Science.gov

Sample records for cr cu mn

  1. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  2. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  3. Bioaccessibility of Cr, Cu, Fe, Mg, Mn, Mo, Se and Zn from nutritional supplements by the unified BARGE method.

    PubMed

    Tokalıoğlu, Serife; Clough, Robert; Foulkes, Mike; Worsfold, Paul

    2014-05-01

    In this study, the Unified Bioaccessibility Research Group of Europe (BARGE) in vitro method was used to assess the bioaccessibility of Cr, Cu, Fe, Mg, Mn, Mo, Se, and Zn in ten nutritional supplement samples and three certified reference materials. The total digest, gastric phase and gastro-intestinal phase concentrations of Cu, Fe, Mg, Mn and Zn were determined by ICP-OES and Cr, Mo and Se by ICP-MS. The bioaccessible fractions of the elements in the gastric phase for the nutritional supplements were in the range 13-89% for Cr, 9-79% for Cu, 55-99% for Fe, 33-95% for Mg, 83-94% for Mn, 42-101% for Mo, 74-125% for Se and 81-104% for Zn. The range for the gastrointestinal phase was 6-65% for Cr, 27-66% for Cu, 3-14% for Fe, 34-91% for Mg, 53-62% for Mn, 40-109% for Mo, 53-146% for Se and 3-35% for Zn. PMID:24360457

  4. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    PubMed

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. PMID:26354691

  5. Study of the effect of different fermenting microorganisms on the Se, Cu, Cr, and Mn contents in fermented goat and cow milks.

    PubMed

    Quintana, Aida Verónica; Olalla-Herrera, Manuel; Ruiz-López, María Dolores; Moreno-Montoro, Miriam; Navarro-Alarcón, Miguel

    2015-12-01

    The aim of this study was to determine the Se, Cu, Cr, and Mn concentrations of different types of goat- and cow-milk fermented products and evaluate the influence of fermenting bacteria (classical fermenting starters and a probiotic strain) on these concentrations. Atomic absorption spectrometry with hydride generation was used to measure Se and electrothermal atomization to measure Cu, Cr and Mn. Analytical parameters determined in the fermented milks demonstrated that the procedures used were adequate for Se, Cu, Cr, and Mn analyses. Se levels were significantly lower in fermented goat milk products than in fermented cow milk products (p<0.05). Se, Cu, Cr, and Mn levels did not differ as a function of the fermenting bacteria used in commercial fermented goat or cow milks or in the lab-produced goat yoghurt. Given the Se, and Cr intakes for healthy adults, goat and cow yogurts may be important dietary sources. PMID:26041187

  6. Sediment fractionation of Cu, Ni, Zn, Cr, Mn, and Fe in one experimental and three natural marshes

    SciTech Connect

    Lindau, C.W.; Hossner, L.R.

    1982-07-01

    Dredged sediments from the Gulf Intracoastal Waterway near Galveston, Tex., were used as a substrate material in the construction of an experimental intertidal salt marsh. Selected substrate properties were compared with those of established marshes. Clay mineralogical properties of the experimental marsh were compared with those of three nearby natural marshes. A sequential chemical extraction procedure was used to obtain data on the partitioning of micronutrients and heavy metals among selected marsh substrate fractions. Clay minerals found in the sediments of the experimental marsh were equivalent to those identified in the natural marshes. Total elemental substrate concentrations of Cu, Ni, Cr, Zn, Mn, and Fe averaged 7.9, 8.6, 25.5, 25.2, 123, and 12,200 ..mu..g/g, respectively, over the four marsh sites. Copper, nickel, zinc, and chromium displayed only minor variations in substrate partitioning between the experimental and natural marsh samples. Micronutrients and heavy metal concentrations in the exchangeable and water-soluble fraction were low compared with other fractions. Approximately 30% of the total substrate Cu, Ni, and Zn was associated with the organic matter fraction. Metals fixed within the lattice structures of clay and silicate minerals ranged from 20% Mn for experimental marsh samples to 90% Cr for one of the natural marshes. Major differences in Mn and Fe substrate partitioning were observed when the experimental marsh samples were compared with those of the natural marshes.

  7. First-principles study on the magnetism and electronic structure in 3d transition metal (X=Sc, V, Cr, Mn, Fe, Ni, Cu) doped CoO

    NASA Astrophysics Data System (ADS)

    Liu, R. X.; Wang, X. C.; Chen, G. F.; Yang, B. H.

    2016-03-01

    We have studied the electronic structure and magnetism of the single transitional metal element X=Sc, V, Cr, Mn, Fe, Ni, Cu-doped CoO systems by first-principles calculations. At X=Sc, Cr, Cu, the binding energy of the doped systems is lower than pure CoO, suggesting that these systems are energetically stable. In the Sc, V, Cr, Mn, Fe, Ni, Cu-doped 2×2×2 CoO supercells, the total magnetic moments are 3.03, 5.64, 6.80, 7.70, 6.93, 2.30 and 1.96 μB, respectively. At X=Cr and Fe, the doped CoO systems are half-metallic with a high spin polarization. The large magnetic moment and high spin polarization in the Cr and Fe-doped CoO are important for the design of the spintronic devices.

  8. The structure, Raman spectroscopy and evidence of ferromagnetic transition in CuCr1-xMxO2 (M=Mn and Rh) compounds

    NASA Astrophysics Data System (ADS)

    Elkhouni, T.; Amami, M.; Colin, C. V.; Strobel, P.; Ben Salah, A.

    2014-04-01

    The CuCr1-xMxO2 (M=Mn, Rh) polycrystalline powders were synthesized by the direct solid state reaction of Cu2O and M2O3 (M=trivalent cation or mixer of trivalent cation for transition metal). The magnetic susceptibility was measured in the temperature range of 0-300 K. It was found that the magnetic susceptibility (χ) increases rapidly with the doping of Cr3+ by Mn3+ and Rh3+ ions with existence of paramagnetic substance at low temperature. With the substitution of magnetic Mn3+ and Rh3+ for Cr3+ (S=3/2), the antiferromagnetic (AF) transition becomes broader and the transition temperature increases. However, at low temperature, the magnetic data for CuCr1-xMxO2 (M=Mn, Rh) show evidence for weak ferromagnetic (FM) transition between 100 K and 130 K. Clear hysteresis loops indicate that FM order exists in both of them Mn or Rh-doped samples at 4 K. All samples behave like semiconductors. The ferromagnetism properties can be attributed to the double exchange interaction between the Mn3+ or Rh3+ and Cr3+ semiconductors compounds.

  9. Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys

    NASA Astrophysics Data System (ADS)

    Messina, Luca; Nastar, Maylise; Garnier, Thomas; Domain, Christophe; Olsson, Pär

    2014-09-01

    Defect-driven diffusion of impurities is the major phenomenon leading to formation of embrittling nanoscopic precipitates in irradiated reactor pressure vessel (RPV) steels. Diffusion depends strongly on the kinetic correlations that may lead to flux coupling between solute atoms and point defects. In this work, flux coupling phenomena such as solute drag by vacancies and radiation-induced segregation at defect sinks are systematically investigated for six bcc iron-based dilute binary alloys, containing Cr, Cu, Mn, Ni, P, and Si impurities, respectively. First, solute-vacancy interactions and migration energies are obtained by means of ab initio calculations; subsequently, self-consistent mean field theory is employed in order to determine the exact Onsager matrix of the alloys. This innovative multiscale approach provides a more complete treatment of the solute-defect interaction than previous multifrequency models. Solute drag is found to be a widespread phenomenon that occurs systematically in ferritic alloys and is enhanced at low temperatures (as for instance RPV operational temperature), as long as an attractive solute-vacancy interaction is present, and that the kinetic modeling of bcc alloys requires the extension of the interaction shell to the second-nearest neighbors. Drag occurs in all alloys except Fe(Cr); the transition from dragging to nondragging regime takes place for the other alloys around (Cu, Mn, Ni) or above (P, Si) the Curie temperature. As far as only the vacancy-mediated solute migration is concerned, Cr depletion at sinks is foreseen by the model, as opposed to the other impurities which are expected to enrich up to no less than 1000 K. The results of this study confirm the current interpretation of the hardening processes in ferritic-martensitic steels under irradiation.

  10. Ab Initio Characterization of the Electrostatic Complexes Formed by H2 Molecule and Cr(+), Mn(+), Cu(+), and Zn(+) Cations.

    PubMed

    Artiukhin, Denis G; Bieske, Evan J; Buchachenko, Alexei A

    2016-07-14

    Equilibrium structures, dissociation energies, and rovibrational energy levels of the electrostatic complexes formed by molecular hydrogen and first-row S-state transition metal cations Cr(+), Mn(+), Cu(+), and Zn(+) are investigated ab initio. Extensive testing of the CCSD(T)-based approaches for equilibrium structures provides an optimal scheme for the potential energy surface calculations. These surfaces are calculated in two dimensions by keeping the H-H internuclear distance fixed at its equilibrium value in the complex. Subsequent variational calculations of the rovibrational energy levels permits direct comparison with data obtained from equilibrium thermochemical and spectroscopic measurements. Overall accuracy within 2-3% is achieved. Theoretical results are used to examine trends in hydrogen activation, vibrational anharmonicity, and rotational structure along the sequence of four electrostatic complexes covering the range from a relatively floppy van der Waals system (Mn(+)···H2) to an almost a rigid molecular ion (Cu(+)···H2). PMID:26914616

  11. Serration Behavior and Pop-in Phenomena in AlxCrCuFeMnNi High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Diao, Haoyan; Xie, Xie; Chen, Shuying; Wang, Gongyao; Yang, Fuqian; Dahmen, Karin; Liaw, Peter

    2015-03-01

    Recently, high-entropy alloys (HEAs), based on achieving a high configuration entropy of mixing among alloying elements, have been developed. Many of these alloys contain expensive elements, such as Co. Substituting these elements for less expensive elements, such as Mn, without compromising the mechanical performance is crucial to make HEAs commercially viable. The AlxCrCuFeMnNi (x = 0.1, 0.3, and 0.8) system is one such alloy that displays encouraging mechanical results in both compression and nanoindentation experiments. Discrete, jerky stress-drop bursts (serrations) are even found at room temperature. The mean-field-interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental parameters, such as aluminum content, strain rate, or temperature. In nanoindentation, a strain burst is manifested by a sudden displacement excursion or `pop-in', following the initial elastic Hertzian contact. The pop-in phenomena becomes more frequent and regular, as the indentation load is greater than 35 mN. A quantitative theory for the serration behavior and pop-in phenomena is a critical issue for understanding the deformation characteristics of HEAs. This work was supported by the Department of Energy No. DE-FE-0008855 and DE-FE-0011194.

  12. Effects of Oral Administration of CrCl3 on the Contents of Ca, Mg, Mn, Fe, Cu, and Zn in the Liver, Kidney, and Heart of Chicken.

    PubMed

    Liu, Yanhan; Zhao, Xiaona; Zhang, Xiao; Zhao, Xuejun; Liu, Yongxia; Liu, Jianzhu

    2016-06-01

    This study aimed to investigate the effects of oral administration of trivalent chromium on the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney. Different levels of 1/8, 1/4, and 1/2 LD50 (LD50 = 5000 mg/kg body mass) CrCl3 milligrams per kilogram body mass daily were added into the water to establish the chronic poisoning model. Ca, Mg, Mn, Fe, Cu, and Zn were detected with the flame atomic absorption spectrometry in the organs exposed 14, 28, and 42 days to CrCl3, respectively. Results showed that Cr was accumulated in the heart, liver, and kidney significantly (P < 0.05) with extended time and dose. The contents of Ca and Fe increased, whereas those of Mg, Mn, Cu, and Zn decreased in the heart, liver, and kidney of each treated group, which had a dose- and time-dependent relationship, but the contents of Mg and Zn in the heart took on a fluctuated change. These particular observations were different from those in the control group. In conclusion, the oral administration of CrCl3 could change the contents of Ca, Mg, Mn, Fe, Cu, and Zn in the heart, liver, and kidney, which may cause disorders in the absorption and metabolism of the metal elements of chickens. PMID:26537118

  13. Magnetic anisotropy of Fe1-yXyPt-L10 [X = Cr, Mn, Co, Ni, Cu] bulk alloys

    NASA Astrophysics Data System (ADS)

    Cuadrado, R.; Klemmer, Timothy J.; Chantrell, R. W.

    2014-10-01

    We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni, or Cu in FePt-L10 bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusting the content of the non-magnetic species in the material. The changes in the geometry due to the inclusion of each element induces different values of the tetragonality and hence changes in the magnetic anisotropy and in the net magnetic moment. The site resolved magnetic moments of Fe increase with the X content while those of Pt and X are simultaneously reduced. The calculations are in good quantitative agreement with experimental data and demonstrate that models with fixed band structure but varying numbers of electrons per unit cell are insufficient to describe the experimental data for doped FePt-L10 alloys.

  14. Multiferroic approach for Cr,Mn,Fe,Co,Ni,Cu substituted BaTiO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep Chand; Kotnala, R. K.

    2016-05-01

    Multiferroic magnetoelectric (ME) at room temperature is significant for new design nano-scale spintronic devices. We have given a comparative study to report multiferroicity in BaTM0.01Ti0.99O3 [TM = Cr,Mn,Fe,Co,Ni,Cu (1 mol% each) substituted BaTiO3 (BTO)] nanoparticles. The TM ions influenced both nano-size and lattice distortion of Ti–O6 octahedra to the BTO. X ray diffraction study indicates that the dopant TM could influence lattice constants, distortion, tetragonal splitting of diffraction peaks (002/200) as well as peak shifting of diffraction angle in the BTO lattice. This can induce lattice strain which responsible to oxygen defects formation to mediate ferromagnetism. Also, the lattice strain effect could responsible to reduce the depolarization field of ferroelectricity and provide piezoelectric and magnetostrictive strains to enhance ME coupling. The size of BTO nanoparticles is varied in 13–51 nm with TM doping. The room temperature magnetic measurement indicates antiferromagnetic exchange interactions in BTO lattice with TM ions. The zero-field cooling and field cooling magnetic measurement at 500 Oe indicates antiferromagnetic to ferromagnetic transition. It also confirms that the substitution of Cr, Fe and Co into BTO could induce strong antiferromagnetic behavior. However, the substitutions of Mn, Ni and Cu have weak antiferromagnetic character. The temperature dependent dielectric measurements indicates polarization enhancement that influenced with both nano-size as well TM ions and exhibits ferroelectric phase transition with relaxor-like characteristics. Dynamic ME coupling is investigated, and the longitudinal ME voltage coefficient, α ME is equivalent to linear ME coupling coefficient, α (={\\varepsilon }{{o}}{\\varepsilon }{{r}}{α }{{ME}}) is also calculated.

  15. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites.

    PubMed

    Giergiczny, Zbigniew; Król, Anna

    2008-12-30

    The presented work determines the level of heavy metals (Pb+2, Cu+2, Zn+2, Cr+6, Cd+2, Mn+2) immobilization in the composites produced using Ordinary Portland Cement (OPC) as well as of binders containing large amount of mineral additives in its composition-siliceous fly ash (FA), fluidized bed combustion ash (FFA) and ground granulated blast furnace slag (GGBFS). Heavy metals were introduced to cementitious materials in the form of soluble salts as well as components of hazardous wastes (medical ash, metallurgical dust). It has been stated, that the level of heavy metals immobilization is combined with composites composition. Majority of analyzed heavy metals, added to binders' composition in the form of heavy metal salts achieves high level of immobilization, in mortar based on binder with 85% GGBFS and 15% OPC. The lowest immobilization level was reached for chromium Cr+6 added to hardening mortars as Na2Cr2O72H2O. The level ranges from 85.97% in mortars made on blended binder (20% OPC, 30% FFA and 50% GGBFS) to 93.33% in mortar produced on OPC. The increase of the so-called immobilization degree with time of hardened material maturing was found. This should be attributed to the pozzolanic or pozzolanic/hydraulic properties of components used; their effect on microstructure of hardened material is also important. Mineral additions enter the hydration reactions in the mixtures and favor the formation of specific microstructure promoting the immobilization of hazardous elements. PMID:18423859

  16. Effect of deep cryogenic treatment on the microstructure and wear performance of Cr-Mn-Cu white cast iron grinding media

    NASA Astrophysics Data System (ADS)

    Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.

    2013-12-01

    The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.

  17. The Mechanical and Corrosion Behaviors of As-cast and Re-melted AlCrCuFeMnNi Multi-Component High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Soare, Vasile; Mitrica, Dumitru; Constantin, Ionut; Popescu, Gabriela; Csaki, Ioana; Tarcolea, Mihai; Carcea, Ioan

    2015-04-01

    A multi-component AlCrCuFeMnNi high-entropy alloy, prepared by vacuum induction melting, was investigated for structural, mechanical, and corrosion characteristics, before and after the re-melting process. Optical microscopy analysis revealed a dendritic solidification behavior. The interdendritic area contains two main phases and occasionally small hard phases. The re-melting process produced a finer dendritic structure, with rounded dendrites and reduced interdendritic hard phases. The SEM-EDAX analysis showed that the dendrite region contains a Widmanstatten type of structure and are composed of Cr-Fe rich phases, whereas the interdendrite region contains Cu and Mn rich phases. XRD analysis revealed two disordered BCC type A2 structures with high Cr and Fe content and an FCC A12 type of structure for the Cu and Mn rich interdendritic phase. The lattice constants, determined by X-ray diffraction, are 2.87 and 2.91 Å for the A2 phases and 3.67 Å for A1 phase. The Vickers micro hardness increased with the homogeneity of the alloy, having a maximum value of 4370 MPa for the re-melted sample. Corrosion tests carried out in 3.5 wt pct sodium chloride aerated solution indicated that the corrosion resistance improved with the re-melting process, being 1.5 to 2 times better than that of 304 stainless steel.

  18. Density functional theory study of Mo-doped M@(BN)48 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) clusters

    NASA Astrophysics Data System (ADS)

    Liang, Wenjuan; Jia, Jianfeng; Lv, Jin; Wu, Haishun

    2016-03-01

    The structure and magnetic properties of Mo-doped M@(BN)48 (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) clusters were calculated at BPW91/LanL2DZ level. The magnetic nature of the clusters M@(BN)48 significantly changed when doping with Mo atom, except for Co@(BN)48. Only the magnetic moment for the CrMo@(BN)48 cluster was decreased to zero. Thus, M@(BN)48 clusters can be selected as the model system to detect Mo atom by the change of the magnetic moment.

  19. Electrochemically assisted sorption on oxidized multiwalled carbon nanotubes for preconcentration of Cr, Mn, Co, Ni, Cu and Zn from water samples.

    PubMed

    Zawisza, Beata; Sitko, Rafal

    2013-04-21

    The rapid development in nanomaterials and nanotechnologies has provided many new opportunities in the area related to analytical chemistry. In this paper the unique properties of these materials were used in order to preconcentrate heavy metals prior to detection by spectroscopic techniques. A novel, simple and highly reliable method for the preconcentration of trace amounts of chromium, manganese, cobalt, nickel, copper and zinc using electrochemically assisted sorption on oxidized multiwalled carbon nanotubes (MWCNTs) is developed. The proposed method is based on the application of an electric field to support the sorption process on oxidized MWCNTs. The proposed method was used to preconcentrate trace elements from water of pH = 4. After the preconcentration process, oxidized MWCNTs were directly measured using an energy dispersive X-ray fluorescence (EDXRF) spectrometer that reduces the number of chemicals required and minimizes sample handling. Besides EDXRF, any spectroscopy technique allowing the measurement of solid samples can be applied. The various parameters including pH of the solution, amounts of oxidized MWCNTs, sample volume and the influence of voltage as well as the time of assisted electric field on the sorption process were investigated for the optimization of the analytical procedure. Under optimized conditions the proposed preconcentration method offers a high recovery of 99% (Cr), 97% (Mn), 94% (Co), 96% (Ni), 92% (Cu) and 93% (Zn) and good precision of sample preparation (RSD) within 3.5-7%. If measurements are performed using the EDXRF spectrometer, the detection limits are 1 ng mL(-1), 5 ng mL(-1), 5 ng mL(-1), 7 ng mL(-1), 1 ng mL(-1), 8 ng mL(-1) for Cr(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II), respectively. PMID:23476917

  20. Electrochemical and corrosion properties of YNi{sub 2.5}M{sub 0.5} (M = Ni, Al, Fe, Cr, Cu, Co, Mn) hybride-forming alloys

    SciTech Connect

    Korobov, I.I.; Vasina, S.Ya.; Petrii, O.A.

    1995-06-01

    Hydrogen sorption by electrode materials based on YNi{sub 2.5}M{sub 0.5} (M = Ni, Al, Fe, Cr, Co, Cu, Mn) intermetallic compounds (IMC) with Cu and PTFE binders is studied in 1 M NaOH solution. The obtained reversible electrochemical capacities correspond to YNi{sub 2.5}M{sub 0.5}H{sub 1.3-1.7} hybrides which are stable at room temperature and atmospheric pressure. The application of Cu binder allows one to more completely use the material sorption capacity and promotes both extraction and sorption of hydrogen by IMC.

  1. Cu-Cr Literature Review

    SciTech Connect

    Need, Ryan F.

    2012-08-09

    Cu-Cr alloys are part of a class of face-centered cubic (FCC)-body-centered cubic (BCC) composites that includes similar alloys, such as Cu-Nb and Cu-Ta. When heavily deformed, these FCC-BCC materials create 'in situ' composites with a characteristic structure-nanoscale BCC filaments in a ductile FCC matrix. The strength of these composites is vastly greater than predicted by the rule of mixtures, and has been shown to be inversely proportional to the filament spacing. Lower raw materials costs suggest that Cu-Cr alloys may offer more economical solution to high-strength, high-conductivity wire than either their Nb or Ta counterparts. However, Cr is also more brittle and soluble in Cu than Nb or Ta. These qualities necessitate thermal treatments to remove solute atoms from the Cu matrix, improve conductivity, and maintain the ductility of the Cr filaments. Through the use of different thermomechanical processing routes or the addition of select dopants, alloys with strength in excess of 1 GPa at 70% IACS have been achieved. To date, previous research on Cu-Cr alloys has focused on a relatively small number of alloy compositions and processing methods while the effects of dopants and ageing treatments have only been studied independently. Consequently, there remains considerable opportunity for the development and optimization of these alloys as a leading high-strength, high-conductivity material.

  2. Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II).

    PubMed

    Abdel-Latif, S A; Hassib, H B; Issa, Y M

    2007-07-01

    The formation constants of some transition metal ions Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline (I), 2-aminopyridine (II), 4-aminopyridine (III) and 2-aminopyrimidine (IV) were determined pH-metrically in ethanolic medium (80%, v/v). The formation constants were determined for all binary complexes. The important infrared (IR) spectral bands corresponding to the active groups in the four ligands and the solid complexes under investigation were studied. The solid complexes have been synthesized and studied by thermogravimetric analysis. The thermal dehydration and decomposition of these complexes were studied kinetically using the integral method applying the Coats-Redfern equation. It was found that the thermal decomposition of the complexes follow second order kinetics. The thermodynamic parameters of the decomposition are also reported. The electronic absorption spectra of the investigated ligands were carried out to determine the pK(a) values spectrophotometrically. PMID:17084104

  3. Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Abdel-Latif, S. A.; Hassib, H. B.; Issa, Y. M.

    2007-07-01

    The formation constants of some transition metal ions Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II) binary complexes containing Schiff bases resulting from condensation of salicylaldehyde with aniline (I), 2-aminopyridine (II), 4-aminopyridine (III) and 2-aminopyrimidine (IV) were determined pH-metrically in ethanolic medium (80%, v/v). The formation constants were determined for all binary complexes. The important infrared (IR) spectral bands corresponding to the active groups in the four ligands and the solid complexes under investigation were studied. The solid complexes have been synthesized and studied by thermogravimetric analysis. The thermal dehydration and decomposition of these complexes were studied kinetically using the integral method applying the Coats-Redfern equation. It was found that the thermal decomposition of the complexes follow second order kinetics. The thermodynamic parameters of the decomposition are also reported. The electronic absorption spectra of the investigated ligands were carried out to determine the p Ka values spectrophotometrically.

  4. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    PubMed

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (<50%). Carpobrotus rossii and Crassula helmsii showed higher potential for phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands. PMID:26201657

  5. Electronic structure and bonding of the 3d transition metal borides, MB, M =Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu through all electron ab initio calculations

    NASA Astrophysics Data System (ADS)

    Tzeli, Demeter; Mavridis, Aristides

    2008-01-01

    The electronic structure and bonding of the ground and some low-lying states of all first row transition metal borides (MB), ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, and CuB have been studied by multireference configuration interaction (MRCI) methods employing a correlation consistent basis set of quintuple cardinality (5Z). It should be stressed that for all the above nine molecules, experimental results are essentially absent, whereas with the exception of ScB and CuB the remaining seven species are studied theoretically for the first time. We have constructed full potential energy curves at the MRCI/5Z level for a total of 27 low-lying states, subsequently used to extract binding energies, spectroscopic parameters, and bonding schemes. In addition, some 20 or more states for every MB species have been examined at the MRCI/4Z level of theory. The ground state symmetries and corresponding binding energies (in kcal/mol) are Σ-5(ScB), 76; Δ6(TiB), 65; Σ+7(VB), 55; Σ+6(CrB), 31; Π5(MnB), 20; Σ-4(FeB), 54; Δ3(CoB), 66; Σ+2(NiB), 79; and Σ+1(CuB), 49.

  6. Atmospheric metal pollution (Cr, Cu, Fe, Mn, Ni, Pb and Zn) in Oporto city derived from results for low-volume aerosol samplers and for the moss Sphagnum auriculatum bioindicator.

    PubMed

    Vasconcelos, M T; Tavares, H M

    1998-03-01

    A low-volume aerosol sampler with filters and bags of Sphagnum auriculatum were exposed, in parallel, to the atmosphere of Oporto city for approx. 2 months in 1994, during a dry weather period. The levels of Cr, Cu, Fe, Mn, Ni, Pb and Zn in the moss (weekly samples) and in the filters (daily samples) were determined by atomic absorption spectrophotometry and the results were compared. For all the heavy metals, the rate of metal uptake by moss was significantly correlated with the metal concentration in atmospheric aerosols. The results indicated that moss bags of S. auriculatum can provide a quantitative estimation of the concentration of different heavy metals in urban atmospheres, when specific calibration by mechanic monitoring, at the same sampling point, is performed during a first stage of biomonitoring. The mean aerosol metal concentrations found in the Oporto atmosphere were similar to those observed in other urban atmospheres in different countries. The relative order of the mean metal concentrations was Fe (1.8 micrograms/m3) > Zn > Pb > Cu > Cr > Mn > Ni (20 ng/m3). The aerosol Pb levels were monitored at different sampling points over various periods of time between 1991 and 1997. The mean Pb levels were < or = 0.5 microgram/m3 and approximately constant at each sample point up to January 1996. After that date it decreased by approx. 50%, in consequence of the reduction of the Pb concentration in leaded gasoline. PMID:9525044

  7. Metal distribution and disorder in the crystal structure of [NH2Et2][Cr7MF8((t)BuCO2)16] wheel molecules for M = Mn, Fe, Co, Ni, Cu, Zn and Cd.

    PubMed

    Larsen, Finn Krebs; Overgaard, Jacob; Christensen, Mogens; McIntyre, Garry James; Timco, Grigore; Winpenny, Richard E P

    2014-12-01

    The homometallic wheel compound [Cr8F8(O2CCMe3)16] formed with fluorine and pivalic acid ligands can be modified by introducing in the synthesis process a divalent cation M capable of octahedral coordination instead of one of the trivalent Cr centres in the ring. Heterometallic mono-anionic species [Cr7MF8(O2CCMe3)16](-) can form diethylammonium salts and be crystallized from ethylacetate solution as compounds with the general formula [NH2Et2][Cr7MF8((t)BuCO2)16][C4H8O2]0.5 for M = Mn, Fe, Co, Ni, Cu, Zn and Cd. Their structures are isomorphous, belonging to the space group P21/c. The study has determined the degree of order for the individual M heterometal over the possible metal positions of the ring in the crystal structure by modelling based on X-ray diffraction data. The model took into account disorder in tert-butyl groups of the pivalate ligands and in the position and orientation of the ethylacetate solvent molecule. The heterometal turned out to be partly ordered in the crystal structure. PMID:25449616

  8. Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3-δ -Cu ceramic composite electrode

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Wang, Yarong; Zhu, Yongqiang; Liu, Shanhu; Jin, Chao

    2015-01-01

    Cu impregnation has been performed to improve electronic conductivity of La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) material in reducing atmosphere, and solid oxide electrolysis cells (SOECs) with the configuration of LSCF|LSGM|LSCM-Cu are prepared and evaluated for high temperature steam and carbon dioxide co-electrolysis. Electrochemical impedance spectra (EIS) and voltage-current curves are carried out to characterize the cell performances. Compared with LSCF|LSGM|LSCM cell without Cu impregnation for steam electrolysis under the same conditions, EIS results show that LSCF|LSGM|LSCM-Cu cell not only displays lower ohmic resistance and better electrochemical performances, but also their resistance increases with the percentage of the fed CO2 under open circuit voltage, in which the polarization resistance dominates. With the applied electrolysis voltage of 1.65 V and the operating temperature of 750 °C, the maximum consumed current density increases from 1.31 A cm-2 without CO2 to 1.82 A cm-2 with 37.5% CO2. Although there is an increase of 2.0% in the applied electrolysis voltage, the cell has exhibited an excellent durability test for more than 50 h with the electrolysis current density of 0.33 A cm-2 and the gas mixture of 50% AH-25% H2-25% CO2 at 750 °C.

  9. Spectroscopic and thermal degradation behavior of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with thiopental sodium anesthesia drug

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2013-04-01

    A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized with thiopental sodium anesthesia drug. The elemental analyses of the complexes are confined to stoichiometry of the formulas [M(TPL)3]ṡnH2O (M = Cr(III) or Fe(III); n = 6 or 5), [M(TPL)2(H2O)2]ṡnH2O (M = Mn(II), Co(II) or Ni(II); n = 0 or 4), and [M(TPL)2] (M = Cu(II) or Zn(II); n = 2 or 0) respectively, where TPL is thiopental chelating agent. Structures have been discussed and suggested upon elemental analyses, infrared, Raman, electronic, electron spin resonance, 1H NMR spectral data and magnetic studies. The X-ray powder diffraction (XRD) was performed of metal complexes. The XRD patterns indicate crystalline nature for the complexes. The measured low molar conductance values in dimethylsulfoxide indicate that the complexes are non-electrolyte nature. Spectroscopic discussion refer that coordination take place through three types: Cdbnd N (pyrimidine moiety) nitrogen and C2sbnd S (2-thiolate group) for Cr(III), Mn(II) and Fe(III), C6dbnd O (amido group) oxygen and C2sbnd S (2-thiolate group) for Co(II) and Ni(II), and Cu(II) and Zn(II) ions coordinated via Cdbnd N (pyrimidine moiety) nitrogen, C2dbnd S (2-thiolate group) and C6dbnd O (amido group) oxygen, respectively. The thermal behavior (TG/DTG/DTA) of the complexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The thiopental and its complexes have been screened for their antimicrobial (G+ and G-) bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa) and fungi (Aspergillus flavus and Candida albicans) activities by minimum inhibitory concentration (MIC) method.

  10. Magnetic anisotropy of Fe{sub 1−y}X{sub y}Pt-L1{sub 0} [X = Cr, Mn, Co, Ni, Cu] bulk alloys

    SciTech Connect

    Cuadrado, R.; Chantrell, R. W.; Klemmer, Timothy J.

    2014-10-13

    We demonstrate by means of fully relativistic first principles calculations that, by substitution of Fe by Cr, Mn, Co, Ni, or Cu in FePt-L1{sub 0} bulk alloys, with fixed Pt content, it is possible to tune the magnetocrystalline anisotropy energy by adjusting the content of the non-magnetic species in the material. The changes in the geometry due to the inclusion of each element induces different values of the tetragonality and hence changes in the magnetic anisotropy and in the net magnetic moment. The site resolved magnetic moments of Fe increase with the X content while those of Pt and X are simultaneously reduced. The calculations are in good quantitative agreement with experimental data and demonstrate that models with fixed band structure but varying numbers of electrons per unit cell are insufficient to describe the experimental data for doped FePt-L1{sub 0} alloys.

  11. Partitioning of Mo, P and other siderophile elements (Cu, Ga, Sn, Ni, Co, Cr, Mn, V, and W) between metal and silicate melt as a function of temperature and silicate melt composition

    NASA Astrophysics Data System (ADS)

    Righter, K.; Pando, K. M.; Danielson, L.; Lee, Cin-Ty

    2010-03-01

    Metal-silicate partition coefficients can provide information about the earliest differentiation histories of terrestrial planets and asteroids. Systematic studies of the effects of key parameters such as temperature and melt composition are lacking for many elements. In particular, data for Mo is scarce, but given its refractory nature, is of great value in interpreting metal-silicate equilibrium. Two series of experiments have been carried out to study Mo and P partitioning between Fe metallic liquid and basaltic to peridotitic silicate melt, at 1 GPa and temperatures between 1500 and 1900 °C. Because the silicate melt utilized was natural basalt, there are also measurable quantities of 9 other siderophile elements (Ni, Co, W, Sn, Cu, Mn, V, Cr, Ga and Zn). The Ni and Co data can be used to assess consistency with previous studies. In addition, the new data also allow a first systematic look at the temperature dependence of Cu, Ga, Sn, Cr, Mn V and W for basaltic to peridotitic melts. Many elements exhibit an increase in siderophile behavior at higher temperature, contrary to popular belief, but consistent with predictions from thermodynamics. Using these new data we examine DMomet/sil and DPmet/sil in detail and show that increasing temperature causes a decrease in the former and an increase in the latter, whereas both increase with MgO content of the silicate melt. The depletions of Mo and P in the mantle of the Earth can be explained by metal-silicate equilibrium at magma ocean conditions — both elements are satisfied at PT conditions of an intermediate depth magma ocean for the Earth 22.5 GPa and 2400 °C.

  12. Synthesis and characterization of MnCrO4, a new mixed-valence antiferromagnet.

    PubMed

    Nalbandyan, Vladimir B; Zvereva, Elena A; Yalovega, Galina E; Shukaev, Igor L; Ryzhakova, Anastasiya P; Guda, Alexander A; Stroppa, Alessandro; Picozzi, Silvia; Vasiliev, Alexander N; Whangbo, Myung-Hwan

    2013-10-21

    A new orthorhombic phase, MnCrO4, isostructural with MCrO4 (M = Mg, Co, Ni, Cu, Cd) was prepared by evaporation of an aqueous solution, (NH4)2Cr2O7 + 2 Mn(NO3)2, followed by calcination at 400 °C. It is characterized by redox titration, Rietveld analysis of the X-ray diffraction pattern, Cr K edge and Mn K edge XANES, ESR, magnetic susceptibility, specific heat and resistivity measurements. In contrast to the high-pressure MnCrO4 phase where both cations are octahedral, the new phase contains Cr in a tetrahedral environment suggesting the charge balance Mn(2+)Cr(6+)O4. However, the positions of both X-ray absorption K edges, the bond lengths and the ESR data suggest the occurrence of some mixed-valence character in which the mean oxidation state of Mn is higher than 2 and that of Cr is lower than 6. Both the magnetic susceptibility and the specific heat data indicate an onset of a three-dimensional antiferromagnetic order at TN ≈ 42 K, which was confirmed also by calculating the spin exchange interactions on the basis of first principles density functional calculations. Dynamic magnetic studies (ESR) corroborate this scenario and indicate appreciable short-range correlations at temperatures far above TN. MnCrO4 is a semiconductor with activation energy of 0.27 eV; it loses oxygen on heating above 400 °C to form first Cr2O3 plus Mn3O4 and then Mn1.5Cr1.5O4 spinel. PMID:24090277

  13. Magnetic coupling in neutral and charged Cr{sub 2}, Mn{sub 2}, and CrMn dimers

    SciTech Connect

    Desmarais, N.; Reuse, F. A.; Khanna, S. N.

    2000-04-01

    Theoretical ab initio studies of neutral, cationic and anionic Cr{sub 2}, Mn{sub 2}, and CrMn dimers have been carried out to explore the progression of magnetic coupling with the number of electrons. It is shown that while Cr{sub 2} and Cr{sub 2}{sup -} have antiferromagnetically coupled atomic spins, Cr{sub 2}{sup +} has a ferromagnetic ground state closely followed by an antiferromagnetic state. On the other hand, all Mn{sub 2} dimers are ferromagnetic, irrespective of the charge. The neutral CrMn is ferrimagnetic while the charged CrMn are antiferromagnetic. In all cases, the charged dimers are found to be more stable than the neutral ones. The results are compared with available calculations and experiments and the difficulties associated with theoretical description and the experimental interpretations are discussed. (c) 2000 American Institute of Physics.

  14. Reactivity of hydrated monovalent first row transition metal ions M(+)(H2O)n, M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, toward molecular oxygen, nitrous oxide, and carbon dioxide.

    PubMed

    van der Linde, Christian; Hemmann, Sonja; Höckendorf, Robert F; Balaj, O Petru; Beyer, Martin K

    2013-02-14

    The reactions of hydrated monovalent transition metal ions M(+)(H(2)O)(n), M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, toward molecular oxygen, nitrous oxide, and carbon dioxide were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Clusters containing monovalent chromium, cobalt, nickel, or zinc were reactive toward O(2), while only hydrated cobalt was reactive toward N(2)O. A strongly size dependent reactivity was observed. Chromium and cobalt react very slowly with carbon dioxide. Nanocalorimetric analysis, (18)O(2) exchange, and collision induced dissociation (CID) experiments were done to learn more about the structure of the O(2) products. The thermochemistry for cobalt, nickel, and zinc is comparable to the formation of O(2)(-) from hydrated electrons. These results suggest that cobalt, nickel, and zinc are forming M(2+)/O(2)(-) ion pairs in the cluster, while chromium rather forms a covalently bound dioxygen complex in large clusters, followed by an exothermic dioxide formation in clusters with n ≤ 5. The results show that hydrated singly charged transition metal ions exhibit highly specific reactivities toward O(2), N(2)O, and CO(2). PMID:22506540

  15. CrMn underlayers for CoCrPt thin film media

    SciTech Connect

    Lee, L.L.; Laughlin, D.E.; Lambeth, D.N.

    1998-07-01

    An improved CoCrPt thin film medium or longitudinal magnetic recording which has a coercivity significantly greater than prior CoCrPt thin film media was investigated. A CrMn alloy underlayer was used, instead of the conventional Cr underlayer. A coercivity value of 4,280 Oe was easily reached in a CoCrPt film on a 50 nm thick CrMn underlayer as compared to 2,810 Oe with a pure Cr underlayer. It was found that the coercivity increase due to the Mn addition was realized if the substrates were preheated before the sputtering. Grain boundary interdiffusion of Mn from the underlayer to the magnetic layer may be the cause for the coercivity increase.

  16. Unexpected crystal and magnetic structures in MnCu4In and MnCu4Sn

    SciTech Connect

    Provino, A.; Paudyal, D.; Fornasini, ML; Dhiman, I.; Dhar, SK.; Das, A.; Mudryk, Y.; Manfrinetti, P.; Pecharsky, VK

    2013-01-29

    We discovered a new compound MnCu4In with its own hexagonal structure type (hP12-P63mc, ternary ordered derivative of the hexagonal MgZn2-type) that becomes ferromagnetic at TC = 540 K. This transition temperature is higher than that found in the MnCu2In and MnCu2Sn alloys. In contrast, the homologous compound MnCu4Sn, which crystallizes in the cubic MgCu4Sn-type, orders antiferromagnetically with TN = 110 K. The neutron diffraction studies show ferromagnetic spin orientation in the {1 0 1} plane in MnCu4In with a magnetic moment of 4.5 μB/Mn at 22 K, and a corresponding value of 4.7 μB/Mn in the antiferromagnetic MnCu4Sn with propagation vector View the MathML source. The first-principles electronic structure calculations show that the unexpected difference in both magnetic and crystal structures of MnCu4In and MnCu4Sn is due to the difference in the Mn-3d bands and exchange interactions relating to different crystal anisotropy, coordination numbers, and interatomic distances.

  17. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  18. Chemical speciation of Fe, Mn, Pb, Zn, Cd, Cu, Co, Ni and Cr in the suspended particulate matter off the Mejerda River Delta (Gulf of Tunis, Tunisia)

    NASA Astrophysics Data System (ADS)

    Helali, Mohamed Amine; Oueslati, Walid; Zaaboub, Noureddine; Added, Ayed; Aleya, Lotfi

    2016-06-01

    Fluxes of suspended particulate matter (SPM) and their associated metals were performed off the Mejerda River Delta during both the wet (March) and the dry (July) seasons in 2012, using sediment traps at study stations at depths of 10, 20 and 40 m. Fluxes nearest to the Mejerda outlet were more significant, especially during winter (36 g m-2 day-1), but dissipated further offshore, 24.5-6 g m-2 day-1 at the 20 m and 21.8-4.8 g m-2 day-1 at the 40 m stations. Many variations observed in seasonal and spatial metal fluxes are similar to those of SPM, in particular Pb and Zn, probably because they are associated with the mining activity characteristic of the Mejerda catchment. Chemical speciation reveals that most of the metals (20-100%) are bound to the residual fraction. The most toxic metals (Pb, Zn) are bound in part to the exchangeable fraction (20-50% for Pb and 5-15% for Zn) making them relatively bioavailable and therefore potentially toxic. While Cu and Cd fluxes are not always clearly established according to season, both metals are apparently sequestered deep in the sediment, bound especially to clays (40-80% for Cd and up to 100% for Cu).

  19. Magnetotransport in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/CuCr{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} magnetic junctions

    SciTech Connect

    Iwata-Harms, Jodi M.; Suzuki, Yuri; Chopdekar, Rajesh V.; Wong, Franklin J.; Nelson-Cheeseman, Brittany B.; Jenkins, Catherine A.; Arenholz, Elke

    2015-01-05

    We demonstrate distinct magnetic and resistive switching with junction magnetoresistance up to −6% in magnetic tunnel junctions with a CuCr{sub 2}O{sub 4} barrier. Junction magnetoresistance is inversely related to barrier thickness and reveals a maximum at a finite applied bias that converges to zero bias at low temperatures for all barrier thicknesses. The non-monotonic bias dependence is attributed to a charge gap from the Fe{sub 3}O{sub 4} electrode and possible spin filtering from the spin-split conduction band of the ferrimagnetic CuCr{sub 2}O{sub 4} barrier.

  20. Tough cryogenic alloys from the Fe-Mn and Fe-Mn-Cr systems

    NASA Technical Reports Server (NTRS)

    Schanfein, M. J.; Zackay, V. F.; Morris, J. W., Jr.

    1974-01-01

    By adjusting composition, metastable gamma (austenite) and epsilon (hexagonal) martensite may be retained in Fe-Mn and Fe-Mn-Cr alloys and used to impact toughness through the TRIP mechanism. The resulting alloys have excellent toughness at cryogenic temperatures. The best alloys obtained to date are: Fe-20Mn, with sigma (sub y) = 79ksi and K sub IC = 275ksi square root of (in) at 77 K, and Fc-16Mn-8Cr, with sigma sub y = 85ksi and K sub IC = 72ksi square root of (in) at 77 K.

  1. Room-temperature antiferromagnetism in CuMnAs

    NASA Astrophysics Data System (ADS)

    Máca, F.; Mašek, J.; Stelmakhovych, O.; Martí, X.; Reichlová, H.; Uhlířová, K.; Beran, P.; Wadley, P.; Novák, V.; Jungwirth, T.

    2012-04-01

    We report on an experimental and theoretical study of CuMn-V compounds. In agreement with previous works we find low-temperature antiferromagnetism with Néel temperature of 50 K in the cubic half-Heusler CuMnSb. We demonstrate that the orthorhombic CuMnAs is a room-temperature antiferromagnet. Our results are based on X-ray diffraction, magnetization, transport, and differential thermal analysis measurements, and on density-functional theory calculations of the magnetic structure of CuMn-V compounds. In the discussion part of the paper we make a prediction, based on our density-functional theory calculations, that the electronic structure of CuMn-V compounds makes a transition from a semimetal to a semiconductor upon introducing the lighter group-V elements.

  2. Observations of a Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    Prior work has demonstrated that Cu-Cr-Nb alloys have considerable advantages over the copper alloys currently used in regeneratively cooled rocket engine liners. Observations indicated that Zr and Nb have similar chemical properties and form very similar compounds. Glazov and Zakharov et al. reported the presence of Cr2Zr in Cu-Cr-Zr alloys with up to 3.5 wt% Cr and Zr though Zeng et al. calculated that Cr2Zr could not exist in a ternary Cu-Cr-Zr alloy. A cast Cu-6.15 wt% Cr-5.25 wt% Zr alloy was examined to determine if the microstructure developed would be similar to GRCop-84 (Cu-6.65 wt% Cr-5.85 wt% Nb). It was observed that the Cu-Cr-Zr system did not form any Cr2Zr even after a thermal exposure at 875 C for 176.5 h. Instead the alloy consisted of three phases: Cu, Cu5Zr, and Cr.

  3. Diffusion kinetics of Cr in spinel: Experimental studies and implications for 53Mn-53Cr cosmochronology

    NASA Astrophysics Data System (ADS)

    Posner, Esther S.; Ganguly, Jibamitra; Hervig, Richard

    2016-02-01

    The 53Mn-53Cr decay system, in which 53Mn decays to 53Cr (t1/2 = 3.7 Ma) has been widely used to construct 53Cr/52Cr vs. 55Mn/52Cr isochrons and thus determine relative ages of early solar system objects or events, assuming that the initial Cr isotopic ratio, (53Cr/52Cr)o, equals (53Mn/52Cr)o. With the primary objective of interpretation of these ages within a diffusion kinetic framework, we have determined the tracer diffusion coefficient of Cr in natural spinels, which are very close to the MgAl2O4 end-member composition, as a function of temperature and oxygen fugacity (f(O2)). It is found that the diffusion coefficient of Cr, D(Cr), in two stocks of spinels (referred to as cut-gems and gem-gravels) with very similar major element chemistry is consistently different, but the data in each stock yield well defined Arrhenius relations that show a difference of log D of 0.6-1.0, depending on temperature, with the D(Cr) in gem-gravel being higher than that in the cut-gem stock. The D(Cr) was found to have a positive dependence on f(O2) in the range of f(O2) of around ±2 log units relative to that of the wüstite-magnetite buffer. The difference in the D(Cr) between the two stocks and the observed D(Cr) vs. f(O2) relation has been explained in terms of a change of point defect concentration resulting from heterovalent substitution of trace elements and equilibration with the imposed f(O2) conditions, respectively. Assuming a homogeneous semi-infinite matrix, the closure temperature (Tc) of Cr diffusion in spinel has been calculated as a function of grain size, cooling rate, peak temperature (To) and f(O2). Also the dependence of D(Cr) and Tc(Cr) on the Cr# (i.e. Cr/(Cr + Al) ratio) has been accounted for using available D(Cr) vs. Cr# data in Suzuki et al. (2008). We argue, on the basis of crystal chemical considerations and available diffusion kinetic data for minerals, that the Tc for Mn should be much lower than that for Cr in spinel, olivine and orthopyroxene, and

  4. On reversion phenomena in Cu-Zr-Cr alloys

    NASA Technical Reports Server (NTRS)

    Suzuki, H.; Kitano, H.; Kanno, M.

    1985-01-01

    Reversion phenomena in aged Cu-0.12% Zr-0.28% Cr alloy were investigated by means of resistivity measurement and transmission electron microscopy and compared with those of Cu-0.30% Zr and Cu-0.26% Cr alloys. Specimens in the form of a 0.5 mm sheet were solution-treated at 950 F for 1 hr water-quenched, aged, and finally reversed. The reversion phenomena were confirmed to exist in Cu-Zr and Cu-Zr-Cr alloys as well as Cu-Cr alloys, at aging temperatures of 300 to 500 F. The critical aging temperature for the reversion was not observed in all the alloys. Split aging increased the amount of reversion, particularly in Cu-Zr and Cu-Zr-Cr alloys, compared with that by conventional aging. The amount of reversion in Cu-Zr-Cr alloy was greatly affected by the resolution of Cr precipitate formed by preaging. Structural changes in Cu-Zr-Cr alloy due to the reversion were hardly observed by transmission electron microscopy.

  5. Bioaccumulation of Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn in trophosome and vestimentum of the tube worm Riftia pachyptila from Guaymas basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Ruelas-Inzunza, J.; Páez-Osuna, F.; Soto, Luis A.

    2005-07-01

    Twenty two specimens of vestimentiferan tube worms Riftia pachyptila were collected from Guaymas Basin. The distribution of ten trace metals in trophosome and vestimentum was investigated. Highest mean concentrations of Co, Cu and Fe were detected in the trophosome; while higher mean levels of Cd, Hg, Mn, Ni, Pb and Zn were measured in the vestimentum. However, the t-student test resulted in significant differences (p<0.05) only in the case of Co. Cd and Fe concentrations in vestimentum increased accordingly with the size of specimens. With respect to vent fluids, extreme uptake seems to be a characteristic of R. pachyptila in the case of Cu and Zn but not for the rest of the analyzed metals. Studies concerning accumulation mechanisms of trace metals in R. pachyptila are needed, particularly on the capacity of this organism to tolerate elevated levels of elements considered as non-essential.

  6. Evaluation of Ti-Cr-Cu alloys for dental applications

    NASA Astrophysics Data System (ADS)

    Koike, Marie; Okabe, Toru; Itoh, Masayuki; Okuno, Osamu; Kimura, Kohei; Takeda, Osamu; Okabe, Toru H.

    2005-12-01

    This study examined the characteristics of as-cast Ti-Cr(7 19%)-Cu(3 7%) (all percentages in this article are mass%) alloys to evaluate their suitability for dental applications; studies on the alloy structures and mechanical properties, grindability, and corrosion behavior were included in the investigation. The alloys were centrifugally cast and bench-cooled in investment molds. The x-ray diffractometry of the as-cast alloys bench-cooled in the molds indicated the following phases: α+β+ω in the 7% Cr and 7% Cr+3% Cu; β+ω in the 13%Cr; and β in the 13%Cr+3% Cu through the 19%Cr+3% Cu alloys. The strengths of the binary β Ti-Cr and ternary β Ti-Cr-Cu alloys with 13 and 19% Cr were approximately two times higher than those of CP Ti. The alloy ductility was dependent on the chemical composition and thus, the microstructure. The 7% Cr alloys were extremely brittle and hard due to the ω phase, but the ductility was restored in the 13 and 19% Cr alloys. The hardness (HV) of the cast 13 and 19% Cr alloys was approximately 300 350 compared with a value of 200 for CP Ti. The grindability of the cast alloys was examined using a rotating SiC wheel at speeds (circumferential) of 500 and 1250 m/min. At the higher speed, the grindability of the 13 and 19% Cr alloys increased with the Cu content. The grindability of the 13% Cr alloy with 7% Cu was similar to that of CP Ti. Evaluation of the corrosion behavior in an artificial saliva revealed that the alloys are like many other titanium alloys within the normal intraoral oxidation potential. The wear resistance testing of these alloys also showed favorable results.

  7. Mechanical Properties of Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1997-01-01

    The chemical compositions of the alloys are listed. The alloying levels were near the values for stochiometric Cr2Nb. A slight excess of Cr was chosen for increased hydrogen embrittlement resistance. The microstructures of all Cu-Cr-Nb alloys were very similar. Two typical transmission electron microscope (TEM) micrographs are presented. The images show the presence of large mount of Cr2Nb precipitates in a nearly pure Cu matrix. The interactions between dislocations and precipitates are currently under investigations, but as the images demonstrates, the extremely fine (less then 15 nm) Cr2Nb are the primary strengtheners for the alloy.

  8. Structural and magnetic properties of Cu Ni Cr spinel oxides

    NASA Astrophysics Data System (ADS)

    Tovar, M.; Torabi, R.; Welker, C.; Fleischer, F.

    2006-11-01

    The compounds CuCr 2O 4 and NiCr 2O 4 crystallize at room temperature in a tetragonal distorted spinel structure, s.g. I4 1/amd, with axes ratio c/ a<1 and >1, respectively. The distortion is caused by the Jahn-Teller ions Cu 2+ and Ni 2+ which flatten or elongate their surrounding oxygen tetrahedron. CuCr 2O 4 and NiCr 2O 4 form a complete solid solution series Cu 1-xNi xCr 2O 4 where for 0.825< x<0.875 members with orthorhombic symmetry were found. Using neutron powder diffraction and thermal analysis methods several members of the solid solution series were investigated. On cooling, all samples showed a temperature-dependent crystallographic phase transition from cubic to tetragonal symmetry between 865 K (CuCr 2O 4) and 310 K (NiCr 2O 4). The phase Cu 0.15Ni 0.85Cr 2O 4 undergoes a second crystallographic transition to orthorhombic symmetry, space group Fddd, at T=300 K. The neutron diffraction experiments as well as SQUID measurements reveal magnetic ordering of the ions between 150 and 50 K which partially occurs as a two-step mechanism.

  9. Observations Of A Cast Cu-Cr-Zr Alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2006-01-01

    The calculated phase diagram and observations of Zeng et al were confirmed. 1) Additional X-ray diffraction peaks for aged sample indicates possibility that additional metastable phases may form; 2) Cu5Zr was observed rather than the Cu9Zr2 proposed for the binary Cu-Zr phase diagram. Despite similarities between Zr and Nb, Cu-Cr-Zr does not appear to be a good candidate alloy system for rocket engine applications.

  10. Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Shi, Yifeng; Chi, Miaofang; Park, Jung-Nam; Stucky, Galen D.; McFarland, Eric W.; Gao, Lian

    2013-08-01

    Delafossite CuCrO2 and spinel CuCr2O4 with mesoporous structures have been successfully synthesized using nanocasting methods based on a KIT-6 template. The functional activity of the mesoporous materials was evaluated in applications as heterogeneous catalysts. The activity for photocatalytic hydrogen production of the delafossite structures with different morphologies was characterized and the oxidation state changes associated with photocorrosion of Cu+ investigated using electron energy loss spectroscopy (EELS). Mg2+ doping was found to facilitate the casting of ordered structures for CuCrO2 and improves the photocorrosion resistance of delafossite structures. The mesoporous spinel CuCr2O4 nanostructures were found to be active for low temperature CO oxidation.

  11. Cr(III) Oxidation Coupled With Microbially-Mediated Mn(II) Oxidation

    SciTech Connect

    Youxian Wu; Baolin Deng

    2006-04-05

    Cr(VI) can be reduced to less toxic and mobile Cr(III) species through abiotic and biological processes. Reductive immobilization of Cr(VI) has been widely explored as a cost effective technology for site remediation; Mn oxides are regarded as primary oxidants for Cr(III) oxidation in the environment; and Generation of Mn oxides from Mn(II) in natural environments is believed to be biologically catalyzed.

  12. Oriented Mn-doped CuO nanowire arrays.

    PubMed

    Han, Dongqiang; Wu, Zhaofeng; Wang, Zhihe; Yang, Shaoguang

    2016-04-01

    Using anodic aluminum oxide membranes as the nanoreactors and controller, oriented nanowire arrays of the diluted magnetic semiconductor Mn-doped CuO have been successfully fabricated using Mn(NO3)2 · 4H2O and Cu(NO3)2 · 3H2O as the starting materials. X-ray diffraction measurements showed that the as-prepared oriented nanowire arrays are of high purity. Scanning electron microscope and transmission electron microscope studies showed the nanowires are oriented, continuous and uniform with a diameter and length of about 170 nm and several tens of micrometers, respectively, and thus of a high aspect ratio. Low-temperature magnetic measurements showed the ferromagnetic property of the oriented Mn-doped CuO nanowire arrays with the critical temperature at around 80 K, which will endow them with great potential applications in spintronics in the future. PMID:26895391

  13. Oriented Mn-doped CuO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Han, Dongqiang; Wu, Zhaofeng; Wang, Zhihe; Yang, Shaoguang

    2016-04-01

    Using anodic aluminum oxide membranes as the nanoreactors and controller, oriented nanowire arrays of the diluted magnetic semiconductor Mn-doped CuO have been successfully fabricated using Mn(NO3)2 · 4H2O and Cu(NO3)2 · 3H2O as the starting materials. X-ray diffraction measurements showed that the as-prepared oriented nanowire arrays are of high purity. Scanning electron microscope and transmission electron microscope studies showed the nanowires are oriented, continuous and uniform with a diameter and length of about 170 nm and several tens of micrometers, respectively, and thus of a high aspect ratio. Low-temperature magnetic measurements showed the ferromagnetic property of the oriented Mn-doped CuO nanowire arrays with the critical temperature at around 80 K, which will endow them with great potential applications in spintronics in the future.

  14. Interfacial Reactions of Sn-3.0Ag-0.5Cu Solder with Cu-Mn UBM During Aging

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Fu; Wang, Kai-Jheng; Duh, Jenq-Gong

    2010-12-01

    Cu under bump metallurgy (UBM) has been widely used in flip-chip technology. The major disadvantages of Cu UBM are fast consumption of copper, rapid growth of intermetallic compounds (IMCs), and easy formation of Kirkendall voids. In this study we added two different contents of Mn (2 at.% and 10 at.%) to Cu UBM by sputtering to modify the conventional Cu metallization. For the higher Mn concentration in the Cu-Mn UBM, a new Sn-rich phase formed between Cu6Sn5 and the Cu-Mn UBM, and cracks formed after aging. For the lower Mn concentration, growth of Cu3Sn and Kirkendall voids was significantly suppressed after thermal aging. Kinetic analysis and x-ray elemental mapping provided evidence that Mn diffusion into Cu3Sn slowed diffusion of Cu in the Cu3Sn layer. The Mn-enriched Cu3Sn layer may serve as a diffusion barrier to reduce the interfacial reaction rate and Kirkendall void formation. These results suggest that Cu-Mn UBM with low Mn concentration is beneficial in terms of retarding Cu pad consumption in solder joints.

  15. Antiferromagnetic structure in tetragonal CuMnAs thin films.

    PubMed

    Wadley, P; Hills, V; Shahedkhah, M R; Edmonds, K W; Campion, R P; Novák, V; Ouladdiaf, B; Khalyavin, D; Langridge, S; Saidl, V; Nemec, P; Rushforth, A W; Gallagher, B L; Dhesi, S S; Maccherozzi, F; Železný, J; Jungwirth, T

    2015-01-01

    Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions. PMID:26602978

  16. Antiferromagnetic structure in tetragonal CuMnAs thin films

    NASA Astrophysics Data System (ADS)

    Wadley, P.; Hills, V.; Shahedkhah, M. R.; Edmonds, K. W.; Campion, R. P.; Novák, V.; Ouladdiaf, B.; Khalyavin, D.; Langridge, S.; Saidl, V.; Nemec, P.; Rushforth, A. W.; Gallagher, B. L.; Dhesi, S. S.; Maccherozzi, F.; Železný, J.; Jungwirth, T.

    2015-11-01

    Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions.

  17. Antiferromagnetic structure in tetragonal CuMnAs thin films

    PubMed Central

    Wadley, P.; Hills, V.; Shahedkhah, M. R.; Edmonds, K. W.; Campion, R. P.; Novák, V.; Ouladdiaf, B.; Khalyavin, D.; Langridge, S.; Saidl, V.; Nemec, P.; Rushforth, A. W.; Gallagher, B. L.; Dhesi, S. S.; Maccherozzi, F.; Železný, J.; Jungwirth, T.

    2015-01-01

    Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions. PMID:26602978

  18. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  19. Cr(OH)₃(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation

    SciTech Connect

    Namgung, Seonyi; Kwon, M.; Qafoku, Nikolla; Lee, Gie Hyeon

    2014-09-16

    This study examined the feasibility of Cr(OH)₃(s) oxidation mediated by surface catalyzed Mn(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr(VI) contaminations. Dissolved Mn(II) (50 μM) was reacted with or without synthesized Cr(OH)₃(s) (1.0 g/L) at pH 7 – 9 under oxic or anoxic conditions. In the absence of Cr(OH)₃(s), homogeneous Mn(II) oxidation by dissolved O₂ was not observed at pH ≤ 8.0 for 50 d. At pH 9.0, by contrast, dissolved Mn(II) was completely removed within 8 d and precipitated as hausmannite. When Cr(OH)₃(s) was present, this solid was oxidized and released substantial amounts of Cr(VI) as dissolved Mn(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Our results suggest that Cr(OH)₃(s) was readily oxidized by a newly formed Mn oxide as a result of Mn(II) oxidation catalyzed on Cr(OH)₃(s) surface. XANES analysis of the residual solids after the reaction between 1.0 g/L Cr(OH)₃(s) and 204 μM Mn(II) at pH 9.0 for 22 d revealed that the product of surface catalyzed Mn(II) oxidation resembled birnessite. The rate and extent of Cr(OH)₃(s) oxidation was likely controlled by those of surface catalyzed Mn(II) oxidation as the production of Cr(VI) increased with increasing pH and initial Mn(II) concentrations. This study evokes the potential environmental hazard of sparingly soluble Cr(OH)₃(s) that can be a source of Cr(VI) in the presence of dissolved Mn(II).

  20. Spin polarization and exchange coupling of Cu and Mn atoms in paramagnetic CuMn diluted alloys induced by a Co layer

    SciTech Connect

    Abes, M.; Arena, D.; Atkinson, D.; Tanner, B.K.; Charlton, T.R.; Langridge, S.; Hase, T.P.A.; Ali, M.; Marrows, C.H.; Hickey, B.J.; Neudert, Al; Hicken, R.J.; Wilkins, S.B.; Mirone, A.; Lebegue, S.

    2010-11-09

    Using the surface, interface, and element specificity of x-ray resonant magnetic scattering in combination with x-ray magnetic circular dichroism, we have spatially resolved the magnetic spin polarization, and the associated interface proximity effect, in a Mn-based high-susceptibility material close to a ferromagnetic Co layer. We have measured the magnetic polarization of Mn and Cu3d electrons in paramagnetic CuMn alloy layers in [Co/Cu(x)/CuMn/Cu(x)]{sub 20} multilayer samples with varying copper layer thicknesses from x=0 to 25 {angstrom}. The size of the Mn and CuL{sub 2,3} edge dichroism shows a decrease in the Mn-induced polarization for increasing copper thickness indicating the dominant interfacial nature of the Cu and Mn spin polarization. The Mn polarization is much higher than that of Cu. Evidently, the Mn moment is a useful probe of the local spin density. Mn atoms appear to be coupled antiferromagnetically with the Co layer below x = 10 {angstrom} and ferromagnetically coupled above. In contrast, the interfacial Cu atoms remain ferromagnetically aligned to the Co layer for all thicknesses studied.

  1. Calorimetric Investigation of Thermal Stability of 304H Cu (Fe-17.7Cr-9.3Ni-2.95Cu-0.91Mn-0.58Nb-0.24Si-0.1C-0.12N-Wt Pct) Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Tripathy, Haraprasanna; Subramanian, Raju; Hajra, Raj Narayan; Rai, Arun Kumar; Rengachari, Mythili; Saibaba, Saroja; Jayakumar, Tammana

    2016-05-01

    The sequence of phase instabilities that take place in a Fe-17.7Cr-9.3Ni-0.58Nb-2.95Cu-0.12N (wt pct) austenitic stainless steel (304H Cu grade) as a function of temperature has been investigated using dynamic calorimetry. The results obtained from this investigation are supplemented by Thermocalc-based equilibrium and Scheil-Gulliver nonequilibrium solidification simulation. The following phase transformation sequence is found upon slow cooling from liquid: L → L + γ → L + γ + MX → γ + MX + δ → γ +MX + M23C6 → γ + MX + M23C6 + Cu. Under slow cooling, the solidification follows austenite + ferrite (AF) mode, which is in accordance with Thermocalc prediction and Scheil-Gulliver simulation. However, higher cooling rates result in skeletal δ-ferrite formation, due to increased segregation tendency of Nb and Cr to segregate to interdendritic liquid. The solidification mode is found to depend on combined Nb + Cu content. Experimental estimates of enthalpy change associated with melting and secondary phase precipitation are also obtained. In addition a semi-quantitative study on the dissolution kinetics of M23C6 type carbides has also been investigated. The standard solution treatment at 1413 K (1140 °C) is found to be adequate to dissolve both Cu and M23C6 into γ-austenite; but the complete dissolution of MX type carbonitrides occurs near the melting region.

  2. Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Lian, Youyun; Liu, Xiang; Feng, Fan; Chen, Lei; Cheng, Zhengkui; Wang, Jin; Chen, Jiming

    2016-02-01

    Water-cooled flat-type W/CuCrZr plasma facing components with an interlayer of oxygen-free copper (OFC) have been developed by using vacuum brazing route. The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150 °C-1200 °C in a vacuum furnace. The W/OFC cast tiles were vacuum brazed to a CuCrZr heat sink at 940 °C using the silver-free filler material CuMnSiCr. The microstructure, bonding strength, and high heat flux properties of the brazed W/CuCrZr joint samples were investigated. The W/Cu joint exhibits an average tensile strength of 134 MPa, which is about the same strength as pure annealed copper. High heat flux tests were performed in the electron beam facility EMS-60. Experimental results indicated that the brazed W/CuCrZr mock-up experienced screening tests of up to 15 MW/m2 and cyclic tests of 9 MW/m2 for 1000 cycles without visible damage. supported by National Natural Science Foundation of China (No. 11205049) and the National Magnetic Confinement Fusion Science Program of China (No. 2011GB110004)

  3. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

    DOE PAGESBeta

    Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; Rodriguez, Mark A.; Brumbach, Michael T.; Coker, Eric N.; Limmer, Steven J.

    2014-07-09

    The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaanmore » axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.« less

  4. Thermomechanical Processing and Roll Bonding of Tri-Layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn Composite

    NASA Astrophysics Data System (ADS)

    Kim, Hobyung; Kang, Gyeong Tae; Hong, Sun Ig

    2016-05-01

    Tri-layered Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn composite was processed by roll bonding and the effect of thermomechanical processing on the mechanical performance and electrical conductivity was studied. Roll-bonded composite exhibited the brief work hardening and subsequent rapid work softening because of the high stored deformation energy, leading to failure at the plastic strain of 8 to 10 pct. The mechanical instability of as-roll-bonded composites was abated by heat treatment (HT) at 723 K (450 °C) and the extended work hardening with enhanced ductility compared to that of the as-roll-bonded composites was observed after HT. The strength and electrical conductivity of clad composite is dependent on the precipitation strengthening of Cu-Cr and recovery softening of Cu-Ni-Zn during post-roll-bonding HT. The increase of roll-bonding temperature enhances the precipitation kinetics and it takes shorter time to reach maximum hardness in Cu-Cr layer during post-roll-bonding HT. The toughness of as-roll-bonded Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite at 773 K (500 °C) [42 MJ/mm3] is greater than those at 723 K (450 °C) [24 MJ/mm3] and 823 K (550 °C) [38 MJ/mm3]. The maximum toughness [100 MJ/mm3] with the electrical conductivity of 68 pct IACS was obtained in the Cu-Ni-Zn/Cu-Cr/Cu-Ni-Zn clad composite roll-bonded at 773 K (500 °C) and subsequently heat-treated at 723 K (450 °C).

  5. Mn-Cr systematics in primitive meteorites: Insights from mineral separation and partial dissolution

    NASA Astrophysics Data System (ADS)

    Göpel, Christa; Birck, Jean-Louis; Galy, Albert; Barrat, Jean-Alix; Zanda, Brigitte

    2015-05-01

    Cr isotopic compositions have been measured on carbonaceous chondrites (CC): Tafassasset, Paris, Niger I, NWA 5958, NWA 8157 and Jbilet Winselwan. In bulk samples, the 54Cr/52Cr ratios (expressed as ε54Cr) range from 0.93 to 1.58 ε units. These values are in agreement with values characteristic for distinct petrologic types. Despite this 54Cr heterogeneity, the variability in the 53Cr/52Cr ratios (expressed as ε53Cr) of 0.2 ε units and the Mn/Cr ratios is consistent with the previous finding of an isochron in the Mn-Cr evolution diagram. The Mn/Cr ratio in CC corresponds to variable abundances of high-T condensate formed and separated at the beginning of the solar system, thus the canonical 53Mn/55Mn ratio can be defined. Based on a consistent chronology for U-Pb and Mn-Cr between the earliest objects formed in the solar nebula and the D'Orbigny angrite we define a canonical 53Mn/55Mn ratio and ε53Cri of 6.8 × 10-6 and -0.177, respectively. The internal Mn/Cr systematics in Tafassasset and Paris were studied by two approaches: leaching technique and mineral separation. Despite variable ε54Cr values (up to >30 ε) linear co-variations were found between ε53Cr and Mn/Cr ratio. The mineral separates as well as the leachates of Tafassasset fall on a common isochron indicating that (1) cooling of the Tafassasset's parent body occurred at 4563.5 ± 0.25 Ma, and that (2) 54Cr is decoupled from the other isotopes even though temperatures >900 °C have been reached during metamorphism. In the case of Paris, the leachates form an alignment with a 53Mn/55Mn ratio higher than the canonical value. This alignment is not an isochron but rather a mixing line. Based on leachates from various CM and CI, we propose the occurrence of three distinct Cr reservoirs in meteoritic material: PURE54, HIGH53 and LOW53 characterized by a ε53Cr and ε54Cr of 0 and 25,000, -2.17 and 8, and 0.5 and -151, respectively. PURE54 has already been described and is carried by highly refractory

  6. Magnetic resonance in a gallium-doped Cu-Cr-S structure

    NASA Astrophysics Data System (ADS)

    Vorotynov, A. M.; Pankrats, A. I.; Abramova, G. M.; Velikanov, D. A.; Bovina, A. F.; Sokolov, V. V.; Filatova, I. Yu.

    2016-04-01

    A layered Cu-Cr-S structure doped with Ga ions and consisting of single-crystal CuCrS2 layers, embedded with thin plates of spinel phases CuCr2S4 and CuGa x Cr2- x S4, has been studied using the magnetic resonance and magnetic susceptibility methods. The Curie temperature and the saturation magnetization of the spinel phases of the samples have been determined. The spinel phase layer thickness has been estimated.

  7. Long afterglow properties of Zn2GeO4:Mn2+, Cr3+ phosphor

    NASA Astrophysics Data System (ADS)

    Cong, Yan; He, Yangyang; Dong, Bin; Xiao, Yu; Wang, Limei

    2015-04-01

    Zn2GeO4:Mn2+, Cr3+ phosphors were prepared by conventional solid state reaction and the photoluminescence properties were investigated. The Mn2+ activated Zn2GeO4 phosphors exhibited green emission at 533 nm due to the 4T1(4G) → 6A1(6S) transition of Mn2+ ions. With Cr3+ co-doping in Zn2GeO4 host, long afterglow characteristics were found from the same transition of Mn2+. The TL results revealed the presence of same traps in the phosphor, and the doping of Cr3+ ions deepened the VGe traps. The native defect VGe as a hole traps is responsible for the long afterglow emission in Zn2GeO4:Mn2+, Cr3+ phosphor. The possible mechanism of this phosphor has also been discussed.

