Basin depocenters (> 4 km for the Green River basin; > 7 km for the Bermejo basin) and central uplifts are predicted to result from constructive interference of the nonparallel applied loads. Their Bermejo model implies that instantaneous basin geometry is successfully modeled by crustal loading, whereas the Green River basin analysis suggests that basin evolution can be modeled over large time steps (e.g., 20 Ma). This result links instantaneous basin geometry to overall basin evolution and is a first step in predicting stratigraphic development.

  5. Viscoelastic Relaxation of Lunar Basins

    NASA Astrophysics Data System (ADS)

    Mohit, P. S.; Phillips, R. J.

    2004-12-01

    The large lunar impact basins provide a unique glimpse into early lunar history. Here we investigate the possibility that the relief of the oldest lunar basins (with the exception of South-Pole Aitken) has decayed through viscous relaxation. We identify nine ancient multi-ring basins with very low relief and low-amplitude Bouguer and free-air gravity anomalies. The characteristics of these basins are consistent with either 1) relaxation of topographic relief by ductile flow (e.g. Solomon et al., 1982) or 2) obliteration of basin topography during crater collapse immediately following impact. Both scenarios require that the basins formed early in lunar history, when the Moon was hot. The latter possibility appears to be unlikely due to the great topographic relief of South Pole-Aitken basin (SPA), the largest and oldest impact basin on the Moon (with the possible exception of the putative Procellarum basin; Wilhelms, 1987). On the other hand, the thin crust beneath SPA may not have allowed ductile flow in its lower portions, even for a hot Moon, implying that a thicker crust is required beneath other ancient basins for the hypothesis of viscous relaxation to be tenable. Using a semi-analytic, self-gravitating viscoelastic model, we investigate the conditions necessary to produce viscous relaxation of lunar basins. We model topographic relaxation for a crustal thickness of 30 km, using a dry diabase flow law for the crust and dry olivine for the mantle. We find that the minimum temperature at the base of the crust (Tb) permitting nearly complete relaxation of topography by ductile flow on a timescale < 108 yrs is 1400 K, corresponding to a heat flow of 55mW/m2, into the crust. Ductile flow in the lower crust becomes increasingly difficult as the crustal thickness decreases. The crust beneath SPA, thinned by the impact, is only 15-20 km thick and would require Tb ≥ 1550 K for relaxation to occur. The fact that SPA has maintained high-amplitude relief suggests that

  6. Paleothermometry of the Sydney Basin

    SciTech Connect

    Middleton, M.F.; Schmidt, P.W.

    1982-07-10

    Evidence from overprinting of magnetizations of Late Permian and Mesozoic rocks and from the rank of Permian coals and Mesozoic phytoclasts (coal particles) suggests that surface rocks in the Sydney Basin, eastern Australia, have been raised to temperatures of the order of 200 /sup 0/C or higher. As vitrinite reflectance, an index of coal rank or coalification, is postulated to vary predictably with temperature and time, estimates of the paleotemperatures in the Sydney Basin based on observed vitrinite reflectance measurements can be made in conjunction with reasonable assumptions about the tectonic and thermal histories of the basin. These estimates give maximum paleotemperatures of present day surface rocks in the range 60--249 /sup 0/C, depending on factors such as location in the basin, the thickness of the sediment eroded, and the maximum paleogeothermal gradient. Higher coal rank and, consequently, larger eroded thicknesses and paleogeothermal gradients occur along the eastern edge of the basin and may be related to seafloor spreading in the Tasman Sea on the basin's eastern margin. A theory of thermal activation of magnetization entailing the dependence of magnetic viscosity on the size distribution of the magnetic grains is used to obtain an independent estimate of the maximum paleotemperatures in the Sydney Basin. This estimate places the maximum paleotemperature in the range 250--300 /sup 0/C along the coastal region. Both coalification and thermal activation of magnetization models provide strong evidence of elevated paleotemperatures, which in places exceed 200 /sup 0/C, and the loss of sediment thicknesses in excess of 1 km due to erosion.

  7. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    SciTech Connect

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2004-01-01

    Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks

  8. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    SciTech Connect

    Berry, C.J.; Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  9. 9. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING SOUTHWEST. THE NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. AERIAL VIEW OF CROSSCUT FACILITY, LOOKING SOUTHWEST. THE NEW CROSSCUT CANAL ENTERS THE PICTURE AT FOREGROUND RIGHT, EMPTYING INTO THE FOREBAY AND DESILTING BASIN CENTER. THE DUAL PENSTOCKS ARE SEEN AS THE STRAIGHT LINE RUNNING TOWARD THE HYDRO PLANTS ACROSS VAN BUREN STREET. top. THE BEGINNING OF THE GRAND CANAL IS VISIBLE, CURVING TO THE RIGHT BEYOND THE RAILROAD TRACKS Photographer unknown, no date - Cross Cut Hydro Plant, North Side of Salt River, Tempe, Maricopa County, AZ

  10. Basin Overflow Floods on Mars

    NASA Astrophysics Data System (ADS)

    Irwin, R. P.

    2006-12-01

    On Earth, the most intense recognized historical and paleofloods have been ice dambursts or overflows of large basins, often initiated by abundant runoff or meltwater from the contributing watersheds. Many impact craters and other basins also overflowed in the Martian cratered highlands, and some of their incised outlet valleys similarly record evidence of erosive floods. Otherwise, the commonly small, enclosed watersheds on Mars contain poorly developed valley networks and relatively simple depositional landforms, which record little evidence of intense (by terrestrial standards) meteorological floods. For these reasons, basin overflows may have been disproportionately important mechanisms for incision of large valleys on Mars. Many of the Martian outflow channels head in topographic settings that favored ponding, including large canyons, impact or intercrater basins, chaotic terrain basins, and grabens. This topography may have accumulated somewhat slower groundwater discharges from the subsurface to support peak channel discharges of 106-108 m3/s. To yield a discharge of 106, 107, and 108 m3/s from a dam failure with a width/depth ratio of 5, the model predicts that a breach of ~100, 250, and 640 m, respectively, must form rapidly with respect to the decline of lake level. Terrestrial damburst floods have not exceeded ~106 m3/s for earthen dams and ~107 m3/s for ice dams, but brecciation of the Martian surface by impact cratering may have allowed larger damburst failures, whereas solid bedrock was exposed at shallower depths in the terrestrial examples. Moreover, many of the Martian basins were much larger than enclosed continental basins on Earth, so long-lived overflows may have facilitated entrenchment of deeper channels. Some large, mid-latitude basins overflowed to carve Ma'adim Vallis and the Uzboi-Ladon-Margaritifer Valles system, which are similar in scale to the terrestrial Grand Canyon but record much larger formative discharges. Models of damburst

  11. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  12. Stormwater detention basin sediment removal

    SciTech Connect

    Gross, W.E.