  8. Mechanical and Thermal Properties of Two Cu-Cr-Nb Alloys and NARloy-Z

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1996-01-01

    A series of creep tests were conducted on Cu-8 Cr-4 Nb (Cu-8 at.% Cr-4 at.% Nb), Cu-4 Cr-2 Nb (Cu-4 at.% Cr-2 at% Nb), and NARloy-Z (Cu-3 wt.% Ag-0.5 wt.% Zr) samples to determine their creep properties. In addition, a limited number of low cycle fatigue and thermal conductivity tests were conducted. The Cu-Cr-Nb alloys showed a clear advantage in creep life and sustainable load over the currently used NARloy-Z. Increases in life at a given stress were between 100% and 250% greater for the Cu-Cr-Nb alloys depending on the stress and temperature. For a given life, the Cu-Cr-Nb alloys could support a stress between 60% and 160% greater than NARloy-Z. Low cycle fatigue lives of the Cu-8 Cr-4 Nb alloy were equivalent to NARloy-Z at room temperature. At elevated temperatures (538 C and 650 C), the fatigue lives were 50% to 200% longer than NARloy-Z samples tested at 538 C. The thermal conductivities of the Cu-Cr-Nb alloys remained high, but were lower than NARloy-Z and pure Cu. The Cu-Cr-Nb thermal conductivities were between 72% and 96% that of pure Cu with the Cu-4 Cr-2 Nb alloy having a significant advantage in thermal conductivity over Cu-8 Cr4 Nb. In comparison, stainless steels with equivalent strengths would have thermal conductivities less than 25% the thermal conductivity of pure Cu. The combined results indicate that the Cu-Cr-Nb alloys offer an attractive alternative to current high temperature Cu-based alloys such as NARloy-Z.

  9. Eutectic equilibria in the quaternary system Fe-Cr-Mn-C

    NASA Technical Reports Server (NTRS)

    Nowotny, H.; Wayne, S.; Schuster, J. C.

    1982-01-01

    The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.

  10. How Deep and Hot was Earth's Magma Ocean? Combined Experimental Datasets for the Metal-silicate Partitioning of 11 Siderophile Elements - Ni, Co, Mo, W, P, Mn, V, Cr, Ga, Cu and Pd

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2008-01-01

    variable oxygen fugacity. Preliminary results confirm that D(Ni) and D(Co) converge at pressures near 25-30 GPa and approximately 2200 K, and show that D(Pd) and D(Cu) become too low at the PT conditions of the deepest models. Furthermore, models which force fit V and Cr mantle concentrations by metal-silicate equilibrium overlook the fact that at early Earth mantle fO2, these elements will be more compatible in Mg-perovskite and (Fe,Mg)O than in metal. Thus an intermediate depth magma ocean, at 25-30 GPa, 2200 K, and at IW-2, can explain more mantle siderophile element concentrations than other models.

  11. How Deep and Hot was Earth's Magma Ocean? Combined Experimental Datasets for the Metal-Silicate Partitioning of 11 Siderophile Elements - Ni, Co, Mo, W, P, Mn, V, Cr, Ga, Cu and Pd.

    NASA Astrophysics Data System (ADS)

    Righter, K.

    2008-12-01

    oxygen fugacity. Preliminary results confirm that D(Ni) and D(Co) converge at pressures near 25-30 GPa and ~2200 K, and show that D(Pd) and D(Cu) become too low at the PT conditions of the deepest models. Furthermore, models which force fit V and Cr mantle concentrations by metal-silicate equilibrium overlook the fact that at early Earth mantle fO2, these elements will be more compatible in Mg-perovskite and (Fe,Mg)O than in metal. Thus an intermediate depth magma ocean, at 25-30 GPa, 2200 K, and at IW-2, can explain more mantle siderophile element concentrations than other models.

  12. Geochemistry and crystallochemistry of oceanic hydrothermal manganese oxyhydroxides showing Mn-Cu association

    SciTech Connect

    Stouff, P.; Boulegue, J. )

    1989-04-01

    Hydrothermal iron and manganese oxides have been found in association with sulfides dredged on the E.P.R. near 7{degree}N. The Mn phase, mainly a 10-7 {angstrom} phyllomanganate, presents a very important enrichment in Cu (up to 30% as weight of oxide). The Fe phase, mainly hydro-goethite, has a very low content of metals of economic interest. Also Mn-Cu oxide particles have been collected in sediment traps near the hydrothermal vents at 13{degree}N. Using the Mn oxide samples of 7{degree}N, Cu shows two simultaneous oxidation states: +I and +II (ESCA and XAS edge measurements). Cu is adsorbed on the Mn(O,OH){sub 2} layers and partially belongs to the water layers (EXAFS results). This seems to be the first report of naturally occurring Cu-buserite in this environment. Lead isotope abundances, the presence of Cu(I), thermodynamic considerations on the stability of the Mn-Cu oxyhydroxides and unsuccessful attempts made with synthetic 10-7 {angstrom} phyllomanganates (buserite and birnessite types) at low temperature in order to stabilize Cu(I) and incorporate it in the interlamellar space of the manganate, lead the authors to accept a high temperature origin for the formation of the Mn-Cu oxyhydroxides. They present a transport model for Cu and Mn precipitation from oceanic hydrothermal fluid, to explain the formation of Mn-Cu oxyhydroxides.

  13. High temperature coarsening of Cr2Nb precipitates in Cu-8 Cr-4 Nb alloy

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    1996-01-01

    A new high-temperature-strength, high-conductivity Cu-Cr-Nb alloy with a CrNb ratio of 2:1 was developed to achieve improved performance and durability. The Cu-8 Cr4 Nb alloy studied has demonstrated remarkable thermal and microstructural stability after long exposures at temperatures up to 0.98 T(sub m). This stability was mainly attributed to the slow coarsening kinetics of the Cr2Nb precipitates present in the alloy. At all temperatures, the microstructure consists of a bimodal and sometimes trimodal distribution of strengthening Cr2Nb precipitates, depending on precipitation condition, i.e. from liquid or solid solution, and cooling rates. These precipitates remain in the same size range, i.e. large precipitates of approximately I pm, and small precipitates less dm 300 nm, and effectively pin the grain boundaries thus retaining a fine grain size of 2.7 micro-m after 100 h at 1323 K. (A relatively small number of Cr-rich and Nb-rich particles were also present.) This grain boundary pinning and sluggish coarsening of Cr2Nb particles explain the retention of good mechanical properties after prolonged holding at very high temperatures, e.g., 75% of the original hardness after aging for 100 h at 1273 K. Application of LSW-based coarsening models indicated that the coarsening kinetics of the large precipitates are most likely governed by grain boundary diffsion and, to a lesser extent, volume diffusion mechanisms.

  14. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    DOE PAGESBeta

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less

  15. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  16. Elastocaloric effect in CuAlZn and CuAlMn shape memory alloys under compression.

    PubMed

    Qian, Suxin; Geng, Yunlong; Wang, Yi; Pillsbury, Thomas E; Hada, Yoshiharu; Yamaguchi, Yuki; Fujimoto, Kenjiro; Hwang, Yunho; Radermacher, Reinhard; Cui, Jun; Yuki, Yoji; Toyotake, Koutaro; Takeuchi, Ichiro

    2016-08-13

    This paper reports the elastocaloric effect of two Cu-based shape memory alloys: Cu68Al16Zn16 (CuAlZn) and Cu73Al15Mn12 (CuAlMn), under compression at ambient temperature. The compression tests were conducted at two different rates to approach isothermal and adiabatic conditions. Upon unloading at a strain rate of 0.1 s(-1) (adiabatic condition) from 4% strain, the highest adiabatic temperature changes (ΔTad) of 4.0 K for CuAlZn and 3.9 K for CuAlMn were obtained. The maximum stress and hysteresis at each strain were compared. The stress at the maximum recoverable strain of 4.0% for CuAlMn was 120 MPa, which is 70% smaller than that of CuAlZn. A smaller hysteresis for the CuAlMn alloy was also obtained, about 70% less compared with the CuAlZn alloy. The latent heat, determined by differential scanning calorimetry, was 4.3 J g(-1) for the CuAlZn alloy and 5.0 J g(-1) for the CuAlMn alloy. Potential coefficients of performance (COPmat) for these two alloys were calculated based on their physical properties of measured latent heat and hysteresis, and a COPmat of approximately 13.3 for CuAlMn was obtained.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402936

  17. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.

    PubMed

    Lu, Hanfeng; Kong, Xianxian; Huang, Haifeng; Zhou, Ying; Chen, Yinfei

    2015-06-01

    Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu-Mn-Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu-Mn-Ce catalyst, a portion of Cu and Mn species entered into the CeO2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu-Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu-Mn and Cu-Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species. PMID:26040736

  18. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-09-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  19. Mn-Fe base and Mn-Cr-Fe base austenitic alloys

    DOEpatents

    Brager, Howard R.; Garner, Francis A.

    1987-01-01

    Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.

  20. Ductile Chromium in Heavily Cold-Drawn Cu75Cr25 Alloy

    NASA Astrophysics Data System (ADS)

    Chang, Yanli; Zhou, Zhiming; Guo, Ziqin; Wang, Yaping

    2016-01-01

    Microstructure evolution, gas content, and properties of the heavily cold-drawn Cu75Cr25 alloy were studied. Results showed that the oxygen and nitrogen contents of Cu75Cr25 alloy prepared by vacuum induction melting in calcia crucibles were low, about 320 and 20 ppm, respectively. The Cu75Cr25 material with low gas content can be cold drawn to lines with diameter less than 0.1 mm, in which Cr phase displays thin and curving morphology. The coherent interface, forming between Cu(111) and Cr(110) during the heavily cold-drawing process, constrained Cr phase and greatly improved its deformability as well as increased the strength of the Cu-Cr alloy. The breaking strength and electrical conductivity of the Cu75Cr25 alloy were about 577 MPa and 60 pct IACS, respectively.

  1. Thermal fatigue damage of Cu-Cr-Zr alloys

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arya; Mitra, R.; Chakraborty, A. K.; Rotti, C.; Ray, K. K.

    2013-11-01

    The primary aim of this investigation is to examine thermal fatigue damage (TFD) in Cu-Cr-Zr alloys used in High Heat Flux components of Tokamak and its subsystems. Thermal fatigue experiments have been carried out between 290 °C and 30 °C, which is analogous to the condition of service application on two Cu-Cr-Zr alloys having different aging treatments. The extents of TFD have been examined by standard measurements of electrical conductivity, lattice strain, residual stress and dynamic elastic modulus, supplemented by characterizations of microstructure and determination of hardness and tensile properties. The results lead to infer that the relative amounts of damage are different in the two alloys which are further dependent on their aging conditions; the reasons for the observed difference have been explained. The operative mechanisms of TFD are revealed to be as formation and subsequent coalescence of microvoids, and/or initiation and growth of microcracks.

  2. Preparation and Performance of Cu-Cr Contact Materials for Vacuum Switches with Low Contact Pressure

    NASA Astrophysics Data System (ADS)

    Chang, Yanli; Zheng, Wei; Zhou, Zhiming; Zhai, Yuxiang; Wang, Yaping

    2016-07-01

    Insufficient anti-welding properties limit the application of Cu-Cr contact material in vacuum switches with low contact pressure. The CuCr-W-C alloys that are prepared are for decreasing welding tendencies and keeping the voltage withstand by addition of W and C elements. It is found that the average welding force of CuCr-W-C alloys is reduced more than 50% compared with that of the Cu50 Cr50 alloy. Especially for CuCrW3.0C0.3 and CuCrW1.0C0.5, the welding forces reduce to only 10% of Cu50Cr50. Arc erosion areas of CuCr-W-C alloys are enlarged by five times more than that of the Cu50Cr50 alloy in the same arcing conditions. The results of type tests were qualified. The results suggested that the CuCrW2.0C1.0 alloy could be used in vacuum switches with low contact pressure to replace the W-Cu type contacts.

  3. The resistance to cavitation erosion of CrMnN stainless steels

    SciTech Connect

    Fu, W.T.; Jing, T.F.; Zheng, Y.Z.; Yang, Y.B.; Yao, M.

    1998-12-01

    The resistance to cavitation erosion (CE) was measured using a magnetostrictive device and a rotating disk device for some CrMnN stainless steels (Chinese patent ZL 90 1 02197.0). The microstructural changes in the surface layer before and after CE were analyzed by use of Mossbauer spectra. Results show that the resistance to CE of duplex austenitic-martensitic CrMnN stainless steels is much better than that of ZG0Cr13Ni4-6Mo and ZG0Cr16Ni5Mo steel, which are in common use for hydraulic turbine runners. The metastable austenite and its changes in the process of CE are the key factors why the CrMnN stainless steels have excellent resistance to cavitation erosion.

  4. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    NASA Astrophysics Data System (ADS)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  5. Effect of mechanical activation on thermal and electrical conductivity of sintered Cu, Cr, and Cu/Cr composite powders

    NASA Astrophysics Data System (ADS)

    Rogachev, A. S.; Kuskov, K. V.; Moskovskikh, D. O.; Usenko, A. A.; Orlov, A. O.; Shkodich, N. F.; Alymov, M. I.; Mukasyan, A. S.

    2016-06-01

    The results of measurement of electric resistivity and thermal conductivity of materials obtained by spark plasma sintering from powders of Cu, Cr, and their mixtures in the range of 300-600 K are presented. It is shown that the grinding of powders in planetary mills results in a reasonably substantial change in the electric and thermal properties of materials: to increasing electric resistivity and decreasing thermal conductivity and temperature coefficients of electric resistivity. The possible causes of these effects are considered.

  6. Preparation, structural and magnetic characterization of DyCrMnO{sub 5}

    SciTech Connect

    Martinez-Lope, M.J.; Retuerto, M. Garcia-Hernandez, M.; Alonso, J.A.

    2009-03-15

    The title compound has been first synthesized by a citrate technique followed by thermal treatments under moderate oxygen pressure conditions, and characterized by X-ray and neutron powder diffraction (NPD) and magnetization measurements. The crystal structure of DyCrMnO{sub 5} has been refined from NPD data in the space group Pbam; a=7.2617(6) A, b=8.5161(6) A, and c=5.7126(5) A at 295 K. This oxide is isostructural with RMn{sub 2}O{sub 5} oxides (R=rare earths) and it contains infinite chains of (Cr, Mn){sup 4+}O{sub 6} octahedra-sharing edges, linked together by (Mn, Cr){sup 3+}O{sub 5} pyramids and DyO{sub 8} units. The high degree of antisite disordering exhibited by DyCrMnO{sub 5} is noteworthy. The octahedral positions are occupied by roughly 50% of Mn and Cr cations, and the pyramidal groups contain two thirds of Mn and one third of Cr cations. We assume that Mn and Cr cations at the octahedral positions exhibit a tetravalent oxidation state, whereas the metals at the pyramidal positions are trivalent, in order to preserve the electroneutrality of this oxide. The susceptibility vs temperature curve of DyCrMnO{sub 5} does not suggest the establishment of a long-range magnetic structure even at low temperatures; the NPD technique does not provide any signal of magnetic ordering, since the reflections do not show any magnetic contribution. - Graphical abstract: DyCrMnO{sub 5} is isostructural with DyMn{sub 2}O{sub 5}, belonging to the Pbam space group. The crystal structure contains infinite chains of edge-sharing Mn{sup 4+}O{sub 6} octahedra, interconnected by dimer units of Cr{sup 3+}O{sub 5} square pyramids. The low-temperature neutron powder diffraction (NPD) patterns do not show any magnetic contribution, indicating that a full long-range magnetic ordering is not established down to low temperature, although the Dy{sup 3+} magnetic moments are susceptible to be polarized by an external magnetic field at the lowest temperature of 5 K.

  7. Oxide Transformation in Cr-Mn-Prealloyed Sintered Steels: Thermodynamic and Kinetic Aspects

    NASA Astrophysics Data System (ADS)

    Hryha, Eduard; Nyborg, Lars

    2014-04-01

    The main obstacle for utilization of Cr and Mn as alloying elements in powder metallurgy is their high oxygen affinity leading to oxidation risk during powder manufacturing, handling, and especially during further consolidation. Despite the high purity of the commercially available Cr- and Mn-prealloyed iron powder grades, the risk of stable oxide formation during the sintering process remains. Thermodynamic and kinetic simulation of the oxide formation/transformation on the former powder surface during heating and sintering stages using thermodynamic modeling tools (Thermo-Calc and HSC Chemistry) was performed. Simulation is based on the results from the analysis of amount, morphology, and composition of the oxide phases inside the inter-particle necks in the specimens from interrupted sintering trials utilizing advanced analysis tools (HRSEM + EDX and XPS). The effect of the processing parameters, such as sintering atmosphere composition, temperature profile as well as graphite addition on the possible scenarios of oxide reduction/formation/transformation for Fe-Cr-Mn-C powder systems, was evaluated. Results indicate that oxide transformation occurs in accordance with the thermodynamic stability of oxides as follows: Fe2O3 → FeO → Fe2MnO4 → Cr2FeO4 → Cr2O3 → MnCr2O4 → MnO/MnSiO x → SiO2. Spinel MnCr2O4 was identified as the most stable oxide phase at applied sintering conditions up to 1393 K (1120 °C). Controlled conditions during the heating stage minimize the formation of stable oxide products and produce oxide-free sintered parts.

  8. The Mn-53-Cr-53 System in CAIs: An Update

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Wasserburg, G. J.; Bogdanovski, O.

    2005-01-01

    High precision techniques have been developed for the measurement of Cr isotopes on the Triton mass spectrometer, at JPL. It is clear that multiple Faraday cup, simultaneous ion collection may reduce the uncertainty of isotope ratios relative to single Faraday cup ion collection, by the elimination of uncertainties from ion beam instabilities (since ion beam intensities for single cup collection are interpolated in time to calculate isotope ratios), and due to a greatly increased data collection duty cycle, for simultaneous ion collection. Efforts to measure Cr by simultaneous ion collection have not been successful in the past. Determinations on Cr-50-54Cr, by simultaneous ion collection on the Finnigan/ MAT 262 instrument at Caltech, resulted in large variations in extrinsic precision, for normal Cr, of up to 1% in Cr-53/Cr-52 (data corrected for mass fractionation, using Cr-50/Cr-52).

  9. First-principles investigation of the stability of MN and CrMN precipitates under coherency strains in α-Fe (M = V, Nb, Ta)

    NASA Astrophysics Data System (ADS)

    Fors, Dan H. R.; Wahnström, Göran

    2011-06-01

    We perform a systematic ab initio study of the interface energetics of thin coherent rocksalt (nacl) structured MN and tetragonal CrMN films in bcc Fe (M = V, Nb, Ta), motivated by the vital role of MN and CrMN precipitates for the long-term creep resistance in 9%-12%Cr steels. The similarities and differences in the work of separations and the elastic costs for the coherency strains are identified, and the possibility for formation of coherent films are discussed. Our findings provide valuable information of the interface energetics, which in continuation can be combined with thermodynamical modeling to obtain a better understanding of the initial nucleation stage of the MN and CrMN precipitates, and their influence on the long-term microstructural evolution in 9%-12%Cr steels.

  10. Precipitation in 9Ni-12Cr-2Cu maraging steels

    SciTech Connect

    Stiller, K.; Haettestrand, M.; Danoix, F.

    1998-11-02

    Two maraging steels with the compositions 9Ni-12Cr-2Cu-4Mo (wt%) and 9Ni-12Cr-2Cu and with small additions of Al and Ti were investigated using atom probe field ion microscopy. Tomographic atom probe investigations were performed to clarify the spatial distribution of elements in and close to the precipitates. Materials heat treated at 475 C for 5, 25 min, 1, 2, 4 and 400 h were analyzed. Precipitates in the Mo-rich material were observed already after 5 min of aging, while in the material without MO, precipitation started later. In both materials precipitation begins with the formation of Cu-rich particles which work as nucleation sites for a Ni-rich phase of type Ni{sub 3}(Ti,Al). A Mo-rich phase was detected in the Mo-rich steel after 2 h of aging. The distribution of alloying elements in the precipitates, their role in the precipitation process, and the mechanism of hardening in the two materials are discussed.

  11. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO 2(VI) ions: Synthesis, structural characterization and biological activity studies

    NASA Astrophysics Data System (ADS)

    El-Halim, Hanan F. Abd; Mohamed, Gehad G.; El-Dessouky, Maher M. I.; Mahmoud, Walaa H.

    2011-11-01

    Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO 2(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, 1H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25 ± 1 °C and at 0.1 M KNO 3 ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO 2(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H 2O) 4]·Cl 2 and [Zn(LFX)(H 2O) 4]·Cl 2 were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had

  12. High-temperature oxidation behavior of a wrought Ni-Cr-W-Mn-Si-La alloy

    SciTech Connect

    Tawancy, H.M.

    1996-04-01

    An investigation was carried out to study the kinetics and products of oxidation of a wrought Ni-Cr-W-Mn-Si-La alloy at temperatures in the range of 950 to 1150{degrees}C. Oxidation kinetics were evaluated from measurements of weight change, metal loss, and internal penetration. Analytical electron microscopy, scanning electron microscopy, electron probe microanalysis, and X-ray diffraction were used to characterize the scale microstructure. Initially, La was observed to segregate within a surface layer of about 5 {mu}m thick, which promoted selective oxidation of Cr and Mn. Oxidation kinetics were found to follow a parabolic-rate law with an activation energy of about 232 kJ/mol. During steady-state oxidation, the scale consisted of an inner adherent layer of {alpha}-Cr{sub 2}O{sub 3} modified by the presence of La and Si, and shielded by an outer layer of MnCr{sub 2}O{sub 4}. Most of the La was segregated to grain boundaries of the {alpha}-Cr{sub 2}O{sub 3} scale, however, Si was homogeneously distributed. It was concluded that the characteristic oxidation resistance of the alloy was related to the synergistic effects of Ni and Cr and to the effective minor additions of La, Si, and Mn; however, the useful life of the scale was limited by rupture and surface depletion in Cr, leading to accelerated internal oxidation.

  13. CuCrZr alloy microstructure and mechanical properties after hot isostatic pressing bonding cycles

    NASA Astrophysics Data System (ADS)

    Frayssines, P.-E.; Gentzbittel, J.-M.; Guilloud, A.; Bucci, P.; Soreau, T.; Francois, N.; Primaux, F.; Heikkinen, S.; Zacchia, F.; Eaton, R.; Barabash, V.; Mitteau, R.

    2014-04-01

    ITER first wall (FW) panels are a layered structure made of the three following materials: 316L(N) austenitic stainless steel, CuCrZr alloy and beryllium. Two hot isostatic pressing (HIP) cycles are included in the reference fabrication route to bond these materials together for the normal heat flux design supplied by the European Union (EU). This reference fabrication route ensures sufficiently good mechanical properties for the materials and joints, which fulfil the ITER mechanical specifications, but often results in a coarse grain size for the CuCrZr alloy, which is not favourable, especially, for the thermal creep properties of the FW panels. To limit the abnormal grain growth of CuCrZr and make the ITER FW fabrication route more reliable, a study began in 2010 in the EU in the frame of an ITER task agreement. Two material fabrication approaches have been investigated. The first one was dedicated to the fabrication of solid CuCrZr alloy in close collaboration with an industrial copper alloys manufacturer. The second approach investigated was the manufacturing of CuCrZr alloy using the powder metallurgy (PM) route and HIP consolidation. This paper presents the main mechanical and microstructural results associated with the two CuCrZr approaches mentioned above. The mechanical properties of solid CuCrZr, PM CuCrZr and joints (solid CuCrZr/solid CuCrZr and solid CuCrZr/316L(N) and PM CuCrZr/316L(N)) are also presented.

  14. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 9.5 kJ mol-1. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  15. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu-17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9+/-9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr-5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR-5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  16. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17%Cr and Cu-17%Cr-5%Al. Part 1; Oxidation Kinetics

    NASA Technical Reports Server (NTRS)

    Raj. Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. These observations reveal that Cu- 17%Cr-5%Al oxidizes at significantly slower rates than Cu-17%Cr. The rate constants for the alloys were determined from generalized analyses of the data without an a priori assumption of the nature of the oxidation kinetics. Detailed analyses of the isothermal thermogravimetric weight change data revealed that Cu-17%Cr exhibited parabolic oxidation kinetics with an activation energy of 165.9 +/- 9.5 kJ/mol. In contrast, the oxidation kinetics for the Cu-17%Cr- 5%Al alloy exhibited a parabolic oxidation kinetics during the initial stages followed by a quartic relationship in the later stages of oxidation. Alternatively, the oxidation behavior of Cu-17%CR- 5%Al could be better represented by a logarithmic relationship. The parabolic rate constants and activation energy data for the two alloys are compared with literature data to gain insights on the nature of the oxidation mechanisms dominant in these alloys.

  17. Magnetic properties of CuCr2Se4 and CuCr1.5Ti0.5Se4

    NASA Astrophysics Data System (ADS)

    Behera, P. Suchismita; Bhobe, P. A.; Nigam, A. K.

    2016-05-01

    CuCr2Se4 is a potentially attractive versatile material, from the point of view of spintronics application. It shows characteristics of a ferromagnetic conductor at room temperature and with suitable doping it is proposed to show half-metallicity. With an aim to understand the effect of doping at Cr-site by a non-magnetic ion, we carried out investigation of magnetic and crystal structure properties of polycrystalline CuCr2Se4 and CuCr1.5Ti0.5Se4 spinel. These materials were prepared by solid state synthesis and characterized using room temperature powder XRD and measurement of magnetic properties. The XRD patterns were analyzed using Rietveld technique and lattice constants were estimated. Formation of a small amount of Cr3Se4 phase was identified from the XRD profiles. However, the magnetic properties do not seem to be affected much by it. Compared to parent compound, CuCr2Se4, the ferromagnetic Curie temperature TC in CuCr1.5Ti0.5Se4 was found to decrease to 208 K. But its magnetic moment (μB/f.u.) determined from the saturation magnetization value measured at 5 K, differed only slightly from that of CuCr2Se4. Our preliminary results are presented here.

  18. [XPS and UPS characterization for Cr and Mn in high-temperature oxide films of bulk nanocrystalline 304 stainless steel].

    PubMed

    Xu, Song-Ning; Wang, Sheng-Gang; Han, Hai-Bao; Sun, Nai-Kun

    2013-03-01

    The authors studied the binding energies of valence electrons of two oxide scales, the atomic percentages of Cr and Mn elements in two oxide films, the work function of two oxide films on bulk nanocrystalline 304 stainless steel (BN-SS304) and conventional polycrystalline 304 stainless steel (CP-SS304). BN-SS304 was prepared by severe rolling technique, and the two oxide films were formed in atmosphere at 900 degrees C for 24 hours oxidation on BN-SS304 and CP-SS304 surfaces. In the two oxide films, Cr and Mn elements exist in the forms of Cr3+, Cr0, Mn4+ and Mn0. The atomic percentage ratios of Cr+ / (Cr3+ + Cr0) and Mn4+ / (Mn4+ + Mn0) in the oxide film on BN-SS304 are lower than those in the oxide film on CP-SS304. The interactions of the two oxides and the valence electrons of elements are Mn-O, Cr-O,3d and 4s of Mn0 and Cr0. The binding energies of the valence electrons in the oxide film on BN-SS304 are larger than those in the oxide film on CP-SS304, the work function of the oxide film on BN-SS304 is 0.07 eV larger than that on CP-SS304. PMID:23705465

  19. Indirect mass determination for the neutron-deficient nuclides 44V, 48Mn, 52Co and 56Cu

    NASA Astrophysics Data System (ADS)

    Tu, X. L.; Litvinov, Yu. A.; Blaum, K.; Mei, B.; Sun, B. H.; Sun, Y.; Wang, M.; Xu, H. S.; Zhang, Y. H.

    2016-01-01

    Mass excess values for 44V, 52Co and 56Cu are derived indirectly using the mirror symmetry and known data from beta-delayed proton spectroscopy. The new mass excess obtained by using the energy conservation for 48Mn is - 29 303 (14) keV, which is an improvement by about an order of magnitude compared to the AME'12 value. Compared to previously known data, the new proton separation energy for 45Cr causes a ˜3.5 times smaller matter flow through the Casbnd Sc cycle during the rp-process. Obtained proton separation energies for 52Co and 56Cu are about 500 keV larger than the AME'12 values. If confirmed, this would affect photo disintegration rates of 52Co (γ, p)51Fe and 56Cu (γ, p)55Ni reactions during the rp-process in X-ray bursts.

  20. Influence of Bulk Chemical Composition on Relative Sensitivity Factors for 55Mn/52Cr by SIMS: Implications for the 53Mn-53Cr Chronometer

    SciTech Connect

    Matzel, J; Jacobsen, B; Hutcheon, I D; Kita, N; Ryerson, F J

    2009-09-09

    The {sup 53}Mn-{sup 53}Cr systematics of meteorite samples provide an important high resolution chronometer for early solar system events. Accurate determination of the initial abundance of {sup 53}Mn ({tau}{sub 1/2} = 3.7 Ma) by secondary ion mass spectrometry (SIMS) is dependent on properly correcting for differing ion yields between Mn and Cr by use of a relative sensitivity factor (RSF). Ideal standards for SIMS analysis should be compositionally and structurally similar to the sample of interest. However, previously published Mn-Cr studies rely on few standards (e.g., San Carlos olivine, NIST 610 glass) despite significant variations in chemical composition. We investigate a potential correlation between RSF and bulk chemical composition by determining RSFs for {sup 55}Mn/{sup 52}Cr in 11 silicate glass and mineral standards (San Carlos olivine, Mainz glasses KL2-G, ML3B-G, StHs6/80-G, GOR128-G, BM90/21-G, and T1-G, NIST 610 glass, and three LLNL pyroxene-composition glasses). All standards were measured on the Cameca ims-3f ion microprobe at LLNL, and a subset were also measured on the Cameca ims-1270 ion microprobe at the Geological Survey of Japan. The standards cover a range of bulk chemical compositions with SiO{sub 2} contents of 40-71 wt.%, FeO contents of 0.05-20 wt.% and Mn/Cr ratios between 0.4 and 58. We obtained RSF values ranging from 0.83 to 1.15. The data obtained on the ims-1270 ion microprobe are within {approx}10% of the RSF values obtained on the ims-3f ion microprobe, and the RSF determined for San Carlos olivine (0.86) is in good agreement with previously published data. The typical approach to calculating an RSF from multiple standard measurements involves making a linear fit to measured {sup 55}Mn/{sup 52}Cr versus true {sup 55}Mn/{sup 52}Cr. This approach may be satisfactory for materials of similar composition, but fails when compositions vary significantly. This is best illustrated by the {approx}30% change in RSF we see between

  1. The General Isothermal Oxidation Behavior of Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, L. U.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Oxidation kinetics of Cu-8Cr-4Nb was investigated by TGA (thermogravimetric) exposures between 500 and 900-C (at 25-50 C intervals) and the oxide scale morphologies examined by microscopy and micro-analysis. Because Cu-8Cr-4Nb is comprised of fine Cr2Nb precipitates in a Cu matrix, the results were interpreted by comparison with the behavior of copper (OFHC) and 'NARloy-Z' (a rival candidate material for thrust cell liner applications in advanced rocket engines) under the same conditions. While NARloy-Z and Cu exhibited identical oxidation behavior, Cu-8Cr-4Nb differed markedly in several respects: below approx. 700 C its oxidation rates were significantly lower than those of Cu; At higher temperatures its oxidation rates fell into two categories: an initial rate exceeding that of Cu, and a terminal rate comparable to that of Cu. Differences in oxide morphologies paralleled the kinetic differences at higher temperature: While NARloy-Z and Cu produced a uniform oxide scale of Cu2O inner layer and CuO outer layer, the inner (Cu2O) layer on Cu-8Cr-4Nb was stratified, with a highly porous/spongy inner stratum (responsible for the fast initial kinetics) and a dense/blocky outer stratum (corresponding to the slow terminal kinetics). Single and spinel oxides of Nb and Cr were found at the interface between the oxide scale and Cu-8Cr-4Nb substrate and it appears that these oxides were responsible for its suppressed oxidation rates at the intermediate temperatures. No difference was found between Cu-8Cr-4Nb oxidation in air and in oxygen at 1.0 atm.

  2. Characteristics of p-type transparent conductive CuCrO2 thin films

    NASA Astrophysics Data System (ADS)

    Yu, Ruei-Sung; Wu, Chung-Ming

    2013-10-01

    Cu-Cr-O films were prepared using reactive magnetron sputtering deposition followed by annealing at temperatures ranging from 550 to 625 °C in 25 °C increments. Correlations between the optoelectronic and microstructural properties of the p-type CuCrO2 films are discussed. The as-deposited film was amorphous; after annealing at 550 and 575 °C, films adopted mixed CuO and CuCr2O4 phases. Annealing at 600 °C led to the formation of a dominant phase of delafossite CuCrO2. The 625 °C-annealed film was single-phase CuCrO2 which had a bar- and polygonal-like mixed surface appearance, with a root mean square roughness of 17.7 nm. CuCrO2 is an intrinsic p-type semiconductor which exhibits electrical conductivity and transparency over the visible wavelength range. Two higher-energy subband transitions at 3.69 and 4.82 eV were observed in the band structure of CuCrO2. Point defects were the main reason source of hole carrier scattering in the material. The single-phase CuCrO2 film had the lowest resistivity of the films, 4.31 Ω cm, and had a direct band gap of 3.14 eV and light transmittance of 62% at 600 nm.

  3. Experimental Study on Dynamic Mechanical Properties of 30CrMnSiNi2A Steel.

    NASA Astrophysics Data System (ADS)

    Huang, Fenglei; Yao, Wei; Wu, Haijun; Zhang, Liansheng

    2009-06-01

    Under dynamic conditions, the strain-rate dependence of material response and high levels of hydrostatic pressure cause the material behavior to be significantly different from what is observed under quasi-static condition. The curves of stress and strain of 30CrMnSiNi2A steel in different strain rates are obtained with SHPB experiments. Metallographic analyses show that 30CrMnSiNi2A steel is sensitive to strain rate, and dynamic compression leads to shear failure with the angle 45^o as the small carbide which precipitates around grain boundary changes the properties of 30CrMnSiNi2A steel. From the SHPB experiments and quasi-static results, the incomplete Johnson-Cook model has been obtained: σ=[1587+382.5(ɛ^p)^0.245][1+0.017ɛ^*], which can offer parameters for theory application and numerical simulation.

  4. Cu- and Mn-bearing tourmalines from Brazil and Mozambique: crystal structures, chemistry and correlations

    NASA Astrophysics Data System (ADS)

    Ertl, Andreas; Giester, Gerald; Schüssler, Ulrich; Brätz, Helene; Okrusch, Martin; Tillmanns, Ekkehart; Bank, Hermann

    2013-04-01

    Cu- and Mn-bearing tourmalines from Brazil and Mozambique were characterised chemically (EMPA and LA-ICP-MS) and by X-ray single-crystal structure refinement. All these samples are rich in Al, Li and F (fluor-elbaite) and contain significant amounts of CuO (up to ~1.8 wt%) and MnO (up to ~3.5 wt%). Structurally investigated samples show a pronounced positive correlation between the < Y-O> distances and the (Li + Mn2+ + Cu + Fe2+) content (apfu) at this site with R 2 = 0.90. An excellent negative correlation exists between the < Y-O> distances and the Al2O3 content ( R 2 = 0.94). The samples at each locality generally show a strong negative correlation between the X-site vacancies and the (MnO + FeO) content. The Mn content in these tourmalines depends on the availability of Mn, on the formation temperature, as well as on stereochemical constraints. Because of a very weak correlation between MnO and CuO we believe that the Cu content in tourmaline is essentially dependent on the availability of Cu and on stereochemical constraints.

  5. Investigation of Modified Ni-Cr-Mn Base Alloys for SOFC Interconnect Applications

    SciTech Connect

    Yang, Z Gary; Singh, Prabhakar; Stevenson, Jeffry W.; Xia, Gordon

    2006-09-01

    Two Ni-Cr-W-Mn base alloys based on Haynes 230 were developed and evaluated against criteria relevant to SOFC interconnect applications, which included oxidation behavior under SOFC operating conditions, scale electrical conductivity, and thermal expansion. It was found that, similar to the ferritic stainless steel Crofer22 APU, additions of Mn led to the formation of a unique scale that was comprised of a M3O4 (M=Mn, Cr, Ni, …) spinel-rich top layer and Cr2O3-rich sub-layer. The modified alloys demonstrated reasonable oxidation resistance under SOFC operating conditions, though the Mn additions increased the scale growth rate and thus sacrificed to some extent the oxidation resistance of the base alloy (Haynes 230). The formation of a spinel-rich top layer improved the scale conductivity, especially during the early stages of oxidation, but the higher scale growth rate resulted in a higher rate of increase in the area-specific electrical resistance. Due to their FCC crystal structure, the Ni-Cr-W-Mn base alloys demonstrated a CTE that was higher than that of anode-supported cells and candidate ferritic stainless steels such as Crofer22 APU.

  6. Multiferroicity in B-site ordered double perovskite Y2MnCrO6

    NASA Astrophysics Data System (ADS)

    Fang, Yong; Yan, Shi-Ming; Qiao, Wen; Wang, Wei; Wang, Dun-Hui; Du, You-Wei

    2014-11-01

    Double perovskite manganite Y2MnCrO6 ceramic is synthesized and its multiferroic properties are investigated. Novel multiferroic properties are displayed with respect to other multiferroics, such as high ferroelectric phase transition temperature, and the coexistence of ferrimagnetism and ferroelectricity. Moreover, the ferroelectric polarization of Y2MnCrO6 below the magnetic phase temperature can be effectively tuned by an external magnetic field, showing a remarkable magnetoelectric effect. These results open an effective avenue to explore magnetic multiferroics with spontaneous magnetization and ferroelectricity, as well as a high ferroelectric transition temperature.

  7. Oxidation behavior of cubic phases formed by alloying Al3Ti with Cr and Mn

    NASA Technical Reports Server (NTRS)

    Parfitt, L. J.; Nic, J. P.; Mikkola, D. E.; Smialek, J. L.

    1991-01-01

    Gravimetric, SEM, and XRD data are presented which document the significant improvement obtainable in the oxidation resistance of Al3Ti-containing alloys through additions of Cr. The L1(2) Al(67)Cr(8)Ti25 alloy exhibited excellent cyclic oxidation resistance at 1473 K, with the primary oxide formed being the ideally protective alpha-Al2O3. The Al(67)Mn(8)Ti(25) alloy also tested for comparison exhibited poor cyclic oxidation resistance, with substantial occurrence of TiO2 in the protective scales. Catastrophic oxidation was also encountered in the quaternary alloy Al(67)Mn(8)Ti(22)V(3).

  8. Mn-53-Cr-53 Systematics of R-Chondrite NWA 753

    NASA Technical Reports Server (NTRS)

    Jogo, K.; Shih, C-Y.; Reese, Y. D.; Nyquist, L. E.

    2006-01-01

    Chondrules and chondrites are interpreted as objects formed in the early solar system, and it is important to study them in order to elucidate its evolution. Here, we report the study of the Mn-Cr systematics of the R-Chondrite NWA753 and compare the results to other chondrite data. The goal was to determine Cr isotopic and age variations among chondrite groups with different O-isotope signatures. The Mn-53-Cr-53 method as applied to individual chondrules [1] or bulk chondrites [2] is based on the assumption that 53Mn was initially homogeneously distributed in that portion the solar nebula where the chondrules and/or chondrites formed. However, different groups of chondrites formed from regions of different O-isotope compositions. So, different types of chondrites also may have had different initial Mn-53 abundances and/or Cr isotopic compositions. Thus, it is important to determine the Cr isotopic systematics among chondrites from various chondrite groups. We are studying CO-chondrite ALH83108 and Tagish Lake in addition to R-Chondrite NWA753. These meteorites have very distinct O-isotope compositions (Figure 1).

  9. Dielectric function of the ferromagnetic semiconductor CdMnCrTe studied by using spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Hwang, Younghun; Um, Youngho

    2014-11-01

    We describe the pseudo-dielectric function of Cd1- x- y Mn x Cr y Te ferromagnetic semiconductor alloys by using spectroscopic ellipsometry in the 1.0 ~ 6.0 eV spectral range at room temperature. The ellipsometry data include structures that can be attributed to the effects of Cr concentration on the E 0, E 1, E 1 + Δ1, and E 2 critical points. Critical-point (CP) parameters were obtained by fitting standard critical point (SCP) model line shapes to the numerically-calculated second- energy derivatives of ɛ( ω) = ɛ 1( ω) + iɛ 2( ω). The E 0, E 1, E 1 + Δ1, and E 2 energies decreased with Cr content y; this phenomenon is related to the hybridization of the valence and the conduction bands in CdTe with the 3 d states of Mn and Cr.

  10. Vacuum Plasma Spray of Cu-8Cr-4Nb for Advanced Liquid-Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, F.; Elam, S.; Ellis, D.; Miller, H.; McKechnie, T.; Hickman, R.

    2001-01-01

    Vacuum plasma spray (VPS) formed Cu-8Cr-4Nb alloy, with low oxygen, exhibits higher strength at room and elevated temperature than material formed by extrusion. The VPS formed material exhibits slightly lower ductility than the extruded material. VPS forming of Cu-8Cr-4Nb can be used to produce near net structures with mechanical properties comparable to current extruded material.

  11. Cu Cr O nanocomposites: Synthesis and characterization as catalysts for solid state propellants

    NASA Astrophysics Data System (ADS)

    Li, Wei; Cheng, Hua

    2007-08-01

    In this article we present the synthesis of Cu-Cr-O nanocomposites via a citric acid (CA) complexing approach and the evaluation of the as-synthesized Cu-Cr-O nanocomposites as additives for the catalytic combustion of AP (ammonium perchlorate)-based solid state propellants. Techniques of thermo-gravimetric/differential thermal analyzer (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscopy (SEM) have been employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials, respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced by using a temperature as low as 600 °C. Phase structure of the as-obtained Cu-Cr-O nanocomposites depends on the Cu/Cr molar ratio in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid state propellants considerably. Noticeably, solid state propellants containing Cu-Cr-O nanocomposites with a Cu/Cr molar ratio of 0.7 exhibits the most stable combustion at all pressures.

  12. Mechanism and kinetics of interaction of Fe, Cr, Mo, and Mn atoms with molecular oxygen

    SciTech Connect

    Akhmadov, U.S.; Zaslonko, I.S.; Smirnov, V.N.

    1988-09-01

    By means of resonance atomic absorption in shock waves, rate constants have been measured for the interaction of atoms of a number of transition metals (Fe, Cr, Mo, and Mn) with molecular oxygen. A new method is proposed and used for determining the exponent ..gamma.. in the modified Lambert-Beer law D = element of(ZN)/sup ..gamma../. The bond strength in CrO and MoO molecules has been estimated.

  13. Cr, Cu, Mn, Mo, Ni, and Steel Price Drivers

    USGS Publications Warehouse

    Papp, John F.; Corathers, Lisa A.; Edelstein, Daniel L.; Fenton, Michael D.; Kuck, Peter H.; Magyar, Michael J.

    2007-01-01

    Summary This report contains the 55 slide images from a presentation made by the author at the meeting of the Metal Powder Industries Federation held in Denver, CO, on May 15, 2007. The Metal Powder Industries Federation (MPIF) invited the U.S. Geological Survey (USGS) to speak at their annual meeting about the price drivers for chromium, copper, manganese, molybdenum, nickel, and steel. These metals are of interest to MPIF because the prices of these raw materials used by their industry were at historically high levels. Because the USGS closely monitors, yet neither buys nor sells, metal commodities, it is an unbiased source of metal price information and analysis. The authors used information about these and other metals collected and published by the USGS (U.S. production, trade, stocks, and prices) and about consumption and stocks internationally by country from industry organizations that publish such information, because metal markets are influenced by activities and events over the entire globe. By seeking a common cause for common behavior among the various metal commodities, the authors found that major price drivers on metal commodities were inflation, major international events such as wars and recessions, and major national events such as the dissolution of the Soviet Union in 1991 and economic growth in China, which started with the open door policy in the 1970s but did not have significant market impact until starting in the 1990s. Metal commodity prices also responded to commodity-specific events.

  14. Thermal and structural characterization of Cu-Al-Mn-X (Ti, Ni) shape memory alloys

    NASA Astrophysics Data System (ADS)

    Canbay, C. Aksu; Genc, Z. Karagoz; Sekerci, M.

    2014-05-01

    In this study, the Cu-Al-Mn-X (X = Ni, Ti) shape memory alloys at the range of 10-12 at.% of aluminum and 4-5 at.% manganese were produced by arc melting. We have investigated the effects of the alloying elements on the transformation temperatures, and the structural and the magnetic properties of the quaternary Cu-Al-Mn-X (X = Ni, Ti) shape memory alloys. The evolution of the transformation temperatures was studied by differential scanning calorimetry with different heating and cooling rates. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the aluminum and manganese content, and it was observed that the nickel addition into the Cu-Al-Mn system decreased the transformation temperature although Ti addition caused an increase in the transformation temperatures. The effect of the nickel and the titanium on the thermodynamic parameters such as enthalpy and entropy values was investigated. The structural changes of the samples were studied by X-ray diffraction measurements and by optical microscope observations at room temperature. It is evaluated that the element Ni has been completely soluble in the matrix, and the main phase of the Cu-Al-Mn-Ni sample is martensite, and due to the low solubility of the Ti, the Cu-Al-Mn-Ti sample has precipitates, and a martensite phase at room temperature. The magnetic properties of the Cu-Al-Mn, Cu-Al-Mn-Ni and Cu-Al-Mn-Ti samples were investigated, and the effect of the nickel and the titanium on the magnetic properties was studied.

  15. μSR investigation of a new diluted magnetic semiconductor Li(Zn,Mn,Cu)As with Mn and Cu codoping at the same Zn sites

    NASA Astrophysics Data System (ADS)

    Guo, S. L.; Zhao, Y.; Man, H. Y.; Ding, C.; Gong, X.; Zhi, G. X.; Fu, L. C.; Gu, Y. L.; Frandsen, B. A.; Liu, L.; Cheung, S. C.; Munsie, T. J.; Wilson, M. N.; Cai, Y. P.; Luke, G. M.; Uemura, Y. J.; Ning, F. L.

    2016-09-01

    We report the successful synthesis and characterization of a new type I–II–V bulk form diluted magnetic semiconductor (DMS) Li(Zn,Mn,Cu)As, in which charge and spin doping are decoupled via (Cu,Zn) and (Mn,Zn) substitution at the same Zn sites. Ferromagnetic transition temperature up to  ∼33 K has been observed with a coercive field  ∼40 Oe for the 12.5% doping level. μSR measurements confirmed that the magnetic volume fraction reaches nearly 100% at 2 K, and the mechanism responsible for the ferromagnetic interaction in this system is the same as other bulk form DMSs.

  16. {sup 53}Mn-{sup 53}Cr CHRONOMETRY OF CB CHONDRITE: EVIDENCE FOR UNIFORM DISTRIBUTION OF {sup 53}Mn IN THE EARLY SOLAR SYSTEM

    SciTech Connect

    Yamashita, Katsuyuki; Yamakawa, Akane; Nakamura, Eizo; Maruyama, Seiji

    2010-11-01

    High-precision Cr isotope ratios for chondrules and metal grain separated from CB chondrite Gujba were determined. The {epsilon}{sup 54}Cr values ({epsilon}{sup i}Cr = [({sup i}Cr/{sup 52}Cr){sub sample}/({sup i}Cr/{sup 52}Cr){sub standard} - 1] x 10{sup 4}) for all samples were identical within the analytical uncertainty, with a mean value of +1.29 {+-} 0.02. Uniform {epsilon}{sup 54}Cr signatures of both chondrules and metal grains imply that the Cr isotope systematics of the meteorite was once completely equilibrated. The {epsilon}{sup 53}Cr values of the chondrules and metal grain, on the other hand, display a strong correlation with the {sup 55}Mn/{sup 52}Cr ratio. The {sup 53}Mn/{sup 55}Mn calculated from the slope of the isochron is (3.18 {+-} 0.52) x 10{sup -6}. This corresponds to absolute ages of 4563.7 {+-} 1.2 Ma and 4563.5 {+-} 1.1 Ma using angrites D'Orbigny and LEW 86010, respectively, as time anchors. These ages are consistent with the ages obtained using other short- and long-lived radio nuclides, supporting the uniform distribution of {sup 53}Mn in the early solar nebula.

  17. Catalytic ozonation of petroleum refinery wastewater utilizing Mn-Fe-Cu/Al2O 3 catalyst.

    PubMed

    Chen, Chunmao; Yoza, Brandon A; Wang, Yandan; Wang, Ping; Li, Qing X; Guo, Shaohui; Yan, Guangxu

    2015-04-01

    There is of great interest to develop an economic and high-efficient catalytic ozonation system (COS) for the treatment of biologically refractory wastewaters. Applications of COS require options of commercially feasible catalysts. Experiments in the present study were designed to prepare and investigate a novel manganese-iron-copper oxide-supported alumina-assisted COS (Mn-Fe-Cu/Al2O3-COS) for the pretreatment of petroleum refinery wastewater. The highly dispersed composite metal oxides on the catalyst surface greatly promoted the performance of catalytic ozonation. Hydroxyl radical mediated oxidation is a dominant reaction in Mn-Fe-Cu/Al2O3-COS. Mn-Fe-Cu/Al2O3-COS enhanced COD removal by 32.7% compared with a single ozonation system and by 8-16% compared with Mn-Fe/Al2O3-COS, Mn-Cu/Al2O3-COS, and Fe-Cu/Al2O3-COS. The O/C and H/C ratios of oxygen-containing polar compounds significantly increased after catalytic ozonation, and the biodegradability of petroleum refinery wastewater was significantly improved. This study illustrates potential applications of Mn-Fe-Cu/Al2O3-COS for pretreatment of biologically refractory wastewaters. PMID:25649390

  18. Protection of Advanced Copper Alloys With Lean Cu-Cr Coatings

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.

    2003-01-01

    Advanced copper alloys are used as liners of rocket thrusters and nozzle ramps to ensure dissipation of the high thermal load generated during launch, and Cr-lean coatings are preferred for the protection of these liners from the aggressive ambient environment. It is shown that adequate protection can be achieved with thin Cu-Cr coatings containing as little as 17 percent Cr.

  19. Mechanical and hardness evaluations of Fe-18Cr-18Mn alloys

    SciTech Connect

    Rawers, J.C.; Duttlinger, N.W.

    2008-01-01

    A series of Fe-18Cr-18Mn-N-C alloys was produced and evaluated to determine their mechanical and hardness properties. In one group, different levels of nitrogen and carbon were added to a base composition of Fe-18Cr-18Mn. The base Fe-18Cr-18Mn alloy had a fcc-bcc duplex microstructure. The addition of nitrogen and carbon stabilised the fcc phase. These alloys had increasing room temperature hardness, strength, and failure energy with increasing interstitial concentrations. At cryogenic and elevated temperatures, these alloys had increasing hardness (and by implication, increased strength) with increasing interstitial concentrations. In a second group, different levels of nitrogen and carbon were added to the base Fe-18Cr-18Mn composition to which minor solid solution additions of silicon, molybdenum, and nickel had been added. Minor alloy additions made only nominal improvement to mechanical and hardness properties. Nitrogen remained interstitial. However, these minor solid solution additions reduced carbon solubility resulting in the formation of M23C6 precipitates that, while increasing alloy hardness and strength, greatly reduced fracture toughness. The present study suggests that replacing nickel with manganese in stainless steels results not only in more economical alloys but also in alloys with higher strength and hardness.

  20. Corrosion Behavior of 35CrMn and Q235 Steel in Simulated Acid Rain Conditions

    NASA Astrophysics Data System (ADS)

    Zuo, Xiu-li; Xiang, Bin; Li, Xing; Wei, Zi-dong

    2012-04-01

    Effects of pH value, chloride ion concentration and alternation of wetting and drying time in acid rain on the corrosion of 35CrMn and Q235 steel were investigated through the measurement of polarization curves, electrochemical impedance spectroscopy, x-ray diffraction, and quantum mechanical calculations. The corrosion rate of 35CrMn and Q235 steel increased with decreasing pH values of the simulated acid rain, whereas the corrosion potential of 35CrMn and Q235 steel became more negative. The impedance became higher and the corrosion rate decreased with increasing test time. The dissolution rate of samples increased with chloride ion concentration. Results suggested that the corrosion rate of 35CrMn steel was obviously lower than that of Q235 steel for a more compact rust, α-FeOOH. Quantum chemical calculations further revealed that the increase in corrosion rate of the steel resulted from pitting corrosion caused by the corrosive chloride ion.

  1. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  2. Naturally Occurring Cr and Ni in the Sacramento Valley: II. Mn Oxides and the Mobility of Cr(VI) and Ni

    NASA Astrophysics Data System (ADS)

    Mills, C. T.; Morrison, J. M.; Goldhaber, M. B.; Foster, A. L.; Wolf, R. E.; Wanty, R. B.

    2007-12-01

    Soil manganese oxides can strongly affect the mobility and redox state of several toxic trace metals. We are studying the biogeochemical origin of Mn oxides and their association with Cr and Ni in soils of the Sacramento Valley, California. Both Cr and Ni are likely derived from ultramafic rocks that underlie Coast Range drainages to the west of the study area. The impact of weathering and erosion of these rocks is evident in the high levels of total Cr (80 to 1420 μg g-1) and nickel (65 to 224 μg g-1) that occur broadly in western Sacramento Valley soils. Although much of the Cr is bound in refractory spinels as Cr(III), some mobilization of Cr is apparent in the coincidence of enriched soils with high contents of Cr(VI) in ground water. Data from the National Water Information System (NWIS) shows 7 of 12 sampled wells within a 600 km2 area in the Sacramento Valley having Cr(VI) concentrations between 60 and 100% of the CA maximum contaminant level for drinking water (50 μg l-1). A 3-meter depth soil profile collected within the lower Putah Creek watershed was examined to investigate processes contributing to the oxidation and mobilization of natural Cr(III). Hydroxylamine hydrochloride-reducible Mn was determined for 8 depth intervals as a measure of manganese oxide occurrence. Concentrations of reducible Mn varied between 360 and 690 μg g-1 with depth and peaked at 2.7 m below the surface. Concentrations of anion exchangeable Cr(VI) were as high as 6 ng g-1 and were positively correlated (r2=0.59; p=0.07) with reducible Mn. Scanning electron microscopy of soil minerals from the 2.9 to 3.0 m interval showed Cr-bearing spinel grains enclosed within Mn oxide micro concretions suggesting a potential mechanism for the oxidation of natural Cr(III) to mobile Cr(VI). Consistent with the known tendency of Ni to sorb on Mn oxides, substantial Ni (13 to 45 μg g-1) was released in the reducible Mn fraction and it strongly correlates (r2=0.76; p=0.005) with reducible Mn

  3. Influence of oxygen partial pressure on the quasi-ternary system Cr-Mn-Ti oxide

    SciTech Connect

    Garcia-Rosales, C.; Schulze, H.A.; Naoumidis, A.; Nickel, H. . Research Centre Juelich)

    1993-11-01

    The quasi-ternary system Cr-Mn-Ti oxide was investigated at 1,000 C under oxygen partial pressures ranging from 0.21 bar to 10[sup [minus]21] bar (1 bar = 10[sup 5] Pa). X-ray diffraction analysis was used to identify phases and determine lattice parameters. The positions of phase boundaries as a function of oxygen partial pressure were measured using the emf method. The spinel MnCr[sub 2]O[sub 4] may be regarded as the most interesting compound in this system. Part of the chromium can be replaced by trivalent titanium at low oxygen partial pressures and by trivalent manganese at high pressures, and the formation of a limited solid solution with the spinel Mn[sub 2]TiO[sub 4] is possible in all cases. As a result, a coherent single-phase spinel region exists over the entire oxygen partial pressure range at 1,000 C.

  4. Structure, magnetism, and electron-transport properties of Mn2CrGa-based nanomaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyong; Kharel, Parashu; Skomski, Ralph; Valloppilly, Shah; Li, Xingzhong; Sellmyer, David J.

    2016-05-01

    Mn2CrGa in the disordered cubic structure has been synthesized using rapid quenching and subsequent annealing. The cubic phase transforms to a stable tetragonal phase when a fraction of Cr or Ga is replaced by Pt or Al, respectively. All samples are ferrimagnetic with high Curie temperatures (Tc); Mn2CrGa exhibits the highest Tc of about 813 K. The tetragonal samples have appreciable values of magnetocrystalline anisotropy energy, which leads to an increase in coercivity (Hc) that approaches about 10 kOe in the Pt-doped sample. The Hc linearly increases with a decrease of temperature, concomitant with the anisotropy change with temperature. All samples are metallic and show negative magnetoresistance with room-temperature resistivities on the order of 1 mΩcm. The magnetic properties including high Tc and low magnetic moment suggest that these tetragonal materials have potential for spin-transfer-torque-based devices.

  5. Sign reversal of magnetization in Mn substituted SmCrO3

    NASA Astrophysics Data System (ADS)

    Dash, Bibhuti B.; Ravi, S.

    2016-05-01

    Single phase samples of orthorhombic SmCr1-xMnxO3 compounds were prepared for x=0 to 0.50. Analysis of X-ray diffraction patterns shows a systematic increase in lattice parameters with increase in Mn concentration. The phenomenon of magnetization reversal is observed for x=0.10-0.30 samples with a maximum magnetic compensation temperature of 126 K. The mechanism of magnetization reversal is explained by considering the competition between the paramagnetic moments of Mn3+ and Sm3+ ions under the influence of negative internal field due to antiferromagnetically ordered Cr3+ ions and the canted ferromagnetic component of Cr3+ ions. For x≥0.40, the samples exhibit ferromagnetic like behavior.

  6. Electronic, magnetic, elastic and thermodynamic properties of Cu2MnGa

    NASA Astrophysics Data System (ADS)

    Ghosh, Sukriti; Gupta, Dinesh C.

    2016-08-01

    The full-potential linearized augmented plane wave method in the stable Fm-3m phase has been implemented to investigate the structural, elastic, magnetic and electronic properties of Cu2MnGa. The optimized equilibrium lattice parameter in stable phase is found to be 5.9495 Å. By the spin resolved density of states calculations, we have shown that the exchange splitting due to Mn atom is the main reason of ferromagnetic behavior of Cu2MnGa. The absence of energy gap in both the spin channels predicts that the material is metallic. The total and partial density of states, elastic constants, Shear, Bulk and Young's moduli, Zener isotropy factor, Cauchy pressure, Pugh's ductility, Kleinman parameter and Poisson's ratio are reported for the first time for the alloy. Cauchy's pressure and Pugh's index of ductility label Cu2MnGa as ductile. Cu2MnGa is found to be ferromagnetic and anisotropic in nature. The quasi-harmonic approximations have been employed to study the pressure and temperature dependent thermodynamic properties of Cu2MnGa.

  7. Magnetic States in Ensemble of Ferromagnetic Nanoparticles in Cu-Mn-Al Alloy.

    PubMed

    Konoplyuk, S M; Kozlova, L E; Kokorin, V V; Perekos, A O; Kolomiets, O V

    2016-12-01

    Two Cu-Mn-Al samples of different compositions were studied: one exhibiting martensitic transformation, another without structural transition. X-ray diffraction and magnetic measurements demonstrate that different magnetic behaviors of alloys originate from different concentrations and sizes of ferromagnetic nanoparticles, which appear after solid solution decomposition.Estimation of magnetic moments of ferromagnetic nanoparticles from magnetization curves was performed using Langevin function and compared to those obtained from X-ray examination. Granular systems are known to show giant magnetoresistance. Therefore, magnetoresistance of Cu-Mn-Al melt-spun ribbons after different aging times was measured. The study has shown that increase in the concentration of Mn atoms and time of aging in Cu-Mn-Al alloy leads to an increase in the amount of precipitated phase appearing as ferromagnetic nanoparticles. PMID:26762264

  8. Electronic Structure of Halogen Doped CuCr2Se4

    SciTech Connect

    Arenholz, Elke; Liberati, M.; Neulinger, J. R.; Chopdekar, R.V.; Bettinger, J.S.; Arenholz, E.; Butler, W.; Stacy, A.M.; Idzerda, Y.I.; Suzuki, Y.

    2008-09-13

    We have employed element and chemically sensitive X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) in order to address a long standing controversy regarding the electronic and magnetic state of CuCr{sub 2}Se{sub 4} via halogen doping of the Se anion site in CuCr{sub 2}Se{sub 4-x}Y{sub x} (Y=Cl and Br). Long range magnetic order is observed above room temperature for all samples. The Cr L{sub 2,3} XAS spectra show a prevalent 3+ valence for the Cr ions independent of doping concentration and doping agent. The Cu L{sub 2,3} XAS spectra show a combination of 1+ and 2+ valence states for all samples. XMCD spectra indicate the presence of a magnetic moment associated with the Cu ions that is aligned antiparallel to the Cr moment.

  9. A new Cu-8 Cr-4 Nb alloy for high temperature applications

    NASA Technical Reports Server (NTRS)

    Ellis, D. L.; Michal, G. M.; Dreshfield, R. L.

    1995-01-01

    Various applications exist where a high conductivity alloy with good strength and creep resistance are required. NASA LeRC has developed a Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy for these applications. The alloy is designed for use up to 700 C and shows exceptional strength, low cycle fatigue (LCF) resistance, and creep resistance. Cu-8 Cr-4 Nb also has a thermal conductivity of at least 72 percent that of pure Cu. Furthermore, the microstructure and mechanical properties of the alloy are very stable. In addition to the original application in combustion chambers, Cu-8 Cr-4 Nb shows promise for welding electrodes, brazing fixtures, and other applications requiring high conductivity and strength at elevated temperatures.

  10. Self-Formed Barrier with Cu-Mn alloy Metallization and its Effects on Reliability

    SciTech Connect

    Koike, J.; Wada, M.; Usui, T.; Nasu, H.; Takahashi, S.; Shimizu, N.; Yoshimaru, M.; Shibata, H.

    2006-02-07

    Advancement of semiconductor devices requires the realization of an ultra-thin (less than 5 nm thick) diffusion barrier layer between Cu interconnect and insulating layers. Self-forming barrier layers have been considered as an alternative barrier structure to the conventional Ta/TaN barrier layers. The present work investigated the possibility of the self-forming barrier layer using Cu-Mn alloy thin films deposited directly on SiO2. After annealing at 450 deg. C for 30 min, an amorphous oxide layer of 3-4 nm in thickness was formed uniformly at the interface. The oxide formation was accompanied by complete expulsion of Mn atoms from the Cu-Mn alloy, leading to a drastic decrease in resistivity of the film. No interdiffusion was observed between Cu and SiO2, indicating an excellent diffusion-barrier property of the interface oxide.

  11. Coercivity enhancement in Mn-Al-Cu flakes produced by surfactant-assisted milling

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Hsu, Jen-Hwa; Vinod, V. T. P.; Černík, Miroslav; Kamat, S. V.

    2015-11-01

    We herein report the achievement of exceptionally high coercivity (Hc) values: 9.92 and 5.86 kOe at 5 and 300 K, respectively, for Mn55Al43Cu2 flakes produced by surfactant-assisted milling process without employing any heat-treatment. The use of surfactants such as oleic acid and oleylamine during milling yielded high-aspect ratio flakes for the Mn-Al-Cu alloy. Structural studies confirmed the presence of τ- and β-phases as the major constituents in the Mn-Al-Cu flakes. The observed Hc enhancement is due to the increase in anisotropy field and structural defects, which is hypothesized to originate from the domain-wall pinning as a consequence of precipitation of fine Cu-particles present at the grain boundaries.

  12. Spin dependent transport properties of Mn-Ga/MgO/Mn-Ga magnetic tunnel junctions with metal(Mg, Co, Cr) insertion layer

    SciTech Connect

    Liang, S. H.; Tao, L. L.; Liu, D. P. Han, X. F.; Lu, Y.

    2014-04-07

    We report a first principles theoretical investigation of spin polarized quantum transport in Mn{sub 2}Ga/MgO/Mn{sub 2}Ga and Mn{sub 3}Ga/MgO/Mn{sub 3}Ga magnetic tunneling junctions (MTJs) with the consideration of metal(Mg, Co, Cr) insertion layer effect. By changing the concentration of Mn, our calculation shows a considerable disparity in transport properties: A tunneling magnetoresistance (TMR) ratio of 852% was obtained for Mn{sub 2}Ga-based MTJs, however, only a 5% TMR ratio for Mn{sub 3}Ga-based MTJs. In addition, the influence of insertion layer has been considered in our calculation. We found the Co insertion layer can increase the TMR of Mn{sub 2}Ga-based MTJ to 904%; however, the Cr insertion layer can decrease the TMR by 668%; A negative TMR ratio can be obtained with Mg insertion layer. Our work gives a comprehensive understanding of the influence of different insertion layer in Mn-Ga based MTJs. It is proved that, due to the transmission can be modulated by the interfacial electronic structure of insertion, the magnetoresistance ratio of Mn{sub 2}Ga/MgO/Mn{sub 2}Ga MTJ can be improved by inserting Co layer.

  13. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al Part II: Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  14. Comparison of the Isothermal Oxidation Behavior of As-Cast Cu-17 Percent Cr and Cu-17 Percent Cr-5 Percent Al. Part 2; Scale Microstructures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2008-01-01

    The isothermal oxidation kinetics of as-cast Cu-17%Cr and Cu-17%Cr-5%Al in air were studied between 773 and 1173 K under atmospheric pressure. Details of the oxidation kinetics of these alloys were discussed in Part I. This paper analyzes the microstructures of the scale and its composition in an attempt to elucidate the oxidation mechanisms in these alloys. The scales formed on Cu-17%Cr specimens oxidized between 773 and 973 K consisted of external CuO and subsurface Cu2O layers. The total thickness of these scales varied from about 10 m at 773 K to about 450 m at 973 K. In contrast, thin scales formed on Cu-17%Cr-5%Al alloys oxidized between 773 and 1173 K. The exact nature of these scales could not be determined by x-ray diffraction but energy dispersive spectroscopy analyses were used to construct a scale composition map. Phenomenological oxidation mechanisms are proposed for the two alloys.

  15. Redox Dynamics of Mixed Metal (Mn, Cr, and Fe) Ultrafine Particles

    PubMed Central

    Nico, Peter S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Anastasio, Cort

    2008-01-01

    The impact of particle composition on metal oxidation state, and on changes in oxidation state with simulated atmospheric aging, are investigated experimentally in flame-generated nanoparticles containing Mn, Cr, and Fe. The results demonstrate that the initial fraction of Cr(VI) within the particles decreases with increasing total metal concentration in the flame. In contrast, the initial Mn oxidation state was only partly controlled by metal loading, suggesting the importance of other factors. Two reaction pathways, one reductive and one oxidative, were found to be operating simultaneously during simulated atmospheric aging. The oxidative pathway depended upon the presence of simulated sunlight and O3, whereas the reductive pathway occurred in the presence of simulated sunlight alone. The reductive pathway appears to be rapid but transient, allowing the oxidative pathway to dominate with longer aging times, i.e. greater than ∼8 hours. The presence of Mn within the particles enhanced the importance of the oxidative pathway, leading to more net Cr oxidation during aging implying that Mn can mediate oxidation by removal of electrons from other particulate metals. PMID:20046215

  16. Redox Dynamics of Mixed Metal (Mn, Cr, and Fe) Ultrafine Particles

    SciTech Connect

    Nico, Peter S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Anastasio, Cort

    2008-08-01

    The impact of particle composition on metal oxidation state, and on changes in oxidation state with simulated atmospheric aging, are investigated experimentally in flame-generated nanoparticles containing Mn, Cr, and Fe. The results demonstrate that the initial fraction of Cr(VI) within the particles decreases with increasing total metal concentration in the flame. In contrast, the initial Mn oxidation state was only partly controlled by metal loading, suggesting the importance of other factors. Two reaction pathways, one reductive and one oxidative, were found to be operating simultaneously during simulated atmospheric aging. The oxidative pathway depended upon the presence of simulated sunlight and O{sub 3}, whereas the reductive pathway occurred in the presence of simulated sunlight alone. The reductive pathway appears to be rapid but transient, allowing the oxidative pathway to dominate with longer aging times, i.e. greater than {approx}8 hours. The presence of Mn within the particles enhanced the importance of the oxidative pathway, leading to more net Cr oxidation during aging implying that Mn can mediate oxidation by removal of electrons from other particulate metals.

  17. Chemical separation and mass spectrometry of Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial materials using thermal ionization mass spectrometry.

    PubMed

    Yamakawa, Akane; Yamashita, Katsuyuki; Makishima, Akio; Nakamura, Eizo

    2009-12-01

    A sequential chemical separation technique for Cr, Fe, Ni, Zn, and Cu in terrestrial and extraterrestrial silicate rocks was developed for precise and accurate determination of elemental concentration by the isotope dilution method (ID). The technique uses a combination of cation-anion exchange chromatography and Eichrom nickel specific resin. The method was tested using a variety of matrixes including bulk meteorite (Allende), terrestrial peridotite (JP-1), and basalt (JB-1b). Concentrations of each element was determined by thermal ionization mass spectrometry (TIMS) using W filaments and a Si-B-Al type activator for Cr, Fe, Ni, and Zn and a Re filament and silicic acid-H3PO4 activator for Cu. The method can be used to precisely determine the concentrations of these elements in very small silicate samples, including meteorites, geochemical reference samples, and mineral standards for microprobe analysis. Furthermore, the Cr mass spectrometry procedure developed in this study can be extended to determine the isotopic ratios of 53Cr/52Cr and 54Cr/52Cr with precision of approximately 0.05epsilon and approximately 0.10epsilon (1epsilon = 0.01%), respectively, enabling cosmochemical applications such as high precision Mn-Cr chronology and investigation of nucleosynthetic isotopic anomalies in meteorites. PMID:19886654

  18. Microstructures and Thermal Properties of Cold-Sprayed Cu-Cr Composite Coatings

    NASA Astrophysics Data System (ADS)

    Kikuchi, S.; Yoshino, S.; Yamada, M.; Fukumoto, M.; Okamoto, K.

    2013-08-01

    Copper-based composites for thermal conductive components were prepared via the cold spray process, and the deposition efficiency and adhesion morphology of feedstock powders on Cu substrate were evaluated. Cu-based composites were fabricated using Cu-Cr mixed powders with their mixture ratio of 20, 35, 50, and 65 mass% Cr onto oxygen-free copper substrate with N2 carrier gas. Cu-Cr composite coatings were investigated for their Cr content ratio, microstructures, and thermal conductivity. The Cr content ratio in the coating was approximately 50-60% of feedstock mixture ratio due to the low formability of the hard particles. Transmission electron microscopy characterizations revealed that an oxygen-rich layer exists at the Cr particle/Cu substrate interface, which contributes to the deposition of the Cr particles. After the heat treatment at 1093 K, the coatings showed denser cross-sectional structures than those before the heat treatment, and the thermal conductivity was improved as a result of the recrystallization of Cu matrix.

  19. CONSTITUTIVE BEHAVIOR OF AS-QUENCHED Al-Cu-Mn ALLOY

    NASA Astrophysics Data System (ADS)

    Yang, Xia-Wei; Zhu, Jing-Chuan; Nong, Zhi-Sheng; Ye, Mao; Lai, Zhong-Hong; Liu, Yong

    2013-07-01

    The hot flow stress of as-quenched Al-Cu-Mn alloy was modeled using the constitutive equations. The as-quenched Al-Cu-Mn alloy were treated with isothermal hot compression tests in the temperature range of 350-500°C, the strain rate range of 0.001-1 s-1. The hyperbolic sine equation was found to be appropriate for flow stress modeling and prediction. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched Al-Cu-Mn alloy was determined to be 251.314 kJ/mol. Parameters of constitutive equation of as-quenched Al-Cu-Mn alloy were calculated at different small strains (≤ 0.01). The calculated flow stresses from the constitutive equation are in good agreement with the experimental results. Therefore, this constitutive equation can be used as an accurate temperature-stress model to solve the problems of quench distortion of Al-Cu-Mn alloy parts.

  20. Magnetic, structural and optical properties of Mn-based and Cr-based diluted magnetic semiconductors and alloys

    NASA Astrophysics Data System (ADS)

    Alsaad, A.

    2009-03-01

    We have implemented supercell approach by using local spin density functional theory for Mn-doped GaN, Mn-doped ScN and the linear muffin-tin orbital method to predict the structural and magnetic properties of these novel diluted magnetic semiconductors and their GaxMn1-xN and ScxMn1-xN alloys. The global energy minimum of MnN is obtained for zinc-blende structure. If the compound is compressed by 6 % the energy minimum corresponds to the NaCl structure in disagreement with the experimentally observed a slightly tetragonally distorted rocksalt structure, known as ? phase. The rocksalt structure of CrN at about 8 % lattice expansion becomes stable in the ferromagnetic (FM) state and has a global minimum energy at a lattice constant of 3.9 å. We have observed an isostructural phase transition for ScxMn1-xN alloys from zince-blende phase to hexagonal phase that occurs at a hydrostatic pressure of 17.5 GPa. Moreover, the structural and optical properties of single crystal CrN/ScN superlattices and Cr1-xScxN alloys are studied in details. We report an isostructural phase transition from wurtzite (w-CrN) to hexagonal (h-ScN) at a hydrostatic pressure of 21 GPa. We have also used first-principles methods to study the electronic, optical and magnetic properties of MnN and MnAs compounds in the hypothetical cubic zinc-blende phase, a phase in which the two MnN and MnAs binaries have the same local environment as that they have in GaMnN and GaMnAs alloys. We show that MnN exhibits antiferromagnetic (AFM) ground state and MnAs adopts ferromagnetic (FM) ground state.

  1. Cyclic Oxidation Behavior of CuCrAl Cold-Sprayed Coatings for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, Sai; Karthikeyan, J.

    2009-01-01

    The next generation of reusable launch vehicles is likely to use GRCop-84 [Cu-8(at.%)Cr-4%Nb] copper alloy combustion liners. The application of protective coatings on GRCop-84 liners can minimize or eliminate many of the environmental problems experienced by uncoated liners and significantly extend their operational lives and lower operational cost. A newly developed Cu- 23 (wt.%) Cr-5% Al (CuCrAl) coating, shown to resist hydrogen attack and oxidation in an as-cast form, is currently being considered as a protective coating for GRCop-84. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique, where the CuCrAl was procured as gas-atomized powders. Cyclic oxidation tests were conducted between 773 and 1,073 K to characterize the coated substrates.

  2. Electrical conductivity and mechanical properties of Cu-0.7wt% Cr and Cu-1.0wt% Cr alloys processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Kommel, L.; Pokatilov, A.

    2014-08-01

    As-cast Cu-0.7wt% Cr and Cu-1.0wt% Cr alloys were subjected to equal-channel angular pressing (ECAP), hard cyclic viscoplastic (HCV) deformation and post deformation heat treatment for receiving an ultrafine grained material with a combination of high strength, good wear resistance and high electric conductivity. Samples from Cu-0.7wt% Cr alloy were processed up to six passes and Cu-1wt% Cr alloy samples were processed up to four passes of ECAP via Bc route. HCV deformation of samples was conducted by frequency of 0.5 Hz for 20 cycles at tension-compression strain amplitudes of +/-0.05%, +/-0.1%, +/-0.5%, +/-1% and +/-1.5%, respectively. During HCV deformation, as-cast Cu-0./wt% Cr alloy show fully viscoelastic behavior at strain/stress amplitude of +/-0.05% while ECAP processed material show the same behavior at strain amplitude of +/-0.1%. The Young modulus was increased from ~120 GPa up to ~150 GPa. The results illustrated that specific volume wear decrease with increasing of hardness but the measured coefficient of friction (COF ~ 0.6) was approximately the same for all samples at the end of wear testing. The hardness after ECAP for 6 passes by Bc route was 192HV0.1 and electric conduction 74.16% IACS, respectively. By this the as-cast Cu-0./wt% Cr alloy (heat treated at 1000 °C for 2h) has microhardness ~70HV0.1 and electrical conductivity of ~40% IACS. During aging at the temperatures in the interval of 250-550 °C for 1h the hardness and electrical conductivity were stabilized to mean values of 120+/-5HV0.1 and to 93.4+/-0.3% IACS, respectively. The hardness and electric conductivity took decrease by temperature increase over ~550 °C, respectively. The results of present experimental investigation show that UFG Cu- 0.7wt% Cr alloy with compare to Cu-1.0% Cr alloy is a highly electrical conductive and high temperature wear resistant material for using in electrical industry.

  3. Bandgap- and Radial-Position-Dependent Mn-Doped Zn-Cu-In-S/ZnS Core/Shell Nanocrystals.

    PubMed

    Peng, Lucheng; Huang, Keke; Zhang, Zhuolei; Zhang, Ying; Shi, Zhan; Xie, Renguo; Yang, Wensheng

    2016-03-01

    This paper presents a mechanistic study on the doping of Zn-Cu-In-S/ZnS core/shell quantum dots (QDs) with Mn by changing the Zn-Cu-In-S QD bandgap and dopant position inside the samples (Zn-Cu-In-S core and ZnS shell). Results show that for the Mn:Zn-Cu-In-S/ZnS system, a Mn-doped emission can be obtained when the bandgap value of the QDs is larger than the energy of Mn-doped emission. Conversely, a bandgap emission is only observed for the doped system when the bandgap value of QDs is smaller than the energy gap of the Mn-doped emission. In the Zn-Cu-In-S/Mn:ZnS systems, doped QDs show dual emissions, consisting of bandgap and Mn dopant emissions, instead of one emission band when the value of the host bandgap is larger than the energy of the Mn-doped emission. These findings indicate that the emission from Mn-doped Zn-Cu-In-S/ZnS core/shell QDs depends on the bandgap of the QDs and the dopant position inside the core/shell material. The critical bandgap of the host materials is estimated to have the same value as the energy of the Mn d-d transition. Subsequently, the mechanism of photoluminescence properties of the Mn:Zn-Cu-In-S/ZnS and Zn-Cu-In-S/Mn:ZnS core/shell QD systems is proposed. Control experiments are then carried out by preparing Mn-doped Zn(Cu)-In-S QDs with various bandgaps, and the results confirm the reliability of the suggested mechanism. Therefore, the proposed mechanism can aid the design and synthesis of novel host materials in fabricating doped QDs. PMID:26419419

  4. An uncertain role for Cu(II) in stimulating Mn(II) oxidation by Leptothrix discophora SS-1.

    PubMed

    El Gheriany, Iman A; Bocioaga, Daniela; Hay, Anthony G; Ghiorse, William C; Shuler, Michael L; Lion, Leonard W

    2011-02-01

    In an effort to improve understanding of the role of Cu(II) in bacterial Mn(II) oxidation, a model Mn(II)-oxidizing bacterium, Leptothrix discophora SS-1, was grown in presence of toxic and non-toxic concentrations of Cu(II), Cd(II) and Mn(II). Mn(II)-oxidizing activity increased by 40% when cells were grown in the presence of 0.05 microM of Cu(II) and increased twofold at 0.18 microM Cu(II). Toxic levels of Cd(II) did not stimulate Mn(II) oxidizing activity, indicating that Mn(II) oxidation is not a response to metal toxicity. Stimulation by Cu(II) confirms the specific role of Cu(II) in Mn(II) oxidation. Comparison of transcript levels of the multicopper oxidase mofA gene in the presence and absence of added Cu(II) do not indicate a statistically significant change in mofA transcript levels in cultures supplemented with Cu(II). Thus, the exact role of Cu(II) in Mn(II) oxidation and its affect on mofA gene expression remain uncertain. PMID:21063867

  5. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs

    NASA Astrophysics Data System (ADS)

    Wadley, P.; Novák, V.; Campion, R. P.; Rinaldi, C.; Martí, X.; Reichlová, H.; Železný, J.; Gazquez, J.; Roldan, M. A.; Varela, M.; Khalyavin, D.; Langridge, S.; Kriegner, D.; Máca, F.; Mašek, J.; Bertacco, R.; Holý, V.; Rushforth, A. W.; Edmonds, K. W.; Gallagher, B. L.; Foxon, C. T.; Wunderlich, J.; Jungwirth, T.

    2013-08-01

    Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics.

  6. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs.

    PubMed

    Wadley, P; Novák, V; Campion, R P; Rinaldi, C; Martí, X; Reichlová, H; Zelezný, J; Gazquez, J; Roldan, M A; Varela, M; Khalyavin, D; Langridge, S; Kriegner, D; Máca, F; Mašek, J; Bertacco, R; Holý, V; Rushforth, A W; Edmonds, K W; Gallagher, B L; Foxon, C T; Wunderlich, J; Jungwirth, T

    2013-01-01

    Recent studies have demonstrated the potential of antiferromagnets as the active component in spintronic devices. This is in contrast to their current passive role as pinning layers in hard disk read heads and magnetic memories. Here we report the epitaxial growth of a new high-temperature antiferromagnetic material, tetragonal CuMnAs, which exhibits excellent crystal quality, chemical order and compatibility with existing semiconductor technologies. We demonstrate its growth on the III-V semiconductors GaAs and GaP, and show that the structure is also lattice matched to Si. Neutron diffraction shows collinear antiferromagnetic order with a high Néel temperature. Combined with our demonstration of room-temperature-exchange coupling in a CuMnAs/Fe bilayer, we conclude that tetragonal CuMnAs films are suitable candidate materials for antiferromagnetic spintronics. PMID:23959149

  7. Effects of competing magnetic interactions on the electronic transport properties of CuCrSe{sub 2}

    SciTech Connect

    Tewari, Girish C.; Karppinen, Maarit; Rastogi, Ashok K.

    2013-02-15

    We have synthesized single-phase samples of the CuCrSe{sub 2} phase that exhibits hexagonal-rhombohedral layered crystal structure with space group R3m. Here we present a detailed study of electronic transport and magnetic properties of CuCrSe{sub 2}. We moreover investigate the heat capacity of CuCrSe{sub 2} in comparison to that of CuCrS{sub 2}. The electrical resistivity of CuCrSe{sub 2} shows metallic-like behavior down to 2 K, while the thermoelectric power is large around 100 {mu}V K{sup -1} at 300 K. A weak anomaly in resistivity and a rounded maximum in magnetic susceptibility are observed around 55 K. No sharp transition at 55 K is observed in the heat capacity of CuCrSe{sub 2}, rather a visible maximum is seen. At low temperatures from 2 to 14 K, the magnetic heat capacity follows T{sup 2}-dependence. We tentatively believe this behavior of CuCrSe{sub 2} to be due to competing magnetic interactions between intralayer Cr atoms. The ferromagnetic Cr-Se-Cr indirect exchange among intralayer Cr atoms is enhanced in the selenide compound (that is more metallic than the sulfide compound), and competes with the antiferromagnetic Cr-Cr direct interactions. The interlayer antiferromagnetic exchange through Cu atoms leads to magnetic ordering at low temperature at T{sub N}=55 K. - Graphical abstract: Comparison of magnetic properties of CuCrSe{sub 2} and CuCrS{sub 2} indicates a sharp cusp-like anomaly in magnetic susceptibility at the antiferromagnetic transition of CuCrS{sub 2} while the maximum of CuCrSe{sub 2} is well rounded. Magnetization is reversible after field-cooling (FC) and zero-field-cooling (ZFC) for both compounds. Highlights: Black-Right-Pointing-Pointer Layered CuCrSe{sub 2} can be synthesized in both fully and partially cation-ordered forms. Black-Right-Pointing-Pointer Contrary to previously believed insulating nature the cation-ordered phase is metallic. Black-Right-Pointing-Pointer Magnetic property of CuCrSe{sub 2} is somewhat different from

  8. Characterization of transparent superconductivity Fe-doped CuCrO2 delafossite oxide

    NASA Astrophysics Data System (ADS)

    Taddee, Chutirat; Kamwanna, Teerasak; Amornkitbamrung, Vittaya

    2016-09-01

    Delafossite CuCr1-xFexO2 (0.0 ≤ x ≤ 0.15) semiconductors were synthesized using a self-combustion urea nitrate process. The effects of Fe concentration on its microstructural, optical, magnetic, and electrical properties were investigated. X-ray diffraction (XRD) analysis results revealed the delafossite structure in all the samples. The lattice spacing of CuCr1-xFexO2 slightly increased with increasing substitution of Fe at the Cr sites. The optical properties measured at room temperature using UV-visible spectroscopy showed a weak absorbability in the visible light and near IR regions. The corresponding direct optical band gap was about 3.61 eV, exhibiting transparency in the visible region. The magnetic hysteresis loop measurements showed that the Fe-doped CuCrO2 samples exhibited ferromagnetic behavior at room temperature. This indicated that the substitution of Fe3+ for Cr3+ produced a mixed effect on the magnetic properties of CuCrO2 delafossite oxide. The temperature dependent resistivity measurements clearly revealed the presence of superconductivity in the CuCr1-xFexO2 with a superconducting transition up to 118 K.

  9. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-07-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  10. Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Fu, Ao; Huang, Xiaoxia; Liu, Bin; Liu, Yong; Li, Zezhou; Zan, Xiang

    2016-05-01

    The equiatomic CoCrFeMnNi high entropy alloy, which crystallizes in the face-centered cubic (FCC) crystal structure, was prepared by the spark plasma sintering technique. Dynamic compressive tests of the CoCrFeMnNi high entropy alloy were deformed at varying strain rates ranging from 1 × 103 to 3 × 103 s-1 using a split-Hopkinson pressure bar (SHPB) system. The dynamic yield strength of the CoCrFeMnNi high entropy alloy increases with increasing strain rate. The Zerilli-Armstrong (Z-A) plastic model was applied to model the dynamic flow behavior of the CoCrFeMnNi high entropy alloy, and the constitutive relationship was obtained. Serration behavior during plastic deformation was observed in the stress-strain curves. The mechanism for serration behavior of the alloy deformed at high strain rate is proposed.

  11. 53Mn-53Cr dating of aqueously formed carbonates in the CM2 lithology of the Sutter's Mill carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Jilly, Christine E.; Huss, Gary R.; Krot, Alexander N.; Nagashima, Kazuhide; Yin, Qing-Zhu; Sugiura, Naoji

    2014-11-01

    Radiometric dating of secondary minerals can be used to constrain the timing of aqueous alteration on meteoritic parent bodies. Dolomite is a well-documented secondary mineral in CM chondrites, and is thought to have formed by precipitation from an aqueous fluid on the CM parent body within several million years of accretion. The petrographic context of crosscutting dolomite veins indicates that aqueous alteration occurred in situ, rather than in the nebular setting. Here, we present 53Mn-53Cr systematics for dolomite grains in Sutter's Mill section SM51-1. The Mn-Cr isotope data show well-resolved excesses of 53Cr correlated with 55Mn/52Cr ratio, which we interpret as evidence for the in situ decay of radioactive 53Mn. After correcting for the relative sensitivities of Mn and Cr using a synthetic Mn- and Cr-bearing calcite standard, the data yield an isochron with slope corresponding to an initial 53Mn/55Mn ratio of 3.42 ± 0.86 × 10-6. The reported error includes systematic uncertainty from the relative sensitivity factor. When calculated relative to the U-corrected Pb-Pb absolute age of the D'Orbigny angrite, Sutter's Mill dolomites give a formation age between 4564.8 and 4562.2 Ma (2.4-5.0 Myr after the birth of the solar system). This age is contemporaneous with previously reported ages for secondary carbonates in CM and CI chondrites. Consistent carbonate precipitation ages between the carbonaceous chondrite groups suggest that aqueous alteration was a common process during the early stages of parent body formation, probably occurring via heating from internal 26Al decay. The high-precision isochron for Sutter's Mill dolomite indicates that late-stage processing did not reach temperatures that were high enough to further disturb the Mn-Cr isochron.

  12. Reaction of aqueous Cu-Citrate with MnO2 birnessite: characterization of Mn dissolution, oxidation products and surface interactions.

    PubMed

    Jefferson, William A; Hu, Chengzhi; Liu, Huijuan; Qu, Jiuhui

    2015-01-01

    Citric acid, a widespread soil rhizosphere plant/microbe carboxylic acid exudate can easily form chelates with heavy metals, increasing their availability in the environment. When Cu(II) from algal control in water bodies or reservoirs and fungicides, such as the Bordeaux mixture, and citrate interact, solubilization through chelation is a possible outcome. Manganese (hydr)oxides represent a significant portion of the subsurface environment and can affect the fate and transport of chemical species through adsorption and oxidation. This study explores the possible interaction between MnO2 and Cu-Citrate under ambient oxic conditions. The calculated Mn(II) dissolution rates during the initial 1h of reaction followed the series Cu(II)>Cu-Citrate 1:0.5>Cu-Citrate 1:1(oxic)>Citrate>Cu-Citrate 1:1(Anoxic), reinforcing the central role of (complexed or un-complexed) Cu(II) during the initial surface-coordination instead of following the s-shaped auto-catalytic curves of Mn(II) dissolution in citrate solution. The use of capillary electrophoresis allowed the detection of an intermediate Cu(II)Acetonedicarboxylate complex and the oxidation products acetonedicarboxylate, acetoacetate, acetone and acetic acid. The mass balance analysis of Cu-Citrate 1:1 suggests the partial adsorption of Cu-Citrate(ads) and catalytic degradation of acetonedicarboxylate through a MnO2-Cu surface sorbed complex. Lastly, XPS analysis confirmed the MnO2 surface Cu(II) reduction along with an outer-hydration layer at the MnO2 interface, where electron transfer and aquo ligand exchange may lead to the oxidation of Cu-Citrate. PMID:25460741

  13. Creep Testing of High-Temperature Cu-8 Cr-4 Nb Alloy Completed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Cu-8 at.% Cr-4 at.% Nb (Cu-8 Cr-4 Nb) alloy is under development for high-temperature, high heatflux applications, such as actively cooled, hypersonic vehicle heat exchangers and rocket engine combustion chambers. Cu-8 Cr-4 Nb offers a superior combination of strength and conductivity. It has also shown exceptional low-cycle fatigue properties. Following preliminary testing to determine the best processing route, a more detailed testing program was initiated to determine the creep lives and creep rates of Cu-8 Cr-4 Nb alloy specimens produced by extrusion. Testing was conducted at the NASA Lewis Research Center with constant-load vacuum creep units. Considering expected operating temperatures and mission lives, we developed a test matrix to accurately determine the creep properties of Cu-8 Cr-4 Nb between 500 and 800 C. Six bars of Cu-8 Cr-4 Nb were extruded. From these bars, 54 creep samples were machined and tested. The figure on the left shows the steady-state, or second-stage, creep rates for the samples. Comparison data for NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), the alloy currently used in combustion chamber liners, were not unavailable. Therefore the steady-state creep rates for Cu at similar temperatures are presented. As expected, in comparison to pure Cu, the creep rates for Cu-8 Cr-4 Nb are much lower. The lives of the samples are presented in the figure on the right. As shown, Cu-8 Cr-4 Nb at 800 C is comparable to NARloy-Z at 648 C. At equivalent temperatures, Cu-8 Cr-4 Nb enjoys a 20 to 50 percent advantage in stress for a given life and 1 to 3 orders of magnitude greater life at a given stress. The improved properties allow for design tradeoffs and improvements in new and existing heat exchangers such as the next generation of combustion chamber liners. Average creep rates for Cu-8 Cr-4 Nb and pure Cu are shown. Average creep lives for Cu-8 Cr- 4 Nb and NARloy-Z are also shown. Currently, two companies are interested in the commercial usage of the Cu

  14. Regulation of Cu,Zn- and Mn-superoxide dismutase transcription in Saccharomyces cerevisiae.

    PubMed

    Galiazzo, F; Labbe-Bois, R

    1993-01-01

    The regulation of Cu,Zn- and Mn-superoxide dismutases (SOD) was investigated by Northern blotting and gene fusions of SOD1 and SOD2 promoters with the beta-galactosidase reporter gene. Cu,ZnSOD expression was increased 3-fold under glucose derepressing conditions, and decreased 4- to 6-fold by oxygen or heme deficiency. MnSOD expression was increased 5-fold by glucose derepression, and decreased 8- to 10-fold by anaerobiosis and 4- to 5-fold by heme deficiency. Induction by paraquat was modest, about 50% for SOD1 and 100% for SOD2; it was apparently independent of the respiratory chain function. PMID:8417979

  15. Diffusion bonding of beryllium to CuCrZr for ITER applications.

    SciTech Connect

    Cadden, Charles H.; Puskar, Joseph David; Goods, Steven Howard

    2008-08-01

    Low temperature diffusion bonding of beryllium to CuCrZr was investigated for fusion reactor applications. Hot isostatic pressing was accomplished using various metallic interlayers. Diffusion profiles suggest that titanium is effective at preventing Be-Cu intermetallics. Shear strength measurements suggest that acceptable results were obtained at temperatures as low as 540C.

  16. μSR investigation of a new diluted magnetic semiconductor Li(Zn,Mn,Cu)As with Mn and Cu codoping at the same Zn sites.

    PubMed

    Guo, S L; Zhao, Y; Man, H Y; Ding, C; Gong, X; Zhi, G X; Fu, L C; Gu, Y L; Frandsen, B A; Liu, L; Cheung, S C; Munsie, T J; Wilson, M N; Cai, Y P; Luke, G M; Uemura, Y J; Ning, F L

    2016-09-14

    We report the successful synthesis and characterization of a new type I-II-V bulk form diluted magnetic semiconductor (DMS) Li(Zn,Mn,Cu)As, in which charge and spin doping are decoupled via (Cu,Zn) and (Mn,Zn) substitution at the same Zn sites. Ferromagnetic transition temperature up to  ∼33 K has been observed with a coercive field  ∼40 Oe for the 12.5% doping level. μSR measurements confirmed that the magnetic volume fraction reaches nearly 100% at 2 K, and the mechanism responsible for the ferromagnetic interaction in this system is the same as other bulk form DMSs. PMID:27401041

  17. Ni spin switching induced by magnetic frustration in FeMn/Ni/Cu(001)

    SciTech Connect

    Wu, J.; Choi, J.; Scholl, A.; Doran, A.; Arenholz, E.; Hwang, Chanyong; Qiu, Z. Q.

    2009-03-08

    Epitaxially grown FeMn/Ni/Cu(001) films are investigated by Photoemission Electron Microscopy and Magneto-Optic Kerr Effect. We find that as the FeMn overlayer changes from paramagnetic to antiferromagnetic state, it could switch the ferromagnetic Ni spin direction from out-of-plane to in-plane direction of the film. This phenomenon reveals a new mechanism of creating magnetic anisotropy and is attributed to the out-of-plane spin frustration at the FeMn-Ni interface.

  18. Pulse Electrodeposition of Cu-ZnO and Mn-Cu-ZnO Nanowires

    SciTech Connect

    Gupta, Mayank; Pinisetty, D.; Flake, John C.; Spivey, James J.

    2010-07-09

    Cu–ZnO and Mn–Cu–ZnO nanowires are attractive catalysts for alcohol synthesis from CO hydrogenation reactions. Nanowire alloys are pulse electrodeposited into track etched polycarbonate membranes using aqueous electrolytes including Mn(NO3)2, Cu(NO3)2, Zn(NO3)2, and NH4 NO3. Pulse waveforms with a cathodic current density of 50.7mAcm -2 for 50 ms (on-time), with varying off-times (400, 500, and 600 ms), are used to fabricate nanowire arrays (400 nm diameter, 25μm long, and pore density of 1.5×108pores cm-2 ). Pulse waveforms allow significantly higher copper concentrations and better control of zinc and manganese concentrations within nanowires. X-ray diffraction results show preferential growth in the (111) direction and crystallite size increases with an increase in off-time. Waveforms with longer off-times (500 and 600 ms) resulted in nanowires with relatively higher copper concentrations due to improved copper transport in nanopores. The nanowire surface has no manganese; however, the core shows manganese, which increases with the decrease in off-time. The effect of deposition conditions and electrolyte composition on nanowire properties are explained and discussed.

  19. Effects of Mn substitution on the structure and properties of chalcopyrite-type CuInSe{sub 2}

    SciTech Connect

    Yao Jinlei; Kline, Carly N.; Gu Hao; Yan Mi; Aitken, Jennifer A.

    2009-09-15

    Mn-doped CuInSe{sub 2} compounds (CuIn{sub 1-x}Mn{sub x}Se{sub 2}, x=0.0125-0.20 and Cu{sub 1-y}In{sub 1-y}Mn{sub 2y}Se{sub 2}, 2y=0.0125-0.60) were synthesized by high-temperature solid-state reactions. Single phase materials with chalcopyrite structure persist up to 0.10 and 0.20 doping for CuIn{sub 1-x}Mn{sub x}Se{sub 2} and Cu{sub 1-y}In{sub 1-y}Mn{sub 2y}Se{sub 2}, respectively. The chalcopyrite and sphalerite phases co-exist in the Cu{sub 1-y}In{sub 1-y}Mn{sub 2y}Se{sub 2} system for 2y=0.25-0.50. Attempts to introduce greater manganese content, x=0.15-0.20 for CuIn{sub 1-x}Mn{sub x}Se{sub 2} and 2y=0.60 for Cu{sub 1-y}In{sub 1-y}Mn{sub 2y}Se{sub 2}, result in partial phase segregation. For the single-phase samples, the lattice parameters of both systems increase linearly with manganese concentration and thus follow Vegard's law. The temperature of the chalcopyrite-sphalerite phase transition is decreased by manganese substitution for all single-phase samples. The bandgap of the materials remains around 0.9 eV. Additionally, the Mn-doped CuInSe{sub 2} compounds display paramagnetic behavior, whereas pure CuInSe{sub 2} is diamagnetic at 5-300 K. All the CuIn{sub 1-x}Mn{sub x}Se{sub 2} and Cu{sub 1-y}In{sub 1-y}Mn{sub 2y}Se{sub 2} compounds with chalcopyrite structure show antiferromagnetic coupling and measured effective magnetic moments up to 5.8 mu{sub B}/Mn. - Graphical abstract: The manganese solid solubility can reach up to 10% and 20% for CuIn{sub 1-x}Mn{sub x}Se{sub 2} and Cu{sub 1-y}In{sub 1-y}Mn{sub 2y}Se{sub 2}, respectively, while maintaining phase-pure, chalcopyrite-type materials. Lattice parameters increase linearly with increase manganese concentration suggesting that the manganese ions are distributed randomly on both the indium site and the copper and indium sites simultaneously.

  20. Removal of Cr(VI) from aqueous solutions by adsorption on MnO2.

    PubMed

    Gheju, Marius; Balcu, Ionel; Mosoarca, Giannin

    2016-06-01

    Adsorption of Cr(VI) on MnO2 was investigated with respect to effect of pH, temperature, ionic strength, initial Cr(VI) concentration, co-presence of different anions (HCO3(-), SO4(2-), H2PO4(-), NO3(-) and Cl(-)) and of low molecular weight natural organic materials (LMWNOM) (acetate, oxalate and citrate). The process was rapid during the first 3-5min, reaching equilibrium after one hour. Adsorption decreased with increasing pH, temperature and Cr(VI) initial concentration, and increased with increasing ionic strength. Co-presence of phosphate, sulfate, bicarbonate, citrate and oxalate hindered Cr(VI) adsorption, whereas nitrate, chloride and acetate did not exert any notable influence. The overall order of Cr(VI) adsorption suppression due to co-presence of anions and LMWNOM was H2PO4(-)>HCO3(-)>SO4(2-), and oxalate>citrate, respectively. Highest experimental equilibrium sorption capacity (0.83mgg(-1)) was obtained at 20°C and pH 5.9, while lowest (0.18mgg(-1)) was noticed in the co-presence of H2PO4(-), at 20°C and pH 6.9. Adsorption kinetics was successfully fitted by pseudo-second-order model. Mechanisms for both specific and non-specific adsorption are likely to be involved, while rate-controlling step involved both intra-particle and film diffusion processes. Cr(VI) was strongly bound to MnO2, which makes risks of its subsequent liberation into the environment to be low. PMID:26947189

  1. One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III).

    PubMed

    Chen, Zengping; Li, Yaru; Guo, Meng; Xu, Fengyun; Wang, Peng; Du, Yu; Na, Ping

    2016-06-01

    Mn-doped TiO2 grown on reduced graphene oxide(rGO) was synthesized by one-pot hydrothermal method and the photocatalytic removal of Cr by the material was investigated under sunlight. The materials were characterized by a combination of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller method, UV-vis diffuse reflectance spectra, photoluminescence spectra, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. Cr(total) removal efficiency of the material is 97.32% in 30min and 99.02% in 60min under sunlight irradiation, as the initial concentration of Cr(VI) is 20mg/L. The high photocatalytic activity under visible light is considered mainly due to the Mn-doping, and rGO plays an important role in the synergetic effect of adsorption and photocatalysis to sustain the high efficient removal of Cr(VI) and Cr(III). Cr(VI) adsorbed on the surface of rGO is reduced to Cr(III) by photo electrons which are transported through rGO, and the reaction product Cr(III) continues to be adsorbed. The process contributes to the release of abundant photocatalytic sites of Mn-TiO2 and improves photocatalytic efficiency. The excellent adsorption and photocatalytic effect with the explanation of the synergetic mechanism are very useful not only for fundamental research but also for the potential practical applications. PMID:26921512

  2. Large exchange bias enhancement in (Pt(or Pd)/Co)/IrMn/Co trilayers with ultrathin IrMn thanks to interfacial Cu dusting

    SciTech Connect

    Vinai, G.; Moritz, J.; Bandiera, S.; Prejbeanu, I. L.; Dieny, B.

    2014-04-21

    The magnitude of exchange bias (H{sub ex}) at room temperature can be significantly enhanced in IrMn/Co and (Pt(or Pd)/Co)/IrMn/Co structures thanks to the insertion of an ultrathin Cu dusting layer at the IrMn/Co interface. The combination of trilayer structure and interfacial Cu dusting leads to a three-fold increase in H{sub ex} as compared to the conventional IrMn/Co bilayer structure, with an increased blocking temperature (T{sub B}) and a concave curvature of the temperature dependence H{sub ex}(T), ideal for improved Thermally Assisted-Magnetic Random Access Memory storage layer. This exchange bias enhancement is ascribed to a reduction of the spin frustration at the IrMn/Co interface thanks to interfacial Cu addition.

  3. Microstructure and Mechanical Properties of Vacuum Plasma Sprayed Cu-8Cr-4Nb

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie, Timothy; Hickman, Robert

    1997-01-01

    This paper compares the tensile properties of Cu-8Cr-4Nb material produced by VPS to material previously produced by extrusion. The microstructure of the VPS material is also presented. The combustion chamber liner of rocket motors represents an extreme materials application. The liner hot wall is exposed to a 2760 C (5000 F) flame while the cold side is exposed to cryogenic hydrogen liquid. Materials for use in the combustion chamber liner require a combination of high temperature strength, creep resistance, and low cycle fatigue resistance along with high thermal conductivity. The hot side is also subject to localized cycles between reducing and oxidizing environments that degrade the liner by a process called blanching. A new Cu-8 at.% Cr-4 at% Nb (Cu-8Cr-4Nb) alloy has been developed at NASA Lewis Research Center as a replacement for the currently used alloy, NARloy-z (Cu-3 wt.% Ag-0.5 wt.% Zr). The alloy is strengthened by a fine dispersion of Cr2Nb particles. The alloy has better mechanical properties than NARloy-Z while retaining most of the thermal conductivity of pure copper. The alloy has been successfully consolidated by extrusion and hot isostatic pressing (HIPing). However, vacuum plasma spraying (VPS) offers several advantages over prior consolidation methods. VPS can produce a near net shape piece with the profile of the liner. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the liner hot wall during the VPS deposition. The low oxygen VPS Cu-8Cr-4Nb exhibits a higher strength than Cu-8Cr-4Nb produced by extrusion at elevated temperatures and a comparable strength at room temperature. Moduli and ductility were not significantly different. However, the ability to produce parts to near-net shape and maintain the good elevated temperature tensile properties of the extruded Cu-8Cr-4Nb makes VPS an attractive processing method for fabricating rocket engine combustion liners.

  4. A series of M(II)Cu(II)3 stars (M = Mn, Ni, Cu, Zn) exhibiting unusual magnetic properties.

    PubMed

    Mondal, Suraj; Mandal, Shuvankar; Carrella, Luca; Jana, Arpita; Fleck, Michel; Köhn, Andreas; Rentschler, Eva; Mohanta, Sasankasekhar

    2015-01-01

    The work in this report describes the syntheses, electrospray ionization mass spectromtery, structures, and experimental and density functional theoretical (DFT) magnetic properties of four tetrametallic stars of composition [M(II)(Cu(II)L)3](ClO4)2 (1, M = Mn; 2, M = Ni; 3, M = Cu; 4, M = Zn) derived from a single-compartment Schiff base ligand, N,N'-bis(salicylidene)-1,4-butanediamine (H2L), which is the [2 + 1] condensation product of salicylaldehyde and 1,4-diaminobutane. The central metal ion (Mn(II), Ni(II), Cu(II), or Zn(II)) is linked with two μ2-phenoxo bridges of each of the three [Cu(II)L] moieties, and thus the central metal ion is encapsulated in between three [Cu(II)L] units. The title compounds are rare or sole examples of stars having these metal-ion combinations. In the cases of 1, 3, and 4, the four metal ions form a centered isosceles triangle, while the four metal ions in 2 form a centered equilateral triangle. Both the variable-temperature magnetic susceptibility and variable-field magnetization (at 2-10 K) of 1-3 have been measured and simulated contemporaneously. While the Mn(II)Cu(II)3 compound 1 exhibits ferromagnetic interaction with J = 1.02 cm(-1), the Ni(II)Cu(II)3 compound 2 and Cu(II)Cu(II)3 compound 3 exhibit antiferromagnetic interaction with J = -3.53 and -35.5 cm(-1), respectively. Variable-temperature magnetic susceptibility data of the Zn(II)Cu(II)3 compound 4 indicate very weak antiferromagnetic interaction of -1.4 cm(-1), as expected. On the basis of known correlations, the magnetic properties of 1-3 are unusual; it seems that ferromagnetic interaction in 1 and weak/moderate antiferromagnetic interaction in 2 and 3 are possibly related to the distorted coordination environment of the peripheral copper(II) centers (intermediate between square-planar and tetrahedral). DFT calculations have been done to elucidate the magnetic properties. The DFT-computed J values are quantitatively (for 1) or qualitatively (for 2 and 3) matched

  5. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

    SciTech Connect

    Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; Rodriguez, Mark A.; Brumbach, Michael T.; Coker, Eric N.; Limmer, Steven J.

    2014-07-09

    The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaan axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.

  6. Investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al alloy with Ag and Mn additions

    SciTech Connect

    Silva, R.A.G.; Paganotti, A.; Gama, S.; Adorno, A.T.; Carvalho, T.M.; Santos, C.M.A.

    2013-01-15

    The investigation of thermal, mechanical and magnetic behaviors of the Cu-11%Al, Cu-11%Al-3%Ag, Cu-11%Al-10%Mn and Cu-11%Al-10%Mn-3%Ag alloys was made using microhardness measurements, differential scanning calorimetry, X-ray diffractometry, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field measurement. The results indicated that the Mn addition changes the phase stability range, the microhardness values and makes undetectable the eutectoid reaction in annealed Cu-11%Al and Cu-11%Al-3%Ag alloys while the presence of Ag does not modify the phase transformation sequence neither microhardness values of the annealed Cu-11%Al and Cu-11%Al-10%Mn alloys, but it increases the magnetic moment of this latter at about 2.7 times and decreases the rates of eutectoid and peritectoid reactions of the former. - Highlights: Black-Right-Pointing-Pointer The microstructure of Cu-Al alloy is modified in the Ag presence. Black-Right-Pointing-Pointer ({alpha} + {gamma}) phase is stabilized down to room temperature when Ag is added to Cu-Al alloy. Black-Right-Pointing-Pointer Ag-rich phase modifies the magnetic characteristics of Cu-Al-Mn alloy.

  7. Spin-polarised edge states in atomic Mn chains supported on Cu2N/Cu (100).

    PubMed

    Choi, Deung-Jang; Robles, Roberto; Gauyacq, Jean-Pierre; Rubio-Verdú, Carmen; Lorente, Nicolás; Ignacio Pascual, José

    2016-06-15

    Scanning tunnelling microscopy and density functional theory studies of manganese chains adsorbed on Cu2N/Cu (100) reveal an unsuspected electronic edge state at [Formula: see text] eV above the Fermi energy. This Tamm-like state is strongly localised to the terminal Mn atoms of the chain and fully spin polarised. However, no equivalence is found for occupied states, and the electronic structure at [Formula: see text]  -1 eV is mainly spin unpolarised due to the extended p-states of the N atoms that mediate the coupling between the Mn atoms in the chain. The spin polarisation of the edge state is affected by the antiferromagnetic ordering of the chains leading to non-trivial consequences. PMID:27158116

  8. Spin-polarised edge states in atomic Mn chains supported on Cu2N/Cu (100)

    NASA Astrophysics Data System (ADS)

    Choi, Deung-Jang; Robles, Roberto; Gauyacq, Jean-Pierre; Rubio-Verdú, Carmen; Lorente, Nicolás; Pascual, José Ignacio

    2016-06-01

    Scanning tunnelling microscopy and density functional theory studies of manganese chains adsorbed on Cu2N/Cu (100) reveal an unsuspected electronic edge state at ∼ 1 eV above the Fermi energy. This Tamm-like state is strongly localised to the terminal Mn atoms of the chain and fully spin polarised. However, no equivalence is found for occupied states, and the electronic structure at ∼   ‑1 eV is mainly spin unpolarised due to the extended p-states of the N atoms that mediate the coupling between the Mn atoms in the chain. The spin polarisation of the edge state is affected by the antiferromagnetic ordering of the chains leading to non-trivial consequences.

  9. Zn, Cu, and Mn levels in the liver of the dogfish exposed to Zn

    SciTech Connect

    Sanpera, C.; Vallribera, M.; Crespo, S.

    1983-10-01

    To investigate the effects of Zn contamination on the hepatic distribution of these trace elements, Zn, Cu, and Mn levels were determined by atomic absorption spectrophotometry in the liver of the dogfish Scyliorhinus canicula exposed to 80 and 10 ppm of zinc.

  10. Stochastic jumps of magnetization in [Mn{(R/S)-pn}]2[Mn{(R/S)-pn}2(H2O)][Cr(CN)6]2 molecular magnet

    NASA Astrophysics Data System (ADS)

    Kirman, M. V.; Talantsev, A. D.; Koplak, O. V.; Morgunov, R. B.

    2015-03-01

    Series of stochastic jumps of the magnetic moment (up to five individual jumps) have been observed at the demagnetization of single crystals of [Mn{(R/S)-pn}]2[Mn{(R/S)-pn}2(H2O)][Cr(CN)6]2 molecular magnet in a narrow range of magnetic fields near the coercive force ( H c = 7.5 Oe). The magnetic field at which jumps of the magnetization arise decreases with an increase in the temperature.

  11. Quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloys catalysts: Synthesis, characterization and activity towards ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ammam, Malika; Easton, E. Bradley

    2012-10-01

    In this account, two series of quaternary PtMnCuX/C (X = Fe, Co, Ni, and Sn) and PtMnMoX/C (X = Fe, Co, Ni, Cu and Sn) alloys catalysts have been synthesized and characterized by ICP, XRD, XPS, TEM and cyclic voltammetry. XRD spectra of each series illustrated that PtMnCuX/C (X = Fe, Co and Ni) and PtMnMoX/C (X = Fe, Co, Ni and Cu) alloys have been formed without significant free Mn, Cu, Mo or X co-catalysts. For PtMnCuSn/C and PtMnMoSn/C, in addition to alloy formation, significant free Sn-oxides are present in each catalyst. Cyclic voltammetry and chronoamperometry revealed that all quaternary showed superior electrocatalytic activity towards ethanol oxidation compared to the ternary precursor. Also, shift of the onset potential of ethanol oxidation towards less positive values were also recorded with the quaternary alloys, demonstrating a facilitated oxidation with the quaternary alloys compared to ternary alloy precursor. The magnitude of the gain in potential depend on the alloy composition and PtMnMoSn/C was found to be the best of all synthetized quaternary alloys with an onset potential of ethanol oxidation of only 0.059 V vs. Ag/AgCl.

  12. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts

    NASA Astrophysics Data System (ADS)

    Little, S. H.; Sherman, D. M.; Vance, D.; Hein, J. R.

    2014-06-01

    The isotopic systems of the transition metals are increasingly being developed as oceanic tracers, due to their tendency to be fractionated by biological and/or redox-related processes. However, for many of these promising isotope systems the molecular level controls on their isotopic fractionations are only just beginning to be explored. Here we investigate the relative roles of abiotic and biotic fractionation processes in controlling modern seawater Cu and Zn isotopic compositions. Scavenging to Fe-Mn oxides represents the principal output for Cu and Zn to sediments deposited under normal marine (oxic) conditions. Using Fe-Mn crusts as an analogue for these dispersed phases, we investigate the phase association and crystal chemistry of Cu and Zn in such sediments. We present the results of an EXAFS study that demonstrate unequivocally that Cu and Zn are predominantly associated with the birnessite (δ-MnO2) phase in Fe-Mn crusts, as previously predicted from sequential leaching experiments (e.g., Koschinsky and Hein, 2003). The crystal chemistry of Cu and Zn in the crusts implies a reduction in coordination number in the sorbed phase relative to the free metal ion in seawater. Thus, theory would predict equilibrium fractionations that enrich the heavy isotope in the sorbed phase (e.g., Schauble, 2004). In natural samples, Fe-Mn crusts and nodules are indeed isotopically heavy in Zn isotopes (at ∼1‰) compared to deep seawater (at ∼0.5‰), consistent with the predicted direction of equilibrium isotopic fractionation based on our observations of the coordination environment of sorbed Zn. Further, ∼50% of inorganic Zn‧ is chloro-complexed (the other ∼50% is present as the free Zn2+ ion), and complexation by Cl- is also predicted to favour equilibrium partitioning of light Zn isotopes into the dissolved phase. The heavy Zn isotopic composition of Fe-Mn crusts and nodules relative to seawater can therefore be explained by an inorganic fractionation during

  13. Searching for 0+ states in 50Cr: Implications for the superallowed β decay of 50Mn

    NASA Astrophysics Data System (ADS)

    Leach, K. G.; Garrett, P. E.; Ball, G. C.; Bender, P. C.; Bildstein, V.; Brown, B. A.; Burbadge, C.; Faestermann, T.; Hadinia, B.; Holt, J. D.; Laffoley, A. T.; Jamieson, D. S.; Jigmeddorj, B.; Radich, A. J.; Rand, E. T.; Stroberg, S. R.; Svensson, C. E.; Towner, I. S.; Wirth, H.-F.

    2016-07-01

    A 52Cr(p ,t )50Cr two-neutron pickup reaction was performed using the Q3D magnetic spectrograph at the Maier-Leibnitz-Laboratorium in Garching, Germany. Excited states in 50Cr were observed up to an excitation energy of 5.3 MeV. Despite significantly increased sensitivity and resolution over previous work, no evidence of the previously assigned first excited 0+ state was found. As a result, the 02+ state is reassigned at an excitation energy of Ex=3895.0 (5 ) keV in 50Cr. This reassignment directly impacts direct searches for a nonanalog Fermi β+ decay branch in 50Mn. These results also show better systematic agreement with the theoretical predictions for the 0+ state spectrum in 50Cr using the same formalism as the isospin-symmetry-breaking correction calculations for superallowed nuclei. The experimental data are also compared to ab-initio shell-model predictions using the IM-SRG formalism based on N N and 3 N forces from chiral-EFT in the p f -shell for the first time.

  14. Luminescence Dynamics of Cr2+ in CdTe and Cd0.55Mn0.45Te

    NASA Astrophysics Data System (ADS)

    Bluiett, A.; Hommerich, U.; Seo, J. T.; Shah, R.; Trivedi, S. B.; Kutcher, S. W.; Chen, R. J.; Wang, C. C.; Zong, H.

    2001-04-01

    Cr^2+ in tetrahedrally coordinated CdTe and Cd_0.55Mn_0.45Te crystals are under investigation as potential host materials for tunable, mid-infrared (MIR) lasers. The small crystal field splitting of the free ion energy levels of Cr^2+ induces absorption (1900nm) and stokes shifted emission (2000nm-3000nm) bands in the MIR. Also, the relatively large ionic mass and tetrahedral environment of Cr^2+ in CdTe and Cd_0.55Mn_0.45Te have shown that the luminescence efficiency at room temperature is approximately 72100luminescence lifetime decreases rapidly, which suggest that the effects of nonradiative decay increases. The decay dynamics of Cr^2+ in CdTe and Cd_0.55Mn_0.45Te will be described with the model of Struck and Fonger for the non-radiative decay rate.

  15. Effect of hydrogen exposure on a Cu-8 Cr-4 Nb alloy

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Misra, Ajay K.; Dreshfield, Robert L.

    1993-01-01

    The advanced regeneratively cooled rocket thrust chamber may require new materials to achieve long life and improved performance. Current materials such as NARloy-Z (Cu-3 wt. percent Ag-0.5 wt. percent Zr), while highly conductive, do not have sufficient high temperature strength and creep resistance to meet the projected needs of advanced rocket motors. A Cu-8 at. percent Cr-4 at. percent Nb (Cu-8 Cr-4 Nb) alloy has been identified as a promising material for this application. However, hydrogen embrittlement is a concern given the presence of high pressure, high temperature hydrogen in regeneratively cooled rocket motors. Thermodynamic analysis of the reaction between Cr-rich Cr2Nb and H2 showed that there is a possibility of reaction at temperatures up to 323 K in a 35 MPa H2 environment. Above 323 K the pressure necessary to achieve reaction rapidly increased beyond the range experienced in rocket motors. Tensile specimens exposed in 34.5 MPa H2 at room temperatures and during cycling to 705 C did not show any degradation of properties. No evidence of reaction was observed for Cr2Nb precipitate observed on the fracture surfaces. Based on these results the Cu-8 Cr-4 Nb alloy was judged to be sufficiently stable for use in rocket motors.

  16. Alloying effects on the microstructure and phase stability of Fe-Cr-Mn steels

    SciTech Connect

    Rawers, J.C.

    2008-05-01

    Austenitic Fe–Cr–Mn stainless steels interstitially alloyed with nitrogen have received considerable interest lately, due to their many property improvements over conventional Fe–Cr–Ni alloys. The addition of nitrogen to Fe–Cr–Mn stabilizes the fcc structure and increases the carbon solubility. The benefits of increased interstitial nitrogen and carbon content include: enhanced strength, hardness, and wear resistance. This study examines the effect of carbon, silicon, molybdenum, and nickel additions on the phase stability and tensile behavior of nitrogen-containing Fe–Cr–Mn alloys. Nitrogen and carbon concentrations exceeding 2.0 wt.% were added to the base Fe–18Cr–18Mn composition without the formation of nitride or carbide precipitates. Minor additions of molybdenum, silicon, and nickel did not affect nitrogen interstitial solubility, but did reduce carbon solubility resulting in the formation of M23C6 (M=Cr, Fe, Mo) carbides. Increasing the interstitial content increases the lattice distortion strain, which is directly correlated with an increase in yield stress.

  17. Incorporation, valence state, and electronic structure of Mn and Cr in bulk single crystal β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Lovejoy, T. C.; Chen, Renyu; Yitamben, E. N.; Shutthanadan, V.; Heald, S. M.; Villora, E. G.; Shimamura, K.; Zheng, S.; Dunham, S. T.; Ohuchi, F. S.; Olmstead, M. A.

    2012-06-01

    Single crystals of transition metal (TM) doped β-Ga2O3, a wide gap semiconductor system of interest for transparent conductive oxide and diluted magnetic semiconductor applications, have been studied in the dilute, non-interacting limit (≤0.06 cation %). Based on optical absorption, particle induced x-ray emission, and Rutherford backscattering measurements, Mn does not incorporate as well as Cr, and Mn degrades the crystal quality. Using superconducting quantum interference device (SQuID) magnetometry, a Brillouin type paramagnetic magnetization is observed for Mn or Cr doped crystals with an effective number of Bohr magnetons per TM ion of 5.88 ± 0.1 or 3.95 ± 0.1, respectively. A trace ferromagnetic signal is consistent with a very small concentration of secondary phases in the Mn-doped crystal. The position of the edge in x-ray absorption near edge structure (XANES) measurements suggests that the Cr takes the 3+ valence, while a mixture of Mn2+ and Mn3+ are present; based on the absence of a prominent pre-edge feature in the XANES, both TM predominantly occupy an octahedral site in β-Ga2O3. Density functional theory (DFT) results, optical absorption and SQuID data are consistent with this assignment. While the Cr-doped crystal is conductive, the Mn-doped crystal is insulating, which is consistent with the Mn2+/Mn3+ mixed valence, assuming the Fermi level is pinned mid-gap at the Mn 2+/3+ transition level, which is predicted by DFT to be 1.8 eV above the valence band maximum.

  18. Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system

    NASA Astrophysics Data System (ADS)

    Dhar, S. K.; Provino, A.; Manfrinetti, P.; Kulkarni, R.; Goyal, Neeraj; Paudyal, D.

    2016-05-01

    Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10-4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heat capacity C/T shows an upturn below 7 K (˜190 mJ/mol K2 at ˜0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.

  19. Hot and cold rolling of high nitrogen Cr-Ni and Cr-Mn austenitic stainless steels

    SciTech Connect

    Iiola, R.; Hanninen, H.; Kauppi, T.

    1998-10-01

    Behavior of austenitic Cr-Ni-(0.14--0.50)N and Cr-Mn-(0.78--1.00)N steels in hot and cold rolling was investigated by rolling experiments and mechanical testing. Structure of the steels in the as-cast condition and fracture surfaces after the rolling experiments were investigated using optical and scanning electron microscopy (SEM). Resistance to deformation was calculated using rolling forces in hot rolling. Increase in strength in the rolling experiments was related to the nitrogen content of the steels. Resistance to deformation during hot rolling increased with decreasing rolling temperature and with increasing nitrogen content. In some steels, hot rolling led to edge cracking, which was more a function of impurity than nitrogen content. Microscopy revealed that the edge cracking occurred along grain boundaries and second phase particles. For the cold-rolled steels, the highest achievable reductions were limited due to a crocodiling phenomenon, that is, opening of the strip end. Fracture type at the opened strip end was a brittle-like fracture.

  20. Effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows

    PubMed Central

    Zhao, Xue-Jun; Li, Zhong-Peng; Wang, Jun-Hong; Xing, Xiang-Ming; Wang, Zhen-Yong

    2015-01-01

    To evaluate the effects of chelated Zn/Cu/Mn on redox status, immune responses and hoof health in lactating Holstein cows, 48 head in early lactation were divided into healthy or lame groups according to their gait score. Cows were fed the same amount of Zn/Cu/Mn as sulfate salts or in chelated forms for 180 days, and foot-and-mouth disease (FMD) vaccine was injected at day 90. The results showed that lame cows had lower antioxidant function, serum Zn/Mn levels, hair Cu levels, and hoof hardness. Moreover, increased antioxidant status, FMD antibody titers, serum and hair levels of Zn/Cu/Mn, and hoof hardness and decreased milk fat percent and arthritis biomarkers were observed in cows fed chelated Zn/Cu/Mn. In summary, supplementation with chelated Zn/Cu/Mn improved antioxidant status and immune responses, reduced arthritis biomarkers, and increased accumulation of Zn/Cu/Mn in the body and hoof hardness in dairy cows. PMID:26040614

  1. Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Park, Nokeun; Watanabe, Ikuto; Terada, Daisuke; Yokoyama, Yoshihiko; Liaw, Peter K.; Tsuji, Nobuhiro

    2015-04-01

    We investigated the recrystallization behavior of a cold-rolled CoCrCuFeNi high-entropy alloy (HEA). Two different face-centered cubic phases having different chemical compositions and lattice constants in the as-cast specimen have different chemical compositions: One phase was the Cu-lean matrix and the other was the Cu-rich second phase. The second phase remained even after a heat treatment at 1373 K (1100 °C) and Cu enriched more in the Cu-rich second phase. The calculated mixing enthalpies of both Cu-lean and Cu-rich phases in the as-cast and heat-treated specimens explained that Cu partitioning during the heat treatment decreased the mixing enthalpy in both phases. In the specimens 90 pct cold rolled and annealed at 923 K, 973 K, and 1073 K (650 °C, 700 °C, and 800 °C), recrystallization proceeded with increasing the annealing temperature, and ultrafine recrystallized grains with grain sizes around 1 μm could be obtained. The microhardness tended to decrease with increasing the fraction recrystallized, but it was found that the microhardness values of partially recrystallized specimens were much higher than those expected by a simple rule of mixture between the initial and cold-rolled specimens. The reason for the higher hardness was discussed based on the ultrafine grain size, sluggish diffusion expected in HEAs, and two-phase structure in the CoCrCuFeNi alloy.

  2. Influence of Carbon on the Microstructure of a Fe-Mn-Si-Cr-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Mostafa, Khaled M.; de Baerdemaeker, J.; van Caenegem, N.; Segers, D.; Houbaert, Y.

    2009-08-01

    The influence of the addition of C to the Fe-Mn-Si-Cr-Ni base material is investigated at room temperature. Steel samples were deformed during a tensile experiment up to a strain of 17%. Light optical microscopy (OM) and x-ray diffraction (XRD) gave information about the different micro-structural phases that exist in the deformed and the undeformed alloys. The evolution of the defect structure is followed by positron annihilation techniques such as Doppler broadening of annihilation radiation spectroscopy (DBAR) and the positron annihilation lifetime spectroscopy (PALS). During deformation a martensitic ɛ-phase is induced. The size of the martensite plates increases with increasing deformation.

  3. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  4. Synthesis of Waste Form in the Gd-Fe-Al-Ni-Mn-Cr-O System

    SciTech Connect

    Chae, S.C.; Jang, Y.N.; Bae, I.K.; Ryu, K.W.

    2006-07-01

    Poly-phase waste form which was the mixture of Gd{sub 3}Fe{sub 2}Al{sub 3}O{sub 12} and (Ni{sub x}Mn{sub 1-x})(Fe{sub y}Cr{sub 1-y}){sub 2}O{sub 4} was synthesized. Also, we are intended to examine phase relation and physicochemical properties of coexisted phases in the compositions and to confirm accommodation relation of elements and phases. Two types of phase series were observed: Garnet-perovskite-spinel and Garnet-spinel. The compositions of garnets and spinels were nonstoichiometric, and especially, this poly-phase ceramics may be in a good waste form. The excessive Gd in garnets indicated the immobilization of higher content of actinides. The nonstoichiometric compositions of garnet and spinel were attributed to the formation of perovskite in that perovskite contained Gd, Fe and Al from garnet and Cr from spinel. (authors)

  5. Half-metallic antiferromagnetism in double perovskite BiPbCrCuO{sub 6}

    SciTech Connect

    Weng, Ke-Chuan; Wang, Y. K.

    2015-05-07

    The electronic structure and magnetic properties of BiPbCrCuO{sub 6} double perovskite are investigated based on first-principles density functional calculations with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). The results suggest the half-metallic (HM) and antiferromagnetic (AFM) properties of BiPbCrCuO{sub 6} double perovskite. The HM-AFM property of the double perovskite is caused by the double-exchange mechanism between neighboring Cr{sup 5+}(t{sub 2g}{sup 1}↓) and Cu{sup 2+}(t{sub 2g}{sup 3}↑t{sub 2g}{sup 3}↓e{sub g}{sup 2}↑e{sub g}↓) via the intermediate O{sup 2−}(2s{sup 2}2p{sup 6}) ion.

  6. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tripathi, T. S.; Yadav, C. S.; Karppinen, M.

    2016-04-01

    We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD) from Cu(thd)2, Cr(acac)3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  7. Explosive bonding of 316L to C18150 CuCrZr alloy for ITER applications.

    SciTech Connect

    Puskar, Joseph David; Butler, Don J.; Goods, Steven Howard; Brasher, Dave G.

    2010-10-01

    Recent developments in the ITER experimental fusion reactor require that a 316L stainless steel substructure be bonded to a precipitation strengthened CuCrZr heat sink alloy, C18150. This bond defines the cooling water pressure boundary. Given the importance of this interface, a variety of experiments with fusion welding and solid-state joining techniques have been performed. Analysis of the joints includes mechanical measurements of bond strength and microstructural analysis using optical and electron microscopy techniques. A particular emphasis was placed on the mechanical properties of the CuCrZr, since it undergoes additional thermal processing and cannot be solutionized and aged hardened per standard heat treatments. It was determined that the explosion bonding, of all the techniques examined, maximized the residual mechanical strength of the CuCrZr. The bonding parameters were optimized to minimize the amount of mixing and porosity at the interface. The details of these results and the optimization will be discussed.

  8. Numerical exploration into the potential of tungsten reinforced CuCrZr matrix composites

    NASA Astrophysics Data System (ADS)

    Hohe, Jörg; Fliegener, Sascha; Findeisen, Claudio; Reiser, Jens; Widak, Verena; Rieth, Michael

    2016-03-01

    The present study provides a numerical investigation into the potential of tungsten reinforced CuCrZr materials in order to overcome their limited performance at higher temperatures. Metal matrix composites including (i) particle reinforced microstructures, (ii) short fiber reinforced microstructures with both randomly orientated and (iii) aligned fibers as well as (iv) laminates consisting of stacked tungsten and CuCrZr layers are considered. The numerical analysis is performed by means of an energy based homogenization procedure in conjunction with a finite element analysis of representative volume elements for the respective microstructures. The results of the screening analysis reveal a distinct improvement of the mechanical properties of CuCrZr materials by the tungsten reinforcements even for moderate tungsten volume fractions. In a comparison of the different microstructures, the ordered microstructures, i.e. laminates and the aligned short fiber reinforced composites in most cases outperform their disordered counterparts.

  9. Cu(II) Catalytic Reduction of Cr(VI) by Tartaric Acid Under the Irradiation of Simulated Solar Light

    PubMed Central

    Li, Ying; Qin, Chao; Zhang, Jing; Lan, Yeqing; Zhou, Lixiang

    2014-01-01

    Abstract Cu(II) catalytic reduction of Cr(VI) by tartaric acid under the irradiation of simulated solar light was investigated through batch experiments at pHs from 3 to 6 and at temperatures from 15°C to 35°C. Results demonstrated that introduction of Cu(II) could markedly improve reduction of Cr(VI) in comparison with tartaric acid alone. Optimal removal of Cr(VI) was achieved at pH 4. Reduction of Cr(VI) increased with increasing temperatures and initial concentrations of Cu(II) and tartaric acid. The catalytic role of Cu(II) in the reduction of Cr(VI) was ascribed to the formation of Cu(II)-tartaric acid complex, which generated active reductive intermediates, including Cu(I) and tartaric acid radicals through a pathway of metal–ligand–electron transfer with light. Cu(II) photocatalytic reduction of Cr(VI) by tartaric acid followed pseudo zero-order kinetics with regard to Cr(VI), and the activation energy was calculated to be 21.48 kJ/mol. To date, such a role of Cu(II) has not been reported. The results from the present study are helpful in fully understanding the photochemical reductive behavior of Cr(VI) in the presence of both tartaric acid and Cu(II) in soil and aquatic environments. PMID:25125941

  10. Corrosion Behavior of Thermally Sprayed NiCrBSi Coating on 16MnR Low-Alloy Steel in KOH Solution

    NASA Astrophysics Data System (ADS)

    Zeng, Q.; Sun, J.; Emori, W.; Jiang, S. L.

    2016-05-01

    NiCrBSi coatings were selected as protective material and air plasma-sprayed on 16MnR low-alloy steel substrates. Corrosion behavior of 16MnR substrates and NiCrBSi coatings in KOH solution were evaluated by polarization resistance ( R p), potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion corrosion tests. Electrolytes were solutions with different KOH concentrations. NiCrBSi coating showed superior corrosion resistance in KOH solution compared with the 16MnR. Corrosion current density of 16MnR substrate was 1.7-13.0 times that of NiCrBSi coating in the given concentration of KOH solution. By contrast, R p of NiCrBSi coating was 1.2-8.0 times that of the substrate, indicating that the corrosion rate of NiCrBSi coating was much lower than that of 16MnR substrate. Capacitance and total impedance value of NiCrBSi coating were much higher than those of 16MnR substrate in the same condition. This result indicates that corrosion resistance of NiCrBSi coating was better than that of 16MnR substrate, in accordance with polarization results. NiCrBSi coatings provided good protection for 16MnR substrate in KOH solution. Corrosion products were mainly Ni/Fe/Cr oxides.

  11. Effects of Thermal and Mechanical Processing on Microstructures and Desired Properties of Particle-Strengthened Cu-Cr-Nb Alloys

    NASA Technical Reports Server (NTRS)

    Anderson, Kenneth Reed

    2000-01-01

    Ternary Cu-Cr-Nb alloys, particularly Cu-8 Cr-4 Nb (in at.%), have demonstrated good thermal stability as well as high strength and conductivity at elevated temperatures. The initial powder material has a bimodal size distribution of Cr2Nb precipitates. Primary Cr2Nb precipitates are approx. 1 micron, and secondary Cr2Nb particles are 30-200 nm. The particle coarsening was analyzed and found to follow LSW-type behavior, This study provides a detailed examination of the stability and strengthening effects of Cr2Nb particles. This investigation also revealed that the primary particles provide direct grain boundary pinning and indirect grain boundary strengthening but virtually no Orowan strengthening. The secondary particles found within grains do provide Orowan strengthening. For extruded material, grain bound-ary strengthening (Hall-Petch effect) accounts for two-thirds of the strength with Orowan effects contributing the remainder. The proven advantages of Cu-Cr-Nb were the motivation to improve these attributes via microstructural refinement. Mechanical milling (MM) of Cu- 4 Cr-2 Nb and Cu-8 Cr-2 Nb produced an increase in hot pressed Vickers hardness of 122% and 96%, respectively. The increase in hardness was more due to Cu grain-size refinement than to Cr,,Nb refinement. This study also demonstrated enhanced stability of MM Cu-4 Cr-2 Nb. Hot pressed 4 h milled Cu-4 Cr-2 Nb experienced only a 22% drop in hardness when annealed at 1273 K for 50 h versus a 30% drop for extruded Cu-8 Cr-4 Nb. The goal of improving the strength and stability of Cu-4 Cr-2 Nb to better than such properties for as- extruded Cu-8 Cr-4 Nb has been met. In addition, a figure-of-merit (FOM) coupling hardness and thermal conductivity was maximized for the case of 4 h milled Cu-4 Cr-2 Nb material. Overall, Cu-Cr-Nb alloys not only possess high strength, conductivity and thermal stability but also can be further developed to improve strength and stability.

  12. Cu-Mn-Fe alloys and Mn-rich amphiboles in ancient copper slags from the Jabal Samran area, Saudi Arabia: With synopsis on chemistry of Fe-Mn(III) oxyhydroxides in alteration zones

    NASA Astrophysics Data System (ADS)

    Surour, Adel A.

    2015-01-01

    In the Jabal Samran area (western Saudi Arabia), secondary copper mineralization in a NE-trending shear zone in which the arc metavolcanic host rocks (dacite-rhyodacite) show conjugate fractures and extensive hydrothermal alteration and bleaching. The zones contain frequent Fe-Mn(III) oxyhydroxides (FeOH-MnOH) that resulted from oxidation of pyrite and Mn-bearing silicates. In the bleached part, the groundmass is represented by Fe-bearing interstratified illite-smectite with up to 4.02 wt% FeOt. FeOH-MnOH are pre-weathering phases formed by hydrothermal alteration in a submarine environment prior to uplifting. Five varieties of FeOH are distinguished, four of them are exclusively hydrothermal with ∼20 wt% H2O whereas the fifth contains ∼31-33 wt% H2O and might represent reworking of earlier hydrothermal FeOH phases by weathering. FeOH fills thin fractures in the form of veinlets and crenulated laminae or as a pseudomorph for pyrite, goethite and finally ferrihydrite, and this oxyhydroxide is characterized by positive correlation of Fe2O3 with SiO2 and Al2O3. On the other hand, MOH shows positive correlation between MnO2 and Al2O3 whereas it is negative between Fe2O3 and SiO2. Paratacamite is the most common secondary copper mineral that fills fractures and post-dates FeOH and MnOH. It is believed that Cl- in the structure of paratacamite represents inherited marine storage rather than from surfacial evaporates or meteoric water. The mineralogy of slags suggests a complicated mineral assemblage that includes native Cu prills, synthetic spinifixed Mn-rich amphiboles with 16.73 wt% MnO, brown glass and Ca-Mn-Fe phase close to the olivine structure. EMPA indicate that the some Cu prills have either grey discontinuous boarder zone of S-rich Mn-Cu alloy (with up to 21.95 wt% S and 19.45 wt% Mn) or grey Cu-Mn-Fe alloy (with up to 15.9 wt% Cu, 39. 12 wt% Mn and 61.64 wt% Fe). Mn in the Cu prills is expelled inward as Cu-Mn-Fe alloy inclusions whereas S is expelled

  13. On the strong impact of doping in the triangular antiferromagnet CuCrO 2

    NASA Astrophysics Data System (ADS)

    Maignan, A.; Martin, C.; Frésard, R.; Eyert, V.; Guilmeau, E.; Hébert, S.; Poienar, M.; Pelloquin, D.

    2009-06-01

    Electronic band structure calculations using the augmented spherical wave method have been performed for CuCrO 2. For this antiferromagnetic ( TN=24 K) semiconductor crystallizing in the delafossite structure, it is found that the valence band maximum is mainly due to the t 2g orbitals of Cr 3+ and that spin polarization is predicted with 3 μ per Cr 3+. The structural characterizations of CuCr 1- xMg xO 2 reveal a very limited range of Mg 2+ substitution for Cr 3+ in this series. As soon as x=0.02, a maximum of 1% Cr ions are substituted by Mg site is measured in the sample. This result is also consistent with the detection of Mg spinel impurities from X-ray diffraction for x=0.01. This explains the saturation of the Mg 2+ effect upon the electrical resistivity and thermoelectric power observed for x>0.01. Such a very weak solubility limit could also be responsible for the discrepancies found in the literature. Furthermore, the measurements made under magnetic field (magnetic susceptibility, electrical resistivity and Seebeck coefficient) support that the Cr 4+ "holes", created by the Mg 2+substitution, in the matrix of high spin Cr 3+ ( S=3/2) are responsible for the transport properties of these compounds.

  14. Characterization of a CuAlBe Alloy with Different Cr Contents

    NASA Astrophysics Data System (ADS)

    da M. Candido, Gemierson Valois; de A. Melo, Tadeu Antônio; De Albuquerque, Victor Hugo C.; Gomes, Rodinei Medeiros; de Lima, Severino Jackson G.; Tavares, João Manuel R. S.

    2012-11-01

    In this article, the use of chromium (Cr) as a grain refiner for a CuAlBe shape memory alloy is discussed. Alloys with 0.1, 0.2, 0.3, and 0.5 wt.% Cr were characterized by optical microscopy, scanning electron microscope, and x-ray diffraction. Also, the influence of the different percentages of Cr on the grain size and on the mechanical properties was analyzed through macro- and microscopic evaluations and by tensile and hardness tests, respectively. Finally, the phase transformation temperatures of the alloys were determined by thermal analysis using differential scanning calorimetry. The results showed that the higher the Cr content, the greater the grain refinement effect and lower the hardness. In addition, at room temperature the alloys with 0.1 and 0.2 wt.% Cr were austenitic, while the rest were martensitic. The tensile tests showed that the alloy with 0.2 wt.% Cr provided the best strain-stress performance. The conclusion was that the use of 0.2 wt.% Cr as a grain refiner improved the mechanical properties of the CuAlBe alloy; however, the same was not observed for the other Cr contents.

  15. Flux Pinning by Cr Nanoparticles in Cu_{0.5} Tl_{0.5} Ba2 Ca2 Cu3 O_{10-δ } Superconductor

    NASA Astrophysics Data System (ADS)

    Waqee-ur-Rehman, M.; Mumtaz, M.; Qasim, Irfan; Nadeem, K.

    2016-04-01

    Increase in flux pinning strength of Cu_{0.5} Tl_{0.5} Ba2 Ca2 Cu3 O_{10-δ } (CuTl-1223) superconductor has been observed after addition of Cr nanoparticles. We have thoroughly investigated the infield response of Cr nanoparticles-added CuTl-1223 superconductor in an external applied magnetic field in the range of 0-7 T. Solid-state reaction technique has been employed to synthesize (Cr)x -CuTl-1223; x = 0-1.00 wt% nanoparticle-superconductor composites. The flux pinning mechanism has been analyzed on the basis of thermally activated flux flow model in the presence of a small current (10 μ A). The increase in activation energy and decrease in transition width of CuTl-1223 superconducting phase show the enhancement in its flux pinning strength upon the addition of Cr nanoparticles.

  16. Flux Pinning by Cr Nanoparticles in Cu_{0.5}Tl_{0.5}Ba2Ca2Cu3O_{10-δ } Superconductor

    NASA Astrophysics Data System (ADS)

    Waqee-ur-Rehman, M.; Mumtaz, M.; Qasim, Irfan; Nadeem, K.

    2016-09-01

    Increase in flux pinning strength of Cu_{0.5}Tl_{0.5}Ba2Ca2Cu3O_{10-δ }(CuTl-1223) superconductor has been observed after addition of Cr nanoparticles. We have thoroughly investigated the infield response of Cr nanoparticles-added CuTl-1223 superconductor in an external applied magnetic field in the range of 0-7 T. Solid-state reaction technique has been employed to synthesize (Cr)x-CuTl-1223; x = 0-1.00 wt% nanoparticle-superconductor composites. The flux pinning mechanism has been analyzed on the basis of thermally activated flux flow model in the presence of a small current (10 μ A). The increase in activation energy and decrease in transition width of CuTl-1223 superconducting phase show the enhancement in its flux pinning strength upon the addition of Cr nanoparticles.