    1995-12-31

    In the past, stormwater runoff from landfills has been treated mainly by focusing on reducing the peak storm discharge rates so as not to hydraulically impact downstream subsheds. However, with the advent of stricter water quality regulations based on the Federal Clean Water Act, and the related NPDES and SPDES programs, landfill owners and operators are now legally responsible for the water quality of the runoff once it leaves the landfill site. At the Fresh Kills Landfill in New York City, the world`s largest covering over 2000 acres, landfilling activities have been underway since 1945. With the main objective at all older landfill sites having focused on maximizing the available landfill footprint in order to obtain the most possible airspace volume, consideration was not given for the future siting of stormwater basin structures. Therefore, when SCS Engineers began developing the first comprehensive stormwater management plan for the site, the primary task was to locate potential sites for all the stormwater basins in order to comply with state regulations for peak stormwater runoff control. The basins were mostly constructed where space allowed, and were sized to be as large as possible given siting and subshed area constraints. Seventeen stormwater basins have now been designed and are being constructed to control the peak stormwater runoff for the 25-year, 24-hour storm as required by New York State. As an additional factor of safety, the basins were also designed for controlled discharge of the 100-year, 24 hour storm.

  13. Water Accounting from Ungauged Basins

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G.; Savenije, H.

    2014-12-01

    Water scarcity is increasing globally. This requires a more accurate management of the water resources at river basin scale and understanding of withdrawals and return flows; both naturally and man-induced. Many basins and their tributaries are, however, ungauged or poorly gauged. This hampers sound planning and monitoring processes. While certain countries have developed clear guidelines and policies on data observatories and data sharing, other countries and their basin organization still have to start on developing data democracies. Water accounting quantifies flows, fluxes, stocks and consumptive use pertaining to every land use class in a river basin. The objective is to derive a knowledge base with certain minimum information that facilitates decision making. Water Accounting Plus (WA+) is a new method for water resources assessment reporting (www.wateraccounting.org). While the PUB framework has yielded several deterministic models for flow prediction, WA+ utilizes remote sensing data of rainfall, evaporation (including soil, water, vegetation and interception evaporation), soil moisture, water levels, land use and biomass production. Examples will be demonstrated that show how remote sensing and hydrological models can be smartly integrated for generating all the required input data into WA+. A standard water accounting system for all basins in the world - with a special emphasis on data scarce regions - is under development. First results of using remote sensing measurements and hydrological modeling as an alternative to expensive field data sets, will be presented and discussed.

  14. Inversion of Extensional Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne J. H.; Pfiffner, O. Adrian

    The evolution of extensional sedimentary basins is governed by the surrounding stress field and can, therefore, be expected to be highly sensitive to variations in these stresses. Important changes in basin geometry are to be expected in the case of an even short-lived reversal from extension to compression. We investigate the evolu- tion of fold and thrust structures which form in compression after extension, when basin forming processes have come to a complete stop. To this purpose, we use a two- dimensional, viscoplastic model and start our experiments from a pre-existing exten- sional geometry. We illustrate the sensitivity of the evolving structures to inherited extensional geometry, sedimentary and erosional processes, and material properties. One series of our model experiments involves the upper- to middle crust only in order to achieve a high detail in the basin area. We find that our results agree with examples from nature and analogue studies in, among others, the uplift and rotation of syn-rift sediments, the propagation of shear zones into the post-rift sediments and, in specific cases, the development of back-thrusts or basement short-cut faults. We test the out- come of these models by performing a second series of model simulations in which basins on a continental margin are inverted through their progressive approach of a subduction zone. These latter models are on the scale of the whole upper mantle.

  15. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    Unknown

    2002-05-01

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam

  16. 183-H Solar Evaporation Basins PostClosure Plan

    SciTech Connect

    J.W. Badden

    1997-12-31

    The 183-H Solar Evaporation Basins (183-H) have certified closure under a modified closure option available in the Hanford Facility Dangerous Waste Permit under Condition II.K.3. The following information contains a description of the unit, past closure actions, and postclosure care requirements subject to compliance under the Permit. Corrective actions required for dangerous waste constituents remaining at 183-H will occur in conjunction with Comprehensive Environmental Response, Compensation, and Liability Act remedial actions for the 100-HR-1 Source Operable Unit and the 100-HR-3 Groundwater Operable Unit

  17. Facility records change control

    SciTech Connect

    Freed, B.L.

    1985-01-01

    This paper describes a control system that provides instructions and defines responsibilities for the systematic review, impact assessment, approval, release, and dissemination of facility record changes resulting from both major and minor modifications. This change control system was specifically developed and implemented on the Loss of Fluid Test (LOFT) integral test facility at the Idaho National Engineering Laboratory (INEL). The same type of control system is now used by all EG and G Idaho, Inc. reactor facilities at the INEL.

  18. Power Systems Development Facility Gasification Test Campaign TC17

    SciTech Connect

    Southern Company Services

    2004-11-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

  19. Estimation of nitrogen yields and loads from basins draining to Long Island Sound, 1988-98

    USGS Publications Warehouse

    Mullaney, J.R.; Schwarz, G.E.; Trench, E.C.T.