  17. High-pressure thermoluminescence and photoluminescence study of ZnS:Mn:Cu:Cl phosphor

    SciTech Connect

    Lang, J.M.; Dreger, Z.A.; Drickamer, H.G. , Urbana, Illinois 61801 )

    1992-02-15

    The effect of pressure has been studied on the thermoluminescence and photoluminescence of a well-characterized sample of ZnS:Mn:Cu:Cl. The thermoluminescence was particularly revealing. Initially two traps were present. As they increased in depth with increasing pressure new shallower traps appeared. The pressure dependence of four traps was established. By comparison with pressure measurements on ZnS doped only with Mn{sup +2} and only with Cu{sup +} and Cl{sup {minus}}, we established that the deepest trap is associated with defects introduced by Mn{sup +2}, while the two traps next lower in energy are associated with defects introduced by Cl{sup {minus}}. The shallowest trap could not be assigned to a specific defect. The photoluminescence emission (from the {sup 4}{ital T}{sub 1}, to the {sup 6}{ital A}{sub 1} energy level of Mn{sup +2}) shifted to lower energy at a rate identical to that previously reported for a less well-characterized ZnS:Mn sample. The shift could be described quantitatively in terms of changes in the ligand field parameters.

  18. Synthesis and Electrochemical Characterization of M2Mn3O8 (M=Ca,Cu) Compounds and Derivatives

    SciTech Connect

    Park, Yong Joon; Doeff, Marca M.

    2005-08-25

    M{sub 2}Mn{sub 3}O{sub 8} (M=Ca{sup 2+}, Cu{sup 2+}) compounds were synthesized and characterized in lithium cells. The M{sup 2+} cations, which reside in the van der Waal's gaps between adjacent sheets of Mn{sub 3}O{sub 8}{sup 4-}, may be replaced chemically (by ion-exchange) or electrochemically with Li. More than 7 Li{sup +}/Cu{sub 2}Mn{sub 3}O{sub 8} may be inserted electrochemically, with concomitant reduction of Cu{sup 2+} to Cu metal, but less Li can be inserted into Ca{sub 2}Mn{sub 3}O{sub 8}. In the case of Cu{sup 2+}, this process is partially reversible when the cell is charged above 3.5 V vs. Li, but intercalation of Cu{sup +} rather than Cu{sup 2+} and Li{sup +}/Cu{sup +} exchange occurs during the subsequent discharge. If the cell potential is kept below 3.4 V, the Li in excess of 4Li{sup +}/Cu{sub 2}Mn{sub 3}O{sub 8} can be cycled reversibly. The unusual mobility of +2 cations in a layered structure has important implications both for the design of cathodes for Li batteries and for new systems that could be based on M{sup 2+} intercalation compounds.

  19. Mn1.4Co1.4Cu0.2O4 spinel protective coating on ferritic stainless steels for solid oxide fuel cell interconnect applications

    NASA Astrophysics Data System (ADS)

    Chen, Guoyi; Xin, Xianshuang; Luo, Ting; Liu, Leimin; Zhou, Yuchun; Yuan, Chun; Lin, Chucheng; Zhan, Zhongliang; Wang, Shaorong

    2015-03-01

    In an attempt to reduce the oxidation and Cr evaporation rates of solid oxide fuel cells (SOFCs), Mn1.4Co1.4Cu0.2O4 spinel coating is developed on the Crofer22 APU ferritic stainless steel substrate by a powder reduction technique. Doping of Cu into Mn-Co spinels improves electrical conductivity as well as thermal expansion match with the Crofer22 APU interconnect. Good adhesion between the coating and the alloy substrate is achieved by the reactive sintering process using the reduced powders. Long-term isothermal oxidation experiment and area specific resistance (ASR) measurement are investigated. The ASR is less than 4 mΩ cm2 even though the coated alloy undergoes oxidation at 800 °C for 530 h and four thermal cycles from 800 °C to room temperature. The Mn1.4Co1.4Cu0.2O4 spinel coatings demonstrate excellent anti-oxidation performance and long-term stability. It exhibits a promising prospect for the practical application of SOFC alloy interconnect.

  20. Measurement and analysis of radioactivity induced in CuCrZr by D?T neutrons

    NASA Astrophysics Data System (ADS)

    Eichin, R.; Adelhelm, C.; Blokhin, A. I.; Forrest, R. A.; Freiesleben, H.; Kovalchuk, V. D.; Markovskij, D. V.; Seidel, K.; Unholzer, S.

    2004-08-01

    CuCrZr is used in high heat flux components of ITER and other fusion reactor designs. A CuCrZr alloy of the European Fusion Technology Programme was irradiated with D-T neutrons, and the γ-activities of all nuclides which are relevant up to the recycling limit of the material were measured. The results were analysed with the European Activation System (versions EASY-2001 and EASY-2003). The calculated total activation property of the material was validated within 10%. The long-term radioactivity was estimated to be well below the hands-on limit with an uncertainty of 19%.

  1. [CrIII8MII6]12+ Coordination Cubes (MII=Cu, Co)**

    PubMed Central

    Sanz, Sergio; O'Connor, Helen M; Pineda, Eufemio Moreno; Pedersen, Kasper S; Nichol, Gary S; Mønsted, Ole; Weihe, Høgni; Piligkos, Stergios; McInnes, Eric J L; Lusby, Paul J; Brechin, Euan K

    2015-01-01

    [CrIII8MII6]12+ (MII=Cu, Co) coordination cubes were constructed from a simple [CrIIIL3] metalloligand and a “naked” MII salt. The flexibility in the design proffers the potential to tune the physical properties, as all the constituent parts of the cage can be changed without structural alteration. Computational techniques (known in theoretical nuclear physics as statistical spectroscopy) in tandem with EPR spectroscopy are used to interpret the magnetic behavior. PMID:25891167

  2. Effect of Cr and Cu addition on corrosion behavior of Ni-Ti alloys.

    PubMed

    Iijima, M; Endo, K; Ohno, H; Mizoguchi, I

    1998-03-01

    The corrosion behavior of three Ni-Ti alloys with compositions as commercial super-elastic orthodontic wires was investigated using polished plate specimens. Corrosion resistance was estimated by potentiodynamic polarization measurement in 0.9% NaCl and 1% lactic acid solutions and analysis of released metals by atomic absorption spectrophotometry. The influence of Cr and Cu addition on the structure of the surface oxide film was examined by X-ray photoelectron spectroscopy (XPS). Addition of 0.19 at% Cr had little effect on the structure of the oxide films and the corrosion resistance of the Ni-Ti alloys. For Ni-Ti-5Cu-0.3Cr alloy, the metallic Cu was enriched at the alloy/oxide film interface, resulting in increased susceptibility to pitting corrosion above +1000 mV. However, the passive current density and the amount of released Ni were not significantly increased by the addition of Cu. The study showed that small amounts of Cr and Cu added to change the super-elastic characteristics do not change the corrosion resistance of the Ni-Ti alloy freely immersed in simulated physiological environments. PMID:9663060

  3. Post-irradiation annealing behavior of neutron-irradiated FeCu, FeMnNi and FeMnNiCu model alloys investigated by means of small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Ulbricht, A.; Lindner, P.; Keiderling, U.; Malerba, L.

    2014-11-01

    Neutron irradiation of reactor pressure vessel steels gives rise to the formation of thermodynamically stable and unstable nano-features. The present work is focused on the stability of Cu-, Mn- and Ni-containing solute clusters in model alloys exposed to post-irradiation annealing. Fe0.1Cu, Fe1.2Mn0.7Ni and Fe1.2Mn0.7Ni0.1Cu (wt%) model alloys irradiated up to neutron exposures of 0.1 and 0.19 dpa (displacements per atom) were annealed at stepwise increasing temperatures in the range from 300 °C (i.e. near irradiation temperature) to 500 °C and characterized by means of small-angle neutron scattering (SANS). We have found characteristic differences in the annealing behavior of the alloys. In particular, there is a non-trivial (synergistic-antagonistic) interplay of Mn/Ni and Cu.

  4. Rapid Solidification Behavior of Fe-Cr-Mn-Mo-Si-C Alloys

    NASA Astrophysics Data System (ADS)

    Ranganathan, Sathees; Makaya, Advenit; Fredriksson, Hasse; Savage, Steven

    2007-12-01

    The rapid solidification behavior of alloys in the Fe-Cr-Mn-Mo-Si-C system was investigated for different compositions and cooling rates. The C content was varied and alloying additions of Mo and B were studied with respect to their effect on the microstructure. The alloys were cast as either melt-spun ribbons or as 1-mm-thick plates after levitation or as rods 2 to 4 mm in diameter by injection into copper molds. A homogeneous single-phase structure was obtained for the alloy of composition 72.8Fe-8Cr-6Mn-5Si-5Mo-3.2C (wt pct), for a sample diameter of 2.85 mm, at a cooling rate of ≈1100 K/s. The single-phase structure was identified as a metastable solid solution, exhibiting the characteristics of the ɛ phase. Upon reheating, decomposition of the single-phase structure into fine bainite plates and secondary carbides was observed between 600 °C and 700 °C. The annealed structure obtained showed high hardness values (>850 HV).

  5. Synthesis, structures and magnetic properties of the dimorphic Mn2CrSbO6 oxide.

    PubMed

    Dos santos-García, Antonio J; Solana-Madruga, Elena; Ritter, Clemens; Ávila-Brande, David; Fabelo, Oscar; Sáez-Puche, Regino

    2015-06-21

    The perovskite polymorph of Mn(2)CrSbO(6) compound has been synthesized at 8 GPa and 1473 K. It crystallizes in the monoclinic P21/n space group with cell parameters a = 5.2180 (2) Å, b = 5.3710(2) Å, c = 7.5874(1) Å and β = 90.36(1)°. Magnetic susceptibility and magnetization measurements show the simultaneous antiferromagnetic ordering of Mn(2+) and Cr(3+) sublattices below TN = 55 K with a small canting. Low temperature powder neutron diffraction reveals a commensurate magnetic structure with spins confined to the ac-plane and a propagation vector κ = [1/2 0 1/2]. The thermal treatment of this compound induces an irreversible phase transition to the ilmenite polymorph, which has been isolated at 973 K and crystallizes in R3[combining macron] space group with cell parameters a = 5.2084 (4) Å and c = 14.4000 (11) Å. Magnetic susceptibility, magnetization and powder neutron diffraction data confirm the antiferromagnetic helical ordering of spins in an incommensurate magnetic structure with κ = [00 0.46] below 60 K, and the temperature dependence of the propagation vector up to κ = [00 0.54] at about 10 K. PMID:25623228

  6. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  7. Revisiting the properties of delafossite CuCrO{sub 2}: A single crystal study

    SciTech Connect

    Poienar, Maria; Hardy, Vincent; Kundys, Bohdan; Singh, Kiran; Maignan, Antoine; Damay, Francoise; Martin, Christine

    2012-01-15

    Platelet-like single-crystals of delafossite CuCrO{sub 2} have been successfully grown and characterised by X-ray diffraction and pole figures, scanning electron and atomic force microscopy. Transport measurements reveal that the resistivity is highly anisotropic, with a ratio of about 35 at 300 K between the in- and out-of-plane directions, reflecting the layered crystal structure. The magnetization and specific heat data show that CuCrO{sub 2} undergoes a unique antiferromagnetic transition at T{sub N}=24.0 K, in contrast to a recent report on CuCrO{sub 2} single-crystals showing the existence of two magnetic transitions, T{sub N1}=24.2 K and T{sub N2}=23.6 K, depending on the orientation of the applied magnetic field along and perpendicular to c, respectively. - Graphical abstract: 3R-CuCrO{sub 2} platelet-like single crystals have been successfully grown by the flux method. As revealed by {chi}(T) and C(T) measurements, their properties are characterised by a unique antiferromagnetic transition at T{sub N}=24 K. Interestingly, despite a very small magnetic anisotropy, a large one is evidenced by the resistivity ratio, {rho}{sub c}/{rho}{sub ab}{approx}35, at 300 K. This suggests an easier charge hopping in the [CrO{sub 2}] planes rather than along (Cr-O-Cu) pathways, i.e. along c axis. Highlights: Black-Right-Pointing-Pointer R-CuCrO{sub 2} plate-like single crystals have been synthesised by the flux method. Black-Right-Pointing-Pointer Growth takes place layer-by-layer and some growth defects have been observed. Black-Right-Pointing-Pointer CuCrO{sub 2} single crystals exhibit a unique antiferromagnetic transition at T{sub N}=24 K. Black-Right-Pointing-Pointer Transport measurements reveal that the resistivity is highly anisotropic.

  8. Structure, Magnetism, and Transport of CuCr2Se4 Thin Films

    SciTech Connect

    Bettinger, J.S.; Chopdekar, R.V.; Liberati, M.; Neulinger, J.R.; Chshiev, M.; Takamura, Y.; Alldredge, L.M.B.; Arenholz, E.; Idzerda,Y.U.; Stacy, A.M.; Butler, W.H.; Suzuki, Y.

    2007-04-01

    We report the successful growth of highly spin-polarized chalcogenide thin films of CuCr{sub 2}Se{sub 4}, which are promising candidates for spin-based electronic applications. We also present electronic structure calculations for CuCr{sub 2}Se{sub 4} that, together with magnetic and transport data, imply that the stoichiometric compound is a metallic ferromagnet with a relatively low density of hole-like carriers at the Fermi energy. These calculations also predict that a deficiency of Se will deplete the minority density of states at the Fermi energy perhaps leading to a half-metal. We have successfully grown thin films of CuCr{sub 2}Se{sub 4} by pulsed laser deposition on isostructural MgAl{sub 2}O{sub 4} substrates followed by an anneal in a Se-rich environment. X-ray diffraction confirms the structure of CuCr{sub 2}Se{sub 4} on MgAl{sub 2}O{sub 4} substrates as well as a secondary phase of Cr{sub 2}Se{sub 3}. X-ray absorption spectroscopy indicates that the chemical structure at the surface of the films is similar to that of bulk CuCr{sub 2}Se{sub 4} single crystals. Magnetization measurements indicate that these films saturate with a magnetic moment close to 5 {micro}{sub B} per formula unit and a T{sub c} above 400 K. X-ray magnetic circular dichroism shows that the magnetism persists to the surface of the film. Resistivity and Hall effect measurements are consistent with a p-type ferromagnetic metallic behavior and with the electronic structure calculations.

  9. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  10. Shape evolution of Cu-doped Mn{sub 3}O{sub 4} spinel microcrystals: influence of copper content

    SciTech Connect

    Wang, Fan; Wu, Haiqiu; Lin, Ziting; Han, Shuaiyuan; Wang, Dan; Xue, Ying; Sun, Yunlong; Sun, Jian; Li, Bin

    2010-11-15

    Spinel-type Cu-doped Mn{sub 3}O{sub 4} microcrystals with various shapes were synthesized by hydrothermal method. The interrelation between the preparative conditions and the composition, structure, and morphology of the products were investigated using various analytical techniques, such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal gravimetric analysis. Results revealed that the introduction of Cu{sup 2+} ions into the reaction system promoted the formation of single phase Cu-doped Mn{sub 3}O{sub 4}. A gradual shape evolution from polyhedron to octahedron occurred upon increasing the additive copper content. Complete decolorization of organic dye (methylene blue) aqueous solution was achieved by treating the dye with Cu-doped Mn{sub 3}O{sub 4} in acidic media, which shows the possible application of doped Mn{sub 3}O{sub 4} as effective reagents for the degradation of organic contaminants in water.

  11. Exploring the Cr2+ doping effect on structural, vibrational and dielectric properties of Mn-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Choudhary, Pankaj; Tyagi, Tarun; Dar, M. A.; Varshney, Dinesh

    2016-05-01

    A series of Cr doped Mn-Zn ferrites with compositional formula Mn0.5Zn0.5-xCrxFe2O4 (x = 0, 0.3, 0.5) were prepared by solid-state reaction route. X-ray diffraction (XRD) analysis reveals that the samples prepared are polycrystalline cubic spinel in structure (Fd3m) with some secondary phase of α-Fe2O3. Slight variation in the lattice parameter of Cr doped Mn0.5Zn0.5Fe2O4 has been observed due to difference in ionic radii of cations. Small shift in Raman modes towards higher wave number has been observed. Further the line width decreases with the doping ions. A giant dielectric constant ~104 is observed for parent Mn0.5Zn0.5Fe2O4 which is found to decrease with increase in Cr2+ doping. Low dielectric loss is observed for Mn0.5Zn0.5Fe2O4 and improves with Cr2+ doping at Zn2+ site.

  12. Structural, elastic, electronic, magnetic and vibrational properties of CuCoMnGa under pressure

    SciTech Connect

    İyigör, Ahmet; Uğur, Şule

    2014-10-06

    First principles calculations for the structural, electronic, elastic and phonon properties of the cubic quaternary heusler alloy CuCoMnGa on pressure have been reported by density functional theory (DFT) within generalized gradient approximation (GGA). The calculated values of the elastic constants were used for estimations of the Debye temperatures, the bulk modulus, the shear modulus, the young modulus E, the poisson's ratio σ and the B/G ratio. The elastic constants satisfy all of the mechanical stability criteria. The electronic structures of the ferromagnetic configuration for CuCoMnGa have a metallic character. The estimated magnetic moment per formula unit is 3.76 μ{sub B}. The phonon dispersion is studied using the supercell approach, and the stable nature at 0.2 GPa pressure is observed.

  13. Production and processing of Cu-Cr-Nb alloys

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.; Orth, Norman W.

    1990-01-01

    A new Cu-based alloy possessing high strength, high conductivity, and good stability at elevated temperatures was recently produced. This paper details the melting of the master alloys, production of rapidly solidified ribbon, and processing of the ribbon to sheet by hot pressing and hot rolling.

  14. Thermoelectric Properties of CuAgSe doped with Co, Cr

    NASA Astrophysics Data System (ADS)

    Czajka, Peter; Yao, Mengliang; Opeil, Cyril

    Thermoelectric materials represent one way that reliable cooling below the boiling point of nitrogen can be realized. Current materials do not exhibit sufficiently high efficiencies at cryogenic temperatures, but significant progress is being made. One material that has generated significant interest recently is CuAgSe. It has been demonstrated (Ishiwata et al., Nature Mater. 2013) that doping CuAgSe with 10% Ni at the Cu sites increases the material's thermoelectric figure of merit (ZT) at 100 K from 0.02 to 0.10. This is intriguing not just because of the dramatic effect that the Ni doping produces, but also because CuAgSe is a semimetal and semimetals are not usually able to exhibit the kind of asymmetric carrier activation necessary for strong thermoelectric performance. In order to further investigate the unusual nature of thermoelectricity in CuAgSe and its strong dependence on chemical composition, we have synthesized and measured the thermoelectric properties of a series of CuAgSe samples doped with Co and Cr. Temperature-dependent magnetic and thermoelectric transport properties of CuAgSe as a function of Co and Cr doping will be discussed. This work is supported by the Department of Defense, AFOSR, MURI Program Contract # FA9550-10-1-0533 and the Trustees of Boston College.

  15. ADSORPTION AND DESORPTION OF ZN, CU, AND CR BY SEDIMENTS FROM THE RAISIN RIVER (MICHIGAN)

    EPA Science Inventory

    Metal adsorption by Raisin River sediments in vitro depended linearly on soluble metal concentration to adsorption densities of 6,000-9,000 ug/g with 48 hr partition coefficients of approximately 50, 30, and 25 L/g for Cu, Cr, and Zn, respectively. artition coefficients computed ...

  16. Electrokinetic Treatment of Cr-, Cu-, and Zn-Contaminated Sediment: Cathode Modification

    PubMed Central

    Rajić, Ljiljana; Dalmacija, Božo; Perović, Svetlana Ugarčina; Krčmar, Dejan; Rončević, Srđan; Tomašević, Dragana

    2013-01-01

    Abstract Enhanced electrokinetic (EK) removal of Cr, Cu, and Zn from sediment by using original and modified integrated ion exchange (IIX™) cathodes was investigated. IIX cathode design and EK device process modifications were made to improve performance: separation of IIX cathode components (IIXS), combination of modified IIX cathode with pulsed electric field (IIXSP), and separation of IIX cathode components with addition of an anion exchange resin compartment (IIXA). After using the IIXSP, overall Cr, Cu, and Zn removal efficacies were significantly improved compared with the other treatments investigated. No improvements in overall Cr, Cu, and Zn removal efficacies were achieved by utilization of IIXA. Nevertheless, significant removal efficacies occurred at the anode region since distribution of the alkaline front was prevented. However, metal accumulation in the cathode region occurred. This was a consequence of metal cation complexation with Cl− released from the anion exchange resin that changed the direction of metal migration. Enhancing EK remediation of Cr-, Cu-, and Zn-contaminated sediment can be achieved by using a modified IIX cathode. PMID:24381480

  17. Electrokinetic Treatment of Cr-, Cu-, and Zn-Contaminated Sediment: Cathode Modification.

    PubMed

    Rajić, Ljiljana; Dalmacija, Božo; Perović, Svetlana Ugarčina; Krčmar, Dejan; Rončević, Srđan; Tomašević, Dragana

    2013-12-01

    Enhanced electrokinetic (EK) removal of Cr, Cu, and Zn from sediment by using original and modified integrated ion exchange (IIX™) cathodes was investigated. IIX cathode design and EK device process modifications were made to improve performance: separation of IIX cathode components (IIXS), combination of modified IIX cathode with pulsed electric field (IIXSP), and separation of IIX cathode components with addition of an anion exchange resin compartment (IIXA). After using the IIXSP, overall Cr, Cu, and Zn removal efficacies were significantly improved compared with the other treatments investigated. No improvements in overall Cr, Cu, and Zn removal efficacies were achieved by utilization of IIXA. Nevertheless, significant removal efficacies occurred at the anode region since distribution of the alkaline front was prevented. However, metal accumulation in the cathode region occurred. This was a consequence of metal cation complexation with Cl(-) released from the anion exchange resin that changed the direction of metal migration. Enhancing EK remediation of Cr-, Cu-, and Zn-contaminated sediment can be achieved by using a modified IIX cathode. PMID:24381480

  18. Characterization of Cold Sprayed CuCrAl Coated GRCop-84 Substrates for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S . V.; Barrett, C. A.; Lerch, B. A.; Karthikeyan, J.; Ghosn, L. J.; Haynes, J.

    2005-01-01

    An advanced Cu-8(at.%)Cr-4%Nb alloy developed at NASA's Glenn Research Center, and designated as GRCop-84, is currently being considered for use as combustor liners and nozzles in NASA's future generations of reusable launch vehicles (RLVs). Despite the fact that this alloy has superior mechanical and oxidation properties compared to many commercially available copper alloys, it is felt that its high temperature and environmental resistance capabilities can be further enhanced with the development and use of suitable coatings. Several coatings and processes are currently being evaluated for their suitability and future down selection. A newly developed CuCrAl has shown excellent oxidation resistance compared to current generation Cu-Cr coating alloys. Cold spray technology for depositing the CuCrAl coating on a GRCop-84 substrate is currently being developed under NASA's Next Generation Launch Technology (NGLT) Propulsion Research and Technology (PR&T) project. The microstructures, mechanical and thermophysical properties of overlay coated GRCop-84 substrates are discussed.

  19. [Determination the chemical speciation of Cu, Zn, Fe and Mn in Radix Scutellariae by AAS].

    PubMed

    Miao, Shan; Sun, Ji-yuan; Xie, Yan-hua; Wang, Jian-bo; Shi, Xiao-peng; Ding, Yuan-yuan; Bi, Lin-lin; Gao, Shuang-bin; Wang, Si-wang

    2009-05-01

    An analysis method was developed to determine the chemical speciation of Cu, Zn, Fe and Mn in radix scutellariae decoction using atomic absorption spectroscopy(AAS). The decoction can be divided into suspension and soluble species by 0.45 microm filter membrane and the soluble species can be separated into organism and inorganic species by LSA-10 macroporous resin. These elements in water-soluble test samples can be divided into alcohol-soluble and water-soluble by adopting n-octyl alcohol-water allocation system in man-made gastric acidity. Then, the concentration of these elements was determined by AAS, which provided more chemical speciation information about these elements instead of the total amount of them only in radix scutellariae. Deteotion limit of Cu, Zn and Mn by using the method was all 0.01 microg x mL(-1) and was 0.02 microg x mL(-1) for Fe. The RSD was in the range of 1.5%-3.6% (n=11) and the recovery rate of soluble species and inorganic species were in range of 96.7%-105.0%. The method has been successfully applied to determine the chemical speciation of Cu, Zn, Fe and Mn in radix scutellariae, which was very important for overall study of radix scutellariae. PMID:19650506

  20. The role of magnetism in the formation of the two-phase miscibility gap in β Cu-Al-Mn

    NASA Astrophysics Data System (ADS)

    Lanzini, Fernando; Alés, Alejandro

    2015-12-01

    A theoretical study of the ground state properties of alloys with compositions along the pseudobinary line Cu3Al-Cu2AlMn is presented. Cohesive energies, lattice parameters and magnetic moments of the two limiting compounds and three intermediate compositions are calculated by means of density functional theory. In order to evaluate the role of magnetism, both the spin-polarized (SP) and the non spin-polarized (NSP) cases have been considered. It is shown that magnetism plays a central role on the stabilization of the L21 crystal structure in Cu2AlMn, and in the formation of the miscibility gap in Cu3Al-Cu2AlMn. The considerable lattice mismatch between the end compounds can be attributed also to magnetic effects.

  1. The Supplementation of Yam Powder Products Can Give the Nutritional Benefits of the Antioxidant Mineral (Cu, Zn, Mn, Fe and Se) Intakes

    PubMed Central

    Shin, Mee-Young; Cho, Young-Eun; Park, Chana; Sohn, Ho-Yong; Lim, Jae-Hwan; Kwun, In-Sook

    2012-01-01

    Yam has been recognized having the beneficial effects for the prevention of various diseases, such as cancer, immunity, infection and obesity etc. There is increasing consideration to supplement the antioxidant nutrients to make up the lack of the antioxidant nutrient intakes. No study has been reported for the analysis of antioxidant mineral contents and comparison to dietary recommended intake for the sense of health promotion. In our study, we analyzed the contents of antioxidant trace elements (Zn, Mn, Fe, Cu and Se) and Cr contents in cultivated Korean yam powders for evaluation of nutrient intake aspects. We collected the commercial yam powders from six different cultivated areas in the South Korea and measured antioxidant minerals (Zn, Mn, Fe, Cu and Se) and Cr contents using trace element-free plasma spectrometer (ICP) or atomic absorption spectrometer (AAS) after dry-ashing and then wet-acid digestion. The accuracy of mineral analysis method was confirmed by the mineral analysis of standard reference material. Each analyzed element contents in yam were compared to dietary reference intakes of Koreans (KDRIs). The average levels of trace elements (Zn, Mn, Fe, Cu, Se and Cr) in yam powders were 18.3, 11.9, 36.0, 3.7, 1.9 and 1.27 μg/g yam powder, respectively. The intakes of Zn, Fe, Cu and Se of which KDRIs is determined, are accounted as being up to 23.8%, 55.6%, 32.5% and 236% recommended intake (RI) of KDRIs, if daily yam supplementation (50 g) of commercial instruction would be considered. The intake of Mn is about 25% adequate intake (AI) of KDRIs with the daily supplementation of yam powder. Most of mineral intakes from daily yam supplementation were with the range of non-detectable to <10% upper limit (UL) level, which is very much safe. The study results show that daily supplementation of Korean yam power is beneficial to provide the supplemental nutrient intake and also is safe, if the suggested dosage would be considered. PMID:24471100

  2. Visible Light-Induced Electron Transfer from Di-mu-oxo Bridged Dinuclear Mn Complexes to Cr Centers in Silica Nanopores

    SciTech Connect

    Frei, Heinz; Weare, Walter W.; Pushkar, Yulia; Yachandra, Vittal K.; Frei, Heinz

    2008-06-03

    The compound (bpy)2MnIII(mu-O)2MnIV(bpy)2, a structural model relevant for the photosynthetic water oxidation complex, was coupled to single CrVI charge-transfer chromophores in the channels of the nanoporous oxide AlMCM-41. Mn K-edge EXAFS spectroscopy confirmed that the di-mu-oxo dinuclear Mn core of the complex is unaffected when loaded into the nanoscale pores. Observation of the 16-line EPR signal characteristic of MnIII(mu-O)2MnIV demonstrates that the majority of the loaded complexes retained their nascent oxidation state in the presence or absence of CrVI centers. The FT-Raman spectrum upon visible light excitation of the CrVI-OII --> CrV-OI ligand-to-metal charge-transfer reveals electron transfer from MnIII(mu-O)2MnIV (Mn-O stretch at 700 cm-1) to CrVI, resulting in the formation of CrV and MnIV(mu-O)2MnIV (Mn-O stretch at 645 cm-1). All initial and final states are directly observed by FT-Raman or EPR spectroscopy, and the assignments corroborated by X-ray absorption spectroscopy measurements. The endoergic charge separation products (DELTA Eo = -0.6 V) remain after several minutes, which points to spatial separation of CrV and MnIV(mu-O)2MnIV as a consequence of hole (OI) hopping as a major contributing mechanism. This is the first observation of visible light-induced oxidation of a potential water oxidation complex by a metal charge-transfer pump in a nanoporous environment. These findings will allow for the assembly and photochemical characterization of well defined transition metal molecular units, with the ultimate goal of performing endothermic, multi-electron transformations that are coupled to visible light electron pumps in nanostructured scaffolds.

  3. Magnetism of hexagonal Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials

    SciTech Connect

    Fuglsby, R.; Kharel, P.; Zhang, W.; Sellmyer, D. J.; Valloppilly, S.; Huh, Y.

    2015-05-07

    Mn{sub 1.5}X{sub 0.5}Sn (X = Cr, Mn, Fe, Co) nanomaterials in the hexagonal Ni{sub 2}In-type crystal structure have been prepared using arc-melting and melt spinning. All the rapidly quenched Mn{sub 1.5}X{sub 0.5}Sn alloys show moderate saturation magnetizations with the highest value of 458 emu/cm{sup 3} for Mn{sub 1.5}Fe{sub 0.5}Sn, but their Curie temperatures are less than 300 K. All samples except the Cr containing one show spin-glass-like behavior at low temperature. The magnetic anisotropy constants calculated from the high-field magnetization curves at 100 K are on the order of 1 Merg/cm{sup 3}. The vacuum annealing of the ribbons at 550 °C significantly improved their magnetic properties with the Curie temperature increasing from 206 K to 273 K for Mn{sub 1.5}Fe{sub 0.5}Sn.

  4. Semiconductor-to-metallic transition in Cu-substituted Ni-Mn ferrite

    NASA Astrophysics Data System (ADS)

    Ata-Allah, S. S.; Kaiser, M.

    2004-11-01

    The electrical properties of Cu-substituted Ni-Mn ferrite Ni1-xCuxMnyFe2-yO4 (with 0.0 ≤ x ≤ 1.0 and y = 0.6) are investigated by ac conductivity measurements in the frequency range 102-105 Hz and over the temperature range 300-730 K. The results obtained for these materials reveal a semiconductor-to-metallic transition as Cu content increases. All studied compositions exhibit a transition with a change in the slope of the conductivity versus temperature curve. This transition temperature is found to decrease linearly with increasing Cu concentration. Variations of dielectric permittivities ( and ) and dielectric loss tangent (tan δ) for the studied materials as a function of temperature and frequency are found to be strongly dependent on both Mn and Cu concentrations. The results for conductivity and dielectric parameters ( and ) and tan δ are explained on the basis of cation-anion-cation and cation-cation interactions over the octahedral sites in the spinel structure.

  5. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots

    NASA Astrophysics Data System (ADS)

    Ghosh, Sirshendu; Saha, Manas; Ashok, Vishal Dev; Chatterjee, Arijit; De, S. K.

    2016-04-01

    Indium sulphide (In2S3) quantum dots (QDs) of average size 6 ± 2 nm and hexagonal nanoplatelets of average size 37 ± 4 nm have been synthesized from indium myristate and indium diethyl dithiocarbamate precursors respectively. The absorbance and emission band was tuned with variation of nanocrytal size from very small in the strong confinement regime to very large in the weak confinement regime. The blue emission and its shifting with size has been explained with the donor-acceptor recombination process. The 3d element doping (Mn2+ and Cu2+) is found to be effective for formation of new emission bands at higher wavelengths. The characteristic peaks of Mn2+ and Cu2+ and the modification of In3+ peaks in the x-ray photoelectric spectrum (XPS) confirm the incorporation of Mn2+ and Cu2+ into the In2S3 matrix. The simulation of the electron paramagnetic resonance signal indicates the coexistence of isotropic and axial symmetry for In and S vacancies. Moreover, the majority of Mn2+ ions and sulphur vacancies (VS ) reside on the surface of nanocrystals. The quantum confinement effect leads to an enhancement of band gap up to 3.65 eV in QDs. The formation of Mn 3d levels between conduction band edge and shallow donor states is evidenced from a systematic variation of emission spectra with the excitation wavelength. In2S3 QDs have been established as efficient sensitizers to Mn and Cu emission centers. Fast and slow components of photoluminescence (PL) decay dynamics in Mn and Cu doped QDs are interpreted in terms of surface and bulk recombination processes. Fast and stable photodetctors with high photocurrent gain are fabricated with Mn and Cu doped QDs and are found to be faster than pure In2S3. The fastest response time in Cu doped QDs is an indication of the most suitable system for photodetector devices.

  6. Excitation dependent multicolor emission and photoconductivity of Mn, Cu doped In2S3 monodisperse quantum dots.

    PubMed

    Ghosh, Sirshendu; Saha, Manas; Ashok, Vishal Dev; Chatterjee, Arijit; De, S K

    2016-04-15

    Indium sulphide (In2S3) quantum dots (QDs) of average size 6 ± 2 nm and hexagonal nanoplatelets of average size 37 ± 4 nm have been synthesized from indium myristate and indium diethyl dithiocarbamate precursors respectively. The absorbance and emission band was tuned with variation of nanocrytal size from very small in the strong confinement regime to very large in the weak confinement regime. The blue emission and its shifting with size has been explained with the donor-acceptor recombination process. The 3d element doping (Mn(2+) and Cu(2+)) is found to be effective for formation of new emission bands at higher wavelengths. The characteristic peaks of Mn(2+) and Cu(2+) and the modification of In(3+) peaks in the x-ray photoelectric spectrum (XPS) confirm the incorporation of Mn(2+) and Cu(2+) into the In2S3 matrix. The simulation of the electron paramagnetic resonance signal indicates the coexistence of isotropic and axial symmetry for In and S vacancies. Moreover, the majority of Mn(2+) ions and sulphur vacancies (VS ) reside on the surface of nanocrystals. The quantum confinement effect leads to an enhancement of band gap up to 3.65 eV in QDs. The formation of Mn 3d levels between conduction band edge and shallow donor states is evidenced from a systematic variation of emission spectra with the excitation wavelength. In2S3 QDs have been established as efficient sensitizers to Mn and Cu emission centers. Fast and slow components of photoluminescence (PL) decay dynamics in Mn and Cu doped QDs are interpreted in terms of surface and bulk recombination processes. Fast and stable photodetctors with high photocurrent gain are fabricated with Mn and Cu doped QDs and are found to be faster than pure In2S3. The fastest response time in Cu doped QDs is an indication of the most suitable system for photodetector devices. PMID:26934114

  7. An investigation of Cr(VI) removal with metallic iron in the co-presence of sand and/or MnO2.

    PubMed

    Gheju, M; Balcu, I; Vancea, C

    2016-04-01

    This study focused on the influence of sand and/or MnO2 co-presence on the mechanism and kinetics of Cr(VI) removal with Fe(0). The process was investigated under acidic and well-mixed conditions, over the temperature range of 6-32 °C. It was shown that both mechanism and kinetics of the removal process were highly dependent on composition and dose of reactive mixture added to Cr(VI) solution. At 22 °C, indirect chemical reduction with Fe(II) was the main removal path in H2O-Fe(0)-Cr(VI) and H2O-Fe(0)-Sand-Cr(VI) system, while in H2O-Fe(0)-MnO2-Cr(VI) and H2O-Fe(0)-MnO2-Sand-Cr(VI) system removal of Cr(VI) occurred mainly via adsorption on MnO2. The pseudo zero-order kinetic model provided the best match for H2O-Fe(0)-Cr(VI) and H2O-Fe(0)-Sand-Cr(VI) system, while in H2O-Fe(0)-MnO2-Cr(VI) and H2O-Fe(0)-MnO2-Sand-Cr(VI) system the process fitted well to the pseudo second-order model. Temperature influenced the efficiency and kinetics of the process in all investigated systems, and the removal mechanism only in H2O-Fe(0)-MnO2-Cr(VI) and H2O-Fe(0)-MnO2-Sand-Cr(VI) system. PMID:26826456

  8. Interlayer thickness dependence of 90° exchange coupling in Co2MnAl/Cr/Co2MnAl epitaxial trilayer structures

    NASA Astrophysics Data System (ADS)

    Bosu, S.; Sakuraba, Y.; Saito, K.; Wang, H.; Mitani, S.; Takanashi, K.; You, C. Y.; Hono, K.

    2009-04-01

    The spacer layer thickness dependence of interlayer exchange coupling has been investigated in the fully epitaxial trilayers of the Co2MnAl (CMA)/Cr/CMA structure. A series of high-quality samples of CMA (20 nm)/Cr (tCr=0.3-8.1 nm)/CMA (10 nm) trilayers was prepared on a MgO substrate by ultrahigh vacuum compatible dc sputtering. Comparison of the results of the experiments and the simulations of magnetization curves revealed novel behavior, dominating the 90° coupling and the absence of 180° coupling. No clear oscillation, only a peak of the 90° coupling strength (J2˜-0.68 erg/cm2), was observed at tCr=1.2 nm.

  9. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    SciTech Connect

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds a somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.

  10. Electronic structure, magnetism, and antisite disorder in CoFeCrGe and CoMnCrAl quaternary Heusler alloys

    DOE PAGESBeta

    Enamullah, .; Venkateswara, Y.; Gupta, Sachin; Varma, Manoj Raama; Singh, Prashant; Suresh, K. G.; Alam, Aftab

    2015-12-10

    In this study, we present a combined theoretical and experimental study of two quaternary Heusler alloys CoFeCrGe (CFCG) and CoMnCrAl (CMCA), promising candidates for spintronics applications. Magnetization measurement shows the saturation magnetization and transition temperature to be 3 μB, 866 K and 0.9 μB, 358 K for CFCG and CMCA respectively. The magnetization values agree fairly well with our theoretical results and also obey the Slater-Pauling rule, a prerequisite for half metallicity. A striking difference between the two systems is their structure; CFCG crystallizes in fully ordered Y-type structure while CMCA has L21 disordered structure. The antisite disorder adds amore » somewhat unique property to the second compound, which arises due to the probabilistic mutual exchange of Al positions with Cr/Mn and such an effect is possibly expected due to comparable electronegativities of Al and Cr/Mn. Ab initio simulation predicted a unique transition from half metallic ferromagnet to metallic antiferromagnet beyond a critical excess concentration of Al in the alloy.« less

  11. Exchange bias through a Cu interlayer in an IrMn/Co system

    NASA Astrophysics Data System (ADS)

    Geshev, J.; Nicolodi, S.; Pereira, L. G.; Nagamine, L. C. C. M.; Schmidt, J. E.; Deranlot, C.; Petroff, F.; Rodríguez-Suárez, R. L.; Azevedo, A.

    2007-06-01

    Ferromagnetic resonance (FMR) and magnetization (MAG) measurements were used to study the exchange interaction between the antiferromagnetic and ferromagnetic layers in an IrMn/Cu/Co system as a function of the Cu spacer thickness. Although the experimental angular variations of the exchange-bias fields HebFMR and HebMAG coincide, the coupling strengths J and the Co layers’ anisotropy fields HU , obtained via numerical simulations, are different. For all Cu thicknesses JFMR>JMAG and HUFMR

  12. Nanomechanical Behavior of CoCrFeMnNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Mridha, Sanghita; Das, Santanu; Aouadi, Samir; Mukherjee, Sundeep; Mishra, Rajiv S.

    2015-08-01

    The nanomechanical behavior of the Co20Cr20Fe20Mn20Ni20 high-entropy alloy was investigated in as-cast, rolled, annealed, and thin-film forms. Dislocation nucleation was studied by repeated indents at a low load for each of the different processing conditions. Distinct displacement bursts (pop in) were observed in the loading curve marked by incipient plasticity for all the samples. The as-cast and annealed samples showed pop ins for 100% of the indents, whereas the rolled and thin-film samples showed a much lower fraction of displacement bursts. This was explained by the high density of dislocations for the cold-worked and thin-film conditions. The strong depth dependence of hardness was explained by geometrically necessary dislocations. The nanomechanical behavior and twinned microstructure indicate low stacking-fault energy for this high-entropy alloy.

  13. Mechanical cycling effects at Fe-Mn-Si-Cr-Ni SMAs obtained by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Pricop, B.; Söyler, U.; Comčneci, R. I.; Özkal, B.; Bujoreanu, L. G.

    Specimens from Fe-Mn-Si-Cr-Ni SMA, obtained by powder metallurgy and compacted through hot rolling, were subjected to tensile loading-unloading cycles. The pseudoelastic parameters were determined based on recorded stress-strain curves, and their variation tendency with increasing the number of mechanical cycles was discussed. The gauges of tensile specimens were cut after mechanical cycling and were subjected to structural and dilatometric analysis. The structure was analyzed by XRD and SEM, aiming to reveal mechanical cycling effects. The thermomechanical response on heating, of mechanically cycled specimens, was recorded by dilatometry and revealed a tendency to enhance thermal expansion as an effect of increasing the number of cycles. The microstructural changes, induced by mechanical cycling, consisted in the stress induced formation of α' martensite.

  14. Formation of dislocations, precipitates and cavities in He-implanted Mn-Cr austenitic steels

    NASA Astrophysics Data System (ADS)

    Ruedl, E.; Valdrè, G.

    1991-03-01

    Solution-annealed discs of three Mn-Cr austenitic steels containing different amounts of C and N were uniformly implanted at 310 K with 1000 appm He corresponding to ~ 0.2 dpa. The samples were subsequently aged at temperatures from 923 to 1073 K for various times and, after electropolishing, examined by TEM, EDS and EELS. A study was made of the dislocation loops developing on aging and of the compositional changes in their neighbourhood. The formation and growth of precipitates and He-filled cavities was also investigated together with the elemental segregation to the cavity surfaces. It was found that the microstructural evolution in the three materials can take various forms depending on many parameters.

  15. Potential parent compound of superconductor: Sr 2CuM 2As 2O 2 (M = Mn, Fe)

    NASA Astrophysics Data System (ADS)

    Wang, Guangtao; Zhang, Minping; Zheng, Lihua; Yang, Zongxian

    2010-10-01

    The electronic structure of Sr 2CuMn 2As 2O 2 and Sr 2CuFe 2As 2O 2 are studied by the first-principle calculations. These compounds have a body-centered-tetragonal crystal structure that consists of the CuO 2 layers similar to those in the high- T cuprate superconductor, and intermetallic MAs (M = Mn, or Fe) layers similar to the FeAs layers in high- T pnictides. Such special structure makes them as interesting candidates for new type of superconductor since they have two types of superconducting layers. However, our calculations indicate that the states in the range from -2.0 eV to +2.0 eV are dominated by Mn-3d or Fe-3d states, while the states of Cu-3d are far away from the Fermi level (in the range from -3.0 eV to -1.0 eV). Such results are significantly different with the Cu-based superconductor, like La 2CuO 4, where the states around Fermi level are dominated by Cu-3d states. Besides, we find that the mean-field magnetic ground state is the checkerboard antiferromagnetic in Cu sublattice and the stripe antiferromagnetic in Fe (or Mn) sublattice.

  16. Synthetic, structural, spectroscopic and theoretical study of a Mn(III)-Cu(II) dimer containing a Jahn-Teller compressed Mn ion.

    PubMed

    Berg, Nelly; Hooper, Thomas N; Liu, Junjie; Beedle, Christopher C; Singh, Saurabh Kumar; Rajaraman, Gopalan; Piligkos, Stergios; Hill, Stephen; Brechin, Euan K; Jones, Leigh F

    2013-01-01

    The heterobimetallic complex [Cu(II)Mn(III)(L)(2)(py)(4)](ClO(4))·EtOH (1) built using the pro-ligand 2,2'-biphenol (LH(2)), contains a rare example of a Jahn-Teller compressed Mn(III) centre. Dc magnetic susceptibility measurements on 1 reveal a strong antiferromagnetic exchange between the Cu(II) and Mn(III) ions mediated through the phenolate O-atoms (J = -33.4 cm(-1)), with magnetisation measurements at low temperatures and high fields suggesting significant anisotropy. Simulations of high-field and high frequency powder EPR data suggest a single-ion anisotropy D(Mn(III)) = +4.45 cm(-1). DFT calculations also yield an antiferromagnetic exchange for 1, though the magnitude is overestimated (J(DFT) = -71 cm(-1)). Calculations reveal that the antiferromagnetic interaction essentially stems from the Mn(d(x(2)-y(2)))-Cu(d(x(2)-y(2))) interaction. The computed single-ion anisotropy and cluster anisotropy also correlates well with experiment. A larger cluster anisotropy for the S = 3/2 state compared to the single-ion anisotropy of Mn(III) is rationalised on the basis of orbital mixing and various contributions that arise due to the spin-orbit interaction. PMID:23108057

  17. Dielectric relaxation and magnetodielectric response in DyMn0.5Cr0.5O3

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Yang, J.; Zuo, X. Z.; Kan, X. C.; Zu, L.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Sun, Y. P.

    2015-09-01

    We investigate the structural, magnetic, and magnetodielectric properties of DyMn0.5Cr0.5O3. The sample can be indexed with an orthorhombic phase with B site disordered space group Pbnm. The valence state of both Mn and Cr ions are suggested to be +3 based on the results of x-ray photoelectron spectroscopy. Two thermally excited dielectric relaxation at temperatures TN2 < T< 300 K and large magnetodielectric effect (MDC = 20%-30%) due to the disordered arrangement of Mn3+/Cr3+ ions associated with electron hopping between them are observed. The absence of any noticeable magnetoresistance effect (MR < 0.5%) demonstrates that the observed magnetodielectric effect is an intrinsic behavior. These results suggest that DyMn0.5Cr0.5O3 is a magnetodielectric compound, whose dielectric properties are dependence of the applied magnetic field, which exhibits such effects near room temperature and holds great promise for future device applications.

  18. V, Cr, and Mn in the earth, moon, EPB, and SPB and the origin of the moon - Experimental studies

    NASA Technical Reports Server (NTRS)

    Drake, Michael J.; Capobianco, Christopher J.; Newsom, Horton E.

    1989-01-01

    The abundances of V, Cr, and Mn inferred for the mantles of the earth and moon decrease in that order and are similar in both mantles (but distinct from those in the mantles of the Eucrite Parent Body and Shergottite Parent Body), suggesting a common origin for the mantles of the earth and the moon. This hypothesis was investigated on the basis of a comparison between the depletions of V, Cr, and Mn in the mantles of the earth and the moon, and the metal/silicate partition coefficients of these elements at 1260 C and 1 bar pressure among a S-bearing metallic liquid, a silicate melt, and a FeNi alloy. It was found that the earth and the moon depletions of V, Cr, and Mn are not correlated with metal/silicate partition coefficients; the V and Cr partitioned into S-rich metallic liquids under reducing conditions more strongly than Mn, consistent with the relative volatilities of these elements. This indicates that the depletion patterns of these elements in the mantles of the earth and moon cannot be attributed primarily to terrestrial core formation.

  19. The Effect of Core-Mantle Differentiation on V, Cr, and Mn: Experimental Metal/Silicate Partitioning Results

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Agee, C. B.

    2001-01-01

    The abundances of V, Cr, and Mn are similarly depleted in the Earth and Moon. We present metal/silicate partitioning results which examine if the depletions can be explained by a core formation event. Additional information is contained in the original extended abstract.

  20. A Prussian-blue type ferrimagnet Na[MnCr(CN)6]: single crystal structure and magnetic properties.

    PubMed

    Dong, Wen; Zhu, Li-Na; Song, Hai-Bin; Liao, Dai-Zheng; Jiang, Zong-Hui; Yan, Shi-Ping; Cheng, Peng; Gao, Song

    2004-04-19

    A novel Prussian-blue type ferrimagnet Na[MnCr(CN)(6)] has been prepared and characterized by single crystal X-ray analysis and magnetic measurements. The complex has a face-centered cubic lattice and shows ferrimagnetic ordering below 60 K. PMID:15074961

  1. Thermal hysteresis of permeability and transport properties of Mn substituted Mg Cu Zn ferrites

    NASA Astrophysics Data System (ADS)

    Manjurul Haque, M.; Huq, M.; Hakim, M. A.

    2008-03-01

    Mn substituted Mg-Cu-Zn ferrites of composition Mg0.35Cu0.20Zn0.45O(Fe2-xMnx O3)0.97 have been prepared by the standard double sintering ceramic technique. X-ray diffraction patterns of the samples showed single phase cubic spinel structure without any detectable impurity phases. The lattice constant is found to increase linearly with increase in Mn3+ ion concentration obeying Vegard's law. The initial permeability (μi) of the Mg-Cu-Zn ferrites exhibits thermal hysteresis when the temperature is cycled from above the Curie temperature TC to below. The sharp decrease of μi at T = TC indicates that the samples have high homogeneity according to Globus et al. The Curie temperature TC of the studied ferrite system was determined from the μi-T curves where the Hopkinson type of effect at the TC has been observed with the manifestation of a sharp fall in permeability. The Curie temperature TC is found to increase with increasing Mn content. Dc electrical resistivity increases significantly with the increase in Mn content. The ac resistivity (ρac) and dielectric constant (ɛ') of the samples are found to decrease with increase in frequency, exhibiting normal ferrimagnetic behaviour. Dielectric relaxation peaks were observed for the frequency dependence of dielectric loss tangent curves. ɛ' increases as the temperature increases, which is the normal dielectric behaviour of the magnetic semiconductor ferrite. The observed variation of electrical and dielectric properties are explained on the basis of Fe2+/Fe3+ ionic concentration as well as the electronic hopping frequency between Fe2+ and Fe3+ ions in the present samples.

  2. Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings

    SciTech Connect

    Baker, M.A.; Kench, P.J.; Tsotsos, C.; Gibson, P.N.; Leyland, A.; Matthews, A.

    2005-05-01

    This article presents results on CrCuN nanocomposite coatings grown by physical vapor deposition. The immiscibility of Cr (containing a supersaturation of nitrogen) and Cu offers the potential of depositing a predominantly metallic (and therefore tough) nanocomposite, composed of small Cr(N) metallic and/or {beta}-Cr{sub 2}N ceramic grains interdispersed in a (minority) Cu matrix. A range of CrCuN compositions have been deposited using a hot-filament enhanced unbalanced magnetron sputtering system. The stoichiometry and nanostructure have been studied by x-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, and x-ray diffraction. Hardness, wear resistance, and impact resistance have been determined by nanoindentation, reciprocating-sliding, and ball-on-plate high-cycle impact. Evolution of the nanostructure as a function of composition and correlations of the nanostructure and mechanical properties of the CrCuN coatings are discussed. A nanostructure comprised of 1-3 nm {alpha}-Cr(N) and {beta}-Cr{sub 2}N grains separated by intergranular regions of Cu gives rise to a coating with significantly enhanced resistance to impact wear.

  3. Adsorption and desorption of Zn, Cu, and Cr by sediments from the Raisin River (Michigan)

    SciTech Connect

    Young, T.C.; DePinto, J.V.; Kipp, T.W.

    1987-01-01

    Metal absorption by Raisin River sediments in vitro depended linearly on soluble metal concentration to adsorption densities of 6000-9000 ..mu..g/g with 48 hr partition coefficients of approximately 50, 30, and 25 L/g for Cu, Cr, and Zn, respectively. Partition coefficient computed from field data spanned a comparatively wider range of values in a manner consistent with the often reported adsorbent concentration effect, but other factors likely contributed, too. Desorption of Zn was complete and rapid in contrast to Cr, which was incomplete and much slower; Cu desorption was intermediate to Zn and Cr. A reversible-resistant equilibrium model could not describe the observations as Cu and Cr had not reached metastable desorption equilibria after 24 days. Metal desorption, however, could be described kinetically by distributing sorbed cations between either of two classes; rapidly desorbing and slowly desorbing cations. Sequential and simultaneous desorption models gave similar predictions. Aqueous chemical considerations suggested precipitated as well as adsorbed species could give rise to the observations, but available data did not permit adequate tests of this hypothesis. The extent to which kinetic constraints rather than irreversible reactions account for the desorption-resistant binding signifies a potentially greater metal mobility of bioavailability than would otherwise be assumed. 27 references, 5 figures, 4 tables.

  4. Adsorption and desorption of Zn, Cu, and Cr by sediments from the Raisi River (Michigan)

    SciTech Connect

    Young, T.C.; DePinto, J.V.; Kipp, T.W.

    1987-01-01

    Metal adsorption by Raisin River sediments in vitro depended linearly on soluble metal concentration to adsorption densities of 6,000-9,000 microg/g with 48 hr partition coefficients of approximately 50, 30, and 25 L/g for Cu, Cr, and Zn, respectively. Partition coefficients computed from field data spanned a comparatively wider range of values in a manner consistent with the often reported adsorbent concentration effect, but other factors likely contributed, too. Desorption of Zn was complete and rapid (24-48 hr) in contrast to Cr, which was incomplete and much slower; Cu desorption was intermediate to Zn and Cr. A reversible-resistant equilibrium model (DiToro et al. 1986) could not describe the observations as Cu and Cr had not reached metastable desorption equilibria after 24 days. Metal desorption, however, could be described kinetically by distributing sorbed cations between either of two classes; rapidly desorbing and slowly desorbing cations. Sequential and simultaneous desorption models gave similar predictions. Aqueous chemical considerations suggested precipitated as well as adsorbed species could give rise to the observations, but available data did not permit adequate tests of this hypothesis. The extent to which kinetic constraints rather than irreversible reactions account for the desorption-resistant binding signifies a potentially greater metal mobility or bioavailability than would otherwise be assumed.

  5. The effect of quaternary element on the thermodynamic parameters and structure of CuAlMn shape memory alloys

    NASA Astrophysics Data System (ADS)

    Aksu Canbay, C.; Karagoz, Z.

    2013-10-01

    In this study, the Cu-based shape memory alloys were produced by arc melting. We have investigated the effects of the alloying elements on the characteristic transformation temperatures, enthalpy, entropy values, and the structure of Cu-Al-Mn ternary system. The evolution of the transformation temperatures was studied by the differential scanning calorimetry. The characteristic transformation temperatures can be controlled by the variations in the aluminum and manganese content. Additionally, the effect of magnesium and iron on the transformation temperatures and thermodynamic parameters was investigated in the Cu-Al-Mn ternary system. The addition of the magnesium decreases the characteristic transformation temperatures of the Cu-Al-Mn system, but that of the iron increases. The structural changes of the samples were studied by X-ray diffraction measurements and optical microscope observations. Due to the low solubility of the magnesium, the magnesium addition into the Cu-Al-Mn system forms precipitates in the matrix. It is evaluated that the transformation parameters of the CuAlMn shape memory alloys can be controlled by the change of the alloying elements and the weight percentages of alloying elements.

  6. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst

    SciTech Connect

    Lu, Yongwu; Yu, Fei; Hu, Jin; Liu, Jian

    2012-04-12

    Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cu (111) was the active site for mixed alcohols synthesis, Fe2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.

  7. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments--a review.

    PubMed

    Kumpiene, Jurate; Lagerkvist, Anders; Maurice, Christian

    2008-01-01

    The spread of contaminants in soil can be hindered by the soil stabilization technique. Contaminant immobilizing amendments decrease trace element leaching and their bioavailability by inducing various sorption processes: adsorption to mineral surfaces, formation of stable complexes with organic ligands, surface precipitation and ion exchange. Precipitation as salts and co-precipitation can also contribute to reducing contaminant mobility. The technique can be used in in situ and ex situ applications to reclaim and re-vegetate industrially devastated areas and mine-spoils, improve soil quality and reduce contaminant mobility by stabilizing agents and a beneficial use of industrial by-products. This study is an overview of data published during the last five years on the immobilization of one metalloid, As, and four heavy metals, Cr, Cu, Pb and Zn, in soils. The most extensively studied amendments for As immobilization are Fe containing materials. The immobilization of As occurs through adsorption on Fe oxides by replacing the surface hydroxyl groups with the As ions, as well as by the formation of amorphous Fe(III) arsenates and/or insoluble secondary oxidation minerals. Cr stabilization mainly deals with Cr reduction from its toxic and mobile hexavalent form Cr(VI) to stable in natural environments Cr(III). The reduction is accelerated in soil by the presence of organic matter and divalent iron. Clays, carbonates, phosphates and Fe oxides were the common amendments tested for Cu immobilization. The suggested mechanisms of Cu retention were precipitation of Cu carbonates and oxy-hydroxides, ion exchange and formation of ternary cation-anion complexes on the surface of Fe and Al oxy-hydroxides. Most of the studies on Pb stabilization were performed using various phosphorus-containing amendments, which reduce the Pb mobility by ionic exchange and precipitation of pyromorphite-type minerals. Zn can be successfully immobilized in soil by phosphorus amendments and clays

  8. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    DOE PAGESBeta

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with amore » composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.« less

  9. Preparation and thermoelectric properties of ternary superionic conductor CuCrS{sub 2}

    SciTech Connect

    Chen Yuexing; Zhang Boping; Ge Zhenhua; Shang Pengpeng

    2012-02-15

    Transition metal chalcogenide CuCrS{sub 2} powder was synthesized by mechanical alloying (MA) and then consolidated by spark plasma sintering (SPS) technique at 673-1073 K. The phase structure, microstructure and thermoelectric properties of samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and Seebeck coefficient/electrical conductivity measuring system, respectively. All the bulks indicated a single phase CuCrS{sub 2}, while the high relative density over 90% were attained for the samples sintered at 873-1073 K. The electrical conductivity of bulk samples displayed a typical characteristic of semiconductor. With increasing measuring temperature, the conductive behaviour of bulk samples sintered over 973 K showed a semiconductor transformation from n-type to p-type due to the changes of main carrier type. The sample obtained by applying SPS at 873 K got the highest power factor 83.2 {mu}W m{sup -1} K{sup -2}, and the largest ZT value 0.11 at 673 K. - Graphical abstract: The samples sintered above 873 K, both of the Seebeck coefficient and electrical conductivity exhibit an increase tendency with increasing temperature, which is due to the mechanism of mix-conduction for CuCrS{sub 2}. Highlights: Black-Right-Pointing-Pointer Single phase CuCrS{sub 2} powder was synthesized by ball-milling at 425 rpm for 40 h. Black-Right-Pointing-Pointer Dense CuCrS{sub 2} bulks were fabricated using SPS techniques at sintering temperature 873-1073 K. Black-Right-Pointing-Pointer Seebeck coefficient of CuCrS{sub 2} samples sintered over 973 K change the signs. Black-Right-Pointing-Pointer Highest power factor reached 83.2 {mu}W m{sup -1} K{sup -2} at 673 K for the sample sintered at 873 K. Black-Right-Pointing-Pointer ZT value was 0.11 at 673 K for the sample sintered at 873 K.

  10. Enhanced magnetism of Cu{sub n} clusters capped with N and endohedrally doped with Cr

    SciTech Connect

    Datta, Soumendu; Banerjee, Radhashyam; Mookerjee, Abhijit

    2015-01-14

    The focus of our work is on the production of highly magnetic materials out of Cu clusters. We have studied the relative effects of N-capping as well as N mono-doping on the structural stability and electronic properties of the small Cu clusters using first principles density functional theory based electronic structure calculations. We find that the N-capped clusters are more promising in producing giant magnetic moments, such as 14 μ{sub B} for the Cu{sub 6}N{sub 6} cluster and 29 μ{sub B} for the icosahedral Cu{sub 13}N{sub 12} cluster. This is accompanied by a substantial enhancement in their stability. We suggest that these giant magnetic moments of the capped Cu{sub n} clusters have relevance to the observed room temperature ferromagnetism of Cu doped GaN. For cage-like hollow Cu-clusters, an endohedral Cr-doping together with the N-capping appears as the most promising means to produce stable giant magnetic moments in the copper clusters.

  11. Cubic structure and canted antiferromagnetism of CaMn7O12 doped with trivalent cations (Fe, Al, Cr)

    NASA Astrophysics Data System (ADS)

    Motin Seikh, Md.; Caignaert, V.; Lebedev, O. I.; Raveau, B.

    2014-02-01

    In this study, we show the dramatic effect of the doping of the octahedral sites with M3+ cations (Fe3+, Al3+ and Cr3+) upon the structure and magnetism of the rhombohedral double perovskite CaMn7O12. In the oxides CaMn7-xMxO12, charge ordering between Mn3+ and Mn4+ octahedral sites is destroyed leading to the cubic structure (Im-3), whereas the initial magnetic properties (TN~90 K) have disappeared leading to canted antiferromagnetism (TN≈50-70 K) for small x values (x ~0.2-1). A spin glass like behaviour is also observed for larger values (x~1) in the case of Fe substitution.

  12. Magnetic behavior of Ni and Co doped CuMn2O4 spinels

    SciTech Connect

    McCloy, John S.; Leslie, Clifford J.; Kaspar, Tiffany C.; Jiang, Weilin; Bordia, Rajendra K.

    2012-03-14

    Mn1.68Co0.24Ni0.48Cu0.6O4 was produced by slip casting and sintering of spray-pyrolysis produced powders. Magnetic properties of this composition were measured for the first time, as a function of processing temperature (900 or 1000°C sintering), to study the effects of Cu and Mn valence and site preference. Quantitative x-ray photoelectron spectroscopy showed that Cu+ site occupancy changed from tetrahedral to a mix of tetrahedral and octahedral with increasing sintering temperature. X-ray diffraction demonstrated that the materials had a cubic spinel structure devoid of tetragonal Jahn-Teller distortion. AC magnetic susceptibility indicated ferrimagnetic behavior below ~109 K and spin glass behavior below ~66-74 K depending on measurement frequency. Magnitudes of the AC magnetic susceptibility, DC magnetization, and Curie-Weiss temperature were lower for samples sintered at 1000°C than for those sintered at 900°C. AC susceptibility freezing temperatures were modeled with the Vogel-Fulcher law and showed characteristics intermediate between canonical spin glasses and cluster glasses. For the sample sintered at 1000°C, the activation energy for magnetic relaxation was decreased and the interaction parameter temperature was increased compared to the 900°C sample. These materials show promise for advancing fundamental understanding of consequences of multivalent, mixed site occupancy cations on magnetic properties.

  13. Magnetic behavior of Ni and Co doped CuMn2O4 spinels

    NASA Astrophysics Data System (ADS)

    McCloy, John S.; Leslie, Clifford; Kaspar, Tiffany; Jiang, Weilin; Bordia, Rajendra K.

    2012-04-01

    Mn1.68Co0.24Ni0.48Cu0.6O4 was produced via slip casting and sintering of spray-pyrolysis produced powders. The magnetic properties of this composition were measured for the first time, as a function of the processing temperature (900 °C or 1000 °C sintering), in order to study the effects of Cu and Mn valence and site preference. Quantitative x-ray photoelectron spectroscopy showed that Cu+ site occupancy changed from tetrahedral to a mix of tetrahedral and octahedral with increasing sintering temperature. X-ray diffraction demonstrated that the materials had a cubic spinel structure devoid of tetragonal Jahn-Teller distortion. ac magnetic susceptibility indicated ferrimagnetic behavior below ˜109 K and spin glass behavior below ˜66 to 74 K, depending on the measurement frequency. ac susceptibility freezing temperatures were modeled with the Vogel-Fulcher law and showed intermediate characteristics, between those of canonical spin glasses and cluster glasses.

  14. Environmental Fatigue-Crack Surface Crystallography for Al-Zn-Cu-Mg-Mn/Zr

    NASA Astrophysics Data System (ADS)

    Ro, Yunjo; Agnew, Sean R.; Gangloff, Richard P.

    2008-06-01

    The scanning electron microscope (SEM)-based electron backscattered diffraction (EBSD)/stereology technique quantitatively establishes distributions of the crystallographic characteristics of environmental-fatigue crack features for slightly overaged Al-Zn-Cu-Mg-X (X = Zr or Mn) alloys stressed in the low-growth-rate regime. Results for these homogeneous slip alloys conform to a substantial companion study of planar slip-prone Al-Cu-Mg/Li. Transgranular-crack characteristics are similar for the Mn and Zr variants, independent of grain size and recrystallization. Two morphologies of facetlike features exhibit a wide range of crystallographic orientations, change character at grain boundaries indicating an important role of grain orientation, and form in highly tensile-stressed spatial orientations about a crack tip. Similar characteristics for Al-Zn and Al-Cu suggest a common damage mechanism, speculatively attributed to hydrogen-environment embrittlement by decohesion. Slip-deformation band cracking resulting in facets near {111}, stimulated by H-enhanced localized plasticity, is not a viable mechanism for environmental fatigue. Repetitively stepped facets with surface curvature may involve H-enhanced cleavage along {100} or {110} planes subsequently distorted by plasticity. Broad-flat facets speculatively result from tensile stress-based cracking through dislocation cell structure, evolved by cyclic plasticity and containing trapped H.

  15. Ag 2CuMnO 4: A new silver copper oxide with delafossite structure

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, David; Subías, Gloria; Oró-Solé, Judith; Fraxedas, Jordi; Martínez, Benjamín; Casas-Cabanas, Montse; Canales-Vázquez, Jesús; Gonzalez-Calbet, Jose; García-González, Ester; Walton, Richard I.; Casañ-Pastor, Nieves

    2006-12-01

    The use of hydrothermal methods has allowed the synthesis of a new silver copper mixed oxide, Ag 2CuMnO 4, the first example of a quaternary oxide containing both elements. It crystallizes with the delafossite 3 R structure, thus being the first delafossite to contain both Ag and Cu. Synthesis conditions affect the final particle size (30-500 nm). Powder X-ray diffraction Rietveld refinement indicates a trigonal structure (R3¯m) and cell parameters a=2.99991 Å and c=18.428 Å, where Cu and Mn are disordered within the octahedral B positions in the plane and linearly coordinated Ag occupies de A position between layers. X-ray absorption near edge spectroscopy (XANES) for copper and manganese, and XPS for silver evidence +2, +4, and +1 oxidation states. The microstructure consists of layered particles that may form large twins showing 5 nm nanodomains. Finally, magnetic measurements reveal the existence of ferromagnetic coupling yielding in-plane moments that align antiferromagnetically at lower temperatures. The singularity of the new phase resides on the fact that is an example of a bidimensional arrangement of silver and copper in an oxide that also shows clear bidimensionality in its physical properties. That is of special relevance to the field of high Tc superconducting oxides, while the ferromagnetic coupling in a bidimensional system deserves itself special attention.

  16. Effect of Cr on Microstructure and Properties of a Series of AlTiCr x FeCoNiCu High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Li, Anmin; Ma, Ding; Zheng, Qifeng

    2014-04-01

    A series of AlTiCr x FeCoNiCu ( x: molar ratio, x = 0.5, 1.0, 1.5, 2.0, 2.5) high-entropy alloys (HEAs) were prepared by vacuum arc furnace. These alloys consist of α-phase, β-phase, and γ-phase. These phases are solid solutions. The structure of α-phase and γ-phase is face-centered cubic structure and that of β-phase is body-centered cubic (BCC) structure. There are four typical cast organizations in these alloys such as petal organization (α-phase), chrysanthemum organization (α-phase + β-phase), dendrite (β-phase), and inter-dendrite (γ-phase). The solidification mode of these alloys is affected by Chromium. If γ-phase is not considered, AlTiCr0.5FeCoNiCu and AlTiCrFeCoNiCu belong to hypoeutectic alloys; AlTiCr1.5FeCoNiCu, AlTiCr2.0FeCoNiCu, and AlTiCr2.5FeCoNiCu belong to hypereutectic alloys. The cast organizations of these alloys consist of pro-eutectic phase and eutectic structure (α + β). Compact eutectic structure and a certain amount of fine β-phase with uniform distribution are useful to improve the microhardness of the HEAs. More γ-phase and the microstructure with similar volume ratio values of α-phase and β-phase improve the compressive strength and toughness of these alloys. The compressive fracture of the series of AlTiCr x FeCoNiCu HEAs shows brittle characteristics, suggesting that these HEAs are brittle materials.

  17. Interaction of CO and NO with the spinel CuCr2O4 (100) surface: A DFT study

    NASA Astrophysics Data System (ADS)

    Xu, Xiang-Lan; Chen, Wen-Kai; Chen, Zhan-Hong; Li, Jun-Qian; Li, Yi

    The characteristics of CO and NO molecules at Cu2+ and Cr3+ ion sites on the CuCr2O4 (100) surface have been studied by first principles calculations based on spin-polarized density functional theory (DFT). The calculated results show that adsorption energies for X-down(C, N) adsorption vary in the order: Cu2+-CO>Cr3+-NO≈Cr3+-CO>Cu2+-NO. CO molecules are preferentially adsorbed at Cu sites, whereas NO molecules adsorb favorably at Cu2+ and Cr3+ ion sites. The C-O and N-O stretching frequencies are red-shifted upon adsorption. Combining the analysis of frontier molecular orbitals and Mulliken charge, for CO and NO X-down adsorption systems, the 5sigma orbitals donate electrons and the 2pi* orbitals obtain back-donated electrons. Although for NO with O-down adsorption systems, the NO-2pi* orbitals obtain back-donated electrons from substrates without 5sigma-donation. Coadsorption calculations show the CO/NO mixture adsorb selectively at the Cu2+ion site but simultaneously at the Cr3+ ion site, respectively.

  18. Structure and optoelectronic properties of spray deposited Mg doped p-CuCrO2 semiconductor oxide thin films

    NASA Astrophysics Data System (ADS)

    Rastogi, A. C.; Lim, S. H.; Desu, S. B.

    2008-07-01

    Transparent p-type Mg doped CuCrO2 wide-band-gap oxide semiconductor thin films were deposited over quartz substrates by chemical spray technique using metallo-organic precursors. Crystalline single phase CuCrO2 delafossite structure was dominant in ≥700 °C argon ambient annealed films but the as-deposited films contained spinel CuCr2O4 mixed phases. X-ray photoelectron Cr 2p spectra show spin-orbit splitting energy ˜9.8 eV consistent with Cr3+ valance state and Cr 2p3/2 resolved peaks show mixed valence state on Cr4+/Cr6+ confirming CuCr0.93Mg0.07O2 compound phase in spray deposited films. The effect of substrate temperature and film thickness on optical, electrical conductivity, and thermoelectric coefficient was investigated. Highly transparent ≥80% CuCr0.93Mg0.07O2 films with direct and indirect optical band gaps of 3.08 and 2.58 eV for 155 nm and 3.14 and 2.79 for 305 nm thin films, respectively, were obtained. Photoluminescence emission bands at 532 and 484 nm interpreted to arise from 3d94s1 and 3d10 Cu+ intraband transitions confirm mixing of Cu 3d, 4s, and 4p with O 2p orbitals necessary for realizing p-type CuCrO2 films. Electrical conductivity of CuCr0.93Mg0.07O2 films ranged 0.6-1 S cm-1 exhibiting activation energies ˜0.11 eV in 300-420 °K and ˜0.23 eV in ≥420 °K regions ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Transparent p-(CuCr1-xMgxO2)/n-(ZnO) heterojunction diodes showing rectifying current-voltage characteristics were fabricated.

  19. Creep of Uncoated and Cu-Cr Coated NARloy-Z

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Chiang, K. T.

    1998-01-01

    Stress rupture creep tests were performed on uncoated and Cu-30vol%Cr coated NARloy-Z copper alloy specimens exposed to air at 482 C to 704 C. The results showed that creep failure in air of unprotected NARloy-Z was precipitated by brittle intergranular surface cracking produced by strain assisted grain boundary oxidation (SAGBO) which in turn caused early onset of tertiary creep. For the protected specimens, the Cu-Cr coating remained adherent throughout the tests and was effective in slowing down the rate of oxygen absorption, particularly at the higher temperatures, by formation of a continuous chromium oxide scale. As the result of reducing oxygen ingress, the coating prevented SAGBO initiated early creep failure, extended creep deformation and increased the creep rupture life of NARloy-Z over the entire 482 C to 704 C test temperature range.

  20. Magnetic properties of delafossite oxide: CuCr1-xTixO2

    NASA Astrophysics Data System (ADS)

    Majee, M. K.; Bhobe, P. A.; Nigam, A. K.

    2016-05-01

    In order to increase the possibility for technological applications of CuCrO2, there have been attempts to introduce ferromagnetic (FM) order by doping at B-site. With this aim, we present here study of polycrystalline CuCr1-xTixO2 with x=0.0, 0.05, 0.1. The samples have been prepared using solid state synthesis method and characterized for its crystal structure and magnetic properties. All the samples crystallize in the 2H delafossite structure with R-3m space group. Ti substitution causes the expansion of unit cell with increase in both the lattice constants. Antiferromagnetic ordering temperature is seen to decrease with increasing Ti. Ferromagnetic-like signature is obtained in one of the compositions at low applied magnetic field of 100 Oe.

  1. Enhanced Magnetization of CuCr2O4 Thin Films by Substrate-Induced Strain

    SciTech Connect

    Iwata, Jodi M.; Chopdekar, Rajesh V.; Wong, Franklin; Nelson-Cheeseman, Brittany B.; Arenholz, Elke; Suzuki, Yuri

    2008-09-17

    We report the synthesis of epitaxial spinel CuCr{sub 2}O{sub 4} thin films that display enhanced magnetization in excess of 200% of the bulk values when grown on single-crystal (110) MgAl{sub 2}O{sub 4} substrates. Bulk CuCr{sub 2}O{sub 4} is a ferrimagnetic insulator with a net magnetic moment of 0.5 {micro}{sub B} due to its distorted tetragonal unit cell (c/a= 1.29) and frustrated triangular moment configuration. We show that through epitaxial growth and substrate-induced strain, it is possible to tune the magnetic functionality of our films by reducing the tetragonal distortion of the unit cell which effectively decreases the frustration of the magnetic moments allowing for an overall greater net moment.

  2. The electrical conductivity of CuCrZr alloy after SPD processing

    NASA Astrophysics Data System (ADS)

    Lipińska, M.; Bazarnik, P.; Lewandowska, M.

    2014-08-01

    CuCrZr alloys exhibit very good relation between mechanical properties and electrical conductivity. However, for its use in some advanced applications improvement of mechanical strength while preserving high electrical conducting is required. Therefore, in this work a CuCrZr alloy was subjected to a series of thermo-mechanical treatments, including solution annealing and water quenching, SPD processing (using hydrostatic extrusion and ECAP) as well as aging in order to improve mechanical strength. The influence of these processing procedures on microstructure features and mechanical properties was determined by TEM observation and microhardness measurements, respectively. Electrical conductivity of the samples was measured by four-points method. The results have shown that it is possible to improve mechanical strength while preserving good electrical conductivity by a proper combination of SPD processing and heat treatment.

  3. Quasi-one-dimensional antiferromagnetism and multiferroicity in CuCrO4

    NASA Astrophysics Data System (ADS)

    Law, J. M.; Reuvekamp, P.; Glaum, R.; Lee, C.; Kang, J.; Whangbo, M.-H.; Kremer, R. K.

    2011-07-01

    The bulk magnetic properties of the new quasi-one-dimensional Heisenberg antiferromagnet, CuCrO4, were characterized by magnetic susceptibility, heat capacity, optical spectroscopy, electron paramagnetic resonance and dielectric capacitance measurements, and density functional evaluations of the intrachain and interchain spin-exchange interactions. We found type-II multiferroicity below the Néel temperature of 8.2(5) K, arising from competing antiferromagnetic nearest-neighbor (Jnn) and next-nearest-neighbor (Jnnn) intrachain spin-exchange interactions. Experimental and theoretical results indicate that the ratio Jnn/Jnnn is close to 2, putting CuCrO4 in the vicinity of the Majumdar-Ghosh point.

  4. Quasi-one-dimensional antiferromagnetism and multiferroicity in CuCrO4

    NASA Astrophysics Data System (ADS)

    Kremer, Reinhard K.; Law, J. M.; Reuvekamp, P.; Glaum, R.; Lee, C.; Kang, J.; Whangbo, M.-H.

    2012-02-01

    The bulk magnetic properties of the new quasi-one-dimensional Heisenberg antiferromagnet, CuCrO4, were characterized by magnetic susceptibility, heat capacity, optical spectroscopy, EPR and dielectric capacitance measurements and density functional evaluations of the intra- and interchain spin exchange interactions. We found type-II multiferroicity below the N'eel temperature of 8.2(5) K, arising from competing antiferromagnetic nearest-neighbor (Jnn) and next-nearest-neighbor (Jnnn) intra-chain spin exchange interactions. Experimental and theoretical results indicate that the ratio Jnn/Jnnn is close to 2, putting CuCrO4 in the vicinity of the Majumdar-Ghosh point. First low-temperature neutron powder diffraction data are consistent with a canted magnetic structure below ˜8 K.

  5. Neutron scattering study of spin ordering and stripe pinning in superconducting La<mn>1.93mn>Sr>0.07mn>CuO>4mn>

    SciTech Connect

    Jacobsen, H.; Zaliznyak, I. A.; Savici, A. T.; Winn, B. L.; Chang, S.; Hücker, M.; Gu, G. D.; Tranquada, J. M.

    2015-11-20

    The relationships among charge order, spin fluctuations, and superconductivity in underdoped cuprates remain controversial. We use neutron scattering techniques to study these phenomena in La<mn>1.93mn>Sr>0.07mn>CuO>4mn> a superconductor with a transition temperature of Tc = 20 K. At T<< Tc, we find incommensurate spin fluctuations with a quasielastic energy spectrum and no sign of a gap within the energy range from 0.2 to 15 meV. A weak elastic magnetic component grows below ~ 10 K, consistent with results from local probes. Regarding the atomic lattice, we have discovered unexpectedly strong fluctuations of the CuO6 octahedra about Cu-O bonds, which are associated with inequivalent O sites within the CuO2 planes. Moreover, we observed a weak elastic (3 30) superlattice peak that implies a reduced lattice symmetry. The presence of inequivalent O sites rationalizes various pieces of evidence for charge stripe order in underdoped La2-xSrxCuO4. The coexistence of superconductivity with quasi-static spin-stripe order suggests the presence of intertwined orders; however, the rotation of the stripe orientation away from the Cu-O bonds might be connected with evidence for a finite gap at the nodal points of the superconducting gap function.

  6. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst

    DOE PAGESBeta

    Lu, Yongwu; Yu, Fei; Hu, Jin; Liu, Jian

    2012-04-12

    Zn-Mn promoted Cu-Fe based catalyst was synthesized by the co-precipitation method. Mixed alcohols synthesis from syngas was studied in a half-inch tubular reactor system after the catalyst was reduced. Zn-Mn promoted Cu-Fe based catalyst was characterized by SEM-EDS, TEM, XRD, and XPS. The liquid phase products (alcohol phase and hydrocarbon phase) were analyzed by GC-MS and the gas phase products were analyzed by GC. The results showed that Zn-Mn promoted Cu-Fe based catalyst had high catalytic activity and high alcohol selectivity. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbons were also very high. Cumore » (111) was the active site for mixed alcohols synthesis, Fe2C (101) was the active site for olefin and paraffin synthesis. The reaction mechanism of mixed alcohols synthesis from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Here, Zn-Mn promoted Cu-Fe based catalyst can be regarded as a potential candidate for catalytic conversion of biomass-derived syngas to mixed alcohols.« less

  7. Influence of MnC2O4 microadditives on combustion characteristics of CuO/Al nanoenergetics

    NASA Astrophysics Data System (ADS)

    Painuly, Madhusudan; Patel, Vinay Kumar; Bhattacharya, Shantanu

    2016-05-01

    In this work, we have investigated the catalytic effect of MnC2O4 microrods on combustion characteristics of CuO/nAl nanoenergetic composites. CuO nanorods were prepared by solid state synthesis method using the nonionic surfactant of poly(ethylene)glycol of molecular weight 400 (PEG400). The crystal information and microstructure of CuO/nAl nanoenergetics were studied by X-ray diffractometry and Transmission Electron microscopy. Microrods shaped manganese oxalate (MnC2O4) were fabricated by using mild thermal precipitation and aging process and confirmed by energy dispersive X-ray spectroscopy (EDS). The microstructures of MnC2O4 microrods and the nanoenergetic composites of CuO/nAl/MnC2O4 were characterized by Field emission scanning electron microscopy (FE-SEM) imaging. The addition of MnC2O4 microrods has demonstrated a significant enhancement in dynamic pressure-time characteristics of CuO/nAl nanoenergetics.

  8. Synthesis and high temperature transport properties of new quaternary layered selenide NaCuMnSe{sub 2}

    SciTech Connect

    Pavan Kumar, V.; Varadaraju, U.V.

    2014-04-01

    Synthesis and high temperature transport properties of NaCu{sub 1+x}Mn{sub 1−x}Se{sub 2}, (x=0−0.75) a new quaternary layered selenide, are reported. NaCuMnSe{sub 2} crystallizes in a trigonal unit cell with space group of P-3m1 (a=4.1276 Å, c=7.1253 Å). The isovalent substitution of Mn{sup 2+} by Cu{sup 2+} is carried out. All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. Compositions with x=0 and 0.025 follow thermally activated behavior. With increase in copper concentration the conduction mechanism transforms to 2D variable range hopping (VRH) for x=0.05 and 0.075. - Graphical abstract: Crystal structure of NaCuMnSe{sub 2}. - Highlights: • A new quaternary layered selenide NaCuMnSe{sub 2} is synthesized. • All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. • Conduction mechanism transforms from thermally activated behavior to 2D variable range hopping with increase in copper concentration.

  9. Synthesis and luminescence properties of ZnS and metal (Mn, Cu)-doped-ZnS ceramic powder

    NASA Astrophysics Data System (ADS)

    Ummartyotin, S.; Bunnak, N.; Juntaro, J.; Sain, M.; Manuspiya, H.

    2012-03-01

    ZnS and metal (Mn, Cu)-doped-ZnS were successfully prepared by wet chemical synthetic route. The understanding of substituted metal ions (Mn, Cu) into ZnS leads to transfer the luminescent centre by small amount of metal dopant (Mn, Cu). Fourier transform infrared and X-ray diffraction were used to determine chemical bonding and crystal structure, respectively. It showed that small amount of metal (Mn, Cu) can be completely substituted into ZnS lattice. X-ray fluorescence was used to confirm the existence of metal-doped ZnS. Scanning electron microscope revealed that their particles exhibits blocky particle with irregular sharp. Laser confocal microscope and photoluminescence spectroscopy showed that ZnS and metal-doped-ZnS exhibited intense, stable, and tunable emission covering the blue to red end of the visible spectrum. ZnS, Mn-doped-ZnS and Cu-doped-ZnS generated blue, yellow and green color, respectively.

  10. CuZnSOD and MnSOD immunoreactivity in brain stem motor neurons from amyotrophic lateral sclerosis patients.

    PubMed

    Liu, Y; Brooks, B R; Taniguchi, N; Hartmann, H A

    1998-01-01

    Motor neurons from the brain stems of amyotrophic lateral sclerosis (ALS) and control patients were examined with immunoantibodies to CuZn-superoxide dismutase (CuZnSOD) and Mn-superoxide dismutase (MnSOD). We found that there was a marked staining for CuZnSOD in all the motor nuclei, the hypoglossus, ambiguus, facialis and trigeminus from the ALS patients, but not in the controls. The same neurons from the ALS patients also stained very intensely for MnSOD, whereas the neurons from the control patients stained weakly or not at all. Loss of neurons was also a very consistent finding and was noted in all the motor nuclei from the ALS patients. There was a proliferation of glial cells which stained strongly both for CuZnSOD and for MnSOD accompanying the loss of the neurons. These results indicated that there was an apparent increase of superoxide dismutase immunoreactivity in motor neurons of ALS patients. We conclude that CuZnSOD and MnSOD immunoreactivity is increased in motor neurons and glia in the brain stems of patients with ALS, specific for the terminal phase of this disease. PMID:9452823

  11. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.

  12. Study on the growth and corrosion resistance of manganese phosphate coatings on 30CrMnMoTi alloy steel

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Xie, Liang-bo; Hu, Jia; Li, Yun; Zhang, Wen-ting

    Due to containing some alloy elements such as chromium, 30CrMnMoTi steel is usually difficult to be phosphated. In present paper, the growth process of the phosphate coating on 30CrMnMoTi alloy steel fabricated by a high temperature manganese phosphating was investigated. The microstructure, surface morphology, composition and corrosion resistance of the phosphate coatings were analyzed by XRD, SEM, EDS and electrochemical polarization method, respectively. The time dependence of open circuit potential (OCP) and the weight of the coating were also measured. It is found that the phosphate coating is mainly composed of (Mn,Fe)5H2(PO4)4·4H2O and consists of a lot of close packed lump crystallites. Based on the time dependence of morphology and the weight of phosphate films, it shows that the phosphating process mainly includes three stages: corrosion of the substrate, creation and growth of phosphate crystal nucleus and thickening of phosphate coating. For 30CrMnMoTi steel, it takes at least 30 seconds and 3 minutes for the first and second step, respectively: at the beginning stage of phospahting process, a lot of bubbles emit, then a complete film will form at the end of bubbling, and the nucleation of phosphate film is inhomogeneous, phosphate crystal nucleus usually forms preferentially at grain boundary. The coating weight-time curve is similar to that of the parabolic growth. The electrochemical polarization measurement shows that the corrosion potentials of the phosphated steel shifted positively about 480 mV than the bare steel and the results of neutral salt spray test (NSS) could reach 24 h, indicating the phosphating improved the corrosion resistance of the 30CrMnMoTi alloy steel.

  13. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Yu, Lihua; Wu, Dan; Huang, Liping; Zhou, Peng; Quan, Xie; Chen, Guohua

    2015-01-01

    Microbial fuel cells (MFCs) using either Cr(VI) (MFCsCr) or Cu(II) (MFCsCu) as a final electron acceptor, are stacked to self-drive microbial electrolysis cells (MECs) using Cd(II) (MECsCd) as an electron acceptor for simultaneous reduction of Cr(VI) in MFCsCr, Cu(II) in MFCsCu and Cd(II) in MECsCd with no external energy consumption. Titanium sheet (TS) and carbon rod (CR) as the cathodes of MECsCd are assessed for efficient system performance. MFCsCr and MFCsCu in series is superior to the parallel configuration, and higher Cd(II) reduction along with simultaneous Cr(VI) and Cu(II) reduction supports TS function as a good cathode material. Conversely, CR can not entirely proceed Cd(II) reduction in MECsCd despite of more Cr(VI) and Cu(II) reduction in the same serial configuration than either system alone. While a decrease in cathode volume in both MFCsCr and MFCsCu with serial connection benefits to reduction of Cr(VI) in MFCsCr and Cu(II) in MFCsCu, Cd(II) reduction in MECsCd is substantially enhanced under a decrease in cathode volume in individual MFCsCr and serially connected with volume-unchanged MFCsCu. This study demonstrates simultaneous Cr(VI), Cu(II) and Cd(II) recovery from MFCsCr-MFCsCu-MECsCd self-driven system is feasible, and TS as the cathodes of MECsCd is critical for efficient system performance.

  14. Paramagnetic to antiferromagnetic transition in epitaxial tetragonal CuMnAs (invited)

    NASA Astrophysics Data System (ADS)

    Hills, V.; Wadley, P.; Campion, R. P.; Novak, V.; Beardsley, R.; Edmonds, K. W.; Gallagher, B. L.; Ouladdiaf, B.; Jungwirth, T.

    2015-05-01

    In this paper, we use neutron scattering and electrical transport to investigate the paramagnetic to antiferromagnetic phase transition in tetragonal CuMnAs films on GaP(001). X-ray diffraction and cross-sectional transmission electron microscopy measurements show that the films are chemically ordered with high structural quality. The temperature dependence of the structurally forbidden (100) neutron scattering peak is used to determine the Néel temperature, TN. We then demonstrate the presence of a clear peak in the temperature derivative of the resistivity around TN. The effect of disorder-induced broadening on the shape of the peak is discussed.

  15. Paramagnetic to antiferromagnetic transition in epitaxial tetragonal CuMnAs (invited)

    SciTech Connect

    Hills, V.; Wadley, P. Campion, R. P.; Beardsley, R.; Edmonds, K. W.; Gallagher, B. L.; Novak, V.; Ouladdiaf, B.; Jungwirth, T.

    2015-05-07

    In this paper, we use neutron scattering and electrical transport to investigate the paramagnetic to antiferromagnetic phase transition in tetragonal CuMnAs films on GaP(001). X-ray diffraction and cross-sectional transmission electron microscopy measurements show that the films are chemically ordered with high structural quality. The temperature dependence of the structurally forbidden (100) neutron scattering peak is used to determine the Néel temperature, T{sub N}. We then demonstrate the presence of a clear peak in the temperature derivative of the resistivity around T{sub N}. The effect of disorder-induced broadening on the shape of the peak is discussed.

  16. Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu

    DOE PAGESBeta

    Barabash, Rozaliya I.; Barabash, Oleg M.; Popov, Dmitry; Shen, Guoyin; Park, Changyong; Yang, Wenge

    2015-01-31

    X-ray microdiffraction and scanning electron microscopy studies reveal 10 M martensitic structure with a highly correlated multiscale twin hierarchy organization in NiMnGaFeCu shape memory alloys. In this paper, high compatibility is found at the twin interfaces resulting in a highly correlated twinned lattice orientation across several laminate levels. The lattice unit cell is described as monoclinic I-centered with a = 4.28 Å, b = 4.27 Å, c = 5.40 Å, γ = 78.5°. The modulation is found parallel to the b axis. Finally, thin tapered needle-like lamellae and branching are observed near the twin boundaries.

  17. Two-dimensional effects at the Fermi level of the c(2×2)-MnCu/Cu( 0 0 1 ) surface alloy

    NASA Astrophysics Data System (ADS)

    Gallego, S.; Soria, F.; Muñoz, M. C.

    2003-02-01

    A detailed study of the electronic structure of the c(2×2)-MnCu/Cu(0 0 1) surface alloy at the Fermi level is presented. We show that the complex topology of the two-dimensional momentum distribution of the electrons is due to the sum of two effects: the projection of the bulk Fermi surface onto the (2×2) plane, and the presence of new electronic states induced by the minority spin band of Mn. The crucial role of the surface potential in the intensity and dispersion of the states is discussed.

  18. Investigation on the microstructure and mechanical properties of CuCrZr after manufacturing thermal cycle for plasma facing component

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Jung, Yang-Il; Choi, Byung-Kwon; Lee, Jung-Suk; Jeong, Yong Hwan; Hong, Bong Guen

    2011-10-01

    The effects of manufacturing thermal cycle on the various mechanical properties of CuCrZr were investigated. Vickers hardness was changed with an aging temperature in an identical manner with the strength change in a wide range of heat treatment. The change of Charpy impact energy with an aging temperature exhibited an opposite trend to the changes of the strength and hardness. At least in terms of the impact energy of CuCrZr, aging at a higher temperate would be preferable if the strength of CuCrZr could be maintained higher than the limitation value after the completion of the fabrication of ITER first wall. The fatigue life of CuCrZr was influenced to a certain extent by the cooling rate and the aging temperature. Especially in the higher strain amplitude, the contribution of the elastic and plastic components to the fatigue response was dependent on the yield strength which is determined by the aging temperature.

  19. Monolithic Cu-Cr-Nb Alloys for High Temperature, High Heat Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Locci, Ivan E.; Michal, Gary M.; Humphrey, Derek M.

    1999-01-01

    Work during the prior four years of this grant has resulted in significant advances in the development of Cu-8 Cr4 Nb and related Cu-Cr-Nb alloys. The alloys are nearing commercial use in the Reusable Launch Vehicle (RLV) where they are candidate materials for the thrust cell liners of the aerospike engines being developed by Rocketdyne. During the fifth and final year of the grant, it is proposed to complete development of the design level database of mechanical and thermophysical properties and transfer it to NASA Glenn Research Center and Rocketdyne. The database development work will be divided into three main areas: Thermophysical Database Augmentation, Mechanical Testing and Metallography and Fractography. In addition to the database development, work will continue that is focussed on the production of alternatives to the powder metallurgy alloys currently used. Exploration of alternative alloys will be aimed at both the development of lower cost materials and higher performance materials. A key element of this effort will be the use of Thermo-Calc software to survey the solubility behavior of a wide range of alloying elements in a copper matrix. The ultimate goals would be to define suitable alloy compositions and processing routes to produce thin sheets of the material at either a lower cost, or, with improved mechanical and thermal properties compared to the current Cu-Cr-Nb powder metallurgy alloys.

  20. Effect of Cr and Mn ions on the structure and magnetic properties of GaFeO{sub 3}: Role of the substitution site

    SciTech Connect

    Saha, Rana; Shireen, Ajmala; Shirodkar, Sharmila N.; Waghmare, Umesh V.; Sundaresan, A.; Rao, C.N.R.

    2011-09-15

    Effect of substitution of Cr and Mn in the Fe and Ga sites of GaFeO{sub 3} on the structural parameters and magnetic properties has been investigated by preparing GaFe{sub 1-x}Cr{sub x}(Mn{sub x})O{sub 3} and Ga{sub 1-x}Cr{sub x}(Mn{sub x})FeO{sub 3} starting with appropriate oxide precursors. It is shown that, starting with Cr or Mn substituted Ga{sub 2}O{sub 3}, one obtains Ga{sub 1-x}Cr{sub x}(Mn{sub x})FeO{sub 3}, while reaction of Cr or Mn substituted {alpha}-Fe{sub 2}O{sub 3} with Ga{sub 2}O{sub 3} yields GaFe{sub 1-x}Cr{sub x}(Mn{sub x})O{sub 3}. The structural parameters and magnetic properties vary significantly with the substitution site of Cr showing a large decrease in the unit cell parameters as well as the T{sub C} and other magnetic properties when the substitution is at the octahedral Fe (1, 2) site. Substitution of Cr at the octahedral Ga2 site results in marginal changes. Substitution of Mn in the Ga and Fe sites also show differences although the changes themselves are much smaller. First-principles calculations confirm such site-specificity and show how Cr substitution affects the properties differently when substituted at the Ga2 and Fe1 sites. - Graphical abstract: The important role of site-specific substitution of transition metal ions on the structure and magnetic properties of GaFeO{sub 3} has been investigated experimentally and theoretically. Highlights: > Substitution of transition metal ions to specific cation site. > Ionic radii of the cation dictate the disorder associated with the specific site. > Site-specificity explains magnetic ordering and structural parameters.

  1. Suppression of Grain Boundaries in Graphene Growth on Superstructured Mn-Cu(111) Surface

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Chen, Hua; Lan, Haiping; Cui, Ping; Schulze, Tim P.; Zhu, Wenguang; Zhang, Zhenyu

    2012-12-01

    As undesirable defects, grain boundaries (GBs) are widespread in epitaxial graphene using existing growth methods on metal substrates. Employing density functional theory calculations, we first identify that the misorientations of carbon islands nucleated on a Cu(111) surface lead to the formation of GBs as the islands coalesce. We then propose a two-step kinetic pathway to effectively suppress the formation of GBs. In the first step, large aromatic hydrocarbon molecules are deposited onto a 3×3 superstructured Cu-Mn alloyed surface to seed the initial carbon clusters of a single orientation; in the second step, the seeded islands are enlarged through normal chemical vapor deposition of methane to form a complete graphene sheet. The present approach promises to overcome a standing obstacle in large scale single-crystal graphene fabrication.

  2. Complexes of arabinogalactan of Pereskia aculeata and Co2+, Cu2+, Mn2+, and Ni2+.

    PubMed

    Merce, A L; Landaluze, J S; Mangrich, A S; Szpoganicz, B; Sierakowski, M R

    2001-01-01

    The main interest in the biopolymer arabinogalactan is that it is edible. Complementing its high protein percentage, when complexed to essential metal ions, widens the use in food and pharmacology industries and technologies. The binding constants of Co2+, Cu2+, Mn2+ and Ni2+ with arabinogalactan, extracted from the leaves of Pereskia aculeata from Brazil were determined by potentiometric titrations and also the speciation according to pH values. The complexed species proposed by potentiometric titrations and the unique complexing ability of galacturonic acid groups towards Cu2+ and Ni2+ in the tridimensional web structure of arabinogalactan were confirmed by IR and EPR spectroscopies. The thermal stability of the complexed species also varied with the metal ion employed in the complexation when compared to the biopolymer alone. These complexes are new sources of additives for the food and pharmacology industries and carriers of essential metal ions to animal and vegetal biochemistry. PMID:11315807

  3. Flower-, wire-, and sheet-like MnO2-deposited diatomites: Highly efficient absorbents for the removal of Cr(VI).

    PubMed

    Du, Yucheng; Wang, Liping; Wang, Jinshu; Zheng, Guangwei; Wu, Junshu; Dai, Hongxing

    2015-03-01

    Flower-, wire-, and sheet-like MnO2-deposited diatomites have been prepared using a hydrothermal method with Mn(Ac)2, KMnO4 and/or MnSO4 as Mn source and diatomite as support. Physical properties of the materials were characterized by means of numerous analytical techniques, and their behaviors in the adsorption of chromium(VI) were evaluated. It is shown that the MnO2-deposited diatomite samples with different morphologies possessed high surface areas and abundant surface hydroxyl groups (especially the wire-like MnO2/diatomite sample). The wire-like MnO2/diatomite sample showed the best performance in the removal of Cr(VI), giving the maximum Cr(VI) adsorption capacity of 101 mg/g. PMID:25766015

  4. X-ray absorption study of the ferromagnetic Cu moment at the YBa2Cu3O7/La2 /3Ca1 /3MnO3 interface and variation of its exchange interaction with the Mn moment

    NASA Astrophysics Data System (ADS)

    Sen, K.; Perret, E.; Alberca, A.; Uribe-Laverde, M. A.; Marozau, I.; Yazdi-Rizi, M.; Mallett, B. P. P.; Marsik, P.; Piamonteze, C.; Khaydukov, Y.; Döbeli, M.; Keller, T.; Biškup, N.; Varela, M.; Vašátko, J.; Munzar, D.; Bernhard, C.

    2016-05-01

    With x-ray absorption spectroscopy and polarized neutron reflectometry we studied how the magnetic proximity effect at the interface between the cuprate high-TC superconductor YBa2Cu3O7 (YBCO) and the ferromagnet La2 /3Ca1 /3MnO3 (LCMO) is related to the electronic and magnetic properties of the LCMO layers. In particular, we explored how the magnitude of the ferromagnetic Cu moment on the YBCO side depends on the strength of the antiferromagnetic (AF) exchange coupling with the Mn moment on the LCMO side. We found that the Cu moment remains sizable if the AF coupling with the Mn moments is strongly reduced or even entirely suppressed. The ferromagnetic order of the Cu moments thus seems to be intrinsic to the interfacial CuO2 planes and related to a weakly ferromagnetic intraplanar exchange interaction. The latter is discussed in terms of the partial occupation of the Cu 3 d3 z2-r2 orbitals, which occurs in the context of the so-called orbital reconstruction of the interfacial Cu ions.

  5. Comparative study of supported CuOx and MnOx catalysts for the catalytic wet air oxidation of β-naphthol

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Yu, Chaoying; Zhao, Peiqing; Chen, Gexin

    2012-09-01

    MnOx/nano-TiO2, MnOx/Al2O3-TiO2 (Al-Ti), CuOx/nano-TiO2 and CuOx/Al-Ti were prepared and their application in catalytic wet air oxidation (CWAO) of β-naphthol were investigated. The catalysts had been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) measurements. Phases of CuO, Cu2O, CuAl2O4, MnO2 and Mn2O3 could be found on the surface of the aforementioned catalysts. Significant differences in activities were observed among the prepared catalysts. Compared to CuOx/nano-TiO2, the combined action of highly dispersed CuO as well as CuAl2O4 of CuOx/Al-Ti helped to achieve higher activity for the CWAO of β-naphthol, while the Cu2O component lead to lower efficiency of CuOx/nano-TiO2. On the surface of MnOx/nano-TiO2, both the larger amount of highly dispersed MnO2 and the stronger electron transfer between MnO2 and Mn2O3 were helpful to promote the activity for the degradation of β-naphthol. However, the higher amount of bulk MnO2 and the weaker electron transfer for MnOx/Al-Ti were unfavorable to increase its efficiency. Among the four catalysts as-prepared, MnOx/nano-TiO2 was identified the highest activity with 93.7% COD removal.

  6. Synthesis and high temperature transport properties of new quaternary layered selenide NaCuMnSe2

    NASA Astrophysics Data System (ADS)

    Pavan Kumar, V.; Varadaraju, U. V.

    2014-04-01

    Synthesis and high temperature transport properties of NaCu1+xMn1-xSe2, (x=0-0.75) a new quaternary layered selenide, are reported. NaCuMnSe2 crystallizes in a trigonal unit cell with space group of P-3m1 (a=4.1276 Å, c=7.1253 Å). The isovalent substitution of Mn2+ by Cu2+ is carried out. All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. Compositions with x=0 and 0.025 follow thermally activated behavior. With increase in copper concentration the conduction mechanism transforms to 2D variable range hopping (VRH) for x=0.05 and 0.075.

  7. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt.% Cu addition.

    PubMed

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr2O3, CrO2, WO3, Cu2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. PMID:27040193

  8. Characterization of the surface of Fe-19Mn-18Cr-C-N during heat treatment in a high vacuum - An XPS study

    SciTech Connect

    Zumsande, K.; Weddeling, A.; Hryha, E.; Huth, S.; Nyborg, L.; Weber, S.; Krasokha, N.; Theisen, W.

    2012-09-15

    Nitrogen-containing CrMn austenitic stainless steels offer evident benefits compared to CrNi-based grades. The production of high-quality parts by means of powder metallurgy could be an appropriate alternative to the standard molding process leading to improved properties. The powder metallurgical production of CrMn austenitic steel is challenging on account of the high oxygen affinity of Mn and Cr. Oxides hinder the densification processes and may lower the performance of the sintered part if they remain in the steel after sintering. Thus, in evaluating the sinterability of the steel Fe-19Mn-18Cr-C-N, characterization of the surface is of great interest. In this study, comprehensive investigations by means of X-ray photoelectron spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy were performed to characterize the surface during heat treatment in a high vacuum. The results show a shift of oxidation up to 600 Degree-Sign C, meaning transfer of oxygen from the iron oxide layer to Mn-based particulate oxides, followed by progressive reduction and transformation of the Mn oxides into stable Si-containing oxides at elevated temperatures. Mass loss caused by Mn evaporation was observed accompanied by Mn oxide decomposition starting at 700 Degree-Sign C. - Highlights: Black-Right-Pointing-Pointer Surface characterization by means of XPS, SEM, and EDX analyses. Black-Right-Pointing-Pointer Heat treatment of a high CrMn powder. Black-Right-Pointing-Pointer Transfer of oxygen from the iron oxide layer to manganese-based particulate oxides. Black-Right-Pointing-Pointer Progressive reduction of Mn oxides. Black-Right-Pointing-Pointer Transformation of the Mn oxides into stable Si-containing oxides.

  9. Effects of different manganese precursors as promoters on catalytic performance of CuO-MnOx/TiO2 catalysts for NO removal by CO.

    PubMed

    Sun, Chuanzhi; Tang, Yingjie; Gao, Fei; Sun, Jingfang; Ma, Kaili; Tang, Changjin; Dong, Lin

    2015-06-28

    Two different precursors, manganese nitrate (MN) and manganese acetate (MA), were employed to prepare two series of catalysts, i.e., xCuyMn(N)/TiO2 and xCuyMn(A)/TiO2, by a co-impregnation method. The catalysts were characterized by XRD, LRS, CO-TPR, XPS and EPR spectroscopy. The results suggest that: (1) both xCuyMn(N)/TiO2 and xCuyMn(A)/TiO2 catalysts exhibit much higher catalytic activities than an unmodified Cu/TiO2 catalyst in the NO + CO reaction. Furthermore, the activities of catalysts modified with the same amount of manganese are closely dependent on manganese precursors. (2) The enhancement of activities for Mn-modified catalysts should be attributed to the formation of the surface synergetic oxygen vacancy (SSOV) Cu(+)-□-Mn(y+) in the reaction process. Moreover, since the formation of the SSOV (Cu(+)-□-Mn(3+)) in the xCuyMn(N)/TiO2 catalyst is easier than that (Cu(+)-□-Mn(2+)) in the xCuyMn(A)/TiO2 catalyst, the activity of the xCuyMn(N)/TiO2 catalyst is higher than that of the xCuyMn(A)/TiO2 catalyst. This conclusion is well supported by the XPS and EPR results. PMID:26027847

  10. Effect of aluminum substitution on structural and electromagnetic properties of nanocrystalline MgCuMn ferrites

    SciTech Connect

    Ramesh, T. E-mail: ramanasarabu@gmail.com; Kumar, S. Senthil; Shinde, R. S.; Murthy, S. R.

    2015-06-24

    The effect of substitution of nonmagnetic Al{sup 3+} ions on the structural and electromagnetic properties were studied in nanocrystalline ferrite series of Mg{sub 0.8}Cu{sub 0.2}Al{sub x}Fe{sub 1.95-x}Mn{sub 0.05}O{sub 4} where x varies 0-0.4 in steps of 0.1. This series was synthesized by using microwave hydrothermal method. The nanocrystalline ferrite phase was observed at temperature 150°C/40 min. Synthesized powders were characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The synthesized powders were densified using microwave sintering method at 950°C/40 min. The sintered samples were characterized using XRD. Surface morphology was observed by using field effective scanning electron microscopy (FESEM). The electrical and magnetic properties were measured at room temperature. These results led us to interfere that the values of d.c resistivity increases and dielectric constant, initial permeability, saturation magnetization and Curie temperature were observed to be decreased with the substitution of Al{sup 3+} ions with those of Fe{sup 3+}. The low dielectric and magnetic losses and low magnetization exhibited by aluminum substituted MgCuMn ferrites makes them find applications in microwave devices.

  11. Microstructure and microhardness of nanostructured Al-4.6Cu-Mn alloy ribbons

    NASA Astrophysics Data System (ADS)

    Chen, Zhong-wei; Fan, Qin-ying; Zhao, Kai

    2015-08-01

    The microstructural characteristics and microhardness of nanostructured Al-4.6Cu-Mn ribbons produced by melt spinning were investigated using field-emission gun scanning electron microscopy, transmission electron microscopy, and hardness testing, and the results were compared to those of similar ribbons manufactured by direct-chill casting. It is shown that the nanostructure of the as-melt-spun ribbons consists of α-Al dendrites with a secondary dendrite arm spacing of approximately 0.55-0.80 μm and ultrafine eutectic crystals of a nanosized scale of approximately 100-200 nm on dendritic boundaries. The solidification time and cooling rate of 46-μm-thick ribbons were estimated to be 1.3 × 10-6 s and 4.04 × 106 K·s-1, respectively. At an aging temperature of 190°C, the coherent θ″ phase in aged ribbons gradually transforms into nanoscale θ'-phase platelets as the aging time is extended from 2 to 8 h; the rod-like morphology of the T (Al20Cu2Mn3) dispersoid with 120-160-nm diameter also forms, which results in peak aging hardness. The precipitation behaviors of aged ribbons cannot be changed at the high cooling rates of as-cast ribbons. However, a finer and more uniformly distributed microstructure and a supersaturated solid solution at a high cooling rate can shorten the time required to obtain a certain aging hardness before peak hardness.

  12. [CoCuMnOx Photocatalyzed Oxidation of Multi-component VOCs and Kinetic Analysis].

    PubMed

    Meng, Hai-long; Bo, Long-li; Liu, Jia-dong; Gao, Bo; Feng, Qi-qi; Tan, Na; Xie, Shuai

    2016-05-15

    Solar energy absorption coating CoCuMnOx was prepared by co-precipitation method and applied to photodegrade multi- component VOCs including toluene, ethyl acetate and acetone under visible light irradiation. The photocatalytic oxidation performance of toluene, ethyl acetate and acetone was analyzed and reaction kinetics of VOCs were investigated synchronously. The research indicated that removal rates of single-component toluene, ethyl acetate and acetone were 57%, 62% and 58% respectively under conditions of 400 mg · m⁻³ initial concentration, 120 mm illumination distance, 1 g/350 cm² dosage of CoCuMnOx and 6 h of irradiation time by 100 W tungsten halogen lamp. Due to the competition among different VOCs, removal efficiencies in three-component mixture were reduced by 5%-26% as compared with single VOC. Degradation processes of single-component VOC and three-component VOCs both fitted pseudo first order reaction kinetics, and kinetic constants of toluene, ethyl acetate and acetone were 0.002, 0.002 8 and 0.002 33 min⁻¹ respectively under single-component condition. Reaction rates of VOCs in three-component mixture were 0.49-0.88 times of single components. PMID:27506018

  13. Application of Cu-Al-Mn superelastic alloy bars as reinforcement elements in concrete beams

    NASA Astrophysics Data System (ADS)

    Shrestha, Kshitij C.; Araki, Yoshikazu; Nagae, Takuya; Yano, Hayato; Koetaka, Yuji; Omori, Toshihiro; Sutou, Yuji; Kainuma, Ryosuke; Ishida, Kiyohito

    2012-04-01

    Experimental works are done to assess the seismic behavior of concrete beams reinforced with superelastic alloy (SEA) bars. Applicability of newly developed Cu-Al-Mn SEA bars, characterized by large recovery strain, low material cost, and high machinability, have been proposed as partial replacements for conventional steel bars in order to reduce residual deformations in structures during and after intense earthquakes. Four-point reverse-cyclic bending tests were done on 1/3 scale concrete beams comprising three different types of specimens - conventional steel reinforced concrete (ST-RC), SEA reinforced concrete (SEA-RC), and SEA reinforced concrete with pre-tensioning (SEA-PC). The results showed that SEA reinforced concrete beams demonstrated significant enhancement in crack recovery capacity in comparison to steel reinforced beam. Average recovery of cracks for each of the specimens was 21% for ST-RC, 84% for SEA-RC, and 86% for SEA-PC. In addition, SEA-RC and SEA-PC beams demonstrated strong capability of recentering with comparable normalized strength and ductility relative to conventional ST-RC beam specimen. ST-RC beam, on the other hand, showed large residual cracks due to progressive reduction in its re-centering capability with each cycle. Both the SEA-RC and SEA-PC specimens demonstrated superiority of Cu-Al-Mn SEA bars to conventional steel reinforcing bars as reinforcement elements.

  14. Accumulative Roll Bonding and Post-Deformation Annealing of Cu-Al-Mn Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Moghaddam, Ahmad Ostovari; Ketabchi, Mostafa; Afrasiabi, Yaser

    2014-09-01

    Accumulative roll bonding is a severe plastic deformation process used for Cu-Al-Mn shape memory alloy. The main purpose of this study is to investigate the possibility of grain refinement of Cu-9.5Al-8.2Mn (in wt.%) shape memory alloy using accumulative roll bonding and post-deformation annealing. The alloy was successfully subjected to 5 passes of accumulative roll bonding at 600 °C. The microstructure, properties as well as post-deformation annealing of this alloy were investigated by optical microscopy, scanning electron microscopy, x-ray diffraction, differential scanning calorimeter, and bend and tensile testing. The results showed that after 5 passes of ARB at 600 °C, specimens possessed α + β microstructure with the refined grains, but martensite phases and consequently shape memory effect completely disappeared. Post-deformation annealing was carried out at 700 °C, and the martensite phase with the smallest grain size (less than 40 μm) was obtained after 150 s of annealing at 700 °C. It was found that after 5 passes of ARB and post-deformation annealing, the stability of SME during thermal cycling improved. Also, tensile properties of alloys significantly improved after post-deformation annealing.

  15. Accumulative Roll Bonding and Post-Deformation Annealing of Cu-Al-Mn Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Moghaddam, Ahmad Ostovari; Ketabchi, Mostafa; Afrasiabi, Yaser

    2014-12-01

    Accumulative roll bonding is a severe plastic deformation process used for Cu-Al-Mn shape memory alloy. The main purpose of this study is to investigate the possibility of grain refinement of Cu-9.5Al-8.2Mn (in wt.%) shape memory alloy using accumulative roll bonding and post-deformation annealing. The alloy was successfully subjected to 5 passes of accumulative roll bonding at 600 °C. The microstructure, properties as well as post-deformation annealing of this alloy were investigated by optical microscopy, scanning electron microscopy, x-ray diffraction, differential scanning calorimeter, and bend and tensile testing. The results showed that after 5 passes of ARB at 600 °C, specimens possessed α + β microstructure with the refined grains, but martensite phases and consequently shape memory effect completely disappeared. Post-deformation annealing was carried out at 700 °C, and the martensite phase with the smallest grain size (less than 40 μm) was obtained after 150 s of annealing at 700 °C. It was found that after 5 passes of ARB and post-deformation annealing, the stability of SME during thermal cycling improved. Also, tensile properties of alloys significantly improved after post-deformation annealing.

  16. Structural and dielectric properties of Mn doped copper oxide (CuO) nanostructure

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Khan, Shakeel; Ahmed, Hilal; Nongjai, Razia

    2013-06-01

    Undoped and Mn doped CuO nanocrystalline powder samples were prepared through standard solid state reaction method. The crystal structures of the CuO nanoparticles were characterized by X-ray diffraction. Dielectric measurements were performed on samples as a function of frequency at room temperate to determine the dielectric behavior of the samples. XRD data exhibited the presence of monoclinic crystal structure similar to the parent compound in all samples, suggesting that doped Mn ions sit at the regular lattice sites. The average crystallite size, calculated using Scherrer formula from XRD data, is found within the range of 23-27 nm. The dielectric constant (ɛ'), imaginary part of dielectric constant (ɛ") and loss tangent (tanδ) were studied as a function of frequency and composition at room temperature. The dependence of dielectric constant (ɛ') on frequency suggests a conduction mechanism in terms of hopping. This behavior can be explained on the basis of space charge polarization according to Maxwell and Wagner's two-layer model.

  17. The Effects of Helium Bubble Microstructure on Ductility in Annealed and HERF 21Cr-6Ni-9Mn Stainless Steel

    SciTech Connect

    Tosten, M.H.; Morgan, M.J.

    1998-01-01

    This study examined the effects of microstructure on the ambient temperature embrittlement from hydrogen isotopes and decay helium in 21Cr-6Ni-9Mn stainless steel. Hydrogen and tritium-exposed 21Cr-6Ni-9Mn stainless steel tensile samples were pulled to failure and then characterized by transmission electron microscopy (TEM) and optical microscopy. This study determined that ductility differences between annealed and high-energy-rate-forged (HERF) stainless steel containing tritium and its decay product, helium, could be related to differences in the helium bubble microstructures. The HERF microstructures were more resistant to tritium-induced embrittlement than annealed microstructures because the high number density of helium bubbles on dislocations trap tritium within the matrix and away from the grain boundaries.

  18. Microstructure and shape recovery characteristics in a TIG-welded Fe-Mn-Si-Cr-Ni shape memory alloy

    NASA Astrophysics Data System (ADS)

    Qiao, Zhixia; Li, Lianjin; Wang, Dongai; Li, Zongmin

    2007-07-01

    Microstructure of an Fe-Mn-Si-Cr-Ni shape memory alloy (SMA) after being TIG (tungsten-insert gas welding) welded was investigated using scanning electron microscope (SEM) and X-ray diffractometer. The results show that dendrite crystals composed of cellular sub-structures form in the weld zone due to remelting. There is no obvious change in microstructure of the heat-affected zone (HAZ) except for some degree of growth of austenite grains. Since both the weld zone and HAZ consist of single phase of austenite (γ), pre-strain can still induce the γ-->ɛ martensite transformation in welding joints of the alloy. Effect of TIG welding on shape recovery characteristics of the alloy was examined by bending tests and it was found that the TIG-welded Fe-Mn-Si-Cr-Ni alloy exhibits almost the same excellent SME as the base material.

  19. Structural and magnetic properties of a prospective spin gapless semiconductor MnCrVAl

    NASA Astrophysics Data System (ADS)

    Huh, Y.; Gilbert, S.; Kharel, P.; Jin, Y.; Lukashev, P.; Valloppilly, S.; Sellmyer, D. J.

    Recently a new class of material, spin gapless semiconductors (SGS), has attracted much attention because of their potential for spintronic devices. We have synthesized a Heusler compound, MnCrVAl, which is theoretically predicted to exhibit SGS by arc melting, rapid quenching and thermal annealing. First principles calculations are employed to describe its structural, electronic and magnetic properties. X-ray diffraction indicates that the rapidly quenched samples crystallize in the disordered cubic structure. The crystal structure is stable against heat treatment up to 650oC. The samples show very small saturation magnetization, 0.3 emu/g, at room temperature under high magnetic field, 30 kOe. Above room temperature, the magnetization increases with increasing temperature undergoing a magnetic transition at 560oC, similar to an antiferromagnetic-to-paramagnetic transition. The prospect of this material for spintronic applications will be discussed. This research is supported by SDSU Academic/Scholarly Excellence Fund, and Research/Scholarship Support Fund. Research at UNL is supported by DOE (DE-FG02-04ER46152, synthesis, characterization), NSF (ECCS-1542182, facilities), and NRI.

  20. Determination of the recovery stress under constraint in Fe29Mn7Si5Cr SMA

    NASA Astrophysics Data System (ADS)

    van Caenegem, N.; Duprez, L.; Verbeken, K.; Houbaert, Y.; Segers, D.; van Humbeeck, J.

    2008-05-01

    Ferrous shape memory alloys (SMAs) do not possess a complete shape recovery. Several attempts to improve the shape recovery still fail to achieve 100% recovery. For some applications, however, the recovery stress under constraint might be more important. In this work, a procedure was designed to measure these stresses under constraint in a Fe29MnSiCr SMA. The net recovery stress was defined as the maximal difference between the stresses developed in deformed and an undeformed sample. The calculation of σthermal(T) = E(T)α(T)(T-T0) can replace the measurement of the stress developed in the undeformed sample. The effect of partially free recovery before recovery under constraint is also investigated. It was remarkable that after annealing at 200°C, the net stress did not decrease although about 50% of the shape recovery has already taken place. This allows to use this alloy as a pipe joint, where the diameter of the joint can be larger than the one of the pipes, since the free recovery will hardly lower the recovery stresses under constraint.

  1. Microstructure and Mechanical Properties After Shock Wave Loading of Cast CrMnNi TRIP Steel

    NASA Astrophysics Data System (ADS)

    Eckner, Ralf; Krüger, L.; Ullrich, C.; Rafaja, D.; Schlothauer, T.; Heide, G.

    2016-08-01

    The mechanical response of shock wave-prestrained high-alloy Cr16-Mn7-Ni6 TRIP steel was investigated under compressive and tensile loading at room temperature. Previous shock wave loading was carried out using a flyer-plate assembly with different amounts of explosives in order to achieve shock pressures of 0.3, 0.6, 0.9, and 1.2 Mbar. A significant increase in hardness and strength was observed as compared with the initial as-cast condition. In contrast, a slight decrease in strain hardening rates was measured together with a decrease in fracture elongation in the tensile test. Microstructural analyses of the shock-loaded samples were performed by light optical and scanning electron microscopy. The microstructure revealed a high density of deformation bands consisting of separated stacking faults, ɛ-martensite, or twins. Significant amounts of deformation-induced α'-martensite were only present at the highest shock pressure of 1.2 Mbar. The thickness of the deformation bands and the number of martensite nuclei at their intersections increased with increasing shock pressure. In all shock-loaded specimens, pronounced phase transformation occurred during subsequent mechanical testing. Consequently, the amount of the deformation-induced α'-martensite in the shock-loaded specimens was higher than in the unshocked as-cast samples.

  2. Factors Affecting the Hydrogen Embrittlement Resistance of Ni-Cr-Mn-Nb Welds

    SciTech Connect

    G.A. Young; C.K. Battige; N. Liwis; M.A. Penik; J. Kikel; A.J. Silvia; C.K. McDonald

    2001-03-18

    Nickel based alloys are often welded with argon/hydrogen shielding gas mixtures to minimize oxidation and improve weld quality. However, shielding gas mixtures with {ge} 1% hydrogen additions can result in hydrogen concentrations greater than 5 wt. ppm in the weld metal and reduce ductility via hydrogen embrittlement. For the conditions investigated, the degree of hydrogen embrittlement is highly variable between 5 and 14 wt. ppm. investigation of hydrogen embrittlement of EN82H GTAW welds via tensile testing, light microscopy, transmission electron microscopy, orientation imaging microscopy, and thermal desorption spectroscopy shows that this variability is due to the inhomogeneous microstructure of the welds, the presence of recrystallized grains, and complex residual plastic strains. Specifically, research indicates that high residual strains and hydrogen trapping lower the ductility of Ni-Cr-Mn-Nb weld metal when dissolved hydrogen concentrations are greater than 5 wt. ppm. The inhomogeneous microstructure contains columnar dendritic, cellular dendritic, and recrystallized grains. The decreased tensile ductility observed in embrittled samples is recovered by post weld heat treatments that decrease the bulk hydrogen concentration below 5 wt. ppm.

  3. Identification of Precipitates in Cr-Mn-N Based Steel After Thermal Exposures

    NASA Astrophysics Data System (ADS)

    Ondruška, Michal; Dománková, Mária; Jáňa, Miroslav; Marônek, Milan

    2014-06-01

    The paper deals with the identification of precipitates in the Cr-Mn-N steels after thermal exposure. The purpose of the study is to clarify the M2N precipitation by isothermal annealing at the temperatures of 750 and 900 °C with a holding time of 5, 10, 30 min, 1 hr. and 10 hrs. Microstructure of austenitic steel was characterised by the typical presence of annealing twins. Stepwise etching was observed at the holding time of 5 and 10 minutes, but at the holding time of 30 minutes, secondary particles were precipitated at the grain boundaries. Corrosion tests revealed that holding time significantly affected steel structure. M2N is the dominant precipitate, but the occurrence of σ-phase was occasionally observed especially at the interface of discontinuous precipitation and austenitic matrix. Slight increase of hardness at the grain boundaries was caused due to the precipitation of secondary phases during isothermal holding. The maximum hardness of 294 HV was measured on the sample isothermally annealed at 750 °C and holding for 10 hrs. The research provides theoretical basis for the heat affecting of steels, such as, for example, in welding.

  4. Friction and Wear Behavior of 30CrMnSiA Steel at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Qu, Sheng-guan; Lai, Fu-qiang; Wang, Guang-hong; Yuan, Zhi-min; Li, Xiao-qiang; Guo, Hui

    2016-04-01

    The friction and wear properties of 30CrMnSiA steel were investigated at elevated temperature from 100 to 600 °C. Thereafter, the wear debris and worn surfaces were examined to understand the wear mechanisms. The remained debris with relatively high hardness created three-body abrasion at lower temperatures (100-300 °C). Abrasive wear prevailed at the conditions with high friction coefficients and wear rates. A significant change in friction and wear behavior occurred at 400 °C. At the temperature of 400 °C, oxidation induced mild wear was found because of the formation of load-bearing oxide film. Both the friction coefficients and wear rates of the steel were lowest at 400 °C. At the temperatures of 500-600 °C, a mild-to-severe wear transition occurred which resulted in an increase in the friction coefficients and wear rates of the steel. This is related to the decrease in the strength of matrix and hardness of worn surfaces and subsurfaces. The predominant wear mechanism is considered to be severe abrasive, adhesive wear and a fatigue delamination of the oxide film.

  5. Kinetics of discontinuous precipitation in Cu-20Ni-20Mn alloy

    NASA Astrophysics Data System (ADS)

    Xie, Wei-bin; Wang, Qiang-song; Xie, Guo-liang; Mi, Xu-jun; Liu, Dong-mei; Gao, Xue-Cheng

    2016-03-01

    The morphology and growth kinetics of discontinuous precipitation (DP) in a Cu-20Ni-20Mn alloy were investigated in the temperature range of 523-673 K by optical microscopy, scanning electron microscopy, and transmission electron microscopy. A lamellar mixed structure consisting of alternating lamellae of a matrix and NiMn phase was observed in DP colonies. The volume fraction of regions formed by a DP reaction was determined by quantitative metallographic measurements. The kinetics of DP was evaluated on the basis of the Johnson-Mehl-Avrami-Kolmogorov equation, which resulted in a time exponent of approximately 1.5. We confirmed that the nucleation of the discontinuous precipitate was confined to grain edges or boundaries at an early stage of the reaction. The activation energy of DP process was determined to be approximately (72.7 ± 7.2) kJ/mol based on the Arrhenius equation; this result suggests that DP is controlled by grain boundary diffusion. The hardness values exhibited good correlation with the volume fraction of DP; this correlation was attributed to the presence of the ordered NiMn phase.

  6. Growth, structural, and magnetic characterization of epitaxial Co2MnSi films deposited on MgO and Cr seed layers

    NASA Astrophysics Data System (ADS)

    Ortiz, G.; García-García, A.; Biziere, N.; Boust, F.; Bobo, J. F.; Snoeck, E.

    2013-01-01

    We report detailed structural characterization and magneto-optical Kerr magnetometry measurements at room temperature in epitaxial Co2MnSi thin films grown on MgO(001) and Cr(001) buffered MgO single crystals prepared by sputtering. While Co2MnSi/Cr//MgO(001) films display the expected cubic anisotropy, the magnetization curves obtained for Co2MnSi//MgO(001) samples exhibit a superimposed in-plane uniaxial magnetic anisotropy. The evolution of magnetization with film thickness points to a relevant interfacial Co2MnSi-buffer layer (Cr or MgO) contribution which competes with magnetic properties of bulk Co2MnSi, resulting in a drastic change in the magnetism of the whole sample. The origin of this interfacial magnetic anisotropy is discussed and correlated with our structural studies.

  7. Towards consistent chronology in the early Solar System: high resolution 53Mn-53Cr chronometry for chondrules.

    SciTech Connect

    Yin, Q; Jacobsen, B; Moynier, F; Hutcheon, I D

    2007-05-02

    New high-precision {sup 53}Mn-{sup 53}Cr data obtained for chondrules extracted from a primitive ordinary chondrite, Chainpur (LL3.4), define an initial {sup 53}Mn/{sup 55}Mn ratio of (5.1 {+-} 1.6) x 10{sup -6}. As a result of this downward revision from an earlier higher value of (9.4 {+-} 1.7) x 10{sup -6} for the same meteorite (Nyquist et al. 2001), together with an assessment of recent literature, we show that a consistent chronology with other chronometers such as the {sup 26}Al-{sup 26}Mg and {sup 207}Pb-{sup 206}Pb systems emerges in the early Solar System.

  8. A study of the impurity structure for 3d 3 (Cr 3+ and Mn 4+) ions doped into rutile TiO 2 crystal

    NASA Astrophysics Data System (ADS)

    Açıkgöz, Muhammed

    2012-02-01

    The local environment around 3d 3 (Cr 3+ and Mn 4+) ions doped into rutile TiO 2 crystals has been investigated using superposition model (SPM) analysis. The zero-field splitting (ZFS) parameters (ZFSPs) D and E are modeled for the Cr 3+ and Mn 4+ ions at both the substitutional Ti sites with local symmetry orthorhombic D2h and the interstitial sites (ISs) with the same symmetry. Several model parameter sets are adopted so as to acquire the best agreement between the calculated ZFSPs and those measured by electron magnetic resonance (EMR). The feasible values of the structural distortions (Δ RY, Δ RXZ and Δ θ) resulting from dopant Cr 3+ and Mn 4+ ions are determined. As a result, it is confirmed that Mn 4+ ions substitute for Ti 4+ sites in rutile TiO 2 crystal; however, it is suggested that Cr 3+ ions may replace at not only Ti 4+ site but also IS.

  9. Properties of molecular beam epitaxy grown Eu{sub x}(transition metal){sub y} films (transition metals: Mn, Cr)

    SciTech Connect

    Balin, K.; Nowak, A.; Gibaud, A.; Szade, J.; Celinski, Z.

    2011-04-01

    The electronic and crystallographic structures, as well as the magnetic properties, of Eu{sub x}(transition metal){sub y} (transition metals: Mn, Cr) thin films grown by molecular beam epitaxy were studied. Relative changes of the Eu/Mn and Eu/Cr ratios derived from the XPS lines, as well as x-ray reflectivity, indicate mixing of the Eu/Mn and Eu/Cr layers. Valency transitions from Eu{sup 2+} to Eu{sup 3+} were observed in both systems for most studied stoichiometries. A transition to a magnetically ordered phase was observed at 15 K, 40 K, and 62 K for selected films in the Eu-Mn system, and at 50 K for the film with a Eu/Cr ratio of 0.5.

  10. Reply to comment on "Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts"

    NASA Astrophysics Data System (ADS)

    Sherman, David M.; Little, Susan H.; Vance, Derek

    2015-02-01

    In our paper "Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts", we present an explanation for the observed isotopic fractionations of Cu and Zn in seawater. We hypothesise that the isotopic fractionation of Cu and Zn is driven by the scavenging of these metals by particulate Fe-Mn oxides as reflected in the isotopic composition of Zn and Cu in marine ferromanganese crusts. Zn sorbed to ferromanganese crusts is isotopically heavier than dissolved Zn in seawater by 0.5‰. EXAFS spectra show that Zn in ferromanganese crusts is sorbed to birnessite and in tetrahedral coordination. Dissolved inorganic Zn in seawater, however, is primarily octahedrally coordinated as Zn(H2O)+26. The difference in the Zn coordination environment gives a qualitative explanation for the sorption (scavenging) of isotopically heavy Zn by ferromanganese crusts (predominantly birnessite).

  11. Spin-induced symmetry breaking in orbitally ordered NiCr2O4 and CuCr2O4

    NASA Astrophysics Data System (ADS)

    Suchomel, Matthew R.; Shoemaker, Daniel P.; Ribaud, Lynn; Kemei, Moureen C.; Seshadri, Ram

    2012-08-01

    At room temperature, the normal oxide spinels NiCr2O4 and CuCr2O4 are tetragonally distorted and crystallize in the I41/amd space group due to cooperative Jahn-Teller ordering driven by the orbital degeneracy of tetrahedral Ni2+ (t24) and Cu2+ (t25). Upon cooling, these compounds undergo magnetic ordering transitions; interactions are somewhat frustrated for NiCr2O4 but not for CuCr2O4. We employ variable-temperature high-resolution synchrotron x-ray powder diffraction to establish that at the magnetic ordering temperatures there are further structural changes, which result in both compounds distorting to an orthorhombic structure consistent with the Fddd space group. NiCr2O4 exhibits additional distortion, likely within the same space group, at a yet-lower transition temperature of T=30 K. The tetragonal to orthorhombic structural transition in these compounds appears to primarily involve changes in NiO4 and CuO4 tetrahedra.

  12. Fate of Cu, Cr, and As during combustion of impregnated wood with and without peat additive

    SciTech Connect

    Karin Lundholm; Dan Bostroem; Anders Nordin; Andrei Shchukarev

    2007-09-15

    The EU Directive on incineration of waste regulates the harmful emissions of particles and twelve toxic elements, including copper, chromium, and arsenic. Using a 15 kW pellets-fueled grate burner, experiments were performed to determine the fate of copper, chromium, and arsenic during combustion of chromate copper arsenate (CCA) preservative wood. The fate and speciation of copper, chromium, and arsenic were determined from analysis of the flue gas particles and the bottom ash using SEM-EDS, XRD, XPS, and ICP-AES. Chemical equilibrium model calculations were performed to interpret the experimental findings. The results revealed that about 5% copper, 15% chromium, and 60% arsenic were volatilized during combustion of pure CCA-wood, which is lower than predicted volatilization from the individual arsenic, chromium, and copper oxides. This is explained by the formation of more stable refractory complex oxide phases for which the stability trends and patterns are presented. When co-combusted with peat, an additional stabilization of these phases was obtained and thus a small but noteworthy decrease in volatilization of all three elements was observed. The major identified phases for all fuels were CuCrO{sub 2}(s), (Fe,Mg,Cu)(Cr,Fe,Al)O{sub 4}(s), Cr{sub 2}O{sub 3}(s), and Ca{sub 3}(AsO{sub 4}){sub 2}(s). Arsenic was also identified in the fine particles as KH{sub 2}AsO{sub 4}(s) and As{sub 2}O{sub 3}). A strong indication of hexavalent chromium in the form of K{sub 2}CrO{sub 4} or as a solid solution between K{sub 3}Na(CrO{sub 4}){sub 2} and K{sub 3}Na(SO{sub 4}){sub 2} was found in the fine particles. Good qualitative agreement was observed between experimental data and chemical equilibrium model calculations. 38 refs., 6 figs., 2 tabs.

  13. The effects of substituting B for Cu on the magnetic and shape memory properties of CuAlMnB alloys

    NASA Astrophysics Data System (ADS)

    Aydogdu, Y.; Turabi, A. S.; Aydogdu, A.; Vance, E. D.; Kok, M.; Kirat, G.; Karaca, H. E.

    2016-07-01

    The effects of B addition on the magnetization, mechanical and shape memory properties in Cu70- x Al24Mn6B x at.% ( x = 0, 1, 2, 3, 4) alloys have been investigated. The ductility was decreased, while the strength was improved with B addition. Transformation temperatures were increased with B content due to increased e/ a ratio. Martensite start temperature of B-free CuAlMn was found to be 37.3 °C and increased to 218.8 °C with 4 % B addition. B-free CuAlMn exhibited shape memory effect with a recoverable strain of 2.25 % under 200 MPa and a perfect superelasticity with a recoverable strain of 2.5 % at 163 °C. B addition degraded the shape memory properties and eventually resulted in the lack of recoverable strain. In addition, saturation magnetization was increased with B content. Moreover, the addition of B slightly decreased the ductility of the alloy. It was found that the magnetization, mechanical and shape memory properties CuAlMn alloys can be tailored by quaternary alloying with B.

  14. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

    NASA Astrophysics Data System (ADS)

    Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.

    2014-04-01

    The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

  15. In situ neutron-diffraction study of the Ti38V30Cr14Mn18 structure during hydrogenation

    NASA Astrophysics Data System (ADS)

    Fei, Yang; Kong, Xiangcheng; Wu, Zhu; Li, Huanhuan; Peterson, V. K.

    2013-11-01

    The phase transformations of the Ti38V30Cr14Mn18 alloy during hydrogenation and dehydrogenation using deuterium (D2) were investigated using in situ neutron powder diffraction (NPD) at various D2 pressures up to 2 MPa. Initially, the first hydride that formed, Ti38V30Cr14Mn18D15, had the same body centered cubic (BCC) crystal structure as the starting alloy. Upon further hydrogenation, the system displays a distinct two-phase mixture of the intermediate BCC and body-centered tetragonal (BCT) phases, that exist in a ration of 1.38:1.42, respectively. At the end of the deuterium absorption, the phase pure Ti38V30Cr14Mn18D183 material forms, with a face-centered cubic (FCC) structure. Upon dehydrogenation, all hydride phases eventually returned to the initial alloy phase without any amorphization or disproportionation. Using standard Rietveld refinement, information on the variation of the deuterium site occupancy, the lattice symmetry, and the cell volume were determined during these phase changes and are presented.

  16. Electrokinetic recovery of Cd, Cr, As, Ni, Zn and Mn from waste printed circuit boards: effect of assisting agents.

    PubMed

    Xiu, Fu-Rong; Zhang, Fu-Shen

    2009-10-15

    The printed circuit boards (PCBs) contains large number of heavy metal such as Cd, Cr, As, Ni, Zn and Mn. In this study, the use of electrokinetic (EK) treatment with different assisting agents has been investigated to recover the heavy metals from waste PCBs, and the effectiveness of different assisting agents (HNO(3), HCl, citric acid) was evaluated. The PCBs were first pre-treated by supercritical water oxidation (SCWO) process, then subjected to EK process. The heavy metal speciation, migration and recovery efficiency in the presence of different assisting agents during EK process were discussed. The mass loss of Cd, Cr, As and Zn during the SCWO process was negligible, but approximately 52% of Ni and 56% of Mn were lost in such a process. Experimental results showed that different assisting agents have significant effect on the behavior and recovery efficiency of different heavy metals. HCl was highly efficient for the recovery of Cd in waste PCBs due to the low pH and the stable complexation of Cl(-). Citric acid was highly efficient for the recovery of Cr, Zn and Mn. HNO(3) was low efficient for recovery of most heavy metals except for Ni. PMID:19481346

  17. Decrease and increase profile of Cu, Cr and Pb during stable phase of removal by duckweed (Lemna minor L.).

    PubMed

    Uçüncü, Esra; Tunca, Evren; Fikirdeşici, Seyda; Altindağ, Ahmet

    2013-01-01

    The present work details the decrease-increase profiles of Cu, Cr, and Pb by the aquatic plant Lemna minor. A mixture of these metals were utilized at different concentrations. Removal profiles of each metal was determined with water samples taken every 24 h for a 144 h period after the 48 h mark and was examined with correlation analysis. Removal profiles of Cr and Pb by L. minor from the mixture were observed to be highly similar with each other (r = 0.943). High proportion of Cr and Pb were removed compared to Cu and removal equations were defined with the aid of regression analysis. PMID:23488003

  18. Immunoreactive Cu-SOD and Mn-SOD in lymphocytes sub-populations from normal and trisomy 21 subjects according to age

    SciTech Connect

    Baeteman, M.A.; Baret, A.; Courtiere, A.; Rebuffel, P.; Mattei, J.F.

    1983-02-21

    Copper and manganese superoxide dismutases (Cu-SOD and Mn-SOD) were measured by radioimmunoassay in B and T lymphocytes and macrophages, in patients with trisomy 21 and in matched controls. In the controls, Cu-SOD was present in greater amounts than Mn-SOD and there were quantitative differences in the distribution in the three cellular sub-populations. In trisomy 21, levels of Cu-SOD were raised, with no change in levels of Mn-SOD, supporting the theory of a gene dosage effect. There were significant positive and negative correlations between age and Cu-SOD levels in controls, and a correlation approaching significance for Mn-SOD. In trisomy 21, there was no correlation between age and Cu-SOD levels, and the only significant correlation for Mn-SOD was for B lymphocytes.

  19. Structural, magnetic, and superconducting properties of pulsed-laser-deposition-grown La<mn>1.85mn> Sr<mn>0.15mn> CuO>4mn> / La<mn>2mn>/>3mn> Ca<mn>1mn>/>3mn> MnO>3mn> superlattices on (001)-oriented LaSrAlO<mn>4mn> substrates

    SciTech Connect

    Das, S.; Sen, K.; Marozau, I.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Khaydukov, Y.; Soltwedel, O.; Keller, T.; Döbeli, M.; Schneider, C. W.; Bernhard, C.

    2014-03-12

    Epitaxial La<mn>1.85mn> Sr<mn>0.15mn> CuO>4mn> / La<mn>2mn>/>3mn> Ca<mn>1mn>/>3mn> MnO>3mn> (LSCO/LCMO) superlattices (SL) on (001)- oriented LaSrAlO4 substrates have been grown with pulsed laser deposition (PLD) technique. Their structural, magnetic and superconducting properties have been determined with in-situ reflection high energy electron diffraction (RHEED), x-ray diffraction, specular neutron reflectometry, scanning transmission electron microscopy (STEM), electric transport, and magnetization measurements. We find that despite the large mismatch between the in-plane lattice parameters of LSCO (a = 0.3779 nm) and LCMO (a = 0.387 nm) these superlattices can be grown epitaxially and with a high crystalline quality. While the first LSCO layer remains clamped to the LSAO substrate, a sizeable strain relaxation occurs already in the first LCMO layer. The following LSCO and LCMO layers adopt a nearly balanced state in which the tensile and compressive strain effects yield alternating in-plane lattice parameters with an almost constant average value. No major defects are observed in the LSCO layers, while a significant number of vertical antiphase boundaries are found in the LCMO layers. The LSCO layers remain superconducting with a relatively high superconducting onset temperature of Tconset ≈ 36 K. The macroscopic superconducting response is also evident in the magnetization data due to a weak diamagnetic signal below 10 K for H ∥ ab and a sizeable paramagnetic shift for H ∥ c that can be explained in terms of a vortex-pinning-induced flux compression. The LCMO layers maintain a

  20. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.

    PubMed

    Frierdich, Andrew J; Catalano, Jeffrey G

    2012-10-16

    The reduction of trace elements and contaminants by Fe(II) at Fe(III) oxide surfaces is well documented. However, the effect of aqueous Fe(II) on the fate of redox-active trace elements structurally incorporated into iron oxides is unknown. Here, we investigate the fate of redox-active elements during Fe(II)-activated recrystallization of Cu-, Co-, and Mn-substituted goethite and hematite. Enhanced release of Cu, Co, and Mn to solution occurs upon exposure of all materials to aqueous Fe(II) relative to reactions in Fe(II)-free fluids. The quantity of trace element release increases with pH when Fe(II) is present but decreases with increasing pH in the absence of Fe(II). Co and Mn release from goethite is predicted well using a second-order kinetic model, consistent with the release of redox-inactive elements such as Ni and Zn. However, Cu release and Co and Mn release from hematite require the sum of two rates to adequately model the kinetic data. Greater uptake of Fe(II) by Cu-, Co-, and Mn-substituted iron oxides relative to analogues containing only redox-inactive elements suggests that net Fe(II) oxidation occurs. Reduction of Cu, Co, and Mn in all materials following reaction with Fe(II) at pHs 7.0-7.5 is confirmed by X-ray absorption near-edge structure spectroscopy. This work shows that redox-sensitive elements structurally incorporated within iron oxides are reduced and repartitioned into fluids during Fe(II)-mediated recrystallization. Such abiotic reactions likely operate in tandem with partial microbial and abiotic iron reduction or during the migration of Fe(II)-containing fluids, mobilizing structurally bound contaminants and micronutrients in aquatic systems. PMID:22970760

  1. Mn-Cr Systematics in Sphalerites and Niningerites From Qingzhen and Yamato69001: Implications Regarding Their Formation Histories

    NASA Astrophysics Data System (ADS)

    El Goresy, A.; Wadhwa, M.; Zinner, E. K.; Nagel, H.-J.; Janicke, J.; Crozaz, G.