    2002-01-01

    Monitoring data on total nitrogen concentrations and streamflow were used to estimate annual nonpoint nitrogen loads for 1988?98 at 28 monitoring sites and 26 unmonitored basins that drain to Long Island Sound. The estimated total nitrogen yields at monitoring sites were used with basin characteristics and ancillary data to develop a multiple-linear regression equation to estimate nonpoint nitrogen yields from monitored and unmonitored basins. The estimated nonpoint nitrogen load to Long Island Sound from the basins studied ranged from 21 million pounds in water year 1995 to 50 million pounds in water year 1990. Statistically significant regression variables include time, population density, annual mean runoff (minus wastewater return flow), pointsource nitrogen yields, percentage of basin area classified as urban/recreational grasses, percentage of the basin classified as agricultural land, and the ratio of deciduous to total forest area. Nonpoint nitrogen loads from monitored and unmonitored basins were computed using the regression equation by setting the point-source nitrogen yields and wastewater return variables to zero, and incorporating streamflow information from index stations in or near unmonitored basins. Nonpoint nitrogen load information obtained through use of this equation was summarized by six Long Island Sound management zones. Estimates of nonpoint nitrogen loads from these basins can be improved by additional sampling, and by developing data on nitrogen loads from municipal wastewater-treatment facilities outside of Connecticut, compiling information on annual interbasin diversions of flow, studying instream losses of nitrogen, and analyzing the processing and storage of atmospheric nitrogen in different forest types.

  20. Radioactive air emissions notice of construction fuel removal for 105-KE basin

    SciTech Connect

    Kamberg, L.D., Fluor Daniel Hanford

    1997-02-11

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct pursuant to 40 Code of Federal Regulations (CFR) 61.96 for the modifications, installation of new equipment, and fuel removal and sludge relocation activities at 105-KE Basin. The 105-K east reactor and its associated spent nuclear fuel (SNF) storage basin (105-KE Basin) were constructed in the early 1950s and are located in the 100-K Area about 1,400 feet from the Columbia River. The 105-KE Basin contains 1,152 metric tons of SNF stored underwater in 3,673 open canisters. This SNF has been stored for varying periods of time ranging from 8 to 24 years. The 105-KE Basin is constructed of unlined concrete and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The fuel is corroding and an estimated 1,700 cubic feet of sludge, containing radionuclides and miscellaneous materials, have accumulated in the basin. The 105-KE Basin has leaked radiologically contaminated water to the soil beneath the basin in the past most likely at the construction joint between the foundation of the basin and the foundation of the reactor. The purpose of the activities described in this Notice of Construction (NOC) is to enable the retrieval and transport of the fuel to the Cold Vacuum Drying Facility (CVDF). This NOC describes modifications, the installation of new equipment, and fuel removal and sludge relocation activities expected to be routine in the future. Debris removal activities described in this NOC will supersede the previously approved NOC (DOE/RL-95-65). The proposed modifications described are scheduled to begin in calendar year 1997.

  1. MIST facility densitometer comparisons

    SciTech Connect

    Childerson, M.T.

    1987-01-01

    Photon attenuation techniques were used in the Multi-Loop Integral Systems Test (MIST) facility to make void fraction and fluid density measurements. The MIST facility was a scaled physical model of a Babcock and Wilcox lowered loop, nuclear steam supply system. The facility was tested at typical pressurized water reactor fluid conditions. The MIST facility was designed for observing integral system response during a small-break loss-of-coolant accident. The data from the MIST tests are used for improving confidence in safety codes. Dual-beam gamma densitometers provided an indication of the void fraction or mixture density of the fluid at the hot- and cold-leg nozzles.

  2. Testing for Basins of Wada

    PubMed Central

    Daza, Alvar; Wagemakers, Alexandre; Sanjuán, Miguel A. F.; Yorke, James A.

    2015-01-01

    Nonlinear systems often give rise to fractal boundaries in phase space, hindering predictability. When a single boundary separates three or more different basins of attraction, we say that the set of basins has theWada property and initial conditions near that boundary are even more unpredictable. Many physical systems of interest with this topological property appear in the literature. However, so far the only approach to study Wada basins has been restricted to two-dimensional phase spaces. Here we report a simple algorithm whose purpose is to look for the Wada property in a given dynamical system. Another benefit of this procedure is the possibility to classify and study intermediate situations known as partially Wada boundaries. PMID:26553444

  3. Evaluation of water resource economics within the Pasco Basin, Washington

    SciTech Connect

    Leaming, G F

    1981-09-30

    The Columbia River basalt beneath the Hanford Site in south-central Washington is being considered for possible use as a terminal repository medium for high-level nuclear waste. Such underground storage would require that the facility be contiguous to at least a portion of the ambient groundwater system of the Pasco Basin. This report attempts to evaluate the economic factors and conditions related to the water resources of the Pasco Basin and the probable economic effects associated with selected hypothetical changes in local water demand and supply as a basis for eventual selection of credible water supply alternatives and more detailed analyses of the consequences of such alternative selection. It is most likely that total demand for water for consumptive uses in the Pasco Basin will increase from nearly 2.0 million acre-feet per year in 1980 to almost 2.8 million acre-feet in 2010, with total demand slightly more than 3.6 million acre-feet per year in 2080. The Columbia River and other surface streams constitute the source of more than 99 percent of the water available each year for all uses, both consumptive and non-consumptive, in the Pasco Basin. It is estimated that pumped groundwater accounted for 3 percent of the value of all water supplied to consumers of water in the Pasco Basin in 1980. Groundwater's share of the total cost is proportionately higher than groundwater's share of total use because it is generally more costly to acquire than is surface water and the value of water is considered equivalent to its cost of acquisition. Because groundwater represents such a small part of the total water supply and demand within the Pasco Basin, it is concluded that if the development of a nuclear waste repository on the Hanford Site were to result in changes in the groundwater supply during the next 100 years, the economic impact on the overall water supply picture for the entire basin would be insignificant.

  4. Water-quality assessment of the upper Snake River basin, Idaho and western Wyoming; environmental setting, 1980-92

    USGS Publications Warehouse

    Maupin, Molly A.

    1995-01-01

    Idaho leads the Nation in trout production for commercial sale. Combined mean annual discharges from 12 aquacultural facilities in the basin (1985-90) were about 787,000 acre-feet. These facilities are clustered in a reach of the Snake River between Milner Dam and King Hill where ground-water discharge is from many seeps and springs that provide sufficient quantities of good-quality water. Other facilities that release effluent to the Snake River include 13 municipal wastewater treatment plants and 3 industrial facilities.

  5. Oil in the Malvinas Basin

    SciTech Connect

    Galeazzi, J.S.