    1992-07-01

    Recent Cr isotopic measurements of sphalerites and alabandites in three EL3 chondrites MAC88136, MAC88180, and MAC88184 and of sphalerites in the EH4 chondrite Indarch (El Goresy et al., 1992) revealed ^53Cr excesses (^53Cr*), resulting from the in situ decay of ^53Mn (tau(sub)1/2=3.7 Ma), in most grains analysed. However, the initial ^53Mn/^55Mn ratios calculated for these grains were quite variable, and it was concluded that redistribution of ^53Cr* by diffusional processes was the most likely cause for these variations. In a continuation of the previous work (El Goresy et al., 1992), we report new mineral-chemical and Cr-isotopic data for two EH3 chondrites, Qingzhen and Yamato 69001. The distribution of Fe, Mg, and Mn in niningerites and sphalerites occurring in individual sulfide assemblages was determined by electron microprobe analysis. Among the meteorites of the EH3 subgroup, Qingzhen and Yamato 69001 are unique in that niningerites in both meteorites display normal as well as reversed zoning, indicating complex thermal histories (Ehlers and El Goresy, 1988; Lin et al., 1989; Lin, 1991; Nagel, 1991). Niningerites have different MnS contents (9.2-32.6 mol% MnS in Qingzhen vs. 4.2- 6.3 mol% MnS in Yamato 69001), as do the sphalerites (4.0-9.2 mol% MnS in Qingzhen vs. 2.0-3.5 mol% in Yamato 69001). Sphalerites in both meteorites are normally zoned, with 46.0-49.8 mol% FeS in sphalerites from Qingzhen, and 42.3-49.7 mol% FeS in sphalerites from Yamato 69001. The spatial distributions of Fe and Mg in niningerites and of Fe and Mn in sphalerites indicate complex processes that may have occurred before accretion and/or during later metamorphic events in the parent body (El Goresy and Ehlers, 1989; Lin, 1991; Nagel, 1991). Ion microprobe measurements of 6 sphalerites and 3 niningerites in Qingzhen and of 3 sphalerites and 2 niningerites in Yamato 69001 showed that ^55Mn/^52Cr ratios in these sulfide phases are significantly lower than in sphalerites and

  2. Effect of the ITER FW Manufacturing Process on the Microstructure and Properties of a CuCrZr Alloy

    NASA Astrophysics Data System (ADS)

    Liu, Danhua; Wang, Pinghuai; Song, Yi; Li, Qian; Chen, Jiming

    2015-10-01

    The first wall (FW) is one of the core components in ITER. As the heat sink material, the CuCrZr alloy shall be properly jointed with beryllium and stainless steel. At present, the grains of CuCrZr are prone to coarsen seriously in the thermal cycle process of FW manufacturing, which has become a critical issue for ITER parties. To investigate the mirostructure and mechanical properties of the optimized CuCrZr alloy in the first wall fabricating thermal cycle, simulative experiments have been done in this study. The alloy ingot was forged and hot rolled into plates, and then solid solution annealed, cold rolled and aged for strengthening. Several heat treatments were done to the CuCrZr samples, and the changes of microstructure, micro-hardness and tensile strength were investigated. The results indicated that the original elongated grains had changed into equiaxed ones, and the vickers hardness had declined to about 60 after experiencing the process of CuCrZr/316L(N) bi-metallic plate manufacturing, either by hot isostatic pressing at a higher temperature or by explosion welding followed by solution annealing. Joining Be/CuCrZr by hot isostatic pressing acts as an aging process for CuCrZr, so after the simulated heat treatment, the hardness of the alloy increased to about 110 HV and the tensile yield strength at 250°C rose to about 170 MPa. Meanwhile, the average grain size was controlled below 200 μm. supported by the International Nuclear Thermonuclear Experimental Reactor (ITER) Specific Program of China (No. 2014GB126000)

  3. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.

    PubMed

    You, Shao-Hong; Zhang, Xue-Hong; Liu, Jie; Zhu, Yi-Nian; Gu, Chen

    2014-01-01

    As a low-cost treatment technology for effluent, the constructed wetlands can be applied to remove the heavy metals from wastewater. Leersia hexandra Swartz is a metal-accumulating hygrophyte with great potential to remove heavy metal from water. In this study, two pilot-scale constructed wetlands planted with L. hexandra (CWL) were set up in greenhouse to treat electroplating wastewater containing Cr, Cu and Ni. The treatment performance of CWL under different hydraulic loading rates (HLR) and initial metal concentrations were also evaluated. The results showed that CWL significantly reduced the concentrations of Cr, Cu and Ni in wastewater by 84.4%, 97.1% and 94.3%, respectively. High HLR decreased the removal efficiencies of Cr, Cu and Ni; however, the heavy metal concentrations in effluent met Emission Standard of Pollutants for Electroplating in China (ESPE) at HLR less than 0.3 m3/m2 d. For the influent of 5 mg/L Cr, 10 mg/L Cu and 8 mg/L Ni, effluent concentrations were below maximum allowable concentrations in ESPE, indicating that the removal of Cr, Cu and Ni by CWL was feasible at considerably high influent metal concentrations. Mass balance showed that the primary sink for the retention of contaminants within the constructed wetland system was the sediment, which accounted for 59.5%, 83.5%, and 73.9% of the Cr, Cu and Ni, respectively. The data from the pilot wetlands support the view that CWL could be used to successfully remove Cr, Cu and Ni from electroplating wastewater. PMID:24600856

  4. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    SciTech Connect

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S. E-mail: weltmann@inp-greifswald.de; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D. E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  5. Lattice dynamics in austenitic stainless steels Fe 18Cr 12Ni 2Mo and Fe 18Cr 16Ni 10Mn

    NASA Astrophysics Data System (ADS)

    Rajevac, V.; Hoelzel, M.; Danilkin, S. A.; Hoser, A.; Fuess, H.

    2004-04-01

    Phonon dispersion curves of austenitic stainless steels Fe-18Cr-16Ni-10Mn and Fe-18Cr-12Ni-2Mo have been measured by triple-axis neutron spectroscopy. The data were analysed using Born-von Karman interactions as well as calculations including the contribution of conduction electrons on the lattice dynamics. An appropriate description of the experimental data was obtained by taking into account two-neighbour shells plus the contribution of the electron gas. The elastic constants and moduli obtained are close to reported results by ultrasonic studies on polycrystalline samples. The phonon densities of states in both systems calculated from the dispersion curves agree well with results obtained by time-of-flight neutron spectroscopy on polycrystalline samples. The Debye temperature THgr(T) shows a minimum around 40 K, similar to copper and nickel.

  6. Large magnetocaloric effect in La0.845Sr0.155Mn1-xMxO3 (M = Mn, Cu, Co) perovskites

    NASA Astrophysics Data System (ADS)

    Phan, Manh-Huong; Phan, The-Long; Yu, Seong-Cho; Tho, Nguyen Duc; Chau, Nguyen

    2004-06-01

    We present the results of an investigation on the magnetocaloric effect in the perovskites of La0.845Sr0.155Mn1-xMxO3 (M = Mn, Cu, Co). It is found that there was a large magnetic entropy change, i.e. a large magneto-caloric effect, in all these samples. Among them, the magnetic entropy change reaches a maximum value of 2.67 J/kg K at the applied field of 13.5 kOe for the Cu-doped sample, suggesting that this material would be a suitable candidate for the advanced magnetic refrigeration technology. The large magnetic entropy change produced by the abrupt reduction of magnetization is attributed to the strong coupling between spin and lattice that occurs in the vicinity of the ferromagnetic-paramagnetic transition temperature (TC) - which is experimentally verified by electron paramagnetic resonance study.

  7. Ultrasonic spray-pyrolyzed CuCrO2 thin films

    NASA Astrophysics Data System (ADS)

    Sánchez-Alarcón, R. I.; Oropeza-Rosario, G.; Gutierrez-Villalobos, A.; Muro-López, M. A.; Martínez-Martínez, R.; Zaleta-Alejandre, E.; Falcony, C.; Alarcón-Flores, G.; Fragoso, R.; Hernández-Silva, O.; Perez-Cappe, E.; Mosqueda Laffita, Yodalgis; Aguilar-Frutis, M.

    2016-05-01

    In this paper the optical, structural and electrical properties of CuCrO2 thin films deposited by ultrasonic spray pyrolysis at temperatures from 400 to 600 °C in steps of 50 °C are presented. Copper and chromium acetylacetonates were chosen as sources of Cu and Cr, respectively, and N,N-dimethylformamide was used as the solvent. X-ray results confirmed that the films as deposited showed the CuCrO2 phase without any post-deposition thermal annealing. The surface morphology was observed to be mirror like, and as the films were deposited at different temperatures, they gradually revealed the presence of small crystallites. The best film’s optical percentage transmission (in the visible region), about 58%, was obtained in films deposited at 450 °C, and the highest band gap energy (3.17 eV) was measured in films deposited at 400 °C. The electrical properties of the films were obtained by the Hall effect. A hole concentration in the range 1019-1021 cm-3, conductivity as high as 35 S cm-1, and mobility lower than 1 cm2 V-1 s-1 were obtained in the films. p-type conductivity was confirmed using the hot point probe arrangement, and the Seebeck coefficient was estimated. The hole conductivity is thought to be due to excess oxygen in the films. Finally, the minimum energy required to transfer carriers from acceptor level to the valence band in the films was estimated by impedance spectroscopy.

  8. μSR study on CuCr1-xMgxO2

    NASA Astrophysics Data System (ADS)

    Ikedo, Yutaka; Sugiyama, Jun; Nozaki, Hiroshi; Mukai, Kazuhiko; Russo, Peter L.; Andreica, Daniel; Amato, Alex; Ono, Yasuhiro; Kajitani, Tsuyoshi

    2009-04-01

    In order to clarify the magnetic nature of a delafossite-type oxide, CuCr1-xMgxO2 ( x=0 and 0.03), we have performed zero field (ZF-) and weak transversal field (wTF-) μ+SR measurements in the temperature range between 1.8 and 50 K using polycrystalline samples. The wTF- μ+SR measurements suggested that both samples undergo a magnetic transition at Tm=26 K, clarifying that Tm is not altered by the Cr substitution with Mg. The ZF- μ+SR measurements indicated the existence of a clear muon-spin precession ( ∼50 MHz at T→0 K) signal for the x=0 sample below Tm, indicating a long-range antiferromagnetic order state, whereas the absence of long-range order for the x=0.03 sample even at 1.8 K.

  9. Cu(II) and Zn(II) ions alter the dynamics and distribution of Mn(II) in cultured chick glial cells

    SciTech Connect

    Wedler, F.C.; Ley, B.W. )

    1990-12-01

    Previous studies revealed that Mn(II) is accumulated in cultured glial cells to concentrations far above those present in whole brain or in culture medium. The data indicated that Mn(II) moves across the plasma membrane into the cytoplasm by facilitated diffusion or counter-ion transport with Ca(II), then into mitochondria by active transport. The fact that 1-10 microM Mn(II) ions activate brain glutamine synthetase makes important the regulation of Mn(II) transport in the CNS. Since Cu(II) and Zn(II) caused significant changes in the accumulation of Mn(II) by glia, the mechanisms by which these ions alter the uptake and efflux of Mn(II) ions has been investigated systematically under chemically defined conditions. The kinetics of (54MN)-Mn(II) uptake and efflux were determined and compared under four different sets of conditions: no adducts, Cu(II) or Zn(II) added externally, and with cells preloaded with Cu(II) or Zn(II) in the presence and absence of external added metal ions. Zn(II) ions inhibit the initial velocity of Mn(II) uptake, increase total Mn(II) accumulated, but do not alter the rate or extent Mn(II) efflux. Cu(II) ions increase both the initial velocity and the net Mn(II) accumulated by glia, with little effect on rate or extent of Mn(II) efflux. These results predict that increases in Cu(II) or Zn(II) levels may also increase the steady-state levels of Mn(II) in the cytoplasmic fraction of glial cells, which may in turn alter the activity of Mn(II)-sensitive enzymes in this cell compartment.

  10. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  11. Spin correlated dielectric memory and rejuvenation in multiferroic CuCrS{sub 2}

    SciTech Connect

    Karmakar, A.; Dey, K.; Majumdar, S.; Giri, S.; Chatterjee, S.

    2014-02-03

    We report a rare consequence of memory effect in dielectric response (ϵ) and magnetic field induced rejuvenation in a relaxor-type multiferroic chalcogenide, CuCrS{sub 2}. Despite reasonably high conductivity, we are able to detect significant spontaneous polarization using an improvised technique verifying ferroelectric (FE) order. Concomitant appearance of both FE and antiferromagnetic orders authenticates multiferroicity. A smeared out FE transition and strong frequency dependence of the broadened peak in ϵ obeying Dynamical scaling law signify relaxor properties. We discuss the role of geometrical frustration in the antiferromagnetically coupled layered triangular lattice and metal ligand hybridization for these unusual properties.

  12. A detailed study of the magnetic phase transition in CuCrO2.

    PubMed

    Ehlers, G; Podlesnyak, A A; Frontzek, M; Freitas, R S; Ghivelder, L; Gardner, J S; Shiryaev, S V; Barilo, S

    2013-12-11

    The phase transition in CuCrO2 to an ordered magnetic state is studied with bulk measurements and elastic and inelastic neutron scattering techniques. The reported onset of spontaneous electric polarization at T = 23.5 K coincides with the appearance, on cooling, of elastic magnetic scattering. At higher temperatures long range magnetic correlations gradually develop but they are dynamic. The ground state is characterized by three-dimensional long range magnetic ordering but along the c direction the correlation length remains limited to ∼200 Å. PMID:24214902

  13. Relaxor-like dielectric response of spin liquid CuCrO{sub 2}

    SciTech Connect

    Mazumder, N. Roy, R.; Ghorai, U. K.; Saha, S.; Chattopadhyay, K. K.

    2014-04-24

    Broadband dielectric analysis (10{sup −2}-10{sup 7} Hz) of layered triangular lattice CuCrO{sub 2} is performed (123 K - 473 K) and analyzed in connection with recently observed spin frustration in this multiferroic [M. Poienar et al. Phys. Rev. B 81, 104411, (2010); M. Frontzek et al. Phys. Rev. B 84, 094448, (2011)]. Most unexpectedly, this well known delafossite has found to have nontrivial charge degrees of freedom, being characterized by a relaxor-like dielectric relaxation around 375 K with FWHM of ∼100K. The result strongly suggests the existence of intermolecular Coulomb interaction between charge disproportionation induced electric dipoles.

  14. Observed And Modeled Seasonal Trends In Dissolved And Particulate Cu, Fe, Mn, And Zn In A Mining-Impacted Stream

    EPA Science Inventory

    North Fork Clear Creek (NFCC) in Colorado, an acid-mine drainage (AMD) impacted stream, was chosen to examine the distribution of dissolved and particulate Cu, Fe, Mn, and Zn in the water column, with respect to seasonal hydrologic controls. NFCC is a high-gradient stream with d...

  15. GEOCHEMICAL PARTITIONING OF PB, ZN, CU, FE, AND MN ACROSS THE SEDIMENT-WATER INFERFACE IN LARGE LAKES

    EPA Science Inventory

    The early diagenetic remobilization of Mn, Fe, Zn, Cu, and Pb was evaluated by studying the geochemical partitioning of the metals among hydromorphic phases (as operationally defined by sequential-chemical extractions) in interfacial sediment (fluff) and in the sediment column, a...

  16. Thermal contact resistance for a CU/G-10CR interface in a cylindrical geometry

    SciTech Connect

    Phelan, P.E.; Niemann, R.C.; Nicol, T.H.

    1996-07-01

    A major component of a high-T[sub c] superconductor current lead designed to provide current to low-T[sub c] superconductor magnets is the heat intercept connection, which is a cylindrical structure consisting of an inner Cu disk, a thin-walled G-10CR composite tube, and an outer Cu ring, assembled by a thermal interference fit. It was determined in a previous study that the thermal contact resistance (R[sub c]) between the composite tube and the two Cu pieces contributed a substantial portion of the total thermal resistance between the inner and outer Cu pieces. This report emphasizes the analysis of the data for the third and final design of the heat intercept connection. In particular, it is found that R[sub c] decreases dramatically with increasing heat flux, a result consistent with earlier studies of composite cylinders. However, for the present data, the thermal contact conductance [=1/R{sub c}]varies with the calculated contact pressure with a power-law exponent of approximately 10, as compared to a theoretical value near 1. In addition, the presence of He or N[sub 2] gas substantially reduces R [sub c] even though the contacting surfaces are coated with a thermal grease.

  17. Oxidation Behavior of GRCop-84 (Cu-8Cr-4Nb) at Intermediate and High Temperatures

    NASA Technical Reports Server (NTRS)

    Thomas-Ogbuji, Linus U.; Humphrey, Donald L.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    The oxidation behavior of GRCop-84 (Cu-8 at %Cr-4 at %Nb) has been investigated in air and in oxygen, for durations of 0.5 to 50 hours and temperatures ranging from 500 to 900 C. For comparison, data was also obtained for the oxidation of Cu and NARloy-Z (Cu-3 wt% Ag-0.5 wt% Zr) under the same conditions. Arrhenius plots of those data showed that all three materials had similar oxidation rates at high temperatures (> 750 C). However, at intermediate temperatures (500 to 750 C) GRCop exhibited significantly higher oxidation resistance than Cu and NARloy-Z. The oxidation kinetics of GRCop-84 exhibited a sharp and discontinuous jump between the two regimes. Also, in the high temperature regime GRCop-84 oxidation rate was found to change from a high initial value to a significantly smaller terminal value at each temperature, with progress of oxidation; the two different oxidation rates were found to correlate with a porous intial oxide and a dense final oxide, respectively.

  18. Mechanisms controlling Cu, Fe, Mn, and Co profiles in peat of the Filson Creek Fen, northeastern Minnesota

    USGS Publications Warehouse

    Walton-Day, K.; Filipek, L.H.; Papp, C.S.E.

    1990-01-01

    Filson Creek Fen, located in northeastern Minnesota, overlies a Cu-Ni sulfide deposit. A site in the fen was studied to evaluate the hydrogeochemical mechanisms governing the development of Fe, Mn, Co, and Cu profiles in the peat. At the study site, surface peat approximately 1 m thick is separated from the underlying mineralized bedrock by a 6-12 m thickness of lake and glaciofluvial sediments and till. Concentrations of Fe, Mn, Co, and Cu in peat and major elements in pore water delineate a shallow, relatively oxidized, Cu-rich zone overlying a deeper, reduced, Fe-, Mn-, and Co-rich zone within the peat. Sequential metal extractions from peat samples reveal that 40-55% of the Cu in the shallow zone is associated with organic material, whereas the remaining Cu is distributed between iron-oxide, sulfide, and residual fractions. Sixty to seventy percent of the Fe, Mn, and Co concentrated in the deeper zone occur in the residual phase. The metal profiles and associations probably result from non-steady-state input of metals and detritus into the fen during formation of the peat column. The enrichment of organic-associated Cu in the upper, oxidized zone represents a combination of Cu transported into the fen with detrital plant fragments and soluble Cu, derived from weathering of outcrop and subcrop of the mineral deposit, transported into the fen, and fixed onto organic matter in the peat. The variable stratigraphy of the peat indicates that weathering processes and surface vegetation have changed through time in the fen. The Fe, Mn, and Co maxima at the base of the peat are associated with a maximum in detrital matter content of the peat resulting from a transition between the underlying inorganic sedimentary environment to an organic sedimentary environment. The chemistry of sediments and ground water collected beneath the peat indicate that mobilization of metals from sulfide minerals in the buried mineral deposit or glacial deposits is minimal. Therefore, the

  19. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Boye, M.; Wake, B. D.; Lopez Garcia, P.; Bown, J.; Baker, A. R.; Achterberg, E. P.

    2012-08-01

    Comprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu and Ag display nutrient-like profiles similar to silicic acid, and of Cd similar to phosphate. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs may have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However, uptake by dino- and nano-flagellates may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P), yielding lower Cd / P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd uptake induced by iron-limiting conditions in these high-nutrient-low-chlorophyll waters

  20. Distributions of dissolved trace metals (Cd, Cu, Mn, Pb, Ag) in the southeastern Atlantic and the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Boye, M.; Wake, B. D.; Lopez Garcia, P.; Bown, J.; Baker, A. R.; Achterberg, E. P.

    2012-03-01

    Comprehensive synoptic datasets (surface water down to 4000 m) of dissolved cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb) and silver (Ag) are presented along a section between 34° S and 57° S in the southeastern Atlantic Ocean and the Southern Ocean to the south off South Africa. The vertical distributions of Cu, Ag, and of Cd display nutrient-like profiles similar to silicic acid, and phosphate, respectively. The distribution of Mn shows a subsurface maximum in the oxygen minimum zone, whereas Pb concentrations are rather invariable with depth. Dry deposition of aerosols is thought to be an important source of Pb to surface waters close to South Africa, and dry deposition and snowfall may have been significant sources of Cu and Mn at the higher latitudes. Furthermore, the advection of water-masses enriched in trace metals following contact with continental margins appeared to be an important source of trace elements to the surface, intermediate and deep waters in the southeastern Atlantic Ocean and the Antarctic Circumpolar Current. Hydrothermal inputs appeared to have formed a source of trace metals to the deep waters over the Bouvet Triple Junction ridge crest, as suggested by relatively enhanced dissolved Mn concentrations. The biological utilization of Cu and Ag was proportional to that of silicic acid across the section, suggesting that diatoms formed an important control over the removal of Cu and Ag from surface waters. However uptake by dino- and nano-flagelattes may have influenced the distribution of Cu and Ag in the surface waters of the subtropical Atlantic domain. Cadmium correlated strongly with phosphate (P), yielding lower Cd/P ratios in the subtropical surface waters where phosphate concentrations were below 0.95 μM. The greater depletion of Cd relative to P observed in the Weddell Gyre compared to the Antarctic Circumpolar Current could be due to increase Cd-uptake induced by iron-limiting conditions in these High-Nutrient Low

  1. An experimental investigation of innovative bridge columns with engineered cementitious composites and Cu-Al-Mn super-elastic alloys

    NASA Astrophysics Data System (ADS)

    Hosseini, F.; Gencturk, B.; Lahpour, S.; Ibague Gil, D.

    2015-08-01

    Recent strong earthquakes have shown that reinforced concrete (RC) bridge columns constructed using conventional materials and techniques suffer from major damage and permanent deformations. The yielding of the longitudinal reinforcement as the main source of energy absorption, and cracking and spalling of concrete results in a dysfunctional bridge structure that does not support the post-disaster recovery efforts. This paper investigates the use of engineered cementitious composites (ECCs) and Cu-Al-Mn super-elastic alloys (SEAs) to improve the performance of bridge columns under seismic loads. A new column design is proposed, which is composed of a pre-fabricated ECC tube that encompasses the longitudinal and transverse steel reinforcement (rebar). The rebar in the plastic hinge region of the cantilever columns was totally or partially replaced with Cu-Al-Mn SEA bars. The tube was filled with conventional concrete after it was placed inside the rebar cage of the foundation. ECC exhibits superior tensile ductility, bonding with steel, energy absorption and shear resistance, in addition to lower permeability and reduced crack widths compared to conventional concrete. Cu-Al-Mn SEA bars are capable of recovering large inelastic deformations exceeding 12% strain. The proposed approach capitalizes on the deformability of ECC with reduced damage, and the energy absorption capacity of Cu-Al-Mn SEA bars without permanent deformation. A total of six column specimens were constructed and tested under simulated seismic loading. The number of rebars replaced with Cu-Al-Mn SEA bars, ECC mixture design, and the ratio of the concrete core area to total column cross-sectional area were the variables investigated in the test program. A comparison of the results indicated that the proposed concept with no Cu-Al-Mn SEA bars provides higher lateral strength, similar energy absorption and reduced damage compared to conventional RC columns; however, similar to a conventional column, it

  2. Electric, magnetic, and thermo-electric properties of Cr doped La0.8Ca0.2Mn1-xCrxMnO3 manganites

    NASA Astrophysics Data System (ADS)

    Manjunatha, S. O.; Rao, Ashok; Babu, P. D.; Chand, Tara; Okram, G. S.

    2016-07-01

    A detailed study of the structural, magnetic, magneto-transport and thermoelectric properties of polycrystalline La0.8Ca0.2Mn1-xCrxMnO3 (0Cr-content, both TMI and TC are observed to decrease. The electrical resistivity data is analyzed using different theoretical models at various regions viz., metallic, insulating and percolation region. Analysis in the metallic region (TTMI) is well described using SPH model. However, the resistivity data in the whole temperature range is analyzed using a phenomenological model based on phase segregation of ferromagnetic metallic and paramagnetic insulating regions. Thermoelectric power, S measurements were performed to understand the conduction mechanism and to ascertain the types of charge carrier responsible for conduction. It is observed that pristine as well as Cr-doped compounds show positive value of S which demonstrates that the charge carriers are holes.

  3. Photocatalytic removal of M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) over new catalyst CuCrO(2).

    PubMed

    Ketir, W; Bouguelia, A; Trari, M

    2008-10-30

    The metal ions M(2+) (Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+) and Ag(+)) are potentially toxic. Their electro deposition has been carried out in aqueous air-equilibrated CuCrO(2) suspension upon visible illumination. The delafossite CuCrO(2) is p-type semiconductor characterized by a low band gap (1.28 eV) and a long-term chemical stability. The corrosion rate is found to be 10(-2) micromol m(-2)month(-1) in aqua regia. The oxide has been elaborated through nitrate route where the specific surface area is increased via the surface/bulk ratio. A correlation exists between the dark M(2+) adsorption, the redox potential of M(2+/0) couple and the conduction band of CuCrO(2) positioned at -1.06 V(SCE). Ag(+) cannot be photoreduced because of its positive potential located far above the valence band. By contrast, Zn(2+) is efficiently deposited due to the large driving force at the interface. The improved photoactivity of copper with a deposition percentage (90%) is attributed to the strong dark adsorption onto the surface catalyst. The results indicate a competitive effect with the water reduction; it has been observed that the M(2+) deposition goes parallel with the hydrogen evolution. Such behavior is attributed to the low H(2) over voltage when ultra fine aggregate of M islands are photodeposited onto CuCrO(2) substrate. PMID:18384943

  4. Control of p-type conduction in Mg doped monophase CuCrO2 thin layers

    NASA Astrophysics Data System (ADS)

    Chikoidze, E.; Boshta, M.; Gomaa, M.; Tchelidze, T.; Daraselia, D.; Japaridze, D.; Shengelaya, A.; Dumont, Y.; Neumann-Spallart, M.

    2016-05-01

    This work aims to clarify the origin of hole conduction in undoped and Mg-doped CuCrO2 oxide in order to have the possibility of controlling it by corresponding growth parameters. A chemical spray pyrolysis procedure for the deposition of p-type semiconductor thin films is described. The as-deposited films were amorphous. The formation of highly crystalline CuCrO2 and Mg-doped CuCrO2 films with a single phase delafossite structure was realized by annealing between 600 °C and 960 °C in a nitrogen atmosphere. The carrier concentration and the point defects of the samples are calculated by using the developed Kroger method of quasi-chemical reactions. p-type conductivity was predicted and observed in the undoped and Mg doped CuCrO2 sample, and with n ~ 1018 cm‑3 carrier concentrations for 4%Mg doping. The electrical resistivity for a 4% Mg doped sample was 1.4 Ω·cm with a Seebeck coefficient of  +130 μV K‑1 at 40 °C. By electroparamagnetic resonance spectroscopy Cr3+ and Cu2+ related defects were studied.

  5. Effect of Heat Treatment on the Microstructure and Properties of Deformation-Processed Cu-7Cr In Situ Composites

    NASA Astrophysics Data System (ADS)

    Liu, Keming; Jiang, Zhengyi; Zhou, Haitao; Lu, Deping; Atrens, Andrej; Yang, Yanling

    2015-11-01

    The effect of heat treatment on the microstructure, electrical conductivity, and tensile strength of deformation-processed Cu-7Cr in situ composites produced by thermo-mechanical processing was investigated. The Cr fibers in the Cu-7Cr in situ composite underwent coarsening, break-up, and spheroidization after exposure to elevated temperatures. The conductivity and tensile strength of the in situ composite first increased with increasing isochronal heat treatment temperature, reached a peak value, and decreased at higher temperatures. The isothermal heat treatment temperature was determined to be 625 °C. The Z ( Z is an optimization parameter to evaluate the service performance of deformation-processed Cu-based in situ composites) value of the deformation-processed Cu-7Cr in situ composite, at η = 7 ( η is a cumulative cold deformation strain) after the heat treatment at 625 °C for 1 h, reached the peak value of 3.46 × 107 MPa2 % International Annealed Copper Standard (IACS). The isochronal heat treatment time was determined to be 1 h. The following combination of conductivity and tensile strength of the deformation-processed Cu-7Cr in situ composite with a cumulative cold deformation strain of eight after isochronal aging treatments for 1 h could be attained respectively as (i) 76.0% IACS and 889 MPa; (ii) 76.8% IACS and 876 MPa; or (iii) 77.5% IACS and 779 MPa.

  6. Preparation and characterization of CuCrO2/TiO2 heterostructure photocatalyst with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xiong, Dehua; Chang, Haimei; Zhang, Qingqing; Tian, Shouqin; Liu, Baoshun; Zhao, Xiujian

    2015-08-01

    A series of novel p-type CuCrO2/n-type TiO2 heterostructure photocatalysts were fabricated for the first time by depositing CuCrO2 nanoparticles on TiO2 nanorod-array film through a facile spin-coating method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and photocurrent response were employed to characterize the as-synthesized composites. The photocatalytic activity of CuCrO2/TiO2 for degradation of methylene blue (MB) aqueous solution was much higher than pure TiO2, which could be ascribed to the formation of p-n heterojunctions between CuCrO2 nanoparticles and TiO2 nanorods. In particular, the best degradation efficiency of CuCrO2/TiO2 heterojunction was 85.3%, about 1.14 times higher than pure TiO2 (74.6%), which could be attributed to their high separation efficiency of photogenerated electrons and holes. It is expected this strategy of p-n junction for enhancing photocatalytic activity can have considerable impact to promote the development of high efficient photocatalyst and industrial application for degrading pollutant, treating waste water and other environmental protection fields.

  7. Low-energy electron elastic scattering from Mn, Cu, Zn, Ni, Ag, and Cd atoms

    SciTech Connect

    Felfli, Z.; Msezane, A. Z.; Sokolovski, D.

    2011-05-15

    Electron elastic total cross sections (TCSs) for ground and excited Mn, Cu, Zn, Ni, Ag, and Cd atoms have been investigated in the electron-impact energy range 0 {<=}E{<=} 1 eV. The near-threshold TCSs for both the ground and excited states of these atoms are found to be characterized by Ramsauer-Townsend minima, shape resonances, and extremely sharp resonances corresponding to the formation of stable bound negative ions. The recently developed Regge-pole methodology where the crucial electron-electron correlations are embedded is employed for the calculations. From close scrutiny of the imaginary parts of the complex angular momenta, we conclude that these atoms form stable weakly bound ground and excited negative ions as Regge resonances through slow electron collisions. The extracted electron binding energies from the elastic TCSs of these atoms are contrasted with the available experimental and theoretical values.

  8. The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2015-09-01

    A simple and fast method of the analysis of green coffee infusions was developed to measure total concentrations of Ca, Cu, Fe, Mg and Mn by high resolution-continuum source flame atomic absorption spectrometry. The precision of the method was within 1-8%, while the accuracy was within -1% to 2%. The method was used to the analysis of infusions of twelve green coffees of different geographical origin. It was found that Ca and Mg were leached the easiest, i.e., on average 75% and 70%, respectively. As compared to the mug coffee preparation, the rate of the extraction of elements was increased when infusions were prepared using dripper or Turkish coffee preparation methods. Additionally, it was established that the antioxidant activity of green coffee infusions prepared using the mug coffee preparation was high, 75% on average, and positively correlated with the total content of phenolic compounds and the concentration of Ca in the brew. PMID:25842341

  9. Cu-Cr-Nb-Zr Alloy for Rocket Engines and Other High-Heat- Flux Applications

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2013-01-01

    Rocket-engine main combustion chamber liners are used to contain the burning of fuel and oxidizer and provide a stream of high-velocity gas for propulsion. The liners in engines such as the Space Shuttle Main Engine are regeneratively cooled by flowing fuel, e.g., cryogenic hydrogen, through cooling channels in the back side of the liner. The heat gained by the liner from the flame and compression of the gas in the throat section is transferred to the fuel by the liner. As a result, the liner must either have a very high thermal conductivity or a very high operating temperature. In addition to the large heat flux (>10 MW/sq m), the liners experience a very large thermal gradient, typically more than 500 C over 1 mm. The gradient produces thermally induced stresses and strains that cause low cycle fatigue (LCF). Typically, a liner will experience a strain differential in excess of 1% between the cooling channel and the hot wall. Each time the engine is fired, the liner undergoes an LCF cycle. The number of cycles can be as few as one for an expendable booster engine, to as many as several thousand for a reusable launch vehicle or reaction control system. Finally, the liners undergo creep and a form of mechanical degradation called thermal ratcheting that results in the bowing out of the cooling channel into the combustion chamber, and eventual failure of the liner. GRCop-84, a Cu-Cr-Nb alloy, is generally recognized as the best liner material available at the time of this reporting. The alloy consists of 14% Cr2Nb precipitates in a pure copper matrix. Through experimental work, it has been established that the Zr will not participate in the formation of Laves phase precipitates with Cr and Nb, but will instead react with Cu to form the desired Cu-Zr compounds. It is believed that significant improvements in the mechanical properties of GRCop-84 will be realized by adding Zr. The innovation is a Cu-Cr-Nb-Zr alloy covering the composition range of 0.8 to 8.1 weight

  10. Mn Oxide Biogenesis and Metal Sequestration in the Presence of Co (II) and Cu (II) By Bacillus SG-1 Bacterial Spores

    SciTech Connect

    Bayat, N

    2004-02-05

    Mn oxides play an important role in degrading contaminants and cycling nutrients in soils and natural waters. The process in which Mn (II) oxidizes to form MnO, is slow; however, Bacillus SG-1 bacterial spores can catalyze the process and allow it to proceed up to five orders of magnitude faster. This experiment explored the affects of co-ion metal concentrations on Biogenic Mn oxide production and their ability to sequester metal cations. Spore solutions were prepared with different ratios of Metal (II): Mn (II) added over a three-week period; this was done separately for Co (II) and Cu (II). The copper solutions were analyzed with ICP/AES to check for the amount of copper and manganese left in solution after biogenic MnO, production. ICP/AES was used to analyze the ratio of Co: Mn in spores where Co was the co-ion metal. Observations showed very little dissolved Cu and Mn exist in solutions with low copper concentrations, but a large amount of Cu and Mn were left in solutions where higher Cu concentrations were used. This shows that high Cu concentration inhibits biogenic Mn oxide production and Cu sequestration. For the experiments with Co as the co-ion metal, it was observed that the ratio of Co: Mn in the spores is relatively similar to the ratios added; however, an exception to this rule was experiments where high concentrations of Co were used. The inconsistency in Co: Mn ratios at high Co concentrations showed that high Co concentrations also inhibit biogenic Mn oxide production.

  11. Pure CuCr2O4 nanoparticles: Synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ghorban; Abazari, Reza; Gavi, Azam

    2014-11-01

    In the present paper a pure phase of the copper chromite spinel nanoparticles (CuCr2O4 SNPs) were synthesized via the sol-gel route using citric acid as a complexing agent. Then, the CuCr2O4 SNPs has been characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In the next step, with the addition of Cu-Cr-O nanoparticles (NPs), the effects of different parameters such as Cu-Cr-O particle size and the Cu/Cr molar ratios on the thermal behavior of Cu-Cr-O NPs + AP (ammonium perchlorate) mixtures were investigated. As such, the catalytic effect of the Cu-Cr-O NPs for thermal decomposition of AP was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA/DSC results showed that the samples with different morphologies exhibited different catalytic activity in different stages of thermal decomposition of AP. Also, in the presence of Cu-Cr-O nanocatalysts, all of the exothermic peaks of AP shifted to a lower temperature, indicating the thermal decomposition of AP was enhanced. Moreover, the heat released (ΔH) in the presence of Cu-Cr-O nanocatalysts was increased to 1490 J g-1.

  12. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method

    NASA Astrophysics Data System (ADS)

    Meng, Yuying; Chen, Deyang; Sun, Yitao; Jiao, Dongling; Zeng, Dechang; Liu, Zhongwu

    2015-01-01

    Chitosan-modified Mn ferrite nanoparticles were synthesized by a one-step microwave-assisted hydrothermal method. These Mn ferrite magnetic composite nanoparticles were employed to absorb Cu2+ ions in water. XRD verified the spinel structure of the MnFe2O4 nanoparticles. Chitosan modification does not result in any phase change of MnFe2O4. FTIR and zeta potentials curves for all samples suggest that chitosan can be successfully coated on the Mn ferrites. TEM characterization showed that the modified MnFe2O4 nanoparticles have a cubic shape with a mean diameter of ∼100 nm. For adsorption behavior, the effects of experiment parameters such as solution pH value, contact time and initial Cu2+ ions concentration on the adsorption efficiency were systematically investigated. The results showed that increasing solution pH value and extending contact time are favorable for improving adsorption efficiency. Especially, adsorption efficiency can reach up to 100% and 96.7% after 500 min adsorption at pH 6.5 for the solutions with initial Cu2+ ions concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and 0.00189 g/mg/min for solutions with initial Cu2+ ions of 50 and 100 mg/L, respectively.

  13. Selective nonenzymatic bilirubin detection in blood samples using a Nafion/Mn-Cu sensor.

    PubMed

    Noh, Hui-Bog; Won, Mi-Sook; Shim, Yoon-Bo

    2014-11-15

    The specific detection of biological organics without the use of an enzyme is challenging, and it is crucial for analytical and clinical chemistry. We report specific nonenzymatic bilirubin detection through the catalytic oxidation of bilirubin molecule on the Nafion/Mn-Cu surface. The catalytic ability, true surface area, morphology, crystallinity, composition, and oxidation state of the sensor surface were assessed using voltammetry, coulometry, XPS, XRD, Brunauer-Emmett-Teller (BET), SEM, EDXS, and TOF-SIMS experiments. The results showed that the surface was composed of microporous Mn-Cu bimetallic crystal in flake shape with a large BET surface area (3.635 m(2)g(-1)), where the surface area and crystallinity mainly affected the sensor performance. Product analysis of the catalytic reaction on the sensor probe revealed a specific two-electron oxidation of dipyrromethane moiety to dipyrromethene in the bilirubin molecule. Experimental variables affecting the analysis of bilirubin were optimized in terms of probe composition, temperature, pH, and potential. At the optimized condition, the dynamic range was between 1.2 μM and 0.42 mM, which yielded the equation of ΔI (μA)=(1.03 ± 0.72)+(457.0 ± 4.03) [C] (mM) with 0.999 of correlation coefficient, and the detection limit was 25.0 ± 1.8 nM (n=5, k=3). The stability test, interference effects, and analysis of real clinical samples, human whole blood and certified serum samples were demonstrated to confirm the reliability of the proposed bilirubin sensor. PMID:24953842

  14. Enhanced Thermoelectric Performance of Cu2CdSnSe4 by Mn Doping: Experimental and First Principles Studies

    PubMed Central

    Liu, F. S.; Zheng, J. X.; Huang, M. J.; He, L. P.; Ao, W. Q.; Pan, F.; Li, J. Q.

    2014-01-01

    Serials of Mn doping by substituting Cd sites on Cu2CdSnSe4 are prepared by the melting method and the spark plasma sintering (SPS) technique to form Cu2Cd1−xMnxSnSe4. Our experimental and theoretical studies show that the moderate Mn doping by substituting Cd sites is an effective method to improve the thermoelectric performance of Cu2CdSnSe4. The electrical resistivity is decreased by about a factor of 4 at 723 K after replacing Cd with Mn, but the seebeck coefficient decreases only slightly from 356 to 289 μV/K, resulting in the significant increase of the power factor. Although the thermal conductivity increases with the doping content of Mn, the figure of merit (ZT) is still increased from 0.06 (x = 0) to 0.16 (x = 0.10) at 723 K, by a factor of 2.6. To explore the mechanisms behind the experimental results, we have performed an ab initio study on the Mn doping effect and find that the Fermi level of Cu2CdSnSe4 is shifted downward to the valence band, thus improving the hole concentration and enhancing the electrical conductivity at the low level doping content. Optimizing the synthesis process and scaling Cu2Cd1−xMnxSnSe4 to nanoparticles may further improve the ZT value significantly by improving the electrical conductivity and enhancing the phonon scattering to decrease the thermal conductivity. PMID:25047225

  15. Thermoelectric Properties of Pseudogap Ti10Ru19B8 and Ti9TM2Ru18B8 (TM: Cr-Cu) Compounds

    NASA Astrophysics Data System (ADS)

    Takagiwa, Y.; Yoshida, T.; Yanagihara, D.; Kimura, K.

    2015-06-01

    The thermoelectric properties of ternary Ti10Ru19B8 and quaternary Ti9TM2Ru18B8 (TM: Cr, Mn, Fe, Co, Ni, Cu) compounds were investigated in the temperature range from 373 K to 973 K. They form pseudogaps in the electronic densities of states near the Fermi level, E F, which is suitable for thermoelectric materials. We synthesized crack-free pellet samples using arc-melting followed by spark plasma sintering. A maximum dimensionless figure of merit zT max was 0.09 at 973 K for Ti10Ru19B8 whereas a large power factor of 1.4 mW/m K2 was obtained at that temperature. The phonon thermal conductivity decreased through TM substitutions; however, the power factor also decreased due to an additional electronic density of states originated from TM d-states around E F; that is, excitations of both holes and electrons.

  16. Monte Carlo study of decorated dislocation loops in FeNiMnCu model alloys

    NASA Astrophysics Data System (ADS)

    Bonny, G.; Terentyev, D.; Zhurkin, E. E.; Malerba, L.

    2014-09-01

    Radiation-induced embrittlement of bainitic steels is the lifetime limiting factor of reactor pressure vessels in existing nuclear light water reactors. The primary mechanism of embrittlement is the obstruction of dislocation motion by nano-metric defects in the bulk of the material due to irradiation. Such features are known to be solute clusters that may be attached to point defect clusters. In this work we study the thermal stability of solute clusters near edge dislocation lines and loops with Burgers vector b = ½[1 1 1] and b = [1 0 0] in FeNiMnCu model alloys by means of Metropolis Monte Carlo simulations. It is concluded that small dislocation loops may indeed act as points for heterogeneous nucleation of solute precipitates in reactor pressure vessel steels and increase their thermodynamic stability up to and above normal reactor operating temperatures. We also found that, in the presence of dislocation-type defects, the Ni content determines the thermodynamic driving force for precipitation, rather than the Mn content.

  17. Investigating half-metallicity in PtXSb alloys (X=V, Mn, Cr, Co) at ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Habbak, Enas L.; Shabara, Reham M.; Aly, Samy H.; Yehia, Sherif

    2016-08-01

    The structural, electronic, magnetic and elastic properties of half-Heusler alloys PtMnSb, PtVSb, PtCrSb and PtCoSb are investigated using first-principles calculation based on Density Functional Theory DFT. The Full Potential local Orbital (FPLO) method, within the General Gradient Approximation (GGA) and Local Spin Density Approximation (LSDA), have been used. The calculated structural, electronic and magnetic properties are in good agreement with available experimental and theoretical data. Using GGA approximation, only PtVSb shows a half-metallic behavior with a spin-down band gap and total magnetic moment of 0.802 eV and 2 μB respectively. Both of PtVSb and PtMnSb alloys are half-metallic with spin-down band gaps of 0.925 eV and 0.832 eV and magnetic moments of 2 μB and 4 μB respectively using LSDA approximation. The bulk modulus and its first pressure-derivative of these alloys are calculated using the modified Birch-Murnaghan equation of state (EOS). The effect of pressure on the lattice constant, energy gap and bulk modulus is investigated. Under pressure, PtMnSb and PtCrSb turn into half-metallic alloys at nearly 6 GPa and 27 GPa respectively using GGA approximation.

  18. Role of W and Mn for reliable 1X nanometer-node ultra-large-scale integration Cu interconnects proved by atom probe tomography

    NASA Astrophysics Data System (ADS)

    Shima, K.; Tu, Y.; Takamizawa, H.; Shimizu, H.; Shimizu, Y.; Momose, T.; Inoue, K.; Nagai, Y.; Shimogaki, Y.

    2014-09-01

    We used atom probe tomography (APT) to study the use of a Cu(Mn) as a seed layer of Cu, and a Co(W) single-layer as reliable Cu diffusion barriers for future interconnects in ultra-large-scale integration. The use of Co(W) layer enhances adhesion of Cu to prevent electromigration and stress-induced voiding failures. The use of Cu(Mn) as seed layer may enhance the diffusion barrier performance of Co(W) by stuffing the Cu diffusion pass with Mn. APT was used to visualize the distribution of W and Mn in three dimensions with sub-nanometer resolution. W was found to segregate at the grain boundaries of Co, which prevents diffusion of Cu via the grain boundaries. Mn was found to diffuse from the Cu(Mn) layer to Co(W) layer and selectively segregate at the Co(W) grain boundaries with W, reinforcing the barrier properties of Co(W) layer. Hence, a Co(W) barrier coupled with a Cu(Mn) seed layer can form a sufficient diffusion barrier with film that is less than 2.0-nm-thick. The diffusion barrier behavior was preserved following a 1-h annealing at 400 °C. The underlayer of the Cu interconnects requires a large adhesion strength with the Cu, as well as low electrical resistivity. The use of Co(W) has previously been shown to satisfy these requirements, and addition of Mn is not expected to deteriorate these properties.

  19. Role of W and Mn for reliable 1X nanometer-node ultra-large-scale integration Cu interconnects proved by atom probe tomography

    SciTech Connect

    Shima, K.; Shimizu, H.; Momose, T.; Shimogaki, Y.; Tu, Y.; Takamizawa, H.; Shimizu, Y.; Inoue, K.; Nagai, Y.

    2014-09-29

    We used atom probe tomography (APT) to study the use of a Cu(Mn) as a seed layer of Cu, and a Co(W) single-layer as reliable Cu diffusion barriers for future interconnects in ultra-large-scale integration. The use of Co(W) layer enhances adhesion of Cu to prevent electromigration and stress-induced voiding failures. The use of Cu(Mn) as seed layer may enhance the diffusion barrier performance of Co(W) by stuffing the Cu diffusion pass with Mn. APT was used to visualize the distribution of W and Mn in three dimensions with sub-nanometer resolution. W was found to segregate at the grain boundaries of Co, which prevents diffusion of Cu via the grain boundaries. Mn was found to diffuse from the Cu(Mn) layer to Co(W) layer and selectively segregate at the Co(W) grain boundaries with W, reinforcing the barrier properties of Co(W) layer. Hence, a Co(W) barrier coupled with a Cu(Mn) seed layer can form a sufficient diffusion barrier with film that is less than 2.0-nm-thick. The diffusion barrier behavior was preserved following a 1-h annealing at 400 °C. The underlayer of the Cu interconnects requires a large adhesion strength with the Cu, as well as low electrical resistivity. The use of Co(W) has previously been shown to satisfy these requirements, and addition of Mn is not expected to deteriorate these properties.

  20. FeMn/Fe/Co/Cu(1,1,10) films studied using the magneto-optic Kerr effect and photoemission electron microscopy

    SciTech Connect

    Meng, Y.; Li, J.; Tan, A.; Park, J.; Jin, E.; Son, H.; Doran, A.; Scholl, A.; Arenholz, E.; Zhao, H. W.; Hwang, Chanyong; Qiu, Z. Q.

    2011-07-31

    FeMn/Fe/Co/Cu(1,1,10) films were grown epitaxially and investigated using the magneto-optic Kerr effect and photoemission electron microscopy. We found that FeMn/Fe/Co/Cu(1,1,10) exhibits the same properties as FeMn/Co/Cu(1,1,10) for the ferromagnetic phase of the face centered cubic (fcc) Fe film but a different property for the non-ferromagnetic phase of the fcc Fe film. This result indicates that the characteristic property reported in the literature for FeMn/Co/Cu(001) comes from the FeMn spin structure and is independent of the ferromagnetic layer.

  1. Influence of Cu substitution for Mn on the structure, magnetic, magnetocaloric and magnetoresistance properties of La 0.7Sr 0.3MnO 3 perovskites

    NASA Astrophysics Data System (ADS)

    Chau, Nguyen; Niem, Pham Quang; Nhat, Hoang Nam; Luong, Nguyen Hoang; Tho, Nguyen Duc

    2003-04-01

    Structural, magnetic, magnetocaloric and magnetoresistance (MR) studies on La 0.7Sr 0.3Mn 0.95Cu 0.05O 3 (No. 1) and La 0.7Sr 0.3Mn 0.9Cu 0.1O 3 (No. 2) perovskites are reported. The crystal structure of the samples is rhombohedral with a change of the lattice constants depending on the Cu content. FC and ZFC thermomagnetic measurements for both compositions at low field indicate that a spin-glass-like state (or cluster glass) occurs at low temperatures and a very sharp change of magnetization around the phase-transition point. The Curie temperature, TC, does almost not depend on the content of Cu substitution. A maximum magnetic-entropy change, Δ Sma x, of 1.96 and 2.07 J/kg K at 13.5 kOe and 350 K is observed for sample No. 1 and No. 2, respectively. Therefore, they can be considered as active magnetic refrigerant materials for room-temperature applications. Electrical-resistance measurements show that both samples are metallic conductor for T< TC and semiconductor for T> TC; moreover, the MR is maximal around TC.

  2. Direct catalytic oxyamination of benzene to aniline over Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles via simultaneous activation of C-H and N-H bonds.

    PubMed

    Acharyya, Shankha S; Ghosh, Shilpi; Bal, Rajaram

    2014-11-11

    We report the facile synthesis of a highly efficient, reusable catalyst comprising Cu(II) nanoclusters supported on CuCr2O4 spinel nanoparticles for the oxyamination of benzene to aniline (H2O2 + NH3) under mild aqueous reaction conditions. The synergy between the Cu(II) nanoclusters and CuCr2O4 spinel nanoparticles plays the most vital role towards its high catalytic activity. PMID:24990186

  3. Electrodialytic removal of Cu, Cr, and As from chromated copper arsenate-treated timber waste

    SciTech Connect

    Ribeiro, A.B.; Mateus, E.P.; Ottosen, L.M.; Bech-Nielsen, G.

    2000-03-01

    Waste of wood treated with chromated copper arsenate (CCA) is expected to increase in volume over the next decades. Alternative disposal options to landfilling are becoming more attractive to study, especially those that promote reuse. The authors have studied the electrodialytic removal of Cu, Cr, and As from CCA-treated timber wastes. The method uses a low-level direct current as the cleaning agent, combining the electrokinetic movement of ions in the matrix with the principle of electrodialysis. The technique was tested in four experiments using a laboratory cell on sawdust of an out-of-service CCA-treated Pinus pinaster Ait. pole. The duration of all the experiments was 30 days, and the current density was kept constant at 0.2 mA/cm{sup 2}. The experiments differ because in one the sawdust was saturated with water (experiment 1) and in the rest it was saturated with oxalic acid, 2.5, 5, and 7.5% (w/w), respectively, in experiments 2--4. The highest removal rates obtained were 93% of Cu, 95% of Cr, and 99% of As in experiment 2. Other experimental conditions might possibly optimize the removal rates.

  4. Hot Deformation Characteristics and Processing Maps of the Cu-Cr-Zr-Ag Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Chai, Zhe; Volinsky, Alex A.; Sun, Huili; Tian, Baohong; Liu, Ping; Liu, Yong

    2016-03-01

    The hot deformation behavior of the Cu-Cr-Zr-Ag alloy has been investigated by hot compressive tests in the 650-950 °C temperature and 0.001-10 s-1 strain rate ranges using Gleeble-1500D thermo-mechanical simulator. The microstructure evolution of the alloy during deformation was characterized using optical and transmission electron microscopy. The flow stress decreases with the deformation temperature and increases with the strain rate. The apparent activation energy for hot deformation of the alloy was 343.23 kJ/mol. The constitutive equation of the alloy based on the hyperbolic-sine equation was established to characterize the flow stress as a function of the strain rate and the deformation temperature. The processing maps were established based on the dynamic material model. The optimal processing parameters for hot deformation of the Cu-Cr-Zr-Ag alloy are 900-950 °C and 0.001-0.1 s-1 strain rate. The evolution of DRX microstructure strongly depends on the deformation temperature and the strain rate.

  5. Influence of thermomechanical processing on the microstructure and properties of a Cu-Cr-P Alloy

    NASA Astrophysics Data System (ADS)

    Gao, N.; Tiainen, T.; Huttunen-Saarivirta, E.; Ji, Y.

    2002-08-01

    The microstructure and properties of a Cu-0.55 wt. % Cr-0.07 wt. % P alloy were studied by using optical microscopy, transmission electron microscopy, and the measurements of Vickers hardness and electrical conductivity after it was subjected to conventional aging and two thermomechanical treatments. The hardness increment resulting from the thermomechanical treatments was 50% higher than the increment produced by conventional aging. The thermomechanical procedure, including two aging steps (double aging), produced a 5% International Annealed Copper Standard (IACS) higher increase in conductivity than the procedure including a single aging step. However, the former procedure did not lead to more efficient hardening in the studied alloy than the latter procedure because during the second aging step extensive recovery or even the onset of recrystallization tended to suppress precipitation hardening to some extent. After being subjected to a thermomechanical treatment that included three cold-drawing steps and one aging step, the studied alloy showed a tensile strength of 550 MPa with a conductivity of 74% IACS. Based on the obtained results as well as on the comparison with other Cu-Cr type alloys, some suggestions were given for improving the thermomechanical processing route of the studied alloy.

  6. Abrasive resistance of metastable V-Cr-Mn-Ni spheroidal carbide cast irons using the factorial design method

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Pastukhova, T. V.; Chabak, Yu. G.; Kusumoto, K.

    2016-06-01

    Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C-4wt%Mn-1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%-10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920°C. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%-10.0wt% for V and 2.5wt%-4.5wt% for Cr, which corresponds to the alloys containing 9vol%-15vol% spheroidal VC carbides, 8vol%-16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9-2.3 times that of the traditional 12wt% V-13wt% Mn spheroidal carbide cast iron.

  7. Low voltage tunneling magnetoresistance in CuCrO{sub 2}-based semiconductor heterojunctions at room temperature

    SciTech Connect

    Li, X. R.; Han, M. J.; Shan, C.; Hu, Z. G. Zhu, Z. Q.; Chu, J. H.; Wu, J. D.

    2014-12-14

    CuCrO{sub 2}-based heterojunction diodes with rectifying characteristics have been fabricated by combining p-type Mg-doped CuCrO{sub 2} and n-type Al-doped ZnO. It was found that the current for the heterojunction in low bias voltage region is dominated by the trap-assisted tunneling mechanism. Positive magnetoresistance (MR) effect for the heterojunction can be observed at room temperature due to the tunneling-induced antiparallel spin polarization near the heterostructure interface. The MR effect becomes enhanced with the magnetic field, and shows the maximum at a bias voltage around 0.5 V. The phenomena indicate that the CuCrO{sub 2}-based heterojunction is a promising candidate for low-power semiconductor spintronic devices.

  8. A re-evaluation of the Mn-Cr systematics of olivine from the angrite meteorite D’Orbigny using Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter; Sugiura, Naoji

    2013-12-01

    ‘Quenched’ angrite meteorites are among the best time markers of igneous activity in early formed planetesimals of the Solar System. They can be precisely dated by the Mn-Cr extinct nuclide decay system because they contain olivine with high Mn/Cr. Nevertheless, there is disagreement between various determinations of the initial 53Mn/55Mn for this meteorite, hindering their use for cross-calibration between chronometric systems and between Secondary Ion Mass Spectrometry (SIMS) and bulk measurement techniques. Here we re-evaluate the Mn-Cr systematics of olivine from the quenched angrite D’Orbigny using Sensitive High-mass Resolution Ion Micro Probe Reverse Geometry (SHRIMP-RG) to search for heterogeneity in isotope systematics and check for inter-laboratory bias. We investigated possible bias arising due to different data reduction methods and have paid careful attention to the relative sensitivities of Mn and Cr by utilising a three-component mixing model to correct for matrix effects associated with Mg, Fe and Ca zoning in angrite olivine. We have determined an initial 53Mn/55Mn of 3.60 (±0.39) × 10-6 and 3.44 (±0.29) × 10-6 (2σ errors) for D’Orbigny olivine by the Mean of Ratios and Ratio of Total Counts data reduction methods. These values are in agreement with those found by some previous bulk and mineral-scale determinations, and with the generally accepted initial 53Mn/55Mn of this meteorite, but not with previous SIMS work on this material. The source of this discrepancy remains unclear. We can exclude heterogeneity in D’Orbigny as a source of discrepancy because we used the same sample and the meteorite appears to have consistent initial 53Mn/55Mn over both micro- and macro-scales. The discrepancy between this and the previous SIMS study probably reflects an unrecognised systematic analytical bias, possibly associated with relative sensitivities of Mn and Cr or with mass spectrometric backgrounds (isobaric interferences or scattered ions

  9. Crystal structure and magnetic properties of titanium-based CuTi{sub 2−x}M{sub x}S{sub 4} and CuCr{sub 2−x}Ti{sub x}Se{sub 4} chalcospinels

    SciTech Connect

    Barahona, P.; Galdámez, A.; López-Vergara, F.; Manríquez, V.; Peña, O.

    2014-04-01

    CuTi{sub 2−x}M{sub x}S{sub 4} (M=Fe, Mn, Co; x=0.3, 0.5) and CuCr{sub 2−x}Ti{sub x}Se{sub 4} (x=0.3, 0.5, 0.7) chalcospinels were synthesized by conventional solid-state reactions. Their crystal structures were determined by single-crystal X-ray diffraction. All of the phases crystallized in cubic spinel-type structures (space group, Fd3{sup ¯}m). For all of the chalcospinel compounds, the edge-length distortion parameter (ELD) indicated that the most distorted polyhedron was Q[(Ti,M){sub 3}Cu], which displayed an ∼8% distortion from an ideal tetrahedron structure (Q=S or Se). The Mn-based thiospinel CuMn{sub 0.3}Ti{sub 1.7}S{sub 4} is paramagnetic, whereas the Fe-based thiospinels (CuTi{sub 2−x}Fe{sub x}S{sub 4}; x=0.3 and 0.7) are strongly antiferromagnetic due to their spin-glass states. The magnetic susceptibility measurements indicated ferromagnetic behavior for the selenospinels (CuCr{sub 2−x}Ti{sub x}Se{sub 4}; x=0.3, 0.5 and 0.7). - Graphical abstract: View along [1 0 0] of CuCr{sub 2−x}Ti{sub x}Se{sub 4} crystal structure showing tetrahedral and octahedral units. To the right, experimental X-ray powder diffraction pattern of CuCr{sub 1.7}Ti{sub 0.3}Se{sub 4} (top) in compared (in a like-mirror representation) to a simulated X-ray pattern from single-crystal data (bottom). - Highlights: • Chalcogenides belong to the family of compounds spinel-type. • Resolved single crystals of the solid solutions have space group Fd-3m. • The distortion of the tetrahedral and octahedral volume were calculated. • These solid solutions shows a ferromagnetic or spin-glass behavior.

  10. Study of the effect of annealing on defects in Fe Mn Si Cr Ni C alloy by slow positron beam

    NASA Astrophysics Data System (ADS)

    Mostafa, Khaled. M.; De Baerdemaeker, J.; Van Caenegem, N.; Segers, D.; Houbaert, Y.

    2008-10-01

    FeMnSi shape memory alloys (SMAs) have received much attention as one-way SMAs due to their cost-effectiveness. Variable-energy (0-30 keV) positron beam studies have been carried out on a Fe-Mn-Si-Cr-Ni-C alloy with different degrees of deformation. Doppler broadening profiles of the positron annihilation as a function of incident positron energy were shown to be quite sensitive to defects introduced by deformation. The variation of the nature and the concentration of defects are studied as a function of isochronal annealing temperature. These results are correlated with the data measured with the positron annihilation lifetime spectroscopy (PALS). The positron annihilation results are compared to XRD and optical microscopy (OM).

  11. Fate of Cu, Cr, and As during combustion of impregnated wood with and without peat additive.

    PubMed

    Lundholm, Karin; Boström, Dan; Nordin, Anders; Shchukarev, Andrei

    2007-09-15

    The E.U. Directive on incineration of waste regulates the harmful emissions of particles and twelve toxic elements, including copper, chromium, and arsenic. More information is critically needed on the speciation and behavior of these trace elements during combustion, including the effects of different process variables, as well as of different fuels and fuel mixtures. Using a 15 kW pellets-fueled grate burner, experiments were performed to determine the fate of copper, chromium, and arsenic during combustion of chromate copper arsenate (CCA) preservative wood. The effects of co-combustion of CCA-wood with peat were also studied since peat fuels previously have proved to generally reduce ash related problems. The fate and speciation of copper, chromium, and arsenic were determined from analysis of the flue gas particles and the bottom ash using SEM-EDS, XRD, XPS, and ICP-AES. In addition, chemical equilibrium model calculations were performed to interpret the experimental findings. The results revealed that about 5% copper, 15% chromium, and 60% arsenic were volatilized during combustion of pure CCA-wood, which is lower than predicted volatilization from the individual arsenic, chromium, and copper oxides. This is explained by the formation of more stable refractory complex oxide phases for which the stability trends and patterns are presented. When co-combusted with peat, an additional stabilization of these phases was obtained and thus a small but noteworthy decrease in volatilization of all three elements was observed. The major identified phases for all fuels were CuCrO2(s), (Fe, Mg, Cu)(Cr, Fe, Al)04(s), Cr2O3(s), and Ca3(AsO4)2(s). Arsenic was also identified in the fine particles as KH2AsO4(s) and As2O3(s). A strong indication of hexavalent chromium in the form of K2CrO4 or as a solid solution between K3Na(CrO4)2 and K3Na(SO4)2 was found in the fine particles. Good qualitative agreement was observed between experimental data and chemical equilibrium model

  12. Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Raj, Sai V.

    2002-01-01

    Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.

  13. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  14. Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application

    SciTech Connect

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Special austenitic steels are being designed in which alloying elements like Mo, Nb, and Ni are replaced with Mn, W, V, Ti, and/or Ta to reduce the long-term radioactivity induced by fusion reactor irradiation. However, the new steels still need to have properties otherwise similar to commercial steels like type 316. Precipitation strongly affects strength and radiation-resistance in austenitic steels during irradiation at 400--600/degree/C, and precipitation is also usually quite sensitive to alloy composition. The initial stage of development was to define a base Fe-Cr-Mn-C composition that formed stable austenite after annealing and cold-working, and resisted recovery or excessive formation of coarse carbide and intermetallic phases during elevated temperature annealing. These studies produced a Fe-12Cr-20Mn-0.25C base alloy. The next stage was to add the minor alloying elements W, Ti, V, P, and B for more strength and radiation-resistance. One of the goals was to produce fine MC precipitation behavior similar to the Ti-modified Fe-Cr-Ni prime candidate alloy (PCA). Additions of Ti+V+P+B produced fine MC precipitation along network dislocations and recovery/recrystallization resistance in 20% cold worked material aged at 800/degree/C for 166h, whereas W, Ti, W+Ti, or Ti+P+B additions did not. Addition of W+Ti+V+P+B also produced fine MC, but caused some sigma phase formation and more recrystallization as well. 29 refs., 14 figs., 9 tabs.

  15. Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Xu, Hui; Chen, Jian-hao; Ren, Shu-bin; He, Xin-bo; Qu, Xuan-hui

    2016-06-01

    Cr-coated diamond/Cu composites were prepared by spark plasma sintering. The effects of sintering pressure, sintering temperature, sintering duration, and Cu powder particle size on the relative density and thermal conductivity of the composites were investigated in this paper. The influence of these parameters on the properties and microstructures of the composites was also discussed. The results show that the relative density of Cr-coated diamond/Cu reaches ~100% when the composite is gradually compressed to 30 MPa during the heating process. The densification temperature increases from 880 to 915°C when the diamond content is increased from 45vol% to 60vol%. The densification temperature does not increase further when the content reaches 65vol%. Cu powder particles in larger size are beneficial for increasing the relative density of the composite.

  16. Gd{sub 3+}-ESR and magnetic susceptibility of GdCu{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8}

    SciTech Connect

    Coldea, R.; Coldea, M.; Pop, I.

    1994-03-01

    Gd ESR of GdCu{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8} and magnetic susceptibility of GdCu{sub 4}Al{sub 8}, GdMn{sub 4}Al{sub 8}, and YMn{sub 4}Al{sub 8} were measured in the temperature range of 290K--460K and 90K--1050K, respectively. The occurrence of the Mn moment in YMn{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8} is strongly correlated with the critical value of d{approx}2.6{angstrom} of the Mn-Mn distance below which the Mn moment is not stable. The experimental data for GdMn{sub 4}Al{sub 8}, compared with the data for the isostructural compounds GdCu{sub 4}Al{sub 8} and YMn{sub 4}Al{sub 8}, show that near the critical value of d, the existence of Mn moment depends not only on the value of d, but also on the local magnetic surroundings. It has been revealed that the magnetic character of Mn moment in YMn{sub 4}Al{sub 8} and GdMn{sub 4}Al{sub 8} changes from an itinerant electron type to a local-moment type with increasing temperature.

  17. Optical properties of undoped and Mg doped CuCrO{sub 2} powders synthesized by sol-gel route

    SciTech Connect

    Srinivasan, Radhakrishnan; Bolloju, Satish

    2014-01-28

    In this work, CuCrO{sub 2} was synthesized by sol-gel method using citric acid as a gelling agent. The different parameters like ratio of citric acid to metal ions, calcination temperature, and duration were studied. A green colored powder with particle size around 300 nm was formed at the calcination temperature of 800 °C for four hours duration. The increase in temperature has a profound impact on crystallite size and in turn effected the optical properties. Band gap of the obtained CuCrO{sub 2} has varied from 2.3 to 1.7 eV by increasing the temperature from 800 °C to 900 °C. Doping studies were performed by introducing Mg{sup 2+} ion to substitute Cr{sup 3+} in CuCrO{sub 2}. X-ray powder diffraction and SEM studies on 2% Mg doped samples indicated a clear formation of side phases. According to the X-ray powder patterns, the reflections from side phases were increasing with the increase in doping concentrations of Mg from 2 to 5%. The side phases were found to be MgCr{sub 2}O{sub 4} spinel and CuO. The band gap has decreased for doped samples in comparison to undoped one. In this paper, sol-gel synthesis and characterization by Xray powder diffraction, SEM studies and UV-Vis-Diffuse Reflectance spectra are presented.

  18. Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Gludovatz, Bernd; George, Easo P.; Ritchie, Robert O.

    2015-08-01

    Equiatomic multi-component alloys, referred to variously as high-entropy alloys, multi-component alloys, or compositionally complex alloys in the literature, have recently received significant attention in the materials science community. Some of these alloys can display a good combination of mechanical properties. Here, we review recent work on the processing, microstructure and mechanical properties of one of the first and most studied high-entropy alloys, namely the single-phase, face-centered cubic alloy CrMnFeCoNi, with emphasis on its excellent damage tolerance (strength with toughness) in the temperature range from room temperature down to liquid nitrogen temperature.

  19. Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels

    NASA Astrophysics Data System (ADS)

    Mahmudi, Abbas; Nedjad, Syamak Hossein; Behnam, Mir Masud Jabbari

    2011-10-01

    Effects of cold rolling on the microstructure and mechanical properties of Fe-Ni-Mn-Mo-Ti-Cr maraging steels were studied. To investigate the microstructure and mechanical properties, optical microscopy, scanning electron microscopy, X-ray diffraction, tensile test, and hardness test were used. The results show that the solution-annealing treatment in the cold-rolled steel redounds to the formation of submicrocrystalline Fe2(Mo, Ti) Laves phase particles, which are stable at high temperatures. These secondary Laves phase particles prevent from recrystallization at high temperatures and correspond to semi-brittle fracture in the subsequent aging treatment.

  20. XRD and Mössbauer spectroscopy investigation of Mn substituted CuFe2O4 nanoparticles.

    PubMed

    Rai, A; Banerjee, M

    2008-08-01

    The effect of Mn substitution in Cu ferrite may present a challenge, as there are three transition metals ions distributed among the two available crystallographic sub lattices. This system also presents complicated super exchange interactions. In this study a series of five powdered samples with composition Cu(1-x)Mn(x)Fe2O4 were investigated using XRD and transmission Mössbauer spectroscopy. The variation of lattice parameter, crystallite size, and Mössbauer parameters of the product formed with the variation in the concentration of Mn has been studied. XRD study revealed the formation of pure phase spinels with FCC cubic structure having particle size ranging from 7.2 nm to 20 nm. Lattice constant value showed constant increase with increasing Mn concentration. AFM image confirms the formation of spherical shaped nanoparticles. Mössbauer spectroscopy proves to be an excellent tool for probing the local environment of Fe atoms present in such materials. Results show two sets of six finger patterns for all the samples with two double line pattern obtained for the composition with x = 0.75 and 1.0, indicating the presence of Fe in both A and B site. Increase in Mn concentration first increases the hyperfine field and then it gradually decreases. This effect is observed at both the sites. This effect is due to the relative strengths of Fe-O-X super exchange (X = Fe, Mn, Cu) as well as number of different nearest neighbour of A and B sites. The unexpected behaviour for the last two compositions can be explained by the presence of particle size distribution that results in superparamagnetic behaviour. PMID:19049197

  1. Crystal growth and magnetic properties of Ln-Mn-Al (Ln=Gd, Yb) compounds of the CaCr{sub 2}Al{sub 10} and ThMn{sub 12} structure types

    SciTech Connect

    Fulfer, Bradford W.; Haldolaarachchige, Neel; Young, David P.; Chan, Julia Y.