    1996-08-01

    The Malvinas Basin is petroliferous. The main source rocks are Late Jurassic and Early Cretaceous outer shelf to basinal shales known as the Pampa Rincon and Lower Inoceramus formations. Main reservoirs are fluvial and shallow-marine sandstones of the coeval Springhill Formation. On the western flank of the basin, 17 wells drilled the Cenozoic and Mesozoic column. Three of these wells discovered hydrocarbons within the Springhill Formation, and one discovered oil in Early Paleogene sandstones. Additionally, some wells recorded shows at different levels within the stratigraphic succession. A detailed overview of the drilled portion of the basin permitted the construction of a sequence stratigraphic framework, and yielded clues on a complex history of deformation. Interpretation of facies and stratal stacking and termination patterns determined that the main reservoir and source rocks were deposited in a ramp-style depositional setting. They represent the lower transgressive phase of a Late Jurassic to Early Cretaceous megasequence deposited during the early sag stage of the basin. Alternative reservoirs to the Springhill sandstones include early Paleogene glauconitic sandstones and carbonates, and Miocene deep-water turbidites. Structural trap styles include normal fault features of Jurassic to Early Cretaceous age, and compressional and inverted positive structures due to Neogene compression. Possible combination and stratigraphic traps include: little tested onlap pinchout of Late Jurassic to Early Cretaceous and Paleogene sandstones and untested erosionally truncated Paleogene sandstones; Early Paleogene carbonate buildups and Miocene deep-water turbidite mounds. The understanding of the geology of the western Malvinas Basin is the key to success of exploration in the huge frontier surrounding areas.

  6. H-Area Seepage Basins

    SciTech Connect

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  7. Searching for Nectaris Basin Impact Melt Rocks

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.

    2015-07-01

    Because Nectaris Basin is a key stratigraphic marker for lunar bombardment, we are conducting an effort to identify Nectaris basin impact-melt rocks, to model their emplacement, and to examine sites where Nectaris impact melt is abundant.

  8. Origin of the earth's ocean basins

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1977-01-01

    The earth's original ocean basins are proposed to be mare-type basins produced 4 billion y.a. by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upward from the observed number of lunar basins for the greater capture cross-section and impact velocity of the earth indicates that at least 50% of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60% oceanic, 40% continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

  9. Origin of the earth's ocean basins

    NASA Technical Reports Server (NTRS)

    Frex, H.

    1977-01-01

    The earth's original ocean basins were mare-type basins produced 4 billion years ago by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upwards from the observed number of lunar basins for the greater capture cross-section and impact velocity of the Earth indicates that at least 50 percent of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60 percent oceanic, 40 percent continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

  10. Caribbean basin framework, 4: Maracaibo basin, northwestern Venezuela

    SciTech Connect

    Lugo, J. )

    1991-03-01

    The Maracaibo basin is presently located in a topographic depression on the Maracaibo block, a triangular, fault-bounded block within the Caribbean-South America plate boundary of northwestern Venezuela. Intense oil exploration over the last 50 years has produced a large amount of seismic and well data that can be used to constrain four Jurassic to Recent tectonic and depositional events that affected the region: (1). Late Jurassic rift phase and subsidence along normal faults striking north-northeast across the floor of the basin; (2) Cretaceous to early Eocene subsidence recorded by shallow to deep marine carbonate and clastic rocks that thicken from south to north and completely cover Permian rocks of the Merida arch; (3) Eocene folding, thrusting, and initial reactivation of Jurassic normal faults as convergent strike-slip and reverse faults. Eocene clastic sediments are thickest in a narrow northwest-trending foredeep on the northeastern margin of the basin; (4) Late Miocene to Recent northwest-southeast convergence is marked by continued reactivation of Jurassic normal faults as reverse and left-lateral strike-slip faults, uplift of mountain ranges bordering the basin, and deposition of up to 10 km of clastic sediment.

  11. Umatilla Basin Natural Production Monitoring and Evaluation; 1998-2002 Summary Report.

    SciTech Connect

    Contor, Craig R.

    2004-07-01

    The Umatilla Basin Natural Production Monitoring and Evaluation Project (WWNPME) was funded by Bonneville Power Administration (BPA) as directed by section 4(h) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P. L. 96-501). This project is in accordance with and pursuant to measures 4.2A, 4.3C.1, 7.1A.2, 7.1C.3, 7.1C.4 and 7.1D.2 of the Northwest Power Planning Council's (NPPC) Columbia River Basin Fish and Wildlife Program (NPPC 1994). Work was conducted by the Fisheries Program of the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) under the Umatilla Basin Natural Production Monitoring and Evaluation Project (UBNPME). Chapter One provides an overview of the entire report and shows how the objectives of each statement of work from 1999, 2000, 2001, and 2002 contract years are organized and reported. This chapter also provides background information relevant to the aquatic resources of the Umatilla River Basin. (Figure 1-1, Tables 1-1 and 1-2). Data and reports from this and previous efforts are available on the CTUIR website http://www.umatilla.nsn.us. This project was one of several subprojects of the Umatilla River Basin Fisheries Restoration Master Plan (CTUIR 1984, ODFW 1986) orchestrated to rehabilitate salmon and steelhead runs in the Umatilla River Basin. Subprojects in additions to this project include: Watershed Enhancement and Rehabilitation; Hatchery Construction and Operation; Hatchery Monitoring and Evaluation; Satellite Facility Construction and Operations for Juvenile Acclimation and Adult Holding and Spawning; Fish Passage Construction and Operation; Juvenile and Adult Passage Facility Evaluations; Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, and Flow Augmentation to Increase Stream Flows below Irrigation Diversions.

  12. Electrostatic Levitator (ESL) Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA's Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility.

  13. Florida Educational Facilities, 1999.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This publication describes Florida school and community college facilities completed in 1999, including photographs and floor plans. The facilities profiled are: Buchholz High School (Alachua County); Gator Run Elementary School (Broward); Corkscrew Elementary School (Collier); The 500 Role Models Academy of Excellence (Miami-Dade); Caribbean…

  14. INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, ORD, U.S. EPA operates the Incineration Research Facility *IRF) in Jefferson, Arkansas. This facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liquid Injection System. Each syste...