    2012-10-15

    We report the growth and characterization of LnMn{sub 2+x}Al{sub 10-x} (Ln=Gd, Yb) crystals adopting the CaCr{sub 2}Al{sub 10} and ThMn{sub 12} structure types. Single crystals of LnMn{sub 2+x}Al{sub 10-x} were synthesized via the self-flux method and characterized with single crystal X-ray diffraction. We compare LnMn{sub 2+x}Al{sub 10-x} compounds adopting the CaCr{sub 2}Al{sub 10} and ThMn{sub 12} structure types, and outline synthesis methods to obtain each polymorph. Magnetic susceptibility measurements show paramagnetic behavior down to 3 K for both CaCr{sub 2}Al{sub 10}- and ThMn{sub 12}-type compounds, with observed magnetic moments of 1.3{mu}{sub B} for compounds adopting the CaCr{sub 2}Al{sub 10} structure type to 4.2{mu}{sub B} for those adopting the ThMn{sub 12} structure type. Compounds of both structure type exhibit metallic resistivity, with upturns at low temperature attributed to Kondo scattering. - Graphical abstract: We report the growth and characterization of LnMn{sub 2+x}Al{sub 10-x} (Ln=Gd, Yb) crystals adopting the CaCr{sub 2}Al{sub 10} and ThMn{sub 12} structure types. Single crystals of LnMn{sub 2+x}Al{sub 10-x} were synthesized via the self-flux method and characterized with single crystal X-ray diffraction. We compare LnMn{sub 2+x}Al{sub 10-x} compounds adopting the CaCr{sub 2}Al{sub 10} and ThMn{sub 12} structure types, and outline synthesis methods to obtain each polymorph. Magnetic susceptibility measurements show paramagnetic behavior down to 3 K for both CaCr{sub 2}Al{sub 10}- and ThMn{sub 12}-type compounds, with observed magnetic moments of 1.3{mu}{sub B} for compounds adopting the CaCr{sub 2}Al{sub 10} structure type to 4.2{mu}{sub B} for those adopting the ThMn{sub 12} structure type. Compounds of both structure type exhibit metallic resistivity, with upturns at low temperature attributed to Kondo scattering. Highlights: Black-Right-Pointing-Pointer We have grown Ln (Mn,Al){sub 12} (Ln=Gd, Yb) single crystals of the ThMn{sub 12

  2. Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments

    NASA Astrophysics Data System (ADS)

    Beck, Melanie; Dellwig, Olaf; Schnetger, Bernhard; Brumsack, Hans-Jürgen

    2008-06-01

    Trace metals (Mn, Fe, Mo, U, Cr, V) were studied in pore waters of an intertidal flat located in the German Wadden Sea. The study system is an example of a permeable tidal flat system where pore water exchange is affected by tidal driven pressure gradients besides diffusion. Permanently installed in situ samplers were used to extract pore waters down to 5 m depth throughout one year. The samplers were either located close to the tidal flat margin or in central parts of the tidal flat. Despite dynamic sedimentological and hydrological conditions, the general trends with depth in deep tidal flat pore waters are remarkably similar to those observed in deep sea environments. Rates of trace metal cycling must be comparably large in order to maintain the observed pore water profiles. Trace metals further show similar general trends with depth close to the margin and in central parts of the tidal flat. Seasonal sampling revealed that V and Cr vary concurrent with seasonal changes in dissolved organic carbon (DOC) concentration. This effect is most notable close to the tidal flat margin where sulphate, DOC, and nutrients vary with season down to some metres depth. Seasonal variations of Mn, Fe, Mo, and U are by contrast limited to the upper decimetres of the sediment. Their seasonal patterns depend on organic matter supply, redox stratification, and particulate matter deposited on sediment surfaces. Pore water sampling within one tidal cycle provides evidence for pore water advection in margin sediments. During low tide pore water flow towards the creekbank is generated by a hydraulic gradient suggesting that deep pore waters may be seeping out of creekbank sediments. Owing to the enrichment of specific elements like Mn in pore water compared to sea water, seeping pore waters may have an impact on the chemistry of the open water column. Mass balance calculations reveal that the impact of deep pore waters on the Mn budget in the open water column is below 4%. Mn deep pore

  3. Spin-polarization properties and electronic structure of the ordered c(2 × 2) MnCu/Cu(1 1 0) surface alloy.

    PubMed

    Wang, C; Stojić, N; Binggeli, N

    2014-10-01

    The spin-ordering and electronic properties of the c(2 × 2) MnCu/Cu(1 1 0) surface alloy are investigated by means of ab initio density-functional calculations. We first address the magnetic ground state and the robustness of the spin-polarization properties. The lowest-energy state is found to be ferromagnetic with a very low Curie temperature, showing that the paramagnetic phase should be established in this system at room temperature. The calculated trends obtained for the various spin structures considered indicate that the local Mn-spin moment and resulting reduced work function as well as Mn-outward buckling should persist in the paramagnetic phase. We then address the electronic surface-band structure of the paramagnetic phase close to the Fermi energy, in connection with the interpretation of recent angle-resolved-photoemission-spectroscopy experiments at room temperature. Our calculations account for an intriguing new surface-band feature observed experimentally near the [Formula: see text] point upon alloy formation, and provide a microscopic interpretation for this feature and for the alloy-induced changes in the Cu(1 1 0) Shockley surface state. PMID:25158692

  4. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    NASA Astrophysics Data System (ADS)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  5. Using oxygen and carbon stable isotopes, 53Mn-53Cr isotope systematics, and petrology to constrain the history of carbonates and water in the CR and CM chondrite parent bodies

    NASA Astrophysics Data System (ADS)

    Tyra, Mark Anthony

    I carried out a petrologic and Mn-Cr isotopic study of carbonates in the paired CM1 chondrites, ALH 84049 and ALH 84051, in an effort to understand the origin and chronology of formation of carbonates in the most heavily altered CM chondrites. Dolomite is strongly compositionally zoned (Ca, Mg, Fe, Mn), indicating very heterogeneous formation conditions, yet all carbonate Mn-Cr analyses form individual isochrons. In this study, I also analyzed the Mn-Cr isotope systematics of the CR1 chondrite GRO 95577 and determined that siderite is the youngest secondary mineral yet observed in carbonaceous chondrites. This has implications for the CR parent body as it either was large enough to retain heat for long periods of time or was heated by impact after most aqueous alteration in carbonaceous chondrites had ceased. This study also presents analyses of carbonates in the same samples (ALH 84049 and GRO 95577) in-situ for their oxygen, and, in ALH 84049, carbon isotope composition to constrain aqueous alteration. The results show that multiple generations of carbonates must have occurred in ALH 84049 from a carbon source with either heterogeneous carbon isotopes or with changing carbon isotope compositions from ongoing methane formation. Furthermore, in GRO 95577, the oxygen isotope values suggest that calcite precipitated before siderite if CR chondrite fluids followed a closed system oxygen isotope evolution path similar to CM chondrites.

  6. Heteroepitaxial growth of nonpolar Cu-doped ZnO thin film on MnS-buffered (100) Si substrate

    NASA Astrophysics Data System (ADS)

    Nakamura, Tatsuru; Nguyen, Nam; Nagata, Takahiro; Takahashi, Kenichiro; Ri, Sung-Gi; Ishibashi, Keiji; Suzuki, Setsu; Chikyow, Toyohiro

    2015-06-01

    The preparation of nonpolar ZnO and Cu-doped ZnO thin films on Si substrates was studied for the application to the fabrication of green-light-emitting diodes. The use of rocksalt MnS and wurtzite AlN as buffer layers is a key technology for achieving the heteroepitaxial growth of nonpolar ZnO thin film on a (100) Si substrate. X-ray diffraction and photoluminescence measurements revealed that deposition under a high oxygen partial pressure (∼1 Torr) can enhance the nonpolar crystallization of undoped ZnO, and can simultaneously suppress the formation of defects such as oxygen vacancies. These techniques can be also applied to the growth of Cu-doped ZnO. A room-temperature photoluminescence study revealed that nonpolar [11\\bar{2}0]-oriented Cu-doped ZnO film exhibits enhanced green emission owing to the doped Cu ions.

  7. Immune responses in lactating Holstein cows supplemented with Cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates.

    PubMed

    Nemec, L M; Richards, J D; Atwell, C A; Diaz, D E; Zanton, G I; Gressley, T F

    2012-08-01

    The aim of this study was to compare effects of inorganic sulfate versus chelated forms of supplemental Cu, Mn, and Zn on milk production, plasma and milk mineral concentrations, neutrophil activity, and antibody titer response to a model vaccination. Holstein cows (n=25) were assigned in 2 cohorts based on calving date to a 12-wk randomized complete block design study. The first cohort consisted of 17 cows that had greater days in milk (DIM; mean of 77 DIM at the start of the trial) than the second cohort of 8 cows (32 DIM at the start of the trial). Diets were formulated to supplement 100% of National Research Council requirements of Cu, Mn, and Zn by either inorganic trace minerals (ITM) in sulfate forms or chelated trace minerals (CTM) supplied as metal methionine hydroxy analog chelates, without accounting for trace mineral contribution from other dietary ingredients. Intake and milk production were recorded daily. Milk composition was measured weekly, and milk Cu, Mn, and Zn were determined at wk 0 and 8. Plasma Cu and Zn concentrations and neutrophil activity were measured at wk 0, 4, 8, and 12. Neutrophil activity was measured by in vitro assays of chemotaxis, phagocytosis, and reactive oxygen species production. A rabies vaccination was administered at wk 8, and vaccine titer response at wk 12 was measured by both rapid fluorescent focus inhibition test and ELISA. Analyzed dietary Cu was 21 and 23mg/kg, Mn was 42 and 46mg/kg, and Zn was 73 and 94mg/kg for the ITM and CTM diets, respectively. No effect of treatment was observed on milk production, milk composition, or plasma minerals. Dry matter intake was reduced for CTM compared with ITM cows, but this was largely explained by differences in body weight between treatments. Milk Cu concentration was greater for CTM than ITM cows, but this effect was limited to the earlier DIM cohort of cows and was most pronounced for multiparous compared with primiparous cows. Measures of neutrophil function were

  8. Environmental influence on the single-molecule magnet behavior of [Mn(III)6Cr(III)]3+: molecular symmetry versus solid-state effects.

    PubMed

    Hoeke, Veronika; Heidemeier, Maik; Krickemeyer, Erich; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Postnikov, Andrei; Glaser, Thorsten

    2012-10-15

    The structural, spectroscopic, and magnetic properties of a series of [Mn(III)(6)Cr(III)](3+) (= [{(talen(t-Bu(2)))Mn(III)(3)}(2){Cr(III)(CN)(6)}](3+)) compounds have been investigated by single-crystal X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and electronic absorption spectroscopy, elemental analysis, electro spray ionization-mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS), cyclic voltammetry, AC and DC magnetic measurements, as well as theoretical analysis. The crystal structures obtained with [Cr(III)(CN)(6)](3-) as a counterion exhibit (quasi-)one-dimensional (1D) chains formed by hydrogen-bonded (1) or covalently linked (2) trications and trianions. The rod-shaped anion lactate enforces a rod packing of the [Mn(III)(6)Cr(III)](3+) complexes in the highly symmetric space group R3[overline] (3) with a collinear arrangement of the molecular S(6) axes. Incorporation of the spherical anion BPh(4)(-) leads to less-symmetric crystal structures (4-6) with noncollinear orientations of the [Mn(III)(6)Cr(III)](3+) complexes, as evidenced by the angle between the approximate molecular C(3) axes taking no specific values in the range of 2°-69°. AC magnetic measurements on freshly isolated crystals (1a and 3a-6a), air-dried crystals (3b-6b), and vacuum-dried powder samples (3c-6c) indicate single-molecule magnet (SMM) behavior for all samples with U(eff) values up to 28 K. The DC magnetic data are analyzed by a full-matrix diagonalization of the appropriate spin-Hamiltonian including isotropic exchange, zero-field splitting, and Zeeman interaction, taking into account the relative orientation of the D-tensors. Simulations for 3a-6a and 3c-6c indicate a weak antiferromagnetic exchange between the Mn(III) ions in the trinuclear subunits (J(Mn-Mn) = -0.70 to -0.85 cm(-1), Ĥ(ex) = -2∑(iCr-C≡N-Mn pathway

  9. Construction of the Magnetic Phase Diagram of FeMn/Ni/Cu(001) Using Photoemission Electron Microscopy

    SciTech Connect

    Wu, J.; Scholl, A.; Arenholz, E.; Hwang, C.; Qiu, Z. Q.

    2011-01-04

    Single crystalline FeMn/Ni bilayer was epitaxially grown on Cu(001) substrate and investigated by photoemission electron microscopy (PEEM). The FeMn and Ni films were grown into two cross wedges to facilitate an independent control of the FeMn (0-20 ML) and Ni (0-20 ML) film thicknesses. The Ni magnetic phases were determined by Ni domain images as a function of the Ni thickness (d{sub Ni}) and the FeMn thickness (d{sub FeMn}). The result shows that as the Ni thickness increases, the Ni film undergoes a paramagnetic-to-ferromagnetic state transition at a critical thickness of d{sub FM} and an in-plane to out-of-plane spin reorientation transition at a thicker thickness d{sub SRT}. The phase diagram shows that both d{sub FM} and d{sub SRT} increase as the FeMn film establishes its antiferromagnetic order.

  10. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    SciTech Connect

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.

  11. Galvanomagnetic properties of Fe2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-01

    The Hall effect and the magnetoresistance of Fe2YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3 d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit ( H > 10 kOe), the value and the sign of the normal ( R 0) and anomalous ( R s ) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R s in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio ( R s ∝ ρ 0 3.1 ), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  12. Electronic, optical and thermal properties of TiCr2 and TiMn2 by ab initio simulations

    NASA Astrophysics Data System (ADS)

    Ali, M. S.; Roknuzzaman, M.; Parvin, R.; Islam, A. K. M. A.; Ostrikov, K.

    2015-10-01

    A theoretical study of TiX2 (X = Cr, Mn) with C14 Laves phase compounds has been performed by using the first-principles pseudopotential plane-wave method within the generalized gradient approximation (GGA). The electronic properties (Fermi surface and charge density) have been calculated and analyzed. The optical characteristics (dielectric functions, absorption spectrum, conductivity, energy-loss spectrum and reflectivity) are calculated and discussed. The calculated large positive static dielectric constant indicates good dielectric properties. The reflectivity of TiX2 (X = Cr, Mn) is high in the IR-Visible-UV region up to ˜13 eV showing promise as a good solar heating barrier material. The temperature and pressure dependence of bulk modulus, Debye temperature, specific heats and thermal expansion coefficient are obtained for T = 1200 K and P = 50 GPa through quasi-harmonic Debye model with phononic effects. Fermi surface, optical and thermodynamic properties are very important for practical applications of the materials in optical and other devices.

  13. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    DOE PAGESBeta

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less

  14. Influence of Plasma Remelting on the Microstructure and Cavitation Resistance of Arc-Sprayed Fe-Mn-Cr-Si Alloy

    NASA Astrophysics Data System (ADS)

    Pukasiewicz, A. G. M.; Alcover, P. R. C.; Capra, A. R.; Paredes, R. S. C.

    2014-01-01

    Surface remelting is an important technique for modifying the microstructure of thermally sprayed coatings as it reduces the porosity and promotes a metallurgical bond between substrate and coating. Many studies have been carried out in the field of materials selection and surface engineering in an attempt to reduce cavitation damage. In this work, an Fe-Mn-Cr-Si alloy was deposited by arc spraying and then remelted by a plasma-transferred arc process. The base metal was a soft martensitic stainless steel. The influence of remelting current on coating and base metal microstructure and cavitation resistance was studied. The use of a lower mean current and a pulsed arc reduced the thickness of the heat-affected zone. In specimens remelted with constant arc current, dendrites were aligned parallel to the path followed by the plasma torch; while in those remelted with a pulsed plasma arc, the alignment of the microstructure was disrupted. The use of a higher peak current in pulsed-current plasma transferred arc remelting reduced mass loss due to cavitation. Fe-Mn-Cr-Si coatings exhibited cavitation-induced hardening, with martensite formation during cavitation tests. This transformation helps to increase the cavitation resistance of the remelted coating compared with the soft martensitic stainless steel base metal.

  15. Galvanomagnetic properties of Fe{sub 2}YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si) heusler alloys

    SciTech Connect

    Kourov, N. I. Marchenkov, V. V.; Belozerova, K. A.; Weber, H. W.

    2015-11-15

    The Hall effect and the magnetoresistance of Fe{sub 2}YZ Heusler alloys, where Y = Ti, V, Cr, Mn, Fe, and Ni, are the 3d transition metals and Z = Al and Si are the s, p elements of the third period of the periodic table, are studied at T = 4.2 K in magnetic fields H ≤ 100 kOe. It is shown that, in the high-field limit (H > 10 kOe), the value and the sign of the normal (R{sub 0}) and anomalous (R{sub s}) Hall coefficients change anomalously during transition from paramagnetic (Y = Ti, V) to ferromagnetic (Y = Cr, Mn, Fe, Ni) alloys. These coefficients have different signs for all alloys. Constant R{sub s} in the ferromagnetic alloys is positive, proportional to the residual resistivity ratio (R{sub s} ∝ ρ{sub 0}{sup 3.1}), and inversely proportional to spontaneous magnetization. The magnetoresistance of the alloys is a few percent and has a negative sign. A positive addition to transverse magnetoresistance is only detected in high magnetic fields, H > 10 kOe.

  16. Thermodynamic Stability of Transition-Metal-Substituted LiMn2-x Mx O4 (M=Cr, Fe, Co, and Ni) Spinels.

    PubMed

    Lai, Chenying; Chen, Jiewei; Knight, James C; Manthiram, Arumugam; Navrotsky, Alexandra

    2016-07-01

    The formation enthalpies from binary oxides of LiMn2 O4 , LiMn2-x Crx O4 (x=0.25, 0.5, 0.75 and 1), LiMn2-x Fex O4 (x=0.25 and 0.5), LiMn2-x Cox O4 (x=0.25, 0.5, and 0.75) and LiMn1.75 Ni0.25 O4 at 25 °C were measured by high temperature oxide melt solution calorimetry and were found to be strongly exothermic. Increasing the Cr, Co, and Ni content leads to more thermodynamically stable spinels, but increasing the Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO4 (M=Cr, Fe and Co), become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2 O4 -LiMnMO4 solid solutions. These data confirm that transition-metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries. PMID:27017448

  17. Properties and features of structure formation CuCr-contact alloys in electron beam cladding

    SciTech Connect

    Durakov, Vasiliy G.; Dampilon, Bair V. E-mail: gnusov@rambler.ru; Gnyusov, Sergey F. E-mail: gnusov@rambler.ru

    2014-11-14

    The microstructure and properties of the contact CuCr alloy produced by electron-beam cladding have been investigated. The effect of the electron beam cladding parameters and preheating temperature of the base metal on the structure and the properties of the coatings has been determined. The bimodal structure of the cladding coating has been established. The short circuit currents tests have been carried out according to the Weil-Dobke synthetic circuit simulating procedure developed for vacuum circuit breakers (VCB) test in real electric circuits. Test results have shown that the electron beam cladding (EBC) contact material has better breaking capacity than that of commercially fabricated sintered contact material. The application of the technology of electron beam cladding for production of contact material would significantly improve specific characteristics and reliability of vacuum switching equipment.

  18. Spin glass state and enhanced spiral phase in doped delafossite oxide CuCr O2

    NASA Astrophysics Data System (ADS)

    Yan, Z. R.; Qin, M. H.; Dong, S.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2016-07-01

    In this paper, we study the doping effects on the magnetic states of CuCr O2 based on the classical frustrated spin model [13aa Lin et al., Phys. Rev. B 89, 220405(R) (2014), 10.1103/PhysRevB.89.220405]. Several experimental observations can be well reproduced by the Monte Carlo simulations of the modified spin models. Our paper suggests that the disorder induced by V/Al doping cooperating with the frustration in the system may contribute to the emergence of the spin glass state. Furthermore, the hole doping by M g2 + substituting C r3 + enhances the quantum fluctuations and bond disorder which modulate the biquadratic exchanges and in turn results in the promotion of the spiral phase, consistent with the experimental report.

  19. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  20. Evaluation of high-strength Cu-Ni-Mn-Al bolting used in oil and gas service

    SciTech Connect

    Andersen, O.; Joosten, M.W.; Murali, J.; Milliams, D.E.

    1996-08-01

    High strength bolts, nuts, studs and screws manufactured from a precipitation hardening Cu-Ni-Mn-Al alloy have experienced several failures in recent years in oilfield installations with varying degrees of severity and consequence. Such failures have been broadly attributed to Stress Corrosion Cracking (SCC) and Liquid Metal Embrittlement (LME) phenomena. A detailed test program using the Slow Strain Rate Testing (SSRT) method has been conducted to identify the various parameters which could contribute to SCC. Results indicate that the Cu-Ni-Mn-Al alloy is susceptible to SCC in a variety of environments commonly found in oilfield equipment manufacturing and field installations such as amine-containing additives, sulfides and even natural seawater at elevated temperatures. SSRT testing indicated, however, that, in seawater environments, low service temperatures and cathodic protection did not adversely affect the alloy`s performance. Discussion of test program results and qualitative correlations with field failures are presented.

  1. Mn-Cr relative sensitivity factor in ferromagnesian olivines defined for SIMS measurements with a Cameca ims-1280 ion microprobe: Implications for dating secondary fayalite

    NASA Astrophysics Data System (ADS)

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2016-02-01

    The short-lived radionuclide 53Mn, which decays to 53Cr with a half-life of ∼3.7 Myr, is useful for sequencing objects that formed within the first 20 Myr of Solar System evolution. 53Mn-53Cr relative chronology enables aqueously formed secondary minerals such as fayalite and various carbonates in ordinary and carbonaceous chondrites to be dated, thereby providing chronological constraints on aqueous alteration processes. In situ measurements of Mn-Cr isotope systematics in fayalite by secondary ion mass spectrometry (SIMS) require consideration of the relative sensitivities of the 55Mn+ and 52Cr+ ions, for which a relative sensitivity factor [RSF = (55Mn+/52Cr+)SIMS/(55Mn/52Cr)true] is defined using appropriate standards. In the past, San Carlos olivine (Fa∼10) was commonly used for this purpose, but a growing body of evidence suggests that it is an unsuitable standard for meteoritic fayalite (Fa>90). Natural fayalite also cannot be used as a standard because it contains only trace amounts of chromium, which makes determining a true 55Mn/52Cr ratio and its degree of heterogeneity very difficult. To investigate the dependence of the Mn-Cr RSF on ferromagnesian olivine compositions, we synthesized a suite of compositionally homogeneous Mn,Cr-bearing liquidus-phase ferromagnesian olivines (Fa31-99). Manganese-chromium isotopic measurements of San Carlos olivine and synthesized ferromagnesian olivines using the University of Hawai'i Cameca ims-1280 SIMS show that the RSF for Fa10 is ∼0.9; it increases rapidly between Fa10 and Fa31 and reaches a plateau value of ∼1.5 ± 0.1 for Fa>34. The RSF is time-dependent: it increases during the measurements of olivines with fayalite content <30 and decreases during the measurements of olivines with fayalite content >50. The RSF measured on ferroan olivine (Fa>90) is influenced by pit shape, whereas the RSF measured on magnesian olivine (Fa10) is less sensitive to changes in pit shape. For these reasons, 53Mn-53Cr

  2. Characterization of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Karthikeyan, J.; Lerch, B. A.; Barrett, C.; Garlich, R.

    2007-01-01

    A newly developed Cu-23(wt.%)Cr-5%Al (CuCrAl) alloy is currently being considered as a protective coating for GRCop-84 (Cu-8(at.%)Cr-4%Nb). The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. In contrast, the uncoated substrate lost as much as 80% of its original weight under similar test conditions. Low cycle fatigue tests revealed that the fatigue lives of thinly coated GRCop-84 specimens were similar to the uncoated specimens within the limits of experimental scatter. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  3. Tunable Magnetic Properties in CuCr2- x Fe x O4 Ceramics by Doping of Fe

    NASA Astrophysics Data System (ADS)

    Zhu, C. M.; Wang, L. G.; Bao, D. L. G. C.; Luo, H.; Tian, Z. M.; Yuan, S. L.

    2016-08-01

    CuCr2- x Fe x O4 ceramics have been successfully synthesized using the sol-gel method for the first time. With pure formation, material structure has been characterized by x-ray diffraction. The samples have been identified as having the spinel structure with formulae CuCr2- x Fe x O4. Micrographs obtained by scanning electron microscopy show the dense microstructure of the samples. The stoichiometric ratio of the ceramics has been measured through energy dispersive spectra. Magnetic properties of CuCr2- x Fe x O4 ceramics have been discussed. Temperature dependence of magnetization presents the gradually increasing irreversible temperature as the content of Fe element increases from x = 0 to 1. Coercive field ( H C), remanent magnetization ( M r), and saturation magnetization ( M S) respectively display the monotonous variation phenomena with increasing content of Fe. The increasing M r, M S and the decreasing H C can be attributed to the change of magnetic exchange interaction because of the doped Fe. It also proves that the magnetic properties of CuCr2- x Fe x O4 ceramics can be effectively tuned by the doping content of Fe.

  4. Concentrations of Zn, Mn, Cu and Cd in different tissues of perch (Perca fluviatilis) and in perch intestinal parasite (Acanthocephalus lucii) from the stream near Prague (Czech Republic)

    SciTech Connect

    Jankovska, Ivana; Miholova, Daniela; Lukesova, Daniela; Kalous, Lukas; Valek, Petr; Romocusky, Stepan; Vadlejch, Jaroslav; Petrtyl, Miloslav; Langrova, Iva; Cadkova, Zuzana

    2012-01-15

    We monitored concentrations of Cd, Cu, Mn and Zn in acantocephalan parasites (Acanthocephalus lucii) and its final host (Perca fluviatilis). The concentrations in parasites were found to be significantly higher than those found in the muscle, gonads and liver of fish host. The bioaccumulation factor values were 194, 24.4, 2.2 and 4.7 for Cd, Cu, Mn and Zn, respectively. This suggests a benefit for the host due to the high accumulation of toxic cadmium.

  5. Density Functional Study of the magnetic structure on spin frustrated MnSb2 S 4 and Sr2 MOsO 6 (M = Cu, Ni)

    NASA Astrophysics Data System (ADS)

    Tian, Chuan; Lee, Changhoon; Kan, Erjun; Wu, Fang; Whangbo, Mike

    2011-03-01

    We explored the electronic structures of two spin-frustrated magnetic systems monoclinic MnSb 2 S4 and Sr 2 MOs O6 (M = Cu, Ni) on the basis of first principles DFT calculations. The spin exchanges of MnSb 2 S4 are frustrated within each Mn S4 chain and between adjacent Mn S4 chains, which explains the observed helical spin order of MnSb 2 S4 . We predict that MnSb 2 S4 is multiferroic with ferroelectric polarization of ~ 14 μ C/ m 2 along the chain direction, and a field-induced reversal of the ferroelectric polarization occurs by reversing the direction of the helical spin rotation. The ordered double perovskites Sr 2 MOs O6 (M = Cu, Ni), reported to be half-metallic, are found to be magnetic insulators. The magnetic structures of Sr 2 MOs O6 were probed by evaluating their spin exchanges.

  6. One-pot room temperature synthesizing Cu- and Mn-doped ZnSe nanocrystals by a rapid photochemical method

    NASA Astrophysics Data System (ADS)

    Bahador, A. R.; Molaei, M.; Karimipour, M.

    2016-04-01

    In this work, a one-pot, rapid, green and room temperature photochemical synthesis of transition metal (TM; Cu, Mn)-doped ZnSe nanocrystals (NCs) was reported. NCs were successfully characterized using Fourier transform-infrared (FT-IR), photoluminescence (PL) and UV-Visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), X-ray diffractometry (XRD) and energy dispersive X-ray spectra (EDX). FT-IR spectra confirmed the capping of ZnSe by thioglycolic acid (TGA) molecules. XRD and TEM analysis demonstrated zinc blend phase NCs with an average size of around 3 nm. Band gap of ZnSe NCs was about 3.6 eV which it was decreased by increasing the illumination time. PL spectra of ZnSe NCs showed a broad emission with two peaks located at 380 nm and 490 nm related to excitonic and trap states emission, respectively. For ZnSe:Cu NCs, excitonic emission disappeared completely and PL intensity of trap states emission increased with the increase in the Cu2+ ion concentration so that for precursor ratio of Cu:Zn 1%, optimal value of PL intensity was obtained. For ZnSe:Mn NCs, the excitonic emission decreased gradually with the increase in the impurity concentration whereas trap state emission increased. Moreover, a peak about 590 nm was appeared from 4T1-6A1 transition of the Mn2+ impurity, demonstrating the Mn incorporation inside the ZnSe NCs structure.

  7. [Accumulation of Fe, Cu, Zn, Mg, Mn and Co in the ovary of Carcinus maenas L. during ovogenesis].

    PubMed

    Martin, J L; Ceccaldi, H J

    1976-01-01

    During ovogenesis the ovary of Carcinus maenas shows a continuous accumulation of Fe, Cu, Mg, Mn and Co. For Zn the accumulation seems to stop for gonad indexes near 6.5. The goal of this accumulation is not determined. Nevertheless we suppose that it is in relation with the role of organic reserves that possess the female sexual cells in decapods and with the synthesis of enzymes and hemocyanin. PMID:134766

  8. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Nascentes, Clésia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A. Z.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2005-06-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1, respectively. The relative standard deviations varied from 2.7% to 7.3% ( n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1; Mn: 110-348 μg l -1, Pb: 13.0-32.9 μg l -1, and Zn: 52.7-226 μg l -1. Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery.

  9. Mixed-ligand MnII and CuII complexes with alternating 2,2'-bipyrimidine and terephthalate bridges.

    PubMed

    Poleti, Dejan; Rogan, Jelena; Rodić, Marko V; Radovanović, Lidija

    2015-02-01

    The novel polymeric complexes catena-poly[[diaquamanganese(II)]-μ-2,2'-bipyrimidine-κ(4)N(1),N(1'):N(3),N(3')-[diaquamanganese(II)]-bis(μ-terephthalato-κ(2)O(1):O(4))], [Mn2(C8H4O4)2(C8H6N4)(H2O)4]n, (I), and catena-poly[[[aquacopper(II)]-μ-aqua-μ-hydroxido-μ-terephthalato-κ(2)O(1):O(1')-copper(II)-μ-aqua-μ-hydroxido-μ-terephthalato-κ(2)O(1):O(1')-[aquacopper(II)]-μ-2,2'-bipyrimidine-κ(4)N(1),N(1'):N(3),N(3')] tetrahydrate], {[Cu3(C8H4O4)2(OH)2(C8H6N4)(H2O)4]·4H2O}n, (II), containing bridging 2,2'-bipyrimidine (bpym) ligands coordinated as bis-chelates, have been prepared via a ligand-exchange reaction. In both cases, quite unusual coordination modes of the terephthalate (tpht(2-)) anions were found. In (I), two tpht(2-) anions acting as bis-monodentate ligands bridge the Mn(II) centres in a parallel fashion. In (II), the tpht(2-) anions act as endo-bridges and connect two Cu(II) centres in combination with additional aqua and hydroxide bridges. In this way, the binuclear [Mn2(tpht)2(bpym)(H2O)4] entity in (I) and the trinuclear [Cu3(tpht)2(OH)2(bpym)(H2O)4]·4H2O coordination entity in (II) build up one-dimensional polymeric chains along the b axis. In (I), the Mn(II) cation lies on a twofold axis, whereas the four central C atoms of the bpym ligand are located on a mirror plane. In (II), the central Cu(II) cation is also on a special position (site symmetry -1). In the crystal structures, the packing of the chains is further strengthened by a system of hydrogen bonds [in both (I) and (II)] and weak face-to-face π-π interactions [in (I)], forming three-dimensional metal-organic frameworks. The Mn(II) cation in (I) has a trigonally deformed octahedral geometry, whereas the Cu(II) cations in (II) are in distorted octahedral environments. The Cu(II) polyhedra are inclined relative to each other and share common edges. PMID:25652277

  10. Precipitation in dilute Cu-Cr alloys; The effects of phosphorus impurities and aging procedure

    SciTech Connect

    Luo, C.P.; Dahmen, U.; Witcomb, M.J.; Westmacott, K.H. )

    1992-02-15

    This paper reports that precipitation in dilute Cu-Cr alloys has been studied extensively in part because this alloy can be used as a model system for the investigation of the crystallography and interfaces in FCC-BCC phase transformations. Hall et al. first reported needle- or lath-shaped Cr-rich precipitates with a {l brace}335{r brace}{sub f} habit plane and a variable orientation relationship ranging from Nishiyama-Wasserman (N-W) to Kurdjumov-Sachs (K-S). Hall and Aaronson later confirmed their early findings. Weatherly et al. however, found a constant K-S orientation relationship for this alloy system and a preferred growth direction of {l angle}651{r angle}{sub f} for the needle-shaped precipitates. The variation of the orientation relationship and its potential effect on the precipitate morphology and interface structure have become key points in studying the precipitate crystallography of this alloy system. Dahmen et al. attributed the variation of the orientation relationship to the different quenching and aging conditions applied to the alloy; a direct quench from the solutionizing to the aging temperature employed by Hall et al. would result in a heterogeneous nucleation and hence a variation in the precipitation behavior, while the water quench and aging procedure utilized by Weatherly et al, would facilitate homogeneous nucleation and produce a constant crysallography.

  11. Characterisation of the early stages of solute clustering in 1Ni-1.3Mn welds containing Cu.

    PubMed

    Hyde, J M; Burke, M G; Boothby, R M; English, C A

    2009-04-01

    Microstructural characterisation of neutron irradiated low alloy steels is important for developing mechanistic understanding of irradiation embrittlement. This work is focused on the early stages of irradiation-induced clustering in a low Cu (0.03wt%), high Ni ( approximately 1wt%) weld. The weld was irradiated at a very high dose rate and then examined by atom probe (energy-compensated position-sensitive atom probe (ECOPoSAP) and local electrode atom probe (LEAP)) with supporting microstructural information obtained by small angle neutron scattering (SANS) and positron annihilation (PALA). It was demonstrated that extreme care must be taken optimising parameters used to characterise the extent of clustering. This is particularly important during the early stages of irradiation-damage when the clusters are poorly defined and significant compositional variations are present in what is traditionally described as matrix. Analysis of the irradiated materials showed increasing clustering of Cu, Mn, Ni and Si with dose. In the low Cu steel the results showed that initially the irradiation damage results in clustering of Mn, Ni and Si, but at very high doses, at very high dose rates, redistribution of Si is significantly more advanced than that for Mn and Ni. PMID:19081677

  12. Spectral, thermal and biological studies of Mn(II) and Cu(II) complexes with two thiosemicarbazide derivatives

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Metwaly, Nashwa M.

    Two derivatives of thiosemicarbazide were prepared. Their complexes were prepared using Mn(II) and Cu(II) salts. All the isolated complexes are characterized using the following spectra: IR, UV-Vis, Mass, 1H NMR and X-ray diffraction. Magnetic measurements and thermal analysis are the other additive tools for complete investigation. Mononuclear and binuclear complexes are proposed based on elemental analysis mainly. The IR spectra offer the mode of coordination of each ligand with each metal ion. The electronic spectra and magnetic measurements are proposing the structural geometry of the investigated complexes. The octahedral geometry proposed for Mn(II) complexes but the square-planar for Cu(II) complexes. The 1H NMR spectra were done for all organic compounds used in this study and displaying the most suitable tautomer of them. X-ray diffraction of H2L1 and its complexes show their amorphous nature but H2L2 ligand and its complexes show their nanocrystalline nature. The TG analysis was used to prove the presence of solvent molecules attached with the complexes as covalently or physically. Finally, the biological investigation was carried out for H2L2 ligand and its complexes and displaying the inhibition activity of Cu(II) complex than the Mn(II) one.

  13. Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors

    PubMed Central

    Huang, Ming; Zhang, Yuxin; Li, Fei; Wang, Zhongchang; Alamusi; Hu, Ning; Wen, Zhiyu; Liu, Qing

    2014-01-01

    Fabricating hierarchical core-shell nanostructures is currently the subject of intensive research in the electrochemical field owing to the hopes it raises for making efficient electrodes for high-performance supercapacitors. Here, we develop a simple and cost-effective approach to prepare CuO@MnO2 core-shell nanostructures without any surfactants and report their applications as electrodes for supercapacitors. An asymmetric supercapacitor with CuO@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode yields an energy density of 22.1 Wh kg−1 and a maximum power density of 85.6 kW kg−1; the device shows a long-term cycling stability which retains 101.5% of its initial capacitance even after 10000 cycles. Such a facile strategy to fabricate the hierarchical CuO@MnO2 core-shell nanostructure with significantly improved functionalities opens up a novel avenue to design electrode materials on demand for high-performance supercapacitor applications. PMID:24682149

  14. Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths.

    PubMed

    Soloviev, Sergiy O; Kapran, Andriy Y; Kurylets, Yaroslava P

    2015-02-01

    Binary oxide systems (CuCr2O4, CuCo2O4), deposited onto cordierite monoliths of honeycomb structure with a second support (finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine's gas exhausts (O2, NOx, H2O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3≫NO2>H2O>NO>O2>CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively (in the presence of copper chromite based catalyst) even at closing to ambient temperatures. Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem. PMID:25662252

  15. Phase diagram and magnetocaloric effects in Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} and (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} alloys

    SciTech Connect

    Quetz, Abdiel Muchharla, Baleeswaraiah; Dubenko, Igor; Talapatra, Saikat; Ali, Naushad; Samanta, Tapas; Stadler, Shane

    2014-05-07

    The magnetocaloric and thermomagnetic properties of Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} and (Mn{sub 1−x}Cr{sub x}) NiGe{sub 1.05} systems for 0 ≤ x ≤ 0.105 and 0 ≤ x ≤ 0.1, respectively, have been studied by x-ray diffraction, differential scanning calorimetry, and magnetization measurements. Partial substitution of Cr for Mn in (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} results in a first order magnetostructural transition from a hexagonal paramagnetic to an orthorhombic paramagnetic phase near T{sub M} ∼ 380 K (for x = 0.07). Partial substitution of Cr for In in Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15} shifts the magnetostructural transition to a higher temperature (T = T{sub M} ∼ 450 K) for x = 0.1. Large magnetic entropy changes of ΔS = −12 (J/(kgK)) and ΔS = −11 (J/(kgK)), both for a magnetic field change of 5 T, were observed in the vicinity of T{sub M} for (Mn{sub 1−x}Cr{sub x})NiGe{sub 1.05} and Ni{sub 50}Mn{sub 35}(In{sub 1−x}Cr{sub x}){sub 15}, respectively.

  16. Magnetic properties of Sm2(Fe0.95M0.05)17Nx (M=Cr and Mn) anisotropic coarse powders with high coercivity

    NASA Astrophysics Data System (ADS)

    Ito, Mikio; Majima, Kazuhiko; Shimuta, Toru; Katsuyama, Shigeru; Nagai, Hiroshi

    2002-09-01

    Sm2(Fe0.95Cr0.05)17Nx and Sm2(Fe0.95Mn0.05)17Nx coarse powders 10-70 mum in size were synthesized by crushing mother alloy ingots into 32-74 mum in particle size and subsequent nitrogenation at 748 K in a flowing mixed gas of 60 vol % H2+40 vol % NH3. The effects of Cr or Mn substitution for Fe on the nitrogenation rate, magnetic properties, and microstructure of the Sm2Fe17Nx hard magnetic material were investigated. Cr and Mn substitution was quite effective for accelerating nitrogenation. When the powders were nitrogenated beyond x=3, amorphous phase formation was observed as the x value increased. The magnetic properties of the nitrogenated powders were significantly improved by Cr and Mn substitution, and these powders also possessed a satisfactory magnetic anisotropy. The maximum coercivity in this study, 0.59 MA/m, was obtained for the Sm2(Fe0.95Mn0.05)17N5.0 powder in spite of its large particle size. The high coercivity of the coarse powders was caused by a cell-like microstructure composed of fine 2-17 crystalline grains 20-30 nm in size surrounded by an amorphous phase.

  17. Electrical transport and magnetic behaviors of La0.67Sr0.33Mn1-xBxO3 (B = Cr, Ru)

    NASA Astrophysics Data System (ADS)

    Acharya, Deepshikha; Bhargav, Abhinav; Tank, Tejas M.; Sanyal, Sankar P.

    2016-05-01

    Polycrystalline samples of La0.67Sr0.33Mn1-xCrxO3 (with x=0, 0.05 and 0.1) and La0.67Sr0.33Mn1-xRuxO3 (with x = 0.05 and 0.1) were synthesized using the conventional solid state reaction route and found single phase in nature. Electrical resistivity measurements as a function of temperature in range 5 K-400 K and as a function of magnetic field up to 5 Tesla were performed using d.c. four-probe method. Magnetization data were acquired as a function of temperature in a range 10 K-400 K with an applied magnetic field of 500 Oe. When Mn is partially substituted by Cr and Ru the system displays dramatic changes in the electrical transport behavior and shows double-peaked feature in resistivity curve. Both Cr and Ru substitutions effectively reduce insulator-metal transition (TP) and paramagnetic-ferromagnetic transition (TC) temperatures implying that there might exist FM interaction between Mn+3 and Cr+3 as well Mn+3 and Ru+4. The largest low-temperature magnetoresistance (MR%) is attributed to grain boundary effects and difference in size disorder for Cr and Ru substituted compounds.

  18. Feasibility of Cu-Al-Mn superelastic alloy bars as reinforcement elements in concrete beams

    NASA Astrophysics Data System (ADS)

    Shrestha, Kshitij C.; Araki, Yoshikazu; Nagae, Takuya; Koetaka, Yuji; Suzuki, Yusuke; Omori, Toshihiro; Sutou, Yuji; Kainuma, Ryosuke; Ishida, Kiyohito

    2013-02-01

    Experimental and numerical works are reported to assess the cyclic response of concrete beams reinforced with superelastic alloy (SEA) bars. The feasibility of newly developed Cu-Al-Mn SEA bars, characterized by large recovery strain, low material cost and high machinability, is examined as partial replacements for conventional steel bars, in order to reduce residual cracks in structures during and after intense earthquakes. Four-point reverse cyclic bending tests were done on one-third scale concrete beams comprising three different types of specimens—conventional steel reinforced concrete, SEA reinforced concrete and SEA reinforced concrete (RC) with pre-tensioning. The results showed that SEA reinforced concrete beams demonstrated strong recentering capability and significant enhancement in crack recovery capacity, in comparison to steel reinforced beams. Furthermore, corresponding finite element models were generated to simulate the experimental observations. Both the experimental observations and finite element computations illustrated the superiority of SEA bars to conventional steel bars in providing RC beam specimens with recentering and crack recovery capabilities.

  19. Thermophysical Properties of Manganin (Cu86Mn12Ni2) in the Solid and Liquid State

    NASA Astrophysics Data System (ADS)

    Schmon, A.; Aziz, K.; Luckabauer, M.; Pottlacher, G.

    2015-07-01

    Manganin is the trademark name of the alloy Cu86Mn12Ni2. Despite its frequent usage in manufacturing processes, literature data are scarce particularly at higher temperatures. This work presents a set of thermophysical data of this alloy in a temperature range above its classic area of application up to the end of its liquid phase. For investigating the alloy, four examination setups were employed. Using differential thermal analysis, solidus and liquidus temperatures were obtained. In the solid phase, the electrical resistivity as a function of temperature was determined by a four-point probe positioned in a furnace. Thermal expansion was measured with a high-resolution two-beam laser dilatometer based on Michelson-interferometry and thereby density was calculated. The liquid state was investigated using a s-ohmic-pulse-heating setup. Wire-shaped specimens were resistively volume heated as part of an electrical discharge circuit. Measured quantities were the current through the specimen, the voltage drop along the specimen, the surface radiance by a pyrometer, and the thermal expansion with an adapted CCD camera system. On the basis of these measurements, temperature-dependent thermophysical properties of enthalpy, isobaric heat capacity, electrical resistivity, and density are obtained. Additionally the thermal conductivity and thermal diffusivity are estimated in the high-temperature range applying the Wiedemann-Franz law.

  20. Magnetic and dielectric studies of nanocrystalline zinc substituted Cu-Mn ferrites

    NASA Astrophysics Data System (ADS)

    Hankare, P. P.; Sankpal, U. B.; Patil, R. P.; Jadhav, , A. V.; Garadkar, K. M.; Chougule, B. K.

    2011-03-01

    Ferrites with the general formula Cu 1- xZn xFeMnO 4 (where 0≤ x≤1) were prepared through a citrate gel auto-combustion route. Structural characterizations carried out by X-ray diffraction reveal that the lattice constant increases with increase in zinc content. Transmission electron microscopic measurements confirm the nanoscale nature of the particles. Room temperature saturation magnetization was measured as a function of zinc concentration. The saturation magnetization increases up to x=0.25 and then decreases as zinc concentration increases. Dielectric permittivity, dielectric loss tangent, ac conductivity and complex dielectric impedance were studied in the frequency range 20 Hz-1 MHz. The results indicated a usual dielectric dispersion due to the Maxwell-Wagner type of interfacial polarization. Dielectric loss showed similar behavior as dielectric permittivity. The ac conductivity increased linearly with frequency. Complex impedance spectroscopic studies confirmed that conduction in the samples is via grain boundaries. In general, substitution of zinc plays an important role in changing the structural, electrical and magnetic properties of these ferrites.

  1. Rusting Evolution of MnCuP Weathering Steel Submitted to Simulated Industrial Atmospheric Corrosion

    NASA Astrophysics Data System (ADS)

    Hao, Long; Zhang, Sixun; Dong, Junhua; Ke, Wei

    2012-05-01

    The rusting evolution of MnCuP weathering steel in a simulated industrial atmosphere as a function of corrosion duration was investigated by corrosion weight gain, scanning electron microscopy, X-ray diffraction, and electrochemical methods. The results indicate that the corrosion kinetics is related closely to the rust composition and electrochemical properties. The corrosion rate is higher during the first corrosion stage, and it is lower during the second corrosion stage. During the first corrosion stage, the rust layer is in low density, discontinuous, and loose, with a lower relative abundance of α-FeOOH. During the second corrosion stage, a compact and protective inner rust layer forms with a higher relative abundance of α-FeOOH, contributing to enhanced rust layer resistance. The rust initially enhances and then stabilizes the cathodic process, but the anodic process tends to be inhibited by the protective rust layer. Electrochemical impedance spectroscopy tests indicate that it is more scientific to evaluate the rust layer protective ability by charge transfer resistance.

  2. β-Cyclodextrin assisted solubilization of Cu and Cr complexes of flavonoids in aqueous medium: A DNA-interaction study

    NASA Astrophysics Data System (ADS)

    Jabeen, Erum; Janjua, Naveed Kausar; Hameed, Shahid

    2014-07-01

    Cu and Cr complexes of three flavonoids (morin, quercetin and 6-hydroxyflavone) were synthesized and included in beta-cyclodextrin (βCD) with the objective of improving their pharmacokinetic profiles. Then binding with ds.DNA was studied to monitor their interactive tendencies at physiological conditions. The binding constants and other thermodynamic data from UV-vis spectroscopy and cyclic voltammetry revealed Cr-flavonoid-βCD to interact with ds.DNA at pH-7.4 through electrostatic mode of binding while Cu-flavonoid-βCD can intercalate into DNA. The strong binding propensity of Cu-flavonoid-βCD with ds.DNA encourages their application as anticancerous agent.

  3. A new series of oxycarbonate superconductors (Cu(0.5)C(0.5))(m)Ba(m+1)Ca(n-1)Cu(n)O2(m+n)+1

    NASA Technical Reports Server (NTRS)

    Takayama-Muromachi, E.; Kawashima, T.; Matsui, Y.

    1995-01-01

    We found a new series of oxycarbonate superconductors in the Ba-CaCu-C-O system under high pressure of 5 GPa. Their ideal formula is (Cu(0.5)C(0.5)(m)Ba(m+1)Ca(n-1)Cu(n)O2)((m+n)+1) ((Cu,C)-m(m+1)(n-1)n). Thus far, n = 3, 4 members of the m = 1 series, (Cu,C)-1223 and (Cu,C)-1234, have been prepared in bulk while n = 4, 5 members, (Cu,C)-2334 and (Cu,C)-2345, have been prepared for the m = 2 series. (Cu,C)-1223 shows superconductivity below 67 K while T(sub c)'s of other compounds are above 110 K. In particular, (Cu,C)-1234 has the highest T(sub c) of 117 K.

  4. Structural phase transition, Néel temperature enhancement, and persistent magneto-dielectric coupling in Cr-substituted Mn3O4

    NASA Astrophysics Data System (ADS)

    Dwivedi, G. D.; Kumar, Abhishek; Yang, K. S.; Chen, B. Y.; Liu, K. W.; Chatterjee, Sandip; Yang, H. D.; Chou, H.

    2016-05-01

    Structural phase transition and Néel temperature (TN) enhancement were observed in Cr-substituted Mn3O4 spinels. Structural, magnetic, and dielectric properties of (Mn1-xCrx)3O4 (where x = 0.00, 0.10, 0.20, 0.25, 0.30, 0.40, and 0.50) were investigated. Cr-substitution induces room temperature structural phase transition from tetragonally distorted I41/amd (x = 0.00) to cubic Fd 3 ¯ m (x = 0.50). TN is found to increase from 43 K (x = 0.00) to 58 K (x = 0.50) with Cr-substitution. The spin ordering-induced dielectric anomaly near TN ensures that magneto-dielectric coupling persists in the cubic x = 0.50 system. X-ray absorption spectra reveal that Cr exists in a trivalent oxidation state and prefers the octahedral (Oh)-site, replacing Mn3+. Due to a reduction in the Jahn-Teller active Mn3+ cation and an increase in the smaller Cr3+ cation, the system begins to release the geometrical frustration by lowering its degeneracy. Consequently, a phase transition, from distorted tetragonal structure to the more symmetric cubic phase, occurs.

  5. Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni spheroidal carbide cast irons

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Kozarevskaya, T. V.; Kusumoto, K.; Yamamoto, K.

    2014-11-01

    The objective of this investigation is to study the influence of vanadium (5.0wt%-10.0wt%) and chromium (0-9.0wt%) on the microstructure and hardness of Cr-V-Mn-Ni white cast irons with spheroidal vanadium carbides. The alloys' microstructural features are presented and discussed with regard to the distribution of phase elements. The structural constituents of the alloys are spheroidal VC, proeutectoid cementite, ledeburite eutectic, rosette-shaped carbide eutectic (based on M7C3), pearlite, martensite, and austenite. Their combinations and area fraction (AF) ratios are reported to be influenced by the alloys' chemical composition. Spheroidized VC particles are found to be sites for the nucleation of carbide eutectics. Cr and V are shown to substitute each other in the VC and M7C3 carbides, respectively. Chromium alloying leads to the formation of a eutectic (γ-Fe + M7C3), preventing the appearance of proeutectoid cementite in the structure. Vanadium and chromium are revealed to increase the total carbide fraction and the amount of austenite in the matrix. Cr is observed to play a key role in controlling the metallic matrix microstructure.

  6. Hot Ductility Behaviors in the Weld Heat-Affected Zone of Nitrogen-Alloyed Fe-18Cr-10Mn Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Tae-Ho; Hong, Hyun-Uk

    2015-04-01

    Hot ductility behaviors in the weld heat-affected zone (HAZ) of nitrogen-alloyed Fe-18Cr-10Mn austenitic stainless steels with different nitrogen contents were evaluated through hot tension tests using Gleeble simulator. The results of Gleeble simulations indicated that hot ductility in the HAZs deteriorated due to the formation of δ-ferrite and intergranular Cr2N particles. In addition, the amount of hot ductility degradation was strongly affected by the fraction of δ-ferrite.

  7. Polynuclear complexes incorporating Cu(II) and Mn(II) centers bridged by acetylenedicarboxylate: Structure, thermal stability and magnetism

    NASA Astrophysics Data System (ADS)

    Shao, Min; Li, Ming-Xing; Dai, Hui; Lu, Wen-Cong; An, Bao-Li

    2007-03-01

    Two acetylenedicarboxylate complexes, [Mn 2(C 4O 4)(phen) 4(H 2O) 2](ClO 4) 2·H 2O ( 1) and [Cu(C 4O 4)(2,2'-bpy)] n ( 2), have been synthesized and characterized by elemental analyses and IR spectra. Mn II ions have distorted octahedral coordination geometry and bridged by C 4O 42- to form a binuclear structure. Thermal analysis shows C 4O 42- released in the range of 180-280 °C. Cu II is five-coordinated by 2,2'-bipyridine and three oxygen atoms from three different C 4O 42- ligands, leading to a square-pyramidal coordination geometry. Each C 4O 42- links three Cu II centers through bifunctional carboxylate to form a polymeric structure of (4, 4) layers with nodes being dimer of Cu 2O 2 and bridges of C 4O 42-. Its variable-temperature magnetism was also investigated.

  8. Delocalization and hybridization enhance the magnetocaloric effect in Ni2Mn0.75Cu0.25Ga

    SciTech Connect

    Roy, Sujoy; Blackburn, E.; Valvidares, S. M.; Fitzsimmons, M. R.; Vogel, Sven C.; Khan, M.; Dubenko, I.; Stadler, S.; Ali, N.; Sinha, S. K.; Kortright, J. B.

    2008-11-26

    In view of the looming energy crisis facing our planet, attention increasingly focuses on materials potentially useful as a basis for energy saving technologies. The discovery of giant magnetocaloric (GMC) compounds - materials that exhibit especially large changes in temperature as the externally applied magnetic field is varied - is one such compound 1. These materials have potential for use in solid state cooling technology as a viable alternative to existing gas based refrigeration technologies that use choro-fluoro - and hydro-fluoro-carbon chemicals known to have a severe detrimental effect on human health and environment 2,3. Examples of GMC compounds include Gd5(SiGe)4 4, MnFeP1-xAsx 5 and Ni-Mn-Ga shape memory alloy based compounds 6-8. Here we explain how the properties of one of these compounds (Ni2MnGa) can be tuned as a function of temperature by adding dopants. By altering the free energy such that the structural and magnetic transitions coincide, a GMC compound that operates at just the right temperature for human requirements can be obtained 9. We show how Cu, substituted for Mn, pulls the magnetic transition downwards in temperature and also, counterintuitively, increases the delocalization of the Mn magnetism. At the same time, this reinforces the Ni-Ga chemical bond, raising the temperature of the martensite-austenite transition. At 25percent doping, the two transitions coincide at 317 K.

  9. Comment on "Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts" by Little et al.

    NASA Astrophysics Data System (ADS)

    Manceau, Alain; Nagy, Kathryn L.

    2015-02-01

    Isotopic fractionation of metals between seawater and ferromanganese deposits in marine sediments is determined at equilibrium at least in part by the strength of the chemical bonding of the metals in the two environments. A generally accepted rule is that heavy isotopes are concentrated in constituents that form the stiffest bonds with these elements, where greater stiffness empirically corresponds to shorter and stronger bonds, as is the case for lower coordination numbers (Schauble, 2004). Correlatively, light isotopes are depleted. Fe-Mn oxides are enriched in heavy Zn isotope (66Zn) compared to seawater (at ∼ 1.0 ‰ vs. ∼ 0.5 ‰) and also in light Cu isotope (63Cu, at ∼ 0.4 ‰ vs. 0.9‰) (Albarède, 2004; Little et al., 2014a; Maréchal et al., 2000), which suggests that the two elements may be coordinated differently in the Zn- and Cu-bearing oxide phases.

  10. Dye-Sensitized Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) Nanofibers for Efficient Photocatalytic Hydrogen Evolution.

    PubMed

    Gonce, Mehmet Kerem; Aslan, Emre; Ozel, Faruk; Hatay Patir, Imren

    2016-03-21

    The photocatalytic hydrogen evolution activities of low-cost and noble-metal-free Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofiber catalysts have been investigated using triethanolamine as an electron donor and eosin Y as a photosensitizer under visible-light irradiation. The rates of hydrogen evolution by Cu2 XSnS4 (X=Zn, Ni, Fe, Co, and Mn) nanofibers have been compared with each other and with that of the noble metal Pt. The hydrogen evolution rates for the nanofibers change in the order Cu2 NiSnS4 >Cu2 FeSnS4 >Cu2 CoSnS4 >Cu2 ZnSnS4 >Cu2 MnSnS4 (2028, 1870, 1926, 1420, and 389 μmol g(-1)  h(-1) , respectively). The differences between the hydrogen evolution rates of the nanofibers could be attributed to their energy levels. Moreover, Cu2 NiSnS4 , Cu2 FeSnS4 , and Cu2 CoSnS4 nanofibers show higher and more stable photocatalytic hydrogen production rates than that of the noble metal Pt under long-term irradiation with visible light. PMID:26880355

  11. Major differences between the binuclear manganese boronyl carbonyl Mn2(BO)2(CO)9 and its isoelectronic chromium carbonyl analogue Cr2(CO)11.

    PubMed

    Chang, Yu; Li, Qian-Shu; Xie, Yaoming; King, R Bruce

    2013-03-14

    The lowest energy structures of the manganese boronyl carbonyl Mn2(BO)2(CO)9 by more than 8 kcal/mol are found to have a single end-to-end bridging BO group bonding to one manganese atom through its boron atom and to the other manganese atom through its oxygen atom. The long Mn···Mn distances in these structures indicate the lack of direct manganese-manganese bonding as confirmed by essentially zero Wiberg bond indices. These Mn2(BO)2(CO)9 structures are favored thermochemically by more than 25 kcal/mol over dissociation into mononuclear fragments and thus appear to be viable synthetic objectives. This contrasts with the isoelectronic Cr2(CO)11 system, which is predicted to be disfavored relative to the mononuclear fragments Cr(CO)6 + Cr(CO)5. Analogous Mn2(BO)2(CO)9 structures with an end-to-end bridging CO group lie ∼17 kcal/mol in energy above the corresponding structures with end-to-end bridging BO groups. The lowest energy Mn2(BO)2(CO)9 structures without an end-to-end bridging BO group provide unprecedented examples of the coupling of two terminal BO groups to form a terminal dioxodiborene (B2O2) ligand with a B-B distance of ∼1.9 Å. Still higher energy Mn2(BO)2(CO)9 structures include singly bridged and doubly semibridged structures analogous to the previously optimized lowest energy Cr2(CO)11 structures. PMID:23402266

  12. X-ray diffraction line profile analysis for defect study in Cu-1 wt.% Cr-0.1 wt.% Zr alloy

    SciTech Connect

    Kapoor, K. . E-mail: kapoork@nfc.ernet.in; Lahiri, D.; Batra, I.S.; Rao, S.V.R.; Sanyal, T.

    2005-02-15

    X-ray line profile analysis (LPA) has been used for microstructural analysis of a Cu-1 wt.% Cr-0.1 wt.% Zr alloy. Using this technique, the stacking fault probability (SFP) and stacking fault energy (SFE) has been determined for the pure Cu and the Cu-1 wt.% Cr-0.1 wt.% Zr alloy. It is observed that there is an increase in the stacking fault probability (and corresponding decrease in stacking fault energy) in case of the alloy. The increased formation of faulted regions in the Cu-1 wt.% Cr-0.1 wt.% Zr alloy is supported by the observation of extended dislocation nodes and fringe contrast due to staking faults under TEM, and higher work hardening rate in the tension test. The high thermal fatigue resistance of this alloy is attributed to decrease in the stacking fault energy by addition of Cr and Zr to Cu.

  13. Cyclic Oxidation Behavior of Cold Sprayed CuCrAl-Coated and Uncoated GRCop-84 Substrates for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Barrett, C.; Karthikeyan, J.; Garlick, R.

    2006-01-01

    A newly developed Cu-23 (wt %) Cr-5%Al (CuCrAl) alloy shown to resist hydridation and oxidation in an as-cast form is currently being considered as a protective coating for GRCop-84, which is an advanced copper alloy containing 8 (at.%) Cr and 4 (at.%) Nb. The coating was deposited on GRCop-84 substrates by the cold spray deposition technique. Cyclic oxidation tests conducted in air on both coated and uncoated substrates between 773 and 1073 K revealed that the coating remained intact and protected the substrate up to 1073 K. No significant weight loss of the coated specimens were observed at 773 and 873 K even after a cumulative cyclic time of 500 h. About a 10 percent weight loss observed at 973 and 1073 K was attributed to the excessive oxidation of the uncoated sides. In contrast, the uncoated substrate lost as much as 80 percent of its original weight under similar test conditions. It is concluded that the cold sprayed CuCrAl coating is suitable for protecting GRCop-84 substrates.

  14. Synthesis, characterization and photocatalytic activity of cubic-like CuCr2O4 for dye degradation under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Yuan, Wenhui; Liu, Xiaoxia; Li, Li

    2014-11-01

    CuCr2O4 nanoparticles with cubic-like morphology were prepared via hydrothermal synthesis method without template. The CuCr2O4 samples were characterized by thermogravimetry and differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Zeta potentials, respectively. The results indicated that cubic-like CuCr2O4 could be successfully synthesized by calcining the precursor at 600 °C, and the calcination temperature greatly influenced the morphology and optical performance of CuCr2O4. The pH at the point of zero charge (pHpzc) of the CuCr2O4 calcined at 600 °C was about 4.52. The photocatalytic activity of CuCr2O4 was evaluated for degradation of rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) in the presence of H2O2 under visible light irradiation and the effects of the calcination temperature, dosage of photocatalyst, etc., on photocatalytic activity were studied in detail. The photocatalytic results revealed that the CuCr2O4 photocatalyst was of high activity for degradation of RhB (96.8%) and MB (99.5%), but very low activity for degradation of MO (14%). The CuCr2O4 sample calcined at 600 °C possesses the best photocatalytic activity, and the optimal dosage of the CuCr2O4 photocatalyst is 0.4 g/L.

  15. Synthesis of Mn0.04Cu0.05Zn0.91O nanorod and its application in optoelectronic switching device

    NASA Astrophysics Data System (ADS)

    Layek, Animesh; Middya, Somnath

    2016-05-01

    The optical absorption of ZnO nanorod had been reduced by introducing Mn as doping element. In this present study the optical absorption of ZnO nanorod has been improved by simultaneous doping of the element Mn and Cu. The hydrothermal reaction was adopted for the synthesis. The electrical conductivity and the optical band gap of the Mn0.04Cu0.05Zn0.91O were measured as 1.16 × 10-3Scm-1 and 3.07eV respectively, assigned the semiconductor behavior. The light induced rectification in time dependent current response characteristic of Al/ Mn0.04Cu0.05Zn0.91O/ITO was investigated to check the performance of the composite in opto-electronic switching device.

  16. Substitution Effect on the Magnetic State of Delafossite CuCrO2 Having a Spin-3/2 Antiferromagnetic Triangular Sublattice

    NASA Astrophysics Data System (ADS)

    Okuda, T.; Oozono, S.; Hokazono, T.; Uto, K.; Fujii, Y.; Beppu, Y.; Seki, S.; Onose, Y.; Tokura, Y.; Kajimoto, R.; Matsuda, M.

    2012-12-01

    We have investigated substitution effects on transport, magnetic, and thermal properties of delafossite CuCrO2 having a spin-3/2 antiferromagnetic triangular sublattice by measurements of resistivity, magnetization, specific heat, and neutron scattering. In the proceeding, we show unique effects of hole-doping by a substitution of nonmagnetic Mg2+ ions for magnetic Cr3+ ions (S = 3/2), randomness introduced between CrO2 layers by a substitution of Ag+ ions for Cu+ ions, and spin-defect introduced into CrO2 layers by a substitution of nonmagnetic Al3+ ions for Cr3+ ions upon the magnetic state in CuCrO2.

  17. Magnetic, Optical, and Magnetooptical Properties of Spinel-Type ACr2X4 (A=Mn, Fe, Co, Cu, Zn, Cd; X=O, S, Se)

    NASA Astrophysics Data System (ADS)

    Ohgushi, Kenya; Okimoto, Yoichi; Ogasawara, Takeshi; Miyasaka, Shigeki; Tokura, Yoshinori

    2008-03-01

    A comprehensive study of magnetic, optical, and magnetooptical properties was carried out for single crystals of the spinel-type ACr2X4 (A=Mn, Fe, Co, Cu, Zn, and Cd; X=O, S, and Se). The optical reflectivity measurements for 0.1-30 eV revealed a wide variation in electronic structures on a large energy scale between oxides (X=O) and chalcogenides (X=S and Se). For A=Fe and Co, we observed the intra-atomic d-d transitions of A2+ ions with a tetrahedral coordination, and successfully deduced the crystal field splitting Δ E, the Racah parameter B, and the spin-orbit coupling constant \\zeta by analysis based on the ligand field theory. A comparison of these optical parameters between oxides and chalcogenides indicated the strong covalency effect in the chalcogenides. In A=Cu, the insulator-metal transition between X=O and Se was clearly demonstrated by optical conductivity spectra. Magnetic properties were discussed in relation to electronic structures. A compound with a small optical gap is typically a ferrimagnet with antiparallel arrangements of A2+ and Cr3+ spins, whereas a compound with a large optical gap undergoes first-order phase transition into spiral spin ordering at a low temperature. We found that the magnetic anisotropy constants K1 for ACr2S4 (A=Mn, Fe, and Co) are approximately scaled by the inverse of the intra-atomic d-d transition energies of A2+ ions in agreement with the second-order perturbation theory for single-ion anisotropy. The magnetooptical spectra in a wide energy range (0.2-4.5 eV) were measured for chalcogenides focusing on the d-d transition resonance. We observed gigantic magnetooptical signals up to 4.1° in the energy range of 4A2 →{4}T2 and 4A2 →{4}T1 transitions of Co2+ ions for CoCr2S4, and analyzed them in the framework of the ligand field theory. We propose that the strong covalency of the ligand sulfur, as well as the local breakdown of inversion symmetry, in the tetrahedral site plays a crucial role in the enhancement

  18. Reactivity of Ti-B, Cr-S, and Mn-S powder systems during explosively-driven collapse

    NASA Astrophysics Data System (ADS)

    Serge, Matthew; Nabavi, Atefeh; Chiu, Po-Hsun; Higgins, Andrew; Nesterenko, Vitali

    2013-06-01

    Metal-metal and metal-sulfur reactive powder mixtures have been previously tested for initiation of reaction via planar, normal-shock loading. In addition to reacting under shock, such powder mixtures may undergo exothermic reaction under other types of mechanical loading. The thick-walled cylinder (TWC) technique was performed on samples of Ti-B (1:2 molar ratio), Cr-S (1.15:1 molar ratio), and Mn-S (1:1 molar ratio). These experiments were performed to determine the effect of large shear strains exerted on reactive metal powder mixtures and to establish the relative effectiveness of shear loading in comparison to shock loading in initiating reaction. Recovered samples were analyzed via SEM and XRD to determine the degree of reaction. Funding was provided in part by ONR MURI N00014-07-1-0740 (Program Officer Dr. Clifford Bedford).

  19. Reactivity of Ti-B, Cr-S, and Mn-S powder systems during explosively-driven collapse

    NASA Astrophysics Data System (ADS)

    Serge, M.; Chiu, P. H.; Higgins, A. J.; Nesterenko, V. F.

    2014-05-01

    Metal-metal and metal-sulfur reactive powder mixtures have been previously tested for initiation of reaction via planar, normal-shock loading. In addition to reacting under shock, such powder mixtures may undergo exothermic reaction from other types of mechanical loading. The thick-walled cylinder technique was performed on samples of Ti-B (1:2 molar ratio), Cr-S (1.15:1 molar ratio), and Mn-S (1:1 molar ratio). These experiments were aimed to determine the effect of large shear strains exerted on reactive metal powder mixtures and to establish the relative effectiveness of shear loading in comparison to shock loading for initiating reaction. Recovered samples were analyzed via SEM and XRD to determine the degree of reaction.

  20. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    PubMed

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-01

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order. PMID:27430742

  1. Structural and Magnetic Study of Cu x FeCr1- x O2 Oxides Under High External Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ozkendir, Osman Murat

    2013-06-01

    The structural, electronic, and magnetic behaviors of Cu x FeCr1- x O2 polycrystals are investigated. Investigations are conducted for increasing chromium substitution, according to varying x values in the formula versus copper, for x = 0, 0.2, 0.4, 0.6, 0.8, and 1. The magnetic response of polycrystalline samples under increasing external magnetic field from 0.4 T to 5 T is also studied. The partial crystal structure deformation/transition from delafossite CuFeO2 structure to corundum-type FeCrO3 structure containing CrO2 and Cr2O3 blocks is determined. The change in the crystal structure geometry with increasing Cr substitution is observed. Besides, prominent changes in magnetic ordering are observed from antiferromagnetic ( x = 1, 0.8, and 0.6) to ferromagnetic ordering ( x = 0.4 and 0.2) for high applied external magnetic fields above 2 T.

  2. Studies of a Large Odd‐Numbered Odd‐Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8Mn

    PubMed Central

    Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J.; Barker, Claire; Carretta, Stefano; Collison, David; Güdel, Hans U.; Guidi, Tatiana; McInnes, Eric J. L.; Möller, Johannes S.; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L.; Santini, Paolo; Tuna, Floriana; Tregenna‐Piggott, Philip L. W.; Vitorica‐Yrezabal, Iñigo J.; Timco, Grigore A.

    2016-01-01

    Abstract The spin dynamics of Cr8Mn, a nine‐membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8Mn is a rare example of a large odd‐membered AF ring, and has an odd‐number of 3d‐electrons present. Odd‐membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated‐spin ground states. The chemical synthesis and structures of two Cr8Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground‐spin‐state crossing from S=1/2 to S=3/2 in Cr8Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin‐pair correlations and scalar‐spin chirality, shows a non‐collinear spin structure that fluctuates between non‐planar states of opposite chiralities. PMID:26748964

  3. Studies of a Large Odd-Numbered Odd-Electron Metal Ring: Inelastic Neutron Scattering and Muon Spin Relaxation Spectroscopy of Cr8 Mn.

    PubMed

    Baker, Michael L; Lancaster, Tom; Chiesa, Alessandro; Amoretti, Giuseppe; Baker, Peter J; Barker, Claire; Blundell, Stephen J; Carretta, Stefano; Collison, David; Güdel, Hans U; Guidi, Tatiana; McInnes, Eric J L; Möller, Johannes S; Mutka, Hannu; Ollivier, Jacques; Pratt, Francis L; Santini, Paolo; Tuna, Floriana; Tregenna-Piggott, Philip L W; Vitorica-Yrezabal, Iñigo J; Timco, Grigore A; Winpenny, Richard E P

    2016-01-26

    The spin dynamics of Cr8 Mn, a nine-membered antiferromagnetic (AF) molecular nanomagnet, are investigated. Cr8 Mn is a rare example of a large odd-membered AF ring, and has an odd-number of 3d-electrons present. Odd-membered AF rings are unusual and of interest due to the presence of competing exchange interactions that result in frustrated-spin ground states. The chemical synthesis and structures of two Cr8 Mn variants that differ only in their crystal packing are reported. Evidence of spin frustration is investigated by inelastic neutron scattering (INS) and muon spin relaxation spectroscopy (μSR). From INS studies we accurately determine an appropriate microscopic spin Hamiltonian and we show that μSR is sensitive to the ground-spin-state crossing from S=1/2 to S=3/2 in Cr8 Mn. The estimated width of the muon asymmetry resonance is consistent with the presence of an avoided crossing. The investigation of the internal spin structure of the ground state, through the analysis of spin-pair correlations and scalar-spin chirality, shows a non-collinear spin structure that fluctuates between non-planar states of opposite chiralities. PMID:26748964

  4. Strong pressure dependences of the magnetization and Curie temperature for CrTe and MnAs with NiAs-type structure

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Terao, K.; Kondo, K.; Goto, T.