  15. FACILITY POLLUTION PREVENTION GUIDE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) has developed the Facility Pollution Prevention Guide for those who are interested in and responsible for pollution prevention in industrial or service facilities. t summarizes the benefits of a company-wide pollution prevention...

  16. Shaping Campus Facilities.

    ERIC Educational Resources Information Center

    Calcara, James R.

    1999-01-01

    Explains how colleges and universities, faced with emerging trends and increased competition, can utilize their facilities as strategic resources. Examines technology changes in the classroom and the effects on user needs, the trend toward real-world learning environments, and facility design planning that responds to social interaction and…

  17. Head Start Facilities Manual.

    ERIC Educational Resources Information Center

    Research Assessment Management, Inc., Silver Spring, MD.

    A quality Head Start facility should provide a physical environment responsive both to the needs of the children and families served and to the needs of staff, volunteers, and community agencies that share space with Head Start. This manual is a tool for Head Start grantees and delegate agencies for assessing existing facilities, making…

  18. School Facilities. Appendix A.

    ERIC Educational Resources Information Center

    Howell, Penny; Miller, Barbara; Krantzler, Nora

    1997-01-01

    This appendix to the theme issue summarizes the challenges of providing and maintaining educational facilities, discussing the maintenance of existing buildings and the need for new ones. Possible sources of needed funds are considered, and the equity problems related to school facilities are reviewed, emphasizing the problems of urban schools.…

  19. BIBLIOGRAPHY OF FACILITIES INFORMATION.

    ERIC Educational Resources Information Center

    American Association of Junior Colleges, Washington, DC.

    PERSONNEL OF THE FACILITIES INFORMATION SERVICE OF THE AMERICAN ASSOCIATION OF JUNIOR COLLEGES COMPILED THIS LISTING OF BOOKS, ARTICLES, MONOGRAPHS, AND OTHER PRINTED MATERIALS RELEVANT TO JUNIOR COLLEGE FACILITIES PLANNING, DESIGN, AND CONSTRUCTION. IN ADDITION TO A "GENERAL" CATEGORY, REFERENCES ARE GROUPED UNDER HEADINGS OF AUDITORIUMS, COLLEGE…

  20. Science Facilities Bibliography.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    A bibliographic collection on science buildings and facilities is cited with many different reference sources for those concerned with the design, planning, and layout of science facilities. References are given covering a broad scope of information on--(1) physical plant planning, (2) management and safety, (3) building type studies, (4) design…

  1. THE INCINERATION RESEARCH FACILITY

    EPA Science Inventory

    The Cincinnati-based Risk Reduction Engineering Laboratory, Office of Research and Development, U.S. EPA operates the Incineration Research Facility (IRF) in Jefferson, Arkansas. his facility's pilot-scale experimental incineration systems include a Rotary Kiln System and a Liqui...

  2. FACILITIES FOR PHYSICAL FITNESS.

    ERIC Educational Resources Information Center

    MUSIAL, STAN

    THIS ARTICLE CITES THE LOW PRIORITY THAT PHYSICAL EDUCATION GENERALLY HAS IN CURRICULUM AND SCHOOL FACILITY PLANNING. IT ALSO CITES THE REASONS FOR DEVELOPING MORE ADEQUATE PHYSICAL EDUCATION FACILITIES--(1) OUR WAY OF LIFE NO LONGER PROVIDES VIGOROUS PHYSICAL ACTIVITY NECESSARY FOR HEALTHY DEVELOPMENT, (2) A DIRECT RELATIONSHIP EXISTS BETWEEN…

  3. Florida Educational Facilities, 2000.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Educational Facilities.

    This publication describes Florida school and community college facilities completed in 2000, including photographs and floor plans. The facilities profiled are:J. R. Arnold High School (Bay County); Falcon Cove Middle School (Broward); Floranada Elementary School (Broward); Lyons Creek Middle School (Broward); Parkside Elementary School…

  4. 33 CFR 401.48 - Turning basins.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Turning basins. 401.48 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.48 Turning basins. No vessel... the locations set out in the table to this section. Table 1. South Shore Canal: (a) Turning Basin...

  5. 33 CFR 401.48 - Turning basins.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Turning basins. 401.48 Section... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.48 Turning basins. No vessel... the locations set out in the table to this section. Table 1. South Shore Canal: (a) Turning Basin...

  6. Supplementary information on K-Basin sludges

    SciTech Connect

    MAKENAS, B.J.

    1999-03-15

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

  7. Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at the SRS

    SciTech Connect

    Pickett, J. B.; Austin, W. E.; Dukes, H. H.

    2002-02-26

    This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins.

  8. Kauai Test Facility

    SciTech Connect

    Hay, R.G.

    1982-01-01

    The Kauai Test Facility (KTF) is a Department of Energy rocket launch facility operated by Sandia National Laboratories. Originally it was constructed in support of the high altitude atmospheric nuclear test phase of operation Dominic in the early 1960's. Later, the facility went through extensive improvement and modernization to become an integral part of the Safeguard C readiness to resume nuclear testing program. Since its inception and build up, in the decade of the sixties and the subsequent upgrades of the seventies, range test activities have shifted from full scale test to emphasis on research and development of materials and components, and to making high altitude scientific measurements. Primarily, the facility is intended to be utilized in support of development programs at the DOE weapons laboratories, however, other organizations may make use of the facility on a non-interface basis. The physical components at KTF and their operation are described.

  9. Evolution of the Congo Basin

    NASA Astrophysics Data System (ADS)

    Glasmacher, U. A.; Bauer, F. U.; Kollenz, S.; Delvaux, D.

    2012-04-01

    The Congo Basin is one of the largest basins in the World with very little knowledge on the geological evolution as well as the oil and gas potential. In the past, oil seeps are recorded in the central part of the basin. Four sides in the Congo basin have been drilled so far. The cores of the two drill sides Dekese and Samba are located at the Musée royal de l'Afrique Centrale, Belgium. In a reconnaissance survey, we sampled both drill cores in a nearly even spacing of ~ 150 m covering the whole stratigraphy from Albian to Proterozoic. The red and green to grey sandstone samples were prepared by usual heavy minerals separation technique. Most of the samples revealed enough apatite and zircon grains for the two thermochronometric techniques fission track and (U-Th-Sm)/He. The time-temperature (t-T) evolution for the two drill locations were modelled by using the determined thermochronological data within the software code HeFTy. We tested various geological evolutionary constrains. Both techniques provide us information on the thermal and exhumation of the possible source area and on the drill location by themselves.

  10. Windblown Dunes on the Floor of Herschel Impact Basin

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Herschel Basin, one of many meteor impact craters on Mars, has some dark material on its floor that appeared from earlier spacecraft missions to have been blown and/or deposited by wind. Herschel Basin was imaged at low resolution by the Mariner 9 and Viking orbiters ((A) above) in the 1970s, and again by the Phobos 2 orbiter in 1989.

    On June 14, 1998, Mars Global Surveyor's Mars Orbiter Camera revealed that part of the dark surface on the floor of Herschel Basin consists of a field of sand dunes ((B) above). These dunes have a distinct crescent-like shape characteristic of dunes on Earth called barchan dunes. They result from winds that blow from a single dominant direction.

    In the case of Herschel Basin, the dunes indicate that the strongest winds blow approximately north-to-south. The crescent horns on the ends of some of the dunes in this image are elongated. This condition indicates that the dominant winds do not always blow in exactly the same direction-- sometimes the winds blow from the northeast, sometimes from the northwest, and sometimes from the north. The local topography probably influences the wind direction--and hence dune shape--because this dune field is located on a narrow, low plain between a high crater rim to the east, and a narrow mountain range-- the inner ring of the Herschel impact basin--to the west (see image (A)).

    MOC image 36507 was obtained on Mars Global Surveyor's 365th orbit around 10:51 a.m. PDT on June 14, 1998. This subframe is centered around 14.27oS, 231.68oW.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  11. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    SciTech Connect

    WESTCOTT, J.L.; JOCHEN; PREVETTE

    2007-01-02

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State are being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary.

  12. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    SciTech Connect

    WESTCOTT, J.L.

    2006-11-15

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary.

  13. DEMOLISHING A COLD WARE ERA FULE STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    SciTech Connect

    LLOYD ER; STEVENS JM; DAGAN EB; ORGILL TK; GREEN MA; LARSON CH; ZINSLI LC

    2009-01-12

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB) siding. The project's mission was to complete demolition of the structure over the KE Basin within six months of turnover from facility deactivation activities. The demolition project team applied open-air demolition techniques to bring the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives during the demolition; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovative approach that made demolition easier was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building and portions of the interior walls, and was an integral part of the multiple-layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by using heavy equipment to remove the CAB during demolition. The ability to perform this demolition safely and without spreading contamination (radiological or

  14. DEMOLISHING A COLD-WAR-ERA FUEL STORAGE BASIN SUPERSTRUCTURE LADEN WITH ASBESTOS

    SciTech Connect

    LLOYD ER; ORGILL TK; DAGAN EB

    2008-11-25

    The K East (KE) Basin facilities are located near the north end of the Hanford Site's 100 K area. The facilities were built in 1950 as part of the KE Reactor complex and constructed within 400 meters of the Columbia River, which is the largest river in the Pacific Northwest and by volume the fourth largest river in the United States. The basin, located adjacent to the reactor, was used for the underwater storage of irradiated nuclear fuel discharged from the reactor. The basin was covered by a superstructure comprising steel columns and beams, concrete, and cement asbestos board (CAB) siding. The project's mission was to complete demolition of the structure over the K East basin within six months of tumover from facility deactivation activities. The demolition project team implemented open-air demolition techniques to demolish the facility to slab-on-grade. Several innovative techniques were used to control contamination and maintain contamination control within the confines of the demolition exclusion zone. The techniques, which focused on a defense-in-depth approach, included spraying fixatives on interior and exterior surfaces before demolition began; applying fixatives; misting using a fine spray of water during demolition; and demolishing the facility systematically. Another innovation that aided demolition was to demolish the building with the non-friable CAB remaining in place. The CAB siding covered the exterior of the building, portions of the interior walls, and was an integral part of the multiple layered roof. The project evaluated the risks involved in removing the CAB material in a radiologically contaminated environment and determined that radiological dose rates and exposure to radiological contamination and industrial hazards would be significantly reduced by removing the CAB during demolition using heavy equipment. The ability to perform this demolition safely and without spreading contamination (radiological or asbestos) demonstrates that similar

  15. Umatilla Hatchery Satellite Facilities Operation and Maintenance; 1996 Annual Report.

    SciTech Connect

    Rowan, Gerald D.

    1997-06-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Oregon Department of Fish and Wildlife (ODFW) are cooperating in a joint effort to enhance steelhead and re-establish salmon runs in the Umatilla River Basin. As an integral part of this program, Bonifer Pond, Minthorn Springs, Imeques C-mem-ini-kem and Thornhollow satellite facilities are operated for acclimation and release of juvenile summer steelhead (Oncorhynchus mykiss), fall and spring chinook salmon (O. tshawytscha) and coho salmon (O. kisutch). Minthorn is also used for holding and spawning adult summer steelhead and Three Mile Dam is used for holding and spawning adult fall chinook and coho salmon. Bonifer, Minthorn, Imeques and Thornhollow facilities are operated for acclimation and release of juvenile salmon and summer steelhead. The main goal of acclimation is to reduce stress from trucking prior to release and improve imprinting of juvenile salmonids in the Umatilla River Basin. Juveniles are transported to the acclimation facilities primarily from Umatilla and Bonneville Hatcheries. This report details activities associated with operation and maintenance of the Bonifer, Minthorn, Imeques, Thornhollow and Three Mile Dam facilities in 1996.