    2002-11-01

    To study the strong magneto-volume effects observed in CrTe and MnAs with NiAs-type crystal structure, first-principle band calculations are carried out by a self-consistent linear muffin-tin orbital method within the atomic sphere approximation. The equilibrium volume of the unit cell is obtained as a function of the magnetization M, which gives the volume magnetostriction. The dependence on M of the bulk modulus is also estimated. The coefficients a0 and b0 in the Landau expansion, ΔE(M) = a0 M2 /2 + b 0 M4 /4, are estimated by the fixed-spin-moment method. The calculated results for CrTe and MnAs are compared with those for bcc Fe. It is shown that the values of |a0 | and b0 for CrTe and MnAs are so small that the correction term from the magneto-volume coupling constants becomes significant. This fact gives a strong pressure dependence of the spontaneous magnetization. The pressure dependence of the Curie temperature is also discussed by making use of the magneto-volume coupling constants estimated in the present paper. The large volume magnetostriction observed in CrTe and MnAs is explained by the present calculations.

  5. Dielectric relaxation and magnetodielectric response in DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}

    SciTech Connect

    Yuan, B.; Yang, J. Zuo, X. Z.; Zhu, X. B.; Dai, J. M.; Song, W. H.; Kan, X. C.; Zu, L.; Sun, Y. P.

    2015-09-28

    We investigate the structural, magnetic, and magnetodielectric properties of DyMn{sub 0.5}Cr{sub 0.5}O{sub 3}. The sample can be indexed with an orthorhombic phase with B site disordered space group Pbnm. The valence state of both Mn and Cr ions are suggested to be +3 based on the results of x-ray photoelectron spectroscopy. Two thermally excited dielectric relaxation at temperatures T{sub N2} < T< 300 K and large magnetodielectric effect (MDC = 20%–30%) due to the disordered arrangement of Mn{sup 3+}/Cr{sup 3+} ions associated with electron hopping between them are observed. The absence of any noticeable magnetoresistance effect (MR < 0.5%) demonstrates that the observed magnetodielectric effect is an intrinsic behavior. These results suggest that DyMn{sub 0.5}Cr{sub 0.5}O{sub 3} is a magnetodielectric compound, whose dielectric properties are dependence of the applied magnetic field, which exhibits such effects near room temperature and holds great promise for future device applications.

  6. Electrical properties of ferromagnetic Ni{sub 2}MnGa and Co{sub 2}CrGa Heusler alloys

    SciTech Connect

    Kourov, N. I. Marchenkov, V. V.; Pushin, V. G.; Belozerova, K. A.

    2013-07-15

    The electrical properties of ferromagnetic Ni{sub 2}MnGa and Co{sub 2}CrGa Heusler alloys are measured in the temperature range 4-900 K. The effect of the energy gap near the Fermi level in the electronic spectrum on the behavior of electrical resistivity and absolute differential thermopower is discussed.

  7. Weathering and precipitation after meteorite impact of Ni, Cr, Fe, Ca and Mn in K-T boundary clays from Stevns Klint

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Yoshiasa, Akira; Tobase, Tsubasa; Isobe, Hiroshi; Hongu, Hidetomo; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2016-05-01

    Ni, Cr, Fe, Ca and Mn K-edge XANES and EXAFS spectra were measured on K-T boundary clays from Stevns Klint in Denmark. According to XANES spectra and EXAFS analyses, the local structures of Ni, Cr and Fe in K-T boundary clays is similar to Ni(OH)2, Cr2O3 and FeOOH, respectively. It is assumed that the Ni, Cr and Fe elements in impact related glasses is changing into stable hydrate and oxide by the weathering and diagenesis at the surface of the Earth. Ca in K-T boundary clays maintains the diopside-like structure. Local structure of Ca in K-T clays seems to keep information on the condition at meteorite impact. Mn has a local structure like MnCO3 with divalent state. It is assumed that the origin on low abundant of Mn in the Fe-group element in K-T clays was the consumption by life activity and the diffusion to other parts.

  8. Development of a focused ultrasound-assisted extraction method for the determination of trace concentrations of Cr and Mn in pharmaceutical formulations by ETAAS.

    PubMed

    de Paula, Carlos Eduardo R; Caldas, Luiz Fernando S; Brum, Daniel M; Cassella, Ricardo J

    2013-02-23

    This paper reports the development of a new method for the focused ultrasound extraction of Cr and Mn from pharmaceutical formulations and their determination by electrothermal atomic absorption spectrometry (ETAAS). The method was optimized by evaluating the influence of several variables such as the sonication power and time, concentration of HCl in the extractant solution and mass of sample employed in the extraction procedure. The curves of pyrolysis and atomization were constructed for both analytes in order to evaluate the effect of the matrix on the measurement of Cr and Mn. Quantitative extraction of both Cr and Mn was achieved when 25-150 mg of the sample were sonicated for 30 min at 50% power with 5 ml of a 1 moll(-1) HCl solution. The developed method was successfully applied in the determination of Cr and Mn in samples of pharmaceutical formulations containing different active principles such as ciprofloxacin, cephalexin, azithromycin, amlodipine and methionine. There was no statistical (95% confidence level, paired t-test) difference between the results obtained by the proposed method and the results obtained after total digestion of the samples. PMID:23245262

  9. Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Maji, Bikas C.; Krishnan, Madangopal; Verma, Amit; Basu, R.; Samajdar, I.; Ray, Ranjit K.

    2015-02-01

    The effect of pre-straining on the shape recovery behavior of Fe-14Mn-6Si-9Cr-5Ni (wt pct) shape memory alloy (SMA) has been studied. The shape recovery associated with the reverse ɛ martensitic transformation, i.e., ɛ → γ, was characterized by dilatometry using specimens which were pre-strained to different extent (0 to 14 pct). Dilatometric studies revealed that in Fe-Mn-Si-Cr-Ni SMA, the shape recovery takes place in two stages: (i) in the first stage, the unpinned fraction of stress-induced ɛ martensite reverts back to parent phase γ in the temperature regime of 353 K to 653 K (80 °C to 380 °C) and (ii) in the second stage the remaining "pinned" ɛ martensite is unpinned by the decomposition of deformation-induced α' martensite in the temperature range of 743 K to 893 K (470 °C to 620 °C). The amount of recovery in the first stage decreases with pre-strain, whereas it increases in the second stage. The ɛ → γ transformation finish temperature, A f, increases with increase in pre-strain amount, though the reverse transformation start temperature, A S, remains unaffected. Microstructural characterization revealed that the amount of deformation-induced α' martensite depends on the mode of straining and the crystallographic texture of the starting material. The reversion of α' martensite is seen to occur by the precipitation of Fe5Ni3Si2-type intermetallic π-phase within these plates.

  10. Effect of hydrogen on internal friction and Young`s modulus of Fe-Cr-Mn austenitic stainless steel

    SciTech Connect

    Usui, Makoto; Asano, Shigeru

    1996-06-01

    The internal friction technique has so far been applied to studies on hydrogen behavior in iron and steel. The hydrogen cold-work peak is well known for pure iron and has also been observed in BCC iron alloys such as ferritic stainless steel and maraging steel. It provides important information about the hydrogen- dislocation interaction in the BCC iron lattice. Meanwhile, for FCC iron alloys such as austenitic stainless steel, another characteristic hydrogen internal friction peak has been found by authors` group and confirmed by several other investigators. In the present study, type 205 austenitic stainless steel (Fe-17Cr-15Mn) was chosen as a nickel-free FCC iron alloy, in which manganese is totally substituted for nickel in type 304 steel. This steel has an unstable FCC lattice as is the case of type 304 steel, in which hydrogen-induced phase transformation depends on the austenite stability. However, the present steel was confirmed to form the {var_epsilon}{sub H} phase after cathodic hydrogen charging in a similar manner to the stable FCC lattice of type 310 steel. In addition, the Fe-Cr-Mn alloy shows a marked anomaly in the temperature dependence of Young`s modulus: an abrupt drop near the Neel temperature T{sub N} and successive lowering below T{sub N}, as has been reported in the literature for some antiferromagnetic materials. The effect of hydrogen on Young`s modulus was studied by several investigators, but there was great inconsistency among their experimental results. The purpose of this paper is to confirm the hydrogen peak of internal friction in type 205 steel and to examine the effect of hydrogen on Young`s modulus of this steel.

  11. Bioaccumulation of Zn, Cu and Mn in the caviar and muscle of Persian sturgeon (Acipenser persicus) from the Caspian Sea, Iran.

    PubMed

    Mashroofeh, Abdulreza; Bakhtiari, Alireza Riyahi; Pourkazemi, Mohammad

    2012-12-01

    Concentrations of Zn, Cu and Mn were examined in caviar and muscle of the Persian sturgeon (Acipenser persicus) collected from coastal waters of south Caspian Sea during March and April, 2011. Mean Zn, Cu and Mn concentrations in caviar samples were 21.48, 2.05 and 1.66 μg g(-1) wet weight basis, respectively. The mean Zn, Cu and Mn concentrations in muscle tissues were 7.49, 1.00 and 0.34 μg g(-1) wet weight basis, respectively. The mean concentrations of Zn and Cu in caviar and muscle samples were under the permissible limits proposed by the United Kingdom's Ministry of Agriculture, Fisheries and Food (2000). PMID:23080537

  12. High field magnetotransport and point contact Andreev reflection measurements on CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br—Degenerate magnetic semiconductor single crystals

    SciTech Connect

    Borisov, K. Coey, J. M. D.; Stamenov, P.; Alaria, J.

    2014-05-07

    Single crystals of the metallically degenerate fully magnetic semiconductors CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br have been prepared by the Chemical Vapour Transport method, using either Se or Br as transport agents. The high-quality, millimetre-sized, octahedrally faceted, needle- and platelet-shaped crystals are characterised by means of high field magnetotransport (μ{sub 0}H≤ 14 T) and Point Contact Andreev Reflection. The relatively high spin polarisation observed |P|>0.56, together with the relatively low minority carrier effective mass of 0.25 m{sub e}, and long scattering time  10{sup −13} s, could poise these materials for integration in low- and close-to-room temperature minority injection bipolar heterojunction transistor demonstrations.

  13. Spatially resolved quantitative magnetic order measurement in spinel CuCr{sub 2}S{sub 4} nanocrystals

    SciTech Connect

    Negi, D. S.; Loukya, B.; Datta, R.; Ramasamy, K.; Gupta, A.

    2015-05-04

    We have utilized spatially resolved high resolution electron energy loss spectroscopy to quantify the relative percentage of ferromagnetic order in the core and the surface regions of CuCr{sub 2}S{sub 4} nanoparticles with nanocube and nanocluster morphology. The organic capping layer is found to play a significant role in restoring magnetic order at the surface. The technique is based on recording the fine features of the Cr L{sub 3} absorption edge and matching them with the theoretical spectra. The nanoscale probing technique we have developed is quite versatile and can be extended to understand magnetic ordering in a number of nanodimensional magnetic materials.

  14. Structural, magnetic and phonon properties of Cr(III)-doped perovskite metal formate framework [(CH3)2NH2][Mn(HCOO)3

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Gągor, Anna; Hermanowicz, Krzysztof; Sieradzki, Adam; Macalik, Lucyna; Pikul, Adam

    2016-05-01

    We have incorporated Cr(III) into [(CH3)2NH2][Mn(HCOO)3] (DMMn) multiferroic metal organic framework (MOF). The highest concentration of Cr(III) in the synthesized samples reached 15.9 mol%. The obtained samples were characterized by powder and single-crystal X-ray diffraction, DSC, magnetic susceptibility, dielectric, EPR, Raman and IR methods. These methods and the performed chemical analysis revealed that electrical charge neutrality after substitution of Cr(III) for Mn(II) is maintained by partial replacement of dimethylammonium (DMA+) cations by neutral HCOOH molecules. These changes in the chemical composition are responsible for weakening of the hydrogen bonds and decreased flexibility of the framework. This in turn leads to lowering of the ferroelectric phase transition temperature, observed around 185 K for undoped DMMn and around 155 K for the sample containing 3.1 mol% of Cr(III), and lack of macroscopic phase transition for the samples with Cr(III) content of 8.2 and 15.9 mol %. Another interesting effect observed for the studied samples is pronounced strengthening of the weak ferromagnetism of in Cr(III)-doped samples, associated with slight decrease of the ferromagnetic ordering temperature from 8.5 K for DMMn to 7.0 K for the sample with 15.9 mol % Cr(III) content.

  15. Ag{sub 2}CuMnO{sub 4}: A new silver copper oxide with delafossite structure

    SciTech Connect

    Munoz-Rojas, David; Subias, Gloria; Fraxedas, Jordi; Martinez, Benjamin; Casas-Cabanas, Montse; Canales-Vazquez, Jesus; Gonzalez-Calbet, Jose; Garcia-Gonzalez, Ester; Walton, Richard I.; Casan-Pastor, Nieves . E-mail: nieves@icmab.es

    2006-12-15

    The use of hydrothermal methods has allowed the synthesis of a new silver copper mixed oxide, Ag{sub 2}CuMnO{sub 4}, the first example of a quaternary oxide containing both elements. It crystallizes with the delafossite 3R structure, thus being the first delafossite to contain both Ag and Cu. Synthesis conditions affect the final particle size (30-500nm). Powder X-ray diffraction Rietveld refinement indicates a trigonal structure (R3-bar m) and cell parameters a=2.99991A and c=18.428A, where Cu and Mn are disordered within the octahedral B positions in the plane and linearly coordinated Ag occupies de A position between layers. X-ray absorption near edge spectroscopy (XANES) for copper and manganese, and XPS for silver evidence +2, +4, and +1 oxidation states. The microstructure consists of layered parts that may form large twins showing 5nm nanodomains. Finally, magnetic measurements reveal the existence of ferromagnetic coupling yielding in-plane moments that align antiferromagnetically at lower temperatures. The singularity of the new phase resides on the fact that is an example of a bidimensional arrangement of silver and copper in an oxide that also shows clear bidimensionality in its physical properties. That is of special relevance to the field of high T{sub c} superconducting oxides, while the ferromagnetic coupling in a bidimensional system deserves itself special attention.

  16. Electronic structures of the ferrimagnetic double-perovskites Sr2XReO6 (X = Cr, Mn, Fe, Ni) with the modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong

    2015-04-01

    We investigate the electronic structures and magnetic properties of the ferrimagnetic double-perovskites Sr2XReO6 (X = Cr, Mn, Fe, Ni) by using Tran and Blaha's modified Becke and Johnson exchange potential. The calculated results show that Sr2XReO6 (X = Cr, Fe) are half-metals, and Sr2XReO6 (X = Mn, Ni) are insulators, which is in accordance with the experimental results. By using the ionic picture, we explain the trend in the density of states and total magnetic moment with X changing from Cr to Ni. We find that the insulating property is associated with X2 +, while the metallic character is associated with X3 +. The Re t2g splitting in the minority channel leads to insulativity of Sr2XReO6 (X = Mn, Ni), and the Re t2g splitting of Sr2MnReO6 is caused by lattice distortion, while Sr2NiReO6's splitting is due to the heavier atomic mass of Ni. When spin-orbit coupling is included, the spin polarization of Sr2XReO6 (X = Cr, Fe) drifts off 100%, and the related gaps of Sr2XReO6 (X = Mn, Ni) become narrow. The spin-orbit coupling results in a significant increase in the total magnetic moment due to an unquenched Re orbital moment. Our calculated energy band structures show that Sr2MnReO6 is a spin gapless semiconductor, which can realize fully polarized spin-down electrons and spin-up holes.

  17. Microstructures and mechanical properties of compositionally complex Co-free FeNiMnCr18 FCC solid solution alloy

    SciTech Connect

    Wu, Z.; Bei, H.

    2015-07-01

    Recently, a structurally-simple but compositionally-complex FeNiCoMnCr high entropy alloy was found to have excellent mechanical properties (e.g., high strength and ductility). To understand the potential of using high entropy alloys as structural materials for advanced nuclear reactor and power plants, it is necessary to have a thorough understanding of their structural stability and mechanical properties degradation under neutron irradiation. Furthermore, this requires us to develop a similar model alloy without Co because material with Co will make post-neutron-irradiation testing difficult due to the production of the 60Co radioisotope. In order to achieve this goal, a FCC-structured single-phase alloy with a composition of FeNiMnCr18 was successfully developed. This near-equiatomic FeNiMnCr18 alloy has good malleability and its microstructure can be controlled by thermomechanical processing. By rolling and annealing, the as-cast elongated-grained-microstructure is replaced by homogeneous equiaxed grains. The mechanical properties (e.g., strength and ductility) of the FeNiMnCr18 alloy are comparable to those of the equiatomic FeNiCoMnCr high entropy alloy. Both strength and ductility increase with decreasing deformation temperature, with the largest difference occurring between 293 and 77 K. Extensive twin-bands which are bundles of numerous individual twins are observed when it is tensile-fractured at 77 K. No twin bands are detected by EBSD for materials deformed at 293 K and higher. Ultimately the unusual temperature-dependencies of UTS and uniform elongation could be caused by the development of the dense twin substructure, twin-dislocation interactions and the interactions between primary and secondary twinning systems which result in a microstructure refinement and hence cause enhanced strain hardening and postponed necking.

  18. Kinetic Parameters of Secondary Carbide Precipitation in High-Cr White Iron Alloyed by Mn-Ni-Mo-V Complex

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Chabak, Yu. G.; Brykov, M. N.

    2013-05-01

    This study presents kinetics of precipitation of secondary carbides in 14.55%Cr-Mn-Ni-Mo-V white cast iron during the destabilization heat treatment. The as-cast iron was heat treated at temperatures in the range of 800-1100 °C with soaking up to 6 h. Investigation was carried out by optical and electron microscopy, dilatometric analysis, Ms temperature measurement, and bulk hardness evaluation. TTT-curve of precipitation process of secondary carbides (M7C3, M23C6, M3C2) has been constructed in this study. It was determined that the precipitation occurs at the maximum rate at 950 °C where the process is started after 10 s and completed within 160 min further. The precipitation leads to significant increase of Ms temperature and bulk hardness; large soaking times at destabilization temperatures cause coarsening of secondary carbides and decrease in particles number, followed by decrease in hardness. The results obtained are discussed in terms of solubility of carbon in the austenite and diffusion activation of Cr atoms. The precipitation was found to consist of two stages with activation energies of 196.5 kJ/g-mole at the first stage and 47.1 kJ/g-mole at the second stage.

  19. Magnetic and electronic properties of Cr- and Mn-doped SnO2: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ziat, Y.; Benyoussef, A.; El Kenz, A.

    2014-06-01

    The ab initio calculations, based on the Korringa-Kohn-Rostoker (KKR) approximation method combined with the coherent potential approximation (CPA), indicated as KKR-CPA, have been used to study the stability of ferromagnetic and ferrimagnetic states, for systems that are SnO2 doped and co-doped with two transition metals, that is, chromium and manganese. Our results indicate that the ferromagnetic state is more stable than the spin-glass state for the (Sn1-xCrxO2; x = 0.07, 0.09, 0.12 and 0.15)-doped system, while the spin-glass state is more stable than the ferromagnetic state for the (Sn1-xMnxO2; x = 0.02 and 0.05)-doped system. However, the ferromagnetic and/or the ferrimagnetic states are stable for the (Sn0.98-xMn0.02CrxO2; x = 0.05, 0.09 and 0.13)-doped system depending on the Cr concentration. Moreover, we estimated the Curie temperature (Tc) for the Cr-doped tin dioxide (SnO2), and we explained the origin of magnetic behaviour through the total density of states for different doped and co-doped SnO2 systems.

  20. Effects of Electron Beam Welding on Microstructure, Microhardness, and Electrical Conductivity of Cu-Cr-Zr Alloy Plates

    NASA Astrophysics Data System (ADS)

    Kanigalpula, P. K. C.; Chatterjee, Arya; Pratihar, D. K.; Jha, M. N.; Derose, J.

    2015-12-01

    In this study, the effects of electron beam welding on the microstructure, microhardness, and electrical conductivity of precipitation-hardened Cu-0.804%Cr-0.063%Zr (wt.%) alloy plates were investigated. Experiments were carried out following a central composite design of experiments. Five welding schedules yielding the higher hardness were chosen and then were subjected to standard metallographic and various microscopy techniques to reveal the type, morphology, and distribution of the precipitates and to obtain the sub-structural information from the weld zone. X-ray diffraction studies revealed predominant formation of intermetallic phases in the welded zones of some of the samples, which could have resulted in higher hardness and better electrical conductivity compared to those of other ones. Microhardness values in the fusion zone and heat-affected zone were found to be less than that of the parent material. The mechanism of damage in Cu-Cr-Zr plates due to welding was also explained.

  1. Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests.

    PubMed

    Maisto, Giulia; Manzo, Sonia; De Nicola, Flavia; Carotenuto, Rita; Rocco, Annamaria; Alfani, Anna

    2011-11-01

    This study aimed to assess soil quality by chemical and ecotoxicological investigations and to check the correspondence between soil metal concentrations and ecotoxicity. For these purposes, surface soils collected at four adjacent roadside urban parks and at a former industrial area were characterized for C/N, organic matter content, texture, and pH. Cr, Cu, Ni and Pb, chosen among the most representative soil metal contaminants, were measured as total content and as available and water soluble fractions. In addition, the total concentrations of the investigated metals were used to calculate two chemical indices: the contamination and the potential ecological risk factors. The toxicity of the investigated soils was evaluated by an ecotoxicity test battery carried out on both soil samples (Vibrio fischeri, Heterocypris incongruens and Sinapis alba) and elutriates (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum). The findings, both by the chemical and ecotoxicological approaches, would suggest that the soils with high metal contamination pose ecological risks. On the other hand, moderately metal contaminated soils did not exclude soil ecotoxicity. In fact, toxic effects were also highlighted in soils with low metal content, toxicity being affected by metal availability and soil characteristics. Moreover, the results suggest the importance of using a battery of tests to assess soil ecotoxicity. PMID:21918769

  2. Low temperature spin dynamics in Cr7Ni-Cu-Cr7Ni coupled molecular rings

    SciTech Connect

    Bordonali, L; Furukawa, Y; Mariani, M; Sabareesh, K P; Garlatti, E; Carretta, S; Lascialfari, A; Timco, G; Winpenny, R E; Borsa, F

    2014-05-07

    Proton Nuclear Magnetic Resonance (NMR) relaxation measurements have been performed down to very low temperature (50 mK) to determine the effect of coupling two Cr7 Ni molecular rings via a Cu2+ ion. No difference in the spin dynamics was found from nuclear spin lattice relaxation down to 1.5 K. At lower temperature, the 1H-NMR line broadens dramatically indicating spin freezing. From the plot of the line width vs. magnetization, it is found that the freezing temperature is higher (260 mK) in the coupled ring with respect to the single Cr7 Ni ring (140 mK).

  3. Nature of electron correlation and hybridization in NixCu1-xMnSb Heusler alloys

    NASA Astrophysics Data System (ADS)

    Sarkar, I.; Yusuf, S. M.; Halder, M.; Gloskovskii, A.; Drube, W.

    2016-08-01

    The electronic structure of Heusler alloys having mixed magnetic phases, comprising of vicinal anti-ferromagnetic and ferromagnetic orders, is of great significance. We present the results of an electronic structure study on NixCu1-xMnSb Heusler alloys, using Mn-2p core-level photoemission spectroscopy. Room temperature data in the paramagnetic phase reveal a non-monotonic variation of both electron correlation strength and conduction-band hybridization such that the former enhances while the latter weakens for compositions showing a mixed phase relative to compositions at the phase boundaries to the ordered phases. The results suggest a possible electronic driving force for settling mixed-magnetic phases.

  4. Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4}: Novel keesterite type solid solutions

    SciTech Connect

    Lopez-Vergara, F.; Galdamez, A.; Manriquez, V.; Barahona, P.; Pena, O.

    2013-02-15

    A new family of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} chalcogenides has been synthesized by conventional solid-state reactions at 850 Degree-Sign C. The reactions products were characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray analysis (SEM-EDS), Raman spectroscopy and magnetic susceptibility. The crystal structures of two members of the solid solution series Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4} have been determined by single-crystal X-ray diffraction. Both phases crystallize in the tetragonal keesterite-type structure (space group I4{sup Macron }). The distortions of the tetrahedral volume of Cu{sub 2}Mn{sub 0.4}Co{sub 0.6}SnS{sub 4} and Cu{sub 2}Mn{sub 0.2}Co{sub 0.8}SnS{sub 4} were calculated and compared with the corresponding differences in the Cu{sub 2}MnSnS{sub 4} (stannite-type) end-member. The compounds show nearly the same Raman spectral features. Temperature-dependent magnetization measurements (ZFC/FC) and high-temperature susceptibility indicate that these solid solutions are antiferromagnetic. - Graphical abstract: View along [100] of the Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} structure showing tetrahedral units and magnetic measurement ZFC-FC at 500 Oe. The insert shows the 1/{chi}-versus-temperature plot fitted by a Curie-Weiss law. Highlights: Black-Right-Pointing-Pointer Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} solid solutions belong to the family of compounds adamantine. Black-Right-Pointing-Pointer Resolved single crystals of the solid solutions have space group I4{sup Macron }. Black-Right-Pointing-Pointer The distortion of the tetrahedral volume of Cu{sub 2}Mn{sub 1-x}Co{sub x}SnS{sub 4} were calculated. Black-Right-Pointing-Pointer These solid solutions are antiferromagnetic.

  5. Luminescence, magnetic and vibrational properties of novel heterometallic niccolites [(CH3)2NH2][CrIIIMII(HCOO)6] (MII=Zn, Ni, Cu) and [(CH3)2NH2][AlIIIZnII(HCOO)6]:Cr3+

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Pietraszko, Adam; Pikul, Adam; Hermanowicz, Krzysztof

    2016-01-01

    We report synthesis of three novel heterometallic MOFs, [(CH3)2NH2][CrIIIMII(HCOO)6] with M=Zn (DMCrZn), Ni (DMCrNi) and Cu (DMCrCu), crystallizing in the niccolite type structure. We also successfully synthesized [(CH3)2NH2][AlCu(HCOO)6] (DMAlCu) and [(CH3)2NH2][AlZn(HCOO)6] doped with 5.8 mol% of Cr3+ (DMAlZn: Cr). X-ray diffraction shows that DMCrZn, DMCrNi and DMAlZn: Cr3+ crystallize in the trigonal structure (space group P 3 bar1c) while DMCrCu and DMAlCu crystallize in the monoclinic structure (space group C2/c). Magnetic investigation of the chromium-based niccolites reveals no magnetic order in DMCrZn and ferromagnetic order in DMCrNi and DMCrCu below 23 and 11 K, respectively. Optical studies show that DMCrZn and DMAlZn: Cr samples exhibit efficient emission typical for chromium ions located at sites of strong crystal field with the Dq/B values 2.62 and 2.67, respectively. We also discuss role of geometrical parameters in stability of the perovskite and niccolite structures.

  6. Suppression of Grain Boundaries in Graphene Growth on Superstructured Mn-Cu(111) Surface

    SciTech Connect

    Chen, Wei; Chen, Hua; Lan, Haiping; Cui, Ping; Schulze, Tim P.; Zhu, Wenguang; Zhang, Zhenyu

    2012-01-01

    Asundesirabledefects,grainboundaries(GBs)arewidespreadinepitaxialgrapheneusingexistinggrowthmethodsonmetalsubstrates.Employingdensityfunctionaltheorycalculations,we rstidentifythatthemisorientationsofcarbonislandsnucleatedonaCu(111)surfaceleadtotheformationofGBsastheislandscoalesce.Wethenproposeatwo-stepkineticpathwaytoeffectivelysuppresstheformationofGBs.Inthe rststep,largearomatichydrocarbonmoleculesaredepositedontoa 3p 3psuper-structuredCu-Mnalloyedsurfacetoseedtheinitialcarbonclustersofasingleorientation;inthesecondstep,theseededislandsareenlargedthroughnormalchemicalvapordepositionofmethanetoformacompletegraphenesheet.Thepresentapproachpromisestoovercomeastandingobstacleinlargescalesingle-crystalgraphenefabrication.

  7. Simultaneous extraction of Cr(VI) and Cu(II) from humic acid with new synthesized EDTA derivatives.

    PubMed

    Zhang, Tao; Wu, Ying-Xin; Huang, Xiong-Fei; Liu, Jun-Min; Xia, Bing; Zhang, Wei-Hua; Qiu, Rong-Liang

    2012-07-01

    Soil washing is one of the few permanent treatment alternatives for removing metal contaminants. Ethylenediaminetetraacetic acid and its salts (EDTA) is very effective at removing cationic metals and has been utilized globally. However it is ineffective for anionic metal contaminants or metals bound to soil organic matter. The simultaneous removal of cationic and anionic metal contaminants by soil washing is difficult due to differences in their properties. The present study evaluated the potential of a washing process using two synthesized EDTA-derivatives, C(6)HEDTA (2,2'-((2-((carboxymethyl)(2-(hexanoyloxy)ethyl)amino)ethyl)azanediyl)diacetic acid) and C(12)HEDTA (2,2'-((2-((carboxymethyl) (2-(dodecanoyloxy)ethyl)amino)ethyl)azanediyl)diacetic acid), which consist of a hydrophilic polycarboxylic moiety and a hydrophobic moiety with a monoalkyl ester group. A series of equilibrium batch experiments at room temperature were conducted to investigate the efficacy of C(6)HEDTA and C(12)HEDTA as extractants for both oxyanion Cr(VI) and cationic Cu(II). Results showed that either C(6)HEDTA or C(12)HEDTA can extract both Cr(VI) and Cu(II) from humic acid simultaneously. However, C(6)HEDTA was less effective for Cr(VI) probably because it has no surface activities to increase solubility of humic acid, like C(12)HEDTA. Extraction of Cr(VI) was mainly attributed to the decreased surface tension and enhanced solubility of organic matter. Extraction of Cu(II) was attributed to both the Cu(II) chelation and enhanced solubility of humic acid. It was demonstrated that the hydrophilic polycarboxylic moiety of C(12)HEDTA chelates cations while the monoalkyl ester group produces surface active properties that enhance the solubility of humic acid. PMID:22555067

  8. Cr, Mn, and Ca distributions for olivine in angritic systems: Constraints on the origins of Cr-rich and Ca-poor core olivine in angrite LEW87051

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Mckay, G.; Le, L.

    1994-01-01

    Angrite meteorites are a type of basaltic achondrites that are noted for their very old cyrstallization ages (4.55 b.y.) and unusual chemical and mineralogical properties. In spite of great interest, only four angrites have been found. LEW87051 is the smallest one which weighs 0.6 g. It is a porphyritic rock with coarse subhedral to euhedral olivines set in a fine-grained groundmass which clearly represents a crystallized melt. The largest uncertainty about the petrogenesis of LEW87051 is the relationship between the large olivine crystals and the groundmass. Prinz et al. suggests that olivines are xenocrysts, while McKay et al. proposed a fractional cyrstallization model based on experimental studies. However, the crystals have Cr-rich and Ca-poor cores which do not match experimental olivines. Although Jurewicz and McKay tried to explaine the zoning of the rim by diffusion, some features are not explained. There also exists a definite composition boundary of Fe(2+) and MnO between the core and the rim. To clarify the origin of these olivines, we have performed experiments using LEW87051 analogs to measure the effects of oxygen fugacity on distribution coefficients of various elements in an angritic system.

  9. Materials with layered structures II; A new quaternary compound with ZnIn/sub 2/S/sub 4/(IIIa)-type structure in the system MnGa/sub 2/S/sub 4/-MnCr/sub 2/S/sub 4/

    SciTech Connect

    Haeuseler, H.; Kwarteng-Acheampong, W. )

    1989-08-01

    With the intention to prepare new compounds with layered structures the authors studied the quasibinary system MnGa/sub 2/S/sub 4/-MnCr/sub 2/S/sub 4/ by X-ray investigations on powdered samples. The parent compounds MnGa/sub 2/S/sub 4/ and MnCr/sub 2/S/sub 4/ have no detectable phase widths. A new compound MnGa/sub 2chi/Cr/sub 2-2chi/S/sub 4/ (0.75 < x < 0.9) crystallizing in the layered ZnIn/sub 2/S/sub 4/(IIIa) type structure is observed in the gallium rich part of the system. Magnetic measurements on MnGa/sub 1.5/Cr/sub 0.5/S/sub 4/ in the temperature range 77-300 {Kappa} show paramagnetic behaviour with {theta} = -88{Kappa} and C = 4.418.

  10. Effects of Mn, Cu doping concentration to the properties of magnetic nanoparticles and arsenic adsorption capacity in wastewater

    NASA Astrophysics Data System (ADS)

    Thi, Tran Minh; Trang, Nguyen Thi Huyen; Van Anh, Nguyen Thi

    2015-06-01

    The research results of Fe3O4 and Mn, Cu doped Fe3O4 nanomaterials synthesized by a chemical method for As(III) wastewater treatment are presented in this paper. The X-ray diffraction patterns and transmission electron microscopy images showed that samples had the cubic spinel structure with the grain sizes were varied from 9.4 nm to 18.1 nm. The results of vibrating sample magnetometer measurements at room temperature showed that saturation magnetic moments of Fe1-xCuxFe2O4 and Fe1-xMnxFe2O4 samples decreased from 65.9 emu/g to 53.2 emu/g and 65.9 emu/g to 61.5 emu/g, respectively, with the increase of Cu, Mn concentrations from 0.0 to 0.15. The nitrogen adsorption-desorption isotherm of a typical Fe3O4 sample at 77 K was studied in order to investigate the surface and porous structure of nanoparticles by BET method. The specific surface area of Fe3O4 magnetic nanoparticles was calculated about of 100.2 m2/g. The pore size distribution of about 15-20 nm calculated by the BJH (Barrett, Joyner, and Halendar) method at a relative pressure P/P0 of about 1. Although the saturation magnetic moments of samples decreased when the increase of doping concentration, but the arsenic adsorption capacity of Cu doped Fe3O4 nanoparticles is better than that of Fe3O4 and Mn doped Fe3O4 nanoparticles in a solution with pH = 7. In the solution with a pH > 14, the arsenic adsorption of magnetic nanoparticles is insignificant.

  11. Molecular imprinting method for fabricating novel glucose sensor: polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles.

    PubMed

    Farid, Mohammad Masoudi; Goudini, Leila; Piri, Farideh; Zamani, Abbasali; Saadati, Fariba

    2016-03-01

    An enzyme free glucose sensor was prepared by a molecular imprinting method (MIP). The procedure was developed by in situ preparation of a new polyvinyl acetate (PVA) electrode reinforced by MnO2/CuO loaded on graphene oxide (GO) nanoparticles (PVA/MnO2@GO/CuO). The nanocomposite was modified in the presence of glucose and then imprinted. A carbone paste method with voltammetry was used in the fabrication of the sensor from prepared MIP nanocomposite. PVA/MnO2@GO/CuO electrode was characterized by X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Electrocatalytic activity of the electrode toward glucose oxidation was then investigated by cyclic voltammetry in alkaline medium. The results show that the response of PVA/MnO2@GO/CuO MIP is much higher than PVA/MnO2@GO/CuO non-imprinted electrode toward glucose oxidation. The detection limit was 53μM, and the sensor responses are linear for concentrations from 0.5 to 4.4mM. Relative standard deviations for intra- and inter-day determination were less than 6.0%. The relative recoveries for different samples were 96%. PMID:26471527

  12. Crystal structure and magnetic properties of (Ni{sub 6{minus}x}Cu{sub x})MnO{sub 8}

    SciTech Connect

    Taguchi, Hideki; Ohta, Akiko; Nagao, Mahiko

    1998-02-01

    Murdochite-type (Ni{sub 6{minus}x}Cu{sub x})MnO{sub 8} (0.0 {le} x {le} 0.4) was synthesized at 873K using the precursor method. Both the (Ni,Cu)-O(1) and Mn-O(1) distances increase slightly with increasing x. These increases depend on the difference between the ionic radii of the Ni{sup 2+} and the Cu{sup 2+} ions. The magnetic measurement indicates that the 1/{chi}-T curve has a step caused by the mixture of the antiferromagnetic cluster due to the 180{degree} superexchange interaction for (Ni{sup 2+}, Cu{sup 2+})-O-(Ni{sup 2+}, Cu{sup 2+}) and the paramagnetic spins.

  13. Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te

    NASA Technical Reports Server (NTRS)

    Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.

    1997-01-01

    static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.

  14. Removal of Cu(II) and Cr(VI) from wastewater by an amphoteric sorbent based on cellulose-rich biomass.

    PubMed

    Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian; Gao, Bao-Yu; Xu, Xing

    2014-10-13

    A cellulose-rich biomass was modified as a new amphoteric sorbent to eliminate toxic Cu(II) and Cr(VI) from wastewater. The product (WSCA, which stands for modified wheat straw containing both cationic and anionic characters) presents high sorption capacities for the two ions which was evidenced by the comparison with unmodified wheat and other similar samples. Kinetic data and sorption equilibrium isotherms were conducted in batch process. The sorption kinetic analysis revealed that sorption of Cu(II) and Cr(VI) followed the pseudo second-order model well during the whole sorption process. The linear Langmuir isotherm model could perfectly describe the equilibrium data for Cu(II), while the sorption data of Cr(VI) were well fitted by the Freundlich. Results of the static test illustrated the complicated interactions between Cr(VI)/Cu(II) and WSCA including complexation and/or electrostatic attraction mechanisms. PMID:25037417

  15. Experimental Verification of the Theoretical Prediction of the Phase Structure of a Ni-Al-Ti-Cr-Cu Alloy

    NASA Technical Reports Server (NTRS)

    Wilson, A.; Bozzolo, G.; Noebe, R. D.; Howe, J. M.

    2002-01-01

    The Bozzolo-Ferrante-Smith (BFS) method for alloys was applied to the study of NiAl-based materials to assess the effect of alloying additions on structure. Ternary, quaternary and even pentalloys based on NiAl with additions of Ti, Cr and Cu were studied and experimental verification of the theoretical predictions including the phase structure of a Ni-Al-Ti-Cr-Cu alloy is presented. Two approaches were used, Monte Carlo simulations to determine low energy structures, and analytical calculations of the energy of high symmetry configurations which give physical insight into preferred structures. The energetics for site occupancy in ternary and quaternary systems were calculated leading to an indirect determination of solubility limits at 0 K. Precipitate formation with information concerning structure and lattice parameter were also 'observed' computationally and the general characteristics of a Ni-Al-Ti-Cr-Cu alloy were correctly predicted. The results indicate that the BFS method for alloys can be a useful tool for alloy design and can be used to complement experimental alloy design programs.

  16. Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited coatings

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Arab Pour Yazdi, Mohammad; Sanchette, Frederic; Billard, Alain

    2016-05-01

    CuCr0.93Mg0.07O2 thin films with improved optoelectronic properties were deposited by reactive magnetron sputtering on fused quartz substrates. The influence of annealing temperature under vacuum on optoelectronic properties of the films was investigated. The amorphous films annealed under vacuum at temperatures higher than 923 K are single-phased delafossite structure, while impurity phases like CuCr2O4 that affect the optoelectronic properties of the films are detected below 873 K. c-axis orientation is observed for CuCr0.93Mg0.07O2 layers and the annealing temperature window in which the films are single-phased delafossite is much larger with Mg doping (923 K  →  1073 K) than that for undoped films (~953 K). The optical and electrical behaviours of the films are enhanced by Mg substitution and their direct band gap energy of about 3.12–3.14 eV is measured. The film possesses the optimum properties after annealing under vacuum at about 1023 K its average transmittance in the visible region can reach 54.23% while the film’s conductivity is about 0.27 S cm‑1.

  17. Cr and Ru substituted defect manganese silicides MnSiδ (δ˜ 1.72-1.74) as low thermal conductivity thermoelectrics*

    NASA Astrophysics Data System (ADS)

    Ponnambalam, Vijayabarathi; Morelli, Donald T.

    2013-03-01

    Defect manganese silicides MnSiδ (δ ~ 1.72-1.74) belong to a large family of compounds known as Nowotny chimney-ladder (NCL) phases and are closely related to an orthorhombic NCL compound TiSi2. One interesting feature is the low lattice thermal conductivity (κL ~ 2.5 W/m K) which may be due to several reasons: Since δ doesn't exceed 1.75 in MnSiδ, a considerable concentration of random vacancies exists on the Si-sublattice and can give rise to a low thermal conductivity. In addition, as synthesized MnSiδ is a mixture of many phases including Mn4Si7, Mn11Si19,Mn15Si26 and Mn27Si47 and in all these phases, while a-lattice parameter is closely matched, the c-lattice parameter substantially varies with δ. Such a closely matched a-lattice parameter can cause lattice strain and potentially reduce κL. Ru2Si3 forms solid solutions and Cr can be substituted as much as 20% in MnSiδ. These substitutions can favorably modify the lattice strain and reduce the thermal conductivity further. Hence manganese silicides substituted with small amounts of Cr and Ru have been synthesized. Thermoelectric properties including resistivity, Seebeck and Hall coefficients and thermal conductivity will be studied and presented. *This work was supported as part of the Center for Revolutionary Materials for Solid State Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001054.

  18. Precipitation strengthened high strength, high conductivity Cu-Cr-Nb alloys produced by chill block melt spinning. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Michal, Gary M.

    1989-01-01

    A series of Cu-based alloys containing 2 to 10 a/o Cr and 1 to 5 a/o Nb were produced by chill block melt spinning (CBMS). The melt spun ribbons were consolidated and hot rolled to sheet to produce a supersaturated Cu-Cr-Nb solid solution from which the high melting point intermetallic compound Cr2Nb could be precipitated to strengthen the Cu matrix. The results show that the materials possess electrical conductivities in excess of 90 percent that of pure Cu at 200 C and above. The strengths of the Cu-Cr-Nb alloys were much greater than Cu, Cu-0.6 Cr, NARloy-A, and NARloy-Z in the as-melt spun condition. The strengths of the consolidated materials were less than Cu-Cr and Cu-Cr-Zr below 500 C and 600 C respectively, but were significantly better above these temperatures. The strengths of the consolidated materials were greater than NARloy-Z, at all temperatures. The GLIDCOP possessed similar strength levels up to 750 C when the strength of the Cu-Cr-Nb alloys begins to degrade. The long term stability of the Cu-Cr-Nb alloys was measured by the microhardness of aged samples and the growth of precipitates. The microhardness measurements indicate that the alloys overage rapidly, but do not suffer much loss in strength between 10 and 100 hours which confirms the results of the electrical resistivity measurements taken during the aging of the alloys at 500 C. The loss in strength from peak strength levels is significant, but the strength remains exceptionally good. Transmission electron microscopy (TEM) of the as-melt spun samples revealed that Cr2Nb precipitates formed in the liquid Cu during the chill block melt spinning, indicating a very strong driving force for the formation of the precipitates. The TEM of the aged and consolidated materials indicates that the precipitates coarsen considerably, but remain in the submicron range.

  19. Effect of Cu{sup 2+} and Ni{sup 2+} substitution at the Mn site in (La{sub 0.63}Ca{sub 0.37})MnO{sub 3}: A neutron powder diffraction investigation

    SciTech Connect

    Martinelli, A.; Ferretti, M.; Castellano, C.; Cimberle, M.R.; Ritter, C.

    2013-04-15

    The crystal and magnetic structures of the (La{sub 0.63}Ca{sub 0.37})(Mn{sub 1−x}TM{sub x})O{sub 3} compounds (x=0.00, 0.03, 0.08; TM=Cu{sup 2+}, Ni{sup 2+}) were investigated between 5 K and 300 K by means of dc magnetic measurements and neutron powder diffraction analysis followed by Rietveld refinement. Both substituting cations lead to a reduction of the long range ferromagnetic ordering temperature; ferromagnetism is strongly suppressed in the 8% Cu-substituted sample, where long- and short-range FM magnetic orders coexist together with short-range A-type AFM order. This particular feature can be related to the Jahn–Teller character of Cu{sup 2+}, absent in Ni{sup 2+}, and suggests the occurrence of a quantum critical point in the (La{sub 0.63}Ca{sub 0.37})(Mn{sub 1−x}Cu{sub x})O{sub 3} system. - Graphical abstract: Rietveld refinement plot of (La{sub 0.63}Ca{sub 0.37})(Mn{sub 0.92}Cu{sub 0.08})O{sub 3} showing in the inset the coexistence of broad A-type AFM peaks with FM ones. Highlights: ► (La{sub 0.63}Ca{sub 0.37})MnO{sub 3} was substituted with Ni and Cu. ► Neutron powder diffraction and Rietveld refinement were carried out. ► A quantum critical point possibly occurs in the (La{sub 0.63}Ca{sub 0.37})(Mn{sub 1−x}Cu{sub x})O{sub 3} system.

  20. Expression of Cu,Zn-SOD, Mn-SOD and GST-pi in oral cancer treated with preoperative radiation therapy.

    PubMed

    Terakado, N; Shintani, S; Nakahara, Y; Mihara, M; Tomizawa, K; Suzuki, K; Taniguchi, N; Matsumura, T

    2000-01-01

    Radical scavengers play an important role in cancer cells defending themselves against free radicals which occur with irradiation. SOD (Cu,Zn, Mn-) and GST-pi are radical scavengers with an effect on radiation therapy. We investigated the correlation between radiation effects and expression of Cu,Zn-, Mn-SOD and GST-pi in 34 cases of oral cancer, treated with preoperative radiation therapy. In this study, 22 cases out of 34 were classified as effective and 12 cases as non-effective. Expression of Cu,Zn, Mn-SOD and GST-pi were observed in 13 (38.2%), 10 (29.4%) and 20 (58.8%) cases, respectively. Regarding the value of radiation sensitivity from expression of these proteins in the biopsy samples, no significant correlation was found between those expressions and histological effectiveness of preoperative radiation therapy. But interestingly, in 11 out of 12 of the non-effective cases, strong staining of Cu, Zn-SOD and GST-pi were shown at the residual cancer cells after preoperative radiation therapy. These results suggested that the expression of SOD (Cu,Zn-, and Mn-) and GST-pi may be not useful markers for predicting the effects of radiation therapy. However, Cu, Zn-SOD and GST-pi were increased by irradiation and may play an important role in radiation resistance and cancer cell regeneration after radiation therapy. PMID:10948348

  1. Determination of soil micronutrients (Fe, Cu, Mn, B) extracted by Mehlich 3 using MP-AES

    NASA Astrophysics Data System (ADS)

    Krebstein, Kadri; Tõnutare, Tõnu; Rodima, Ako; Kõlli, Raimo; Künnapas, Allan; Rebane, Jaanus; Penu, Priit; Vennik, Kersti; Soobik, Liina

    2015-04-01

    The total concentration of micronutrients in soils is not a good predictor of its bioavailability and solubility. Therefore, during the decades several methods for the determination of plant availability and extractable fraction of micro- and macronutrients in soil were developed. Among several methods Mehlich 3 is the most appropriate due to its suitability for extracting soil micro- and macronutrients simultaneously. The AAS (atomic absorption spectroscopic) and ICP (inductively coupled plasma) methods are widely used for the analysis of microelements today. In 2011 the third method was added to this list with the appearance of the microwave plasma atomic emission spectrometer (MP-AES). This multielemental analytical equipment has a high potential in the soil analysis. Up to now there have been made some experiments for the use of MP-AES in soil and geological material analysis. But there is no information about the analysis of soil micronutrients extracted according to Mehlich 3 method and determined with the MP-AES. Due to the differences in atomization conditions the different emission and absorption lines are used in different instrumental methods. Therefore it is very important to choose the most suitable emission lines and the best atomization conditions. From the analytical viewpoint it is important to get coincidental results with other instrumental methods and from the agronomical point of view it is important to know the difference between AAS and ICP methods. For the experiment 51 soil samples were used. The samples were collected from A horizons of agricultural lands. The pH range was from 4.7 to 7.5 and organic matter content from 1.4 to 7.8%. The content of Mehlich 3 extractable micronutrients was determined using ICP and MP instrumental methods. The micronutrient contents ranged as follows: Fe - from 170 to 470 mg kg-1, Mn - from 5 to 190 mg kg-1, Cu - from 0.3 to 4.5 mg kg-1, B - from 0.2 to 2.1 mg kg-1. The optimal instrumental settings for iron

  2. Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, Mn, and Zn in a mining-impacted stream.

    PubMed

    Butler, Barbara A; Ranville, James F; Ross, Philippe E

    2008-06-01

    North Fork Clear Creek (NFCC) in Colorado, an acid-mine drainage (AMD) impacted stream, was chosen to examine the distribution of dissolved and particulate Cu, Fe, Mn, and Zn in the water column, with respect to seasonal hydrologic controls. NFCC is a high-gradient stream with discharge directly related to snowmelt and strong seasonal storms. Additionally, conditions in the stream cause rapid precipitation of large amounts of hydrous iron oxides (HFO) that sequester metals. Because AMD-impacted systems are complex, geochemical modeling may assist with predictions and/or confirmations of processes occurring in these environments. This research used Visual-MINTEQ to determine if field data collected over a two and one-half year study would be well represented by modeling with a currently existing model, while limiting the number of processes modeled and without modifications to the existing model's parameters. Observed distributions between dissolved and particulate phases in the water column varied greatly among the metals, with average dissolved fractions being >90% for Mn, approximately 75% for Zn, approximately 30% for Cu, and <10% for Fe. A strong seasonal trend was observed for the metals predominantly in the dissolved phase (Mn and Zn), with increasing concentrations during base-flow conditions and decreasing concentrations during spring-runoff. This trend was less obvious for Cu and Fe. Within hydrologic seasons, storm events significantly influenced in-stream metals concentrations. The most simplified modeling, using solely sorption to HFO, gave predicted percentage particulate Cu results for most samples to within a factor of two of the measured values, but modeling data were biased toward over-prediction. About one-half of the percentage particulate Zn data comparisons fell within a factor of two, with the remaining data being under-predicted. Slightly more complex modeling, which included dissolved organic carbon (DOC) as a solution phase ligand

  3. Novel Preparation of Nano-Composite CuO-Cr2O3 Using Ctab-Template Method and Efficient for Hydrogenation of Biomass-Derived Furfural

    NASA Astrophysics Data System (ADS)

    Yan, Kai; Wu, Xu; An, Xia; Xie, Xianmei

    2013-02-01

    A simple route to fabricate nano-composite oxides CuO-Cr2O3 using hexadecyltrimethylammonium bromide (CTAB)-templated Cu-Cr hydrotalcite as the precursor is presented. This novel method is based on CTAB-templating effect for mesostructure directing and using the cheap metal nitrate, followed by removal of CTAB. It was indicated that the nano-composite CuO-Cr2O3 was formed during the removal of CTAB. X-ray diffraction (XRD) and transitional electronic microscopy (TEM) revealed nice nano-composite oxides CuO-Cr2O3 were formed with high crystallinity. N2 adsorption and desorption indicated that a high surface area of 170.5 m2/g with a pore size of 2.7 nm of the nano-composite CuO-Cr2O3 was facilely resulted. The as-synthesized nano-composite oxides CuO-Cr2O3 display good catalytic activities for hydrogenation of furfural to furfuryl alcohol, whereas 86% selectivity was achieved at 75% conversion of furfural.

  4. Increasing the ordering temperatures in oxalate-based 3D chiral magnets: the series [Ir(ppy)2(bpy)][M(II)M(III)(ox)3] x 0.5 H2O (M(II)M(III) = MnCr, FeCr, CoCr, NiCr, ZnCr, MnFe, FeFe); bpy = 2,2'-bipyridine; ppy = 2-phenylpyridine; ox = oxalate dianion).

    PubMed

    Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; Soriano-Portillo, Alejandra

    2006-07-10

    The synthesis, structure, and physical properties of a novel series of oxalate-based bimetallic magnets obtained by using the Ir(ppy)2(bpy)]+ cation as a template of the bimetallic [M(II)M(III)(ox)3]- network are reported. The compounds can be formulated as [Ir(ppy)2(bpy)][M(II)Cr(III)(ox)3] x 0.5 H2O (M(II) = Ni, Mn, Co, Fe, and Zn) and [Ir(ppy)2(bpy)]-[M(II)Fe(III)(ox)3] x 0.5 H2O (M(II) = Fe, Mn) and crystallize in the chiral cubic space group P4(1)32 or P4(3)32. They show the well-known 3D chiral structure formed by M(II) and M(III) ions connected through oxalate anions with [Ir(ppy)2(bpy)]+ cations and water molecules in the holes left by the oxalate network. The M(II)Cr(III) compounds behave as soft ferromagnets with ordering temperatures up to 13 K, while the Mn(II)Fe(III) and Fe(II)Fe(III) compounds behave as a weak ferromagnet and a ferrimagnet, respectively, with ordering temperatures of 31 and 28 K. These values represent the highest ordering temperatures so far reported in the family of 3D chiral magnets based on bimetallic oxalate complexes. PMID:16813431

  5. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    SciTech Connect

    Letellier, F.; Lardé, R.; Le Breton, J.-M.; Akmaldinov, K.; Auffret, S.; Dieny, B.; Baltz, V.

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  6. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    NASA Astrophysics Data System (ADS)

    Letellier, F.; Lechevallier, L.; Lardé, R.; Le Breton, J.-M.; Akmaldinov, K.; Auffret, S.; Dieny, B.; Baltz, V.

    2014-11-01

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  7. Effects of anodic passivation on the constitution, stability and resistance to corrosion of passive film formed on an Fe-24Mn-4Al-5Cr alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Y. S.; Zhu, X. M.; Liu, M.; Che, R. X.

    2004-01-01

    The effects of anodic aging time and potential on the corrosion resistance, stability and constitution of the passive film formed on an Fe-24Mn-4Al-5Cr alloy in 50% HNO 3 solution were studied by using combined electrochemical measurements and Auger electron spectroscopic (AES)/X-ray photoelectron spectroscopic (XPS) analysis. In the anodic passive region, prolonged anodic aging time or increased passivating potential can induce better protective and stable properties of the passive film and better resistance to corrosion. With increasing aging time from 15 min to 5 h, the time required for the potential decay from the passive to active state increases from about 300 up to above 12,000 s, and the corrosion resistance in 1 mol l -1 Na 2SO 4 solution of Fe-24Mn-4Al-5Cr alloy, characterized by polarization curves, is superior to that of Fe-13% Cr-0.1% C stainless steel. AES and XPS analyses of the aging passive film show that these improvements of properties are related to modifications of the passive layer with time. The increase of resistance to corrosion is attributed to Al 2O 3 and Cr 2O 3 enrichment and oxides of Fe and Mn depletion in the passive film and a thickening of the effective barrier layer of oxides.

  8. Bicolor Mn-doped CuInS{sub 2}/ZnS core/shell nanocrystals for white light-emitting diode with high color rendering index

    SciTech Connect

    Huang, Bo; Dai, Qian; Zhang, Huichao; Liao, Chen; Cui, Yiping; Zhang, Jiayu; Zhuo, Ningze; Jiang, Qingsong; Shi, Fenghua; Wang, Haibo

    2014-09-07

    We synthesized bicolor Mn-doped CuInS{sub 2} (CIS)/ZnS core/shell nanocrystals (NCs), in which Mn{sup 2+} ions and the CIS core were separated with a ZnS layer, and both Mn{sup 2+} ions and CIS cores could emit simultaneously. Transmission electron microscopy and powder X-ray diffraction measurements indicated the epitaxial growth of ZnS shell on the CuInS{sub 2} core, and electron paramagnetic resonance spectrum indicated that Mn{sup 2+} ions were on the lattice points of ZnS shell. By integrating these bicolor NCs with commercial InGaN-based blue-emitting diodes, tricolor white light-emitting diodes with color rendering index of 83 were obtained.

  9. Atomic kinetic Monte Carlo model based on ab initio data: Simulation of microstructural evolution under irradiation of dilute Fe CuNiMnSi alloys

    NASA Astrophysics Data System (ADS)

    Vincent, E.; Becquart, C. S.; Domain, C.

    2007-02-01

    The embrittlement of pressure vessel steels under radiation has been long ago correlated with the presence of Cu solutes. Other solutes such as Ni, Mn and Si are now suspected to contribute also to the embrittlement. The interactions of these solutes with radiation induced point defects thus need to be characterized properly in order to understand the elementary mechanisms behind the formation of the clusters formed upon radiation. Ab initio calculations based on the density functional theory have been performed to determine the interactions of point defects with solute atoms in dilute FeX alloys (X = Cu, Mn, Ni or Si) in order to build a database used to parameterise an atomic kinetic Monte Carlo model. Some results of irradiation damage in dilute Fe-CuNiMnSi alloys obtained with this model are presented.

  10. Competition between ferromagnetic and antiferromagnetic interactions by Cr doping at Mn sites in antiperovskite Mn3-xCrxZnN (0≤x≤0.5) compounds

    NASA Astrophysics Data System (ADS)

    Malik, Muhammad Imran; Sun, Ying; Wang, Lei; Deng, Sihao; Shi, Kewen; Hu, Pengwei; Lu, Huiqing; Wang, Cong

    2016-05-01

    The Cr doping effect on the lattice and magnetic properties in Mn3-xCrxZnN was reported in the antiferromagnetic intermetallic host material Mn3ZnN. The lattice parameter decreases with the increase of the Cr concentration. Measurements of magnetization from 10 K to 350 K reveal that sharp antiferromagnetic (AFM)-to-paramagnetic (PM) transitions of the host material exist at 185 K (ZFC) and 177 K (FC). The peak is broadened clearly as the Cr doping was increased and when the Cr concentration exceeded 0.3, a significant ferromagnetic (FM) character was found to coexist with an AFM phase. At x=0.4 and 0.5, the M-H curves exhibit small magnetic hysteresis loop, indicating the dominant FM interactions in these samples. Also, a positive value of Weiss Temperature (ΘW) at x=0.5 in H/M-T plot suggests that the FM interaction is dominant when the Cr doping increases.

  11. Effect of Cr Addition on Wetting Behavior Between Cu and High-Temperature Zn-25Sn-0.15Al-0.1Ga- xCr Pb-Free Solder

    NASA Astrophysics Data System (ADS)

    Liu, Chin-Wei; Lin, Kwang-Lung

    2014-12-01

    In this study the effect of Cr content (0.02 wt.% to 0.2 wt.%) on the wetting interaction between high-temperature Zn-25Sn-0.15Al-0.1Ga- xCr Pb-free solders and Cu has been investigated using the wetting balance method. Differential scanning calorimetry (DSC) investigation showed that Cr addition reduces the liquidus temperature slightly while raising the solidus temperature. Flux-assisted wetting experiments were carried out at an immersion rate of 15 mm/s at 435°C. The results show that the shortest wetting time of around 0.7 s was achieved when 0.1 wt.% Cr was added, but the wetting force tends to decrease with the Cr content. Cr addition enhances the formation of interfacial Cu5Zn8 intermetallic compound (IMC) during air cooling, but the opposite effect was observed for water cooling. The results suggest that Cr addition depresses the formation of the Cu5Zn8 layer in liquid/solid reaction, but enhances the formation of the Cu5Zn8 layer in solid/solid reaction.

  12. Novel High-Speed High Pressure Torsion Technology for Obtaining Fe-Mn-Si-Cr Shape Memory Alloy Active Elements

    NASA Astrophysics Data System (ADS)

    Gurău, Gheorghe; Gurău, Carmela; Potecaşu, Octavian; Alexandru, Petrică; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    This paper introduces an adapted high-speed high pressure torsion (HS-HPT) method of severe plastic deformation applied for obtaining shape memory alloy (SMA) active elements with revolution symmetry, able to develop axial displacement/force. Billets with circular crown forms were cut from Fe-28Mn-6Si-5Cr (mass%) SMA ingots and, by means of HS-HPT technology, were directly turned into modules, with truncated cone shell configurations. This process was performed, during time intervals of seconds, under the effect of high pressure (up to 1 GPa) cumulated with high rotation speed (hundreds of rotations per minute) applied on the active surfaces of sintered-carbide anvils, specially designed for this purpose. Due to pressure and friction, generated by rotation, the entire sample volume is heated and simultaneously deformed to final shape. During the process, microstructure fragmentation occurred enabling to obtain (ultra)fine grains and nanocrystalline areas, in spite of the heat developed by friction, which was removed by conduction at the contact surface between sample and anvils, before the occurrence of any recrystallization phenomena. When compressed between flat surfaces, the truncated cone modules developed a superelastic-like response, unique among Fe -Mn-Si base SMAs and, when heated in compressed state, they were able to develop either axial strokes or recovery forces by either free or constrained recovery shape memory effect (SME), respectively. By means of optical (OM) and scanning electron microscopy (SEM) marked structural changes caused by HT-HPT were revealed, along with fine and ultrafine crystalline grains. The presence of stress-induced ɛ-hexagonal close-packed ( hcp) martensite, together with nanocrystalline areas were confirmed by x-ray diffraction.

  13. Optical and dielectric properties of BiMn1-xAExO3 (AE=Cr, Fe, Co, and Zn; x=0, 0.1) nanoparticles synthesized by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Neha; Gaur, Anurag; Yadav, Kamlesh

    2015-08-01

    BiMnO3 is a multiferroic material which means that it shows both the ferroelectricity and ferromagnetism. Present study deals about the study of optical and dielectric properties of BiMnO3 and doped BiMnO3. The magnetic and non magnetic ions are introduced as dopants in place of Mn sublattice, BiMn1-xAExO3 (where x=0.1 and AE= Cr, Fe, Co, and Zn). We have synthesized nanoparticles of BiMnO3 and BiMn1-xAExO3 (where x=0.1 and AE= Cr, Fe, Co, and Zn) by sol-gel technique. Optical properties have been studied by using FTIR (Fourier Transform Infrared) spectroscopy. FTIR (Fourier Transform Infrared Spectroscopy) analysis showed that there is an increase in the band gap of BiMn1-xAExO3 (where x=0.1 and AE= Cr, Fe, Co, and Zn) than pure BiMnO3 for the samples synthesized by sol-gel technique. The increase in band gap on doping is due to the radius to charge ratio. Ferroelectric hysteresis loop confirms the presence of ferroelectricity in BiMnO3. From the ferroelectric hysteresis loop the parameters like coericivity, saturation polarization and remanant polarization has been calculated. Nanoparticles of BiMnO3 have applications in memory storage devices.

  14. Sequential metal vapor elution analysis for the determination of Cu and Mn in biological materials and waters.

    PubMed

    Ohta, K; Uegomori, H; Kaneco, S; Mizuno, T

    1999-04-01

    The determination of copper and manganese in biological materials and river waters by sequential metal vapor elution analysis (SMVEA) using an atomic absorption detector (AA) is reported. An improved molybdenum column (open column, i.d. 1.22 mm) with three ring supporters was developed for SMVEA. An optimum flow rate of carrier gas (pure argon) for separation of metal vapors was 4.0 ml min(-1). Copper and manganese peaks separated from Al, Ca, Cd, Fe, K, Mg, Na, Pb, and Zn peaks at a vaporization temperature of 1950 degrees C and a column temperature of 1900 degrees C. The appearing order of these metals was Cd, Zn, Pb, Cu, Na and Mn. It was understood by considering the boiling points of these metals or chlorides. The delay of appearing time is due to an interaction between the metal vapors and inside surface of the column. Under the experimental conditions, the number of theoretical plates was 11.3 for Cd, 89.6 for Cu, 160 for Na, and 258 for Mn in the improved column. Under the optimal experimental conditions, NIST biological standards and river waters were analyzed for copper and manganese. The analytical results agreed well with the certified values and the recoveries were in the range of 94 to 109%. By SMVEA, it was found that copper and manganese in biological materials and waters were determined without interference of matrix elements, after only acid digestion for biological materials and no chemical treatment for river water samples. PMID:18967537

  15. Rapid and nondestructive measurement of labile Mn, Cu, Zn, Pb and As in DGT by using field portable-XRF.

    PubMed

    Chen, Zheng; Williams, Paul N; Zhang, Hao

    2013-09-01

    The technique of diffusive gradients in thin films (DGT) is often employed to quantify labile metals in situ; however, it is a challenge to perform the measurements in-field. This study evaluated the capability of field-portable X-ray fluorescence (FP-XRF) to swiftly generate elemental speciation information with DGT. Biologically available metal ions in environmental samples passively preconcentrate in the thin films of DGT devices, providing an ideal and uniform matrix for XRF nondestructive detection. Strong correlation coefficients (r > 0.992 for Mn, Cu, Zn, Pb and As) were obtained for all elements during calibration. The limits of quantitation (LOQ) for the investigated elements of FP-XRF on DGT devices are 2.74 for Mn, 4.89 for Cu, 2.89 for Zn, 2.55 for Pb, and 0.48 for As (unit: μg cm(-2)). When Pb and As co-existed in the solution trials, As did not interfere with Pb detection when using Chelex-DGT. However, there was a significant enhancement of the Pb reading attributed to As when ferrihydrite binding gels were tested, consistent with Fe-oxyhydroxide surfaces absorbing large quantities of As. This study demonstrates the value of the FP-XRF technique to rapidly and nondestructively detect the metals accumulated in DGT devices, providing a new and simple diagnostic tool for on-site environmental monitoring of labile metals/metalloids. PMID:23912422

  16. Distribution of metals (Fe, Mn, Zn, Cu) in fish tissues in two lakes of different trophy in Northwestern Poland.

    PubMed

    Rajkowska, Monika; Protasowicki, Mikołaj

    2013-04-01

    This study presents concentrations of iron, manganese, zinc, and copper in selected tissues of two fish species: pike (Esox lucius L.) and bream (Abramis brama L.) living in lakes Ińsko and Wisola, Northwestern Poland. The lakes differ in their trophic status. The effect of gender and environmental conditions on metals accumulation was also investigated. Metal analyses were performed using inductively coupled plasma atomic emission spectroscopy. Considering all studied fish species and tissues, the average metal concentrations (micrograms per gram wet weight) in both lakes occurred in the following ranges: Fe 0.8-240.6, Mn 0.2-8.4, Zn 3.0-185.9, and Cu 0.14-7.76. The lowest levels of the studied metals were always detected in the muscles. The spleen, kidneys, and liver were found to accumulate the highest amounts of Fe. In the case of the other metals, the highest levels were found, as follows: Mn in skin, gills, and gonads, Zn in digestive tract and gills, Cu in liver. Heavy metal content in fish gonads was observed to be sex dependent. PMID:22923375

  17. Preparation and physical properties of the solid solutions Cu{sub 1+x}Mn{sub 1-x}O{sub 2} (0=

    SciTech Connect

    Trari, M.; Toepfer, J.; Dordor, P.; Grenier, J.C.; Pouchard, M.; Doumerc, J.P. . E-mail: doumerc@icmcb-bordeaux.cnrs.fr

    2005-09-15

    Solid solutions of formula Cu{sub 1+x}Mn{sub 1-x}O{sub 2} (0=Mn{sup 3+} ions and revealed that the predominant interactions are antiferromagnetic. Their strength decreases with x, which can be ascribed to a dilution effect, and long-range 3D magnetic ordering observed for CuMnO{sub 2}, disappears for x> 0.05. The crednerite solid solutions are p-type semiconductors. Modeling the thermoelectric power behavior suggests that charge carriers are Cu{sup 2+} holes diffusing in Cu layers for small x values and Mn{sup 4+} holes diffusing in Mn layers for x>0.05. For larger x values a saturation effect limits the charge carrier concentration.

  18. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.

    PubMed

    Wang, Ye; Cheng, Zhen Zhen; Chen, Xi; Zheng, Qi; Yang, Zhi Min

    2015-11-01

    Excess copper (Cu) in environment affects the growth and metabolism of plants and green algae. However, the molecular mechanism for regulating plant tolerance to excess Cu is not fully understood. Here, we report a gene CrGNAT enconding an acetyltransferase in Chlamydomonas reinhardtii and identified its role in regulating tolerance to Cu toxicity. Expression of CrGNAT was significantly induced by 75-400μM Cu. The top induction occurred at 100μM. Transgenic algae overexpressing CrGNAT (35S::CrGNAT) in C. reinhardtii showed high tolerance to excess Cu, with improved cell population, chlorophyll accumulation and photosynthesis efficiency, but with low degree of oxidation with regard to reduced hydrogen peroxide, lipid peroxides and non-protein thiol compounds. In contrast, CrGNAT knock-down lines with antisense led to sensitivity to Cu stress. 35S::CrGNAT algae accumulated more Cu and other metals (Zn, Fe, Cu, Mn and Mg) than wild-type, whereas the CrGNAT down-regulated algae (35S::AntiCrGNAT) had moderate levels of Cu and Mn, but no effects on Zn, Fe and Mg accumulation as compared to wild-type. The elevated metal absorption in CrGNAT overexpression algae implies that the metals can be removed from water media. Quantitative RT-PCR analysis revealed that expression of two genes encoding N-lysine histone methyltransferases was repressed in 35S::CrGNAT algae, suggesting that CrGNAT-regulated algal tolerance to Cu toxicity is likely associated with histone methylation and chromatin remodeling. The present work provided an example a basis to develop techniques for environmental restoration of metal-contaminated aquatic ecosystems. PMID:26475193

  19. The role of Cu/Zn-SOD and Mn-SOD in the immune response to oxidative stress and pathogen challenge in the clam Meretrix meretrix.

    PubMed

    Lu, Xia; Wang, Chao; Liu, Baozhong

    2015-01-01

    The copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD) could effectively eliminate reactive oxygen species (ROS) and maintain the redox balance of immune system. In the present study, the potential synergy of Cu/Zn-SOD and Mn-SOD in immune system was investigated in the clam Meretrix meretrix. The expression of Cu/Zn-SOD mainly distributed in hepatopancreas and that of Mn-SOD was higher in gill of M. meretrix, and their mRNA and protein activity paralleled with each other. In response to H2O2 challenge, Cu/Zn-SOD mRNA showed significantly higher level at 24 h post-challenge and Mn-SOD mRNA was significantly higher at 12 and 24 h post-challenge in the experimental clams than in the control clams (P<0.05). After injection with Vibrio-parahaemolyticus-related bacterium (MM21), the Cu/Zn-SOD mRNA was significantly up-regulated at 24 h and 48 h post-injection and Mn-SOD mRNA was significantly higher at 24 h post-injection in MM21-injected clams than in control clams (P<0.05), suggesting that both of them might involve in the immune defense to Vibrio challenge. The mRNA expression of Cu/Zn-SOD and Mn-SOD was examined in a Vibrio-resistant population and a control population after MM21 immersion challenge. The increased transcription of Cu/Zn-SOD and Mn-SOD in the resistant population suggested both of them could benefit the immune system to defend against pathogen infection. As expression of Mn-SOD mRNA depended on stimuli and was more easily inducible, its response to H2O2 and Vibrio challenge was earlier than Cu/Zn-SOD. Our study suggested the redox balance might play an important role in M. meretrix to resist pathogen infection. PMID:25449371

  20. Research on change of phase transformation temperatures and electrical resistance triggered by heat treatment of alloy from Cu-Mn system

    NASA Astrophysics Data System (ADS)

    Karakaya, N.; Aldirmaz, E.

    2016-05-01

    This paper is aimed at studying influence of various heat treatments on transformation temperatures and electrical resistance properties of alloys from binary Cu-Mn system. It was noticed that with an increase in sample's grain size, transformation temperatures also increased. The activation energies of samples were calculated according to Kissinger and Augis-Bennett. Thermogravimetric and differential thermal analysis measurements were used to investigate phase transformations and kinetic parameters. The electrical values of resistance of alloy were investigated at different temperatures. The resistance as a function of quenching temperature showed a decrease. Depending on quenching techniques, Cu-Mn alloy can display different product phases such as parent phase and precipitation.