  16. Biotechnology Facility: An ISS Microgravity Research Facility

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min

    2000-01-01

    The International Space Station (ISS) will support several facilities dedicated to scientific research. One such facility, the Biotechnology Facility (BTF), is sponsored by the Microgravity Sciences and Applications Division (MSAD) and developed at NASA's Johnson Space Center. The BTF is scheduled for delivery to the ISS via Space Shuttle in April 2005. The purpose of the BTF is to provide: (1) the support structure and integration capabilities for the individual modules in which biotechnology experiments will be performed, (2) the capability for human-tended, repetitive, long-duration biotechnology experiments, and (3) opportunities to perform repetitive experiments in a short period by allowing continuous access to microgravity. The MSAD has identified cell culture and tissue engineering, protein crystal growth, and fundamentals of biotechnology as areas that contain promising opportunities for significant advancements through low-gravity experiments. The focus of this coordinated ground- and space-based research program is the use of the low-gravity environment of space to conduct fundamental investigations leading to major advances in the understanding of basic and applied biotechnology. Results from planned investigations can be used in applications ranging from rational drug design and testing, cancer diagnosis and treatments and tissue engineering leading to replacement tissues.

  17. Tectonic evolution and oil and gas of Tarim basin

    NASA Astrophysics Data System (ADS)

    Yuzhu, Kang; Zhihong, Kang

    According to the new results achieved in the past ten years and more, using mobilism and the theory of polycycle by Huang Jiqing (1977, 1984), the formation of the basement of the Tarim basin and its characteristics are summarized. The prototype basins formed since Sinian times are classified into rift basin, continental marginal basin, cratonic basin, foreland basin and others. The Tarim basin is regarded as a huge oil- and gas-bearing basin superposed by prototype basins of different ages. The tectonic characteristics of these basins including tectonic movements, tectonic migrations, faults and trap types are summarized. In addition, structural control over oil and gas and oil-forming features are analysed.

  18. GRC Ground Support Facilities

    NASA Technical Reports Server (NTRS)

    SaintOnge, Thomas H.

    2010-01-01

    The ISS Program is conducting an "ISS Research Academy' at JSC the first week of August 2010. This Academy will be a tutorial for new Users of the International Space Station, focused primarily on the new ISS National Laboratory and its members including Non-Profit Organizations, other government agencies and commercial users. Presentations on the on-orbit research facilities accommodations and capabilities will be made, as well as ground based hardware development, integration and test facilities and capabilities. This presentation describes the GRC Hardware development, test and laboratory facilities.

  19. National Facilities study

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This study provides a set of recommendations for improving the effectiveness of our nation's aeronautics and space facilities. The study plan considers current and future government and commercial needs as well as DOD and NASA mission requirements through the year 2023. It addresses shortfalls in existing capabilities, new facility requirements, upgrades, consolidations, and phase-out of existing facilities. If the recommendations are implemented, they will provide world-class capability where it is vital to our country's needs and make us more efficient in meeting future needs.

  20. Metal-smelting facility

    SciTech Connect

    Kellogg, D.R.; Mack, J.E.; Thompson, W.T.; Williams, L.C.

    1982-01-01

    Currently there are 90,000 tons of contaminated ferrous and nonferrous scrap metal stored in aboveground scrap yards at the Department of Energy's Uranium Enrichment Facilities in Tennessee, Kentucky, and Ohio. This scrap is primarily contaminated with 100 to 500 ppM uranium at an average enrichment of 1 to 1.5% /sup 235/U. A study was performed that evaluated smelting of the ORGDP metal in a reference facility located at Oak Ridge. The study defined the process systems and baseline requirements, evaluated alternatives to smelting, and provided capital and operating costs for the reference facility. A review of the results and recommendations of this study are presented.

  1. Mississippian facies relationships, eastern Anadarko basin, Oklahoma

    SciTech Connect

    Peace, H.W. ); Forgotson, J.M. )

    1991-08-01

    Mississippian strata in the eastern Anadarko basin record a gradual deepening of the basin. Late and post-Mississippian tectonism (Wichita and Arbuckle orogenies) fragmented the single large basin into the series of paired basins and uplifts recognized in the southern half of Oklahoma today. Lower Mississippian isopach and facies trends (Sycamore and Caney Formations) indicate that basinal strike in the study area (southeastern Anadarko basin) was predominantly east-west. Depositional environment interpretations made for Lower Mississippian strata suggest that the basin was partially sediment starved and exhibited a low shelf-to-basin gradient. Upper Mississippian isopach and facies trends suggest that basinal strike within the study area shifted from dominantly east-west to dominantly northwest-southeast due to Late Mississippian and Early Pennsylvanian uplift along the Nemaha ridge. Within the study area, the Chester Formation, composed of gray to dove-gray shales with interbedded limestones deposited on a carbonate shelf, thins depositionally into the basin and is thinnest at its facies boundary with the Springer Group and the upper portion of the Caney Formation. As basin subsidence rates accelerated, the southern edge of the Chester carbonate shelf was progressively drowned, causing a backstepping of the Chester Formation calcareous shale and carbonate facies. Springer Group sands and black shales transgressed northward over the drowned Chester Formation shelf.

  2. Geodynamics of the Sivas Basin (Turkey): from a forearc basin to a retroarc foreland basin

    NASA Astrophysics Data System (ADS)

    Legeay, Etienne; Ringenbach, Jean-Claude; Kergaravat, Charlie; Callot, Jean-Paul; Mohn, Geoffroy; Kavak, Kaan

    2016-04-01

    Anatolia records the consumption of several oceanic basins, from the Northern Neotethys domain, by north-dipping subduction until the end of Mesozoic. The associated obduction event occurred during Campanian, from North to South and from Greece to Oman, leading to the emplacement of ophiolite thrust sheets and associated ophiolitic mélange. In particular, the Sivas Basin in Eastern Anatolia is located at the boundary between the Kırsehir block to the East, Pontide arc to the North and Tauride Platform to the South, sutured by ophiolitic belts. The Sivas Basin formed a Tertiary fold-and-thrust belt, which exhibits mainly north verging thrust in Paleogene deposits, and South verging thrust in oligo-miocene sequence. To understand the northern verging thrust above south verging obduction, it is necessary to zoom out of the basin, and include a set of processes that affect the eastern Anatolia. This study aims to characterize the structural and sedimentary evolution of the Sivas Basin, based on a fieldwork approach, coupled to the interpretation of subsurface data, thermochronology and biostratigraphy. The Sivas Basin was initiated in a forearc setting relatively to the subduction of the Inner-Tauride Ocean while the associated ophiolites are obducted onto the northern passive margin of the Tauride margin. Early Maastrichtian to Paleocene deposits are represented by carbonate platforms located on ophiolitic highs, passing to turbidites and olistostomes toward the North. The early Eocene sediments, mainly composed of ophiolitic clasts, are deposited on a regional unconformity marked along the southern margin of the basin by incisions in response to the emergence of north-verging thrust. The middle Eocene sediments, intensively folded by northward thrusting, are mostly represented by flysch type deposits (olistostromes, mass-flows and turbidites). The onset of the compression is related to the initiation of the Taurus shortening in a retroarc situation, in response to

  3. Energy development and water options in the Yellowstone River Basin

    SciTech Connect

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  4. Hydrocarbon accumulations in the Tarim basin, China

    SciTech Connect

    Li Desheng; Liang Digang; Jia Chengzao; Wang Gang

    1996-10-01

    The Tarim basin is the largest and least explored inland basin in China. The areal extent of the basin reaches 560,000 km{sup 2}. The interior of the basin is mostly covered by the Takla Mekan Desert, which is about 330,000 km{sup 2} in areal extent. The basin has become the object of special attention since China set aside first- and third-round onshore bidding blocks in the Tarim basin for foreign oil firms to explore. The Tarim basin is a polyhistory superimposed basin that has experienced seven evolutionary stages: (1) Sinian-Cambrian-Ordovician aulacogen stage, (2) Silurian-Devonian intracratonic depression stage, (3) Carboniferous marginal sea stage, (4) Permian rift basin stage, (5) Triassic-Jurassic foreland basin stage, (6) Cretaceous-Paleogene NeoTethys bay stage, and (7) Neogene-Pleistocene foreland and inland basin stage. Both the basin`s Paleozoic marine platform sequences and the Mesozoic-Cenozoic terrestrial fills are believed to contain substantial volumes of hydrocarbons. After recent years of exploration, nine oil and gas fields have been proven and 23 discoveries have been made in the Tabei, Tazhong, and Southwest areas. Kekeya, Lunnan, Sangtamu, Jiefangqudong, Donghetang, and Tazhong 4 oil fields have been put into production. Output of crude oil was 2.6 million t (metric tons) (52,000 BOPD) in 1995. The production will increase to 5 million t (100,000 BOPD) in 1997. Giant oil and gas traps probably will be discovered in the Tarim basin. The prospect is promising.

  5. Keuper stratigraphic cycles in the Paris basin and comparison with cycles in other peritethyan basins (German basin and Bresse-Jura basin)

    NASA Astrophysics Data System (ADS)

    Bourquin, Sylvie; Guillocheau, François

    1996-09-01

    High-resolution sequence stratigraphy of the Keuper, Paris Basin, is used to establish correlations between the basin-centre evaporite series and the basin-margin clastics series. The high-resolution correlations show stratigraphic cycle geometries. The Keuper consists of five minor base-level cycles whth occur in the upper portion of the Scythian-Carnian major base-level cycle and the lower part of the Carnian-Liassic major base-level cycle. The maximum relative rate of subsidence for the base-level fall phase of the Scythian-Carnian major cycle occurs in the eastern part of the Paris Basin. During the base-level rise phase of the Carnian-Liassic major cycle, the area of highest rate of subsidence shifted westwards and northwards. This shift records the first occurrence of an independent Paris Basin which was no longer merely the western margin of the German Basin. Two phases of tectonic movement influenced evaporite sedimentation and sequence geometries by creating areas of subsidence where halite could accumulate. The second, within the 'Marnes irisées supérieures', induced a general westward and northward tilt of the basin. Concurrent migration of depocentres to the west and north produced an intra-'Marnes irisées supérieures' truncation. Comparison of the stratigraphic records of the Paris Basin and of other Triassic Peritethyan basins (German Basin, Bresse-Jura Basin and South-East Basin) reveals numerous similarities. The coastal onlap curve of the German Keuper (Aigner and Bachmann, 1992) exhibits many similarities with the sequence evolution of the Paris Basin. But the Triassic succession is more complete in the German Basin and more cycles are observed. The major difference between these two basins during the Keuper is that the 'Marnes irisées inférieures' minor base-level cycle does not occur in the German Basin. In the Bresse-Jura Basin, the major difference concerns the Lettenkohle. One minor base-level cycle is recorded in the Paris Basin while

  6. Cold Vacuum Drying facility condensate collection system design description (SYS 19)

    SciTech Connect

    PITKOFF, C.C.

    1999-07-06

    This document describes the Cold Vacuum Drying Facility (CVDF) condensate collection system (CCS). The function of the CCS is to collect cooling coil condensate from air-handling units in the CVDF and to isolate the condensate in collection tanks until the condensate is determined to be acceptable to drain to the effluent drain collection basin.

  7. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  8. Special Feature: Facilities.

    ERIC Educational Resources Information Center

    Storm, George; And Others

    1993-01-01

    Includes "Planning Laboratory Design" (Storm); "Perkins Money for Automotive Programs" (Cash); "Stretching a Budget" (Warren); "Video Teleconferencing--Powerful Communication for Occupational Educators" (Major); "Danger: Hazardous Materials" (Brown); and "Keeping Facilities Safe--Electrical Safety and Maintenance" (Kirk). (JOW)

  9. A cryogenic test facility

    NASA Astrophysics Data System (ADS)

    Veenendaal, Ian

    The next generation, space-borne instruments for far infrared spectroscopy will utilize large diameter, cryogenically cooled telescopes in order to achieve unprecedented sensitivities. Low background, ground-based cryogenic facilities are required for the cryogenic testing of materials, components and subsystems. The Test Facility Cryostat (TFC) at the University of Lethbridge is a large volume, closed cycle, 4K cryogenic facility, developed for this purpose. This thesis discusses the design and performance of the facility and associated external instrumentation. An apparatus for measuring the thermal properties of materials is presented, and measurements of the thermal expansion and conductivity of carbon fibre reinforced polymers (CFRPs) at cryogenic temperatures are reported. Finally, I discuss the progress towards the design and fabrication of a demonstrator cryogenic, far infrared Fourier transform spectrometer.

  10. Shuttle Landing Facility

    NASA Video Gallery

    The Shuttle Landing Facility at NASA's Kennedy Space Center in Florida marked the finish line for space shuttle missions since 1984. It is also staffed by a group of air traffic controllers who wor...